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The Vasicek and CIR Models and the Expectation Hypothesis of the Term Structure

Abstract

A good understanding of the theories of the interest rate term structure is important when
elaborating a debt management strategy and, in particular, when choosing the maturity
structure of the public debt. “Best practises’ of debt management suggest the use of
modern theories of the term structures based on the seminal papers by Vasicek (1977)
and Cox, Ingersoll and Ross (1985). These models have been used to analyse the
maturity structure of the public debt both at the Bank of Canada and at the Department of
Finance, and in other countries [e.g., Danish Nationalbank (2001)].

This paper documents the Vasicek and CIR term structure of the interest rates that has
been introduced into a macro-economic stochastic simulation model (SSM) developed at
the Department of Finance. The final aim will be to use the SSM with aternative term
structures of interest rates to gauge the robustness of our earlier results described in
Georges (2003), which suggests that a shorter debt maturity structure is less expensive on
average and also less risky from the point of view of the overall budget balance if
demand shocks prevail over the business cycle.

Résumé

Une bonne connai ssance des théories de la structure a terme des taux d’ intéréts est une
condition nécessaire al’ élaboration d’ une stratégie de la gestion de la dette publique y
comprit du choix de lamaturité de cette dette. Les pratiques de rigueur en gestion de la
dette utilisent les théories modernes de la gamme des taux basées sur les études de
Vasicek (1977) et Cox, Ingersoll et Ross (1985). Ces modéles ont été utilisés ala Banque
du Canada et au Ministere des Finances, ainsi que dans d’ autres pays [e.g., Banque
Nationale du Danemark (2001)] afin d'analyser la maturité de |a dette publique.

Ce papier documente les structures aterme des modeles de Vasicek et CIR introduits
dans un modéle macro-économique de simulation stochastique (M SS) développé au
Ministére des Finances. L’ objectif ultime serad’ utiliser le MSS avec des structures a
terme aternatives afin d’ examiner la sensibilité de nos résultats antérieurs (Georges
2003) selon lesquels une structure de dette & plus court terme est moins colteuse en
moyenne et moins risquée du point de vue du solde budgétaire si les chocs de demande
dominent au cours du cycle des affaires.
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I ntroduction

A good understanding of the theories of the interest rate term structure isimportant when
elaborating a debt management strategy and, in particular, when choosing the maturity
structure of the public debt. Best practises of debt management suggest the use of
modern theories of the term structures based on the seminal papers by Vasicek (1977)
and Cox, Ingersoll and Ross (1985) (henceforth CIR). These models have been used to
analyse the maturity structure of the public debt both at the Bank of Canada [Bolder
(2002)], and at the Department of Finance [Debt Management Strategy 2003-2004], as
well asin other countries [e.g., Danish Nationalbank (2001)].

Thelevel of analytical complexity of these models and in particular the extensive use of
stochastic calculus has often been a barrier to entry for the typical economist. Although
some papers provide derivations with ahigh level of detail (e.g., Bolder 2001), they often
fail to ultimately convey a clear link between these models and the typical background
that most economists have related to the theory of the interest rate term structure. The
objective of this paper is to demystify these models by demonstrating upfront, with a
minimum level of analytical derivation, that they belong to the class of the biased
expectation theory of the term structure and thus that they “simply” imply that the long-
term interest rate is an average of future expected short rates plus aterm premium.

The second objective of the paper isto document the Vasicek and CIR term structure of
the interest rates that has been introduced into one version of a macroeconomic stochastic
simulation model (SSM) developed at the Department of Finance. The aimisto use the
SSM with aternative term structures of interest ratesin order to gauge the robustness of
our earlier results described in Georges (2003), which suggests that a shorter debt
maturity structure isless expensive on average and also less risky from the point of view
of the overall budget balance if demand shocks prevail over the business cycle.

A good starting point of our analysisisto describe what “modeling” the term structure
means. At any given time, the range of default-free interest rates availablein the
economy is represented by the term structure of interest rates or yield curve. Thisrelates
al the interest rates earned on a default-free discount bond to their term to maturity. For
example, Figure 2 below shows four hypothetical snapshots of the term structure. The
monotonically increasing (decreasing) yield curve illustrates a snapshot of the economy
where long-term rates are higher (lower) than short-term rates. The other two yield
curves are humped with rates being first an increasing, then a decreasing function of the
term to maturity.

Over time, the shape of the yield curveisliable to change, generating a steepening, a
flattening or an inversion of the curve. Yield curve modeling explains how the term
structure evolves over time. To do so, it is assumed that the future dynamics of the term
structure of interest rates depend on the evolution of some factor that follows a stochastic
process.
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The papers by Vasicek and Cox, Ingersoll and Ross assume that this specific factor isthe
instantaneous (very short term) default-free interest rate. A natural assumption is that
one-stochastic variable models either imply that the term structure isflat or that all
interest rates move up or down in line with each other. In fact, thisis not the case; a
fairly rich pattern of term structuresis possible. That said, a shortcoming of the one-
factor model isthat all the information about the economy relevant to the determination
of interest rates is compressed into one stochastic process for very short rates. Hence, a
number of researchers have investigated the properties of several factor models. Both
models of Vasicek and CIR can readily be extended to incorporate a multi-factor
analysis, enriching the modeling of the yield curves by explicitly considering the
covariance structure between the underlying sources of randomness.

To recap, the strong cross-sectional correlation between bond yields of different
maturities has inspired researchers to decompose the correlation structure into a number
of “factors’ that may drive the entire yield curve of a given national bond market. One
initial popular route in the finance literature was to assume some diffusion process for the
short rate and then use arbitrage arguments to find the functional form and relations
between observed yields of bonds with varying maturities [Vasicek (1977), CIR (1985)].
Since then, it has been shown that one class of diffusions for which closed form solutions
exist isthe class of multi-factor affine term structure models [ Duffie and Kan (1996)].
This class embeds as special casesthe Vasicek (1977), CIR (1985), and Hull and White
(1990) models.

The plan of the paper isasfollows. Section 1 shows that the model of Vasicek belongs to
the class of the biased expectations hypothesis. Section 2 addresses the same issue for
the CIR model. Appendixes 1, 3, and 4 provide detailed derivations for both the Vasicek
and CIR models and their more general formulation, the “affine” model. Appendix A2
reviews the traditional typology of the theories of the interest rate term structure [pure
expectation theory (return-to-maturity and local interpretation) and biased expectations
theory (liquidity preference and preferred habitat theory)]. This background material is
what | consider the standard knowledge of the “non-expert” in thisfield. Appendix A5
provides an example of the coding of the Vasicek model in Portable Troll. This paper
can be considered a companion piece to Bolder (2001) in the sense that it treats related
issuesin yield curve modeling (but from a different angle) and uses the same notation.
The paper also providesin appendixes detailed derivations of important steps not covered
by Bolder or for that matter, any other papers or textbooks.

1. TheVasicek model

1. 1 The zero-coupon yield curve

Notation and assumptions

Vasicek analyses pure (zero-coupon) discount bonds, that is, contracts that pay one unit

of currency at maturity with no intermediary coupon payments. Thereis no risk of
default, that is, the payment at maturity will be made with certainty. We denote the
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current value or price of a default-free pure discount bond as the function P(t,T). The
first argument, t, refers to the current time or period, while the second argument, T,
represents the bond’ s maturity date. The term to maturity isthus 7=T-t. Asthe payment
at maturity is $1, the value of the bond at maturity is P(T,T) = 1.

