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Abstract 

Following the 1993 recommendation of the United Nations System of National Accounts, 
Statistics Canada has switched to using the Fisher chain formula as the official measure 
to record real expenditure-based GDP in the national accounts in May 2001.  This 
eliminates the substitution-bias problem associated with the Laspeyres formula and yields 
more accurate measures of economic growth.  However, with Fisher chain quantity data, 
aggregate levels do not equal the arithmetic sum of components.  In this paper, we 
discuss the properties of Fisher indexes, explore various approximation formulas for 
aggregation and subtraction using Fisher chain data, and derive output and price growth 
decomposition formulas.  We also propose solutions to the difficulties that arise when 
modelling capital stock-flow accumulation rules and inventory investment. 

 

Sommaire 

À la suite de la recommandation des Nations-Unis de 1993 concernant le système de 
comptabilité nationale, Statistique Canada a choisi d’utiliser la formule idéale de Fisher à 
titre de mesure officielle pour enregistrer le PIB fondé sur les dépenses dans les Comptes 
nationaux en mai 2001. Ce changement élimine le problème de préférence de 
substitutions associé à la formule Laspeyres et améliore la précision de la mesure de la 
croissance de l’activité économique. Cependant, avec la chaîne de données de Fisher, 
l’agrégat n’égale pas à la somme arithmétique de ses composantes. Dans le présent 
document, nous discuterons des propriétés des index de Fisher, nous explorerons les 
diverses formules d’approximation pour l’agrégation et la soustraction à l’aide de la 
chaîne de données de Fisher, et nous dériverons les formules de décomposition pour les 
taux de croissance agrégés et les taux d’inflation en contributions des éléments. Nous 
proposerons aussi des solutions pour les difficultés qui surviennent lors de la 
modélisation des règles d’accumulation du capital national, de la circulation des capitaux 
ainsi que des investissements dans les stocks. 
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1. Introduction 

One of the most fundamental and difficult tasks of any statistical agency is to 

properly separate price changes from changes in the quantity produced when recording 

economic activities.  Before 2001, Statistics Canada used the Laspeyres formula to record 

activities in the Canadian system of national accounts.  In the Laspeyres approach a base 

year is chosen such that the values of production of all commodities are evaluated at the 

prices prevailing in the base year.  The advantage of the Laspeyres-type fixed-weight 

formula is its simplicity and ease of interpretation.  Simply adding and subtracting 

components allows one to define new aggregates. 

The Laspeyres formula, however, does have drawbacks.  Because statistical 

agencies only change the base year once every few years, distortions are introduced when 

rapid relative price changes occur.  In 1993, the United Nations System of National 

Accounts recommended that member countries switch to using Fisher chain indexes that 

update price and quantity weights every period.  The U.S. Department of Commerce 

began to implement this recommendation in 1996, followed by Statistics Canada in May 

2001. 

The Fisher chain formula eliminates the substitution-bias problem.  However, 

aggregate levels no longer equal the arithmetic sum of components.  In this paper, we 

discuss the properties of the Fisher chain formula and the challenges faced when using 

these data.  We then propose solutions to these challenges. 

2. The Laspeyres formula and substitution bias 

The Laspeyres formula values quantities in terms of a fixed set of base year 

prices.  This fixed-weight measure represents the value of output at period t as if all 

prices had remained at their base-year levels. 

This has many advantages.  The level of GDP is constructed as the sum of its 

components.  This additive property allows one to create various sub-aggregates by 

simple aggregation or subtraction of the required components, and shares of components 

of output add up to unity.   
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The fixed-weight formula does have undesirable properties.  Because prices are 

fixed at the base year, the measure of real GDP growth is base-year dependent.  This 

problem is particularly acute when some components of GDP are experiencing rapid 

price changes.  Typically, economic agents substitute towards goods and services whose 

prices are declining.  The further one moves from the base year, the nominal share of 

such goods in total expenditure will fall further below the base-year fixed-weight share.  

Too great a weight will thus be assigned to goods and services with falling prices and 

rising demand, and too little to those with rising prices and falling demand.  This is the 

well-known problem of “substitution bias” associated with fixed-weight formulae.1   

During the 1990s, the substitution bias was exacerbated by large computer price 

declines and associated increases in real demand.  Frequent changes in the base year can 

resolve part of the substitution bias problem.  This would move current prices closer to 

those in the base year, and gives a more accurate estimation of GDP growth.  Changing 

base years, however, could cause other problems.  For example, in each rebasing 

exercise, the usual practice of Statistics Canada was to preserve the post-rebasing and 

pre-rebasing growth rates of GDP components.  This, however, caused the level of the 

sum of the GDP components to differ from the level of the aggregate GDP prior to the 

latest base year.  To remedy this, Statistics Canada introduced “adjustment entries” for 

final demand categories to satisfy the level adding-up constraint.  These adjustment 

entries, however, had no economic content or interpretation.  Also, although the history 

of the growth rates of GDP components was preserved, the history of the levels of these 

components changed every time the base year is changed.  Frequent base year changes 

meant frequent changes to history.  

The treatment of new products that are introduced between base years is another 

problem faced by the fixed-weight formula.  It is difficult to evaluate price differences 

between existing and new products if the period between changes in the base year is too 

long.  This can add to the substitution-bias problem if there are large changes in the 

prices of new products. 

                                                 
1 See Annex 1 for an algebraic example of substitution bias. 
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3. Fisher chain formula 

In May 2001, Statistics Canada switched to using Fisher chain formula as the 

official measure to record real expenditure-based GDP in the national accounts.  The 

formula uses a Fisher index ( F
tG ) with weights from two adjacent time periods to 

calculate the change in real GDP (and its components): 

∑
∑

∑
∑
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− ×=
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G ,      (3.1) 

where the p’s and q’s are prices and quantities of elemental components of GDP.  Note 

that the first term of the Fisher index is a Laspeyres index which uses last period’s prices 

as weights and the second term is a Paasche index which uses the current period’s prices 

as weights.  The Fisher index is thus a geometric average of the Laspeyres and the 

Paasche indexes.   

Given the Fisher index of GDP growth of equation (3.1), the level of real GDP 

( FQ ) at time t is constructed as: 

F
t
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t GGGQQ L210= .       (3.2) 

0Q  is the value of real GDP in the reference year.  If real GDP is expressed as an quantity 

index, then 0Q  is set equal to 100 (or 1) in the reference year.  If real GDP is expressed 

as chained dollar, then 0Q  is set equal to the reference-year nominal GDP.  Equation 

(3.2) defines the level of real GDP by setting it equal to its value in the reference year and 

then “chaining” it backward and forward from the reference year using its growth rates.  

Similar to equation (3.2), the price index of Q is calculated using the Fisher 

formula of: 

∑
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The Fisher chain price index is then defined as 

F
t

FFF
t PP πππ L210= ,        (3.4) 

where 0P  is the value of the index in the reference year, usually set equal to 100. 

The Fisher formula has important advantages over fixed-weight formulae.  Since 

the current value of the index depends only on the current and last-period prices and 

quantities, there is no base year problem and no substitution bias.  The Fisher formula 

updates price and quantity movements in each period.  This means that the weights and 

the contribution of components to GDP growth are revised regularly, eliminating the 

substitution bias associated with fixed-weight formulae.  New products can be 

incorporated more easily under the Fisher formula and the estimation of their contribution 

to GDP growth is more accurate. 

4.  Some basic properties of the Fisher chain formula 

(a) The product of a Fisher chain index (or chained dollar) and the Fisher chain price 

index at period t, after adjusting for base-period nominal value, is equal to its 

nominal value at period t. 

To see this, using equations (3.2) and (3.4) to give 
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    N
tN Q

Q
PQ ××=

0

00  .       (4.1) 

where ∑= tt
N
t qpQ ; NQ0  is the nominal value at t = 0, the reference period.  The only 

difference between whether F
tQ  is a quantity index or chained dollar series when writing 

equation (4.1) is the normalizing factor (the first term on the right-hand side of the 

equation).  If F
tQ  is a quantity index, then 0Q  equals 100; if F

tQ  is a chained dollar 

series, then 0Q  equals the nominal value in the reference period.   

Note that the properties of equations (4.1) work well for annual data where the 

values of Q0 is either set equal to 100 or to its annual nominal value and 0P  is set equal to 

100.  This is not true for quarterly data where no reference quarter exists.  Hence, we 

have to adjust the values of 0Q  and 0P  properly in order to preserve the properties of 

(4.1).  This requires setting the values of 0Q  and 0P  such that the four-quarter average of 

F
tQ  in the reference year is either equal to 100 or its nominal value in the reference year, 

and F
tP  equals 100. 

Assuming “time 0” is defined as the first quarter of the reference year and all time 

subscripts are quarterly.  For the case where F
tQ  is a chain index, we require: 
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For the case where F
tQ  is a chained dollar series, we require: 
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(b) The product of the change in the Fisher chain quantity index (or chained dollar) and 

the change in the Fisher chain price index is equal to the change in its nominal value. 

