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EXECUTIVE SUMMARY

Background

Chronic disease surveillance is critical for assessing the impact of disease on
the population, identifying at-risk groups, and evaluating the effectiveness of
population-based health promotion and disease prevention strategies.
Multiple sources are used for chronic disease surveillance, including vital sta-
tistics records, disease-specific registries, population-based surveys, and
administrative data. Evaluating the validity of each of these data sources is
an important step in developing chronic disease surveillance systems.

Purpose and Objectives

This study examines the validity of administrative data, including hospital

separations, physician billing claims, and prescription drug records, for

monitoring the prevalence of selected chronic diseases in Manitoba. The

specific objectives of this report are to:

1) Review the literature on the validity of administrative data for
identifying chronic disease cases.

2) Evaluate the validity of multiple algorithms for identifying disease
cases from Manitoba administrative data.

3) Test for differences in cross-sectional and longitudinal prevalence
estimates for chronic disease algorithms.

Methods

The following diseases are the focus of the research (listed in alphabetical
order): arthritis, asthma, coronary heart disease (CHD), diabetes, hyperten-
sion, and stroke. In addition, we reviewed the literature on the use of
administrative data for identifying cases of congestive heart failure (CHF)
and renal disease.

A chronic disease algorithm is a set of rules for identifying disease cases from
administrative data. The elements of an algorithm include the type of data
source, number of years of administrative data, diagnostic/medication
code(s), and number of administrative data records (i.e., contacts) with a
diagnostic/medication code(s).

Data sources for the research are hospital separations, physician billing
claims, and prescription drug records in the Population Health Research
Data Repository (PHRDR) housed at the Manitoba Centre for Health
Policy (MCHP). Diagnostic codes in hospital and physician data are from
the International Classification of Diseases, 9th Revision, Clinical
Modification (ICD-9-CM) and medication codes in prescription drug data
are from the Anatomic Therapeutic Chemical (ATC) coding system main-
tained by the World Health Organization (WHO) Collaborating Centre for
Drug Statistics Methodology.
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The algorithms selected for evaluation are based on the literature review
results and consultations with clinicians and health services researchers.
More than 200 algorithms are validated using self-report chronic disease
data from cycle 1.1 of the Canadian Community Health Survey (CCHS).
The survey data are linked to administrative data in the MCHP PHRDR.
The CCHS validation cohort includes 5,589 adults 19 years of age and
older and 833 youth between 12 and 18 years of age. Validation indices
include the kappa (k) statistic, sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV), and Youden’s (1950) index.
Youden’s index is a summary measure of sensitivity and specificity, and is
used to identify the optimal combination of these two validation indices for
each chronic disease. CCHS data are used as the validation source because
they are the only source of population-based data, besides administrative
data, that can be used to identify individuals with multiple chronic diseases
in Manitoba. Predictors of agreement between survey and administrative
data, including age, sex, presence of comorbid conditions, region of resi-
dence, and income quintiles, are modeled using logistic regression.

Chronic disease prevalence estimates are generated for each algorithm. These
prevalence estimates are computed for the Manitoba population from both
cross-sectional and longitudinal administrative data for 1995/96 to 2003/04.
Generalized linear regression models are used to test for differences in the
population-based prevalence estimates from the algorithms. Specifically, the
interactions between an algorithm effect and the sociodemographic effects of
age, sex, region of residence, and income group are tested, to assess whether
the relative rate of prevalence for different algorithms is constant across the
sociodemographic characteristics of the population. Longitudinal trends in
the prevalence estimates for different algorithms are also tested.

Key Findings

Administrative data exhibited very good to excellent validity for identifying
cases of asthma, diabetes and hypertension. Administrative data exhibited
fair to good validity for identifying cases of arthritis, osteoarthritis, non-fatal
heart disease, and non-fatal stroke. Administrative data exhibited poor valid-
ity for identifying cases of rheumatoid arthritis. However, the latter result is
likely due to bias in the validation data source.

Arthritis

Sixteen algorithms were validated for all forms of arthritis, rheumatoid
arthritis, and osteoarthritis. For all forms of arthritis, agreement between
survey and administrative data, as measured by x, was highest (0.37) for the
two-year algorithm based on one or more hospital separations or two or
more physician billing claims, or one physician billing claim in combination
with two or more prescription drug records. Youden’s index was highest
(0.40) for the algorithm based on one or more contacts in hospital separa-
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tions, or two or more contacts in physician billing claims in five years. For
rheumatoid arthritis, k (0.17) and Youden’s index (0.11) were highest for
two algorithms, one of which was the five-year algorithm based on one or
more physician claims. For osteoarthritis, k (0.32) and Youden’s index (0.39)
were highest for the algorithm based on one or more physician billing claims
in five years. However, for all forms of arthritis and rheumatoid arthritis,
these two validation indices were almost equivalent for several other algo-
rithms. The logistic regression analyses revealed that agreement between sur-
vey and administrative data was predicted by several sociodemographic vari-
ables, including age and income quintile.

Crude prevalence estimates for the algorithms with the maximum x were
20.3% for all forms of arthritis, 1.6% for rheumatoid arthritis, and 13.2%
for osteoarthritis. Crude prevalence estimates for the algorithms with the
maximum value of Youden’s index were 31.5% for all forms of arthritis,
1.0% for rheumatoid arthritis, and 13.2% for osteoarthritis for the
Manitoba population 19 years of age and older. Analyses of the prevalence
estimates revealed the relative rate for different algorithms was predicted by
the sociodemographic variables of age, sex, region of residence and income
quintile. There were no significant differences among the algorithms in the
relative rate of change in prevalence over time.

Asthma

Twenty-eight algorithms were validated for each of the following age groups:
12 to 18 years, 19 to 49 years, and 50+ years, as well as for the combined
age groups. For all ages, x was highest (0.59) for the algorithm based on one
or more hospital separations or two or more physician claims or two or
more prescription drug records in five years. Youden’s index was highest
(0.73) for the algorithm based on one or more hospital separations or one or
more physician billing claims or one or more prescription drug records in
five years. However, it was equally high (0.72) for the algorithm based on
one or more prescription drug records in five years. Agreement between sur-
vey and administrative data was predicted by age, presence of comorbid con-
ditions, and income quintile.

The crude prevalence estimates for the Manitoba population 12 years of age
and older were 11.6% for the algorithm with the maximum x and 17.5%
for the algorithm with the maximum value of Youden’s index. Regression
analyses revealed a number of interactions between the algorithm effect and
the sociodemographic effects, indicating that the relative rate of asthma for
different algorithms was not constant across the sociodemographic charac-
teristics of the population. There were significant differences among the
algorithms in the relative rate of change in asthma prevalence over time.
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Coronary Heart Disease

A total of 20 algorithms were validated. The « statistic was highest (0.55)
for the algorithm based on one or more hospital separations or two or more
physician billing claims, or one physician billing claim in combination with
two or more prescription drug records in three years. Youden’s index was
highest (0.63) for the algorithm based on one or more hospital separations
or one or more physician billing claims in five years. Logistic regression
analysis revealed that agreement between survey and administrative data was
predicted by age, sex, and the presence of comorbid conditions.

The algorithms with the highest values of k and Youden’s index resulted in
crude prevalence estimates of 5.8% and 7.9%, respectively for the Manitoba
population 19 years of age and older. Regression analyses revealed a number
of statistically significant interactions between the algorithm effect and the
sociodemographic variables, indicating that the relative rate of prevalence for
different algorithms was not constant across the sociodemographic charac-
teristics of the population. Almost all of the algorithms showed the same rel-
ative rate of change in heart disease prevalence over time.

Diabetes

Eighteen algorithms were validated. The « statistic was highest (0.86) for
the algorithm based on one or more hospital separations or one or more
physician billing claims or two or more prescription drug records in two
years. Youden’s index was highest (0.88) for the algorithm based on one or
more hospital separations or one or more physician billing claims or one or
more prescription drug records in two years. However, several other two-
year and three-year algorithms produced equally high values for this index
(i.e., 0.83 — 0.87). Agreement between survey and administrative data was
predicted by age and the presence of comorbid conditions.

Crude prevalence estimates for the algorithms with the highest x and
Youden’s index were 6.3% and 7.5%, respectively for the Manitoba popula-
tion 19 years of age and older. The regression analyses revealed a significant
increase in the relative rate of diabetes over time, but the rate of change was
not significantly different across the algorithms. There were no statistically
significant interactions between the algorithm effect and the sociodemo-
graphic effects, suggesting that the relative rate of diabetes prevalence for dif-
ferent algorithms is constant across age, sex, income quintile, and region of
residence of the population.

Hypertension

Eighteen algorithms were validated. The algorithm with the highest value of
Kk (0.70) was based on one or more hospital separations or one or more
physician billing claims or two or more prescription drug records in one
year. The algorithm with the highest value of Youden’s index (0.79) was
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based on one or more hospital separations or one or more physician billing
claims or one or more prescription drug records in one year. Agreement
between survey and administrative data was predicted by age and the pres-
ence of comorbid conditions.

The algorithms with the highest values of k and Youden’s index produced
crude prevalence estimates of 21.6% and 22.5%, respectively for the
Manitoba population 19 years of age and older. All algorithms showed the
same relative rate of increase in hypertension prevalence over time.
Regression analyses revealed interactions between the algorithm effect and
the sociodemographic effects, indicating that the relative rate of prevalence
for different algorithms is not constant across age, sex, income quintile, and
region of residence of the population.

Stroke

A total of 24 algorithms were validated that varied in ICD-9-CM diagnostic
codes as well as the number of years of administrative data and the type of
data source. The algorithm with the highest k (0.47) was based on one or
more hospital separations or two or more physician billing claims, or one
physician billing claim in combination with two or more prescription drug
records in five years, and used a broad set of ICD-9-CM codes (430-438).
The algorithm with the highest value of Youden’s index (0.64) was based on
one or more contacts in hospital separations or physician claims in five
years, and the broad set of ICD-9-CM codes. Agreement between survey
and administrative data was predicted by age, sex, the presence of comorbid
conditions and income quintile.

The algorithms with the highest k¥ and Youden’s index produced crude
prevalence estimates of 2.9% and 3.8%, respectively for the Manitoba popu-
lation 19 years of age and older. The relative rate of change in stroke preva-
lence over time was significantly different across the algorithms. Regression
analyses revealed statistically significant interactions between the algorithm
effect and several of the sociodemographic effects, indicating that the relative
rate of prevalence for different algorithms was not constant across the
sociodemographic characteristics of the population.

Conclusions and Recommendations

This research provides comparative information about the validity of a large
number of algorithms for identifying cases of several chronic diseases from
administrative data.

The research results illustrate the variations in validity that occur when the

elements of a chronic disease algorithm are manipulated. The results demon-
strate the substantial gains in sensitivity that can be achieved for some
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chronic diseases, like asthma, when prescription drug data are used in addi-
tion to hospital separations and physician billing claims to identify chronic
disease cases. These findings are relevant to researchers from other jurisdic-
tions who seek to develop chronic disease algorithms that can be applied to
their own administrative data.

Researchers and analysts can use the validation results contained in this
report to select one or more algorithms to generate chronic disease preva-
lence estimates for the Manitoba population. Depending on the goals of
future reports, chronic disease algorithms can be selected based on high
agreement between survey and administrative data, high sensitivity to detect
positive chronic disease cases, high specificity to avoid detecting false disease
cases, or the maximum combination of sensitivity and specificity.

This research did not validate methods for estimating the incidence of
chronic disease. Both empirical and model-based approaches have been pro-
posed. These methods need to be validated before any recommendations can
be made concerning the optimal methodology. Future research should also
investigate opportunities to use statistical models, in combination with the
expert advice of clinicians and researchers, to generate the optimal algo-
rithm(s) for identifying disease cases from administrative data.

Chronic disease surveillance using administrative data, in addition to other
validated data sources, has an essential role to play in public health initia-
tives at regional, provincial, and national levels. Future surveillance opportu-
nities using the validated algorithms include comparative studies of chronic
disease prevalence across socioeconomic groups and geographic regions of
Manitoba, as well as cross-sectional and longitudinal studies of variations in
health status and health service utilization for individuals with one or more
chronic diseases.
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DEFINING AND VALIDATING CHRONIC DISEASES

A 2003 report
estimates that
almost 60 per-
cent of
Canadians 12
years of age or
older have at
least one chronic
disease.

CHAPTER 1: INTRODUCTION

Chronic diseases are those conditions that are generally incurable, are often
caused by a complex interaction of factors, and usually have a prolonged
clinical course (Health Surveillance Coordination Division, 2003).
Conditions like cardiovascular disease, respiratory illness, and diabetes have
a large impact on the Canadian population. A 2003 report estimates that
almost 60 percent of Canadians 12 years of age or older have at least one
chronic disease (Schultz and Kopec, 2003). The total costs associated with
caring for individuals with chronic disease in Canada are estimated to exceed
$80 billion annually (Chronic Disease Prevention Alliance of Canada
[CDPAC], 2006). In addition, the number of individuals with at least one
chronic disease appears to be increasing. For example, it is estimated that

there are more then 60,000 new cases of Type II diabetes in Canada annual-
ly (Health Canada, 2005).

Public health departments are being urged to “adjust to the epidemiological
transition from communicable to chronic disease” (Frieden, 2004). Access to
population-based chronic disease data is one critical factor in making this
shift in orientation. These data are used to describe geographic and demo-
graphic variations in prevalence and incidence estimates, identify at-risk
groups, and to examine trends over time in order to predict potential disease
impact on the population in the future. This information is necessary to for-
mulate public health policy around chronic disease treatment and preven-
tion, and to evaluate the effectiveness of population-based health promotion
and disease prevention strategies.

However, it is widely recognized that there is no single data source suitable
for all aspects of chronic disease surveillance (Thacker et al., 1995). Data are
compiled from multiple sources, including vitals statistics files, disease-spe-
cific registries, and population-based surveys. This report focusses on the use
of administrative data, including hospital, physician, and prescription drug
records, for chronic disease surveillance, and their validity for that purpose.

Administrative data have been used in numerous studies of chronic disease
incidence and prevalence. For example, hospital discharge data and/or physi-
cian billing claims have been used both nationally and internationally to
generate diabetes prevalence estimates (Hux et al., 2002; Maskarinec, 1997;
Saydah et al., 2004), and are the basis for diabetes surveillance in Manitoba
(Young et al., 1991; Blanchard et al., 1996; Blanchard, et al., 1997).

Administrative data are a potentially valuable tool for chronic disease surveil-
lance because they are relatively easy to access and process, can be used to
monitor a variety of diseases, and can provide both cross-sectional and longi-
tudinal information about disease prevalence and incidence for entire popu-
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latter purpose.

lations. Administrative data overcome several of the limitations associated
with other sources of surveillance data. For example, while vital statistics
data are an accessible source in many jurisdictions, they cannot be used to
monitor diseases with low case-mortality rates like arthritis. As well, cause of
death is rarely attributed to a chronic disease itself, but rather to complica-
tions that arise from having the disease. Vital statistics data are not always a
timely source of information on disease prevalence because of potentially
long lag times between changes in the population prevalence of a disease and
its detection using mortality data. While disease-specific clinical registries
can usually provide accurate estimates of disease prevalence, they are expen-
sive and time-consuming to establish and maintain, and are being subjected
to increased scrutiny under current health privacy legislation. As well, reg-
istries which are specific to particular geographic areas, clinical groups, or
facilities do not provide estimates of incidence or prevalence that can be
generalized to larger populations. Longitudinal population-based health sur-
veys, another well-established source of chronic disease data, suffer from
respondent attrition, which can result in inaccurate estimates of incidence
and prevalence.

However, because administrative data are collected for purposes of health
system management and provider payment and not for chronic disease sur-
veillance, it is important to assess their validity for the latter purpose. Fowles
et al. (1998) compared U.S. Medicare claims data to data abstracted from
medical charts to assess the sensitivity and specificity of the former for iden-
tifying individuals with 17 different chronic diseases. Sensitivity refers to
how well administrative data detect the presence of a disease for individuals
who actually have it, while specificity refers to how well the administrative
data avoids the problem of falsely detecting individuals who do not have the
disease. The sensitivity of administrative data varied substantially, from a low
of 20% for alcohol and drug abuse to a high of 100% for diabetes. Besides
diabetes, chronic diseases for which administrative data had the highest sen-
sitivity were hypertension (90%), asthma (82%), mental health conditions
(71%), and joint problems (68%). Specificity was very high (i.e., 95% or
above) for all diseases with the exception of joint problems (88%).

Robinson et al. (1997) compared Manitoba administrative data (hospital
and physician records) to survey data from the Manitoba Heart Health
Project for diabetes, hypertension, elevated cholesterol, stroke, acute myocar-
dial infarction, and non-specific forms of heart disease. Agreement between
the two sources, as measured by the kappa (k) statistic, was highest for dia-
betes (i.e., K > .70) and hypertension (x > .50), and lowest for non-specific
heart disease (x = .38). However, for any given disease, kappa varied with
the algorithm, the set of rules used to identify disease cases. Specifically,
Robinson et al. (1997) considered the effect of both the number of years of
administrative data required to establish disease diagnosis, and the number
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of times a diagnosis code was required to appear in the administrative data
to confirm a disease case (i.e., the number of required contacts). As expect-
ed, there was a positive relationship between k and the number of years of
data and a negative relationship between x and the number of required con-
tacts.

Hospital data are the sole source of prevalence and incidence estimates in
some studies (Brameld et al., 2003; Huff et al., 1996). The diagnostic and
medical procedure data contained in hospital records is coded by a medical
archivist, which increases the likelihood of accurate documentation. In con-
trast, the diagnostic information contained in the billing claims of physi-
cians is often not confirmed at the source because diagnosis is not linked to
physician remuneration. Studies have been undertaken to assess the validity
of different sources of administrative data for identifying chronic disease
cases. Wilchesky et al. (2004) compared diagnostic information in Quebec
physician records to medical chart data abstracted from the primary care
physician for more than 14,000 individuals, for 14 chronic diseases associat-
ed with drug-disease contraindications. Among these were hypertension,
renal failure, diabetes, asthma, chronic obstructive pulmonary disease
(COPD), coronary heart disease (CHD), and dementia. Specificity was very
high for all investigated conditions; the lowest value was for hypertension
(82%). Sensitivity was much more variable. It was highest for glaucoma
(76%), hypertension (69%), and diabetes (64%). It was low for renal disease
(19%) and dementia (19%), and moderate for asthma (43%), COPD
(46%), and congestive heart failure ([(CHF], 42%). The authors recommend
that future studies examine the improvements in sensitivity and specificity
that can be achieved by using multiple administrative data sources to identi-
fy disease cases.

The importance of this recommendation is emphasized in two studies which
examined the percentage of chronic disease cases that can be validly identi-
fied from different administrative data sources. Wigertz and Westerling
(2001) found that only 17% of individuals with a diagnosis for diabetes in
administrative data (i.e., hospital and medical records), were identified solely
from inpatient hospital records, while 78% were identified solely from pri-
mary care physician records. For asthma, only 8% of individuals were iden-
tified exclusively from inpatient hospital records, while 85% were identified
solely from primary care physician data. In contrast, for cerebrovascular dis-
ease, 53% of individuals were identified from inpatient hospital records
alone, and 67% were identified only from primary care physician data.
Similarly, Robinson et al. (1997) found that 5% of individuals with a diag-
nosis of diabetes in administrative data (i.e., combined medical and hospital
records) were identified from hospital records alone, but 68% were detected
solely from physician records. For hypertension, only 2% were identified
from hospital records but 86% were found only in medical claims. In con-
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trast to Wigertz and Westerling, Robinson et al. found that only 7% of
stroke cases were identified solely in the hospital data, but 54% were detect-
ed solely from physician records.

While many studies are limited to hospital and physician data for identify-
ing individuals with chronic diseases, prescription drug records have been
recognized as another potentially valuable source of data (Sartor and
Walckiers, 1995). For example, Cricelli et al. (2003) used the Health Search
Database in Italy to identify individuals with several different chronic dis-
eases. This database combines linked administrative records on prescriptions,
clinical events and diagnoses, hospital admission, and cause of death.
Prevalence estimates obtained from self-reported survey data and administra-
tive data were compared for the following diseases: diabetes, COPD, gastro-
duodenal ulcer, and hypertension. Similar prevalence estimates were
obtained from the two data sources for diabetes and hypertension, although
no quantitative measure of the degree of concordance between the measures
was calculated. The estimates were less similar for gastroduodenal ulcer and
COPD. The authors suggest that the consistency of self-reported and
administrative data for hypertension and diabetes occurs because these are
diseases that have a “clear-cut diagnosis” (p. 255) and require continuous
medical treatment. Rector et al. (2004) used a combination of physician,
facility (i.e., hospital), and pharmacy claims in the U.S. to conduct an
extensive validation of algorithms for six chronic diseases: hypertension,
CHE, chronic lung disease, arthritis, glaucoma, and diabetes. The use of
multiple sources resulted in high specificity for all diseases, and high sensi-
tivity for all but arthritis, lung disease, and CHE Maio et al. (2005) used
prescription drug records for one region of Italy to estimate the prevalence
of disease in each of 31 chronic condition groups, including cardiovascular
diseases, rheumatologic conditions, respiratory illness, gastrointestinal dis-
ease, and psychiatric disease.

1.1 Purpose and Objectives

The purpose of this report is to examine the validity of administrative data
for monitoring the prevalence of chronic disease in Manitoba. The specific
objectives are to:

1) Review the literature on the validity of administrative data for iden-
tifying chronic disease cases.

2) Evaluate the validity of multiple algorithms for identifying disease
cases from Manitoba administrative data.

3) Test for differences in cross-sectional and longitudinal prevalence
estimates for chronic disease algorithms.
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In this study, we
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This study extends previous research on methods for identifying chronic dis-
ease cases from administrative data in several important ways. First, only a
small number of studies have systematically compared the sensitivity and
specificity of multiple algorithms for identifying chronic disease cases
(Robinson et al., 1997; Rector et al., 2004). In this study, we examine the
changes in validity that result when the elements of a chronic disease algo-
rithm, including the data source, number of years of data, and number of
required occurrences of a diagnostic or medication code are varied. Second,
the number of studies that have examined the gains in agreement, sensitivi-
ty, specificity, and predictive value that are achieved when prescription drug
data are used in addition to hospital and physician data is limited. In this
study, we conduct a systematic evaluation of the improvement in validity
that can be achieved when prescription drug data, as well as hospital and
physician data, are used to identify disease cases. Finally, this study, unlike
previous research, tests the potential confounding effects of sociodemo-
graphic variables like age, sex, and income group in estimating disease preva-
lence from different algorithms. It also tests for differences in the longitudi-
nal trends in prevalence estimates from different chronic disease algorithms.

1.2 Report Organization

The report is organized as follows. Chapter 2 describes the methods adopted
in this research. It begins with a description of the group-based consensus
process used to select the chronic diseases that were the focus of the
research. The techniques used to define and validate chronic disease algo-
rithms are described in this chapter, as are the methods to calculate and test
cross-sectional and longitudinal prevalence estimates for the Manitoba pop-
ulation.

Chapters 3 through 8 are each devoted to one of the chronic diseases that
was the focus of in-depth research. These are discussed in alphabetical order:
arthritis, asthma, CHD, diabetes, hypertension, and stroke. Each chapter
begins with a review of published research. The validity of multiple algo-
rithms to identify disease cases is compared. Provincial prevalence estimates
are reported and tested.

Chapter 9 concludes the report, with a discussion of recommended algo-
rithms for the chronic diseases that were investigated in this research. As
well, we review the literature on methods for identifying cases for two dis-
eases that were not investigated in this study, but that were of interest to the
Working Group. These are renal disease and CHE Opportunities for further
research on the methods for identifying chronic disease cases from adminis-
trative data are also discussed. The chapter ends with a discussion of the role
of population-based data in provincial chronic disease surveillance initia-
tives.
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CHAPTER 2: METHODS

This chapter describes the methods used to identify chronic disease cases
from administrative data. It begins with a description of the group-based
consensus process to select the chronic diseases that were the focus of the
research. The administrative data sources in the Population Health Research
Data Repository housed at Manitoba Centre for Health Policy (MCHP)
that were used to conduct the research, are enumerated. The diagnostic and
medication codes to identify disease cases (i.e., individuals with a chronic
disease) are listed. Next, the validation of the chronic disease algorithms is
described. The methods used to obtain provincial cross-sectional and longi-
tudinal prevalence estimates from administrative data are also described. A
discussion of the descriptive and inferential analyses applied to test provin-
cial prevalence estimates from chronic disease algorithms concludes the
chapter.

2.1 Group-Based Consensus Process for Chronic
Disease Selection

Members of the Working Group for this research were initially tasked with
identifying the chronic diseases for which algorithms would be developed
and validated. Five criteria were presented to the Working Group to facili-
tate the process of establishing a priority list of chronic diseases:

1. Magnitude of prevalence estimates: Prevalence estimates were obtained
through a search of the research literature. For each chronic disease, this
criterion provides an indication of the burden of illness in the popula-
tion.

2. Availability of a validation data source: Manitoba and national data
sources to validate the administrative data algorithms were identified
through literature searches and discussions with researchers and
Manitoba Health representatives. This criterion provides an indication
of the feasibility of undertaking algorithm validation for each disease.

3. Health system utilization: Information on rates of physician visits
and/or hospitalizations associated with a disease was collected from the
published literature. This criterion provides an indication of the impor-
tance or significance of a disease to the health system.

4. Health system costs: Information on the direct costs of each disease to
the health system was collected from the published literature. This crite-
rion provides another indication of the importance or significance of a
disease to the health system.

5. Body system: This criterion provides an indication of the body systems
covered by different chronic diseases.

A preliminary list of chronic diseases was formulated, and each Working
Group member rank ordered the diseases according to their priority for the
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research. The criteria described above were considered in this ranking
process. The following 10 diseases were given the highest research priority
by the Working Group:

1. Hypertension

2. Coronary Heart Disease (CHD)

3. Renal Disease

4. Asthma

5. Arthritis (Both Rheumatoid Arthritis and Osteoarthritis)
6. Stroke

7. Congestive Heart Failure (CHF)

8. Depression

9. Dementia

10. Diabetes

In subsequent discussions, members of the Working Group noted that
research conducted by MCHP and other University of Manitoba researchers
had produced validated algorithms for depression and dementia.
Accordingly, these chronic diseases were dropped from further consideration.

Subsequent to the Working Group consensus meeting, we determined that a
validation data source for renal disease was not available in the PHRDR.
Validation data existed for CHE but the number of validation cases was too
small to produce reliable results. Therefore, these two chronic diseases were
dropped from further consideration. However, opportunities for further
research on methods to identify renal disease cases and CHF cases from
administrative data are discussed in Chapter 9.

2.2 Methods for Review of Literature
MEDLINE was searched for studies published between 1990 and 2005

inclusive that reported on methods for identifying chronic disease cases from
administrative data. The following terms were used: administrative data,
databases, population surveillance, chronic disease, diabetes, heart disease,
coronary/ischemic heart disease, arthritis, rheumatoid arthritis, osteoarthri-
tis, hypertension, high blood pressure, asthma, respiratory disease, and
stroke. The reference lists of identified papers were checked for additional
citations.

The websites of relevant research groups that conduct population-based
research using administrative data (i.e., Institute of Clinical Evaluative
Sciences [ICES]) were reviewed. In addition, the Statistics Canada and
Health Canada websites were reviewed for relevant documents.
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2.3 Sources of Administrative Data to Define
Chronic Disease Algorithms

Administrative data to define chronic disease algorithms were obtained from
the Population Health Research Data Repository (PHRDR) housed at
MCHP. The sources of the data included hospital separations, physician
billing claims, and prescription drug records.

Hospital abstracts are completed at the point of discharge for all separations
from acute care facilities in Manitoba. They include up to 16 diagnosis
codes based on the International Classification of Diseases, 9th Revision,
Clinical Modification (ICD-9-CM). Only inpatient separations were used to
define the algorithms.

Manitoba physicians who are paid on a fee-for-service basis submit billing
claims to Manitoba Health. These claims contain a single ICD-9 diagnostic
code. A small proportion of physicians are salaried, but most submit parallel
billing claims for administrative purposes. Accordingly, almost all contacts
with Manitoba physicians are captured in the Repository.

Table 1 summarizes the three-digit ICD-9-CM codes that were selected to
define the chronic diseases from hospital separations and physician billing
claims. Justifications for the selection of these codes are provided in subse-
quent chapters of the report.

Table 1: Diagnosis codes used to define chronic diseases with administrative data
Disease ICD-9-CM Diagnosis Codes
Arthritis 714: rheumatoid arthritis

715: osteoarthritis
446, 710: connective tissue disorders (446 = Polyarteritis
nodosa and allied conditions; 710 = Diffuse diseases of
connective tissue)
720: ankylosing spondylitis
274: gout
711-713, 716, 717, 718, 719, 721, 725-729, 739: other arthritis
and related conditions

Asthma 493: asthma

Coronary Heart 410: acute myocardial infarction

Disease 411: other acute and subacute forms of ischemic heart
disease

412: history of myocardial infarction
413: angina pectoris
414: All other forms of chronic ischemic heart disease

Diabetes 250: diabetes mellitus
Hypertension 401: essential hypertension
Stroke 430-438: cerebrovascular disease

Source: Manitoba Centre for Health Policy, 2006
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The third source of data for defining chronic disease algorithms, prescrip-
tion drug records, are maintained in the pharmaceutical database, which is a
subset of the Drug Programs Information Network (DPIN), an electronic,
on-line, point-of-sale prescription drug database connecting all retail phar-
macies in Manitoba to a central database. The DPIN system was initiated in
1995. It captures information about prescription drug dispensations for all
Manitoba residents, regardless of insurance coverage or final payer. DPIN
contains a variety of information about each pharmaceutical dispensation,
including the drug identification number (DIN). The DINs are linked to
Anatomic Therapeutic Chemical (ATC) codes in the Drug Product
Directory maintained by Health Canada. A list of all DINs for the drugs
covered by the Manitoba Pharmacare program is maintained in the MCHP
Master Formulary. The Formulary contains classification codes for drugs,
generic product name, and brand name, and is derived from the Manitoba
Formulary.

The ATC system is maintained by the World Health Organization (WHO)
Collaborating Centre for Drug Statistics Methodology, and was first pub-
lished in 1976. Under this system, drugs are divided into groups at each of
five levels according to the organ or system on which they act and/or their
therapeutic and chemical characteristics. The levels are: (1) anatomical
group, (2) therapeutic main group, (3) therapeutic/pharmacological sub-
group, (4) chemical/therapeutic/pharmacological subgroup, and (5) sub-
group for chemical substance. The methodology that was used to select ATC
codes and DINs for this research is described in subsequent chapters of the
report.

2.4 Validating Chronic Disease Algorithms

Validation Data Source

Data from the Canadian Community Health Survey (CCHS), cycle 1.1,
collected between September 2000 and November 2001 were used to evalu-
ate the agreement, sensitivity, specificity, positive predictive value, and nega-
tive predictive value of each chronic disease algorithm selected for investiga-
tion. The CCHS was conducted by Statistics Canada to provide regular and
timely cross-sectional estimates of health determinants, health status and
health system utilization for a total of 136 health regions in Canada, includ-
ing the territories. Survey respondents were sampled from 11 regions in
Manitoba. Respondents were 12 years of age and older; the sampling
methodology was designed to ensure over-representation of youth under 19
years of age and seniors 65 years of age and older. Sample sizes were chosen
to produce reliable estimates at the health region level. The sample size allo-
cated to each province was based on total population, and then each
province’s sample size was allocated among its health regions proportionately
to the square root of the estimated population of a region.
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Manitoba CCHS cycle 1.1 data were linked to the administrative data in the
Data Repository housed at MCHP using the unique encrypted personal
health identification number (PHIN) for those individuals who consented
to the linkage. The linkage was successful for 6,812 Manitoba residents 12
years of age and older. From this sub-sample, the cohort of survey respon-
dents with at least five years of continuous coverage under the Manitoba
Health Services Insurance Plan prior to the date of their CCHS interview
was created. Information on health insurance coverage was obtained from
the population registry. The registry contains coverage information for indi-
viduals registered with the Plan since 1970. For all diseases, the validation
cohort was limited to individuals with five years of coverage because some
chronic disease algorithms were based on as many as five years of adminis-
trative data.

The validation cohort included 5,589 adult survey respondents 19 years of
age and older, and 833 youth survey respondents between 12 and 18 years
of age. Slightly less than half (46.1%) of the respondents in the adult valida-
tion cohort were 50 years of age or older and more than half (55.3%) were
female. Almost one-quarter (23.4%) of the respondents in the adult valida-
tion cohort were from the Winnipeg Regional Health Authority (RHA),
12.2% were from the northern RHAs, and the remaining 64.4% were from
the southern rural RHAs. Among members of the youth validation cohort,
50.2% were female, 20.7% were from the Winnipeg RHA, 15.4% were
from the northern RHAs, and 63.9% were from southern rural RHAs.

Only the adult cohort was used to validate chronic disease algorithms for
arthritis, CHD, diabetes, hypertension, and stroke. For asthma, the algo-
rithms were validated using both the adult and youth cohorts, and separate
validations were conducted for adults between 19 and 49 years of age, and
50 years of age or older.

Chronic disease algorithms were defined using one, two, three, or five years
of administrative data. The years of administrative data that were searched to
determine whether a survey respondent could be classified as a disease case
in the administrative data were based on the date of the interview. For
example, if an individual was interviewed on October 31, 2001 then a one-
year algorithm was defined using data from November 1, 2000 to October
31, 2001.

Validation Questions

The CCHS questions used to identify survey respondents with each of the
investigated chronic diseases are listed in Table 2. Respondents were asked to
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report chronic diseases according to the following directions:

Now I'd like to ask about certain chronic health conditions which you may have.