The current price of the bound is simply the present value of the final payment, that is:
P(tT)=— —
e

z(t,T)(T-t)

The zero coupon rate or yield to maturity z(t,T), isap.a. interest rate that is assumed,
here, to be continuously compounded. Taking the logarithm of the expression above,
yields:

(1) Z(t,T) - — ln(P(tlT))

T-t

Vasicek assumes that a market exists for bonds of every term to maturity. That is he
considers a spectrum of maturities ranging from the very long term (when T-t tendsto
infinity) to the shortest possible maturity, when T tendsto t. In this case, the zero coupon
rate is effectively the rate of interest demanded over an extremely short period of time. It
isreferred to as the instantaneous rate of interest (in practice, the overnight interest rate)
and is denoted as:

r) =lim;_, z(t,T)

Vasicek assumes that the instantaneous interest rate follows a mean reverting process a so
known as an Ornstein-Uhlenbeck process:

) dr (t) = k(- r)dt + adW

This processis a continuous time analogue to an auto-regressive process.” The
instantaneous drift k(2 —r) represents aforce that keeps pulling the short rate towards its
long-term mean  with a speed k proportional to the deviation of the process from the
mean. The stochastic element odW, which has a constant instantaneous variance o (i.e.,

avariance per unit of time dt) causes the process to fluctuate around the level Finan
erratic, but continuous, fashion. dWitself is a standard Wiener process|[i.e.,

dW ~ N(0,+/dt)]

! For simulation purpose, we need to discretize this stochastic differential equation. Equation (2) isthe
limiting case ast; —t;.; — O of the following discrete auto-regressive process (see for example Dixit and
Pindyck 1994):

r(t) =9+ (r(t) - 9)e™ ) + ‘SJ

0.2

- (- et ) £ ~ N(0D).
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It can be shown [see Dixit and Pindyck(1994) or Bolder (2001)] that the conditional
expectation of this process given the current level is:

E(rM|r@®)=9+( 1) -9)e™ ™
=9(1- e‘k(T—t)) + r(t)e—k(T—t)

©)
This shows that the conditional expectation of the short rate is aweighted average of the
last period short rate and its long-term mean. As obvious from equation (3), when the
current short rate, r(t) is above (below) the mean reverting level,, it is expected that the
short rate will decrease (increase) in the future. Point 1 in Figure 1 illustrates such a case
whereit is expected that the future short rate will decrease. Only in those cases where the
current short rate is equal to 7 (as at point 2) will it be expected that future short rates
remain a thislevel.

Vasicek assumes that the price P(t,T) of adiscount bound [and thus z(t,T)] is determined
by the assessment, at timet, of the segment {r(X), t < x < T} of the instantaneous rate of
interest over the term of the bond. Aswill be shown in Subsection 1.2, the expectation
hypothesis, the liquidity preference hypothesis and the preferred habitat hypothesis are
theories of the term structure of the interest rates that all conform to this assumption.
Because the process for the short rate in (2) belongs to the class of Markov processes
according to which all information needed to forecast the future path of the variable is
embodied in its current value, Vasicek postulates that P(t,T) isafunction of r(t), that is
P, T) = P(t, T,r(t)).

Figure l: Ornstein-Uhlenbeck processfor thevery short rate

r A r (T)|r (t)~N [,9 +(r(t) -9)e* Y, \/g_; (1_ o 2K(T-t )J

() | 1 \<
I+ (r (t) - ﬂ)e—k('r_t) '
J ® / 79

»  Timehorizon

Finally, Vasicek assumes that the market is efficient; that is, there are no transactions
costs, information is available to all investors simultaneously, and every investor acts
rationally. Thisimplies that investors have homogeneous expectations, and that no
profitable riskless arbitrage is possible.
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Solution

Based on these assumptions, Vasicek develops an analytical expression for the term
structure (or yield curve) of zero coupon rates. Thisexpression is given by:

2

(4) Z(t,T) = k_y2 + (r (9] —k—yzj 1 (1_ e k() )_,. g (1_ ek )2

k(T —t) AC(T —t)
2 2
where the parameter y = kz(ﬂ—a—k/]) —% = kzﬁ—%

A sketch of the solution method is givenin Appendix 1. The parameter A isthe market
price of risk and is explained in further detailsin Appendix 1.
From equation (4), we observe that the zero coupon rate on avery long-term bond is

deterministic and given by: lim; Z(t,T) = k—yz . Theyield of avery short-term bond is

—t o0

givenby lim,_,_,z(t,T) =r(t), theinstantaneous rate of interest.

Figure 2 illustrates the family of yield curvesimplied by equation (4) using the numerical
valuesin Table 1. Theyield curves satisfying (4) start at the current level for the very
short (instantaneous) rate of interest r(t) = lim, _, z(t,T) and approach a common

y

asymptote for the very long rate given by lim_, ., z(t,T) = & When the very short rate

2

isequal or below k_y2 —%% (asat point 1 in Figure 2), the yield curve is monotonically
. : = _y 10 . .
increasing. When the short rate equals or exceeds # = @ + 2 (point 2), the yield

curve ismonotonically decreasing. For intermediary values of the short rate (points 3
and 4), the yield curve is humped.

2 2
The bounds k_y2 - %% and 9 = k_y2 + %% come from an analysis of equation (4): they
are not exogenously imposed bounds but simply result from the model. We will prove
later how to derive boundsin the CIR model in Appendix A3. But the reader can
convince himself/herself that the analytical expression for both bounds isindeed correct
by coding the formula given by equation (4) and the parameters givenin Table 1 in, say,
a spreadsheet, and observe how the shape of the yield curve changes as the short rater is

set below, in between or above these bounds.

Yield curve modeling explains how the term structure evolves over time. Here, itis
assumed that the future dynamics of the term structure of interest rates depends on the
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evolution of the short rate of interest that follows a stochastic process given by (2). As
time passes, shocks push the short rate below, in between, or above the bounds,
generating a steepening, a flattening or an inversing of the curve.?

In conclusion, the Vasicek model implies that the shape of the yield curve essentialy
depends on the value of the short rate relative to some bounds. This explanation seems, a
priori, quite different from the “classical” explanations of the yield curve based on
expected future short rates and premium for risk. This, however, is not the case, as
explained in the next section. In particular, we will show that equation (4) can be
rewritten as:

ft (E.(r1 (1)) )
T -t

7(t,T)

Z(t,T) =

In other words, the long rate is an average of expected short (instantaneous) rates plus a
premium, as assumed by the biased expectation hypothesis.

Figure 2: yield curve modeling in Vasicek (1977)

2(t,T) r(t) =lim.__,z(t,T)
A

N o

2
k—"2+%%=5 =10.4%

=8.49%=lim__, _ z(t,T)

1 Y 29 -75m
o k? 4Kk?

> Term to maturity, T-t

2 One empirical fact isthat the yield curve is upward-sloping more often than downward-sloping.
. _ -30 y 1lo? .
In the Vasicek model, we can show that if A < 7K then & < Z —ZF . Recalling that the short
rate tends to revert to #, this condition implies that we will often observe situations like point 1 in Figure
2, and that the term structure is upward sloping more often than it is downward sloping. In Table 1,
-30
A =-0.154 < 7K = —0.148, and thus this specific calibration should on average lead to an upward

sloping yield curve.
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Table1l: Parametersfor theVasicek model

Parameters
K 0.147
1% 0.074
g 0.029
A -0.1%4
ol 0.104
d=9-—
K
)= o2 0.001835
y=k*(@)-—
2
y 0.08491
F
y 1 o2 0.07519
PaTa

Source: Bolder (2001)

1.2 Theforward rate and the expectations hypothesis of the term structure

The forward rate

Theyield curvesin Figure 2 are the curves for the zero coupon rates. In order to obtain a
better understanding of these curves, we can also introduce forward rates curves. The
derivation of the zero coupon rates is sufficient for the determination of the forward rates.
Indeed, we show in this subsection that forward and zero-coupon rates are related to each
other as marginal and average cost curvesin economics.

Suppose the following time line:

| | >

t Ty T,

and define z(t, T;) asthe zero coupon interest rate at timet for an investment that matures
at timeT; and F(t, Ti, T,) asthe forward interest rate at timet for an investment that starts
at time T, and maturing at T,. Assuming continuous compounding and assuming away
arbitrage opportunities, the following condition must hold:
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eZ(t T)(T —t)eF (T T)(T-T) — eZ(t To)(T2-t)

— F(t,Tl,Tz) — Z(t'Tz)(Tz __It_) :-lz—(t'Tl)(Tl _t)

Given the time line drawn above, we know that:
T,-t= (Tz _T1)+ (Tl _t)

which permits to rewrite the forward rate as:

(5) F(t,T,T,) = z(t,T,) +[z(t.T,) - z(t,T)] (n-1)

(Tz - Tl)
Equation (5) illustrates the well-known relationship between a zero-coupon yield curve
and the forward curve. If the zero coupon curveisflat, then the term in square bracket in
equation (5) equals zero, and the forward rate is equal to the zero rate. For an upward-
(downward-) sloping zero coupon curve the forward rate is higher (lower) than the zero
rate.