This follows directly from equations (3.1) and (3.3) since: 
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The right-hand side of equation (4.5) gives the gross growth rate of nominal Q. 

(c)  The Fisher chain price index of a chain variable Q is also its implicit price deflator. 

The implicit price deflator is defined as: 

0IPD
Q
QIPD F

t

N
tF

t ×=   ;        (4.6) 

that is, the implicit price deflator is the ratio between the nominal value and the chained 

dollar value, normalized by a scale factor 0IPD  so that the annual average value in the 

reference year is equal to 100.  

From equation (4.1), we have  
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F
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F
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F
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NQ
PQIPD

0

00
0

×
=   .         (4.7) 

For annual data, we require 1000 =IPD .  Since NQQ 00 =  and 1000 =P , it is obvious that 

equation (4.7) holds.   

For quarterly data, we require that the four-quarter average of F
tIPD in the 

reference year equals 100, that is, assuming “time 0” is defined as the first quarter of the 

reference year and all time subscripts are quarterly, we require 
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or this is equivalent to show that 
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Using (3.2) and (4.5), we have  
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which shows (4.9) and hence (4.7) hold. 
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(d)  Non-additive: With Fisher formula, the quantity of an aggregate is not equal to the 

arithmetic sum of its components. Therefore, the ratio of a component to the aggregate 

does not represent its share in the aggregate.  

With the fixed-weight Laspeyres formula, an aggregate is equal to the sum of its 

components.  This is easy to see.  Let Y  be an aggregate consisting of two components 

C and I .  Then t
ICi

i
t

iI
t

IC
t

C
tt YqpqpqpIC ≡=+≡+ ∑∑∑

= ,
000 . 

This additive property does not apply under the Fisher chain formula.   This is 

clear from the definition of equations (3.1) and (3.2) where the Fisher chain aggregate is 

not equal to the sum of its components.  This property of Fisher chain quantity invalidates 

the concept of “real share”.  In fact, the sum of the ratios of the components to the 

aggregate is not equal to unity.  To show this, consider an example where the ratio of a 

Fisher chain component, say, investment in the ICT sector to the aggregate total 

investment in M&E is given by 
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t

MEME

ICT
t

ICTICT

t

t

GGGME
GGGICT

ME
ICT

××××
××××=

.....
.....

210

210   

ME
t

ICT
t

ME

ICT

ME

ICT

G
G

G
G

G
G

ME
ICT ⋅⋅⋅⋅= L

2

2

1

1

0

0   .     (4.10)  

0ICT  and 0ME  are nominal values of tICT  and tME  in the reference period, and the G’s 

are Fisher growth rates.  Equation (4.10) shows that the ratio represents the accumulation 

of relative growth rates only and does not have the conventional “share” interpretation.  

We can see that if the growth rates of the component are greater than those of the 

aggregate, then the ratio of the component to the aggregate can be greater than unity.  

This means that the component can be greater than the aggregate.  This property is very 

different from the fixed-weight Laspeyres formula.  Under the Fisher chain formula, we 

can only rank the relative importance of the components by their relative contribution to 

the growth of the aggregate. 
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5. Fisher aggregation and subtraction 
 

As noted earlier, a Fisher aggregate is not equal to the arithmetic sum of its 

components.  However, very often when analysing economic events we need to create 

sub-aggregates by eliminating one or more components of an aggregate or to create 

broader aggregates by combining different aggregates.  In this section, we  discuss three 

methods to resolve the aggregation and subtraction problems when using Fisher chain 

data: the Laspeyres index approximation, the "Fisher of Fishers", and the Tornqvist index 

approximation.  All three are designed to use growth rates of Fisher data together with 

equation (3.2) to derive new Fisher aggregate levels.  We compare the aggregates created 

using these three methods to actual data to verify their accuracy.  Note that since we are 

using higher-level sub-aggregate data in our demonstrations and not elemental data, no 

approximation method can exactly reproduce original Fisher chain data from Statistics 

Canada. 

 
5.1  The Laspeyres approximation method 

Aggregation 
 

Suppose we want to create a Fisher aggregate Y consisting of components 
nXXX ,,, 21 L .  Because of the non-additive property of the Fisher chain formula, we 

cannot create Y by simply adding up the Xs.  However, we can approximate Y  by using 

Laspeyres indices of both Y and the Xs. 

Note that the nominal value of Y is given by n
tttt XXXY +++= L21 .  Assume 

that each component X is made up of elemental components whose quantity is 

represented by q with price p.  Then: 

 ∑= i
t

i
t

i
t qpX   ,   ni ,...,2,1= .     (5.1) 

We can write the Laspeyres quantity index for the aggregate Y  as: 
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where 
tt qp∑  represents the sum of all the elemental components that are contained in 

nXXX ,,, 21 L .  The Laspeyres chain quantity index for Y is defined as: 
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t GGYY ×××= L10        (5.3) 

where Y0 is a scaling factor.  Similarly, for the components nXXX ,,, 21 L , we can write 

the Laspeyres quantity index for each of the X as 
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Multiplying both sides of equation (5.4) by the last period nominal share of iX  in Y and 

then summing the Laspeyres quantity indices for all the X’s to give: 
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Using equation (3.1), we can write the Fisher quantity index of Y as: 
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If 1−= tt pp  in equation (5.6), then 
LF Y

t
Y
t GG = .  Therefore, we can approximate the 

Fisher quantity index of equation (5.6) using equation (5.5), substitute the Laspeyres 

quantity indices of 
Li

tG by 
Fi

tG to obtain:  

∑
= −

−×=
n

i t

i
tFi

t
FY

t Y
X

GG
1 1

1   .        (5.7) 

Equation (5.7) is the formula based on the Laspeyres approximation to create a Fisher 

chain quantity index such that nXXXY +++= L21 .  It expresses the growth rate of the 

aggregate as a weighted sum of the growth rates of its components, where the weights are 

previous-period nominal shares.  If movements in component prices are not drastic from 

period to period, then the product of a component’s growth and its lagged nominal share 

is a good approximation of the component’s contribution to the real growth of aggregate 

Y .2 

Subtraction 

We can also use the Laspeyres approximation method to create new variables by 

excluding components from existing aggregates.  For example, based on the Fisher 

aggregation formula of equation (5.7), we can derive a Fisher subtraction formula for a 

new variable 1X  such that nXXXYX −−−−= L321 .  

To show this, we rearrange equation (5.7) to yield:  
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Thus the real growth of component 1X  is:  
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2 See Landefeld and Parker (1997), and Landefeld, Parker and Triplett (1995). We will discuss the 
contribution-to-growth issue in detail in Section 6.  
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Equation (5.9) is the formula for Fisher chain quantity index subtraction.  Once 

we calculate 
F

tG1 , we can use equation (3.2) to chain backward and forward to create the 

level series for 1
tX .  Since the sum of nominal shares of all components equals 1, at times 

it is easier to write equation (5.9) as: 
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There is yet another way to calculate 
F

tG1 .  Note that the algebraic subtraction of 

nXXXYX −−−−= L321  is equivalent to the algebraic aggregation of 

)()()( 321 nXXXYX −++−+−+= L .  We can thus directly use the Fisher aggregation 

formula of (5.7) to calculate 
F

tG1 .  That is, 
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fact, equation (5.11) is equivalent to equation (5.10).  From equation (5.11), we have: 
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which is exactly the same as equation (5.10).              
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5.2  The "Fisher of Fishers" approximation method 

Aggregation 

Another way to aggregate is to use the Fisher quantity index of equation (3.1) 

directly.  Because most users of data do not have access to elemental data on price and 

quantity but only their sub-aggregates, this method is commonly known as the “Fisher of 

Fishers” method. 

Consider the same example of Section 5.1 where we want to create a chain 

quantity index of Y consisting of components nXXX ,,, 21 L .  For convenience, we 

introduce the following notations: 

i
tP  ≡  the Fisher chain price of iX  at time t , for ni L,2,1= ; 

i
tQ  ≡  the Fisher chained-dollars of iX  at time t , for ni L,2,1= ;  

i
t

i
ti

t Q
Q

G
1−

=  is the real growth rate of iX  at time t , for ni L,2,1= . 

i
tP  and i

tQ  are properly normalized so that the product of price and quantity is equal to 

its nominal value, that is, 

i
t

i
t

i
t QPX =  ;      ni L,2,1= .       (5.12) 

Using equation (3.1), we can approximate the growth rate of Y by the "Fisher of Fishers" 

method: 
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Using the equality i
t

i
t

i
t QPX = , for ni L,2,1= , we can write equation (5.13) as 
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where the term YX i / is the nominal share of the i th component.  Equation (5.14) is the 

formula for Fisher aggregation based on "Fisher of Fishers" approximation. 