We are interested in “long-term conditions’ that have lasted or are expected to last
6 months or more and that have been diagnosed by a health professional.

These directions were repeated to survey respondents throughout their com-

pletion of the set of questions about chronic diseases.

Table 2: CCHS questions used to identify survey respondents with chronic
diseases

Disease Relevant CCHS Question(s)

Arthritis Do you have arthritis or rheumatism, excluding fibromyalgia?
What kind of arthritis do you have?

Asthma Do you have asthma?

Diabetes Do you have diabetes?

Hypertension Do you have high blood pressure?

Heart Do you have heart disease?

Disease Do you have congestive heart failure? (Used as an exclusion
variable)

Stroke Do you suffer from the effects of a stroke?

Source: Manitoba Centre for Health Policy, 2006

The number and percent of individuals in the adult and youth validation
cohorts who reported having the selected chronic diseases is found in Table
3. As well, this table reports the crude provincial prevalence of each chronic
disease using the CCHS self-report data. These prevalence estimates and
their associated 95% confidence intervals (Cls) are calculated using the sur-
vey sample weights for the Manitoba population. The Cls were computed
using the bootstrap methodology provided for the CCHS.

The results in Table 3 show that more than 1,000 individuals reported hav-
ing either arthritis or hypertension, but smaller numbers of respondents had
self-reported asthma, diabetes, non-fatal CHD, and non-fatal stroke. For
asthma, the adult validation cohort was divided into the younger (i.e., 19 to
49 years) and older (i.e., 50+ years) age groups. There were N = 228 (7.6%)
survey respondents who reported having asthma in the younger adult age
group and NV = 190 (7.4%) survey respondents who reported having asthma
in the older adult age group.
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Table 3: Number (percent) of respondents in the CCHS validation cohort with each
chronic disease and crude provincial prevalence using CCHS sample weights

Disease Adult Validation Youth Validation  Crude Prevalence
Cohort Cohort (%)
N (%) N (%) (95% Cl)
Arthritis (All Forms) 1,344 (24.1) - 18.6 (17.4-19.8)
Rheumatoid 459 (8.2) - 7.4 (6.5-8.3)
Arthritis
Osteoarthritis 601 (10.8) - 7.7 (6.9 -8.5)
Asthma 418 (7.5) 111(13.5) 8.6 (7.6 - 9.6)
Diabetes 337 (6.0) - 45(39-52)
Heart Disease 371 (6.6) - 5.1(4.4-5.7)
Hypertension 1,033 (18.5) - 15.3 (14.2 - 16.5)
Stroke 108 (1.9) — 1.5(1.1-1.8)

Note: Crude prevalence estimates were obtained using CCHS sample weights. The bootstrap
was used to obtain the 95% confidence intervals.

Source: Manitoba Centre for Health Policy, 2006

For asthma, one set of validation analyses were conducted in which individ-
uals with COPD were excluded. There were a total of 23 survey respondents
in the validation cohort who indicated that they had both asthma and
COPD; all but one of these respondents was 50 years of age or older. The
reason for conducting the validation analysis with this exclusion is that
COPD is often misdiagnosed or treated as asthma even though these are
distinct conditions.

Survey data have been used in several previous studies to validate algorithms
for the chronic diseases investigated in this report. The validity of survey
data for identifying disease cases has also been evaluated using medical chart
data. For example, Hux et al. (2002) validated two diabetes algorithms using
both National Population Health Survey (NPHS) data and medical chart
data. Estimates of sensitivity and specificity were similar for both validation
sources. For example, sensitivity of their first diabetes algorithm, one or
more hospital separations or one or more physician service claims in Ontario
administrative data in a one-year period, was 90% in survey data and 91%
in medical chart data. However, estimates of positive predictive value (PPV)
were lower for survey data (44%) than for medical chart review (64%).
O’Connor et al. (1998) found that compared to medical charts, survey data
resulted in very high sensitivity (95%), specificity (99%), and positive pre-
dictive value (81%) for identifying previous cases of heart attack. For overall
heart disease, survey data were less sensitive (58%), but maintained very
high specificity (99%) and PPV (81%). Okura et al. (2004) compared self-
report data and medical chart data for heart failure, diabetes, hypertension,
myocardial infarction, and stroke. Sensitivity of self-report measures was
highest for “medical conditions that are well defined and relatively easily
diagnosed” (p. 1101), including myocardial infarction (90%), hypertension
(82%), and stroke (78%). Sensitivity was lower for heart failure (69%) and
diabetes (66%). Specificity was above 90% for all conditions. Martin et al.
(2000) compared survey data and medical chart data for three chronic
health conditions: hypertension, hypercholesterolemia, and diabetes.
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While medical
chart data is
considered by
some to be an
ideal gold stan-
dard, previous
research recom-
mends a cautious
approach when
conducting popu-
lation-based val-
idation studies
using medical
charts.

Sensitivity of the survey data was highest for hypertension (83%), moderate
for diabetes (73%), and lowest for hypercholesterolemia (59%). Specificity
was highest for diabetes (99.3%), moderate for hypercholesterolemia, and
lowest for hypertension (81.4%). Rector et al. (2004) used survey data to
validate chronic disease algorithms defined from Medicare data; the follow-
ing conditions were investigated: hypertension, heart failure, chronic lung
disease, arthritis, glaucoma, and diabetes.

The CCHS was selected as the validation source in this study because next
to administrative data, it is the only source for obtaining population-based
chronic disease prevalence estimates in Manitoba. As well, the sample size
for Manitoba in cycle 1.1 of the CCHS was large enough to ensure suffi-
cient numbers of positive disease cases even for relatively rare conditions
such as rheumatoid arthritis and stroke. While medical chart data is consid-
ered by some to be an ideal gold standard, previous research recommends a
cautious approach when conducting population-based validation studies
using medical charts. Hux et al. (2002) observed that for diabetes, validation
of population-based algorithms with medical chart data was difficult.
“Migration between providers and lack of efficient vertical integration of
care may contribute to under detection if data are abstracted from the office
chart of a single practitioner because that practitioner may not represent the
patient’s regular source of care” (p. 515). Wilchesky et al. (2004) made a
similar observation in their medical chart-based validation of chronic disease
algorithms from administrative data. Sensitivity was lower when only a sin-
gle physician’s chart (i.e., the regular provider) was reviewed than when the
charts of all physicians that an individual had visited were reviewed. There
are other problems that may arise from using medical chart data for valida-
tion studies. For example, privacy or security concerns of health care
providers may result in restricted access to patient charts, even with patient
consent. A large number of charts must be sampled in order to obtain a suf-
ficient number of positive disease cases for rare chronic diseases. Finally,
some chart entries may be difficult to decipher or interpret (Ritter et al.,
2001), which can bias validation results.

However, self-report data may not be an unbiased gold standard. Under-
reporting or over-reporting of some chronic diseases in surveys may occur
because respondents are not aware of all the diagnoses reported in a patient
chart, or because of the lack of correspondence between the lay language
used in surveys and the clinical terminology used to record diagnoses in the
medical chart. Accurate reporting is more likely to occur for conditions that
result in frequent contacts with a health professional.

Validation Methods
Six indices were used to evaluate the validity of chronic disease algorithms.
The first was the kappa statistic (k), a measure of agreement between two
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sources, each of which is measured on a binary scale (i.e., disease
present/absent). The interpretation of k used in this report is (Altman,

1991):

. Poor agreement: k < 0.20

. Fair agreement: k¥ = 0.20 to 0.39

. Moderate agreement: k = 0.40 to 0.59
. Good agreement: k = 0.60 to 0.79

. Very good agreement: x = 0.80 to 1.00

Ninety-five percent Cls were calculated for k. These intervals are calculated
using the square-root of the asymptotic variance and a critical value from
the standard normal distribution.

Sensitivity and specificity were calculated for each chronic disease algorithm.
Sensitivity was defined as the percentage of true positives an algorithm
detects among all positive disease cases. Positive disease cases are survey
respondents in the CCHS validation cohort who reported having the speci-
fied disease. Specificity was defined as the percentage of true negatives an
algorithm detects among all the negative disease cases. Negative disease cases
are survey respondents in the CCHS validation cohort who did not report
having the specified disease. For both sensitivity and specificity, 95% Cls
were calculated. These confidence intervals are based on the asymptotic stan-
dard error and a critical value from the standard normal distribution.

Positive and negative predictive values (NPV) are also reported for each
chronic disease algorithm. PPV refers to the percentage of individuals with a
positive result for an algorithm among those who reported having the dis-
ease. NPV refers to the percentage of individuals with a negative result for
an algorithm who did not report having the disease. Ninety-five percent Cls
were also calculated for PPV and NPV, and were based on the asymptotic
standard error and a critical value from the standard normal distribution.
Figure 1 illustrates the calculations of sensitivity, specificity, PPV, and NPV.

Figure 1: Calculation of Validation Indices for
Chronic Disease Algorithms

CCHS Data
Has Disease | Does Not Have
Disease
Repository Has Disease A B
Data
Does Not Have C D
Disease

Sensitivity = A/(A + C)* 100
Specificity = D/(B + D)* 100
PPV = A/(A +B)* 100

NPV = D/(C + D)* 100

Source: Manitoba Centre for Health Policy, 2006
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Youden’s (1950) index, which combines information on sensitivity and
specificity, was computed for each algorithm. The index is defined as sensi-
tivity + specificity — 1, where sensitivity and specificity are calculated as pro-
portions. Youden’s index has minimum and maximum values of -1 and +1,
respectively, with a value of +1 representing the optimal value for an algo-
rithm.

Finally, logistic regression analysis was used to test the sociodemographic
variables associated with agreement between survey and administrative data.
Only the algorithm which resulted in the maximum value of the x statistic
was selected for the regression analysis for each chronic disease. A binary
outcome variable that defined agreement (yes/no) between survey and
administrative data agreement was created. Agreement between the two
sources of data is represented by cells A and D in Figure 1 and disagreement
between the two sources of data is represented by cells B and C.

The explanatory variables in the logistic regression models were age group
(i.e., 10-year groupings were used in most models), sex, region of residence
(i.e., rural north RHAs, rural south RHAs, Winnipeg RHA), income ade-
quacy quintile, and the presence of comorbid conditions. Income adequacy
is a variable developed by CCHS methodologists. Each survey respondent
was assigned to a quintile (i.e., approximately one-fifth of all survey respon-
dents) using an algorithm based on total household income and number of
persons living in the household. Using these two variables to assign income
adequacy quintile means that individuals living in households with the same
income but different numbers of household residents could be assigned to
different quintiles. A comorbidity variable was included in the models,
because previous research has demonstrated that the agreement between sur-
vey data and medical chart data is influenced by the presence of comorbid
conditions (Okura et al., 2004). In the models for diabetes and stroke, the
presence (yes/no) of either of the comorbid conditions of heart disease and
hypertension was included as an explanatory variable. In the model for heart
disease, the presence of either of the comorbid conditions of diabetes and
hypertension was included as an explanatory variable. In the model for
hypertension, the presence of either of the comorbid conditions of diabetes
and heart disease was included. In the model for asthma, the presence of
allergies as well as emphysema or COPD was included as an explanatory
variable. There were no comorbid conditions included in the model for all
forms of arthritis, rheumatoid arthritis, or osteoarthritis. Age group, sex, and
region of residence were defined from the population registry, income ade-
quacy quintiles were defined from the CCHS data, and the presence of
comorbid conditions was also defined from the CCHS data.
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All variables were treated as categorical in the regression analyses. Odds ratios
(ORs) and their 95% Cls are reported. The fit of each logistic regression model
was assessed using the Hosmer-Lemeshow test.

2.5 Calculating Provincial Prevalence Estimates
The population registry in the PHRDR housed at MCHP was used to define

population cohorts to derive numerator and denominator data for calculating
crude provincial prevalence estimates for each algorithm. The registry includes
health insurance program coverage information in addition to information on
demographic characteristics (e.g. age and sex), and location of residence for each
resident of Manitoba eligible to receive health services. For all diseases with the
exception of asthma, provincial prevalence estimates were calculated for the pop-
ulation 19 years of age and older. Asthma prevalence estimates were calculated
for the population 12 years of age and older.

Cross-sectional provincial prevalence estimates were calculated to facilitate com-
parisons among the chronic disease algorithms at a single point or period in
time. Table 4 lists the years that were used to calculate cross-sectional estimates
based on algorithms defined for one, two, three, and five years of administrative
data. For example, all estimates based on one year of data were defined for the
Manitoba population continuously registered with the Manitoba Health
Services Insurance Plan for the period April 1, 2002 to March 31, 2003.
Similarly, all estimates based on two years of data were defined for the Manitoba
population continuously registered for the period April 1, 2001 to March 31,
2003.

Table 4: Time periods used to define cross-sectional provincial chronic disease
prevalence estimates

# Years Time Period
1 April 1, 2002 to March 31, 2003
2 April 1, 2001 to March 31, 2003
3 April 1, 2000 to March 31, 2003
5 April 1, 1998 to March 31, 2003

Source: Manitoba Centre for Health Policy, 2006

Next, crude provincial prevalence estimates were calculated over time, to facili-
tate longitudinal comparisons among the chronic disease algorithms.
Longitudinal estimates were calculated for algorithms based on one, two, or
three years of administrative data as follows:
. One-year estimates were calculated for populations defined for each
of the following five years:
o April 1st 1999 to March 31st 2000
April 1st 2000 to March 31st 2001
April 1st 2001 to March 31st 2002
April 1st 2002 to March 31st 2003
April 1st 2003 to March 31st 2004

© ©0 © ©
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. Two-year estimates were calculated for populations defined for each
of the following four time periods:
o April 1st 1996 to March 31st 1998
o April 1st 1998 to March 31st 2000
o April 1st 2000 to March 31st 2002
o April 1st 2002 to March 31st 2004
. Three-year estimates were calculated for populations defined for
each of the following three time periods:
0 April 1st 1995 to March 31st 1998
o April 1st 1998 to March 31st 2001
o April 1st 2001 to March 31st 2004

Longitudinal prevalence estimates for algorithms based on five years of
administrative data were not examined because there were an insufficient
number of years of prescription drug data available to compute estimates for
more than a single time period.

Analyses of Provincial Prevalence Estimates

For the cross-sectional data, Venn diagrams were used to describe chronic
disease case counts (i.e., the numerator data for provincial prevalence esti-
mates) for each algorithm. These diagrams compare the number and percent
of disease cases obtained from each of the three sources of administrative
data: hospital separations, physician billing claims, and prescription drug
records. This information is important for assessing potential biases in
chronic disease prevalence estimates if one or more administrative data
sources is not available for defining an algorithm. A Venn diagram, as
depicted in Figure 2 depicts both the unique and shared number of disease
cases from each source. For example, section A of the Venn diagram repre-
sents the number of disease cases identified only from hospital data.
Similarly, sections B and C represent the number of disease cases identified
only from physician and prescription drug data, respectively. Sections D, E,
and F represent the number of cases identified from each combination of
two data sources, and section G represents the number of cases identified in
all three administrative data sources.
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Figure 2: Venn Diagram for Describing Counts of
Chronic Disease Cases

Hospital Physician

Prescription

Source: Manitoba Centre for Health Policy, 2006

For the longitudinal provincial data, graphical techniques were used to
depict the change in prevalence estimates over successive time periods. The
data are presented separately for algorithms based on one, two, and three
years of administrative data.

Regression analyses were used to test for differences in provincial prevalence
estimates for the chronic disease algorithms. For all regression models, the
dependent variable was the number of chronic disease cases identified for an
algorithm. The population count (i.e., denominator) was used as an offset
variable in the model. The explanatory variables were algorithm, age, sex,
region of residence, and income quintile. Age, sex, and region of residence
were defined from the population registry. Income quintiles were defined
using the methodology described by Roos and Mustard (1997), which links
Statistics Canada Census data to population registry data. Income quintile is
an area-level measure based on total household income for dissemination
areas (DAs), the smallest geographic unit for which Census data are report-
ed. Each quintile (i.e., Q1 to Q5) represents approximately 20 percent of
the total Manitoba population.

The case counts and population counts for each algorithm were stratified by
age group (i.e., 10-year groupings were used in most models), sex, region of
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residence (i.e., rural north RHAs, rural south RHAs, Winnipeg RHA), and
income quintile (i.e., Q1 [lowest] to Q5 [highest]). The quintiles were
defined separately for rural and urban residents. In the case of the longitudi-
nal analyses, the data were also stratified by year or time period. Age, sex,
region of residence, income quintile, and algorithm were all treated as cate-
gorical variables in the regression models.

Generalized linear models (McCulloch and Searle, 2001) with a negative
binomial distribution were used for all regression analyses because prelimi-
nary descriptive results revealed that disease prevalence estimates, which
might be expected to follow a Poisson distribution (particularly for rare dis-
eases) were overdispersed (i.e., the variance was greater than the mean). For
all models specified with a negative binomial distribution, the ratio of the
model deviance to its degrees of freedom, which should equal 1 for a well-
fitting model, was always close to this value. For the longitudinal data, gen-
eralized estimating equations (GEEs) were adopted to account for the corre-
lation among the estimates across successive time periods (Fitzmaurice et al.,

2004).

For the cross-sectional prevalence estimates, two models were fit to the data.
In the first model, the full model, the explanatory variables were the main
effects of algorithm, age, sex, region of residence, and income quintile, and
the two-way interactions of algorithm x age, algorithm x sex, algorithm x
region, and algorithm x quintile. In the second model, the reduced model,
the explanatory variables were the main effects of algorithm, age, sex, region,
and quintile. A likelihood ratio test (LRT), which is computed as -2 times
the natural logarithm of the difference in the likelihood for the full and
reduced models, was used to test the null hypothesis that there was no dif-
ference in model fit between the full and reduced models (McCulloch and
Searle, 2001). A statistically significant LRT indicates that the two-way
interactions account for a significant proportion of total model variation. If
one or more interaction terms is significant, this means that the relative rate
(RR) of prevalence for different algorithms is not constant across one or
more of the sociodemographic variables of age, sex, region of residence, and
income quintile in the population.

For the longitudinal prevalence estimates three models were fit to the data.
In the full model, the explanatory variables were the main effects of algo-
rithm, age, sex, region of residence, income quintile and year/time, the two-
way interactions of algorithm x age, algorithm x sex, algorithm x region,
algorithm x quintile, algorithm x time, and the three-way interactions of
algorithm x age x time, algorithm x sex x time, algorithm x region x time,
algorithm x quintile x time. In the second model, the partial model, the
explanatory variables were the main effects of algorithm, age, sex, region,
quintile, and time and the two-way interaction of algorithm x year/time. In
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the third model, the reduced model, the explanatory variables were the main
effects of algorithm, age, sex, region, quintile, and year/time. LRTs could
only be performed for the model comparisons when independence of obser-
vations was assumed because GEEs are based on quasi-maximum likelihood
estimation (Fitzmaurice et al., 2004). The LRT for the partial and reduced
models is used to test the null hypothesis that there is no difference in
model fit between the partial and reduced models, or, correspondingly, that
the algorithm x year/time does not account for a significant proportion of
total model variation. A statistically significant LRT indicates that the RR
for different algorithms is not constant over time. The LRT for the full and
reduced models is used to test the null hypothesis that there is no difference
in model fit between the full and reduced models, or, correspondingly, that
the two-way and three-way interactions do not account for a significant pro-
portion of total model variation. If one or more of the interaction terms is
significant, this indicates that the RR for different algorithms over time is
not constant across one or more of the sociodemographic variables of age,
sex, region of residence, and income quintile.

Tests of individual model effects were conducted if a LRT was statistically
significant. In addition, the regression coefficients were exponentiated to
produce the RR estimates. The RR describes the prevalence rate for one
level of a categorical variable relative to another level of a categorical vari-
able, which is called the reference category. The reference categories for age,
sex, region of residence, and income quintile were the oldest age group,
females, Winnipeg, and the wealthiest income quintile, respectively. For the
algorithm variable, the reference category was different for each chronic dis-
ease, but was typically the algorithm based on the fewest number of years of
data and/or data sources. For the time variable which was a continuous vari-
able in all models, the exponentiated regression coefficient describes the RR
of increase/decrease in prevalence across individuals years or time periods.
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This chapter focusses
on administrative
data algorithms for
all forms of arthri-
tis, as well as algo-
rithms for rheuma-
toid arthritis (RA)
and osteoarthritis
(OA). Arthritis is a
growing public
health concern
because it is associ-
ated with high
health care utiliza-
tion and costs.

CHAPTER 3: ARTHRITIS

3.1 Introduction and Review of Literature

This chapter focusses on administrative data algorithms for all forms of
arthritis, as well as algorithms for rheumatoid arthritis (RA) and osteoarthri-
tis (OA). Arthritis is a growing public health concern because it is associated
with high health care utilization and costs. Hootman et al. (2002) found,
for example, that arthritis and other rheumatic conditions account for as
many physician visits as cardiovascular disease, and more physician visits
than respiratory diseases like asthma, COPD, and chronic bronchitis.

National and international estimates of arthritis prevalence show substantial
variability. For example, a recent U.S. study estimated that 21% of adults 18
years of age and older had doctor-diagnosed arthritis, and another 11% had
possible arthritis (Bolen et al., 2005). Badley and DesMeules (2003) esti-
mated the prevalence of OA in Canada at about 10% and the prevalence of
RA at approximately 1%. Wang et al. (2000) estimated the prevalence of
arthritis and rheumatism in Canada using 1994 NPHS data at 14.2% for
the population 20 years of age and older. Badley and Wang (1998) used
Canadian survey data from the early 1990s to project an estimated increase
in the prevalence of arthritis from 10.7% to 15.7% through to 2031.

Table A.1 in Appendix A summarizes seven studies that used administrative
data to identify cases with all forms of arthritis, RA or OA. The studies pri-
marily relied on physician billing claims to identify cases of arthritis,
although the Powell et al. (2003), Rector et al. (2004), and Singh et al.
(2004) studies also identified cases of RA using prescriptions for disease-
modifying anti-rtheumatic drugs (DMARDS). A wide variety of other
administrative sources were used to identify disease cases, including hospital
separations, emergency department records, and laboratory results. The
study by Powell et al. (2003) suggests that more than a single year of data is
required to obtain a valid prevalence estimate from administrative data.
results.

Sensitivity as high as 90% and specificity greater than 95% were observed in
the published studies. However, in the Losina et al. (2003) study the maxi-
mum observed sensitivity was only 65% for RA. As well, Fowles et al.
(1998) observed sensitivity of 68% and specificity of 88% when they used
administrative data to identify individuals with joint problems. Thus, while
some studies suggest that administrative data can validly be used to identify
individuals with arthritis, there is a lack of consistency in this observation.

The majority of the studies retrieved through the literature review used
ICD-9-CM codes 714 to identify RA cases and 715 to define OA cases,
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although a few used more specific sets of four- or five-digit codes for each of
these forms of arthritis. For all forms of arthritis, a wide variety of ICD-9-
CM codes were adopted in previous research and procedure codes were also
used in some studies (i.e., Katz et al., 1997).

3.2 Description of Arthritis Algorithms

In this study, a single ICD-9-CM code, 714, was used to identify RA cases
and a single code, 715, was used to identify OA cases. For all forms of
arthritis, these two diagnostic codes were selected, in addition to several
diagnostic codes for connective tissue disorders, gout, anklyosing spondylitis,
and other forms of arthritis. The codes selected for all forms of arthritis are
the same as those adopted in a national report on arthritis prepared by
Health Canada (Badley and DesMeules, 2003). As noted previously, the
selected ICD-9-CM codes are listed in Table 1 in Chapter 2.

Pharmacological treatment of RA is primarily by: (1) DMARDS, which
include xenobiotic agents and biologic agents, (2) anti-inflammatory agents
including glucocorticoids and non-steroidal anti-inflammatory agents
(NSAIDs), and (3) analgesics such as acetaminophen, opiates, and topical
agents. Pharmacological treatment of OA is primarily by anti-inflammatory
agents and analgesics. The following process was used to select the prescrip-
tion drugs for inclusion in this research. A set of relevant ATC codes was
identified through the literature search and consultations with experts (i.e.,
rheumatologist and pharmaco-epidemiological researchers). Then, all of the
DINss associated with these ATC codes were identified from the MCHP
Master Formulary. Since the list of drugs was very extensive, it was reviewed
again with the experts to ensure that no relevant drugs had been missed.
Appendix B contains a complete list of the fourth- or fifth-level ATC codes
that were selected for the research, and the generic drug names associated
with these codes.

The 16 algorithms that were investigated for all forms of arthritis, RA, and
OA are listed in Table 5. These algorithms are based on up to five years of
administrative data because Powell et al. (2003) observed that multiple years
of data are required to obtain a valid algorithm. Algorithm #1 was based on
one or more physician claims with an arthritis diagnostic code in one year of
data, while algorithm #2 was based on at least two physician claims in one
year of data. For algorithm #4, individuals were classified as disease cases if
they had one or more hospital separations with an arthritis diagnostic code,
or two or more physician billing claims with an arthritis diagnostic code, or
if they had a single physician billing claim with an arthritis diagnostic code
and at least two prescription drug records with an arthritis medication code
in one year of administrative data. Two-, three-, and five-year algorithms
were similarly defined. For example, algorithm #5 required at least one
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physician claim with an arthritis diagnosis code in two years for an individ-
ual to be classified as a disease case.

Table 5: Arthritis algorithms selected for validation

# Years Algorithm Hospital Physician Claims Physician Claims
Separations or and
or Prescription Drug Records
1 1 1 or more
2 2 or more
3 1 or more 2 or more
4 1 or more 2 or more 1 and 2 or more
2 5 1 or more
6 2 or more
7 1 or more 2 or more
8 1 or more 2 or more 1 and 2 or more
3 9 1 or more
10 2 or more
11 1 or more 2 or more
12 1 or more 2 or more 1 and 2 or more
5 13 1 or more
14 2 or more
15 1 or more 2 or more
16 1 or more 2 or more 1 and 2 or more

Source: Manitoba Centre for Health Policy, 2006

None of the arthritis algorithms relied solely on the prescription drug data
for the identification of arthritis cases. That is, at least one contact in hospi-
tal separations or physician billing claims had to occur in combination with
two or more prescription drug records for an individual to be classified as a
disease case. This requirement was implemented because there are no unique
marker drugs for arthritis. Many of the prescription drugs, such as NSAIDs
are used to treat several other diseases. A possible exception, as noted above,
is DMARD:s.

An arthritis algorithm that relied only on prescription drug data for identifi-
cation of arthritis cases was expected to have very low specificity. To verify
this, we examined several algorithms for all forms of arthritis, RA, and OA
which were based on one or more contacts in prescription drug records
without requiring a diagnosis in hospital separations or physician billing
claims. A summary of the validation results for these algorithms is reported
in Appendix C. It is important to note that when we conducted the valida-
tion analyses, we limited our attention to DMARD:s to identify cases of RA,
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and to NSAIDs and analgesics to identify cases of OA. However, we includ-
ed all of the prescription drugs listed in Appendix B to identify cases of all
forms of arthritis.

The summary shows that for all forms of arthritis, specificity was as low as
36.8% for an algorithm based on five years of data and one or more con-
tacts in hospital separations, or physician billing claims, or prescription drug
records. Specificity was high for RA, but sensitivity was no higher for these
supplemental algorithms than for the other algorithms we investigated. For
OA, specificity was as low as 49.7% using five years of data. Moreover,
prevalence estimates for the entire Manitoba population were substantially
higher than expected for all forms of arthritis, RA, and OA, when an indi-
vidual did not require an arthritis diagnostic code in addition to a medica-
tion code in order to be classified as a disease case. Accordingly, we did not
include these algorithms in subsequent phases of the research.

3.3 Validation Results

Validation Indices

Table 6 contains the point estimates for the six validation indices for the 16
algorithms for all forms of arthritis. The 95% Cls for each of these estimates
are reported in Appendix Table D.1. In this table, and in the tables con-
tained in the remainder of the report, the abbreviation H is used to denote
hospital separations, P is used to denote physician billing claims, and Rx is
used to denote prescription drug records.

There was fair agreement between administrative and survey data for all
forms of arthritis, with values of k ranging from 0.24 to 0.37. The highest
value of k was for the algorithm based on one or more hospital separations
or two or more physician billing claims, or one physician billing claim and
two or more prescription drug records in five years.

Using one year of data, the algorithm based on a single physician claim (i.e.,
algorithm #1) had the highest sensitivity (43.4%); the corresponding algo-
rithm based on two years of data had a sensitivity of 60.0%, and the corre-
sponding algorithm based on three years of data had a sensitivity of 69.0%.
Thus, the largest improvement in sensitivity was obtained when moving
from the one-year to the two-year algorithms. However, the highest overall
sensitivity was observed for algorithm #13, which was based on one or more
physician billing claims in five years of data.

The highest specificity was observed for algorithm #2, based on two or more
physician claims in one year of administrative data (93.8%). Specificity esti-
mates for algorithms #3 and #4 were almost the same (93.6% and 91.9%,

respectively). There was a decrease in specificity of approximately 5 percent-
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age points between algorithm #2 and the corresponding algorithm based on
two years of data (88.4%).

For all forms of arthritis, Youden’s index ranged from 0.19 to 0.41; the latter
value was obtained for the five-year algorithm based on a combination of
hospital, physician, and prescription drug data (i.e., algorithm #16).
However, several other two-year and three-year algorithms produced almost
equivalent estimates of Youden’s index, including algorithm #15, which was
based on a simpler definition of one or more hospital separations or two or
more physician billing claims in five years.

The PPV of an arthritis diagnosis was highest for the one-year algorithm
based on a combination of all three data sources (57.4 %). There was little
variation in the PPV for the one-year and two-year algorithms; the lowest
value was 44.1%, which was for the two-year algorithm based on one or
more physician billing claims. NPV also showed little variation, with values
ranging from 79.8% to 89.4%; it was highest for the algorithm based on
one or more physician billing claims in five years.

Table 6: Estimates of agreement, sensitivity, specificity, and predictive values for
arthritis algorithms

# Algorithm K Sens. Spec. Youden PPV NPV
Years (%) (%) (%) (%)
1 1 1+ P 0.28 43.4 84.3 0.28 46.6 82.4
2 2+P 0.24 25.3 93.8 0.19 56.4 79.8
3 1+Hor2+P 0.25 26.3 93.6 0.20 56.4 80.0

4 1+Hor2+P
or (1P &2+ Rx) 0.30 345 91.9 0.26 57.4 81.6
2 5 1+P 0.32 60.0 75.9 0.36 441 85.7
6 2+P 0.32 41.7 88.4 0.30 53.2 82.7
7 1+Hor2+P 0.33 42.6 88.1 0.31 53.2 82.9

8 1+Hor2+P
or (1 P & 2+ Rx) 0.37 51.7 84.9 0.37 52.0 84.7
3 9 1+P 0.31 69.0 68.7 0.38 41.1 87.5
10 2+P 0.34 50.9 83.7 0.35 49.7 84.3
11 1+Hor2+P 0.35 51.8 83.4 0.35 49.7 84.5

12 1+Hor2+P
or (1P &2+ Rx) 0.36 60.3 78.9 0.39 47.6 86.3
5 13 1+P 0.27 78.1 58.6 0.37 37.4 89.4
14 2+P 0.35 63.1 76.2 0.39 45.7 86.7
15 1+Hor2+P 0.35 63.7 75.9 0.40 45.6 86.8
16 T+ Hor2+ P 0.34 71.1 70.1 0.41 42.9 88.4

or (1 P &2+ Rx)
Note: H = Hospital separation; P = Physician claim; Rx = Prescription drug record;
95% confidence intervals for all estimates are reported in Appendix D.

Source: Manitoba Centre for Health Policy, 2006

For RA, there was poor agreement between administrative and survey data;
values of k never exceeded 0.20 (see Table 7). The highest value of k (0.17)
was for the five-year algorithm based on one or more physician billing
claims and also for the five-year algorithm based on one or more hospital
separations, or two or more physician billing claims, or one physician billing
claim and two or more prescription drug records.
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Sensitivity ranged from 5.0% to 11.3%. The highest sensitivity was observed
for the five-year algorithm based on one or more physician billing claims.
However, sensitivity was almost equivalent for the corresponding three-year
algorithm (10.7%). Specificity was near 100% for all RA algorithms.
Youden’s index ranged from 0.05 to 0.11. It was highest for two of the five-
year algorithms: (a) one or more physician billing claims, and (b) one or
more hospital separations or two or more physician billing claims, or one
physician billing claim and two or more prescription drug records.

The PPV of an RA diagnosis ranged from 55.9% to 80.6% and was, as
expected, highest for the algorithms based on a single year of data. There
was almost no variation in NPV; it was approximately 92% for all RA algo-
rithms.

Table 7: Estimates of agreement, sensitivity, specificity, and predictive values
for rheumatoid arthritis algorithms

# Algorithm x Sens. Spec. Youden PPV NPV
Years (%) (%) (%) (%)
1 1T 1+P 0.12 7.4 99.8 0.07 73.9 92.3
2 24P 0.08 5.0 99.9 0.05 76.7 92.2
3 1+Hor2+P 0.09 5.4 99.9 0.05 78.1 92.2
4 1+ Hor2+P
or (1P &2+ Rx) 0.12 6.3 99.9 0.07 80.6 92.3
2 5 1+P 0.14 8.9 99.6 0.09 65.1 92.4
6 2+P 0.11 6.5 99.8 0.06 71.4 92.3
7 1+Hor2+P 0.11 7.0 99.8 0.07 72.7 92.3
8 1+Hor2+P
or (1P &2+ Rx) 0.14 7.6 99.7 0.08 72.9 92.3
3 9 1+P 0.16 10.7 99.4 0.10 62.8 92.6
10 2+P 0.13 7.8 99.7 0.08 70.6 92.4
1 1+Hor2+P 0.14 8.5 99.7 0.08 72.2 92.4
12 1+ Hor2+P 0.14 8.9 997 010 707 924
or (1P &2+ Rx) ’ ’ ' ’ ’ ’
5 13 1+ P 0.17 11.3 99.2 0.11 55.9 92.6
14 2+ P 0.13 8.3 99.7 0.08 69.1 92.4
15 1+Hor2+P 0.14 8.9 99.7 0.09 70.7 92.4
16 T+ Hor2+ P 0.17 9.4 996 011 683 925

or (1 P &2+ Rx)
Note: H = Hospital separation; P = Physician claim; Rx = Prescription drug record;
95% confidence intervals for all estimates are reported in Appendix D.