In parallel to the concept of an instantaneous interest rate, there exists an instantaneous
forward rate. Thisisthe forward rate that is applicable to avery short future time period
that beginsat time T. Taking limits as T, approaches T in the equation above and letting
the common value of the two be T, we obtain a series of equivalent expressions for the
instantaneous forward rate:

f(t,T)=lim, ;. f(tT,T,)=2ztT) +%(T -1)

f(t,T) =%(z(t,T)(T ~1))

(6) f(t,T) :diT(—m P(t,T)) (by equation (1))
dP(t,T)
F(t,T) = —%

Integrating (6), obtains:
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I feoe= [ 428900 g2y ] = 20 TT -0 - 2t

[ ft9dx =2, T)(T -1)
"n =

[ £t

Z(t,T) = —

Giventhefact that f(t,t) =r(t), theinstantaneous rate of interest, equation (7) can aso
be written as:

i
r(t) + LM f (t, x)dx
T -t

Z(t,T) =

Hence, the zero coupon rate is the average of the instantaneous forward rates with trade
dates between timet and T. The zero coupon rate is the average cost of borrowing over a
period (T-t), whereas the forward rate is the marginal cost of borrowing for an infinitely
short period of time.

The definition of the forward rate in (6) permits to compute the forward rate in the
Vasicek model (see detailsin Appendix 1):

2
(8) f(t,T)= {k_yz +%e—k(T—t):|(l_ e—k(T—t))+ r(t)e"‘(T“)

Given the one-to one relationship between the zero coupon and the forward curves, all we
need to explain the shape of the zero coupon curve is to explain the shape of the forward
curve.

The Vasicek model and the expectation hypothesis of the term structure

All term structure theories assume equation (7), that is, they all assume that the long rate
isan average of forward rates over the life of the bond. This results from assuming that
no profitable riskless arbitrage is possible.

Where term structure theories differ isin whether they consider that forward interest rates
are equal or not to expected future short interest rates. The diagram below shows a
typology of term structures theories. Appendix 2 reviews these theoriesin detail.
According to the pure (or unbiased) expectations hypothesis of the term structure,
forward rates and expected short rates are driven to equality. If not, forward rates are
considered to be a biased predictor of future short rates and their difference is the risk

10
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premium. In this section we show that the Vasicek model is consistent with a biased
expectation theory of the term structure.

A Typology of Term Structure Theories

Term Structure Theories

Expectations Theory Market Segmentation Theory

Pure Expectations Theory Biased Expectations Theory

Return-to-Maturity Liquidity Preference Theory

Local Interpretation Preferred Habitat Theory

Figure 3 illustrates that in the Vasicek model, the forward rate is a biased predictor of the
expected short rate. Using numerical valuesin Table 1, Panel ain Figure 3 illustrates
that, according to the Vasicek model, if the current short rater(t), is equal to

2
d=74%< k_y2 —%% =7.52%, asat point 1, theyield curve z(t,T) will be upward
sloping. Also, as shown in the previous subsection, an upward-sloping yield curveis
associated with aforward rate curve f(t,T) that must be upward-sloping and above the
Zero coupon curve as shown in Figure 3.

But we also know from the previous subsection that when the short rate is equal to J, its
long-term mean reverting value (as at point 1 in panel b), it is expected that future short
ratesremain at thislevel. Thisimpliesthat the forward rate is not equal to the expected
future short rate (Jin this particular case) or, in other words, that the forward rateis a
biased predictor of future short rates and thus that the forward rate is equal to the
expected future short rate plus arisk premium. Graphically, the premium for the
particular caseillustrated in Figure 3 isthe vertical distance between the forward rate
curve and the horizontal at .

Analytically, the premium 7£t,T), is defined as the difference between the forward rate
and the expected short rate.

(9) f(LT) = E(r(M)|I () +7(t,T)

where [ (t) isthe relevant information set at timet.

11
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In the previous section we saw that the instantaneous forward rate and the expected future
short rate are respectively given by equations (7) and (3) and restated here as:

2
f(t,T)= {k_yz + %e_k”_t) }(1_ e—k(T—t))+ [ (t)e<T

and
E(rm[10) = E[ M1 ) = [Sla-e* ) +rpe

Hence, the term premium is given by:

2
(10) ]T(t,T) = L -9+ U_e‘k(T—t) 1- e—k(T—t)
k? 2k?
We can thus rewrite the forward rate as;
2
(1) fE,T)=9+(rt)-3)e™ ™ + [k_yz -9+ %e—kﬁ-w }(1_ e—k(T—t))

Expected future spot rate

(t,T)
Observe that:

limgy . @) :kL and limq_, , f(tT)=r(t).

2

Aswell, lim,_, . 7(t,T) = % ~Sand lim,_, o 71(t,T) =0

These limits explain the way we have drawn the forward rate and the term premium in
Figure 3.

12
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Figure3: Theforward rate as biased predictor

2(t,T)
4 (Panel a)
kyz = 8.49%
T
V10" oy
J k? 4k?
E(r(M|r () =& =7.4%
>  Termto maturity, T-t

E(r (T)|r(t?)

A

(Panel b)

r(t) E(r(TYr() =) E(r(T,)rt)=9)

f & 3=7.4%
> Time horizon
t Tl T2

13
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That the (instantaneous) forward rate is a biased predictor of the future (instantaneous)
spot rate is often expressed in a different but analogous statement that the long rate is the
average of future expected short rates over the life of the bond, plus a premium.
Analytically, using (7) and (9), yields:

.[T:t f (t,x)dx _ J;T:t (E(r(x)|| (t) + 7, X))dX

Z(t,T) == T —
(12) T T
eT) = [ (Er 1 (0)ox ) [t xax

T-t T-t

Average of future expected short rates Premium, 77(t,T)

The expectation hypothesis, the liquidity theory and the preferred habitat theory all
postul ate the equation (12), with various specifications for the function 77(t,T).

In the particular case of the Vasicek model, substituting equations (3) and (10) into (12),
obtains:

(13)

TV 6, 0 (ko [y — gokxd
I)(T:t f (t’ X)dX _ LT:t [19 + (I’ (t) - 19)6'k(x_"]dx N .[x:t |:k2 J+ %e ' j|(1 e ! )dX
Tt Tt T -t

Z(t, T) =

As shown in Appendix 1, the solution of thisintegra is:

/4
(ﬂ_zj 2
Z(t,T)=z9+1M(l—e_k(T_t))+(L2—ﬁj+1—k(1_e-k(T—t))+ 03 1 (1_e—k(T—t))2
k T-t k k T-t 4k> T -t

Averageof future expected short rates Premium, 77(t,T)

After some simple manipulations, we can obtain equation (4), which confirms that the
Vasicek model provides an analytical solution for the long rate that can be interpreted in
the traditional framework of the biased expectations hypothesis.

Note that by setting r(t) = & (asit was assumed in Figure 3) in the equation above, we
obtain that z(t,T) =2+ 71(t,T). Thisexplainswhy the premium 7(t,T) in Figure 3is
drawn as the difference between z(t,T) and 2 .2

% Asan application of the mean-value theorem, 771 (t,T) may be viewed as a distance, as drawn in Figure 3,
or an average surface. In case of Figure 3, the average of expected future short rates over the horizont --T
issimply 4 [Thisisthe areain panel aunder 9, betweent and T, that is HT-t), divided by (T-t)] plus

7_T(t ) T) , which is the area described by the function 7£t,T) = f(t,T)-J divided by (T-t).

14
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2. The Cox, Ingersoll and Ross*“ 1 factor” model

Cox Ingersoll and Ross (1985) establish that when the very short interest rate is below the

long-term yield given by lim__ z(7) = % the term structure is uniformly rising.
4

With an interest rate in excess of % , theterm structure isfalling. For intermediate

values of the interest rate, the yield curve is humped.