Subtraction 

Consider the problem of constructing the sub-aggregate 
nXXXYX −−−−= L321 .  We can derive the “Fisher of Fishers” method for 

subtraction from the aggregation formula of (5.14).  We can rewrite (5.14) as: 
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Equation (5.15) is a quadratic function of 1
tG  of the form:  

                 0)( 121 =++ ttttt cGbGa  

where  
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The economically feasible solution is the non-negative root of the quadratic equation 

given by 
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Equation (5.16) is the same formula proposed by the Macroeconomic Advisers Inc. for 

Fisher subtraction.3 

Using equation (5.16), however, is rather cumbersome.  An alternative, and 

simpler, way to do the Fisher subtraction of nXXXYX −−−−= L321  is to directly 

use the Fisher aggregation of equation (5.14) and treat the subtraction as 

)()()( 321 nXXXYX −++−+−+= L .  That is, 
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Analytically, equation (5.17) is not equivalent to (5.16), but both are good 

approximations.  However, equation (5.17) is much easier to use and interpret, and avoids 

problems that are commonly associated with quadratic equations. 

The "Fisher of Fishers" aggregation and subtraction formulas are applicable only 

to non-negative economic variables but not to variables with both negative and positive 

values such as net exports and changes in inventories.  The formulas based on Laspeyres 

approximation, however, are applicable in both cases. 

                                                 
3 See Ben Herzon (2000).  Note that when using Fisher chain sub-aggregates rather than the elemental 
components, this formula provides a good approximation but can never exactly reproduce the original real 
growth of the sub-aggregate 1X . 
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5.3  The Tornqvist approximation method 
 

The third approximate method to address the Fisher aggregation and subtraction 

problems is based on the Tornqvist index.4 

The Tornqvist Quantity Index is defined as 
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It expresses the (log) growth rate of an aggregate as a weighted sum of the (log) growth 

rates of its components, where the weights are averages of nominal shares in the current 

and previous periods. 

Based on the Tornqvist approximation of equation (5.18), the formula for Fisher 

aggregation of n
tttt XXXY +++= L21  is given by: 
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and the formula for Fisher subtraction nXXXYX −−−−= L321  derived from the 

equation (5.19) is: 
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Since ∑
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Therefore, we can write the subtraction formula of equation (5.20) as: 

                                                 
4 See Whelan (2000). 
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Again, an alternative formula for Fisher subtraction nXXXYX −−−−= L321  is the 

direct application of the Fisher aggregation formula of (5.19) to  

)()()( 321 nXXXYX −++−+−+= L , that is, 

Fi
t

t

i
t

n

i t

i
tFY

t
t

t

t

tF
t G

X
X

X
X

G
X
Y

X
Y

G ×
−

+
−

+×+=
−

−

=−

− ∑ )(
2
1)(

2
1

1
1

1

2
11

1

1
1

1 .   (5.22) 

Unlike the method based on Laspeyres approximation, formula (5.22) is not 

analytically equivalent to (5.21).  

5.4  Comparing the accuracy of different approximation methods 

We have described three approaches to derive the Fisher aggregation and 

subtraction formulas.  Analytically, it is impossible to compare their approximation 

accuracies.  Instead, we compare the empirical performance of these formulas using 

Fisher volume indexes and Fisher chained-dollar data from Statistics Canada.  The 

sample period spans from 1981Q1 to 2000Q3. 

For each approximation formula, we test its aggregation and subtraction accuracy 

against actual data.  When we test for aggregation accuracy, we create the aggregate by 

using its components and compare the resulting growth rate and level to the actual 

aggregate.  When we test for subtraction accuracy, we remove components from their 

aggregate and compare the resulting growth rate and level to the actual sub-aggregate 

data. 

To judge the formulas’ growth-rate approximation accuracy, we compare the 

percentage deviation of the approximated growth rates from the actual growth rates for 

various formulas, that is, we calculate F
tt GG −(100 ) where Gt is the approximated 

growth rate.  For tractability, we report only the average of the deviations for the full 
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1
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−
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t
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ttn GG . 

To judge the ability of the formulas to approximate levels (both chain index and 

chained dollar) of actual data, we compare the percentage difference of calculated chain 

level relative to the original chain level for different approximation formulas, that is, we 

calculate )1/(100 −F
tt YY  where Yt  is the approximated level.  Again, we only report the 

average of the differences for the whole sample ∑
=

−
n

t

F
ttn YY

1

1 )1/(100  and the average 

variation of the squared differences 2

1

1 ))1/(100(∑
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−
n

t

F
ttn YY . 

Table 1 (see Annex 2) reports the results of the Fisher aggregation accuracy of the 

three formulas.  For example, for the variable GDP excluding statistical discrepancy and 

inventories, we create an equivalent variable by combining data from consumption 

expenditures, government expenditures, government and business investment, exports, 

and imports.  The growth rates and levels of the resulting variable are then compared to 

the actual data.  Results in Table 1 show that the Laspeyres approximation and the Fisher 

of Fishers are able to reproduce the actual data quite accurately while the Tornqvist 

approximation performs less well. 

Table 2 (see Annex 2) reports the results of the accuracy of Fisher subtraction.  

For example, for the variable durable goods, we create an equivalent variable by 

removing semi-durable goods, non-durable goods, and services from total consumption 

expenditures.  Again, as in Table 1, we compare the growth rates and levels of the 

resulting variable to the actual data.  We also report the results of two different ways of 

doing the Fisher subtraction.  The first method uses the direct subtraction of 
nXXXYX −−−−= L321  while the other uses the negative aggregation method of 

)()()( 321 nXXXYX −++−+−+= L .  Results show that both the Laspeyres 

approximation and the “Fisher of Fishers” are quite accurate in reproducing the actual 
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data, whether by using the direct subtraction method or the negative aggregation method.  

Similar to the results in Table 1, the Tornqvist approximation performs less well.  Table 3 

(see Annex 2) reports the results of Fisher subtraction using chain index data.  

Results of Tables 1 to 3 show that the Tornqvist approximation method is the least 

accurate.  While the results based on the "Fisher of Fishers" are slightly better than the 

Laspeyres approximation in most cases, both methods provide good approximations. 

Therefore, the “Fisher of Fishers” is the preferred method for the purpose of more 

accurate calculation of an aggregate when all the components are positive.  On the other 

hand, the method based on the Laspeyres approximation is simpler to use.  For these 

reasons, the Laspeyres approximation is most widely used in practice5 and this is also the 

method that we recommend for modelling purposes.  For subtractions based on "Fisher of 

Fishers", we recommend the direct application of negative aggregation to the Fisher 

aggregation formula because it is equally accurate as the formula proposed by the 

Macroeconomic Advisers Inc. but much simpler to use.  

6.  Decomposition of inflation and contribution to growth 

Under the Laspeyres formula, the contribution of a component’s inflation rate to 

the aggregate price inflation is given by the share-weighted component’s inflation rate.  

In Section 4, we showed that under the Fisher chain formula the ratio of a component to 

the aggregate does not represent the component’s share in the aggregate.  Therefore, we 

need to devise a different formula to evaluate a component’s contribution to aggregate 

inflation.  In this section, we derive a new method to decompose aggregate inflation rate 

when using Fisher chain data.  We present an empirical example to demonstrate the 

efficacy of this method.  As a corollary, we also present the derivations to decompose 

aggregate growth rate into its components’ contribution.   

Consider an aggregate Q consists of n  components indexed as ni ,,1 L= .  From 

equation (4.5), we can write the nominal growth rate of the aggregate Q as 

                                                 
5 See the whole issue of Journal of Economic and Social Measurement, vol. 24 (2), 1998. Also see papers 
mentioned in footnote 2. 
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We can rewrite equation (6.2) as  
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where i
t
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t p
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≡π  is the gross inflation rate of component i ,  i
t
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t q
q
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i
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iN
t pqq ×≡,  is the nominal value of 
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Similarly, we can rewrite equation (6.1) as  
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We can now use equations (6.3) and (6.4) to derive the formulas for decomposing the 

inflation rate and growth rate contribution. 

Component’s contribution to aggregate inflation rate 

We can solve for F
tπ  by adding equation (6.3) to (6.4) to give 
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Subtracting 1 from both sides of equation (6.5) gives 
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Equation (6.6) is the desired equation to decompose aggregate inflation rate into its 

components’ contribution.  It expresses the aggregate inflation rate as a weighted sum of 

its components’ inflation rates where the weights are determined by the component’s 

nominal share adjusted by relative chain growth rates. 