Source: Manitoba Centre for Health Policy, 2006

For OA, there was poor to fair agreement between survey and administrative
data with values of x ranging from 0.16 to 0.32 (see Table 8). This statistic
was highest for the algorithm based on one or more physician billing claims
in five years. Sensitivity was highest for this same algorithm (49.9%); it was
more than double the sensitivity estimate for the corresponding algorithm
based on a single year of data. However, the largest improvement in the esti-
mate of sensitivity was observed when moving from the one-year algorithm
based on one or more physician billing claims, to the two-year algorithm
based on one or more physician billing claims (difference = 11.6%).
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Specificity was greater than 90% for all of the algorithms with the exception
of the five-year algorithm based on one or more physician billing claims
(88.7%). Youden’s index was highest for the five-year algorithm based on
one or more physician billing claims (0.39).

The PPV of an OA diagnosis ranged from 34.8% to 49.3%, and was high-
est for the one-year algorithm based on two or more physician billing
claims. NPV showed little variation, from 90.4% to 93.6%.

Table 8: Estimates of agreement, sensitivity, specificity, and predictive values for
osteoarthritis algorithms

# Algorithm K Sens. Spec. Youden PPV NPV
Years (%) (%) (%) (%)
1 1T 1+P 0.24 235 95.9 0.19 40.8 91.2
2 2+P 0.16 12.3 98.5 0.1 49.3 90.3
3 1+Hor2+P 0.17 13.1 98.3 0.11 48.5 90.4

4 1+Hor2+P
or (1P &2+ Rx) 0.22 19.0 97.2 0.16 45.2 90.9
2 5 1+P 0.30 35.1 93.3 0.28 38.9 92.3
6 2+P 0.23 19.8 97.2 0.17 45.8 90.9
7 1+Hor2+P 0.23 20.8 97.0 0.18 45.3 91.0

8 1+Hor2+P
or (1P &2+ Rx) 0.28 29.8 94.7 0.25 40.5 91.8
3 9 1+P 0.31 41.4 91.2 0.33 36.3 92.8
10 2+P 0.25 24.5 95.9 0.21 41.8 91.3
11 1+Hor2+P 0.25 25.3 95.7 0.21 41.3 91.4

12 1+Hor2+P
or (1P &2+ Rx) 0.25 34.9 92.9 0.26 37.2 92.2
5 13 1+ P 0.32 49.9 88.7 0.39 34.8 93.6
14 2+ P 0.29 31.6 94.3 0.26 40.2 92.0
15 1+Hor2+P 0.29 32.8 94.0 0.27 39.8 92.1

16 1+ Hor2+P
or (1 P & 2+ Rx)
Note: H = Hospital separation; P = Physician claim; Rx = Prescription drug record; 95%
confidence intervals for all estimates are reported in Appendix D.

0.31 43.1 90.7 0.34 35.8 93.0

Source: Manitoba Centre for Health Policy, 2006

Agreement Between Survey And Administrative Data

Logistic regression analysis was used to test the sociodemographic variables
associated with agreement between survey and administrative data. For all
forms of arthritis, RA, and OA the models contained the main effects of
age, sex, region of residence, and income adequacy quintile. Two-way inter-
actions were tested but were not statistically significant and were therefore
excluded from the final models. The Hosmer-Lemeshow test indicated that
all of the main-effect models provided a good fit to the data.
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For all forms of arthritis, the logistic regression model was applied to the
data for algorithm #8, for RA it was applied to the data for algorithm #13,
and for OA it was also applied to the data for algorithm #13. For all forms
of arthritis, the following variables were statistically significant predictors of
agreement between the two data sources: age (32 = 204.8, degrees of free-
dom [df] = 6, p < .0001), sex (x2 =8.4,df = 1, p = .0038), and income ade-
quacy quintiles (x2 = 14.0, df = 5, p = .0156). For RA, the following vari-
ables were statistically significant: age (x2 = 158.7, df = 6, » <.0001), region
of residence (2 = 11.4, df = 2, p =.0033), and income adequacy quintiles
(% = 17.0, df = 5, p = .0045). For OA, the following variables were statisti-
cally significant: age (x?=371.1,df = 6, p <.0001), sex (x2=13.5,df =1,
2 =.0002), region of residence (x2 = 7.5, df = 2, p = .0238), and income
adequacy quintiles (2 = 12.9, df = 5, p = .0243). Table 9 contains the ORs
and 95% Cls for the explanatory variables in each of the three models.

Table 9: Odds Ratio (OR) estimates and 95% Cls for predictors of agreement
between administrative and survey data for arthritis, rheumatoid arthritis, and
osteoarthritis

Arthritis RA OA
Predictors OR 95% CI OR 95% CI OR 95% CI
Age
19 — 34 years 4.1 (2.9,5.8) 23.1 (14.5, 36.9) 12.7 (6.9, 23.1)
35 - 44 years 2.4 (1.7,3.4) 7.7 (5.2, 11.4) 4.1 (2.5,6.7)
45 — 54 years 1.5 (1.1,2.1) 3.3 (2.3,4.7) 2.3 (1.4,3.7)
55 — 64 years 1.2 (0.9, 1.7) 1.9 (1.3,2.7) 1.2 (0.8, 2.0)
65 — 74 years 1.1 (0.8, 1.6) 1.3 (0.9,1.9) 1.0 (0.7, 1.6)
75 — 84 years 1.0 (0.7, 1.4) 1.3 (0.9, 1.8) 1.0 (0.7, 1.6)
85+ years Ref - - - - -
Sex
Males 1.2 (1.1,1.4) 1.4 (1.2,1.6) 1.0 (0.8,1.2)
Females Ref - - - - -
Region of Residence
North Rural RHAs 1.1 (0.8, 1.4) 0.7 (0.5, 0.9) 0.8 (0.6, 1.2)
South Rural RHAs 1.0 (0.9, 1.2) 1.0 (0.8,1.2) 1.3 (1.0, 1.7)
Winnipeg RHA Ref - - - - -
Income Quintile
Lowest 0.6 (0.4, 0.8) 0.4 (0.2,0.7) 0.5 (0.4, 0.8)
Low Middle 1.1 (0.9, 1.5) 0.6 (0.4,0.9) 0.9 (0.7, 1.3)
Middle 1.0 (0.8,1.2) 0.6 (0.4, 0.8) 0.9 (0.7,0.1)
Upper Middle 1.0 (0.9, 1.3) 0.8 (0.6, 1.1) 1.0 (0.8, 1.3)
Not Stated 0.8 (0.6, 1.1) 0.7 (0.5,1.2) 0.9 (0.6, 1.2)
Highest Ref - - - - -

Source: Manitoba Centre for Health Policy, 2006

For all models, the results indicate that the odds of agreement between the
two data sources were higher for individuals in younger age groups than in
the 85+ year age group. They were also higher for males than for females.
The odds of agreement were lower for residents of the Northern RHAs than
for residents of Winnipeg RHA for both RA and OA. Finally, for all three
chronic diseases, the odds of agreement between the two data sources were
lower for individuals in the lower income groups than for individuals in the
highest income group.
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3.4 Provincial Prevalence Estimates

Cross-Sectional Prevalence Estimates

Prevalence estimates for all 16 algorithms for all forms of arthritis, RA, and
OA are summarized in Table 10. As noted previously, estimates for one-year
algorithms were calculated using 2002/03 data; estimates for two-year algo-
rithms were calculated using 2001/02-2002/03 data; estimates for three-year
algorithms were calculated using 2000/01-2002/03 data; estimates for five-
year algorithms were calculated using 1998/99-2002/03 data.

Prevalence estimates varied substantially across the algorithms. For all forms
of arthritis, estimates ranged from 9.2% to 47.3%. Prevalence estimates
ranged from 0.4% to 1.6% for RA, and from 2.2% to 13.2% for OA. For
all forms of arthritis, the prevalence estimate for the most sensitive algo-
rithm (i.e., algorithm #13) was 47.3%. For the two algorithms with the
highest overall values of Youden’s index—algorithms #15 and #16—the
prevalence estimates were 31.5% and 37.4%, respectively. For the algorithm
with the highest k the estimate was 20.3%. For RA, the algorithm with the
highest sensitivity and Youden’s index (i.e., algorithm #16) resulted in a
prevalence estimate of 1.0%. Youden’s index was equally high for the algo-
rithm based on one or more physician billing claims in five years of data;
this algorithm resulted in a prevalence estimate of 1.6% for the Manitoba
population 19 years of age and older. Finally, for OA, the algorithm with the
highest , sensitivity, and Youden’s index (i.e., algorithm #13) resulted in a
prevalence estimate of 13.2%.

Table 10: Crude provincial prevalence estimates for arthritis algorithms,
1998/99 — 2002/03

# Algorithm Arthritis RA OA
Years (%) (%) (%)
1 1T 1+P 18.8 0.7 5.0
2 2+P 9.2 0.4 2.2

3 1+Hor2+P 9.4 0.5 2.3

4 1+Hor2+Por(1P &2+ Rx) 12.0 0.5 3.5

2 5 1+P 28.8 1.0 7.8
6 2+P 16.1 0.6 3.9

7 1+Hor2+P 16.4 0.6 4.1

8 1+Hor2+Por(1P&2+Rx) 20.3 0.7 6.0

3 9 1+P 36.5 1.2 10.0
10 2+P 21.9 0.7 5.3

11 1+Hor2+P 22.3 0.8 5.6

12 1+Hor2+Por (1P &2+ Rx) 271 0.8 8.1

5 13 1+P 47.3 1.6 13.2
14 2+P 31.1 0.9 7.4

15 1+Hor2+P 31.5 1.0 7.8

16 1T+ Hor2+Por (1P &2+ Rx) 37.4 1.0 1.1

Note: H = Hospital separation; P = Physician claim; Rx = Prescription drug record; 1-year
estimates are for 2002/03, 2-year estimates are for 2001/02 — 2002/03, 3-year estimates are for
2000/01 — 2002/03, 5-year estimates are for 1998/99 — 2002/03.

Source: Manitoba Centre for Health Policy, 2006
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Venn Diagrams

Figures 3 to 6 contain Venn diagrams of the arthritis case counts for a select
number of algorithms (i.e., algorithms #4, #8, #12, and #16) for all forms
of arthritis. Figure 3 reveals that of the 102,844 individuals who were identi-
fied as arthritis cases by applying the one-year algorithm to 2002/03 data,
more than one-third of these cases (35.1%) were identified as having two or
more physician billing claims with an arthritis diagnostic code. Only 0.8%
were identified as having one or more hospital separations with an arthritis
diagnostic code. As well, 21.7% of individuals were identified from the
combination of one physician claim and two or more prescription drug
records in a one-year period. Only a very small percentage of individuals
(2.9%) were identified in all three administrative data sources.

Figure 3: Arthritis Algorithm #4: 1+ Hospital Separations or 2+ Physician Visits
or 1 Physician Visit & 2+ Prescriptions, 1 Year

Hospital Physician

(2+ claims)

Prescription +
N = 102,844 Physician (1 claim)

Source: Manitoba Centre for Health Policy, 2006
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Figure 4: Arthritis Algorithm #8: 1+ Hospital Separations or 2+ Physician Visits
or 1 Physician Visit & 2+ Prescriptions, 2 Year

Hospital Physician
(2+ claims)
53,610

0.5% 'KLA 31.5%

1,632 72,831
1.0% 42.8%

32,588
19.1%

Prescription +
N = 170,205 Physician (1 claim)

Source: Manitoba Centre for Health Policy, 2006

Figure 5: Arthritis Algorithm #12: 1+ Hospital Separations or 2+ Physician Visits
or 1 Physician Visit & 2+ Prescriptions, 3 Year

Hospital Physician

(2+ claims)

104,106
46.6%

Prescription +
N = 223,943 Physician (1 claim)

Source: Manitoba Centre for Health Policy, 2006
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Figure 6: Arthritis Algorithm #16: 1+ Hospital Separations or 2+ Physician Visits
or 1 Physician Visit & 2+ Prescriptions, 5 Year

Hospital Physician
(2+ claims)
77,671

25.8%

153,139
50.9%

Prescription +
N = 301,115 Physician (1 claim)

Source: Manitoba Centre for Health Policy, 2006

As revealed in Figures 4, 5 and 6, the percentage of individuals identified as
arthritis cases using a combination of the physician and prescription data
was lower for the two-year algorithm than for the one-year algorithm
(19.1%). This was also true for the three-year algorithm (17.7%) and the
five-year algorithm (16.0%).

Figures 7 to 10 contain the Venn diagrams for algorithms #4, #8, #12, and
#16 for RA. There were 4,302 RA cases identified in one year (i.e.,
2002/03) using algorithm #4 (Figure 7). More than one-quarter (28.3%) of
these individuals were identified as having two or more physician claims
with a RA diagnostic code. Less than 10% had a single physician claim and
two or more prescription drug records. The two-year algorithm resulted in
the identification of 5,660 RA cases, and only 6.2% had a single physician
claim and two or more prescription drug records while 32.1% had two or
more physician claims in this time period. The number of individuals iden-
tified solely from the physician data increased to 35.1% for the three-year to
algorithm and to 37.6% for the five-year algorithm.
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Figure 7: Rheumatoid Arthritis Algorithm #4: 1+ Hospital Separations or
2+ Physician Visits or 1 Physician Visit & 2+ Prescriptions, 1 Year

Hospital Physician

(2+ claims)

Prescription +
N = 4,302 Physician (1 claim)

Source: Manitoba Centre for Health Policy, 2006

Figure 8: Rheumatoid Arthritis Algorithm #8: 1+ Hospital Separations or
2+ Physician Visits or 1 Physician Visit & 2+ Prescriptions, 2 Years

Hospital Physician

(2+ claims)

Prescription +
N = 5,660 Physician (1 claim)

Source: Manitoba Centre for Health Policy, 2006
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Figure 9:

Rheumatoid Arthritis Algorithm #12: 1+ Hospital Separations or

2+ Physician Visits or 1 Physician Visit & 2+ Prescriptions, 3 Years

Hospital

N = 6,685

Physician
(2+ claims)

Prescription +
Physician (1 claim)

Source: Manitoba Centre for Health Policy, 2006

Figure 10: Rheumatoid Arthritis Algorithm #16: 1+ Hospital Separations or
2+ Physician Visits or 1 Physician Visit & 2+ Prescriptions, 5 Years
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Physician
(2+ claims)
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Source: Manitoba Centre for Health Policy, 2006
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In Figures 11 to 14, Venn diagrams for OA algorithms #4, #8, #12, and #16
applied to the Manitoba data are presented. The one-year algorithm resulted
in the identification of close to 30,000 osteoarthritis cases from the three
sources of administrative data in 2002/03. One-third (33.6%) of these cases
had one physician billing claim with an OA diagnostic code and two or
more prescription drug records with a relevant medication code. Less than
one-quarter (22.0%) had two or more physician billing claims. Only 2.0%
were identified solely from hospital separations. The total number of OA
cases increased to more than 50,000 when two years of administrative data
were used, and the percentage of cases identified using a combination of the
physician and prescription data decreased slightly (31.4%). The results for
the three-year algorithm revealed that 30.9% of cases were identified from
both physician and prescription drug data, and a relatively small number
(15.2%) were identified as having two or more physician billing claims in
this time period. For the five-year year algorithm, 12.4% of cases had two or
more physician billing claims with an OA diagnostic code.

Figure 11: Osteoarthritis Algorithm #4: 1+ Hospital Separations or
2+ Physician Visits or 1 Physician Visit & 2+ Prescriptions, 1 Year

Physician
(2+ claims)

Hospital

Prescription +
N = 29,716 Physician (1 claim)

Source: Manitoba Centre for Health Policy, 2006
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Figure 12: Osteoarthritis Algorithm #8: 1+ Hospital Separations or
2+ Physician Visits or 1 Physician Visit & 2+ Prescriptions, 2 Years
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Source: Manitoba Centre for Health Policy, 2006

Figure 13: Osteoarthritis Algorithm #12: 1+ Hospital Separations or
2+ Physician Visits or 1 Physician Visit & 2+ Prescriptions, 3 Years
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Source: Manitoba Centre for Health Policy, 2006
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Figure 14: Osteoarthritis Algorithm #16: 1+ Hospital Separations or
2+ Physician Visits or 1 Physician Visit & 2+ Prescriptions, 5 Years

Hospital Physician

(2+ claims)

Prescription +
N = 89,398 Physician (1 claim)

Source: Manitoba Centre for Health Policy, 2006
Regression Analyses for Cross-Sectional Prevalence Estimates

In the regression models for the provincial prevalence estimates, we tested
for differences among the algorithms with high «, sensitivity and/or high
values of Youden’s index. Prevalence estimates for algorithms #5, #8, #9,
#12, #13, and #16 were tested for all forms of arthritis, RA, and OA.

For all forms of arthritis, the LRT for the difference between the full model,

which contained the main effects of algorithm, age, sex, region, and quintile
in addition to selected two-way interactions, and the reduced model, which

contained main effects only, was statistically significant (2 = 726.3, df = 65,
2 < .0001). Further analysis revealed that all four of the two-way interaction
effects specified in the full model were statistically significant: algorithm x
age (p < .0001), algorithm x sex (p = .0026), algorithm x quintile (p =
.0029), and algorithm x region (p < .0001). These results indicate that for all
forms of arthritis, the relative rate (RR) of arthritis for different algorithms
varied with the sociodemographic characteristics of the population.

For RA, the LRT for the full and reduced models was not statistically signif-
icant (32 = 81.0, df = 65, p =.0870). This result indicates that the RR of RA
prevalence for different algorithms did not vary with the sociodemographic
characteristics of the population. However, the main effect of algorithm was
statistically significant (32 = 951.2; df = 5, p < .0001). Wald tests revealed
that all of the algorithms had prevalence estimates that were significantly
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Percent

40.0

different from the prevalence estimate for algorithm #5 (reference) with the
exception of algorithm #12 (1+ H or 2+ P or [1 P & 2+ Rx] in three years).

For OA, the LRT for the full and reduced models was statistically significant
(x2 = 180.4, df = 65, p <.0001). The algorithm x age (» <.0001) and algo-
rithm x region (p = .0004) interactions were statistically significant. This
finding means that the RR of OA prevalence for different algorithms varied
with both the age and region of residence of the Manitoba population.

Longitudinal Prevalence Estimates

Figures 15, 16, and 17 depict the change in crude prevalence estimates of
arthritis for the one-, two-, and three-year, algorithms, respectively. Figure

15 shows relatively little change in the prevalence of arthritis over a five-year
period. As well, the trend lines for all four algorithms were roughly parallel,
indicating that each provided a similar picture of the change in prevalence of
arthritis over time. Both the two-year and three-year algorithms showed a
slight increase in prevalence over time, but again the trend lines were
approximately parallel, indicating that each provided a similar picture of the
rate of change in arthritis prevalence over time.

Figure 15: Provincial Trends in Arthritis Prevalence for One-Year Algorithms,
1999/2000 - 2003/04
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Figure 16: Provincial Trends in Arthritis Prevalence for Two-Year Algorithms,
1995/96 - 2003/04
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Figure 17: Provincial Trends in Arthritis Prevalence for Three-Year Algorithms,
1995/96 - 2003/04
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The trends in prevalence estimates for RA for the one-, two-, and three-year
algorithms are shown in Figures 18, 19, and 20, respectively. In Figure 18,
the trend lines for the four algorithms were approximately parallel, indicat-
ing that all one-year algorithms showed similar rates of change in RA preva-
lence. Moreover, the trends for these one-year algorithms showed a relatively
constant prevalence of RA in the most recent five years of the study period.
In contrast, both the two-year and three-year algorithms showed a signifi-
cant increase. There was, however, little difference in the rate of change
across the two-year and three-year algorithms.

Figure 18: Provincial Trends in Rheumatoid Arthritis Prevalence for One-Year Algorithms,
1999/2000 - 2003/04
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Figure 19: Provincial Trends in Rheumatoid Arthritis Prevalence for Two-Year Algorithms,

1996/97 - 2003/04
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Figure 20: Provincial Trends in Rheumatoid Arthritis Prevalence for Three-Year Algorithms,
1995/96 - 2003/04
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Figures 21, 22, and 23, depict the trends in prevalence estimates for OA for
one-, two-, and three-year algorithms, respectively. The trend estimates for
the one-year algorithms showed that the algorithm based on one or more
contacts in physician billing claims (i.e., algorithm #1) and the algorithm
based on a combination of all three data sources (i.e., algorithm #4) showed
a slightly greater increase over time than the remaining two algorithms. The
same pattern was evident for the two-year results, where algorithms #5 and
#8 showed the greatest increase over time, and for the three-year results,
where algorithms #9 and #12 showed the greatest increase over time.

Figure 21: Provincial Trends in Osteoarthritis Prevalence for One-Year Algorithms,
1999/2000 - 2003/04
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Figure 22: Provincial Trends in Osteoarthritis Prevalence for Two-Year Algorithms,
1996/97 - 2003/04
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Figure 23: Provincial Trends in Osteoarthritis Prevalence for Three-Year Algorithms,
1995/96 — 2003/04
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Regression Analyses for Longitudinal Prevalence Estimates

Regression analyses were conducted for these longitudinal prevalence esti-
mates, to test for differences among the algorithms in the RR over time, and
also to test whether the trends for the algorithms varied across the sociode-
mographic variables of age, sex, region of residence, and income quintile.
Three sets of regression analyses were conducted, which focused on the one-,
two-, and three-year algorithms for all forms of arthritis, RA, and OA. The
model testing results are summarized in Table 11.

Table 11: Summary of likelihood ratio test (LRT) results for longitudinal arthritis
prevalence estimates

# Years Model Arthritis RA OA
Comparison
1 47 =1799.1 4’ =1854 y'=1184.1
D“é' d&elﬁeduced df = 94 df = 94 df = 94
p < .0001 p < .0001 p < .0001
2 2 2
. x =01 x =14 x =15
parta) & Reduced df =3 df =3 df =3
p=.9873 p = .7080 p = .6948
2 47 =1607.8 Y =1728 47 =1199.4
E/l“(')' d&elﬁeduced df = 94 df = 94 df = 94
p < .0001 b < .0001 p < .0001
2 2 2
. x =2.26 x =18 x =19
mg""e’l & Reduced df=3 df =3 df=3
p = .5205 p=.7610 p = 0.5859
3 4'=1258.4 47 =153.9 77 =1104.2
K/l“(')' dilReduced df = 94 df = 94 df = 94
p < .0001 p < .0001 p < .0001
2 2 2
. 47 =2.03 47 =03 =17
mg‘;'l & Reduced df=3 df =3 df=3
p = 5661 p = 9537 p = 6335

Note: Full model contains main effects of algorithm, age, sex, region, and income quintiles and
time period, two-way interactions of algorithm x age, algorithm x sex, algorithm x region,
algorithm x time period, and three-way interactions of algorithm x age x time,

algorithm x sex x time, algorithm X region x time, and algorithm x quintile x time;

Partial model contains all main effects and algorithm x time; Reduced model contains main
effects only. Results which are statistically significant indicate an improvement in model fit with
the addition of one or more interaction terms.

Source: Manitoba Centre for Health Policy, 2006

The results are consistent for all forms of arthritis, RA, and OA. The LRTs
for the partial and reduced models were never significant. However, the
LRTs for the full and reduced models were all statistically significant. The
GEE model results for all of the full models revealed that there were statisti-
cally significant interaction effects (p < .05) for algorithm x age, algorithm x
region, algorithm x age x time, and algorithm x region x time. These results
indicate that the RR of change in prevalence was not statistically different
across the algorithms. At the same time, the RR of change in prevalence for
different algorithms was not constant across the age and region of residence
of the Manitoba population.
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The validation
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administrative data
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and osteoarthritis
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3.5 Chapter Summary

The validation results reveal that administrative data exhibited fair to mod-
erate agreement with survey data for all forms of arthritis and osteoarthritis
and poor agreement for rheumatoid arthritis. Furthermore, when survey
data were adopted as the gold standard, the validity of administrative data
for identifying cases of arthritis and osteoarthritis was moderate, but poor
for identifying cases of rheumatoid arthritis. However, the very low esti-
mates of sensitivity and Youden’s index for rheumatoid arthritis are likely
attributable to bias in the validation source. The estimate of prevalence for
the validation cohort was 8.2%, which is much higher than the prevalence
that has been reported in other national and international studies. The
provincial prevalence estimates for rheumatoid arthritis produced using
Manitoba’s administrative data are similar to the estimates produced in other
Canadian jurisdictions from administrative data (e.g., Lacaille et al., 2005).

The algorithm that resulted in the highest agreement between survey and
administrative data is not the same for all forms of arthritis, rheumatoid
arthritis, and osteoarthritis. For all forms of arthritis, the algorithm that
exhibited the highest agreement between the two sources was based on just
two years of data, but relied on a combination of all three sources of admin-
istrative data. For rheumatoid arthritis, the algorithm that exhibited the
highest agreement between the two sources required only one or more
physician billing claims in five years. For osteoarthritis, the algorithm with
the highest agreement between the two data sources was also based on one
or more physician claims in five years of data. However, it is important to
note that agreement between the survey and administrative data was predict-
ed by several sociodemographic characteristics. This means that if the data
were stratified by age group or other variables, agreement levels may not be
consistently high for the same algorithms as identified in these aggregate
results.

If maximum sensitivity and specificity is of primary interest, then for all
forms of arthritis the algorithm based on one or more hospital separations,
or two or more physician billing claims in five years should be adopted. For
rheumatoid arthritis, the algorithm based on one or more physician billing
claims resulted in the maximum value of Youden’s index. For osteoarthritis,
it was also the case that the five-year algorithm based on one or more physi-
cian billing claims resulted in the maximum estimate of this index.
However, it should be noted that other algorithms based on five years of
data produced similar results.

Regression analyses applied to the cross-sectional data revealed that the rela-
tive rate of arthritis prevalence for different algorithms varied across age
groups. For rheumatoid arthritis no interactions between algorithm and the
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sociodemographic characteristics of the population were observed. The rela-
tive rate of osteoarthritis prevalence for the investigated algorithms varied
across age groups and regions of the province. Regression analyses applied to
the longitudinal data revealed that the relative rate of change in prevalence
of arthritis, rheumatoid arthritis, and osteoarthritis for different algorithms
varied with the sociodemographic characteristics of the population, but did
not vary over time. These results, combined with those from the cross-sec-
tional analyses, indicate that the algorithms do not provide the same picture
of the relative difference in the prevalence of arthritis and osteoarthritis
across sociodemographic groups within the population.
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CHAPTER 4: ASTHMA

4.1 Introduction and Review of Literature

Asthma affects a large percentage of both children and adult populations.
National estimates of asthma prevalence have been derived primarily from
survey data. From the 1996/97 NPHS, physician-diagnosed asthma was esti-
mated to occur in 12.8% of youth 10 to 14 years of age, and 14.1% of
youth 15 to 19 years of age. In the adult population this estimate was placed
at 6.3% (The National Asthma Control Task Force, 2000). Chen et al.
(2005) used CCHS data from 2003 and estimated that 8.4% of the popula-
tion 12 years of age and older have been diagnosed with asthma. For
Manitoba, the estimated prevalence using CCHS data was 8.9%. Using
National Health Interview Survey (NHIS) data from the U.S., Dey and
Bloom (2003) estimated that 12.5% of children 18 years of age or younger
have been diagnosed with asthma. Rhodes et al. (2003) distinguished
between lifetime asthma prevalence and current asthma prevalence; using
data from the U.S. Behavioral Risk Factor Surveillance Survey (BRESS) they
estimated current asthma prevalence at 7.2% in individuals 18 years of age
and older, and lifetime asthma prevalence at 11.0% in this same age group.

Table A.2 in Appendix A summarizes eight published studies that used
administrative data to identify asthma cases. Three of the studies used
Manitoba data; among these studies, two used only physician billing claims
to identify asthma cases, while the third (Kozyrskyj et al., 2004) used a com-
bination of hospital separations, physician claims, and prescription drug
records to identify asthma cases. For the studies that reported validation
results, estimates of sensitivity, specificity, and predictive values varied sub-
stantially. For example, in the Huzel et al. (2002) study, the maximum sensi-
tivity for the adult population was 70.1%, but specificity was very high
(99.8%). Kozyrskyj et al. (2004) achieved a much higher sensitivity of
93.9% in a youth population, but specificity was slightly lower (91.4%).
Borzecki et al. (2004) examined administrative data algorithms for identify-
ing both COPD and asthma cases (combined), and achieved a sensitivity of
81.0% and a specificity of 92.0%. Wilchesky et al. (2004) concluded that
physician data alone are not a valid source for asthma case identification; the
authors observed a maximum sensitivity of only 43.0% in an adult popula-
tion using Quebec’s physician claims data to identify asthma cases.

4.2 Description of Asthma Algorithms

A single ICD-9-CM code, 493, was used to identify asthma cases in hospital
and physician data. This is consistent with all of the previous studies
reported in the summary table. The methodology to extract prescription
drug records from the pharmaceutical database was based on previous
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research (Kozyrskyj et al., 2004) and consultations with MCHP researchers
with expertise in using administrative data to identify cases of asthma. DINs
with the following third-level ATC codes were initially selected: RO3A
(adrenergics, inhalants), RO3B (other drugs for obstructive airway diseases,
inhalants), RO3C (other drugs for obstructive airway diseases, inhalants),
and R03D (other systemic drugs for obstructive airway diseases). A very
small number of DINs within these four classes were excluded after discus-
sions with experts. As well, one drug outside of these four classes (RO6AX17
Ketotifen) was included. Appendix E contains a list of the drugs selected for
this research, and identifies the exclusions that were made.

Table 12 lists the 28 algorithms that were investigated in this study. Like the
arthritis algorithms, the asthma algorithms were based on as many as five
years of administrative data. Two of the algorithms in each time period were
based on only physician billing claims, one algorithm was based on only
prescription drug data, and the remaining algorithms were based on a com-
bination of two or more of these data sources. For example, algorithm #1
identifies individuals as asthma cases if they had one or more physician
claims with an asthma diagnosis code in a one-year period. Algorithm #7
identifies individuals as asthma cases if they had one or more hospital sepa-
rations, or two or more physician claims, or two or more prescription drug
records with relevant diagnostic or medication codes in one year. The algo-
rithms for two, three, and five years of administrative data are interpreted in
a similar way.

Table 12: Asthma algorithms selected for validation

# Years Algorithm Hospital Physician Prescription
Separations Claims Drug Records
or or
1 1 1 or more
2 2 or more
3 1 or more
4 1 or more 1 or more
5 1 or more 2 or more
6 1 or more 1 or more 1 or more
7 1 or more 2 or more 2 or more
2 8 1 or more
9 2 or more
10 1 or more
11 1 or more 1 or more
12 1 or more 2 or more
13 1 or more 1 or more 1 or more
14 1 or more 2 or more 2 or more
3 15 1 or more
16 2 or more
17 1 or more
18 1 or more 1 or more
19 1 or more 2 or more
20 1 or more 1 or more 1 or more
21 1 or more 2 or more 2 or more
5 22 1 or more
23 2 or more
24 1 or more
25 1 or more 1 or more
26 1 or more 2 or more
27 1 or more 1 or more 1 or more
28 1 or more 2 or more 2 or more

Source: Manitoba Centre for Health Policy, 2006
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It is important to note that unlike the algorithms for arthritis, the algo-
rithms for asthma did not require that the prescription drug records with
the relevant medication codes appear in combination with a diagnostic code
in physician billing claims. This is because the drugs identified for inclusion
in the study are specific to the treatment asthma, and would be used only
infrequently for the treatment of other chronic diseases.

The validation analyses were conducted for three age groups: 12 to 18 years,
19 to 49 years, and 50+ years, as well as for the combined age groups (i.e.,
12+ years of age). We selected these three age groups because only a limited
number of studies have validated asthma algorithms in younger populations.
As well, confounding of the diagnoses of asthma and COPD may result in
lower validity of asthma algorithms in older age groups.

4.3 Validation Results

Validation Indices

Table 13 contains the point estimates for the six validation indices for each
of the 28 algorithms for the combined age groups (i.e., 12 years of age or
older). The corresponding 95% Cls are reported in Table D.1 in Appendix
D. Appendix F contains the results when cases of self-reported COPD were
excluded from the validation cohort. These supplementary results are very
similar to those reported in this section and therefore will not be discussed
in great detail.

There was fair to moderate agreement between the administrative and sur-
vey data, with values of k ranging from 0.24 to 0.59. The highest value was
for the five-year algorithm based on one or more hospital separations or two
or more physician claims or two or more prescription drug records.
However, this estimate was almost identical to the estimate for the corre-
sponding three-year algorithm (0.58).

Sensitivity was highly variable, and ranged from 18.1% to 84.3%. It was
consistently the case that for the one-, two-, three-, and five-year results, the
two algorithms that were the most sensitive were based on one or more pre-
scription drug records, or one or more contacts in hospital separations or
physician billing claims or prescription drug records. The highest specificity
was observed for the five-year algorithms.

Specificity was consistently high. It ranged from 88.6% to 99.5% across the
28 algorithms. Overall, the most specific algorithms were those based on
two or more physician claims in one, two, three, or five years of data (i.e.,
algorithms #2, #9, #16, and #23). However, there was very little change in
specificity when two or more physician billing claims were required instead
of only one physician billing claim, and the decrease in sensitivity was sub-
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stantial. For example, the one-year algorithm based on one or more physi-
cian billing claims (i.e., algorithm #1) had a sensitivity of 30.8% while the
algorithm based on two or more physician billing claims (i.e., algorithm #2)
had a sensitivity of 18.1%.