Hence, using the numerical valuesin Table 2, CIR derive the shapes for yield curves
givenin Figure 4. Theterm to maturity isgiven by 7= T-t. It can be shown that the CIR
model isaparticular case of the affine model, whose properties for yield curves are given
in Figure 5.

Both the CIR model and its more general formulation, the affine model, are consistent
with the biased expectation theory. Showing that thisisthe caseisvery similar to the
derivations given for the Vasicek model, and we will not pursue this any further.
However, we show in Appendix A3 how to derive the bounds given in Figure 4 and 5 for
the CIR and affine models.

Table 2: Parametersfor the CIR modedl

Parameters
K 0.655
g 0.073
o 0.136
A -0.313
y= \/(k+/1)2 + 202 0.392372
2k9 0.13022

y+k+A

k3 0.13981
k+A

Source: Bolder (2001)
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z(7)

z(7)

Figure4: Yield curve modeling in CIR (1985)
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Figure5: The affine model
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3. Conclusion

Best practises of debt management require the use of modern theories of the term
structure based on the seminal papers by Vasicek (1977) and Cox, Ingersoll and Ross
(1985). These models have been used to analyse the issue of public debt management
both at the Bank of Canada [Bolder (2002)], and at the Department of Finance [Debt
Management Strategy 2003-2004], and in other countries [e.g., Danish National bank
(2001)].

An objective of this paper is, first, to “demystify” these models to the non-experts of the
field by showing that they “simply” belong to the class of interest rate term structures
with biased expectations hypothesis.  Thus, these models generate yield curves where the
long interest rate is an average of future expected short rates plus aterm premium. In
these models, the expected future short rates are consistent with an exogenously specified
process for the short rate.

Secondly, this paper documents the Vasicek and CIR term structure of the interest rates
that will be introduced into a macro-economic stochastic simulation model (SSM)
developed at the Department of Finance. The final aim will be to use the SSM with
alternative term structures of interest rates to gauge the robustness of our earlier results
described in Georges (2003), which suggests that a shorter debt maturity structure is less
expensive on average and also less risky from the point of view of the overall budget
balance if demand shocks prevail over the business cycle. One key issue, however, in
introducing the Vasicek or CIR term structures into a macro-economic simulation model
isto reconcile the assumed exogenously given process for the short interest rate with the
typical macro view of a Central Bank’s monetary policy rule that sets short term interest
rates to offset deviations of expected inflation rate from itstarget. There are aternative
ways to think of thisissue and this should be considered in future research.

A well-known shortcoming of the (multi-factors) affine term structure models[e.g., the
Vasicek and CIR models and their extensions (Duffie and Kan (1996)] is that they cannot
help us understand the mechanism through which the macro-economy influences the term
structure. Describing the joint behavior of the yield curve and macroeconomic variables
is, however, important for bond pricing, investment decision and public policy. Macro-
and financial economists have argued that the term structure isintimately linked to
macro-variables. For example, Fama (1986) asserts that term premiums tends to increase
with maturity during good times, but humps and inversionsin the term structure are
common during recessions. Bernanke and Blinder (1992), Estrella and Hardouvelis
(1991), and Mishkin (1980) explore the potentia of using the spread between long-term
and short-term yields as an indicator of monetary policy, future economic activity, and
future inflation. We thus plan to examine in future research anew literature that provides
amacroeconomic interpretation for the affine term structure models[e.g., Ang and
Piazzes (2001), Dewachter and Lyrio (2003), Wu (2001)].
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APPENDIXES
Al. TheVasicek model
Computing the zero coupon rate in the Vasicek model

We start with the process for the short-term (instantaneous) interest rate, r(t). Vasicek
assumes that it follows an Ornstein-Uhlenbeck process:

(1) dr(t) = k(I - r)dt + adW

The instantaneous drift k(2 —r) represents aforce that keeps pulling the short rate
towards its long-term mean & with a speed k proportional to the deviation of the process
from the mean. The stochastic element, which has a constant instantaneous variance o2,

causes the process to fluctuate around the level % in an erratic, but continuous, fashion.
dW isastandard Wiener process.

Vasicek assumes that a market exists for bonds of every maturity. We denote the value
of a default-free pure discount bond as the function P(t, T,r(t)). The first argument, t,
refers to the current time, while the second argument, T, represents the bond maturity
date. Vasicek also assumes that the price of the bond is afunction of the short rate.

Applying It6’slemma, and using (1) obtains:
dP(t, T,r(t) = Pdt + P.dr +%P”0'2dt

%) = Rt + P [k(2 - r)dt + W] +%P”0'2dt
:[R +%P”JZ + Rk(ﬂ—r)}dHaRdW

Thisisastochastic differential equation. The important contribution of Vasicek isto
transform thisinto a differential equation that does not depend on the Wiener process.
He thus builds a portfolio of bonds with different maturities whose shares are chosen to
make it risk-free. Instead of going through the steps of the original paper, we simply do
the following observations. Box 1 describes a more “orthodox” route.

Dividing by P(t,T,r(t)), obtains the rate of return of the bond:

PR, RO
€

dP(t,T.r(t)) _ e %P aw
P T.r(1)) P P

Hapip Tapip
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Uy p@nd o, are the mean and standard deviation of the instantaneous rate of return at
time t on abond with maturity date T, given that the current spot rateisr(t) =r.

If the bond isrisk freein the sense that the interest rate is constant (non-stochastic), its
return over theinterval dt is*:

dP(t,T,r) _ dt
P(t,T,r)

However, given the processin (1), the bond is not risk free because the future value of
the short rate is stochastic. Vasicek shows that in this case the return on abond is given
by:

dP(t,T,r)
P(t,T,r)
dP(t,T,r) _
P(t,T,r)

r()dt = o, ,[dW + Adt]

(4) 5
r(t)dt = JFr[dW + Adt]

Notethat if o=01in (1) (and thusin (4)), the interest rate would be non-stochastic and the
bond’ s return over the short interval of time dt would equal r(t)dt, the risk free return.
The right-hand side of (4) contains two terms: a deterministic term in dt and a random
term in dW. The presence of the Wiener increments dW shows that thisis not arisk-free
bond. The deterministic term may be interpreted as the excess return above the risk-free
rate for accepting a certain level of risk. In return for taking the extrarisk the bond return
makes an extra Adt per unit of extrarisk, dW. The parameter A istherefore called the
market price of risk.

Using (3) and (4), obtains:

[R+1Rraz+ek(ﬂ—r)}
P |t

dP(t, T,r(t) _ W =
P

P, T,r(t))

{r(t)+aﬂ)l}dt+ dt + —dwW
P P

P

* This simply means that an amount of money P(t) at time t will grow up to P(T,) = P(t)e*" ™™™ over
the period (T;-t), where z(t,T;) is a continuously compounded p.a. interest rate. Thisimplies that:

In(P(T,) - In(P(1))

=z(t,T) = ——
1

dinP(t) _dP(t) 1
dt dt  P(t)

=limg__,2(t,T,)=r() =
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Box 1. Transforming equation (2) into a differential equation that does not depend on the
Wiener process.