Component’s contribution to growth rate 

We can also use equations (6.3) and (6.4) to derive an equation to decompose the 

aggregate chain growth rate.  To show this, rewrite equation (6.3) as  
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Subtracting 1 from both sides of (6.7) gives the desired equation: 
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Equation (6.8) decomposes the chain aggregate growth rate into a weighted sum 

of the chain growth rates of its components.  Equations (6.6) and (6.8) are symmetric: 

equation (6.6) decomposes an aggregate inflation rate into a weighted sum of each 

components’ inflation rate where the weights are determined by relative chain growth 

rates; equation (6.8) decomposes a chain aggregate growth rate into a weighted sum of its 

components’ chain growth rates where the weights are determined by relative inflation 

rates. 

If we rewrite equation (6.8) as 
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we would obtain the growth decomposition method of Whelan (2000) and the BEA.  

Although equations (6.8) and (6.9) are equivalent, equation (6.8) has the advantage that it 

identifies the contribution explicitly as a weighted sum of individual chain growth rates, 

which gives a much clearer interpretation than equation (6.9). 

Comparing equation (6.7) to the aggregation formula based on Laspeyres 

approximation of equation (5.7), we can see that equation (5.7) is a special case of 

equation (6.7) where all the component inflation rates are the same as the aggregate 
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inflation, that is, F
t

i
t ππ =  for all i .  Therefore, when the elemental components are used, 

the contribution to growth formula of (6.7) and its equivalent “Fisher of Fishers” 

aggregation formula (5.14) will hold exactly, while the Laspeyres formula of (5.7) is only 

an approximation.  

Note that the contribution to growth of formulas (6.7) or (6.8) and the inflation 

decomposition formulas of (6.5) or (6.6) are derived using the elemental components.  It 

is likely that these equations will not hold exactly when higher-level sub-aggregates are 

used as is the case in most macroeconomic analyses and modelling. 

Empirical example of inflation decomposition 
 

Next, we will empirically evaluate the efficacy of equation (6.6) using higher-

level sub-aggregates.  As an example, we decompose the inflation rate of aggregate 

machinery and equipment (M&E) into its contributing components.  In order to simplify 

the results presented below, we further aggregate some components into higher-level sub-

aggregates.6  We combine automobiles, trucks, and other transportation equipment into 

“transport”, agricultural machinery and industrial machinery aggregate into “machinery”; 

and furniture and other machinery and equipment into “rest of M&E”.  This simplifies 

the reporting results but at the expense of introducing additional aggregation errors into 

our decomposition. 

Chart 1 presents the differences between actual annualized quarter-to-quarter 

M&E price inflation and the weighted sum of components’ inflation rates based on 

equation (6.6).  Note that the differences, or the contribution errors, are small and centre 

on zero. 

                                                 
6 The aggregation is constructed using Fisher-of-Fishers aggregation method. 
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Chart 2 presents the decomposition of M&E price inflation for the year 2000.  The 

components’ contributions, weights, and inflation rates are included. 
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7.  Remodelling real identities and inventory investment 

Under the Laspeyres formula, identities using quantity (or real) variables in large 

macroeconomic models such as the Canadian Economic and Fiscal Model (CEFM) of the 

Department of Finance are typically specified by simple arithmetic adding or subtracting 

of components.  This cannot be done using Fisher chain formula.   

Rewriting these real identities to conform to the properties of chain Fisher 

formula is quite straightforward.  However, rewriting the equations for inventory 

investment is more difficult.  In this section, we describe the basic framework for 

rewriting real identities, and the problems associated with re-specifying inventory 

investment.  We discuss alternative methods that may bypass these problems and suggest 

a new specification for inventory investment. 

7.1  A generic equation for real identities 
 

A straightforward solution to the non-additivity problem is to rewrite all real 

aggregates in growth-rates rather than levels.  Our preferred method is the Laspeyres 

approximation method as discussed in Section 5 because of its simplicity and high degree 

of accuracy.  

Using the Laspeyres approximation method to specify real identities 

Recall that the Laspeyres approximation method specifies the growth rate of a 

chained aggregate as the weighted sum of the growth rates of its components, where the 

weights are last-period nominal component shares.  Specifically, suppose the chained 

aggregate F
tY  consists of components Fn

t
F

t
F

t XXX ,,, 21 L , we can approximate the 

growth rate of F
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where t
i
t

i
t YX /=θ  is the nominal share of component iX , for ni ,,2,1 L= .  Equation 

(7.1) is the basic framework with which we can re-specify real identities.  Note that 

although equation (7.1) specifies F
tY  in terms of its growth rate, we can always retrieve 

its level during simulation once we specify an initial value for F
tY . 

Since equation (7.1) is only an approximation, it will not reproduce F
tY  exactly. 

In terms of model properties, it is convenient to have an exact reproduction of F
tY  when 

simulating over history.  In order to force the right-hand side equal to the left-hand side, 

we include an adjustment variable Radj  such that:   
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θθθ L ,  (7.2) 

where Radj is the difference between the actual (gross) growth rate of F
tY  and the 

weighted sum of the (gross) growth rates of the right-hand side variables.  Hence, 

equation (7.2) holds exactly when simulating using historical data.  

 Chart 3 shows the adjustment series when we use equation (7.1) to approximate 

the growth rate of final domestic demand over the period 1981Q2 to 2000Q4.  If the 

equation approximates the growth rate of final domestic demand well, then Radj should 

fluctuate around zero with no signs of bias.  
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The difference between the actual and estimated growth rate is generally less than 

0.05 percentage points and has a mean value of  -0.00018 percentage points with no sign 

of bias.  Hence, the inclusion of this adjustment series during historical simulation is not 

expected to bias model properties.  

We have tried to extract information from Radj.  Our experience working with 

Radj suggests it contains no useful information that can be exploited.  Experiences of 

other researchers7 also support this conclusion.   

A related modelling question is how to set the values of Radj over the forecast 

period.  Since Radj shows no bias over history, we can set Radj equal to its mean value of 

zero over the forecast periods without affecting underlying forecast scenarios.  Also, 

since Radj fluctuates between positive and negative values without any systematic 

pattern, it is reasonable to set Radj equal to zero starting in the first period of the forecast. 

 

                                                 
7 For example, Chris Varvares of the Macroeconomic Advisers and David Reifschneider of the Federal 
Reserve Board. 
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The estimation of nominal shares 

Equation (7.2) requires nominal values of both Y and iX  for it to be operational 

over the forecast.  Note that the nominal value of a variable is equal to the product of its 

chained quantity and chain price: 

 Fi
t

Fi
t

ii
t PXXX ××= 0 ,  for ni ,,2,1 L= ,              (7.3) 

where iX 0  is a scaling constant and Fi
tP  is the chain price of iX .  Since both quantities 

and prices are usually modeled in most macro models, the nominal value iX  is thus 

available over the forecast periods. 

7.2  Remodelling investment in inventories 
 

A more difficult modelling problem concerns the re-specification of inventory 

investment.  The expenditure accounts include two inventory investment series: 

investment by business and investment by government.  With Laspeyres data business 

investment in inventories is often used as a closing equation to preserve the GDP identity: 

business investment in inventories = GDP -  government investment in inventories 

-  other components of GDP.       (7.4) 

With Fisher chain data, it would appear that equation (7.4) is another straightforward 

application of the Laspeyres approximation method.  However, it turns out that a direct 

application of equation (7.1) is not possible because of the nature of the inventory 

investment data.   

The construction of inventory investment data 

Recall that the formula to calculate the change in a real aggregate Y is a Fisher 

index ( F
tG ) that uses weights from two adjacent time periods: 
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p and q are prices and quantities of elemental components of Y.  Equation (7.5) is the 

general framework used by Statistics Canada to aggregate low-level elementals to create 

higher-level sub-components of GDP.  A problem occurs, however, when constructing 

aggregate business and government inventory investment where the data fluctuate 

between positive and negative values, thereby causing the Laspeyres and Paasche indexes 

to switch signs.  At times this results in taking the square roots of negative numbers in the 

Fisher calculation.8  To bypass this problem, Statistics Canada applies the Fisher formula 

to inventory stocks instead.  This causes no problem since stock values are always 

positive.  In addition, Statistics Canada also constructs a “lagged” inventory stock that 

takes into account the effect of inventory valuation adjustment.  Chained inventory 

investment series are then calculated as the difference between current-period and 

“lagged” stocks.  Note that the “lagged” stock is not the current-period stock lagged one 

period.  

Problems of applying the Laspeyres approximation method to investment in inventory 

By construction, these inventory investment series are not Fisher indexes; hence 

the Laspeyres approximation method will not work well.  A more serious problem is that 

some observations in the quarterly chained investment series have zero values, thereby 

preventing the calculation of their growth rates as required by the Laspeyres 

approximation method.  

A potential way to bypass the zero-value problem is to model total inventory 

investment (business plus government) residually as a single item instead of separately. 