Youden’s index ranged from 0.18 to 0.73. The highest value was observed
for the five-year algorithm based on one or more hospital separations or one
or more physician billing claims or one or more prescription drug records in
five years. However, Youden’s index was very similar for the five-year algo-
rithm based on only one or more prescription drug records (0.72), as well as
for the algorithm based on one or more hospital separations or two or more
physician billing claims or two or more prescription drug records in five
years (0.70).

Table 13: Estimates of agreement, sensitivity, specificity, and predictive values for
asthma algorithms, all ages

# Algorithm K Sens. Spec. Youden PPV NPV
Years (%) (%) (%) (%)
1 1 1+P 0.40 30.8 98.8 0.30 70.3 94.1
2 24P 0.27 18.1 99.5 0.18 77.4 93.1
3 1+ Rx 0.51 55.4 95.9 0.51 54.7 96.0
4 1+Hor1+P 040 31.4 98.8 0.30 70.3 94.1
5 1+Hor2+P 028 18.9 99.5 0.18 775 93.2
6 T+Hor1+P 5 584 955 0.54 53.7 96.2

or 1+ Rx
7 T+Hor2+P 0.51 46.9 97.7 0.45 64.4 953

or 2+ Rx
2 8 1+pP 037 43.9 98.0 0.42 66.1 95.1
9 2+P 0.26 30.1 99.1 0.29 743 94.0
10 1+ Rx 0.54 69.8 93.7 0.64 49.9 97.2
11 1+Hor1+P 038 44.8 97.9 0.43 66.2 95.2
12 1+Hor2+P 028 31.2 99.0 0.30 74.3 94.1
18 T+Hor1+P 0.54 72.6 93.1 0.66 48.4 97.4

or 1+ Rx
14 T+Hor2+ P gg 57.5 96.7 054 609 96.2

or 2+ Rx
3 16 1+P 0.36 52.9 96.9 0.50 60.7 95.8
16 2+P 0.24 37.6 98.6 0.36 71.3 94.6
17 1+ Rx 0.52 747 923 0.67 46.5 97.6
18 1+Hor1+P 0.37 b3.7 96.9 0.51 60.8 95.9
19 1+Hor2+P 028 38.6 98.6 0.37 71.1 94.7

20 1+Hor1+ P

0.52 77.7 91.2 0.69 442 97.9

or 1+ Rx
21 1+ Hor2+ P 0.58 66.2 95.7 0.62 57.8 96.9

or 2+ Rx
5 22 1+P 0.45 635 95.3 0.59 55.0 96.7
23 24P 0.35 50.3 97.7 0.48 66.2 95.6
24 1+ Rx 0.51 815 90.2 0.72 427 98.2
25 1+Hor1+P 048 63.7 95.3 0.59 54.9 96.7
26 1+Hor2+P 037 50.7 97.6 0.48 65.7 95.7
27 A+ Horl+ P gy 843 88.6 0.73 39.9 98.4

or 1+ Rx
28 M+ Hor2+ P g 75.4 94.2 0.70 53.7 97.7

or 2+ Rx

Note: H = Hospital separation; P = Physician claim; Rx = Prescription drug record; PPV = Positive
Predictive Value; NPV = Negative Predictive Value; 95% confidence intervals for all estimates are
reported in Appendix D.

Source: Manitoba Centre for Health Policy, 2006
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Within each of the one-, two-, three-, and five-year sets of algorithms, the
PPV of an asthma diagnosis was highest for the algorithms based on: (1)
two or more physician billing claims or one or more hospital separations, or
(2) two or more physician billing claims. The NPV of an asthma diagnosis
was consistently above 90% for all of the algorithms, and was greater than
95% for more than half of the algorithms.

The point estimates for the validation indices for the youth cohort 12 to 18
years of age are reported in Table 14. The estimates are similar to those for
the entire cohort (see Appendix D, Table D.5 for the 95% ClIs). However,
there was stronger agreement between survey and administrative data for
this age group, with k ranging from 0.24 (fair agreement) to 0.70 (good
agreement). The highest was for the algorithm based on one or more hospi-
tal separations or two or more physician billing claims or two or more pre-
scription drug records in five years.

Sensitivity was highly variable and ranged from 16.2% to 87.4%. The five-
year algorithm based on one or more contacts in hospital separations or
physician billing claims or prescription drug records had the highest sensitiv-
ity. The improvement in sensitivity over the corresponding three-year algo-
rithm was substantial (i.e., 9.0%).

Specificity was very high (i.e., above 95%) for almost all of the algorithms.
Youden’s index was highest for the five-year algorithm based on one or more
prescriptions (0.77). It was almost the same for the algorithm based on one
or more hospital separations or one or more physician billing claims or one
or more prescription drug records in five years, as well as for the algorithm
based on one or more hospital separations or two or more physician billing
claims or two or more prescriptions in five years.

Overall, the PPV of an asthma diagnosis in this youngest age group was
highest for algorithms #9 and #12, which were based on (1) two or more
physician claims in a two-year period (88.5%), or (2) one or more hospital
separations or two or more physician billing claims (88.9%). The NPV of
an asthma diagnosis was consistently high, only falling below 90% for 6 of
the 28 investigated algorithms.
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Table 14: Estimates of agreement, sensitivity, specificity, and predictive values for
asthma algorithms, 12-18 years

# Algorithm K Sens. Spec. Youden PPV NPV
Years (%) (%) (%) (%)
1 1 1+P 037 29.7 98.1 0.29 70.2 90.1
2 24P 0.24 16.2 99.4 0.16 818 88.5
3 1+ Rx 0.48 432 97.2 0.40 70.6 918
4 1+Hor1+P 0.37 29.7 98.1 0.28 70.2 90.1
5 1+Hor2+P 024 16.2 99.4 0.16 818 88.5
6 T+HorT+Por 5 486 96.8 0.45 70.1 925
1+ Rx
7 l+Hor2+Por 0.42 33.3 98.6 0.32 78.7 90.6
2+ Rx
2 8 1+P 043 459 965 042 671 92.1
9 24P 0.30 333 99.0 0.32 84.1 90.6
10 1+ Rx 0.64 67.6 95.4 0.63 69.4 95.0
11 1+ Hor1+P 0.44 45.9 96.5 0.42 67.1 92.1
12 1+ Hor2+ P 031 333 99.0 0.32 84.1 90.6
18 T+Horl+Por 4 gs 69.4 945 0.64 65.8 95.3
1+ Rx
14 T+Hor2+Por 4 gp 48.6 98.2 0.47 80.6 926
2+ Rx
3 15 1+P 046 622 952 057 66.3 942
16 2+ P 0.30 477 983 0.46 815 92.4
17 14 Rx 0.66 76.6 93.9 0.70 65.9 96.3
18 1+ Hor1+P 0.48 62.2 95.2 0.57 66.3 94.2
19 1+ Hor2+ P 034 477 983 0.46 815 92.4
20 T+Horl+Por g 78.4 924 0.71 613 96.5
1+ Rx
21 A+ Hor2+Por ) gg 69.4 96.8 0.66 77.0 95.4
2+ Rx
5 22 1+P 0.49 748 92.0 067 58.9 96.0
23 2+ P 036 60.4 96.7 0.57 73.6 94.1
24 1+ Rx 0.64 86.5 90.7 0.77 58.9 97.8
25 1+Hor1+P 0.51 74.8 92.0 0.67 58.9 96.0
26 1+ Hor2+ P 038 60.4 9.7 0.57 73.6 94.1
27 1+ Horl+ Por 0.63 87.4 88.5 0.76 53.9 97.9
T+ Rx
28 T+Hor2+Por 4, 80.2 94.6 0.75 69.5 96.9
2+ Rx

Note: H = Hospital separation; P = Physician claim; Rx = Prescription drug record; PPV = Positive Predictive
Value; NPV = Negative Predictive Value; 95% confidence intervals for all estimates are reported in
Appendix D.

Source: Manitoba Centre for Health Policy, 2006

Table 15 contains the point estimates for the six validation indices for the
young adult cohort (i.e., 19 to 49 years of age). The corresponding 95% Cls
are reported in Appendix D in Table D.6.
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Table 15: Estimates of agreement, sensitivity, specificity, and predictive values for
asthma algorithms, 19-49 years

# Algorithm x Sens. Spec. Youden PPV NPV
Years (%) (%) (%) (%)
1 1 1+P 0.39 29.8 99.0 0.29 71.6 94.5
2 24P 0.26 171 99.5 0.17 73.6 93.6
3 1+ Rx 0.52 50.0 97.5 0.48 62.3 96.0
4 1+Hor 14P 0.40 30.3 99.0 0.29 71.9 945
5 1+Hor2+P 0.27 18.0 99.5 0.18 74.5 93.7
6 T+HorT+Por 4 gq 53.5 97.1 0.51 60.1 96.2
T+Rx
7 MeHorz+Por g 417 99.0 0.41 77.9 95.4
2+ Rx
2 8 1+P 037 425 985 0.41 69.3 95.4
9 2+P 0.24 28.9 99.1 0.28 733 94.4
10 1+ Rx 0.56 65.4 95.7 0.61 55.6 97.1
11 1+Hor 14P 0.38 43.0 98.4 0.41 69.0 95.5
12 1+Hor2+P 0.26 29.8 99.1 0.29 73.1 94.5
13 T+Hor1+Por 0.57 70.2 95.1 0.65 53.9 975
1+Rx
14 T+Hor2+Por 4 g 53.5 98.4 0.52 73.1 96.3
2+ Rx
3 15 1+P 0.36 487 97.6 0.46 62.0 95.9
16 2+P 0.21 34.2 98.8 0.33 70.9 94.8
17 1+ Rx 0.55 70.2 9.4 0.65 50.6 97.5
18 1+Hor 1+P 0.35 491 97.5 0.47 61.9 95.9
19 1+Hor2+P 0.24 35.1 98.8 0.34 70.8 94.9
20 M+Hord+Por 5y 74.6 93.3 0.68 4738 97.8
1+Rx
21 M+ Hor2+Por 59 60.1 97.6 0.58 67.5 9.8
2+ Rx
5 22 1+P 0.47 60.5 95.9 0.56 54.8 96.7
23 24P 0.35 50.4 97.8 0.48 65.0 96.0
24 1+ Rx 0.53 78.1 92.2 0.70 451 98.1
25 1+Hor 1+P 0.47 60.5 95.9 0.56 54.5 96.7
26 1+Hor2+P 0.36 50.4 97.7 0.48 64.6 96.0
27 M+HorT+Por 4 5 82.0 90.4 0.72 413 98.4
1+Rx
28 T+Hor2+Por 4 711 96.0 0.67 59.1 97.6
2+ Rx

Note: H = Hospital separation; P = Physician claim; Rx = Prescription drug record; PPV = Positive Predictive
Value; NPV = Negative Predictive Value; 95% confidence intervals for all estimates are reported in Appendix
D.

Source: Manitoba Centre for Health Policy, 2006

The x values were slightly lower for this age group than for the 12 to 19
years age group. They ranged from 0.21 (fair agreement) to 0.61 (good
agreement). Consistent with the results for the 12 to 18 years age group, the
highest k was observed for the algorithm based on one or more hospital sep-
arations or two or more physician billing claims or two or more prescription
drug records in five years.

The maximum observed sensitivity was 82.0% for the five-year algorithm
based on one or more contacts in hospital separations or physician billing
claims or prescription drug records. Sensitivity was slightly lower for the
five-year algorithm based on one or more prescription drug records (78.1%).
Specificity was above 90% for all of the algorithms.
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Youden’s index was almost equivalent for the two algorithms with the high-
est sensitivity (i.e., approximately 0.70). PPV was highest for all of the algo-
rithms that required at least two physician claims to identify an asthma case.
There was a substantial decrease in PPV, of between 10% and 20%, for
algorithms based on one or more hospital separations, or one or more physi-
cian billing claims, or one or more prescription drug records, and algorithms
based on one or more hospital separations, two or more physician claims, or
two or more prescription drug records. NPV was consistently high (i.e.,
above 90%) for all algorithms.

For the 50+ years age group, the validation estimates were similar to those
for the other two age groups (see Appendix D, Table D.7 for the 95% ClIs).
Appendix F contains the corresponding estimates when individuals with
self-reported COPD or emphysema were removed from the validation
cohort. The estimates for all validation indices are slightly lower when these
exclusions were made.

For the oldest age group, values of k (see Table 16) ranged from 0.24 (fair
agreement) to 0.56 (moderate agreement). Consistent with the results for
other age groups, the highest k¥ was for the algorithm based on one or more
hospital separations or two or more physician billing claims or two or more
prescription drug records in five years. The highest sensitivity was estimated
for algorithm #27, which was based on one or more contacts in hospital sep-
arations, or physician billing claims or prescription drug records in five years
(85.3%). However, the sensitivity for the five-year algorithm based on one
or more prescription drug records was similar (82.6%). Specificity was very
high for all of the algorithms. Regardless of the number of years of adminis-
trative data, Youden’s index was highest for the algorithms based on one or
more contacts in hospital separations, or physician billing claims, or pre-
scription drug records (0.72), one or more prescription drug records (0.70),
and one or more hospital separations or two or more physician billing
claims or two or more prescription drug records.

In this oldest age group, the PPV of an asthma diagnosis was highest
(79.6%) for the one-year algorithm based on two or more physician billing
claims (i.e., algorithm #2). The NPV of an asthma diagnosis was very high
(i.e., above 90%) for all of the algorithms.
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Table 16: Estimates of agreement, sensitivity, specificity, and predictive values for
asthma algorithms, 50+ years

# Algorithm K Sens. Spec. Youden PPV NPV
Years (%) (%) (%) (%)
1 1 1+P 0.42 32.6 98.8 0.31 63.9 94.9
2 24P 0.30 20.5 99.6 0.20 79.6 94.0
3 1+ Rx 0.51 68.9 93.6 0.63 46.0 97.4
4 1+Hor1+P 042 33.7 98.8 0.33 63.8 94.9
5 1+Hor2+P 032 21.6 99.5 0.21 78.8 94.1
6 T+HO1+P 550 700 93.2 0.63 451 97.5
or 1+ Rx
7o TxHor2ze P gy 61.1 95.8 0.57 53.7 96.9
or 2+ Rx
2 8 1+°P 0.33 442 97.9 0.42 62.2 95.7
9 24P 0.25 29.5 99.0 0.28 70.0 94.6
10 1+ Rx 0.47 76.3 90.9 0.67 39.9 98.0
11 1+Hor1+P 036 46.3 97.8 0.44 62.9 95.8
12 1+Hor2+P 028 31.6 99.0 0.31 70.6 94.8
18 T+Hor+P 0y 774 90.3 0.67 3838 98.0
or 1+ Rx
14 A+ Hor2+P g 67.4 94.3 0.62 483 973
or 2+ Rx
3 16 1+P 0.31 52.6 96.7 0.49 56.2 96.3
16 2+P 0.24 35.8 98.5 0.34 65.4 95.1
17 1+ Rx 0.45 78.9 89.4 0.68 37.1 98.2
18 1+Hor1+P 033 54.2 96.7 0.51 56.6 96.4
19 1+Hor2+P 028 37.4 98.4 0.36 65.1 95.2
20 M+ Hor 1+ Py g1 88.4 0.69 35.7 98.3
or 1+ Rx
21 W Hor2+ P 5y 796 93.0 0.65 449 97.6
or 2+ Rx
5 22 1+°P 0.39 60.5 95.7 0.56 52.8 96.8
23 24P 0.34 44.2 97.9 0.42 62.7 95.7
24 1+ Rx 0.43 82.6 87.7 0.70 347 98.4
25 1+Hor1+P 041 61.1 95.6 0.57 52.7 96.9
26 1+Hor2+P 037 453 97.8 0.43 61.9 95.7
27 W+ Hor 1+ P s gs3 86.4 0.72 333 98.7
or 1+ Rx
28 M+ Hor2+ P 55 779 91.9 0.70 434 98.1
or 2+ Rx

Note: H = Hospital separation; P = Physician claim; Rx = Prescription drug record; PPV = Positive
Predictive Value; NPV = Negative Predictive Value; 95% confidence intervals for all estimates are
reported in Appendix D.

Source: Manitoba Centre for Health Policy, 2006

Agreement Between Survey and Administrative Data

The logistic regression models to test the sociodemographic variables associ-
ated with agreement between survey and administrative data contained the
main effects of age, sex, region of residence, income adequacy quintile, and
comorbidity (i.e., presence of allergies, emphysema, or COPD). Only the
data for algorithm #28 for all age groups were modeled. Two-way interac-
tions were tested. None of the interactions were statistically significant, and
they were therefore excluded from the final models. The Hosmer-Lemeshow
test indicated that the model containing the main effects fit the data well.
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The following variables were statistically significant predictors of agreement
between the two data sources: age (x2 =38.8, df = 6, p <.0001), comorbidi-
ty (x2 = 106.0, df = 1, p < .0001), and income adequacy quintile (2 =
21.4,df =5, p < .0001). Table 17 contains the ORs and 95% ClIs for the

explanatory variables in the model.

The odds of agreement between the two sources were higher for younger age
groups than for the oldest age group. The odds were also higher for individ-
uals who indicated they did not have any of the comorbid conditions than
for individuals who did report having one or more comorbid conditions.
The odds were also lower for individuals in lower income groups than for
individuals in the highest income group.

Table 17: Odds Ratio (OR) estimates and 95% Cls
for predictors of agreement between administrative
and survey data for asthma, all ages

Predictors OR 95% ClI
Age
12 — 18 years 1.7 (1.2,2.4)
19 - 24 years 1.9 (1.3, 3.0
25 — 34 years 2.0 (1.4,2.9)
35 - 49 years 2.0 (1.4,2.9)
50 — 64 years 1.2 (1.6, 3.1)
65 — 74 years 1.8 (1.3, 2.5)
75+ years Ref -
Sex
Males 0.9 (0.8, 1.1)
Females Ref -
Region of Residence
North Rural RHAs 1.2 (0.8, 1.7)
South Rural RHAs 1.0 .8,
Winnipeg RHA Ref -
Comorbidity
Absent 2.4 (2.0, 3.0)
Present Ref -
Income Quintile
Lowest 0.4 (0.2,0.6)
Low Middle 0.7 (0.5, 1.1)
Middle 0.6 (0.4, 0.9)
Upper Middle 0.6 (0.5, 0.9)
Not Stated 0.8 (0.5, 1.3)
Highest Ref —

Source: Manitoba Centre for Health Policy, 2006

4.4 Provincial Prevalence Estimates

Cross-Sectional Prevalence Estimates

Cross-sectional prevalence estimates for each of the asthma algorithms are
reported in Table 18. These estimates are provided for the entire population
12 years of age and older, as well as for each of the age groups.

The prevalence estimates varied substantially with the source of data and
number of years of data. The algorithm that resulted in the highest overall
estimate of k (i.e., algorithm #28) produced a prevalence estimate of 11.6%
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for all ages and age-specific estimates of 15.3%, 9.8%, and 12.8% for the 12
to 18 years, 19 to 49 years, and 50+ years age groups, respectively. The algo-
rithm that resulted in the highest estimate of sensitivity for all ages, which
was based on one or more hospital separations, or one or more physician
claims, or one or more prescription drug records in five years (i.e., algorithm
#27), produced a prevalence estimate of 17.5% in the Manitoba population
12 years of age and older. The corresponding age-group specific estimates
for this algorithm were 22.5% for the population 12 to 18 years of age,
15.6% for the population 19 to 49 years of age, and 18.4% for the popula-
tion 50 + years of age. The algorithm with similar sensitivity, which was
based on one or more contacts in the prescription drug records (i.e., algo-
rithm #24), resulted in a prevalence estimate of 15.5% in the Manitoba
population, and age-specific estimates of 19.5% for youth (12-18 years),
13.6% for younger adults (19-49 years), and 16.7% for older adults (50+
years).

Table 18: Crude provincial prevalence estimates for asthma algorithms,
1998/99 - 2002/03

# Algorithm All Ages 12-18 19-49 50+ Years
Years (%) Years Years (%)
(%) (%)
1 1 1+P 3.6 5.3 3.4 3.2
2 2+P 1.9 2.7 1.8 1.9
3 1+Rx 7.1 7.7 5.7 9.0
4 1+Hor1+P 3.6 5.4 3.4 3.3
5 1+Hor2+P 2.0 2.7 1.8 2.0
6 1+Hor 1+Por 1+Rx 8.0 9.0 6.6 9.7
7 1+ Hor2+ Por2+Rx 5.3 5.3 4.0 7.1
2 8 1+P 5.6 8.8 5.4 5.0
9 2+P 3.4 5.1 3.1 3.2
10 1+ Rx 9.8 1.3 8.3 11.6
11 1+Hor 1+P 5.7 8.8 5.4 5.1
12 1+Hor2+P 3.5 5.1 3.2 3.4
13 1+Hor 1+P or 1+Rx 11.0 13.2 9.4 12.6
14 1+ Hor2+ Por 2+ Rx 7.4 8.5 5.8 9.1
3 15 1+P 7.3 11.6 6.9 6.4
16 2+ P 4.7 7.1 4.3 4.3
17 1+ Rx 1.9 14.2 10.3 13.4
18 1+Hor1+P 7.4 11.6 6.9 6.6
19 1+Hor2+P 4.8 7.2 4.4 4.6
20 1+Hor 1+ Por 1+ Rx 13.4 16.5 1.7 14.7
21 1+ Hor 2+ Por2+ Rx 9.0 11.0 7.3 10.6
5 22 1+P 10.0 16.5 9.5 8.6
23 2+ P 6.8 10.9 6.3 6.1
24 1+ Rx 15.5 19.5 13.6 16.7
25 1+ Hor1+P 10.1 16.6 9.6 8.8
26 1+Hor2+P 6.9 11.0 6.4 6.3
27 1+ Hor 1+ Por 1+ Rx 17.5 22.5 15.6 18.4
28 1+ Hor2+ Por2+ Rx 11.6 15.3 9.8 12.8

Note: H = Hospital separation; P = Physician claim; Rx = Prescription drug record; 1-year estimates are
for 2002/03, 2-year estimates are for 2001/02 — 2002/03, 3-year estimates are for 2000/01 — 2002/03,
5-year estimates are for 1998/99 - 2002/03.

Source: Manitoba Centre for Health Policy, 2006
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Venn Diagrams

Venn diagrams are presented for algorithms #6, #13, #20, and #27. These
are the algorithms based on one or more hospital separations, or one or
more physician billing claims, or one or more prescription drug records in
one, two, three, or five years, respectively. The Venn diagrams describe the
number and percent of asthma cases identified in each of the three data
sources for the Manitoba population 12 years of age and older. The Venn

diagrams for age-specific groups are not reported because they produced
similar results.

Figure 24: Asthma Algorithm #6: 1+ Hospital Separations
or 1+ Physician Visits or 1+ Prescriptions, 1 Year

Hospital Physician

31
0.04%

Prescription
N =77479

Source: Manitoba Centre for Health Policy, 2006
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Figure 25: Asthma Algorithm #13: 1+ Hospital Separations
or 1+ Physician Visits or 1+ Prescriptions, 2 Years

Hospital Physician
66
0.06%
Prescription
N = 105,512

Source: Manitoba Centre for Health Policy, 2006

Figure 26: Asthma Algorithm #20: 1+ Hospital Separations
or 1+ Physician Visits or 1+ Prescriptions, 3 Years

Hospital Physician

Prescription

N = 127197

Source: Manitoba Centre for Health Policy, 2006
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Figure 27: Asthma Algorithm #28: 1+ Hospital Separations
or 1+ Physician Visits or 1+ Prescriptions, 5 Years

Hospital Physician

Prescription

N = 159,475

Source: Manitoba Centre for Health Policy, 2006

The Venn diagram for algorithm #6 (Figure 24) showed that there were
more than 77,000 disease cases identified when this algorithm was applied
to the Manitoba administrative data for 2002/03. Overall, only a very small
percent of disease cases were identified exclusively from the hospital data
(0.2%), and there was minimal overlap between either the hospital separa-
tions and physician claims data (0.04%) or the hospital separations and pre-
scription records data (0.5%) using one year of data. About 10% of disease
cases were identified only from physician billing claims, but more than half
(54.5%) were identified only from the prescription drug data. There was
substantial overlap between the physician and prescription data sources
using one year of data (33.3%).

Figures 25 to 27 show that as the number of years of data increased, there
was greater overlap among the three sources. For example, in one year of
data, only 0.9% of cases had a contact in all three of the data sources. This
increased to 1.5% of cases using two years of data and 2.8% of cases using
five years of administrative data. The percent overlap between the hospital
and prescription data sources remained constant across the algorithms (i.e.,
approximately 0.4%) but the percent overlap between the physician and pre-
scription data increased over time, from 38.8% using two years of adminis-
trative data to 43.6% using five years of data.
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Regression Analyses for Cross-Sectional Prevalence Estimates

In the regression analyses for all age groups, full and reduced models were
specified that included the algorithms based on one or more contacts in the
prescription drug records or one or more contacts in hospital separations or
physician billing claims or prescription drug records in one, two, three, or
five years of administrative data (i.e., algorithms #3, #6, #9, #13, #16, #19,
#23, and #27). Thus, a total of eight algorithms were included in the regres-
sion models.

The LRT for the full model, which contained the main effects of algorithm,
age, sex, region, and income quintile in addition to selected two-way inter-
actions, and the reduced model, which contained main effects only, was not
statistically significant (x2 = 87.2; df = 91, p =.5932). A non-significant
LRT for the full and reduced models was also observed for the 12 to 18
years age group (2 = 4.62; df = 49, p = .99), the 19 to 49 years age group
(x2 =87.2; df = 81, p =.5932), and the 50+ years age group (x2 =89.2; df =
91, p = .5932). This result indicates that the RR of asthma for different
algorithms did not vary with the sociodemographic characteristics of the
population.

In all four of the reduced models there was a statistically significant algo-
rithm main effect: y2 =1222.6; df = 7, p < .0001 for all age groups; y2 =
729.9; df = 7, p < .0001 for 12 to 18 years; 32 =1222.6; df = 7, p < .0001
for 19 to 49 years; v2=1222.6; df = 7, » <.0001 for 50+ years. This result
indicates that there were statistically significant differences in the prevalence
estimates for different algorithms. For the model for all age groups, there
were significant differences between the prevalence estimate for algorithm #6
(reference) and the estimates for algorithms #3 and #10. For the 12 to 18
years age group, there was no significant difference in the prevalence esti-
mate for algorithm #6 (reference) and the estimates for any of the other one-
year algorithms. However, all other algorithms produced estimates which
were significantly different from the estimate for algorithm #6. For the 19 to
49 years age group, this same result was observed. For the 50+ years age
group, there was no significant difference between the prevalence estimate
for algorithm #6 (reference) and the estimates for algorithms #3 and #10.

Longitudinal Prevalence Estimates

Trends in the prevalence of asthma for all groups for the one-, two-, and
three-year algorithms are reported in Figures 28, 29, and 30, respectively.
The corresponding age-specific prevalence trend estimates are not reported
because they resulted in similar longitudinal profiles.
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Figure 28: Provincial Trends in Asthma Prevalence for One-Year Algorithms, All Ages,
1999/2000 - 2003/04
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Figure 29: Provincial Trends in Asthma Prevalence for Two-Year Algorithms, All Ages,
1996/97 - 2003/04
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Source: Manitoba Centre for Health Policy, 2006
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Figure 30: Provincial Trends in Asthma Prevalence for Three-Year Algorithms, All Ages,
1995/96 - 2003/04
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The estimates depicted in Figure 28 show some change in the overall preva-
lence of asthma. All three of the algorithms based on prescription drug
records showed a sharp increase between 2002/03 and 2003/04. This
increase was not observed for the algorithms based solely on hospital and
physician data.

The two-year algorithms depicted in Figure 29 showed almost no change in
the overall prevalence of asthma in the population for the last three time
periods. However, the algorithms that incorporated prescription drug data
show a substantial increase between the period 1996/97-1997/98 and
1998/99-1999/2000. This increase is not evident in the algorithms based
only on hospital separations and physician billing claims data. This same
pattern was evident in Figure 30, which describes the trend in asthma preva-
lence for the three-year algorithms between 1995/96 and 2003/04.

Regression Analyses for Longitudinal Prevalence Estimates

Regression analyses were conducted for the longitudinal asthma prevalence
estimates, to test for differences among the algorithms in the RR over time,
and also to test whether the longitudinal estimates for different algorithms
varied across the sociodemographic variables of age, sex, region of residence,
and income quintile. Three sets of analyses were conducted, which focused
on the one-, two-, and three-year algorithms separately for all age groups as
well as for each of the three age groups. The results for the LRTs for the full,
partial, and reduced models are summarized in Table 19.
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Table 19: Summary of likelihood ratio test (LRT) results for models of longitudinal
arthritis prevalence

# Years Model All Ages 12-19 Years  19-49 Years 50+ Years
Comparison
1 F=16279  £=1268  f=2560 4 =10542
EAU(')'d&elReduced df = 175 df = 97 df = 123 df = 123
p < 0001 p= 0226  p<.000] p < 0007
2 2 2 2
. x =272 x =18 x =93 X =445
Ej‘ggae'l & Reduced % ¢~ g df= 6 df = 6 df=6
p = 0001 p=9387  p=.1555  p<.0001
2 F=6558 4 =100.1 £ =0204 =512
Ugd&efed“ced df = 175 df = 97 df = 123 df = 123
p < 0001 p=23946  p<.000] p < 0001
2 2 2 2
. x =272 x =6.0 x =97 x =373
mgae'l &Reduced %y g df =6 df = 6 df=6
p = 0001 p=4239  p=.1377  p<.0001
3 F=3622  £=1002  £=1700  /=3131
Ugd&efed“ced df = 175 df = 97 df = 123 df = 123
p < 0001 p=23914  p=.0033  p<.0001
2 2 2 2
. /=270 /=826 =128 /=260
E/?:c;z|| & Reduced df=6 df =6 df =8 df=6
p = 0001 b= 2194  p=.0462  p=.0002

Note: Full model contains main effects of algorithm, age, sex, region, and income quintiles and time
period, two-way interactions of algorithm x age, algorithm x sex, algorithm x region, algorithm x time
period, and three-way interactions of algorithm x age x time, algorithm x sex x time, algorithm x region x
time, and algorithm x quintile x time; Partial model contains all main effects and algorithm x time; Reduced
model contains main effects only. Results which are statistically significant indicate an improvement in
model fit with the addition of one or more interaction terms.

Source: Manitoba Centre for Health Policy, 2006

The table reveals that LRTs for the partial and reduced models, as well as
the full and reduced models were statistically significant for the combined
age group, as well as for the 50+ years age-specific group. For the 12 to 19
years age group, the LRTs for the partial and reduced models were not statis-
tically significant. The LRT for the full and reduced models for the one-year
algorithms was statistically significant (p = .0226) but the tests for the full
and reduced models for the two-year and three-year algorithms were not.
For the 19 to 49 years age group, the LRTs for the partial and reduced mod-
els for the one- and two-year sets of algorithms were not statistically signifi-
cant. The LRTs for all full and reduced models were statistically significant
for this age group. Further investigation of the interaction effects in the full
models revealed that the algorithm x region effect was often statistically sig-
nificant (p < .05) but other interactions were not. These results indicate that
the RR of asthma for different algorithms varied over time as well as with
the sociodemographic characteristics of the population. In particular, the
regression models suggest that the RR of asthma prevalence for different
algorithms varies across regions of the province.
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The validation results
indicate that admin-
istrative data exhibit
Jair to good agree-
ment with survey
data for identifying

cases of asthma.

4.5 Chapter Summary

The validation results indicate that administrative data exhibit fair to good
agreement with survey data for identifying cases of asthma. The highest
agreement was observed for the algorithm based on one or more hospital
separations or two or more physician billing claims or two or more prescrip-
tion drug records. Agreement was shown to vary with age, the presence of
comorbid conditions, and income level, but not with sex or region of resi-
dence.

A sensitive algorithm for identifying asthma cases from administrative data
can be obtained by using prescription drug records alone, or in combination
with hospital separations and physician billing claims. There is substantial
advantage that can be gained from using multiple years of administrative
data to obtain a valid algorithm. There is very little trade-off between sensi-
tivity and specificity for different algorithms; the latter was very high for all
of the algorithms that were investigated. The analysis revealed very similar
estimates of sensitivity and specificity for the 12 to 18 years, 19 to 49 years,
and 50+ years age groups, indicating that the algorithms have similar validi-
ty for the identification of asthma cases in different age groups. There was a
slight loss in sensitivity when self-reported cases of COPD and emphysema
were excluded from the validation cohort, but the differences were very
small.

The inferential analyses of the cross-sectional data revealed that prevalence
estimates did not co-vary with the sociodemographic characteristics of the
population. Moreover, the estimates for the two most sensitive algorithms in
a single year of data were not significantly different from one another.
However, the algorithm based on one or more contacts in hospital separa-
tions or physician billing claims or prescription drug records in one year of
data produced estimates which were significantly different from the preva-
lence estimates based on the corresponding algorithms in two, three, and
five years of data. Analyses of the longitudinal estimates revealed that for
many of the age groups, there were significant differences in the estimates of
asthma prevalence over time from different algorithms. As well, these longi-
tudinal differences in prevalence often varied with the geographic region of
residence of the population.
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Heart disease is the
leading cause of death
in both men and
women in Canada,
although it has been
declining for several

decades.