Let us construct a portfolio, denoted V, of two discount bounds that pay 1 unit of currency when
they mature at time T, and T, and with current prices P1(t, T1) and P,(t,T,). The weights of each
bond in the portfolio are u; and u,. The return of this portfolio over the interval of timedt is
given by:

V@O _, BT, RET)

(B1) | 2
dt R(tT) R(T,)

Substituting equation (2) into (B1), obtains:

av (D) _
dt
1 2 l 2
P SRL0T RO Pt 3P0 RO
U, dt + —2_dW |+u, dt +—2_dw
R(tT) R(tT) R(tT,) R(LT,)
Hapa/p1 Tap1/P1 Hap21p2 Tdp2/P2
dv(t)
(82 “at = UMy py O + Uy T oy py AW + Uy L pp Ot + U, 0 g p, W

= (U ldgpysp1 F Up My pp )AL+ (U T oy b1 + Uy O gy, )AW

The key isto build the portfolio V such that it is riskless, and thus independent of the dW term.
We thus need to pick the weights u; and u, such that:

WO gorpy U0 gpopy =0
u +u, =1

This requires choosing:

- _ ey
u,
Ogp1pr “O0gp2rp2
— O gp1/p1
u2 -
Ow1rr "9 ap2/p2

Substituting these values for u; and u, in (B2) obtains:

dv(t) — (_ Ogp2/p2 Hpy) oy + Iap1 p1 Hipo, Pszt +(0)dw
—

dt Ogp1/p1 ~ a2 Ogp1/p1 ~ Oup2/p2

=0
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Because this portfolio isrisk free over the interval of time dt, it should earn the risk free
instantaneous rate: r(t)dt. Thisimplies that:

g, g

_ dP2/ P2 dP1l/ P1 —

[ = Hepripr + ~ Hap, sz =r(t)
Ogp1/p1 ~ Op2/p2 Ogp1rp1 ~ Ogparp2

(B3) =
Hapzip2 T (1) — Haprjp1 ~ r(t)

Ogp21p2 Ogp1/p1

A()gp2sp2 A dgp2/p2

We note that (B3) holds for any arbitrary maturity T; and T,. Thustheratio in (B3) must be
independent of the maturity of the bond, that is, constant across all maturities. Let A(t) denote the
common value of such aratio for abond of any maturity date:

(B4) Alt) = Haprp — T (1)

UdP/ P

The quantity A(t) is called the market price of risk, as it specifies the excess return on abond over
the risk-free rate per quantity of risk.

Substituting equation (3) into (B4), obtains:

R4 IR0T RO

A(t)a:j’ = —r ()

(B5) =

P

2

P, +(k@-r)-gA(t))P +%|:>” _r()P=0

which is equation (5) of Appendix 1.
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) R+%Prr02+P,(k(z9—r)—a/1)—r(t)P:O

Hence, the stochastic differential equation (2) has been transformed into a partial
differential equation that isindependent of the Wiener process. Before solving the
differential equation, it isinteresting to note the following by rewriting (5) as:

1
P+ R0t + Rk 1)
2 St

\ﬁr_J
Hdp/ p /‘adp/ p

Hence, this differential equation simply means that the price of the bond P(t, T,r(t)), must
be such that, for al holding periods, the expected excess return of the bond over the risk-
free rate of interest is the market price of risk of r, (A), multiplied by the quantity of r-risk
presentin P, (g, , ):

:udp/ p - r(t) = Aadp/ p

On the right-hand side of the equation, we are, therefore, multiplying the quantity of r-
risk by the price of r-risk. Theleft-hand side is the expected return in excess of the risk-
freeinterest rate that is required to compensate for thisrisk. This equation is analogous
to the capital asset pricing model, which relates the expected excess return on a stock to
itsrisk.

We are now ready to solve the differential equation (5). For this, we will assume that the
price function has the following shape:

(6) P(t,T, r) = @AT)-BELT)r — P(T, r) = @A(D-B()r

where 7 =T —t istheterm to maturity. This change of variableisintroduced for
simplicity. The partial derivatives are asfollows:

P =(- A1) +B(7))P()
7 P. =-B(1)P(7)

r

P, =B*(0)P(1)

Substituting these values into (5), obtains:

- A(1) - (k& - aA)B(7) +%2 B2(r)-r(1-B'(7) -kB(r)) =0
This can hold only if:
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(8) B'(r) +kB(r) =1
and:
(9) —Aaj—&ﬁ—wnmn+%;8%n=0

The boundary conditions are given by the fact that a bond has aterminal value (when
1=0) of P(T,T)=P(0) =1, such that, given (6):

P(O) - eA(O)—B(O)I‘ = 1
— A(0) = B(0) =0

The solution of the differential equations (8) and (9) are respectively:

(10) B(7) = %(1— &)

_yB@O)-1) _a?B(7)
(11) A(r) = % 2
where;

7N — o?
:k2 79—0— ——:k219 -
y ( k) 2 2

Given that the zero coupon rate of interest is defined as:

-InP(t,T) _ -InP(7)
T-t

(12 Z(t,T) = =z(1)

finally obtains:

— _A(T)+ B(T)r — y ( yj 1 —kr 02 —kr |2
z(7) = ==+|r-——- |—1-e" )+ 1-e
(7) T k2 k? kr( ) k3r( )
or
z(t,T) =— AL T) + B(t, T)r :l+(r —Lj 1 (1—e"‘(T“))+—J2 (1—e"‘(T“’ )2
’ T-t k? k2 JK(T —t) 4k3(T -t)

Computing the forward rate

Firgt, let us note the following results based on equations (10) and (11):
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B(t,T) = (1 e 0)

ALT) = y(B(t,Tz(z— T-1)_o B4i£t,T)
dB(t,T) _ wer-o

B'(t,T)= e

B(t,T) = (1 g Ty

- de(t T) _ kTt Y k(T
BZ t T 1_e k(T-t) e k(T-t)
() = BT 2 g
dA(t,T) _ ¥ (k- U 2 —k(T-t) Y -k (T-1)

=2 | -1)-——1-e e
Using (6), and the definition of the forward rate given in the text (equation (6)), we can
thus derive the forward rate in the Vasicek model.

AlT)=

P(t,T) - eA(t,T)—B(t,T)r

=
dP(@t,T) _
= = (A, T)-B'(t,T)r)P(t,T)
=
dP(t,T)
—_ dT - —_A '
f(t,T)= BT At T)+B' (¢, T)r(t)

Substituting the results derived above for A’ and B, yields:

F(t,T) = (1 e—k(T—t)) 22 (1_ oKD )(e—k(T—t))+ e T r (1)
(13) 2k

2
f(t,T)= L(yz %e‘k‘“)}(l—e‘k”’”)+ r(t)e™ ™

Vasicek and the expectations hypothesis

From equations (10) and (12) in the body of the text, the term premium is:
T
a(t, T)(T -t) = j 7, X)dx

_(T| VYV _ o’ —k(x-t) |[q _ a-k(x-t)

_'L:t|:k2 z9+—2k2e }(1 e )dx

(VY _ (T (Vy —K(x—t) ? ) (T o’ —2k(x-1)

= th(kz ﬂjdx th(kz ﬂj dx + j (2k2 de szt(—zwe ]dx
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T T
7I(t, T)(T —-1t) :(Lz—ﬂJ —(19—%}16_'((“) _J_zle—k(x—t) + 02 i ~2k(x-t)
k . k )k . 2k“k 2k* 2k t
= L_ﬁ (T-t)- ﬂ—L le_k(T_t) +[19—Lj1—a_zle_k”‘t) +J_21+J_Ze—2k(T—t) _vY
k? k? )k k? )k 2k*k 2k? k  4k®
4 yil —K(T-t) o’ —k(T-t) o’ —2K(T-t)
= S5-2|T-t)+ I-F |—|l-e +——\l-e -—|l-e
4 yil —K(T-t) o’ o® o’ —K(T-t) o’ —2k(T-t)
=| S -Z|(T-)+|d-55|-l-e + - -——e +——e
k? ( ) k? k( ) 2k®  4k® 2k® 4k
VY yi1 —K(T-t) o’ —k(T-t) \2
= S -d|(T-t)+|J-= |=l-e +——{1-e
From equations (3) and (12) in the body of the text the expectation term is given by:
T T k(%
[LEC®x [ [+t -2 ]
T-t - T-t
_ X[ )= 1 |
T-t, T-t k t
—g9+ 0 _’91(1_9—k(T—t))
T-t k
Combining the expectations term and the premium derived above, yields:
o)
_ 1(r(t) -9) -K(T-1) ( 4 j 1 k? waw), 00 1 -k(T-t) |2
t,T)=9+=~12(1- +H L -9+ —— 21— +————1-
2ALT) k T-t ( © ) k? k T-t ( ¢ ) 4k3T—t( © )

averageof futureexpected short rates Premium, 77

The local version of the expectations hypothesis

In the previous section of this appendix, we assumed that the expectations hypothesis
meant that forward rates and expected spot rates are driven to equality; any deviation is
the term premium. There are, however, alternate forms or interpretations of the
expectations hypothesis, as described by Cox, Ingersoll, and Ross (1981) and described
alsoin Appendix A2. According to the “local” version of the expectations hypothesis,
expected holding period returns of bonds of different maturities (of different T, but for
same t) must be equalized for one specific holding period. The natural choice of holding
period isthe next basic (i.e., “shortest”) interval, dt. In other words, this means that:
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E[dP(t, T)]
P(t,T)

o =r(t) (fordl T)