Specifically, we can rewrite the identity as: 

GDP = C + I + G + X – M + YREE + INVT 

where C = personal consumption expenditure; I = business and government gross fixed 

capital formation; G = government expenditure on goods and services; X = exports; M = 

                                                 
8 Although the statistical discrepancy series also contains both negative and positive values, it is a single 
series and does not require using equation (5.5) to do the aggregation. Hence, this series poses no problem. 
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imports; YREE = statistical discrepancy; INVT = business and government inventory 

investment.  We can apply equation (7.1) to the national accounts identity and write it as: 
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We can then solve for the (gross) growth rate of total inventories as  
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Once we calculate the growth rates of total inventory investment, they can be chained 

forward and backward to create a level series. 

Simulation results, however, showed that equation (7.7) does not resolve the 

problem.  Since investment in inventories can at times be very close to zero, a small 

approximation error by equation (7.7) can give rise to a very large estimation error in the 

growth rates.  This translates in large errors in level estimates, substantially reducing the 

usefulness of equation (7.7).  We conclude that a direct estimation of the level of 

investment in inventories based on the Fisher formula is not feasible. 

As an alternative, one could model inventory investment using stocks.  This has 

the advantage that because stocks are always positive, estimating their growth rates are 

much easier than those of investment flows.  This approach, however, requires modelling 

the “lagged” stock (with associated inventory valuation adjustment), which may be more 

difficult than modeling investment flows.  

Modelling inventories as contribution to GDP growth 

Modelling the contribution of business and government inventory investment 

(either separately or as a group) to GDP growth poses fewer problems.  We can modify 

equation (7.6) and write the growth rate of GDP (in percentage terms) as: 
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where INVG is government inventory investment and INVB is business inventory 

investment.  Each term on the right-hand side of equation (7.8) represents the 

contribution of that item to GDP growth.  We can invert equation (7.8) and write the 

growth contribution of business inventory investment equation as: 
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Equation (7.9) is just another way of writing equation (7.7).  The main difference 

is that with equation (7.7) we attempt to recover level estimates of inventory investment.  

With equation (7.9), we are concerned only with the growth contribution of inventory 

investment with no attempt to recover level estimates.  This avoids the large level 

estimation errors we encountered when experimenting with equation (7.7).  Another 

advantage of using equation (7.9) is that component contributions are available from 

Statistics Canada at the same time as the expenditure accounts data release.  This 

eliminates the problem of calculating the growth contribution of inventory investment by 

government.  

Since equation (7.9) is an approximation of actual output growth, we include an 

adjustment series (calculated as the difference between the actual and the approximated 

growth rates) so that equation (7.9) holds exactly over history.  Chart 4 shows that the 

adjustment series fluctuates around zero with mean value of 0.0013 percentage points.  

This suggests that we can set the contribution from inventory investment by government 

to zero over the forecast periods. 
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8.  Stock-flow accumulation rules and depreciation rates of capital stocks 

Stock-flow accumulation rules are common features of macroeconomic models. 

One example of such use is the accumulation of capital stocks using investment flows. 

Typically, current-period capital stock is specified as the sum of current-period 

investment flow plus last period’s capital stock net of depreciation.  However, the non-

additive property of Fisher chain quantity invalidates this method.  This creates two 

problems: first, how to accumulate capital stocks within a model such that they are 

consistent with investment flows; second, how to estimate historical aggregate 

depreciation rates for capital stocks.  

In this section, we propose a method of accumulating capital stocks based on the 

Fisher aggregation of the Laspeyres approximation method.  This allows us to bypass the 

non-additive property of the Fisher chain data.  However, the problem of how to calculate 

chained aggregate depreciation rates remains unresolved.  Based on available 

information, there is no conclusive and unique way to calculate chained depreciation 

rates.  As a result, we resort to using the same calculation method as for Laspeyres data.  

The resulting rates are hence only approximations of the true underlying aggregate 

depreciation rates.  
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8.1  Aggregate depreciation rates 

Original-dollar and Laspeyres constant-dollar depreciation rates 

We will first describe briefly the construction of original-dollar and Laspeyres 

constant-dollar depreciation rates.  This helps to highlight the difficulties encountered in 

calculating depreciation rates with chained data.  We focus on these two capital stock 

measures because the traditional stock-flow accumulation rule holds for them.  

Original-dollar capital stocks are unpublished Statistics Canada data.  They are 

created by simple accumulation of investment series without taking into account the 

effect of price changes.  As such, they are equivalent to the book value of companies’ 

investment.  Statistics Canada also publishes a current-dollar (or replacement cost) 

measure of capital stocks.  However, these series are of limited use for our purpose here 

because the accumulation rule does not hold for them.9 

Suppose an aggregate capital stock ( K ) and an investment ( I ) series each 

consists of n  elemental components nKKK ,...,, 21  and nIII ,...,, 21 , respectively.  For 

each component i , the capital stock is specified as 

 i
t

i
t

i
t

i
t IDKK +−= −1        (8.1) 

where i
tD  is economic depreciation and is given by 

 i
t

i
t

i
t KD 1−=δ  , for ni ,...,2,1=  .     (8.2) 

i
tδ  is the depreciation rate and is usually calculated based on the estimated service life of 

a capital stock.  Using equation (8.2), we can rewrite equation (8.1) as the familiar 

accumulation rule of 

i
t

i
t

i
t

i
t IKK +−= − )1(1 δ ,    for ni ,...,2,1= .      (8.3) 

                                                 
9 See Annex 3 for an explanation of why the accumulation rule does not hold for current-dollar capital 
stocks. 
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The aggregate capital stock ( K ), depreciation ( D ), and investment ( I ) are the simple 

sum of their components: 
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We can use equations (8.1), (8.3), and (8.4) together to obtain 

tttt IDKK +−= −1 .        (8.5) 

Defining the aggregate depreciation rate as 

1/ −= ttt KDδ  , 

the aggregate accumulation rule of equation (8.5) is thus given by: 

tttt IKK +−= −1)1( δ .         (8.6) 

Note that the aggregate depreciation rate is equivalent to the weighted sum of individual 

depreciation rates: 

i
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n

i t

i
t

t K
K δδ )(

1 1

1∑
= −

−=           (8.7) 

where the weights are last-period capital stock shares.  The additive property of equations 

(8.5) and (8.7) holds exactly for Laspeyres constant-dollar and original-dollar capital 

stocks.10  In practice, most modellers calculate the aggregate depreciation rate not from 

(8.7) but by inverting equation (8.6) to get 

 
1

1 )(

−

−−−
=

t

ttt
t K

KKIδ .        (8.8) 

 

                                                 
10 When using Laspeyres constant-dollar data, real capital stocks are used to calculate the weights.  
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Depreciation rate with Fisher chain data 

Chained capital stocks are constructed using constant-dollar series.  For each 

component i , constant-dollar capital stocks are constructed according to 

Ri
t

Ri
t

Ri
t

Ri
t IDKK +−= −1 ,    for ni ,,2,1 L=       (8.9) 

where real depreciation is defined as:  

Ri
t

Ri
t

Ri
t KD 1−=δ ,     for ni ,,2,1 L= .      (8.10) 

Chained aggregate capital stock ( F
tK ), depreciation ( F

tD ), and investment ( F
tI ) are then 

constructed by applying Fisher formula separately to their respective elemental 

components.  Because of the way F
tK , F

tD , and F
tI  are constructed, the identity of 

equation (8.5) will no longer hold and hence cannot be used as an accumulation rule.  

This also implies that equation (8.8) is not a valid way to calculate the implicit aggregate 

depreciation rate.  In fact, the non-additive property implies that we cannot interpret the 

δ  calculated by equation (8.8) with chained data as a depreciation rate. 

A more serious problem is that there is no unique way to calculate aggregate 

depreciation rates for chained capital stocks.11  The general consensus is that any method 

used can only be an approximation of the underlying aggregate depreciation rates, and is 

therefore acceptable as long as it generates “reasonable” depreciation rates.  