CHAPTER 5: CORONARY HEART DISEASE

5.1 Introduction and Review of Literature

This chapter focusses on the identification of cases of non-fatal ischemic
heart disease, commonly referred to as coronary heart disease (CHD) from
administrative data. Heart disease is the leading cause of death in both men
and women in Canada, although it has been declining for several decades.
This finding may be the result of reduced incidence, increased survival, or a
combination of the two factors. Vital statistics data have been used exten-
sively to produce valid estimates of CHD mortality. However, these data do
not provide information on non-fatal events nor on incidence. There is little
published data about the prevalence of non-fatal CHD in the Canadian
population. NPHS data from 1996/97 produced an estimate for 4% for
both men and women 35 years of age and older (Heart and Stroke
Foundation of Canada, 2000).

Table A.7 in Appendix A summarizes five studies that used administrative
data to identify CHD cases. The literature review excluded studies that
focused narrowly on only one form of CHD, such as acute myocardial
infarction (AMI) or angina. Almost all of the studies used ICD-9-CM codes
410 to 414 to identify heart disease cases from administrative data, although
Shah et al. (2000) excluded 412 (history of myocardial infarction). The
ICES (1999) report also excluded ICD-9-CM 412. The retrieved studies
primarily used hospital separations to identify CHD cases, although
O’Connor et al. (1998) used physician claims data. None of the studies used
prescription drug data to identify CHD cases from administrative data.

5.2 Description of Heart Disease Algorithms

Table 20 lists the algorithms that were selected for the validation study. All
of the algorithms used ICD-9-CM codes 410 to 414 to identify heart dis-
ease cases. The second-level ATC codes that were selected for the research,
based on the results of a literature review and consultations with clinical
experts were CO1 (cardiac therapy), C07 (beta-blocking agents), C08 (calci-
um channel blockers), and C09 (agents acting on the renin-angiotensin sys-
tem). All of the DINs associated with these ATC codes in the MCHP
Master Formulary were included in the analysis.

The algorithms investigated in this report are based on one, two, three, or
five years of data. Two algorithms in each set are based only on the physician
data, two are based on either hospital or physician data, and a single algo-
rithm used all three data sources. None of the algorithms relied exclusively
on prescription drug data for identifying disease cases; prescription drug
records had to appear in combination with one physician billing claim for



70

DEFINING AND VALIDATING CHRONIC DISEASES

an individual to be identified as a CHD case. This is because several of the
drugs selected for this research are not used exclusively in the treatment or
management of CHD. An algorithm that relied only on the prescription
drug data was expected to have low specificity. To verify this, we examined
six algorithms, which were based on: (1) one or more hospital separations or
one or more physician billing claims or one or more prescription drug
records (i.e., 1+ H or 1+ P or 1+ Rx), and (2) one or more hospital separa-
tions or one or more physician billing claims or two or more prescription
drug records (i.e., 1+ H or 1+ P or 2+ Rx) in one, two, and three years of
administrative data. The validation indices for these additional algorithms
are reported in Appendix G. Analysis revealed that while sensitivity
increased substantially (i.e., it ranged between 78.7% and 87.1%), specifici-
ty decreased and the PPV of a CHD diagnosis dropped substantially, and
rarely exceeded 25%. As well, the prevalence of non-fatal heart disease was
substantially higher for these algorithms than for the remaining algo-
rithms—it was as high as 21.6% for the Manitoba population 19 years of
age and older.

Table 20: Heart disease algorithms selected for validation

# Years Algorithm Hospital Physician Claims Physician Claims and
Separations or Prescription Drug
or Records

1 1 1 or more

2 2 or more

3 1 or more 1 or more

4 1 or more 2 or more

5 1 or more 2 or more 1 and 2 or more
2 6 1 or more

7 2 or more

8 1 or more 1 or more

9 1 or more 2 or more

10 1 or more 2 or more 1 and 2 or more
3 11 1 or more

12 2 or more

13 1 or more 1 or more

14 1 or more 2 or more

15 1 or more 2 or more 1 and 2 or more
5 16 1 or more

17 2 or more

18 1 or more 1 or more

19 1 or more 2 or more

20 1 or more 2 or more 1 and 2 or more

Source: Manitoba Centre for Health Policy, 2006

5.3 Validation Results

Table 21 contains the point estimates for the six validation indices for the
20 algorithms that were investigated for CHD. The 95% ClIs for each of
these estimates are reported in Appendix D, in Table D.8.
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It is important to note at the outset, that individuals who indicated that
they had CHF were excluded from the CCHS validation data (/V = 19). We
did not include the ICD-9-CM code for CHF in our algorithms (i.e., ICD-
9-CM 428). Furthermore, and as expected, preliminary analyses revealed
that estimates of sensitivity were improved when these individuals were
excluded from the data. CCHS respondents who indicated that they had
been diagnosed with heart disease were also asked to indicate whether they
had angina or had previously had a heart attack. For the present report, we
did not conduct separate validations for these specific forms of CHD (/V =
178 for history of heart attack; /V = 130 for angina), although that work
could be undertaken in a subsequent study.

As Table 21 reveals, there was fair to moderate agreement between survey
and administrative data, with values of k ranging from 0.37 to 0.55. The
highest value of the x statistic was observed for several algorithms, including
the three-year algorithm based on one or more hospital separations or two
or more physician billing claims or one physician billing claim and two or
more prescription drug records. It was equally high for the same algorithm
based on five years of data, as well as for the five-year algorithm based on
one or more hospital separations or two or more prescription drug records.

Sensitivity of the algorithms ranged from 28.6% to 67.9%. It was highest
for the algorithm based on one or more hospital separations or one or more
physician billing claims in five years of data. While sensitivity improved
when five years of data were used instead of three years of data, the increase
was modest (i.e., less than 7%) for all of the algorithms.

Specificity was very high (i.e., above 96%) for all of the investigated algo-
rithms. Youden’s index ranged from 0.27 to 0.63. The highest value was for
the algorithm based on one or more hospital separations or one or more
physician billing claims in five years. However, the algorithm based on one
or more hospital separations or two or more physician billing claims or one
physician billing claim and two or more prescription drug records resulted
in almost an equivalent value of this summary index (0.62).

The PPV of a heart disease diagnosis ranged from 54.8% to 62.4% and was
highest for the algorithm based on two or more physician billing claims in a
single year of data. The NPV of a heart disease diagnosis was greater than
95% for all of the investigated algorithms.
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Table 21: Estimates of agreement, sensitivity, specificity, and predictive values for
heart disease algorithms

# Algorithm x Sens Spec  Youden PPV NPV
Years (%) (%) (%) (%)
1 1 1+P 0.44 40.2 97.9 0.38 57.1 95.8
2 2+P 0.37 28.6 98.8 0.27 62.4 95.1
3 1+Hor1+P 0.46 42.9 97.7 0.41 57.0 96.0
4 1+Hor2+P 0.40 32.3 98.6 0.31 61.5 95.3
5 1+Hor2+P
or (1P &2+ Rx) 0.46 41.0 98.1 0.31 60.3 95.9
2 6 1+P 0.51 52.8 96.9 0.50 551 96.7
7 2+P 0.47 41.8 98.1 0.40 60.5 95.9
8 1+Hor1+P 0.52 b55.5 96.7 0.52 54.8 96.8
9 1+Hor2+P 0.49 45.6 97.8 0.43 59.7 96.2
10 1+Hor2+P
or (1 P &2+ Rx) 0.52 53.1 97.3 0.50 57.9 96.7
3 11 1+P 0.52 58.6 96.2 0.65 2.4 97.0
12 2+P 0.50 48.2 97.7 0.46 59.5 96.4
183 1+Hor1+P 0.53 61.5 96.0 0.57 52.4 97.2
14 1+Hor2+P 0.53 53.4 97.4 0.51 59.1 96.7
16 T+ Hor2+ P 60.1 966 057 559  97.1
or (1 P & 2+ Rx) 0.55 ) ) ) ) )
5 16 1+P 0.52 65.2 95.2 0.60 49.2 97.5
17 2+P 0.54 56.6 96.9 0.54 56.8 96.9
18 1+Hor1+P 0.53 67.9 95.0 0.63 49.0 97.6
19 1+Hor2+P 0.55 60.4 96.6 0.57 55.9 97.2

20 1+Hor2+P
or (1 P & 2+ Rx) 055 66.6 95.7 0.62 52.6 97.6

Note: H = Hospital separation; P = Physician claim; Rx = Prescription drug record; PPV = Positive
Predictive Value; NPV = Negative Predictive Value; 95% confidence intervals for all estimates are
reported in Appendix D.

Source: Manitoba Centre for Health Policy, 2006

In addition to undertaking the validation for the entire set of ICD-9-CM
codes from 410 to 414, we conducted a separate validation for each of the
individual codes in this set. The values of k for this sub-analysis revealed
that using algorithm #15, there was moderate agreement between survey
and administrative data for 414 (other forms of chronic ischemic heart dis-
ease; K = 0.51; 95% CI: 0.46 — 0.55), and 413 (angina pectoris; k = 0.37;
95% CI: 0.32 — 0.42). However, for both 410 (acute myocardial infarction;
K =0.16; 95% CI: 0.12 — 0.21) and 412 (history of myocardial infarction;
K = 0.08; 95% CI: 0.05 — 0.12) there was very low agreement. For 411
(other acute and subacute forms of ischemic heart disease) agreement was
fair (x = 0.25; 95% CI: 0.20 — 0.31).

Agreement Between Survey and Administrative Data

Logistic regression analysis was used to test the sociodemographic variables
associated with agreement between survey and administrative data for coro-
nary heart disease. The model contained the main effects of age, sex, region
of residence, income adequacy quintile, and the presence of comorbid con-
ditions, including diabetes and hypertension. The model was applied to the
data for algorithm #20. The Hosmer-Lemeshow test indicated that the
model fit the data well.
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The following variables were statistically significant in the logistic regression
model: age (x2 = 238.0, df = 5, p < .0001), sex (x2=4.2,df = L,p =
.0394), and presence of comorbid conditions (% = 27.9, df = 1, p < .0001).
Table 22 contains the ORs and 95% ClIs for the explanatory variables in this
model. The odds of agreement between survey and administrative data were
higher for individuals in younger age groups than for those in the oldest age
group, lower for males than for females, and higher for individuals who did
not have the comorbid conditions of diabetes and hypertension than for
individuals who did have these comorbid conditions.

Table 22: Odds Ratio (OR) estimates and 95% Cls
for predictors of agreement between administrative
and survey data for heart disease

Predictors OR 95% ClI
Age
19 — b4 years 25.9 (16.4, 40.9)
55 — 64 years 6.4 (4.1, 10.1)
65 — 74 years 2.7 (1.8, 3.9
75 — 84 years 2.6 (1.7,4.1)
85+ years Ref -
Sex
Males 0.8 (0.6, 1.0)
Females Ref -
Region of Residence
North Rural RHAs 1.2 (0.8, 1.9)
South Rural RHAs 1.2 (0.9, 1.6)
Winnipeg RHA Ref -
Comorbidity
Absent 1.9 (1.5, 2.4)
Present Ref -
Income Quintile
Lowest 0.9 (0.4, 1.8)
Low Middle 1.2 (0.7, 2.0)
Middle 0.9 (0.6, 1.4)
Upper Middle 0.9 (0.6, 1.4)
Not Stated 1.1 (0.6, 1.9)
Highest Ref -

Source: Manitoba Centre for Health Policy, 2006

5.4 Provincial Prevalence Estimates

Cross-Sectional Prevalence Estimates

Cross-sectional prevalence estimates for the 20 algorithms are reported in
Table 23. Estimates ranged from 2.4% to 7.9%. The algorithm that had the
highest value of the « statistic (i.e., algorithm #15) resulted in a prevalence
estimate of 5.8% for the Manitoba population 19 years of age and older.
The algorithm with the highest value of Youden’s index (i.e., algorithm #18)
resulted in a crude prevalence estimate of 7.9%.
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Table 23: Crude provincial prevalence estimates for heart disease algorithms,
1998/99 — 2002/03

# Algorithm Prevalence
Years Estimate (%)
1 1 1+P 3.5
2 2+ P 2.4
3 T+Hor1+P 3.7
4 T+Hor2+P 2.7
5 T+ Hor2+Por (1P &2+ Rx) 3.5
2 6 1+P 4.9
7 2+ P 3.6
8 T+Hor1+P 5.2
9 1T+Hor2+P 4.0
10 1+Hor2+Por(1 P&2+Rx) 4.8
3 11 1+P 6.0
12 2+P 4.5
13 1+Hor1+P 6.3
14 1+Hor2+P 4.9
15 1+Hor2+Por(1 P&2+Rx) 5.8
5 16 1+P 7.6
17 2+P 5.8
18 1+Hor1+P 7.9
19 1+Hor2+P 6.2
200 1+Hor2+Por (1P &2+ Rx) 7.2

Note: H = Hospital separation; P = Physician claim; Rx = Prescription drug record; 1-year estimates
are for 2002/03, 2-year estimates are for 2001/02 — 2002/03, 3-year estimates are for 2000/01 -
2002/03, 5-year estimates are for 1998/99 — 2002/03.

Source: Manitoba Centre for Health Policy, 2006

Venn Diagrams

Venn diagrams for algorithms #5, #10, #15, and #20 are provided in Figures
31 to 34, respectively. Figure 31 shows that using a single year of data,
almost 30,000 Manitoba residents 19 years of age and older were identified
as non-fatal CHD cases. Only 5.0% were identified as having two or more
physician billing claims, while 17.0% were identified in all three administra-
tive data sources. Almost one-half (47.2%) of CHD cases were identified in
both the physician and prescription drug data.
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Figure 31: Coronary Heart Disease Algorithm #5: 1+ Hospital Separations
or 2+ Physician Visits or 1 Physician Visit & 2+ Prescriptions, 1 Year

Hospital Physician

(2+ claims)

Prescription +
N = 29,603 Physician (1 claim)

Source: Manitoba Centre for Health Policy, 2006

Figure 32: Coronary Heart Disease Algorithm #10: 1+ Hospital Separations
or 2+ Physician Visits or 1 Physician Visit & 2+ Prescriptions, 2 Years

Hospital Physician

(2+ claims)

Prescription +
N = 40,228 Physician (1 claim)

Source: Manitoba Centre for Health Policy, 2006



76 DEFINING AND VALIDATING CHRONIC DISEASES

Figure 33: Coronary Heart Disease Algorithm #15: 1+ Hospital Separations
or 2+ Physician Visits or 1 Physician Visit & 2+ Prescriptions, 3 Years

Hospital

N = 48,223

Physician
(2+ claims)

Prescription +
Physician (1 claim)

Source: Manitoba Centre for Health Policy, 2006

Figure 34: Coronary Heart Disease Algorithm #20: 1+ Hospital Separations
or 2+ Physician Visits or 1 Physician Visit & 2+ Prescriptions, 5 Years

Hospital

N = 58,214

Physician
(2+ claims)

Prescription +
Physician (1 claim)

Source: Manitoba Centre for Health Policy, 2006
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Percent

Figure 32 describes case counts for algorithm #10. Almost one-quarter
(23%) of cases were identified in all three administrative data sources. More
than 15% of individuals had one physician billing claim with a heart disease
diagnosis in addition to two or more prescription drug claims with a rele-
vant medication code. For algorithm #15, which shows the corresponding
results for three years of data, the number of individuals with at least one
contact in all three administrative data sources increased to 27.3%, and for
five years of data this figure increased to 32.8%

Regression Analyses for Cross-Sectional Prevalence Estimates

Regression analyses for the cross-sectional prevalence estimates were con-
ducted for algorithms #3, #8, #10, #13, and #15. The LRT for the full and
reduced models was statistically significant (2 = 74.7; df = 48; p = .008).
Both the algorithm x age and algorithm x sex interactions were significant (p
<.0001). This result indicates that the RR of heart disease for different algo-
rithms varied by both the age and sex of the population.

Longitudinal Prevalence Estimates

Estimates of the trend in the crude prevalence of non-fatal CHD are shown
in Figures 35 to 37, for the algorithms based on one, two, and three years of
administrative data, respectively. The trends for the one-year algorithms sug-
gest that the crude prevalence dropped between 1999/2000 and 2001/02,
and then remained relatively stable. This same pattern is evident in the
graph of the trends for the two-year algorithms and three-year algorithms. In
each figure, the trend lines were roughly parallel, indicating that each algo-
rithm provided a similar picture of the trend in prevalence over time.

Figure 35: Provincial Trends in Prevalence of Coronary Heart Disease for One-Year
Algorithms, 1999/2000 - 2003/04
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Figure 36: Provincial Trends in Prevalence of Coronary Heart Disease for Two-Year
Algorithms, 1996/97 - 2003/04
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Figure 37: Provincial Trends in Prevalence of Coronary Heart Disease for Three-Year
Algorithms, 1995/96 - 2003/04
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Regression Analyses for Longitudinal Prevalence Estimates

Regression analyses were conducted for these longitudinal prevalence esti-
mates, to test for differences among the algorithms in the RR over time, and
also to test whether the trends for the algorithms varied across the sociode-
mographic variables. As in previous analyses, three regression models were
defined, for the one-, two-, and three-year sets of algorithms.

For the one-year algorithms, the LRT for the partial and reduced models
was not statistically significant (2 = 3.0; df = 4; p =.5608), which indicates
that the RR of heart disease over time did not vary for the one-year algo-
rithms. However, the LRT for the full and reduced models was statistically

significant (x2 = 419.0; df = 112; p <.0001). The GEE results for the full
model revealed that the following two-way and three-way interactions were
statistically significant: algorithm x sex (p = .0041), algorithm x region (p =
.0303), algorithm x time x sex (p < .0001), algorithm x time x quintile (p =
.0308), and algorithm x time x region (p = .0031). These results suggest that
while the RR of heart disease does not vary over time for different algo-
rithms, the RR of heart disease for the different algorithms varied with the
demographic, socioeconomic, and geographic characteristics of the popula-
tion.

The results for the two-year algorithms were similar. They showed that the

LRT for the partial and reduced models was not statistically significant (32 =
3.7; df = 4; p = .4504), but the LRT for the full and reduced models was
statistically significant (x? = 403.3; df = 112; p <.0001). Several two- and
three-way interactions were significant in the GEE model results for the full
model, including algorithm x age (p = .0194), algorithm x sex (p = .0007),
algorithm x age x time (p < .0001), algorithm x quintile x time (» < .0001),
algorithm x sex x time (p < .0001), and algorithm x region x time (p <
.0001). This demonstrates that the RR of heart disease for the two-year
algorithms varied over time with the demographic, socioeconomic, and geo-
graphic characteristics of the population.

For the three-year algorithms, the LRT for the partial and reduced models
was not statistically significant (32 = 3.3; df = 4; p = .5082), but the LRT
for the full and reduced models was statistically significant (2 = 384.3; df =
112; p <.0001). In the GEE model results for the full model, the following
two-way and three-way interactions were statistically significant: algorithm x
age (p = .0003), algorithm x sex (p < .0001), algorithm x sex x time (p <
.0001), algorithm x region x time (p < .0001), and algorithm x quintile x
time (p < .0001). This finding indicates that the RR of heart disease for the
three-year algorithms varied over time with the demographic, socioeconom-
ic, and geographic characteristics of the Manitoba population.
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The results reported
in this chapter
reveal that there was
moderate agreement
between survey and
administrative data
for identifying cases
of coronary heart
disease.

5.5 Chapter Summary

The results reported in this chapter reveal that there was moderate agree-
ment between survey and administrative data for identifying cases of coro-
nary heart disease. Agreement, sensitivity and Youden’s index increased
slightly with increasing numbers of years of data. Several three-year and five-
year algorithms produced similar results for the validation indices; some of
these were based on just hospital separations or physician billing claims, but
others were based on hospital separations or physician billing claims or pre-
scription drug records. Agreement between the administrative data and sur-
vey data was predicted by age, sex, and the presence of comorbid chronic
diseases.

Crude prevalence estimates of non-fatal coronary heart disease in Manitoba
ranged from 2.4% to 7.9% for the investigated algorithms. The prevalence
estimates for the algorithms with the highest values of Youden’s index were
5.8% and 7.9%. According to the trend estimates for the algorithms, the
prevalence of non-fatal heart disease in the Manitoba population changed
very little in recent years, although a slight decrease was evident for all of the
investigated algorithms. The algorithms did not result in significantly differ-
ent estimates of the rate of change in prevalence. Finally, the analyses indi-
cated that the relative rate of heart disease for different algorithms varied
with the sociodemographic characteristics of the Manitoba population.

Validation of algorithms for identifying cases with specific forms of non-
fatal CHD, including angina and AMI, could be undertaken using the data
available in the CCHS. Alternatively, the research could be broadened to
investigate the validity of administrative data for identifying all cases of car-
diovascular disease, including congestive heart failure and hypertension, in
addition to coronary heart disease, in a single algorithm. This was the
approach adopted by Maio et al. (2005) in their study of the validity of pre-

scription drug data for identifying chronic disease cases.
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Prevalence estimates
from the National
Diabetes Surveillance
System (NDSS) for
1998/99 were 4.8%
for Canada and
5.1% for Manitoba.

CHAPTER 6: DIABETES

6.1 Introduction and Review of Literature

Diabetes is a significant public health concern in part because it has the
potential to lead to a number of health complications. Prevalence estimates
from the National Diabetes Surveillance System (NDSS) for 1998/99 were
4.8% for Canada and 5.1% for Manitoba (Health Canada, 2002). The
crude prevalence for Manitoba for the period 1998/99-2000/01 was esti-
mated at 5.7% using administrative data (Martens et al., 2003). It is impor-
tant to note that separate estimates of Type I and Type II diabetes have not
been produced. Moreover, cases of gestational diabetes have not been distin-
guished in the computation of these estimates.

Table A.4 in Appendix A summarizes published studies that used adminis-
trative data to identify diabetes cases. The studies reported in this table do
not include those summarized in the comprehensive review conducted by
Saydah et al. (2004). These authors reviewed the results of 16 studies pub-
lished between 1966 and mid 2002 and referenced in MEDLINE; the stud-
ies selected for review reported one or more measures of the validity of
administrative data for diabetes case identification. Saydah et al. (2004) also
reviewed several articles that validated death certificate and survey data for
identifying cases of diabetes. The median sensitivity reported in the 16 arti-
cles that validated administrative data was 81.5%. Sensitivity ranged from
46% to 97% and specificity ranged from 95% to 100%. Kappa values
ranged from 0.67 to 0.96 and PPV ranged from 60% to 98% with a medi-
an of 92%. Overall, the authors support the use of administrative data for
identifying cases of diabetes, noting that “we found these data sources
[administrative databases and surveys] are adequately sensitive... and highly

specific” (p. 514).

The algorithms examined in the studies reported in Table 24 were primarily
based on hospital (i.e., inpatient) and physician (i.e., out-patient) data,
although at least three studies also used medication codes in prescription
drug data to identify diabetes cases. The majority of these studies used a sin-
gle diagnostic code, ICD-9-CM code 250, for case identification. One study
used ICD-10 diagnostic codes. ATC codes were not specified in any of the
studies which used prescription drug data. Most studies relied on a single
occurrence of a diagnostic code in administrative data to define diabetes
cases. However, a few tested the effect on sensitivity, specificity, and predic-
tive values of requiring multiple occurrences of ICD-9-CM code 250 in
administrative data.
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6.2 Description of Diabetes Algorithms

In keeping with the vast majority of previous studies that have used admin-
istrative data to estimate the prevalence of diabetes, the current study used
ICD-9-CM code 250 to define cases from Manitoba’s hospital and physician
data. A single second-level ATC code, A10 (drugs used in diabetes) was used
to identify diabetes cases from Manitoba’s prescription drug data. All of the
DINs with this ATC code were selected from the MCHP Master Formulary.

Table 24 enumerates the 18 diabetes algorithms that were evaluated. These
algorithms were based on one, two, or three years of administrative data.
Algorithms based on five years of administrative data were not investigated
in this study because they were not investigated in previous research. All
algorithms required at least one occurrence of a diagnostic code in hospital
separations for an individual to be classified as a diabetes case. However, the
algorithms varied in the number of occurrences of a diagnostic code in the
physician claims and the number of occurrences of a medication code in
prescription drug data for an individual to be classified as a diabetes case.
The selection of these algorithms for testing and validation was based on the
work of Blanchard et al. (1996), Hux et al. (2002), Martens et al. (2003),
and Robinson et al. (1997).

Table 24: Diabetes algorithms selected for testing and validation

Years  Algorithm Hospital Physician Claims Prescription Drug
# Separations or Records
or
1 1 1 or more 1 or more
2 1 or more 2 or more
3 1 or more 1 or more 1 or more
4 1 or more 2 or more 1 or more
5 1 or more 1 or more 2 or more
6 1 or more 2 or more 2 or more
2 7 1 or more 1 or more
8 1 or more 2 or more
9 1 or more 1 or more 1 or more
10 1 or more 2 or more 1 or more
11 1 or more 1 or more 2 or more
12 1 or more 2 or more 2 or more
3 13 1 or more 1 or more
14 1 or more 2 or more
15 1 or more 1 or more 1 or more
16 1 or more 2 or more 1 or more
17 1 or more 1 or more 2 or more
18 1 or more 2 or more 2 or more

Source: Manitoba Centre for Health Policy, 2006
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6.3 Validation Results

Table 25 contains the results for the six validation indices for the 18 diabetes

algorithms. The 95% ClIs for these estimates are reported in Appendix D in
Table D.9.

Overall agreement between administrative and survey data was very good to
excellent, with values of k ranging from 0.73 to 0.86. The highest estimate
was obtained for two of the two-year algorithms: (a) one or more hospital
separations or two or more physician billing claims or one or more prescrip-
tion drug records, and (b) one or more hospital separations or two or more
physician billing claims or two or more prescription drug records. However,
several other two- and three-year algorithms produced estimate of k that
were higher than 0.80.

Sensitivity was very high for all of the algorithms, and ranged from 85.5%
t0 90.5%. There was little or no variation in sensitivity for the same set of
diagnostic/medication codes applied to one, two, or three years of adminis-
trative data. For example, the algorithm based on one or more hospital sepa-
rations or two or more physician billing claims had an estimated sensitivity
of 85.8% in one year of data, and 86.9% in two or three years of data.
Opverall, the algorithms with the highest sensitivity were based on having
one or more contacts in hospital, or physician, or prescription drug databas-
es in one, two, or three years of data.

Specificity was very high and also showed little variation across the algo-
rithms. It ranged from 97.3% to 99.5%. Given the high and limited range
of values for both sensitivity and specificity, Youden’s index was also high
and ranged, from 0.63 to 0.88. It was highest for the following three algo-
rithms: (a) one or more hospital separations or one or more physician billing
claims or one or more prescription drug records in two years, (b) one or
more hospital separations or one or more physician billing claims or one or
more prescription drug records in three years, and (c) one or more hospital
separations or two or more physician billing claims or two or more prescrip-
tion drug records in three years.

The PPV of a diabetes diagnosis showed a slightly greater range than sensi-
tivity and specificity, from 68.2% to 89.5%. The maximum estimate was
achieved for the algorithm based on one or more hospital separations or two
or more physician billing claims in one year of data. NPV approached its

upper bound for all algorithms; it attained values as high as 99.4%.
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Table 25: Estimates of agreement, sensitivity, specificity, and predictive values for
diabetes algorithms
# Algorithm K Sens. Spec. Youden PPV NPV
Years (%) (%) (%) (%)
1 1T 1T+Hor1+P 0.77 76.9 98.7 0.76 79.2 98.5
2 1+Hor2+P 0.73 63.2 99.5 0.63 89.5 97.7
8 T+Hor1+P 481 858 986 084 794 991
or 1+ Rx
4 1+Hor2+P
or 1+ Rx
5 1+Hor1+P
or 2+ Rx
6 T+Hor2+P g4 801 994 080 894 987
or 2+ Rx
2 7 1+Hor1+P 0.78 85.2 98.1 0.83 74.0 99.0
T+ Hor2+ P 0.82 79.5 99.3 0.79 87.9 98.7
9 T+HorT+P 50 g 979 o088 737 993
or 1+ Rx
10 1+Hor2+P
or 1+ Rx
11 1+Hor1+P
or 2+ Rx
12 1+ Hor2+P 5g5 g1 992 085 88 991
or 2+ Rx
3 13 1+Hor1+P 0.75 87.8 97.4 0.84 68.7 99.2
14 1+Hor2+P 0.83 84.9 99.0 0.84 83.9 99.0
18 T+Hor1+P 506 905 973 088 682 994
or 1+ Rx
16 1+Hor2+P
or 1+ Rx
17 1+Hor1+P
or 2+ Rx
18 1+Hor2+P
or 2+ Rx
Note: H = Hospital Separation; P = Physician Claim; Rx = Prescription Drug Claim; PPV = Positive
Predictive Value; NPV = Negative Predictive Value; 95% confidence intervals for all estimates are
reported in Appendix D.

0.84 80.7 99.4 0.80 88.9 98.8

0.81 8b.5 98.6 0.84 79.8 99.1

oo

0.86 86.6 99.1 0.86 86.1 99.1

0.80 89.3 98.0 0.87 74.0 99.3

0.84 88.4 98.8 0.87 82.1 99.3

0.76 90.2 97.4 0.88 68.6 99.4

0.85 88.1 98.8 0.87 83.0 99.2

Source: Manitoba Centre for Health Policy, 2006

Agreement Between Survey and Administrative Data

The logistic regression models to test the sociodemographic variables associ-
ated with agreement between survey and administrative data contained the
main effects of age, sex, region of residence, income adequacy quintile, and
comorbidity (i.e., presence of heart disease or hypertension). The data for
algorithm #10, which was based on one or more hospital separations or two
or more physician billing claims or two or more prescription drug records
was selected for this analysis. Two-way interactions were tested but were not
statistically significant and were therefore excluded from the final model.
The Hosmer-Lemeshow test indicated that the model fit the data well.

The following variables were statistically significant predictors of agreement
between the two data sources: age (2 = 46.5, df = 5, p < .0001) and pres-
ence of comorbid conditions (2 = 4.2, df = 1, p = .0406). Table 26 contains
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the ORs and 95% Cls for the explanatory variables in the model. The
results indicate that the odds of agreement between the two data sources was
higher for individuals in younger age groups than in the oldest age group,
and was higher for individuals with no comorbid conditions than for those
with a comorbid condition.

Table 26: Odds Ratio (OR) estimates and 95% Cls
for predictors of agreement between administrative
and survey data for diabetes

Predictors OR 95% Cl
Age
19 — 44 years 5.9 (2.7,13.1)
45 — b4 years 4.1 (1.7, 9.5)
55 — 64 years 1.3 (0.6, 2.8)
65 — 74 years 1.2 (0.6, 2.5)
75 — 84 years 1.2 (0.6, 2.4)
85+ years Ref -
Sex
Males 1.0 (0.7, 1.3
Females Ref -
Region of Residence
North Rural RHAs 0.9 (0.5, 1.6)
South Rural RHAs 1.5 (1.0, 2.1)
Winnipeg RHA Ref -
Comorbidity
Absent 1.5 (1.0,2.2)
Present Ref -
Income Quintile
Lowest 1.2 (0.5, 2.9)
Low Middle 1.2 (0.6, 2.3)
Middle 1.2 (0.7, 2.1)
Upper Middle 1.3 (0.8, 2.2)
Not Stated 3.8 (1.3,11.3)
Highest Ref -

Source: Manitoba Centre for Health Policy, 2006

6.4 Provincial Prevalence Estimates

Cross-Sectional Prevalence Estimates

Table 27 summarizes the cross-sectional population-based prevalence esti-
mates that were calculated for each of the 18 diabetes algorithms for the
Manitoba population 19 years of age and older. They range from 5.8% to
8.2%. The algorithms with the highest estimates of «k (i.e., algorithms #10
and #12) resulted in prevalence estimates of 6.3% and 6.2%, respectively.
The algorithm with the highest value of Youden’s index and corresponding
highest sensitivity (i.e., algorithm #15) resulted in a prevalence estimate of
8.2%. However, algorithm #9 had an equally high value of Youden’s index,
and it resulted in a prevalence estimate of 7.5%.
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Table 27: Crude provincial prevalence estimates for diabetes algorithms,
2000/01 — 2002/03

# Years Algorithm Prevalence
Estimate (%)
1 1 T+Hor1+ P 5.8
2 T+ Hor2+P 4.4
3 T+ Hor 1+ Por 1+ Rx 6.5
4 1+ Hor 2+ Por 1+ Rx 5.6
5 1+ Hor 1+ Por 2+Rx 6.4
6 1+ Hor 2+ Por 2+ Rx 5.5
2 7 T+Hor1+P 7.1
8 T+Hor2+P 5.6
9 T+ Hor 1+ Por 1+ Rx 7.5
10 1+ Hor2+ Por 1+ Rx 6.3
11 T+ Hor 1+ Por 2+Rx 7.4
12 1+ Hor 2+ Por 2+ Rx 6.2
3 13 T+Hor1+P 7.9
14 T+Hor2+P 6.3
15 T+ Hor 1+ Por 1+ Rx 8.2
16 1+ Hor 2+ Por 1+ Rx 6.8
17 1+ Hor 1+ Por 2+Rx 8.1
18 1+ Hor 2+ Por 2+ Rx 6.6

Note: H = hospital separation; P = physician claim, Rx = prescription drug record; One-year
algorithms are from 2002/03, two-year algorithms are from 2001/02 — 2002/03, and three-year
algorithms are from 2000/01 — 2002/03.