In thisinterpretation, the risk premium is thus identified as:

E[dP(t,T)]
7 (. T) :%—r(t)

We can use the results of this appendix to obtain the premium in the Vasicek model
implied by the local version of the Expectations Hypothesis. Using (3) and (4), and
recalling that the increments of a Wiener process are normally distributed with E(dW) =0
and Var(dW) = dt, yields:

M = Uy, ,dt =1 (t)dt + aﬂ)ldt
P(t,T) P
E[dP(t, T)]
—PD =y, =r0 0
and thus:
E[dP(t,T)]
(14) 7 (t,T) :—P(;’tT) —r() =U%/1

In the Vasicek model, we can compute the risk premium as follows, substituting
equations (7) and (10) into (14):

EldP( )]
T (t,T) :%— r(t) = -oB(t,T)A = —g/]%(l_e—k('r—t))

Note: limit of premium when T-t - [0 is —071%, which, by definition, is 9 - 3.

We are now left with two versions of deviations from the pure expectations hypothesis.
According to the deviation from the return-to-maturity interpretation, the term premium
is:

2
(. T) = k—y2—z9+%e"‘”‘”}(l—e‘k”"))
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2 2
Recalling the definition = kz(ﬁ—”—k") —% = kzz?—%, yields:

or o 0% - (T
tT)=|-—-——5+——e M 1-e*™
LT) { kK 2k 2K° }( )

(15) =

2

mt,T) = 7 (t,T) - ;kz

(1_ e k(T )2

where 77 (t,T)is the term premium when deviations from the local interpretation of the
pure expectation hypothesis are considered.
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A2. A typology of the theories of theterm structure of interest rates

All theories of the term structure of interest rates assume away riskless arbitrage
opportunities arising from differences between current forward and spot rates. This
implies equation (7) in the body of the text, rewritten here as:

y ; [ ft.xax

(16) 2(6T) =2 —

Furthermore, pure and biased expectations theories of the term structure of interest rates
also assume that investors and borrowers are willing to shift from one maturity sector to
another to take advantage of opportunities arising from differences between expectations
of future spot rates and current forward rates. Thus, akey assumption is that bonds of
different maturities are (to a certain extent) substitutable. Another theory, the segmented
mar ket theory sees markets for different-maturity bonds as completely separate and
segmented. Bonds of different maturities are not substitutable. The interest rate for each
bond with a different maturity is then determined by the supply and demand for that bond
with no effects from expected returns on other bonds with other maturity. In the
following we focus exclusively on pure and biased expectations theories.

Pure expectations theory

According to the pure expectation theory, the forward rate is equal to the expected
interest rate, that is: F(t,T,,T,) = E (z(T,,T,)). Thisalso holdsfor an arbitrarily short

period, when T, - T3 and thus, using instantaneous forward and spot rates, yields:

(17) f(6T)=E(rM]I(©)

Substituting (17) into (16), resultsin:

E jTt (r 0|1 () )ax

18 Z(t,T) =
(18) (t.T) —
In other words, the interest rate on along-term bond will equal an average of short-term
interest rates that people expect to occur over the life of the long-term bond.

For example, if people expect that short-term interest rates, r(x), will be 10 percent on
average over the coming five years, the expectations hypothesis predicts that the interest
rate on bonds with five years to maturity will also be 10 percent. If short-term interest
rates were expected to rise even higher after this five-year period such that the average
short-term interest rate over the coming 10 yearsis 11 percent, then the interest rate on a
10-year bonds would equal 11 percent and would be higher than the interest rate on a 5-
year bond. Hence, under this view, arising term structure for the long rates must indicate
that the market expects short-term rates to rise throughout the relevant future period (in
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the example, between year 5 and year 10). Similarly, aflat term structure reflects an
expectation that future short-term rates will be generally constant, while afaling term
structure must reflect an expectation that future short-terms rates will decline.

A graphical representation which supposes that the short rate follows a mean-reverting
process is particularly useful to improve our understanding of the pure expectation
hypothesis.

Figure 6
A
I
T - Ej:; (r O9)Jr (1) Jax —
YT,y
ey < ELL0or @) / E(r(Mir®)
LR (5 J M $ 1
E »  Time horizon, x
t Ty T

Figure 6 above illustrates that today, at timet, the short rateis equal to r(t), (point 1).
Because the short rate is assumed here to follow a mean-reverting process, the short rate
will eventually increases to its long-term mean reverting value of 4 along the path

E(r(T )|r (t)). This path represents the expected value of the short (instantaneous) rate for

any future time T conditional on the actual value of the short rate, r(t). Thelong rates z(t,
Ty) and z(t, T,) are determined, according to the expectations hypothesis, by the
assessment, at timet, of the segments{r(x), t < x< Ti}and{r(x), t < x< To}. In particular,
Z(t, Ty) isthe average expected value of {r(x), t < x < Ti}and Z(t, T,) isthe average
expected value of {r(x), t < x< Ty}, asdrawnin Figure 6. ThisFigure clearly illustrates
that an upward-sloping yield curve [z(t, T2)> z(t, T1)>r(t)], according to the pure
expectations hypothesis, reflects the fact that short rates are expected to increase over the
relevant time segment.

The pure expectation theory is able to explain some empirical facts. For example, we
observe that interest rates on bonds with different maturities move together over time.
The figure aboveillustrates this. Suppose that the short-rate isinitially at itslong-term
mean reverting value, &, such that future short rates are expected to remain at thislevel as
well. Because short rates are expected to remain constant over the time horizon, this
implies aflat yield curve with z(t, T1) = z(t, T>) = Z. Next suppose that a shock pushes
the short rateto r(t) at point 1. Historically, short-term rates have had the characteristic
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that if they decrease today, they will then tend to be lower in the future than otherwise.
Hence a decrease in short-term rates will lower people’' s expectations of future short-term
rates. Thisisillustrated in Figure 6 by the shift of the expectation schedule from the

horizontal linein & to the upward-sloping schedule, E(r(T)|r(t)). Given that long-term

rates are the average of expected future short-term rates, a decrease in current and future
expected short-term rates will also decrease long-term rates, (to their value shown in the
graph, z(t, T1) < z(t, T2) < #). This causes short- and long-term rates to move together.

A second empirical fact, which iswell explained by the pure expectation hypothesis, is
that when short-term rates are low, yield curves are more likely to have an upward slope
and when short-term rates are high, yield curves are more likely to slope downward. This
isagain well illustrated by Figure 6. When short-term rates are low, (say at point 1)
people generally expect them to rise to some normal level () in the future, and the
average of future expected short-term rates is high relative to the current short-term.
Therefore long-term interest rates z(t, Ty) , z(t, T,), etc., will be above current short-term
rates and the yield curve would then have an upward slope.

Unfortunately, the pure expectations hypothesis cannot explain the empirical fact that
yield curves usually slope upward. A typical upward slope implies under this hypothesis
that short-term interest rates are typically expected to raise in the future (asis shown in
Figure 6). In practice, short-term interest rates are aslikely to fall asthey areto rise, and
so the expectations hypothesis suggests that the typical yield curve should be flat rather
than upward-sloping. Aswill be shown below, the biased expectation hypothesis can
explain why atypical yield curve would be upward-sloping.

Before doing this, we should however mention some interpretations of the pure
expectation theory and highlight some inconsistencies initially considered by Cox
Ingersoll and Ross (1981). We saw that if equation (17) and thus (18) held, then the
interest rate on along-term bond would equal an average of short-term interest rates that
people expect to occur over the life of the long-term bond. However, we did not explain
why equations (17) or (18) would hold. There are severa interpretations of the pure
expectation hypothesis. We will only mention two of them, the return-to-maturity and
the local interpretations.