We have tried various ways to calculate aggregate depreciation rates and finally 

decided on the rule of12 

F
t

F
tF

t K
D

1−

=δ  .          (8.11) 

                                                 
11 Erwin Diewert of the University of British Columbia, Karl Whelan of the Federal Reserve Board, and 
members of the Capital Stock Division of Statistics Canada also recognised this is a problem encountered 
by macro-economists when using chained data. To our knowledge, no solution has yet been found. 
12 This rule is based on delay-depreciation data. For geometric-depreciation data, we recommend to use the 
rule of )2//( 1

F
t

F
t

F
t

F
t IKD += −δ . 
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Note that this definition of depreciation rate is the same as that for the original-dollar and 

Laspeyres constant-dollar series.  It is also similar to the way Statistics Canada calculates 

elemental depreciation.  Using equation (8.11), we found that depreciation rates for 

chained M&E and non-residential construction capital stocks are similar to those 

calculated using Laspeyres constant-dollar series (see Charts 5 and 6).  Since switching 

from Laspeyres to Fisher formula should not fundamentally affect the values of the 

aggregate depreciation rates, this suggests that equation (8.11) is a reasonable way to 

approximate aggregate depreciation rates.  
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As a demonstration, we have also use equation (8.8) to estimate implicit depreciation 

rates for the two chained capital stocks.  They are intended to highlight the estimation 

errors that will occur if we were to ignore the fact that we have switched to chained data 

but continue to use equation (8.8).  Charts 7 and 8 compare three different estimations of 

depreciation rates for M&E and non-residential construction capital stocks: using 

Laspeyres-1992 dollar series with equation (8.8), using chained-1992 dollar series with 

equation (8.11), and using chained-1992 dollar with equation (8.8) (labelled as equation 

(8.8) in the charts). As we can see the use of the traditional accumulation rule would tend 

to produce an ever-increasing depreciation rate.13 

                                                 
13 See Tevlin, S. and Karl Whelan (2000) for similar results on calculating U.S. depreciation rates. 
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8.2  Stock-flow accumulation rule 

We have also devised an alternative method to replace equation (8.6) as an 

accumulation rule for chained capital stocks.  It is based on the principle that the end-of-

period chain capital stock ( F
tK ) consists of two parts: the usable portion of existing stock 

after allowing for deterioration ( F
t

F
t K 1)1( −−ζ ), and new investment ( F

tI ).  We can then 

apply the Laspeyres approximation method to model current-period growth of capital 

stock as the contribution of the growth of these two components.  This contribution 

equation is the new accumulation rule for capital stocks.  

Specifically, suppose Y is an aggregation of two components, X and Z . 

Although the level of Y is not additive for chain-type quantity series (denoted by the 

superscript F), that is, FFF ZXY +≠ , we can approximate the growth rate of the 

aggregate by the weighted sum of the growth rates of its components: 
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The weight N
t

N
t

t Y
X

1

1
1

−

−
− =θ  in equation (8.12) is given by the nominal share of X in Y in 

period t-1, where the superscript N denotes nominal values.  

Since capital stock consists of current period investment and last period’s capital 

stock net of depreciation, we can apply (8.12) to the capital stock series and write 
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Equation (8.13) expresses the growth rate of chain capital stock as a weighted sum of the 

growth rates of investment flow and last period’s capital stock net of depreciation.  Given 

investment and capital stock data, we can invert equation (8.13) to solve for the unknown 

parameter ζ .  Once ζ  is known, we can use equation (8.13) to accumulate capital stocks 

without violating the non-additive property of the Fisher formula. 

It is easy to show that equation (8.13) holds exactly for Laspeyres constant-dollar 

data.  Recall the accumulation rule for Laspeyres data is given by: 

tttt IKK +−= −1)1( δ  . 

We can write this equivalently as 

)1(
11

t
t

t

t

t

K
I

K
K δ−+=

−−

 

         
21

1

1

21

11

1

)1(
)1()1(

−−

−

−

−−

−−

−

−
−

⋅
−

+⋅=
tt

tt

t

tt

t

t

t

t

K
K

K
K

I
I

K
I

δ
δδ

 

          =
21

1

1

11

11

1

)1(
)1(

−−

−

−

−−

−−

−

−
−

⋅
−

+⋅
tt

tt

t

tt

t

t

t

t

K
K

K
IK

I
I

K
I

δ
δ

 



 41

         =
21

1

1

1

11

1

)1(
)1(

)1(
−−

−

−

−

−−

−

−
−

⋅−+⋅
tt

tt

t

t

t

t

t

t

K
K

K
I

I
I

K
I

δ
δ

.    (8.14) 

Equation (8.14) shows that a level equation can be rewritten into a growth-rate 

equation such that the growth rate of capital stock is determined by the weighted sum of 

investment growth and the last period capital growth rate net of depreciation.  Note that 

unlike equation (8.12) the weights in equation (8.14) are expressed in real shares. 

Conceptually, the F
tζ  from equation (8.13) could approximate the Fisher 

aggregate depreciation rate.  The choice of data used in the accumulation rule, however, 

prevents this interpretation.  The current release of chained capital stocks has 1997 as the 

reference year.  That means the values of chained capital stocks in 1997 are the same as 

their respective nominal stock values.  For this exercise, Statistics Canada uses current-

dollar capital stocks as the nominal measure.  Therefore, for consistency, current-dollar 

capital stocks should be used to calculate nominal weights in the accumulation rule of 

equation (8.13).  Note that in order for equation (8.13) to work properly, the following 

nominal identity has to hold:  

N
t

N
t

N
t

N
t IDKK +−= −1 .       (8.15) 

In this case, the ratio of N
t

N
t KI /  will have a share interpretation.  However, equation 

(8.15) does not hold for current-dollar series because of the effect of lagged price 

adjustments when creating these series. This means we have to use a different nominal 

capital stock series to calculate nominal weights. 

The only available alternative is to use original-dollar series.  These series do 

satisfy equation (8.15), and the ratio N
t

N
t KI /  is indeed the share of investment in the 

capital stock.  They are therefore chosen to calculate nominal weights in the 

accumulation rule.  The problem is that they are not the nominal series used by Statistics 

Canada to set the reference-year values of chained capital stocks.  This results in data 

inconsistencies in the accumulation rule that prevents interpreting F
tζ  as the implicit 
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aggregate depreciation rate.  Therefore, F
tζ  should only be interpreted as a parameter in 

the accumulation rule.  

By setting F
t

F
t

td
11

1

−−
−

=
ζ
ζ

, we can rewrite equation (8.13) as: 
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Since F
tζ  is quite stable from one period to another, dt should be close to unity.  Charts 9 

and 10 show the values of dt for M&E and non-residential construction capital stocks.14  
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The historical values of dt fluctuate around 1 with no bias.  The values of both 

accumulation parameters average to 1 between 1962 and 2000. 

For equation (8.16) to be operational over the forecast, we need forecast values of 

dt and original-dollar capital stocks.15  Since F
tζ  is not likely to change substantially from 

quarter to quarter, dt is expected to remain close to its average value of unity.  Also, from 

Charts 9 and 10, it is very difficult to discern particular patterns for dt .  Hence, it is 

                                                 
14 The calculation is based on chain-1992 data but adjusted to have 1997 as the reference year. 
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reasonable to set the dt for both M&E and non-residential construction capital stocks 

equal to their historical average over the forecast.  

For original-dollar capital stocks, we can apply the accumulation rule of 

(superscripts H represent original-dollar series) 

H
t

H
t

H
t

H
t IKK +−= − )1(1 δ         (8.17) 

to accumulate them using forecast nominal investment.  Over the historical period, the 

nominal depreciation rate H
tδ  can be calculated using equation (8.17). However, we still 

have to decide how to set H
tδ  over the forecast.  One way is to set the growth rate of H

tδ  

equal to the growth rate of the chained depreciation rate.  Charts 11 to 14 compare the 

levels and growth rates of chained depreciation rates and H
tδ  for M&E and non-

residential construction capital stocks.  They show that the growth rates of chained 

depreciation rates and H
tδ  for both types of capital stocks are broadly consistent and 

hence it is reasonable to set their growth rates to be the same over the forecast.  
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15 There is no distinction between current-dollar and original-dollar investment flows. 
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9.  Conclusion 

In principle, the Fisher chain formula provides a better measurement of economic 

activity than the Laspeyres formula.  However, the non-additive property of Fisher chain 

data gives rise to difficulties and challenges when using this type of data for economic 

analysis and modelling.  In this paper, we discuss the properties of Fisher indexes, 

explore various approximation formulas for aggregation and subtraction using Fisher 

chain data, and derive formulas to decompose aggregate output and price growth into 

contributing components.  Empirical results show that while both the "Fisher of Fishers" 

and the Laspeyres approximation methods provide good approximates of actual data, the  

"Fisher of Fishers" performs slightly better.  Therefore, we recommend using the “Fisher 

of Fishers” approximation method for the purpose of constructing aggregates and 

calculating contributions to growth.  However, since the method based on the Laspeyres 

approximation is simpler to use and easier to interpret than the “Fisher of Fishers”, the 

Laspeyres method is the most widely used in practice.  This is also the method that we 

would recommend for the purpose of modelling.  Based on the Laspeyres approximation 

method, we have derived and proposed solutions to the problems in modelling the capital 

stock-flow accumulation rules and in modelling inventory investments. 
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Annex 1 
 
 

A Simple Algebraic Example of Substitution Bias16 
 
 
Consider a simple national accounts identity of: 

 ttt ICY +=  

     R
t

I
t

R
t

C
t IpCp ×+×=        (A1.1) 

where tY , tC , and tI  represent nominal output, consumption, and investment at period t; 

R
tC  and R

tI  represent physical quantities of consumption and investment at period t; C
tp  

and I
tp  represent prices for consumption and investment at period t.  Suppose the base 

period is set at 1992.  We can write the price indexes for consumption and investment as: 

C

C
tC

t p
p

92

=Φ           and            I

I
tI

t p
p

92

=Φ .     (A1.2) 

If  t = 1992, then =ΦC
t =Φ I

t  1.  Using equation (A1.2), the level of consumption 

measured in 1992 prices (or real consumption) is given by  

C
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R
t

C
t

C
t

C
tR

t
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t
C

t
Cp

p
pCpCpC

Φ
⋅

=⋅⋅=⋅= 929292   .    (A1.3) 

Similarly, we can also define real investment as 

I
t

R
t

I
t

t
IpI

Φ
⋅

=92   .        (A1.4) 

Using equations (A1.3) and (A1.4), we can write real output as 

 ttt ICY 929292 +=  

                                                 
16 This Annex draws on the work of Varvares et al (1998). 
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          R
t

IR
t

C IpCp ⋅+⋅= 9292  ,      (A1.5) 

and define the price deflator for output as: 
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The change in 1992-dollar real output is given by: 
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=   .    (A1.7) 

Equation (A1.7) shows that the growth in real output is a weighted sum of the growth in 

real consumption and investment where the weights (in brackets) are last-period real 

shares. 