Source: Manitoba Centre for Health Policy, 2006

Venn Diagrams

Figures 38 to 41 contain the Venn diagrams for algorithms #3, #5, #9, and
#15. Algorithm #3, which was based on one or more contacts in the hospi-
tal, physician, or prescription drug data in a one-year period resulted in
more than 55,000 diabetes cases. More than half of these individuals
(53.6%) were identified from both the physician and prescription drug data.
Ten percent of disease cases were identified solely from the prescription drug
data, and 9.0% had a contact in all three data sources.
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Figure 38: Diabetes Algorithm #3: 1+ Hospital Separations or 1+ Physician Visits
or 1+ Prescriptions, 1 Year

Hospital Physician

Prescription
N = 55,511

Source: Manitoba Centre for Health Policy, 2006

Figure 39: Diabetes Algorithm #5: 1+ Hospital Separations or 1+ Physician Visits
or 1+ Prescriptions, 1 Year

Hospital Physician

Prescription

N = 54,868

Source: Manitoba Centre for Health Policy, 2006
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Figure 40: Diabetes Algorithm #9: 1+ Hospital Separations or 1+ Physician Visits
or 1+ Prescriptions, 2 Years

Hospital Physician

Prescription
N=162,733

Source: Manitoba Centre for Health Policy, 2006

Figure 41: Diabetes Algorithm #15: 1+ Hospital Separations or 1+ Physician Visits
or 1+ Prescriptions, 3 Years

Hospital Physician

21,844
32.4%

Prescription

N = 67480

Source: Manitoba Centre for Health Policy, 2006
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Almost 63,000 individuals were identified as diabetes cases using algorithm
#9 (Figure 40), which was based on two years of administrative data. Close
to half (48.0%) of these individuals were identified in both the physician
and prescription drug data, and 14.0% were identified in all three data
sources. Using three years of data (Figure 41), the percentage of cases identi-
fied in only prescription drug data dropped substantially, to 3.5% of total
cases, and the percentage of individuals identified in all three data sources
increased, to 17.1%.

Regression Analyses for Cross-Sectional Prevalence Estimates

The regression models for the cross-sectional prevalence estimates were
applied to six algorithms: #1, #5, #7, #11, #13, and #17. The LRT for the
full and reduced models was non-significant (2 = 63.2; df = 60; p = .3640).
These results indicate that the RR of diabetes prevalence for different algo-
rithms did not vary across the sociodemographic characteristics of the popu-
lation. Further analysis of the reduced model revealed that the algorithm
main effect was statistically significant (2 = 67.32; df = 5; 2 <.0001) indi-
cating that there were significant differences in the prevalence estimates for
the six algorithms. In fact, further analysis revealed that all of the algorithms
produced RRs which were significantly different from the estimate for algo-
rithm #1 (reference).

Longitudinal Prevalence Estimates

Figures 42, 43, and 44 summarize the trends in prevalence estimates that
were obtained for the one-, two- and three-year algorithms, respectively. All
three show a similar pattern of increasing prevalence over time. The trend
lines for the six algorithms plotted in each graph are approximately parallel,
indicating that all algorithms provided a similar picture of the change in
prevalence over time.



90

DEFINING AND VALIDATING CHRONIC DISEASES

Percent

Figure 42: Provincial Trends in Diabetes Prevalence for One-Year Algorithms,
1999/2000 - 2003/04
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Source: Manitoba Centre for Health Policy, 2006

Figure 43: Provincial Trends in Diabetes Prevalence for Two-Year Algorithms,
1996/97 - 2003/04
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Figure 44: Provincial Trends in Diabetes Prevalence for Three-Year Algorithms,
1995/96 - 2003/04
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Regression Analyses for Longitudinal Prevalence Estimates.

Regression analyses were conducted for the longitudinal prevalence esti-
mates, to test for significant differences in the estimates from different algo-
rithms over time, and also to test whether these longitudinal estimates varied
across the sociodemographic variables of age, sex, region of residence, and
income quintile. For the one-year algorithms, the LRT for the partial and
reduced models was not statistically significant (x2 = 1.6; df = 5; p = .9032).
The LRT for the full and reduced models was also not statistically signifi-
cant (2 = 127.0; df = 137; p < .7187). These results indicate that the RR of
change in prevalence for different one-year algorithms did not vary over
time, nor did it vary across the sociodemographic characteristics of the pop-
ulation. However, in the GEE analysis for the reduced model, there was
both a significant time main effect (p < .0001), and an algorithm main
effect (p < .0001). For the former, the RR was 1.04 (95% CI: 1.04 — 1.05).
The results for the algorithm main effect revealed that the RRs for all algo-
rithms were significantly different from the estimate for algorithm #1 (refer-
ence), with the exception of algorithm #4.

For the two-year algorithms, the LRT for the partial and reduced models
was not statistically significant (2 = 0.97; df = 5; p = .9653). The LRT for

the full and reduced models was also not statistically significant (2 = 126.6;
df = 137; p = .7270). These results indicate that the RR of diabetes preva-
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The results of this
chapter confirm that
administrative data
are a valid tool for
identifying diabetes

cases.

lence for different two-year algorithms did not vary over time or with the
sociodemographic characteristics of the population. In the GEE models, the
main effects of both time and algorithm were statistically significant (p <
.0001). The RR of change across two-year time periods was 1.09 (95% CI =
1.08 — 1.10). The prevalence estimates for all algorithm, with the exception
of algorithms #9 and #10, were not significantly different from the estimate
for algorithm #7 (reference).

Finally, for the three-year algorithms, the LRT for the partial and reduced
models was also not statistically significant (x2 = 0.72; df = 5; p = .9817).
The LRT for the full and reduced models was also not statistically signifi-
cant (2 = 119.7; df = 137; p < .8530). These results indicate that the RR of
diabetes prevalence for different three-year algorithms did not vary over time
or with the sociodemographic characteristics of the population. However,
just like in the previous models, the effects of time and algorithm were both
statistically significant (p < .0001). The results for the time main effect
revealed that the RR was 1.14 (95% CI = 1.13 — 1.14), indicating a statisti-
cally significant increase in prevalence over time. All algorithms produced
prevalence estimates that were significantly higher than algorithm #13 (refer-
ence) with the exception of algorithms #15 and #17.

6.5 Chapter Summary

The results of this chapter confirm that administrative data are a valid tool
for identifying diabetes cases. There was high agreement between the two
data sources. Agreement did, however, vary with age and the presence of
comorbid conditions.

There is some value associated with using prescription drug data, in addition
to hospital and physician data, to identify diabetes cases, although the gains
were not large. Estimates of k and sensitivity were highest for the algorithms
based on all three administrative data sources, but they were not appreciably
larger than the estimates for the algorithms based on hospital separations or
physician billing claims. The crude estimates of prevalence for the algo-
rithms with the highest agreement between the two data sources or the
highest values of Youden’s index ranged from 6.2% to 8.2%.

Further analyses revealed that the relative rate of diabetes did not vary across
the sociodemographic characteristics of the population. All of the investigat-
ed algorithms showed an increasing prevalence of diabetes over time.
However, different algorithms did not provide different estimates of the rela-
tive rate of increase.
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CHAPTER 7: HYPERTENSION

7.1 Introduction and Review of Literature

Hypertension is a significant public health concern because it is the most
common risk factor for cardiovascular disease. It is also a risk factor for
other diseases, including diabetes, kidney failure and stroke. Martens et al.
(2004) used administrative data to estimate the prevalence of hypertension
as approximately 22% for Manitoba in 1998/99-2000/01. This was slightly
higher than the provincial estimate of 20% for the period 1993/94 —
1995/96. The same increasing trend has been identified in U.S. survey data
for the period 1991 to 2000 (Hajjar and Kotchen, 2003). Wolff et al.
(1999) used 1995 survey data from Nova Scotia and estimated the crude
prevalence to be 26.6%. Wolf-Maier et al. (2003) compared survey data
from Canada, United States, Germany, Finland, Sweden, England, Spain,
and Italy and demonstrated that the prevalence of hypertension is substan-
tially higher in European countries than in North American countries. For
the former, the age-adjusted prevalence was 44% while for the latter it was
only 28%.

Table A.5 in Appendix A summarizes several studies that used administrative
health data for identifying cases of hypertension. Overall, the results of the
literature review suggest that administrative data are a valid tool for estimat-
ing the prevalence of hypertensive disease. Quam et al. (1993) examined the
agreement between administrative data (i.e., physician claims and prescrip-
tion drug records) and both patient survey and medical chart data. Cases
were identified by one or more physician claims with an ICD-9-CM code of
401 (essential hypertension) or one or more prescriptions for diuretics, beta-
blockers, calcium antagonists, or ACE inhibitors. Agreement between
administrative and survey data was 43.4% using an algorithm based only on
physician claims, 62.9% using an algorithm based only on prescription drug
data, and 95.7% when both physician and prescription data were compared
to survey data. The comparisons between administrative data and medical
chart data produced similar levels of agreement. Muhajarine et al. (1997)
also found good agreement between health survey data and physician billing
claims using ICD-9-CM 401 or 402.

72 Description of Hypertension Algorithms

The current study used a single ICD-9-CM code, 401, to define hyperten-
sive cases from Manitoba’s hospital and physician data. The literature sum-
marized in Table A.5 in Appendix A shows that both narrow and broad
ranges of ICD-9-CM codes have been used in previous research; for example
Muhajarine et al. (1997) used only 401 and 402, Rector et al. (2004) used
401 to 404, and Robinson et al. (1997) used 401 to 405 in addition to sev-
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eral other ICD-9-CM codes. Our empirical examination of the administra-
tive data for 2002/03 revealed that 99.5% of individuals who had a hospital
separation or physician claim with an ICD-9-CM code in the range 401 to
405 were assigned the single ICD-9-CM code of 401. Given these results as
well as the literature review results, we used this single diagnostic code to
identify cases of hypertension

Based on the literature review and consultations with pharmacists and clini-
cal experts, five second-level ATC codes were used to identify cases from
Manitoba’s pharmaceutical data. These were C02 (anti-hypertensives), C03
(diuretics), CO7 (beta blocking agents), C08 (calcium channel blockers), and
CO09 (agents acting on the renin-angiotensin system). All of the DINs associ-

ated with these ATC codes were selected from the MCHP Master
Formulary.

Table 28 enumerates the 18 hypertension algorithms that were evaluated in
this research. These algorithms were based on one, two, or three years of
administrative data. Some of the algorithms were based solely on the physi-
cian data, others relied on both the hospital and physician data, and the
remainder combined all three data sources. Five years of data were not used
to define disease cases because no previous studies used this many years of
data to define hypertension algorithms. The algorithms varied in terms of
the number of occurrences of a diagnostic code in the physician claims and
the number of occurrences of a medication code in prescription drug data.

Table 28: Hypertension algorithms selected for validation

Years of Algorithm Hospital Separations Physician Claims Prescription Drugs

Data # or or
1 1 1 or more
2 2 or more
3 1 or more 1 or more
4 1 or more 2 or more
5 1 or more 1 or more 1 or more
6 1 or more Tor more 2 or more
2 7 1 or more
8 2 or more
9 1 or more 1 or more
10 1 or more 2 or more
11 1 or more Tor more 1 or more
12 1 or more Tor more 2 or more
3 13 1 or more
14 2 or more
15 1 or more 1 or more
16 1 or more 2 or more
17 1 or more Tor more 1 or more
18 1 or more Tor more 2 or more

Source: Manitoba Centre for Health Policy, 2006
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7.3 Validation Results

Validation Indices

The results for the six validation indices for each of the 18 hypertension
algorithms are reported in Table 29. The 95% Cls for these algorithms are
reported in Appendix Table D.10.

There was moderate to good agreement between administrative and survey
data, with values of k ranging from 0.54 to 0.70 for the algorithms based on
one year of data. For the three-year algorithms the range of values of x was
narrower, from 0.64 to 0.70. The algorithms with the highest values of
were based on: (a) one or more hospital separations or one or more physi-
cian billing claims or two or more prescription drug records in one year, and
(b) one or more hospital separations or two or more physician billing claims
in three years.

Sensitivity ranged from 48.4% to 92.8%. It was highest for the algorithm
based on one or more hospital separations or one or more physician billing
claims or one or more prescription drug records in three years. However,
sensitivity was above 90% for other two- and three-year algorithms.

Specificity ranged from 88.7% to 97.5% for the algorithms that were based
on one year of data. The range of specificity values was similar for the algo-
rithms based on two and three years of data. Overall, the lowest specificity
(83.7%) was for the algorithm based on one or more contacts in hospital
separations or physician billing claims or prescription drug records in three
years of data.

Youden’s index ranged from 0.46 to 0.79. Two algorithms resulted in the
maximum value of this index: (a) one or more hospital separations or one or
more physician billing claims or one or more prescription drug records in
one year, and (b) one or more hospital separations or one or more physician
billing claims or two or more prescription drug records in one year.

The PPV of a hypertension diagnosis ranged from 56.8% to 81.4%. The
algorithm for which it was highest was algorithm #2, which was based on
two or more physician claims in a single year of data. The NPV of a hyper-

tension diagnosis was always very high, and the estimate only fell below
90% for algorithm #4 (i.e., 1+ H or 2+ P).
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Table 29: Estimates of agreement, sensitivity, specificity, and predictive values for
hypertension algorithms

# Algorithm K Sens. Spec. Youden PPV NPV
Years (%) (%) (%) (%)
1 1 1+P 065 684 947 063 746 930
2 24P 054 484 975 046 814 893
3 1+Hor1+P 066 701 944 065 739 933
4 1+Hor2+P 056 511 971 048 799 897
5 1+ Horl+Por 068 899 887 079 644 975
1+ Rx
6 Il+HorT+Por 070 890 899 079 666 973
2+ Rx
2 7 4P 067 794 919 071 691 952
8 2+P 066 663 956 062 775 926
9 1+Hor1+P 068 812 916 073 688 956
10 1+ Hor2+ P 067 694 952 065 768 932
1 T+ Horl+ Por 0.64 919 860 0.78 59.8 97.9
T+ Rx
12 ;;;H orf+Por2+ 486 912 873 078 620 978
3 13 1+P 067 832 903 074 660 959
14 24P 068 724 948 068 760 938
15 1+ Hor 1+ P 067 849 899 075 657 963
16 14 Hor2+ P 070 756 944 071 752 945

17 1+Hor1+Por
1+ Rx
18 1+Hor 1+ Por2+
Rx
Note: H = Hospital Separation; P = Physician Claim; Rx = Prescription Drug Claim; PPV = Positive
Predictive Value; NPV = Negative Predictive Value; 95% confidence intervals for all estimates are reported
in Appendix D.

0.62 92.8 84.0 0.77 56.8 98.1

0.64 92.2 85.7 0.78 59.4 98.0

Source: Manitoba Centre for Health Policy, 2006

Agreement Between Survey and Administrative Data

The logistic regression model for hypertension was applied to the data for
algorithm #6, which was based on one year of data. The model contained
the main effects of age, sex, region of residence, presence of comorbid con-
ditions and income adequacy quintile. The Hosmer-Lemeshow test revealed
that the main effects model fit the data well.

The following explanatory variables were statistically significant in the logis-
tic regression model: age (x?=161.1,df = 5, p <.0001) and the presence of
comorbid conditions (32 = 72.2, df = 1, p < .0001). The ORs and 95% Cls
reported in Table 30 reveal that the odds of agreement between survey and
administrative data were higher for individuals in younger age groups than
for individuals in the oldest age group and were higher for individuals who
did not have a comorbid condition than for individuals who did have a
comorbid condition.
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Table 30: Odds Ratio (OR) estimates and 95% Cls
for predictors of agreement between administrative
and survey data for hypertension

Predictors OR 95% ClI
Age
19 — 44 years 9.2 (6.2, 13.6)
45 — b4 years 4.6 (3.1, 7.0)
55 — 64 years 2.8 (1.9,4.2)
65 — 74 years 2.5 (1.7, 3.6)
75 — 84 years 1.9 (1.3,2.8)
85+ years Ref -
Sex
Males 0.8 (0.7, 1.0)
Females Ref -
Region of Residence
North Rural RHAs 0.9 (0.6, 1.3)
South Rural RHAs 0.9 0.7,1.2)
Winnipeg RHA Ref -
Comorbidity
Absent 2.6 (2.1,3.2)
Present Ref -
Income Quintile
Lowest 0.8 (0.5, 1.4)
Low Middle 0.9 (0.6, 1.4)
Middle 0.9 (0.7, 1.3)
Upper Middle 1.1 (0.8, 1.4)
Not Stated 0.8 (0.5,1.2)
Highest Ref -

Source: Manitoba Centre for Health Policy, 2006

74 Provincial Prevalence Estimates

Cross-Sectional Prevalence Estimates

The crude prevalence estimates for each of the algorithms are summarized in
Table 31. Algorithm #6, which resulted in the highest overall agreement
between survey and administrative data, produced a prevalence estimate of
21.6%.

The algorithm with the highest sensitivity, which is based on one or more
hospital separations, physician billing claims, or prescription drug records in
a three-year period, resulted in a prevalence estimate of 27.4%. A prevalence
estimate of 22.5% was produced by the algorithm with the highest value of
Youden’s index (i.e., algorithm #5).
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Table 31: Crude provincial prevalence estimates for hypertension algorithms,
2000/01 - 2002/03

# of Algorithm Prevalence
Years Estimate (%)
1 1 1+ P 14.2
2 2+ P 9.3
3 T+Hor1+P 14.7
4 T+Hor2+ P 10.0
5 T+ Hor 1+ P or 1+ Rx 22.5
6 1+ Hor 1+ P or 2+ Rx 21.6
2 7 1+ P 18.4
8 2+ P 13.5
9 T+Hor1+P 19.0
10 T+Hor2+ P 14.3
11 1+ Hor 1+ P or 1+ Rx 25.3
12 1+ Hor 1+ P or 2+ Rx 24.2
3 13 1+ P 21.0
14 2+ P 15.9
15 T+Hor1+ P 21.6
16 T+ Hor2+P 16.8
17 1+ Hor 1+ Por 1+ Rx 27.4
18 1+ Hor 1+ P or 2+ Rx 26.2

Note: Estimates for one-year algorithms are based on 2002/03; Estimates for two-year
algorithms are based on 2001/02 — 2002/03; Estimates for three-year algorithms are based on
2000/01 — 2002/03.

Source: Manitoba Centre for Health Policy, 2006
Venn Diagrams
Figures 45, 46, and 47 contain Venn diagrams for algorithms #5, #11, and
#17, respectively. Figure 45 shows that of the more than 190,000 cases of
hypertension identified using 2002/03 administrative data, almost half
(49.2%) were identified in both physician and prescription drug data.
However, more than one third (34.5%) of cases were identified solely from
prescription drug data. As expected, very few cases were identified only from

hospital data (0.2%).

Figure 45: Hypertension Algorithm #5: 1+ Hospital Separations or 1+ Physician Visits
or 1+ Prescriptions, 1Year

Hospital Physician

Prescription

N = 191,936

Source: Manitoba Centre for Health Policy, 2006
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Figure 46: Hypertension Algorithm #11: 1+ Hospital Separations or 1+ Physician Visits
or 1+ Prescriptions, 2 Years

Hospital Physician

Prescription
N =212,309

Source: Manitoba Centre for Health Policy, 2006

Figure 47: Hypertension Algorithm #17: 1+ Hospital Separations or 1+ Physician Visits
or 1+ Prescriptions, 3 Years

Hospital Physician
116,877
51.5%
Prescription
N = 226,796

Source: Manitoba Centre for Health Policy, 2006
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The number and percentage of cases identified from each of the three
administrative data sources are similar for the two-year algorithm (Figure
46). One-quarter of cases were identified only from prescription drug
records, while more than half (52.2%) were identified from both physician
and prescription drug data. The algorithm based on three years of data
(Figure 47) resulted in the identification of more than half (51.5%) of
hypertension cases from both prescription and physician data and an addi-
tional 7.7% of cases appeared in all three data sources.

Regression Analyses for Cross-Sectional Prevalence Estimates

The regression models for the cross-sectional prevalence estimates included
the following algorithms: #3, #5, #9, #11, #15, and #17. Thus, a total of six
algorithms were investigated. The LRT for the full model, which contained
the main effects of algorithm, age, sex, region of residence, and income
quintile, in addition to two-way interactions, and the reduced model, which
contained main effects only, was statistically significant (2 = 421.0; df = 60;
2 <.0001). Further investigation revealed that the algorithm x sex interac-
tion was not statistically significant (p = .1019), but the algorithm x age (p <
.0001), algorithm x region (p = .0001), and algorithm x quintile (p = .0075)
effects were significant. These results indicate that the RR of hypertension
prevalence for different algorithms varied across all of the sociodemographic
characteristics of the population with the exception of sex.

Longitudinal Prevalence Estimates

Figures 48, 49, and 50 depict the trends in prevalence estimates that were
obtained for the one-year, two-year, and three-year algorithms, respectively.
All three figures showed an increasing trend in prevalence, and all of the
trend lines were approximately parallel, which suggests that each algorithm
provides a similar picture of the change in the crude prevalence of hyperten-
sion over time.
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Figure 48: Provincial Trends in Hypertension Prevalence for One-Year Algorithms,
1999/2000 - 2003/04
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Figure 49: Provincial Trends in Hypertension Prevalence for Two-Year Algorithms,
1996/97 - 2003/04
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Figure 50: Provincial Trends in Hypertension Prevalence for Three-Year Algorithms,
1995/96 - 2003/04
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Regression Analyses for Longitudinal Prevalence Estimates

Regression analyses were conducted for the longitudinal prevalence esti-
mates, to test for differences in the estimates from the different algorithms
over time, and also to test whether the longitudinal estimates varied with the
sociodemographic characteristics of the population (i.e., age, sex, region of
residence, and income). For the one-year algorithms, the LRT for the partial
and reduced models was not statistically significant (x% = 1.7, df = 5, p =
.8880), which indicates that there was no difference in the RR of change for
different algorithms. However, the LRT for the full model, which contained
main effects in addition to selected two-way and three-way interactions, and
the reduced model, which contained main effects only, was statistically sig-

nificant (2 = 1927.6, df = 137, p < .0001). An assessment of the GEE
model results revealed that all of the main effects were statistically significant
(p < .0001), as were the following interactions: algorithm x age (» < .0001),
algorithm x sex (p < .0001), algorithm x region (p = .0217), algorithm x
time x age (p < .0001), algorithm x time x sex (» < .0001), and algorithm x
time x region (p < .0001). These results indicate that the RR of change in
the prevalence estimates for different algorithms varied with age, sex, and
region of residence of the population over time.

The regression analyses for the two-year algorithms produced different
results. The LRT for the partial and reduced models was statistically signifi-

cant (2 =13.0, df = 5, p =.0234), as was the LRT for the full and reduced

models (32 =679.2, df = 137, p <.0001). The former result indicates that
the RR of change in hypertension varied across the algorithms. The GEE
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This study confirms
the results of previous
studies that showed
administrative data
have good validity for
identifying cases of
hypertension.

results for the full model revealed that all of the main effects were statistical-
ly significant (p < .0001) in addition to the following two-way and three-
way interaction terms: algorithm x time (p = .0234), algorithm x age (p <
.0001), algorithm x sex (p < .0001), algorithm x region (p = .0217), algo-
rithm x age x time (p < .0001), and algorithm x region x time (p < .0001).
This finding demonstrates that the RR of change in prevalence estimates for
different algorithms did vary with the sociodemographic characteristics of
the population over time.

Finally, the regression analyses for the three-year algorithms showed that the

LRT for the partial and reduced models was not statistically significant (32 =
6.3, df = 5, p < .2815), but the LRT for the full and reduced models was

significant (x2 =1780.8; df = 137, p <.0001). The former result indicates
that the RR of change in hypertension prevalence was not significantly dif-
ferent for different algorithms. With respect to the full model, the GEE
analyses revealed that all of the main effects were statistically significant (p <
.0001) in addition to the following two-way and three-way interactions:
algorithm x time (p = .0015), algorithm x age (» < .0001), algorithm x sex
(p < .0001), time x algorithm x age (p < .0001), algorithm x time x sex (p <
.0001), algorithm x time x quintile (» < .0001), and algorithm x time x
region (p = .0003). This result indicates that the RR of change in prevalence
estimates for different algorithms did vary with the sociodemographic char-
acteristics of the population over time.

75 Chapter Summary

This study confirms the results of previous studies that showed administra-
tive data have good validity for identifying cases of hypertension. Two differ-
ent algorithms resulted in very good agreement between survey and adminis-
trative data; one of these algorithms was based on a combination of hospital
separations and physician billing claims and prescription drug records in one
year, while the other relied on only hospital separations and physician billing
claims in three years.

The algorithm based on one or more contacts in hospital separations, physi-
cian billing claims, or prescription drug records in a one-year period had the
highest value of Youden’s index. The algorithm based on one or more con-
tacts in hospital separations or physician billing claims or prescription drug
records in three years had the highest sensitivity. The positive predictive
value was slightly lower for the former algorithm than for an algorithm
which was based on one or more contacts in either hospital separations or
prescription drug records or two or more contacts in physician billing
claims.
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Agreement between survey and administrative data was predicted by age and
the presence of comorbid conditions.

Prevalence estimates were very similar (i.e., approximately 22%) for the
algorithms with the highest values for kappa and Youden’s index. The regres-
sion results indicated that the relative rate of hypertension prevalence for the
investigated algorithms varied across the sociodemographic characteristics of
the population. The analyses of the longitudinal trends revealed that the rel-
ative rate of change over time varied for some of the algorithms.
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Stroke is ranked third
as a cause of death in
Canada following only
heart disease and can-
cer.

CHAPTER 8: STROKE!'

8.1 Introduction and Review of Literature

This chapter focusses on the use of administrative data for identifying cases
of stroke, from administrative data. Stroke is ranked third as a cause of
death in Canada following only heart disease and cancer (http://www.stat-
can.ca/english/Pgdb/health36.htm). The societal burden associated with
non-fatal stroke is estimated to eclipse other chronic disorders (Verbrugge et

al., 1989; Dobkin, 2003).

Recognition of the importance of stroke surveillance in Canada has resulted
in several initiatives. In 2000, the Heart and Stroke Foundation of Canada
released the report The Changing Face of Heart Disease and Stroke in Canada
which highlights risk factors, use of health care services, and health out-
comes associated with stroke. The Canadian Stroke Network, established in
1999, include researchers from across the country who seek to decrease the
physical, social and economic consequences of stroke. Part of this initiative
is a national registry of stroke patients.

The validity of administrative data for identifying both fatal and non-fatal
cases of stroke has been investigated in a large number of studies. Several of
these studies are summarized in Appendix Table A.6. A significant issue in
the research has been the choice of diagnostic codes to identify disease cases.
Some studies adopted the broadest possible set of codes, which included
ICD-9-CM 430 to 438 (cerebrovascular disease). However, others excluded
specific codes, like 437, which represent stroke of undetermined causes. In
general, however, the consensus of these studies is that administrative data
can provide a valid tool for identifying stroke cases using one or more ICD-

9-CM codes.

While the methodology associated with stroke case identification has been
the subject of multiple investigations, a limitation of all of the studies identi-
fied in Appendix A is that they have only relied on hospital separations to
identify stroke cases. As Kokotail and Hill (2005) observe, this results in a
bias towards the identification of only the most severe cases of stroke from
administrative data. The validity of physician claims and prescription drug
records for stroke surveillance, to identify less severe non-fatal stroke cases
has been unexplored.

IMaterial contained in this chapter was prepared by Dr. David Moore in partial fulfillment
of the course 93.741 Directed Readings in Community Health Sciences, University of
Manitoba. It has been edited by Dr. Lisa Lix, principal investigator, to conform to the form
and style used in other chapters of this report.
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8.2 Description of Stroke Algorithms

The algorithms selected for validation and testing in this research were based
on a meta-analysis. A MEDLINE search on the terms administrative data-
base AND stroke OR cerebrovascular disease returned a total of twenty-eight
references from the period 1965 to 2005. After full review of these articles,
four were selected and compared by meta-analysis. The selected studies each
included a numerical validation of stroke case identification from adminis-
trative databases using either an independently maintained stroke registry or
an independent prospective or retrospective chart review. All of the studies
selected for the meta-analysis used only hospital separations for the identifi-
cation of stroke cases. Studies excluded from the meta-analysis either did not
validate stroke algorithms or did not report sufficient data to produce the
validation indices of sensitivity, specificity, PPV, and NPV.

The selected studies included a sensitive algorithm based on ICD-9-CM
codes in the range from 430 to 438, allowing inclusion of all patients identi-
fied as having cerebrovascular disease, and a more specific algorithm limited
to ICD-9-CM codes 430, 431, 434, 435 and 436. Using the stated results
in an article, a 2 x 2 classification table was derived for each study, allowing
calculation of a Mantel-Haenszel statistic. The Mantel-Haenszel statistic is
used to compute a pooled OR. A pooled OR of 1.0 indicates that the prob-
ability of the event (i.e., stroke case identification) is equally likely in both
the gold standard data and administrative data. A value greater than 1.0
indicates an overestimate of stroke cases by the administrative data com-
pared to the stroke cases identified using the gold standard data, while OR
values less than 1.0 indicate that stroke case identification is less likely in the
gold standard data source. A total of three data sets were compared for the
sensitive algorithm and four for the specific algorithm.

The Mantel-Haenszel OR for the summary meta-analysis combining both
the sensitive and specific algorithms was 1.9 (95% CI 1.8 — 2.1). In Figure
51, it is seen that overall, the more specific ICD9-CM stroke diagnostic
codes more consistently represent stroke cases as determined by the gold
standard. The OR ratio of 1.0 is indicated as the dashed vertical line in the
figure. The three points on the right in Figure 51 represent the ORs for the
sensitive stroke algorithm while the four points on the left represent the

ORs for the specific algorithms.
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Figure 51: Plot of the Meta-Analysis ORs for Stroke Cases
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On the basis of the results of the meta-analysis it was expected that the spe-
cific ICD-9 codes would give a more accurate estimate of the true preva-
lence of stroke in the population. In this report, both sensitive and specific
sets of algorithms were investigated using broad (ICD-9-CM 430-438) and
narrow (ICD-9-CM 430, 431, 434, 435, 436) sets of diagnostic codes,

respectively.

Based on consultations with clinical experts, the following drug categories
were used to identify prescription drug records for inclusion in the research:
anti-platelet agents such as aspirin (ASA) at 81 or 325 mg once a day, clopi-
dogrel, ticlopidine, dipyridamole, and combination agents such as Aggrenox
(ASA 25mg dipyridamole 200mg slow release) and oral anti-coagulants such
as warfarin, pheninidione, and nicoumalone. The fifth level ATC codes
selected for the research were BO1AA02, BO1AA03, BO1AAO7, BO1ACO07,
B0O1ABO1, BO1AC30, BO1ACO05, BO1IAC06, BO1AC04, BO1AB09,
B01AB04, BO1AB10. Thrombolytic agents such as rt-PA (recombinant tis-
sue plasminogen activator) and intravenous anti-platelet agents (anti GP
2b/3a) such as abciximab, tirofiban and eptifibatide are markers for stroke
therapy when administered on an inpatient basis. However, they can not be
used as markers of stroke therapy when used on an outpatient basis.
Therefore prescription drug records with DIN for these drugs were not
included in the algorithms. Parenteral anticoagulants such as heparin and
low molecular weight heparins such as enoxiparin are also given as stroke
therapy on an inpatient basis, but are less likely to be markers of stroke ther-
apy when used on an outpatient basis. Therefore, prescription drug records
with DINs for these drugs were not included in the algorithms. The DINs
for all drugs with the ATC codes noted above were obtained from the
MCHP Master Formulary.
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Table 32 lists the 24 algorithms that were selected for this research.
Algorithms #1, #2, and #3, are based on the specific set of ICD-9-CM
codes and algorithms #1f, #2f, and #3f are based on the sensitive (or full) set
of diagnostic codes in one year of data. For two, three, and five years of
administrative data, the same ordering has been used to define the specific
and sensitive algorithms. For example, algorithms #4 and 4f are based on a
single hospital separation with the specific and sensitive diagnostic codes,
respectively, in two years.

It is important to note that none of the algorithms relied solely on prescrip-
tion drug records to identify non-fatal stroke cases. This is because the drugs
selected are not used exclusively as markers for stroke. Using one or more
contacts in prescription drug records to identify stroke cases was expected to
result in low specificity, as we have verified for other chronic diseases.

Table 32: Stroke algorithms selected for validation

# Years Algorithm Hospital Physician Claims Physician Claims
Separations or and
or Prescription Drug Records

1 1 1 or more

2 1 or more 1 or more

3 1 or more 2 or more 1 and 2 or more

1f 1 or more

2f 1 or more 1 or more

3f 1 or more 2 or more 1 and 2 or more
2 4 1 or more

5 1 or more 1 or more

6 1 or more 2 or more 1 and 2 or more

4f 1 or more

bf 1 or more 1 or more

6f 1 or more 2 or more 1 and 2 or more
3 7 1 or more

8 1 or more 1 or more

9 1 or more 2 or more 1 and 2 or more

7f 1 or more

8f 1 or more 1 or more

of 1 or more 2 or more 1 and 2 or more
5 10 1 or more

11 1 or more 1 or more

12 1 or more 2 or more 1 and 2 or more

10f 1 or more

111 1 or more 1 or more

12f 1 or more 2 or more 1 and 2 or more

Note: The first three algorithms in each year are based on a specific set of ICD-9-CM codes (430, 431,
434, 435, 436), while the last three algorithms are based on a sensitive (i.e., full) set of codes (430 — 438).

Source: Manitoba Centre for Health Policy, 2006
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8.3 Validation Results
Validation Indices
Table 33 contains the point estimates for the six validation indices for the

24 algorithms. The 95% Cls for each of these estimates are reported in
Appendix D, in Table D.11.