First, let us rewrite equation (18) in terms of return:

(19) POC.T)_ 1 _ ezt — E[ejl_l(r(x)l(t))dx]
Pt,T) P(t,T)

A first interpretation of the pure expected hypothesis, referred to as the return-to-
maturity, suggests that the return that an investor will realize by rolling over short-term
bonds over some investment horizon will be the same as holding a zero-coupon bond
with a maturity which has the same investment horizon. Assuming continuous
compounding but a discrete-time notation, the return-to-maturity suggests that:
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Xt — lez(t,t+1) [e(tH1+2) mz(T—l,T)J
t
(20) = E [ez(t,t+1)+z(t+1,t+2)+[|][{}z(T—1,T)
t

T-1
ZZ(X,XH.)
=E|e

Switching to our continuous-time notation such that the one-period rate of interest z(x,
x+1) becomes the instantaneous rate of interest r(x), we eventually obtain equation (19).
Hence the return-to-maturity interpretation “rationalizes’, or justifies the statements
given earlier in equation (19) and thusin equations (18) and (17). This does not,
however, imply that these statements are correct. For the problems associated with these
statements, see the next subsection.

A second interpretation of the pure expectation theory, referred to as the local
expectations form of the pure expectations theory, suggests that the expected holding
period rate of return of bonds of different maturities must be equalized for one specific
holding period. The natural choice of holding period is the next basic (i.e., “shortest”)
interval. In other words, this means that:

E[dP(t,T)]
P(t,T)
dt

Integrating the expression above (abstracting initially from the expectation operator),
obtains:

=r(t) (fordlT)

dP(x,T)
T | P(x,T) (T
th e dx = sztr(x)dx
dP(x,T)
Recalling that: dinP(xT) ___dx dP(X’T)i,obtains:
dx P(x,T) P(x,T) dx

INP(x,T)|| =InP(T,T)-InP@,T) =In@) - InP(t,T) = -InP(t,T) = I::tr(x)dx

InP(t,T) = - j::tr(x)dx

Taking the exponential and then the expectation operator (at timet), on both sides of the
equation, recalling that at timet, P(t,T) is known (not random), successively yields:

.
=tr(x)dx\l(t)

P(t,T) = ek
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P(t,T) = E(e‘fzqf(x)dxmt))
(21) POLT)__ 1 _gemoo__, 1 ‘

Pt.T) PET) E(e—llnr(x)dx\m))

Now, it istempting to shift the denominator to the nominator by getting rid of the minus
signin front of the integral and obtain equation (19). The local version of the expectation
hypothesis would then fully rationalize the pure expectation hypothesis, and justify
statements given earlier in equations (18) and (17). Strictly speaking, however, as noted
by CIR (1981), thisisincorrect because of Jensen’sinequality. To seethis, set the

random variable X =’ = e = ™% O  giatement (19) would then lead to:
(19) e = Ele] = E[i} = E{é}
e’ X

whereas the statement in (21) leads to:

_ 1 1
211 ez(t,T)(T t) - .= i
21) E|ey| E|x|

However, by Jensen’s inequality we know that if et = L

m, then

X
take on two values say, 0.90 and 0.92, with same probability, then

E{%} > eXtNTY - We can illustrate this with an example. If arandom variable X can

E[)~(] = M =0.91land eXtNY = E][':] =1.0989. However,
X
1 1
1 oo
E{§} = Lzo.gz =1.0990 - 1.0989

Hence, strictly speaking, the local version of the expectation hypothesis cannot entirely
“rationalize”, or justify the statements given earlier in equation (19) and thus in equations
(18) and (17). However, that these statements can be exactly interpreted in terms of
return-to-maturity, or only approximately interpreted in terms of the local form of the
pure expectations hypothesis, does not imply that the first interpretation is more valid, in
general than the second. Indeed, what really matters is whether the statements
themselves [equations (17), (18), or (19)] arevalid. For one thing, the left side of these
equationsis arate (the forward or the long rate), or areturn, that is known with certainty,
and thisis compared to an uncertain rate or return that depends on the random future
short rate. To bring these two concepts into equality implies that it is assumed that agents
are risk-neutral, and thus indifferent between a certain amount and the expected value of
arandom variable. Risk-averse agents, however, may require compensation for the risk
involved when acting on the basis of an estimate of the average of short-term interest
rates that they expect to occur over the life of the long-term bond. The next subsection
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examines two types of risk involved in this context. After this, we will review the biased
expectation hypothesis that compensates risk-averse agents with arisk premium.

Drawbacks of the pure expectations theory

The pure expectations theory neglects the two types of risk inherent in investing in bonds.
Thefirst, the reinvestment risk involves the uncertainty about the rate at which the
proceeds from a bond that matures prior to the end of the investment horizon can be
reinvested. For example, an investor who plans to invest for five years may invest in a
five-year bond and hold it for five years, or invest in a 1-year bond and, when it matures,
reinvest the proceeds in 1-year bonds over the entire five-year horizon. Therisk in the
second alternative is that the return over the five-year investment horizon is unknown
because rates at which the proceeds can be reinvested until the end of the investment
horizon are unknown. Hence, the return-to-maturity interpretation of the pure
expectation theory, which suggests that the return that an investor will realize by rolling
over short-term bonds will be the same as holding along maturity bond over the same
investment horizon, neglects the reinvestment risk.

The second isthe price or interest risk. For example, an investor who plans to invest for
five years might invest in afive-year bond and hold it for five years, or invest, say, in a
10-year bond and sell it at the end of five-year. The return of the first strategy is known
with certainty because the holding period coincides with the term to maturity of the bond.
Theinvestor knows the price of the bond when he buysit (say, $99.2) and he knows with
certainty the price of the bond when he sells it because the bond matures and pays the
promised nomina value (say, $100), which, by arbitrage must be the selling price. The
return of the second strategy is unknown because the investor does not know the price of
the bond when he will sell it five years from now. Hence, the local expectations form of
the pure expectations theory, which suggests that the expected holding period returns of
bonds of different maturities must be equalized for one specific holding period, neglects
thistype of risk.

Biased expectations theories

As said above, risk-averse agents require a compensation for taking risk. The biased
expectation hypothesis recognise this by amending equation (17) as follows:

(22) f(t.T)=E(M[I 1) +7(t.T)

where 74t,T) isapositive risk premium.

Substituting (22) into (16), obtains:

E[_(real @+ 7t T))ax

(23) Z(t,T) = T 1
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This leads to a situation where forward rates are greater than expected future spot rates,
or long rates are greater than the estimation of the average of future short rates.

Statements in equations (22) and (23) are usually rationalized with two forms or
interpretations of the biased expectations hypothesis: the liquidity preference theory and
the preferred habitat theory.

The liquidity preference theory starts with the observation that, ceteris paribus, investors
wish to deposit their money for short terms while borrowers wish to borrow at fixed rates
for long terms. If the interest rates offered by financia intermediaries were such that that
forward rates equalled expected future spot rates, long term rates would equal the average
of expected future short-term rates. Investors would tend choose to deposit their funds
for short terms and borrowers would tend to borrow for long terms simply because they
would have no incentives to do otherwise given their preferences. Financial
intermediaries would then find themselves financing substantial amounts of long-term
fixed rates loans with short-term deposits. Thiswould involve excessive interest-rate
risk. In practise, in order to match depositors with borrowers and avoid interest-rate risk,
financial intermediaries raise long-term rates rel ative to expected future short-term rates.
This reduces the demand for long-term fixed-rate borrowing and encourages investors to
deposit their funds for long terms. It also leads to a situation where forward rates are
greater than expected future spot rates. In other words, the forward rate embodies a
liquidity premium.