Using (A1.4) to (A1.6), we can rewrite equation (A1.7) as 
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Equation (A1.8) shows that the weights are dependent on the base period chosen since 

the ratio of the price deflators are base-period dependent.  If the price of investment, for 
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example, I
tΦ  falls faster relative to the aggregate price Y

tΦ , the weight of investment 

increases in the calculation of output growth.   

Typically, when commodities go through rapid price declines (increases), there is a 

tendency for economic agents to substitute towards (away from) those commodities. This 

results in the increase (decrease) in the quantity demanded for those commodities.  Since 

prices are evaluated at the higher (lower) base-period levels, the rapid increase (decrease) 

in the quantity demanded will cause the Laspeyres formula to assign to those 

commodities higher (lower) contribution to overall economic growth. This effect is 

commonly refers to as substitution bias. 
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Annex 2 
 

Table 1: Comparison of Fisher Aggregation 
 

 Growth Rate Chain Level 
 Mean Variance Mean Variance 
 LP FoF TQ LP FoF TQ LP FoF TQ LP FoF TQ 

Chained-dollar            
GDP excluding statistical 
discrepancy and inventories 

-0.001 0.000 0.005 0.000 0.000 0.001 0.024 0.001 -0.232 0.001 0.000 0.080 

GDP excluding statistical 
discrepancy 

0.002 0.003 0.102 0.002 0.001 0.352 0.076 0.018 -3.284 0.009 0.002 18.160 

GDP -0.002 -0.003 -0.102 0.002 0.001 0.350 -0.076 -0.018 3.562 0.009 0.002 21.763 
Final domestic demand 0.000 0.000 0.007 0.000 0.000 0.000 -0.002 0.001 -0.199 0.000 0.000 0.064 
Consumption 0.001 0.000 0.007 0.000 0.000 0.000 -0.015 0.000 -0.146 0.000 0.000 0.043 
Business investment 0.000 0.000 0.036 0.000 0.000 0.003 -0.031 0.003 -1.026 0.002 0.000 1.786 
Exports 0.000 0.000 0.008 0.000 0.000 0.000 -0.006 0.000 -0.245 0.000 0.000 0.102 
Imports 0.000 0.000 0.013 0.000 0.000 0.001 -0.002 0.001 -0.319 0.000 0.000 0.176 
            
Chain index            
Final domestic demand -0.001 0.000 0.007 0.003 0.003 0.003 -0.018 -0.022 -0.077 0.002 0.002 0.032 
Consumption 0.000 0.000 0.006 0.002 0.002 0.002 -0.023 -0.014 -0.098 0.002 0.001 0.034 
Business investment 0.000 0.000 0.036 0.002 0.002 0.005 -0.031 -0.001 -0.353 0.003 0.001 0.861 
Exports -0.001 -0.001 0.007 0.004 0.004 0.005 0.005 -0.001 -0.060 0.002 0.002 0.046 
Imports 0.000 0.000 0.013 0.004 0.004 0.005 0.008 0.009 -0.040 0.002 0.002 0.078 
 
1. LP = Laspeyres approximation; FoF = Fisher of Fishers; TQ = Tornqvist approximation; 
2. The aggregation uses the following relationships: 

GDP excluding statistical discrepancy and inventories = consumption + govt spending + govt investment + business investment + exports - imports; 
GDP excluding statistical discrepancy  = GDP + (-statistical discrepancy); 
GDP = GDP excluding statistical discrepancy  + statistical discrepancy; 
Final domestic demand = consumption + govt spending + govt investment + business investment; 
Consumption = durable goods + semi-durable + non-durable + services; 
Business investment = residential structures + non-residential structures + M&E; 
Exports = export of goods + export of services; 
Imports = import of goods + import of services. 
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Annex 2 (continued)  
Table 2: Comparison of Fisher Subtraction with Chained-Dollar Data 

 
 Growth Rate Chained Level 
 Mean Variance Mean Variance 
 LP FoF TQ LP FoF TQ LP FoF TQ LP FoF TQ 

Panel 1            
Consumption : 0.000 0.000 -0.012 0.000 0.000 0.000 0.002 -0.001 0.342 0.000 0.000 0.192 
        Durable goods -0.005 0.000 -0.053 0.000 0.000 0.008 0.113 0.002 1.149 0.027 0.000 2.650 
        Semi-durable goods -0.006 0.000 -0.068 0.000 0.000 0.012 0.152 0.003 1.531 0.049 0.000 4.695 
        Non-durable goods -0.002 0.000 -0.025 0.000 0.000 0.002 0.056 0.001 0.556 0.007 0.000 0.623 
        Services -0.001 0.000 -0.014 0.000 0.000 0.001 0.030 0.001 0.290 0.002 0.000 0.173 
Business investment: 0.000 0.000 -0.040 0.000 0.000 0.004 0.014 -0.004 1.210 0.001 0.000 2.338 
        Non-res structure & equip 0.000 0.000 -0.033 0.000 0.000 0.003 0.038 -0.003 0.944 0.004 0.000 1.490 
        Residential structure 0.002 0.000 -0.072 0.002 0.000 0.014 0.097 -0.006 1.943 0.023 0.000 6.404 
Government spending  0.000 0.000 -0.031 0.000 0.000 0.003 0.005 -0.004 0.904 0.000 0.000 1.324 
Government investment 0.002 0.001 -0.257 0.006 0.000 0.157 0.067 -0.030 8.151 0.033 0.002 106.647 
Export of goods 0.000 0.000 -0.009 0.000 0.000 0.000 0.007 -0.001 0.282 0.000 0.000 0.134 
Export of services 0.000 0.000 -0.065 0.001 0.000 0.015 0.042 -0.003 2.014 0.004 0.000 6.940 
Import of goods 0.000 0.000 -0.016 0.000 0.000 0.001 0.002 -0.001 0.390 0.000 0.000 0.263 
Import of services -0.001 0.000 -0.075 0.000 0.000 0.025 0.017 -0.004 1.875 0.001 0.000 6.185 
Panel 2            
Consumption:  0.000 0.000 -0.012 0.000 0.000 0.000 0.002 -0.001 0.342 0.000 0.000 0.192 
        Durable goods -0.005 0.000 -0.053 0.000 0.000 0.008 0.113 0.000 1.151 0.027 0.000 2.667 
        Semi-durable goods -0.006 0.000 -0.069 0.000 0.000 0.012 0.152 0.003 1.536 0.049 0.000 4.718 
        Non-durable goods -0.002 0.000 -0.025 0.000 0.000 0.002 0.056 0.002 0.557 0.007 0.000 0.625 
        Services -0.001 0.000 -0.014 0.000 0.000 0.001 0.030 0.001 0.289 0.002 0.000 0.172 
Business investment: 0.000 0.000 -0.040 0.000 0.000 0.004 0.014 -0.006 1.213 0.001 0.000 2.358 
        Non-res structure & equip 0.000 0.000 -0.033 0.000 0.000 0.003 0.038 -0.006 0.944 0.004 0.000 1.491 
        Residential structure 0.002 0.000 -0.072 0.002 0.000 0.014 0.097 0.005 1.948 0.023 0.000 6.417 
Government spending  0.000 0.000 -0.031 0.000 0.000 0.002 0.005 -0.003 0.906 0.000 0.000 1.326 
Government investment 0.002 0.001 -0.257 0.006 0.000 0.158 0.067 -0.034 8.193 0.033 0.003 107.580 
Export of goods 0.000 0.000 -0.009 0.000 0.000 0.000 0.007 -0.001 0.281 0.000 0.000 0.133 
Export of services 0.000 0.000 -0.066 0.001 0.000 0.016 0.042 -0.002 2.053 0.004 0.000 7.184 
Import of goods 0.000 0.000 -0.016 0.000 0.000 0.001 0.002 -0.001 0.389 0.000 0.000 0.262 
Import of services -0.001 0.000 -0.076 0.000 0.000 0.026 0.017 -0.001 1.904 0.001 0.000 6.370 