Table 33: Estimates of agreement, sensitivity, specificity, and predictive values for
stroke algorithms

# Algorithm K Sens. Spec. Youden PPV NPV
Years (%) (%) (%) (%)
1 1 1+ H 0.12 7.3 99.8 0.07 42 .1 98.3
2 1+Hor1+P 0.35 28.4 99.4 0.28 49.2 98.7
3 1+Hor2+Por
(1P &2+ Rx) 0.35 26.6 99.6 026 52.7 98.6
1f 1+H 0.22 14.7 99.7 0.14 51.6 98.4
2f 1+ Hor1+P 0.39 34.9 99.2 0.34 46.3 98.8
8f d+Hor2+P 040 339 994 529 988
or (1 P& 2+ Rx) ) ) ' 0.33 ) )
2 4 1+H 0.24 15.6 99.8 0.15 56.7 98.4
5 1+Hor1+P 0.44 431 99.1 0.42 46.5 98.9
6 1+Hor2+Por
(1P &2+ Rx) 0.43 38.6 99.3 038 51.2 98.9
4f 1+ H 0.33 23.8 99.7 0.24 56.5 98.6
5f 1+Hor1+P 0.42 40.5 98.7 0.39 40.5 99.0
6f 1+Hor2+P
or (1 P &2+ Rx) 0.43 42.2 99.1 041 46.9 98.9
3 7 1+H 0.26 18.4 99.7 0.18 50.0 98.5
8 1+Hor1+P 0.42 47.7 98.7 0.46 40.3 99.0
9 1+Hor2+Por
(1P &2+ Rx) 0.44 44.0 99.0 043 45.7 99.0
7f 1+ H 0.38 29.4 99.6 0.29 55.2 98.7
8f 1+Hor1+P 0.42 54.1 98.2 0.52 36.6 99.1
9f 1+Hor2+P
or (1P &2+ Rx) 0.45 495 98.8 048 432 99.0
5 10 1+H 0.41 33.0 99.6 0.33 58.1 98.8
11 1+Hor1+P 0.45 60.6 98.1 0.59 37.1 99.2
12 A+ Hor2+Por 45 541 086 421 99.1
(1 P& 2+ Rx) ' ’ ' 0.53 ’ ’
10f 1+ H 0.45 39.4 99.4 0.39 53.7 98.9
11f 1+Hor1+P 0.43 66.1 97.5 0.64 33.0 99.4
12f 1+ Hor2+P
or (1P & 2+ Rx) 0.47 61.5 98.3 0.60 39.9 99.3

Note: H = Hospital separation; P = Physician claim; Rx = Prescription drug record; PPV = Positive
Predictive Value; NPV = Negative Predictive Value; 95% confidence intervals for all estimates are
reported in Appendix D.

Source: Manitoba Centre for Health Policy, 2006

There was low to moderate agreement between the survey and administra-
tive data, with values of k ranging from 0.12 to 0.47. The highest estimate
of Kk was obtained for the sensitive algorithm based on one or more hospital
separations or two or more physician billing claims, or one physician billing
claim and two or more prescription drug records in five years (i.e., algorithm
#12f). However, the corresponding five-year algorithm based on the specific
ICD-9-CM codes produced almost the same estimate (i.e., K = 0.46).
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As the results indicate, using an algorithm based on one or more hospital
separations in one year of administrative data to identify non-fatal stroke
cases resulted in low agreement and sensitivity regardless of whether a specif-
ic (7.3%) or sensitive (14.7%) set of ICD-9-CM codes was selected (i.e.,
algorithms #1 and #1f). Sensitivity improved substantially when the physi-
cian billing claims were used in addition to the hospital data to identify
stroke cases. For example, with a single year of data, the difference in sensi-
tivity between algorithm #1f, based on hospital separations only, and #2f,
based on one or more contacts in either hospital separations or physician
claims, was 20.2%. While there was a slight drop in sensitivity when the
algorithms based on contacts in one or more of the administrative data
sources were adopted, the PPV of a stroke diagnosis improved slightly. For
example, with a single year of data, the PPV increased by 6.6% when algo-
rithms #2f and #3f were compared. Specificity was very high (i.e., above
97%) for all of the algorithms.

The algorithm which resulted in the highest combined estimate of sensitivi-
ty and specificity (0.64) was algorithm #11f, which was based on one or
more hospital separations or one or more physician claims in five years of
data. However, the PPV of a stroke diagnosis was much lower for this algo-
rithm (33.0%) than for algorithm #12f (39.9%), which was based on one or
more hospital separations or two or more physician billing claims or one
physician billing claim and two or more prescription drug records in five
years, which produced only a slightly lower estimate of Youden’s index

(0.60).

The PPV of a stroke diagnosis ranged from 33.0% to 58.1%. NPV was con-
sistently above 98% for all of the algorithms.

Agreement Between Survey and Administrative Data

Logistic regression analysis was used to test the sociodemographic variables
associated with agreement between survey and administrative data for
stroke. The logistic model was applied to the data for algorithm #12f. The
model contained the main effects of age, sex, region of residence, income
adequacy quintile, and comorbid conditions (i.e., presence of heart disease
or diabetes). Two-way interactions were tested but were not statistically sig-
nificant and were therefore excluded from the final model. The Hosmer-
Lemeshow test indicated that the main effects model fit the data well.

The following variables were statistically significant: age (x2 =91.8, df = 4, ?
<.0001), sex (2 = 4.4, df = 1, p = .0353), presence of comorbid conditions

(x2 =188, df = 1, p <.0001), and income adequacy quintile (x2=13.3, df
=5, p =.0201). Table 34 contains the ORs and 95% Cls for all explanatory

variables. The odds of agreement between the two data sources were higher
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for individuals in younger age groups than for individuals in the oldest age
group, and were lower for males than for females. The odds of agreement
were also higher for individuals with no comorbid conditions than for those
with comorbid conditions and lower for individuals in low income adequacy
quintiles than for individuals in the highest quintile.

Table 34: Odds Ratio (OR) estimates and 95% Cls
for predictors of agreement between administrative
and survey data for stroke

Predictors OR 95% ClI
Age
19 - 49 years 28.9 (13.0, 64.3)
50 — 64 years 10.0 (4.9, 20.1)
65 — 74 years 2.9 (1.6, 5.0)
75 — 84 years 1.6 (1.0, 2.7)
85+ years Ref -
Sex
Males 0.7 (0.5, 1.0)
Females Ref -
Region of Residence
North Rural RHAs 0.8 0.4,1.7)
South Rural RHAs 1.2 (0.8, 1.8)
Winnipeg RHA Ref -
Comorbidity
Absent 2.4 (1.6, 3.5)
Present Ref -
Income Quintile
Lowest 0.1 (0.1, 0.4)
Low Middle 0.2 (0.1, 0.8)
Middle 0.2 (0.1,0.8)
Upper Middle 0.3 (0.1,0.9)
Not Stated 0.2 (0.1, 0.5)
Highest Ref —

Source: Manitoba Centre for Health Policy, 2006

8.4 Provincial Prevalence Estimates

Cross-Sectional Prevalence Estimates

Prevalence estimates for all 24 algorithms are summarized in Table 35. There
was substantial variability both within and across the one-year, two-year,
three-year, and five-year sets of algorithms. The algorithms based on a single
hospital separation in one year of data resulted in estimates of 0.2% and
0.3% when the specific and sensitive diagnostic codes were adopted, respec-
tively. The difference between the corresponding algorithms based on the
sensitive and specific sets of ICD-9-CM codes was never greater than 0.6%.
Descriptive analyses of the data revealed that a single ICD-9-CM code, 438
(late effects of cerebrovascular disease), was responsible for the majority of
the difference in prevalence estimates between the sensitive and specific algo-
rithms, as more than 20% of individuals were assigned this code. There were
very few cases coded using ICD-9-CM 432 (other and unspecified intracra-
nial hemorrhage).
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For algorithm #12f, which had the highest value of the x statistic, the crude
prevalence of non-fatal stroke in Manitoba was estimated to be 2.9%. For
algorithm #11f, which had the highest value of Youden’s index, prevalence
was estimated to be 3.8%.

Table 35: Crude provincial prevalence estimates for stroke

# Algorithm Prevalence
Years Estimate (%)
1 1 1+ H 0.2
2 T+Hor1+ P 1.0
3 1+ Hor 2+ Por (1 P& 2+ Rx) 0.7
1 1+H 0.3
2f T+Hor1+ P 1.3
3f 1+ Hor 2+ Por (1 P& 2+ Rx) 1.0
2 4 1+ H 0.4
5 T+Hor1+ P 1.7
6 T+Hor2+Por (1P &2+ Rx) 1.2
4f 1+ H 0.6
5f T+Hor1+ P 2.1
6f T+Hor2+Por (1 P&2+Rx) 1.6
3 7 1+ H 0.6
8 T+Hor1+ P 2.2
9 T+Hor2+Por (1 P&2+Rx) 1.7
7t 1+H 0.9
8f T+Hor1+ P 2.8
of T+ Hor2+Por (1P &2+ Rx) 2.1
5 10 1+ H 0.9
11 T+Hor1+ P 3.2
12 1+ Hor2+Por (1P &2+ Rx) 2.4
100 1+H 1.3
1Mf 1+Hor1+P 3.8
12f 1+ Hor2+Por(1P&2+Rx) 2.9

Note: H = Hospital separation; P = Physician claim; Rx = Prescription drug record; 1-year
estimates are for 2002/03, 2-year estimates are for 2001/02 — 2002/03, 3-year estimates are for
2000/01 - 2002/03, 5-year estimates are for 1998/99 — 2002/03.

Source: Manitoba Centre for Health Policy, 2006

Venn Diagrams

Venn diagrams for algorithms #3, #3f, #12, and #12f are reported in Figures
52 to 55. The first of these figures shows that when a single year of data and
a specific set of diagnostic codes were used, slightly more than 6,200 cases of
non-fatal stroke were identified in Manitoba’s administrative data using a
combination of hospital separations, physician billing claims, and prescrip-
tion drug records. More than one-quarter were identified from physician
billing claims with two or more contacts. More than 10% were identified in
all three data sources. When the sensitive set of diagnostic codes was used,
the total number of cases identified increased by approximately 2,000. The
proportions of stroke cases identified from the physician and prescription
data remained about the same, but greater numbers of cases were identified
using only hospital separations, or hospital separations, or physician billing
claims, or prescription drug records.
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Figure 52: Stroke Algorithm #3: 1+ Hospital Separations or 2+ Physician Visits
or 1 Physician Visit & 2+ Prescriptions, 1 Year

Hospital Physician

(2+ claims)

Prescription +
N = 6,202 Physician (1 claim)

Source: Manitoba Centre for Health Policy, 2006
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Figure 53: Stroke Algorithm #3f: 1+ Hospital Separations or 2+ Physician Visits
or 1 Physician Visit & 2+ Prescriptions, 1 Year

Hospital Physician

(2+ claims)

Prescription +
N = 8,231 Physician (1 claim)

Source: Manitoba Centre for Health Policy, 2006

Figure 54: Stroke Algorithm #12: 1+ Hospital Separations or 2+ Physician Visits
or 1 Physician Visit & 2+ Prescriptions, 5 Years

Hospital Physician

(2+ claims)

Prescription +
N = 18,933 Physician (1 claim)

Source: Manitoba Centre for Health Policy, 2006
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Figure 55: Stroke Algorithm #12f: 1+ Hospital Separations or 2+ Physician Visits
or 1 Physician Visit & 2+ Prescriptions, 5 Years

Hospital Physician

(2+ claims)

Prescription +
N = 23,106 Physician (1 claim)

Source: Manitoba Centre for Health Policy, 2006

Figure 54 shows that when the number of years of administrative data was
increased to five, the total number of cases tripled. The percent of stroke
cases identified with one physician billing claim and two or more prescrip-
tion drug records in five years was much lower than the number identified
using the corresponding one-year algorithm (i.e., decrease from 19.6% to
11.6%). Comparing the algorithms based on one and five years of adminis-
trative data, the percent of cases identified in all three data sources also
increased substantially, to 18.5%. The same pattern was observed when
algorithm #12f was compared to algorithm #3f (see Figure 55).

Regression Analyses for Cross-Sectional Prevalence Estimates

The regression analyses were used to test for differences in prevalence using
two different models. The first model was for the algorithms based on the
specific set of ICD-9-CM diagnostic codes. It included algorithms #1 (refer-
ence), #3, #4, #6, #7, #9, #10, and #12. The second was for the algorithms
based on the sensitive set of ICD-9-CM diagnostic codes. It included algo-
rithms #1f (reference), #3f, #4f, #6f, #71, #9f, #10f, and #12f. Thus, a total
of eight algorithms were investigated in each of the regression models.

For the first model, based on the specific set of diagnostic codes, the LRT

for the full and reduced models was statistically significant (32 = 329.7, df =
84.0, p < .0001). The algorithm x age (p = .0018), algorithm x sex (p =
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.0178), and algorithm x region (p < .0001) effects were all statistically signif-
icant. These results indicate that the relative prevalence estimates from dif-
ferent algorithms varied with the sociodemographic characteristics of the
population.

For the second model, based on the sensitive set of diagnostic codes, the

LRT for the full and reduced models was also statistically significant (32 =
315.0, df = 84.0, p < .0001). The algorithm x age (» < .0001), algorithm x
sex (p = .0009), and algorithm x region (p < .0001) effects were all statisti-
cally significant. These results also indicate that the relative prevalence esti-
mates from different algorithms varied with the sociodemographic character-
istics of the population.

Longitudinal Prevalence Estimates

Figures 56, 57, and 58 depict the longitudinal change in the crude preva-
lence estimates for the stroke algorithms based on one, two, and three years
of administrative data. Figure 56 reveals that according to the one-year algo-
rithms, the prevalence of non-fatal stroke remained largely unchanged over
time. The trend lines for all algorithms were approximately parallel, indicat-
ing each provided a similar picture of the change in the crude stroke preva-
lence in the most recent five years of the study period.

Figure 56: Provincial Trends in Stroke Prevalence for One-Year Algorithms,
1999/2000 - 2003/04

35

3.0

2.5

2.0

Percent

G— o— )
— -
1.0 4 ?; A 4 j%? -9
— & - . _a
0.5 -
o N = = g
& I A oy Ay
0.0
1999/2000 2000/01 2001/02 2002/03 2003/04
Fiscal Year
—B—1+ H (sens) —A— 1+ H (spec) —©—1+H or 1+P (sens)

—@— 1+H or 1+ P (spec) ———1+Hor 2+ Por (1 P & 2+ Rx) (sens) —&—1+H or 2+ P or (1 P & 2+ Rx) (spec)

Source: Manitoba Centre for Health Policy, 2006




DEFINING AND VALIDATING CHRONIC DISEASES 117

Percent

Percent

Figure 57: Provincial Trends in Stroke Prevalence for Two-Year Algorithms,

1996/97- 2003/04
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Figure 58: Provincial Trends in Stroke Prevalence for Three-Year Algorithms,
1995/96 - 2003/04
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On the other hand, the remaining two figures show that the two-year and
three-year algorithms provide very different pictures of the change in stroke
prevalence in Manitoba over time. The two algorithms based on only hospi-
tal separations resulted in a slight decrease over time, while the algorithms
based on contacts in hospital separations, or physician billing claims, or pre-
scription drug records resulted in a slight increase in prevalence over time.
The two algorithms based on one or more contacts in either hospital separa-
tions or physician claims showed a modest decrease in prevalence.

Regression Analyses for Prevalence Estimates

Regression analyses were conducted for the longitudinal prevalence esti-
mates, to test for differences in the RR of change for the estimates from dif-
ferent algorithms, and also to test whether these longitudinal estimates co-
varied with the sociodemographic variables of age, sex, region, and income
quintile. Each of the one-, two-, and three-year models include the six algo-
rithms that used the sensitive and specific sets of ICD-9-CM codes.

For the one-year algorithms, the LRT for the partial and reduced models
was statistically significant (x2 =32.7;df = 5; p <.0001), as was the LRT

for the full and reduced models (2 = 1131.0; df = 115; p <.0001). The for-
mer result indicates that relative rate (RR) of change in prevalence for differ-
ent algorithms varied over time. For the latter finding, the GEE results indi-
cated that the following interactions were statistically significant: algorithm x
age (p < .0001), algorithm x sex (p = .0042), algorithm x region (p < .0001),
algorithm x time (p < .0001), and algorithm x region x time (p < .0001).
This result indicates that the RR of change in prevalence for different algo-
rithms not only varied over time, but also across the sociodemographic char-
acteristics of the population.

For the two-year algorithms, the LRT for the partial and reduced models
was statistically significant (2 = 60.0; df = 5; p < .0001), as was the LRT
for the full and reduced models %2 = 1180.1; df = 115; p < .0001).
Moreover, the GEE results indicated that the following interactions were sta-
tistically significant: algorithm x age (p <.0001), algorithm x sex (p =
.0002), algorithm x region (p < .0001), algorithm x time (p < .0001), algo-
rithm x region x time (p < .0001), algorithm x time x sex (p = .0287).

These results indicate that the RR of change over time in the prevalence of
stroke was different across the algorithms, and that this difference also varied
across the sociodemographic characteristics of the population.

For the three-year algorithms the LRT for the partial and reduced models
was statistically significant (x2 = 76.0; df = 5; p < .0001), as was the LRT

for the full and reduced models (2 = 1028.8; df = 115; p < .0001). The
GEE model testing results revealed that the following two- and three-way
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The results of our
validation study
indicated that using
only a single hospi-
tal separation in a
single year of data
would result in an
algorithm with very
poor sensitivity to
detect non-fatal
stroke cases when
self-report survey
data were used as

the gold standard.

interactions were statistically significant: algorithm x sex (p = .0063), algo-
rithm x region (p < .0001), algorithm x time (p < .0001), algorithm x sex x
time (p = .0072), algorithm x time x quintile (» = .0090), and algorithm x
time x region (p = .0398). Like the results for the two-year algorithms, these
results for three-year algorithms indicate that the RR of change over time in
the prevalence of stroke was different across the algorithms, and that this
difference also varied across the sociodemographic characteristics of the pop-
ulation.

8.5 Chapter Summary

This chapter focused on identifying non-fatal cases of stroke in administra-
tive data, and used physician billing claims and prescription drug records, in
addition to hospital separations, to identify disease cases. Previous research
in this area has examined the effect of using broad or narrow sets of diagnos-
tic codes to identify stroke cases. We compared the results for all validation
indices when different sets of diagnostic codes were included in the algo-
rithms.

The results of our validation study indicated that using only a single hospital
separation in a single year of data would result in an algorithm with very
poor sensitivity to detect non-fatal stroke cases when self-report survey data
were used as the gold standard. Including physician billing claims and pre-
scription drug records to identify cases of non-fatal stroke resulted in
improved sensitivity but did not result in decreased specificity. Increasing
the number of years of administrative data had a large impact on agreement
between the two data sources and also on sensitivity. However, the positive
predictive value of identifying stroke cases from the administrative data
decreased as the number of years of administrative data decreased, and was
quite low for the five-year algorithm with the highest sensitivity. Estimates
of stroke prevalence for the algorithms with the highest estimates of agree-
ment and the highest values of Youden’s index ranged from 2.9% to 3.8%.

Agreement between survey and administrative data was predicted by several
characteristics of individuals, including age, sex, the presence of comorbid
conditions, and income level. Regression analyses revealed that for both
cross-sectional and longitudinal data, the prevalence estimates from different
stroke algorithms varied with the sociodemographic characteristics of the
population, as well as over time. There was a strong region effect in both the
cross-sectional and longitudinal models, which suggests that geographic dif-
ferences may exist in the rate of hospitalization for stroke or the rate of
physician visits for stroke. Surprisingly however, region of residence was not
a predictor of agreement between survey and administrative data.
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The results of this
research indicate
that administrative
data can be used to
validly identify cases
of asthma, diabetes,
and hypertension in
Manitoba when
survey data are
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CHAPTER 9: CONCLUSIONS AND RECOMMENDATIONS

9.1 Summary of Findings

This report evaluated the use of Manitoba’s administrative data to identify
chronic disease cases. This work builds on previous research conducted in
Manitoba that investigated the use of administrative data to identify cases of
such diseases as inflammatory bowel disease, diabetes, dementia, and depres-
sion.

This research adds to the body of literature on validation studies of adminis-
trative data in a number of important ways. First, it systematically consid-
ered the added value of prescription drug data for identifying disease cases.
For some diseases such as asthma, the validation results indicated that pre-
scription drug data were essential to achieve maximum agreement between
survey and administrative data, as well as maximum sensitivity. For other
diseases, such as diabetes, the advantage associated with using prescription
drug data, in addition to hospital and physician data, to identify disease
cases was much smaller. This was because most cases could be identified
using either of the latter two data sources. Second, this research investigated
the characteristics of the individual that were associated with agreement
between survey and administrative data. The predictors of agreement varied
across the diseases, although age was a statistically significant predictor in all
models. Sociodemographic and comorbidity variables were selected for this
analysis because it is widely recognized that these factors are associated with
health care utilization.

This research also examined the effect that different chronic disease algo-
rithms have on trends in prevalence estimates. For some chronic diseases,
like asthma and stroke, the choice of algorithms had important implications
for understanding changes in disease prevalence over time. The research also
demonstrated that the relative difference in prevalence estimates for different
algorithms is associated with the sociodemographic characteristics of the
population, including age, sex, region of residence, and income quintile.

Finally, the research has contributed to the literature on methods for identi-
fying chronic disease cases from administrative data because it adopted a sys-
tematic approach that used a wide range of validation indices, in addition to
a series of inferential analyses to model the factors that influence prevalence
estimates derived from chronic disease algorithms applied to administrative
data.

The results of this research indicate that administrative data can be used to
validly identify cases of asthma, diabetes, and hypertension in Manitoba
when survey data are adopted as the gold standard. The overall validity of
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administrative data for identifying cases of arthritis, osteoarthritis, coronary
heart disease, and stroke was fair to good, and for rheumatoid arthritis it was
very poor.

However, these validation results may be influenced by the choice of a gold
standard for the research. As indicated in the description of methods, we
selected CCHS data as the gold standard because it is the only other source
of population-based data in Manitoba for identifying cases of multiple
chronic diseases. As well, the large sample size ensured that there were suffi-
cient positive disease cases to validate administrative data algorithms for
even rare diseases such as non-fatal stroke and rheumatoid arthritis.
However, it is evident from the results of this investigation that there is bias
in this data source for chronic disease case identification. Despite the fact
that survey data have been used in previous research to validate arthritis
algorithms, the self-report question in CCHS cycle 1.1 to identify individu-
als with rheumatoid arthritis was not effective in distinguishing those with
the condition from those with another form of arthritis. More than 8.0% of
CCHS respondents in the validation cohort reported a diagnosis of rheuma-
toid arthritis, which is significantly higher than the prevalence estimates
reported using data from other surveys and from clinical registries. Research
has previously demonstrated that administrative data can provide valid case
identification for rheumatoid arthritis (Lacaille et al., 2005). Therefore, a
validation study using an unbiased gold standard data source should be
undertaken for rheumatoid arthritis.

9.2 Recommendations on Using the Research
Results

This research focused on methods for identifying chronic disease cases from
administrative health data. The results of this research will be of greatest
benefit to analysts who are preparing reports about chronic disease preva-
lence in Manitoba, as well as to researchers who are conducting other
methodological studies about the use of administrative data for defining dis-
ease cases. It also has relevantce to researchers from other jurisdictions who
seek to develop chronic disease algorithms that can be applied to their own
administrative data.

Analysts can use the results of this research to select one or more algorithms
to generate chronic disease prevalence estimates for the Manitoba popula-
tion. Depending on the goals of future reports, a chronic disease algorithm
can be selected based on high agreement between survey and administrative
data, high sensitivity to identify positive disease cases, high specificity to
avoid identifying false disease cases, or the maximum combination of sensi-
tivity and specificity. Thus, the validation results can be used like a menu, to
select the algorithm that is best suited to the goal of a future study of chron-
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ic disease prevalence. A high sensitivity algorithm would be selected, for
example, if an analyst wanted to generate a prevalence estimate that would
capture the maximum number of probable disease cases. On the other hand,
a high specificity algorithm would be selected if an analyst wanted to gener-
ate a prevalence estimate that would avoid detecting false positive disease
cases.

Table 36 summarizes the algorithms with the maximum estimates of «, sen-
sitivity, specificity, and Youden’s index for each chronic disease. Crude
provincial prevalence estimates are also provided for each algorithm. For
some diseases more than one algorithm had equivalent (or near equivalent)
maximum estimates of these validation indices. In this table, we report on
the algorithm that had a high value of a statistic but required the fewest
number of years of data, the fewest number of data sources, or the fewest
number of contacts in administrative data.

The results reported in Table 36 indicate that for rheumatoid arthritis and
osteoarthritis, the algorithm with the highest estimate of « is also the algo-
rithm with the highest sensitivity. For osteoarthritis, asthma, coronary heart
disease and stroke, the algorithm with the highest estimate of sensitivity is
also the algorithm with the highest value of Youden’s index.

The crude provincial prevalence estimates for algorithms with the maximum
estimate of x and Youden’s index vary substantially for some diseases. For
example, the prevalence estimate for all forms of arthritis is 20.3% for the
algorithm with the maximum estimate of k and 31.5% for the algorithm
with the maximum estimate of Youden’s index. For coronary heart disease,
however, the prevalence estimates for these two algorithms are very similar.
This finding is consistent with our literature review results. For many of the
diseases, such as arthritis, the estimate of the magnitude of the burden of a
chronic disease on a population is strongly influenced by method used to
identify disease cases.
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Table 36: Crude provincial prevalence estimates for chronic disease algorithms
with the maximum estimates of k, sensitivity, specificity, and Youden’s index

Chronic Algorithm K Sens. Spec. Youden’s Prev.
Disease (%) (%) Index (%)
Arthritis 1+ Hor2+Por (1P &2+ 0.37 51.7 84.9 0.37 20.3
Rx), 2 yrs
1+ P, 5yrs 0.27 78.1 58.6 0.37 47.3
2+ P, 1yr 0.24 25.3 93.8 0.19 9.2
1+ Hor 2+ P, 5yrs 0.35 63.7 75.9 0.40 315
Rheumatoid 1+ P, 5yrs 0.17 113 99.2 0.11 1.6
Arthritis 1+ P, 1yr 0.12 7.4 99.8 0.07 0.7
T+Hor2+Por (1P &2+ 0.17 9.4 99.6 0.11 1.0
Rx), b yrs
Osteoarthritis 1+ P, 5 yrs 0.32 49.9 88.7 0.39 13.2
2+ P, 1yr 0.16 12.3 98.5 0.11 2.3
Asthma 1+ Hor 2+ Por 2+ Rx, 5 0.59 75.4 94.2 0.70 11.6
(All Ages) yrs
1+ Hor 1+ Por 1+ Rx, 5 0.50 84.3 88.6 0.73 17.5
yrs
2+P, 1 yr 0.27 18.1 99.5 0.18 1.9
Coronary 1+ Hor2+Por (1P &2+ 0.55 60.1 96.6 0.60 5.8
Heart Rx), 3 yrs
Disease 1+ Hor1+ P, 5yrs 0.53 67.9 95.0 0.63 7.6
2+ P, 1yr 0.37 28.6 98.8 0.27 2.4
Diabetes T+ Hor 1+ Por 2+ Rx, 2 0.86 86.1 99.2 0.85 6.3
yrs
T+ Hor1+Por1+Rx, 3 0.76 90.5 97.3 0.88 8.2
yrs
1+ Hor2+ P, 1yr 0.73 63.2 99.5 0.63 4.4
1+ Hor 1+ Por 1+ Rx, 2 0.80 89.6 97.9 0.88 7.5
yrs
Hypertension 1+ Hor 1+ P or 2+ Rx, 1 yr 0.70 89.0 89.9 0.79 21.6
T+Hor1+Por 1+ Rx, 3 0.62 92.8 84.0 0.77 27.4
yrs
2+ P, 1yr 0.54 48.4 97.5 0.46 9.3
1+ Hor 1+ Por 1+ Rx, 1 yr 0.68 89.9 88.7 0.79 22.5
Stroke 1+ Hor2+ Por (1P &2+ 0.47 61.5 98.3 0.60 2.9
Rx), byrs’
1+ Hor 1+ P, 5 yrs® 0.43 66.1 975 0.64 3.8
1+ H, 1yr° 0.12 7.3 99.8 0.07 0.2

Note: Values in bold are the maximum k, sensitivity, specificity, or Youden's index values. All prevalence
estimates are defined for the population 19 years of age and older except for asthma, which is defined for
the population 12 years of age and older.

°*Algorithm is based on the sensitive set of ICD-9-CM codes for stroke (430 — 438)

°Algorithm is based on the specific set of ICD-9-CM codes for stroke (430, 431, 434, 435, 436).

Source: Manitoba Centre for Health Policy, 2006

9.3 Future Research Opportunities

This section focusses on future research opportunities in the following areas:
(1) chronic disease validation studies, and (2) research on methods to identi-
fy chronic disease cases from administrative data.

Chronic Disease Validation

Validation data were not available at the time this study was initiated for
two chronic conditions that were of interest to the Working Group. These
were renal disease and CHE CCHS contains one question about the preva-
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lence of CHE but the number of positive cases was too small to conduct a
validation analysis. CCHS does not contain any questions regarding renal
disease. Other validation sources, including disease-specific clinical registries
maintained in Manitoba, could also be investigated for their potential to be
included in future studies.

Tables A.7 and A.8 in Appendix A summarize the results of our review of
literature on methods to identify cases of CHF and renal disease from
administrative data. While the number of validation studies is small, the
results of the literature review indicate that in other jurisdictions, adminis-
trative data have been used to identify cases of both diseases.

The chronic disease algorithms investigated in this report could be validated
using other data sources, including other survey data, clinical registry data,
or chart review data. Further enhancement of population-based health sur-
vey data may contribute to the accuracy of future validation studies involv-
ing administrative data. The adoption of questionnaire content that will
result in accurate information about diagnosed chronic diseases, date(s) of
diagnosis, and specific types or forms of a disease is critical.

Methods to Identify Chronic Disease Cases from Administrative Data

As this report has demonstrated, the sensitivity and specificity of chronic
disease algorithms and the agreement between survey and administrative
data is influenced by several elements of administrative data, including the
type of data source, the number of years of data, and the choice of diagnos-
tic codes used to construct the algorithm. Sensitivity, specificity and agree-
ment may also vary with sociodemographic characteristics of the population,
such as age and region of residence. It is an overwhelming task to test all
possible combinations of data features to identify the algorithm with the
maximum sensitivity and specificity or agreement.

Pattern classification models (Duda et al., 2000), based on probability and
decision theory, may be advantageous for identifying disease cases in admin-
istrative data. The models, which include neural networks, classification
trees, support vector machines, and nearest neighbour methods, have been
applied to classification problems like risk scoring for academic failure,
speech recognition, medical diagnostics, and clinical decision rules (e.g.,
Shanker et al., 2000). These models search for patterns or associations
among data features (i.e., predictor variables) to identify clusters of individu-
als or objects. A large set of data features can initially be included in the
model, and tests of statistical significance conducted to systematically assess
their contribution to the prediction model. The significance of interactions
among predictor variables can also be tested. Estimates of the probability of
misclassification can be obtained.
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Previous research has demonstrated that no one classification model is uni-
formly superior (Balakrishnan et al., 1994; Song et al., 2004). The models
rest on different assumptions about the data distribution, the nature of the
association between the outcome and predictor variables, and the distribu-
tion of the predictor variables. They also vary in their sensitivity to the
amount of noise (i.e., measurement error) in the data. Research is presently
being undertaken by the first author to examine the feasibility of applying
pattern classification models to administrative data for identifying cases of
chronic disease. This research will also identify the techniques that provide
optimal performance identifying disease cases.

Chronic Disease Incidence

Previous research has used administrative data to estimate chronic disease
incidence as well as prevalence (Blanchard et al., 1996; Ellekjaer et al.,
1999). The point in time at which the selected disease algorithm is first sat-
isfied in administrative data is typically used to approximate the date of dis-
ease onset. This empirical method of estimating incidence requires access to
multiple years of linked person-specific longitudinal data and is sensitive to
the length of the study observation period. Estimates at the beginning of the
study period may exhibit substantial bias compared to those later in the
period. Brameld et al. (2003) developed a retrograde survival model for cen-
sored data to adjust empirical incidence estimates for bias due to variations
in the length of the observation period. This model has only been tested
with linked hospital data. It represents a possible gold standard for deriving
incidence estimates from administrative data, but comparison with alternate
methods is needed.

Another approach to estimate chronic disease incidence is to use health state
models. These models only require aggregate data on prevalence and mortal-
ity to estimate incidence (Hill et al., 1999). Figure 59 depicts a simple three-
state model. All individuals in the population are initially assumed disease
free, and to transition either to the disease state or death. The incidence rate
(7) is the transition from the healthy to diseased state and the mortality rate
(7) is the transition rate from disease to death. Rates of disease-specific, all-
cause mortality, and prevalence are used as model inputs. Incidence rates,
assumed to co-vary with age and calendar year, are generated as outputs.
Both deterministic models, based on the theory of differential equations,
and stochastic models, which assume random variation in the relationships
among the health states, have been applied to chronic disease data (Podgor
and Leske, 1986; Brookmeyer and Gray, 2000). Health state models are
appealing for predicting possible trends in incidence using a range of input
values. However, the accuracy of these models in relation to empirical and
other model-based estimates requires evaluation.
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Figure 59: Three-State Model and the Rate of Transition
Between States at Age tin Year y
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Source: Manitoba Centre for Health Policy, 2006

9.4 Conclusions

Public health analysts and researchers at provincial and regional levels
require tools that can be used to develop new chronic disease surveillance
systems or enhance existing systems. Table 37 lists some of the major uses of
surveillance systems, including detection of new public health problems and
identifying risk factors.

Table 37: Uses of public health surveillance data
Uses
Providing quantitative estimates of the magnitude of a health problem
Detecting emergent health problems and epidemics
Documenting the distribution and spread of a health event geographically or among
defined populations
Testing hypotheses
Facilitating planning
Facilitating epidemiologic and laboratory research
Describing the natural history of a condition
Monitoring change in risk factors for health-event occurrence
Detecting changes in health practices
Assessing control and prevention activities
Note: Table is reproduced from Thacker et al. (1995)

Source: Manitoba Centre for Health Policy, 2006

Administrative data are an accessible and inexpensive source of data for
monitoring the prevalence of chronic diseases and have been incorporated
into chronic disease surveillance systems for some diseases in Manitoba as
well as in other jurisdictions. Manitoba benefits from the availability of pop-
ulation-based hospital separations, physician billing claims, and prescription
drug records. This research demonstrates these three sources can be used to
generate valid estimates of the prevalence of multiple chronic diseases for the
entire population.
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GLOSSARY

Administrative Data / Databases. Data collected, usually by government,
for some administrative purpose (e.g., keeping track of the population eligi-
ble for certain benefits, paying doctors or hospitals), but not primarily for
research or surveillance purposes.

Anatomical Therapeutic Chemical (ATC) Classification. The ATC system
is maintained by the World Health Organization (WHO) Collaborating
Centre for Drug Statistics Methodology, and was first published in 1976.
Under this system, drugs are divided into groups at each of five levels
according to the organ or system on which they act and/or their therapeutic
and chemical characteristics. The levels are: (1) anatomical group, (2) thera-
peutic main group, (3) therapeutic/pharmacological subgroup, (4) chemi-
cal/therapeutic/pharmacological subgroup, and (5) subgroup for chemical
substance.

Arthritis. (from Greek arthro-, joint + -itis, inflammation) A group of condi-
tions that affect the health of the bone joints in the body. One in three adult
Americans suffer from some form of arthritis and the disease affects about
twice as many women as men. Arthritic diseases include rheumatoid arthri-
tis and psoriatic arthritis, which are autoimmune diseases; septic arthritis,
caused by joint infection; and the more common osteoarthritis, or degenera-
tive joint disease. Arthritis can be caused from strains and injuries caused by
repetitive motion, sports, overexertion, and falls. Unlike the autoimmune
diseases, osteoarthritis largely affects older people and results from the
degeneration of joint cartilage. See Table 1 for how arthritis was defined for
this study.

. Rheumatoid arthritis (RA) is a chronic, inflammatory autoimmune
disorder that causes the immune system to attack the joints. It is a
disabling and painful inflammatory condition, which can lead to
substantial loss of mobility due to pain and joint destruction. The
disease is also systemic in that it often also affects many extra-articu-
lar tissues throughout the body including the skin, blood vessels,
heart, lungs, and muscles.

. Osteoarthritis (OA) also known as degenerative arthritis or degen-
erative joint disease, and sometimes referred to as “arthrosis” or
“osteoarthrosis”), is a condition in which low-grade inflammation
results in pain in the joints, caused by wearing of the cartilage that
covers and acts as a cushion inside joints. As the bone surfaces
become less well protected by cartilage, the patient experiences pain
upon weight bearing, including walking and standing. Due to
decreased movement because of the pain, regional muscles may atro-
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phy, and ligaments may become more lax. OA is the most common
form of arthritis. The word is derived from the Greek word “osteo”,
meaning “of the bone”, “arthro”, meaning “joint”, and “i#is”, mean
ing inflammation, although many sufferers have little or no inflam-
mation.

Asthma. A disease in which inflammation of the airways causes airflow into
and out of the lungs to be restricted. See Table 1 for how asthma was
defined for this study.

Canadian Community Health Survey (CCHS). The CCHS was conducted
by Statistics Canada to provide regular and timely cross-sectional estimates
of health determinants, health status and health system utilization for 136
health regions in Canada, including the territories. Survey respondents were
sampled from 11 regions in Manitoba. Respondents were 12 years of age
and older; the sampling methodology was designed to ensure over-represen-
tation of youth under 19 years of age and seniors 65 years of age and older.

Chronic Disease. Chronic diseases are those conditions that are generally
incurable, are often caused by a complex interaction of factors, and usually
have a prolonged clinical course.

Confidence Interval (CI) / Limits. An interval, calculated from data, which
contains a population parameter, such as the population median or mean,

with specified probability. For example, a 95% Confidence Interval (written
as 95% CI) would have a 95% probability of containing the true population

value.

Congestive Heart Failure (CHF). Also called congestive cardiac failure
(CCF) or just heart failure, is the inability of the heart to pump a sufficient
amount of blood throughout the body, or requiring elevated filling pressures
in order to pump effectively. CHF is an abnormal cardiac condition that
reflects impaired cardiac pumping and blood flow. The pooling of blood
leads to congestion in body tissue.

Coronary Heart Disease (CHD). Coronary heart disease (CHD), also
called coronary artery disease (CAD), ischemic heart disease, or atheroscle-
rotic heart disease, is the end result of the accumulation of atheromatous
plaques within the walls of the arteries that supply the myocardium (the
muscle of the heart). While the symptoms and signs of coronary heart dis-
ease are noted in the advanced state of disease, most individuals with coro-
nary heart disease show no evidence of disease for decades as the disease pro-
gresses before the first onset of symptoms, often a “sudden” heart attack,
finally arise. After decades of progression, some of these atheromatous
plaques may rupture and (along with the activation of the blood clotting
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system) start limiting blood flow to the heart muscle. The disease is the
most common cause of sudden death. See Table 1 for how CHD was
defined for this study.

Cross-Sectional Study. A study that examines the relationship between dis-
eases (or other health-related characteristics) and other variables of interest as
they exist in a defined population at one point in time. The presence or
absence of disease and the presence or absence of the other variables (or, if
they are quantitative, their level) are determined in each member of the
study population or in a representative sample at one particular time. The
temporal sequence of cause and effect cannot necessarily be determined in a
cross-sectional study. Consequently, disease prevalence rather than incidence
is normally recorded in a cross-sectional study.

Descriptive Analyses. Descriptive statistics are procedures for summarizing,
organizing, graphing, and, in general, describing quantitative information.
Often contrasted with inferential statistics, which is used to make inferences
about a population based on information about a sample drawn from that
population.

Diabetes. A chronic condition in which the pancreas no longer produces
enough insulin (Type I Diabetes) or when cells stop responding to the
insulin that is produced (Type II Diabetes), so that glucose in the blood can-
not be absorbed into the cells of the body. The most common endocrine
disorder, Diabetes Mellitus affects many organs and body functions, espe-
cially those involved in metabolism, and can cause serious health complica-
tions including renal failure, heart disease, stroke, and blindness. See Table

1 for how diabetes was defined for this study.

Drug Identification Number (DIN). An 8 digit number, assigned by the
Therapeutic Products Directorate of Health Canada, to each drug approved
for use in Canada in accordance with the Food and Drug Regulation. The
same drug (e.g. Amoxicillin, 250 mg capsules) can have several different
DINss associated with it (due to different manufacturers).

Generalized Estimating Equations (GEE). A method of estimation used in
the analysis of longitudinal data, which consists of repeated measures of an
individual or cluster of individuals over time. These repeated measures from
any one individual or cluster are correlated with each other and are therefore
no longer independent. GEEs use the data to estimate the correlation
between a single individual or cluster’s response and provide a correct esti-
mate of each effect’s variance.
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Generalized Linear Model (GLM). A unified class of models for regression
analysis of independent observations of a discrete or continuous response. A
characteristic feature of generalized linear models is that a suitable non-lin-
ear transformation of the mean response is a linear function of the convari-
ates. Generalized linear models provide a unified method for analyzing
diverse types of univariate responses (e.g., continuous, binary, counts).
Generalized linear models are actually a collection of regression models and
they include as special cases the standard linear regression for normally dis-
tributed continuous outcomes, logistic regression models for a binary out-
come, or Poisson regression models for counts.

Hospital Discharge Database. Hospital abstracts are completed at the point
of discharge for all separations from acute care facilities in Manitoba. They
include up to 16 diagnosis codes based on the International Classification of
Diseases, 9th Revision, Clinical Modification (ICD-9-CM).

Hypertension. Primary hypertension is often referred to as high blood pres-
sure. The “tension” in hypertension describes the vascular tone of the
smooth muscles in the artery and arteriole walls. It accounts for over 90 per-
cent of all cases of hypertension in the U.S. and develops without apparent
causes. Hypertension is a major health problem, especially because it often
has no symptoms. If left untreated, hypertension can lead to heart attack,
stroke, enlarged heart, or kidney damage. See Table 1 for how hypertension
was defined for this study

Incidence. The number of new cases of a specific disease / condition / event
over a specified time period. The incidence rate uses new cases in the
numerator; individuals with a history of the disease / condition are not
included. The denominator for incidence rates is the population at risk.
Even though individuals who have already developed the condition should
be eliminated from the denominator, incidence rates are often expressed
based on the average population rather than the population at risk. In the
case of chronic conditions, where most people appear to be at risk, the dis-
tinction between populations at risk and the whole population appears to be
less critical.

Inferential Analysis. Inferential statistics allow one to draw conclusions or
inferences from data. Usually this means coming to conclusions about a
population on the basis of data describing a sample. Statistical inference
uses probability and information about a sample to draw conclusions
(“inferences”) about a population or about how likely it is that a result could
have been obtained by chance.

Interaction Effect. The joint effect of two or more independent variables on
a dependent variable. Interaction effects occur when independent variables
not only have separate effects but also have combined effects on a dependent
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variable. Put somewhat differently, interaction effects occur when the rela-
tion between two variables differs depending on the value of another vari-

able.

Kappa. (k), a measure of agreement between two sources, each of which is
measured on a binary scale (i.e., disease present/absent).

Likelihood Ratio Test (LRT). As the name implies, the likelihood ratio is a
ratio of two likelihoods. It is widely used as a test statistic, perhaps especial-
ly for relations among categorical variables displayed in contingency tables.
The smaller the LR, the stronger the relationship. This is because (in com-
parison with the chi-square method) with the LR we attempt to accept a
particular model, not reject a null hypothesis.

Logistic Regression. A regression model for describing the relationship
between a response variable and one or more explanatory variables where the
response variable follows a binomial distribution. Logistic regression is used
to model the probability of occurrence of a binary or dichotomous outcome.

Longitudinal Study. A longitudinal survey describes or measures a popula-
tion at several points in time.

Main Effect. The simple effect of an independent variable on a dependent
variable; the effect of an independent variable uninfluenced by other vari-
ables. Used in contrast with the interaction effect of two or more independ-
ent variables on a dependent variable. There is some controversy about
whether it is appropriate to try to interpret main effects in the presence of
interaction effects.

Manitoba Formulary. The Manitoba Drug Benefits and Interchangeability
Formulary lists therapeutically effective drugs of proven high quality that
have been approved as eligible benefits under the Pharmacare drug benefit
program. It also includes a list of interchangeable drugs. It is compiled
with the advice of the Manitoba Drug Standards and Therapeutics
Committee, assisted by Manitoba Health staff and outside consultants. The
Minister of Health gives the final approval for benefits under the
Pharmacare drug benefit program.

Manitoba Health Services Insurance Plan (MHSIP). The health insurance
plan provided by Manitoba Health. It is financed from general revenues of
the Province of Manitoba and with funds provided by the Government of

Canada.
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Mantel-Haenszel Test. Two groups are compared on a binary response,
adjusting for control variables and applied to K strata of 2 x 2 tables where
response totals are treated as fixed. Under the null hypothesis of conditional
independence, this statistic has approximately a chi-squared distribution

with df=1.

Negative Binomial Regression. Regression analyses for data that follows a
negative binomial distribution, which occurs when an event is relatively rare,
but is highly variable over the entire population.

Negative Predictive Value (NPV). The negative predictive value of a test is
the probability that the patient will not have the disease when restricted to
all patients who test negative. You can compute the negative predictive value
as NPV = TN / (TN + FN) where TN and FN are the number of true nega-
tive and false negative results, respectively. Notice that the denominator for
negative predictive value is the number of patients who test negative.

Odds Ratio. The ratio of the odds of an event occurring in one group to the
odds of it occurring in another group, or to a data-based estimate of that
ratio. These groups might be men and women, an experimental group and a
control group, or any other dichotomous classification.

Offset Variable. An offset variable is used to adjust Poisson and Negative
Binomial models for differential “exposure” in data records (e.g., different
lengths of time periods, populations).

Physician Claims. These are the claims that are submitted to the provincial
government by individual physicians for services they provide. Fee-for-serv-
ice physicians receive payment based on these claims, while those submitted
by salaried physicians are only for administrative purposes. The physician
claims data file is part of the Population Health Research Data Repository.

Poisson Distribution. A probability density function that is often used as a
mathematical model of the number of random events in a suitable interval
of time and space, that has its mean equal to its variance, and that is used as
an approximation to the binomial distribution. The distribution function
has the form: P(X =x)= 9_1/1%| where P is the probability that X is some
value x, which acquires non-negative integral values, and A is the mean
number of occurrences in the specified interval.

Poisson Regression. Regression analyses for data that follow a Poisson distri-
bution. Poisson regression is often the best choice for modeling counts of
rare events, such as death.
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Population Health Research Data Repository (PHRDR). A comprehensive
database developed to describe and explain patterns of health care and pro-
files of health and illness. It is located at the Manitoba Centre for Health
Policy (MCHP). The database contains anonymized encounter-based
records of individual’s interactions with the health care system, including
physicians, hospitals, nursing homes, home care, and pharmaceutical pre-
scriptions. The Repository also includes data from other agencies, for exam-
ple, Statistics Canada data at the level of enumeration area. Subsets of the
data are used in specific approved research projects.

Population Registry. Refers to the Research Registry, which contains data
on the insured population organized by family registration numbers. The
research registry contains information on dates of coverage, age, sex, and
place of residence (by postal code and municipal code only; no addresses are
contained in the file). Annual snapshots of this data have been received since
1970. Information on marital status has been constructed from the family
registration information. A massive programming effort maintained over
many years has joined these snapshot files together such that individual his-
tories can be constructed over the entire period of the data base. This results
in the creation of the longitudinal population registry; many checks have
been done on this registry. Software has been developed to facilitate longitu-
dinal follow-up or mobility, migration, and mortality.

Population Surveillance. Langmuir, one of the originators of the modern
concept, defined population surveillance in 1963 as ‘the continued watchful-
ness over the distribution and trends of incidence through the systematic
collection, consolidation and evaluation of morbidity and mortality reports
and other relevant data’. He pointed out that intrinsic to the concept of sur-
veillance is the regular dissemination of information derived from the data
to all who require it.

Positive Predictive Value (PPV). The positive predictive value of a test is the
probability that the patient has the disease when restricted to those patients
who test positive. This term is sometimes abbreviated as PPV. You can com-
pute the positive predictive value as PPV = TP / (TP + FP) where TP and
FP are the number of true positive and false positive results, respectively.
Notice that the denominator for positive predictive value is the number of
patients who test positive.

Prescription Drug Database - Drug Programs Information Network
(DPIN). An electronic, on-line, point-of-sale prescription drug database. It
links all community pharmacies (but not hospitals or nursing care
homes/personal care homes [PCHs]) and captures information about all
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Manitoba residents, including most prescriptions dispensed to status
Indians. DPIN contains information such as unique patient identification,
age, birth date, sex, medication history, over-the-counter medication history,
patient postal code, new drug prescribed, date dispensed, and unique phar-
macy identification number. DPIN is maintained by the Government of
Manitoba’s Ministry of Health.

Prevalence. The term prevalence refers to the proportion of the population
that ‘has’ a given disease at a given time. The measure of a condition in a
population at a given point in time is referred to as point prevalence. A sec-
ond type of prevalence is called period prevalence. Over a period of time,
such as five years, this measures the number of individuals with a particular
condition in the population during that time period. Period prevalence is
the most common measure of prevalence used in MCHP studies. Prevalence
data provide an indication of the extent of a condition and may have impli-
cations for the provision of services needed in a community.

. Period Prevalence. The measure of a disease or condition in a popu-
lation during a given point in time. It is a combination of point
prevalence and incidence.

. Point Prevalence. The measure of a disease or condition in a popula-
tion at a given point in time.

Regional Health Authority (RHA). In 1997, Manitoba established 11
RHAs as governance structures for northern and rural health services: South
Eastman, South Westman, Brandon, Central, Marquette, Parkland, North
Eastman, Interlake, Burntwood, Norman and Churchill. Winnipeg was
originally divided into 2 additional authorities: the Winnipeg Community
and Long Term Care Authority and the Winnipeg Hospital Authority. Each
RHA has the responsibility for providing for the delivery and administration
of health services in a specified geographic area.

Renal Disease. The kidneys are bean-shaped excretory organs. Part of the
urinary system, the kidneys filter wastes (especially urea) from the blood and
excrete them, along with water, as urine. The adjective meaning “kidney-
related” is renal, from the Latin. Any diseases that affect the blood vessels,
including diabetes, high blood pressure, and atherosclerosis (hardening of
the arteries), can impair the kidneys ability to filter blood and regulate flu-
ids in the body. Disease and infection in other parts of the body can also
trigger a kidney disorder. Because kidney impairment can be life-threaten-
ing, disorders and diseases that may affect the kidney deserve prompt atten-
tion. Kidney disease often causes no symptoms until late in its course and
can lead to end-stage kidney failure, which is fatal unless a dialysis machine
is used or a kidney transplant is performed. There are more than 100 disor-
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ders, diseases, and conditions that can lead to progressive destruction of the
kidneys.

Respondent Attrition. Loss of subjects (e.g,. respondents answering ques-
tions in a survey or interview) over the course of the research project.
Attrition may be a source of bias if the subjects who are lost make the sam-
ple less representative of the population.

Sensitivity. One of two indices used to evaluate the accuracy of a test that
predicts dichotomous outcomes (e.g. logistic regression). It is the number of
“true positives” (those testing positive who have the disease), divided by all
those with the disease.

Specificity. One of two indices used to evaluate the accuracy of a test that
predicts dichotomous outcomes (e.g. logistic regression). It is the number of
“true negatives” (those testing negative who do not have the disease), divided
by all those without the disease.

Standard Error. In statistics, the standard error of a measurement, value or
quantity is the standard deviation of the process by which it was generated,
after adjusting for sample size. In other words the standard error is the stan-
dard deviation of the sample mean. The standard error of a sample from a
population is the standard deviatjon of the sampling distribution and may
be estimated by the formula: 9}, where o is the standard deviation of the
population distribution and n is the size (number of items) in the sample.

Stroke. A stroke occurs when there is a sudden death of brain cells due to a
lack of oxygen when the blood flow to the brain is impaired by blockage or
rupture of an artery to the brain. Symptoms of a stroke depend on the area
of the brain affected. The most common symptom is weakness or paralysis
of one side of the body with partial or complete loss of voluntary movement
or sensation in a leg or arm. Other common symptoms include speech prob-
lems, weak facial muscles, numbness and tingling. A stroke involving the
base of the brain can affect balance, vision, swallowing, breathing and con-
sciousness.

Survey data. Collected through a research design in which a sample of sub-
jects is drawn from a population and studied (usually interviewed) to make
inferences about the population.

Validity. In statistics a valid measure is one which is measuring what it is
supposed to measure. Validity implies reliability (accuracy). A valid measure
must be reliable, but a reliable measure need not be valid. Validity refers to
getting results that accurately reflect the concept being measured.
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Venn diagram. A Venn diagram is an illustration of the relationships
between and among sets, groups of objects that share something in com-
mon. Usually, Venn diagrams are used to depict set intersections (denoted
by an upside-down letter U). This type of diagram is used in scientific and
engineering presentations, in theoretical mathematics, in computer applica-
tions, and in statistics.

Vital Statistics. A Manitoba government department responsible for keeping
records and registries of all births, deaths, marriages and stillbirths that take
place in Manitoba.

Wald Test. The Wald statistic represents the square of the ratio between the

regression coefficient and its standard error. This statistic follows a 32 distri-
bution with one degree of freedom, which is equal to the standard normal
distribution squared.

Youden's Index. The index is defined as sensitivity + specificity — 1, where
sensitivity and specificity are calculated as proportions. Youden’s index has
minimum and maximum values of —1 and +1, respectively, with a value of
+1 representing the optimal value for an algorithm.
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Appendix Table A.8 Continued
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APPENDIX B: SUPPLEMENTARY DATA FOR ARTHRITIS

ALGORITHMS
Appendix Table B.1: Supplementary data for arthritis algorithms
ATC Code Generic Name
Disease-Modifying AO7ECO1 sulfasalazine
and Anti-Rheumatic JO1AAQ8 minocycline
Drugs (DMARDS): LOTAAO1 cyclophosphamide
Xenobiotic Agents LO1BAO1 methotrexate
LO4AAO01 cyclosporine
LO4AAT3 leflunomide
LO4AX01 azathioprine
L0O4AX03 methotrexate
MO01CBO1 sodium aurothiomalate
MO01CB03 auranofin
MO01CB04 aurothioglucose
MO01CCO1 penicillamine
PO1BA02 hydroxychloroquine
DMARDS: Biological L04AA11 etanercept
Agents LO4AAT2 infliximab
LO4AAT4 anakinra
LO4AAT7 adalimumab
Analgesics NO2AA05 oxycodone
NO2ADO1 pentazocine
NO2BA51 codeine in combination
NO2BEO1 acetaminophen
NO2BE51 paracetamol, combinations excluding psycholeptics
RO5DA03 hydrocodone
RO5DA04 codeine
R0O5DA05 opium alkaloids with morphine
Glucocorticosteroids H02AB04 methylprednisolone
HO02AB06 prednisolone
HO2AB07 prednisone
HO02AB08 triamcinolone
HO02AB10 cortisone
Non-Steroidal Anti- MO01AHO3 valdecoxib

Inflammatory Drugs MO01AAQ1 phenylbutazone
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Appendix Table B.1 Continued

(NSAIDs) MO1ABO1 indometacin

MO1ABO2 sulindac

MO1ABO3 tolmetin

MO1ABO5 diclofenac

MO1ABO8 etodolac

MO1AB15 ketorolac

MO1AB55 diclofenac in combination

MO1ACO1 piroxicam

MO1AC02 tenoxicam

MO1AC06 meloxicam

MO1AEOQ1 ibuprofen

MO1AEO02 naproxen

MO1AEO03 ketoprofen

MO1AEO04 fenoprofen

MO1AE09 flurbiprofen

MO1AE11 tiaprofenic acid

MO1AE12 oxaprozin

MO1AGO1 mefenamic acid

MO1AHO1 celecoxib

MO01AHO02 rofecoxib

MO1AX01 nabumetone

MO2AA anti-inflammatory preparations, non-steroids for
topical use

MO02ABO1 capsicum

MO02AC preparation with salicylic acid derivations

MO02AX03 dimethyl sulfoxide

Other MO4AA preparation inhibiting uric acid production

NO2BA11 diflunisal

NO2BAO1 acetylsalicylic acid

NO2BAO3 choline salicylate
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APPENDIX C: ADDITIONAL VALIDATION RESULTS FOR
ARTHRITIS ALGORITHMS

Appendix Table C.1: Estimates of agreement, sensitivity, specificity, and predictive values for additional arthritis algorithms

# Algorithm x Sens. Spec. Youden PPV NPV
Years (%) (%) (%) (%)
L 1 1+ Hor 1+ Por 1+ Rx 0.28 63.5 70.0 0.34 40.1 85.8
2 1+ Hor2+Por1+Rx 0.33 57.8 77.9 0.36 45.3 85.4

3 1+ Hor2+Por2+ Rx 0.35 48.5 85.5 0.34 51.5 84.0

2 4 1+ Hor1+Por 1+ Rx 0.24 75.1 57.6 0.33 35.9 87.9
5 T+ Hor2+Por 1+ Rx 0.30 70.5 67.1 0.38 40.4 87.8

6 1+ Hor2+Por2+Rx 0.33 61.8 76.1 0.38 45.0 86.3

8 7 1+Hor1+Por1+Rx 021 82.4 48.6 0.31 33.7 89.7
8 1+ Hor2+Por 1+ Rx 0.26 77.7 58.5 0.36 37.2 89.2

9 T+ Hor2+Por2+Rx 0.30 68.5 68.8 0.37 411 87.3

5 10 1+Hor1+Por1+Rx 0.16 88.4 36.8 0.25 30.8 912
11 1+ Hor2+ Por 1+ Rx 0.21 85.3 46.8 0.32 33.7 91.0

12 1+ Hor 2+ Por2+ Rx 0.27 78.1 58.5 0.37 37.4 89.4

Note: H = Hospital separation; P = Physician claim; Rx = Prescription drug record

Appendix Table C.2: Estimates of agreement, sensitivity, specificity, and predictive values for additional rheumatoid
arthritis algorithms

# Algorithm K Sens. Spec. Youden PPV NPV
Years (%) (%) (%) (%)
! 1T 1+Hor1+Por1+Rx 0.1 7.8 99.1 0.07 43.9 92.3
2 T+ Hor2+Por 1+ Rx 0.12 7.8 99.3 0.07 50.7 92.3

3 T+ Hor2+Por2+Rx 0.10 6.5 99.4 0.06 50.0 92.2

2 4  1+Hor1+Por 1+ Rx 0.12 9.8 99.4 0.09 35.2 92.4
5 1+Hor2+Por1+Rx 0.13 9.6 98.8 0.08 42.7 92.4

6 1+ Hor2+Por2+Rx 0.11 7.8 99.0 0.07 41.9 92.3

8 7 1+Hor1+Por1+Rx 0.14 11.8 97.8 0.10 32.9 92.5
8 T+ Hor2+Por 1+ Rx 0.15 11.8 98.5 0.10 41.2 92.6

9 T+ Hor2+Por2+Rx 0.12 9.4 98.7 0.08 39.8 92.4

5 10 T+ Hor 1+ Por 1+ Rx 0.12 12.4 96.9 0.09 26.2 92.5
11 1+ Hor2+Por1+Rx 0.10 10.0 97.3 0.07 247 92.3

12 1+ Hor 2+ Por2+Rx 0.14 12.4 97.9 0.10 34.6 92.6

Note: H = Hospital separation; P = Physician claim; Rx = Prescription drug record
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Appendix Table C.2: Estimates of agreement, sensitivity, specificity, and predictive values for additional rheumatoid

arthritis algorithms

# Algorithm x Sens. Spec. Youden PPV NPV
Years (%) (%) (%) (%)
! 1 1+Hor1+Por 1+ Rx 0.11 7.8 99.1 0.07 43.9 92.3
2  1+Hor2+Por1+Rx 0.12 7.8 99.3 0.07 50.7 92.3

3 1+Hor2+ Por2+Rx 0.10 6.5 99.4 0.06 50.0 92.2

2 4 1+ Hor 1+ Por 1+ Rx 0.12 9.8 99.4 0.09 35.2 92.4
5 T+ Hor2+Por 1+ Rx 0.13 9.6 98.8 0.08 42.7 92.4

6 1+ Hor2+Por2+ Rx 0.1 7.8 99.0 0.07 41.9 92.3

3 7 1+Hor1+Por 1+ Rx 0.14 11.8 97.8 0.10 32.9 92.5
8 1+Hor2+Por1+Rx 0.15 11.8 98.5 0.10 41.2 92.6

9 1+ Hor2+ Por2+Rx 0.12 9.4 98.7 0.08 39.8 92.4

® 10 1+Hor 1+ Por 1+ Rx 0.12 12.4 96.9 0.09 26.2 92.5
11 1+ Hor2+ Por 1+ Rx 0.10 10.0 97.3 0.07 24.7 92.3
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PoINT ESTIMATES AND CONFIDENCE

INTERVALS FOR VALIDATION INDICES

APPENDIX D
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APPENDIX F: ADDITIONAL VALIDATION RESULTS FOR
ASTHMA ALGORITHMS

Appendix Table F.1: Estimates of agreement, sensitivity, specificity, and predictive values

for asthma algorithms, all ages (COPD & emphysema removed)

# Algorithm K Sens. Spec. Youden PPV NPV
Years (%) (%) (%) (%)
1 1 1+P 0.39 30.6 98.7 0.29 66.8 94.3
2 2+P 0.27 17.9 99.4 0.17 73.4 93.4
3 1+ Rx 0.48 53.6 95.5 0.49 50.7 96.0
4 1+Hor1+P 0.39 31.0 98.7 0.30 66.5 94.3
5 1+Hor2+P 0.27 18.5 99.4 0.18 72.9 93.4
6 1+Hor1+P
or 1+ Rx 0.49 56.8 95.1 0.52 50.1 96.3
7 1+Hor2+P
or 2+ Rx 0.47 44.8 97.3 0.42 59.0 95.4
2 8 1+P 0.49 44.2 97.9 0.42 63.8 95.3
9 2+P 0.40 30.2 99.0 0.29 71.5 94.3
10 1+ Rx 0.51 68.6 93.4 0.62 471 97.2
11 1+Hor1+P 0.49 45.0 97.8 0.43 63.7 95.4
12 1+Hor2+P 0.40 31.2 98.9 0.30 71.2 94.4
13 1+Hor1+P
or 1+ Rx 0.51 71.6 92.7 0.64 45.8 97.4
14 1+Hor2+P
or 2+ Rx 0.53 55.8 96.3 0.52 56.7 96.2
3 15 1+ P 0.52 53.1 96.8 0.50 58.4 96.0
16 2+P 0.46 37.9 98.5 0.36 68.8 94.9
17 1+ Rx 0.50 73.8 92.0 0.66 441 97.6
18 1+Hor1+P 0.52 53.6 96.7 0.50 58.2 96.1
19 1+Hor2+P 0.46 38.7 98.5 0.37 68.3 94.9
20 1+Hor1+P
or 1+ Rx 0.49 76.9 90.9 0.68 42.0 97.9
21 1+Hor2+P
or 2+ Rx 0.55 64.9 95.3 0.60 54.3 96.9
5 22 1+P 0.54 63.7 95.1 0.59 52.9 96.8
23 2+P 0.53 50.5 97.5 0.48 63.7 95.8
24 1+ Rx 0.49 80.9 89.9 0.71 40.6 98.2
25 1+Hor1+P 0.54 63.7 95.1 0.59 52.6 96.8
26 1+Hor2+P 0.53 50.7 97.4 0.48 63.0 95.8
27 1+Hor1+P
or 1+ Rx 0.46 83.8 88.3 0.72 38.0 98.5
28 1+Hor2+P
or 2+ Rx 0.56 74.6 93.8 0.68 50.9 97.7
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Appendix Table F.2: Estimates of agreement, sensitivity, specificity, and predictive values
for asthma algorithms, 50+ years (COPD and emphysema removed)

# Algorithm K Sens. Spec. Youden PPV NPV
Years (%) (%) (%) (%)
1 1T 1+P 0.39 32.0 98.5 0.30 60.0 95.4
2 2+P 0.29 20.1 99.4 0.19 69.4 94.7
3 1+ Rx 0.44 65.7 92.8 0.58 38.9 97.5
4 1+Hor1+P 0.39 325 98.4 0.31 59.1 95.4
5 1+Hor2+P 0.30 20.7 99.3 0.20 67.3 94.7
6 1+Hor1+P
or 1+ Rx 0.44 66.9 92.4 0.59 38.3 97.5
7 1+Hor2+P
or 2+ Rx 0.46 56.8 95.0 0.52 44 .4 96.9
2 8 1+P 0.47 45.0 97.6 0.43 56.3 96.2
9 2+P 0.38 29.6 98.8 0.28 62.5 95.2
10 1+ Rx 0.42 74.0 90.1 0.64 34.4 98.0
11 1+Hor1+P 0.48 46.7 97.5 0.44 56.4 96.3
12 1+Hor2+P 0.39 31.4 98.7 0.30 62.4 95.3
13 1+Hor1+P
or 1+ Rx 0.41 75.1 89.5 0.65 33.5 98.1
14 1+Hor2+P
or 2+ Rx 0.45 63.9 93.5 0.57 40.8 97.4
3 15 1+ P 0.48 53.3 96.3 0.50 50.6 96.7
16 2+ P 0.42 36.1 98.2 0.34 58.7 95.6
17 1+ Rx 0.40 76.9 88.6 0.66 32.2 98.2
18 1+Hor1+P 0.49 54.4 96.3 0.51 50.5 96.8
19 1+Hor2+P 0.42 37.3 98.1 0.35 57.8 95.7
20 1+Hor1+P
or 1+ Rx 0.39 79.3 87.7 0.67 31.1 98.4
21 1+Hor2+P
or 2+ Rx 0.44 68.6 92.2 0.61 38.3 97.7
5 22 1+P 0.50 60.9 95.2 0.56 47.2 97.2
23 2+ P 0.46 44.4 97.6 0.42 56.0 96.2
24 1+ Rx 0.38 81.1 86.9 0.68 30.3 98.5
25 1+Hor1+P 0.49 60.9 95.1 0.56 46.8 97.2
26 1+Hor2+P 0.46 45.0 97.4 0.42 54.7 96.2
27 1+Hor1+P
or 1+ Rx 0.37 84.0 85.7 0.70 29.2 98.7

28 1+Hor2+P
or 2+ Rx 0.45 75.7 91.2 0.67 37.5 98.2
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APPENDIX G: ADDITIONAL VALIDATION RESULTS FOR
CORONARY HEART DISEASE ALGORITHMS

Appendix Table G.1: Estimates of agreement, sensitivity, specificity, and predictive values for additional coronary heart
disease algorithms

# Algorithm K Sens. Spec. Youden PPV NPV
Years (%) (%) (%) (%)
L 1 1+Hor 1+ Por 1+ Rx 0.31 80.3 82.6 0.63 24.8 98.3

2 1+Hor1+Por2+Rx 0.32 78.7 84.0 0.63 25.9 98.3

2 3 1+Hor1+Por1+Rx 0.30 83.8 81.3 0.65 24.2 98.6

4  1+Hor 1+ Por2+Rx 0.32 82.2 82.9 0.65 25.4 98.5

3 5 T+Hor1+Por 1+ Rx 0.30 87.1 80.2 0.67 23.9 98.9

6 1+Hor1+Por2+Rx 0.32 85.2 82.0 0.67 25.2 98.7

Note: H = Hospital separation; P = Physician claim; Rx = Prescription drug record
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