 
3. LP = Laspeyres approximation; FoF = Fisher of Fishers; TQ = Tornqvist approximation; 
4. Panel 1 uses subtraction formulas of equation (17) for LP, equation (23) for FoF, and equation (28) for TQ; Panel 2 uses negative aggregation 

formulas of equation (18) for LP, equation (24) for FoF, and equation (29) for TQ; 
5. Durable goods  = consumption  - semi-durable goods - non-durable goods - services;  Non-residential structures and equipment = business 

investment  - residential structures;  Consumption = final domestic demand - govt spending - govt investment  - business investment; 
Export of goods  = exports - export services;  Import of goods = imports - import services. 
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Annex 2 (continued) 
Table 3: Comparison of Fisher Subtraction with Chain Index Data 

 
 Growth Rate Chained Level 
 Mean Variance Mean Variance 
 LP FoF TQ LP FoF TQ LP FoF TQ LP FoF TQ 

Panel 1            
Consumption:  0.001 0.001 -0.011 0.009 0.009 0.009 -0.037 -0.031 0.071 0.006 0.005 0.084 
        Durable goods -0.001 0.003 -0.049 0.128 0.131 0.129 -0.043 -0.111 0.539 0.078 0.072 1.675 
        Semi-durable goods -0.001 0.005 -0.063 0.216 0.216 0.219 -0.047 -0.122 0.693 0.142 0.119 2.996 
        Non-durable goods 0.000 0.002 -0.023 0.030 0.030 0.030 -0.006 -0.041 0.263 0.020 0.016 0.413 
        Services 0.000 0.001 -0.013 0.009 0.009 0.009 -0.025 -0.043 0.131 0.006 0.006 0.118 
Business investment: 0.001 0.001 -0.039 0.088 0.089 0.092 -0.062 -0.049 0.250 0.052 0.049 1.019 
        Non-res structure & equip 0.002 0.002 -0.032 0.005 0.005 0.007 -0.016 -0.043 0.239 0.005 0.005 0.652 
        Residential structure 0.004 0.001 -0.069 0.022 0.022 0.034 -0.012 -0.077 0.504 0.022 0.018 2.658 
Government spending  0.002 0.002 -0.029 0.059 0.059 0.062 -0.029 -0.014 0.235 0.030 0.029 0.578 
Government investment 0.013 0.034 -0.245 3.948 3.993 4.092 -0.182 -0.146 1.875 2.206 1.942 46.383 
Export of goods 0.001 0.002 -0.008 0.006 0.006 0.006 -0.005 0.002 0.070 0.003 0.003 0.060 
Export of services 0.012 0.013 -0.054 0.291 0.287 0.306 -0.037 -0.004 0.497 0.137 0.138 3.193 
Import of goods 0.000 0.000 -0.016 0.005 0.005 0.007 -0.043 -0.043 0.017 0.005 0.005 0.110 
Import of services 0.000 0.004 -0.075 0.124 0.121 0.161 -0.161 -0.197 0.135 0.100 0.106 2.961 
Panel 2            
Consumption:  0.001 0.001 -0.011 0.009 0.009 0.009 -0.037 -0.031 0.071 0.006 0.005 0.084 
        Durable goods -0.001 0.004 -0.049 0.128 0.131 0.129 -0.043 -0.113 0.545 0.078 0.072 1.694 
        Semi-durable goods -0.001 0.006 -0.063 0.216 0.216 0.219 -0.047 -0.122 0.695 0.142 0.119 3.010 
        Non-durable goods 0.000 0.002 -0.023 0.030 0.030 0.030 -0.006 -0.040 0.263 0.020 0.016 0.414 
        Services 0.000 0.001 -0.013 0.009 0.009 0.009 -0.025 -0.043 0.131 0.006 0.006 0.118 
Business investment: 0.001 0.001 -0.040 0.088 0.089 0.092 -0.062 -0.050 0.258 0.052 0.049 1.035 
        Non-res structure & equip 0.002 0.002 -0.032 0.005 0.005 0.007 -0.016 -0.046 0.241 0.005 0.005 0.655 
        Residential structure 0.004 0.001 -0.069 0.022 0.022 0.033 -0.012 -0.067 0.495 0.022 0.017 2.641 
Government spending  0.002 0.002 -0.029 0.059 0.059 0.062 -0.029 -0.013 0.232 0.030 0.029 0.576 
Government investment 0.013 0.034 -0.246 3.948 4.000 4.092 -0.182 -0.153 1.867 2.206 1.947 46.566 
Export of goods 0.001 0.002 -0.008 0.006 0.006 0.006 -0.005 0.002 0.070 0.003 0.003 0.060 
Export of services 0.012 0.013 -0.055 0.291 0.287 0.308 -0.037 -0.002 0.493 0.137 0.138 3.274 
Import of goods 0.000 0.000 -0.016 0.005 0.005 0.007 -0.043 -0.043 0.018 0.005 0.005 0.110 
Import of services 0.000 0.004 -0.076 0.124 0.121 0.164 -0.161 -0.196 0.124 0.100 0.106 3.036 

 
6. LP = Laspeyres approximation; FoF = Fisher of Fishers; TQ = Tornqvist approximation; 
7. Panel 1 uses subtraction formulas of equation (17) for LP, equation (23) for FoF, and equation (28) for TQ; Panel 2 uses negative aggregation 

formulas of equation (18) for LP, equation (24) for FoF, and equation (29) for TQ; 
8. Durable goods  = consumption  - semi-durable goods - non-durable goods - services;   Non-residential structures and equipment = business 

investment  - residential structures;  Consumption = final domestic demand - govt spending - govt investment  - business investment; 
Export of goods  = exports - export services;  Import of goods = imports - import services. 
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Annex 2 (continued) 
Table 4 

Comparison of Depreciation Rates (per cent) 
 

Machinery and Equipment Non-residential Construction  
Chain-1992 

dollar 
Laspeyres-1992 

dollar 
Chain-1992 

dollar 
Laspeyres-1992 

dollar 
1962 8.50 9.57 2.51 2.46 
1963 8.09 9.78 2.51 2.46 
1964 9.33 9.98 2.52 2.47 
1965 9.05 10.06 2.51 2.48 
1966 9.09 10.01 2.51 2.49 
1967 8.90 9.80 2.52 2.49 
1968 8.70 9.66 2.52 2.51 
1969 8.80 9.73 2.55 2.54 
1970 8.81 9.81 2.59 2.58 
1971 8.96 9.93 2.63 2.62 
1972 9.12 10.09 2.66 2.66 
1973 9.38 10.30 2.71 2.71 
1974 9.60 10.38 2.75 2.76 
1975 9.68 10.36 2.79 2.81 
1976 9.83 10.36 2.83 2.85 
1977 9.99 10.39 2.86 2.89 
1978 10.25 10.51 2.90 2.93 
1979 10.34 10.73 2.93 2.98 
1980 10.67 10.89 2.97 3.02 
1981 10.64 11.05 2.99 3.04 
1982 10.54 10.89 3.01 3.05 
1983 10.77 11.07 3.04 3.08 
1984 11.09 11.45 3.09 3.14 
1985 11.49 11.90 3.16 3.20 
1986 11.58 12.28 3.22 3.25 
1987 12.37 12.54 3.29 3.32 
1988 12.37 12.72 3.36 3.39 
1989 12.51 12.71 3.42 3.45 
1990 12.42 12.48 3.48 3.50 
1991 12.48 12.60 3.54 3.57 
1992 12.54 12.65 3.60 3.64 
1993 12.59 12.65 3.70 3.73 
1994 12.64 12.73 3.79 3.82 
1995 12.49 12.67 3.85 3.89 
1996 12.35 12.62 3.92 3.95 
1997 12.41 12.72 3.95 3.99 
1998 12.16 12.76 3.96 3.99 
1999 12.45 12.90 3.95 3.98 
2000 11.92 13.06 3.93 3.97 
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Annex 3 
 

 
Why the accumulation rule does not hold for current-dollar capital stock17 

 

 The fact that the construction of current-dollar capital stock incorporates the 

effect of price changes effectively prevents the accumulation rule to hold. Recall that the 

accumulation rule for Laspeyres constant dollar capital stock is specified as: 
R
t

R
t

R
t

R
t DIKK −+= −1 .           (A3.1) 

Current-dollar series are then constructed as: 
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Substitute (A3.2) into (A3.1) to give: 
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If 1−≠ tt PP  (which is true in most cases), the accumulation rule will not hold for current-

dollar capital stocks.  

 
 
 
 

                                                 
17 The derivation is based on information provided to us by Dr. Kuen Huang of the Capital Stock Division 
at Statistics Canada. Any errors, however, are the sole responsibility of the authors. 