The preferred habitat theory states that the interest rate on along-term bond will equal an
average of short-term interest rates expected to occur over the life of the long-term bond
plus aterm premium that responds to supply and demand conditions for that bond. The
preferred habitat theory’ s key assumption isthat bonds of different maturities are
substitutes, which means that the expected return on a bond does influence the expected
return on a bond of a different maturity, but it allows investors to prefer one bond
maturity over another. In other words, bonds of different maturities are assumed to be
substitutes but not perfect substitutes. If investors prefer the habitat of short-term bonds
over longer-term bonds, they might be willing to hold short-term bonds even though they
have alower expected return. This means that investors would have to be paid a positive
term premium in order to be willing to hold along-term bond.

The preferred habitat and liquidity premium theories explain the empirical fact that yield
curves typically slope upward by recognizing that the term premium rises with abond’s
maturity because of investors' preferences for short-term bonds. Even if short term
interest rates are expected to stay the same on average in the future, long-term interest
rates will be above short-term interest rates, and yield curves will typically slope upward.
Figure 7 illustrates this. When the short rate at timet isequal to itslong-term mean
reverting value &, as at point 1, short interest rates are expected to stay unchanged but the
long rate, z(t,T)[I1 , is greater than their average value of & by a premium 7£t,T), leading
to an upward-sloping yield curve [z(t,T)[I1 > r(t)].
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How can the preferred habitat and liquidity premium theories explain the occasiond

appearance of inverted yield curvesif the term premium is positive? It must be that at

times short rates are expected to fall so much in the future that the average of the

expected short-term rates is well below the current short-term rate. Figure 7 also explains

this. If the short rateis at point 2 at timet, expected future short rates are expected to

fall, and their average over the time horizon t—T is given by e[ formx, Even when the
T-t

positive term premium is added to this average, the resulting long-term rate z(t, )[R is

below the current short-term interest rate r(t), leading to a downward-sloping yield curve

[r(t) > z(t, T)(2].

Figure7
A
......... 2
2(t, T2 .\
B[ Foolr)ex \ 7(t,T)
A E(r(T)|r(t)
z(t, 7)1 /
(t,T) ?qt,n
%1 9
» Timehorizon, x
t T

35



The Vasicek and CIR Models and the Expectation Hypothesis of the Term Structure

A3. The CIR model asa special case of the affine model
(with Yanjun Liu)

The affine model (Duffie and Kan 1996) is described as follows (detailed derivation in
appendix A4):

P(z,r (1)) = X080

e -1
® B = a2y

A(T) = jo E B,B2(1) —als(r)}dr

o) — lﬂl(y_aof +a,l[y_aoj T+[2'81,?0 _zaljln(g(r)j
275, 2 g 5) 2
‘Zﬂly(aowq( 11 j
By g(r) 2y

where: y=+la,’+28,

and: g(7) = (¥ —ap)(€ - +2y
Using the definition of the spot rate of interest, yields:

_InP(7) _- A(T) + B(7)r
T

z(r) =

In this appendix we show how deriving the bounds in Figures 4 and 5.

Thefirst bound is simply the limit: lim,__ z(7) . Given the equations above:

lim,__B(7)=Ilim, 2(9}”:1) note: y >0
(y-a)e -)+2y
Multiplying numerator and denominator by e™" :
2(1-e™) 2

lim,__ B(r)=Ilim___ — m—
(y-a)d-e")+2e”  y-a,

Hence,
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2
r
li hwm:llmrw "% -y
T T
Thus:
-[12 8B (D) - aB(0) e
. L -AT) _,. of 2" !
lim___z(r)=lim __———==Ilim___
T T

Thisisa /0 form and thus, use L'H6pital's rule to obtain:

| 3pE 0 -apn)]
1

lim,__ z(7) =

Substituting B(7) by itsvalue, finaly yields:

2
(y_aO)2

lim__2(z) = (- B +ay(y-ay))

Substituting y =4/ aoz + 2[5, (as set above), resultsin the bound given in Figure 5:

©) “mrﬂwz(r):(_a +\/Cf2+72ﬂ) 2(0'1(—0'0+\/0'§+2,30 )_:31)

The CIR model is aparticular case of the affine model which assumes that:
@y =~(k+A); a,=kd; By =0"; B, =0;

Substituting these parameters into the limit above:

lim_ . z(7) =+ 2kJ \
e [+ +/(k+ 2)? +207

with:

y=ya,2 +28, =(k+A)? +207 .

The bound for the CIR given in Figure 4 isthus:

4 lim,__ z(7) =%

Thisis equation (26) of Cox, Ingersoll and Ross, (1985).
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The second bound in Figures 4 and 5 require using the risk-neutral process for the short-
rate. For example, in CIR, the risk-neutral processis given by:

kl/‘)r}dt +ordw

(5) dr = k{ﬁ —(

whereas the true (real) process for the short rateis:
(5) dr = k[ - r]dt + o/rdw

What isthisrisk-neutral process? We refer the reader to Maes (2003) for an excellent
discussion of thisissue. Here we simply mention that we have aready established in
Appendix 1 that the expected return of an asset (under the data generating probability
measure P) equals the risk free rate plus an expected excess return or premium (equation
B4) for example. Financial economists construct an artificial risk neutral probability
measure Q such that you eliminate this risk premium (in expected value). The changein
measure implies a change in drift leaving the volatility unchanged (the Girsanov-
Cameron-Martin theorem). We can always find a Q whenever there are no arbitrage
opportunities in the economy. Under Q, it isasif we were arisk neutral investor and the
solution to the valuation problem simplifies to a discounting exercise where the risk free
or short rate is used as the discount rate. Note that P and Q should be equivalent
measures. This means that events which can not occur, can not be made possible by
simply changing the probability measure from one to the other. Likewise, events that can
occur, can not be made impossible by changing the probability measure.

Based on the risk neutral process (5), if r issuch that & < (k ;A

k+4 )r, r tendsto increase. Hence, r tendsto settle to —kkf/‘ the

)r, r will tend to

decrease. If 7> (

bound givenin Figure 4.

We can show this aswell for the Affine model. In this modd, the risk-neutral rate
follows:

(57) dr =(a,r +a,)dt +,/G,r + 5,dW
5

with (for asolutioninR) Br + B, > 0=r = -,
0

Basedon (5'), if rissuch that —a, < a,r, r tends to decrease, whileif —a, > a,r , r
tends to increase. Hence, r tends to settle to:

(6) —ﬂ[: 180 (zal_zﬂlgoj_ﬁ}
a, - 20'0 ,Bo ,Bo 180
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where we rewrite the mean of the steady-state distribution for the risk-neutral spot rate
using a more complicated but equivalent statement under bracket in (6). The reason for
that will become transparent later.

Given that the CIR model assumesthat: a, =-(k+A); a, =k&; B,=0°; B, =
substituting these values into (6), the mean of the steady state distribution for the risk-

neutral spot rate becomes:

1 which isthe solution given for the CIR model.

In the reminder of this appendix we show how to derive (6) mathematically. Although
thisis amathematical exercise, the actual details of the derivation are interesting as it
features arguments often used in this literature, and we are unaware of other sources that
goes through this derivation in any detalil.

The starting point is to establish the Kolmogorov (forward) transition equation to
describe the evolution of the probability distribution function @(r,;t,;r;t) of the spot rate

r that follows the process givenin (5'") above.

Let us start with amore general process by assuming that the spot rate follows the
process:

@) dr = u(r)dt + o(r)dw
In this case, the Kolmorogov transition equation is given by:

1 9?

257 —5 (T () p(roits;r; t))——((,U(r)¢(fo t:rit) = _¢(r0;to;r;t)

Then, in a steady-state equilibrium, the probability distribution function will settle down
to adistribution ¢_ (r) which isindependent of the initial value of the spot rate and of
time such that the distribution satisfies an ordinary differential equation.

1d2

S — (*(r,1)..(r) ——((/J(r 0)¢.(r))

Integrating both sides, this becomes:

® diFJZ(rm(r)}u(rm (n=c,
r‘ 2 | T

f(r)
9 tm-gn=c
dr !
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Our objective isto solve the differential equation in (8) to eventually obtain the density
functiong_, (r). Thisdifferential equation is easier to solveif we apply two successive
transformations.

First, multiply both sides by:

_J'err —J‘;Mdr _J‘rzl-zl(r)dr
9) s(r)=e =0 =g WM =g oD

where aisany constant.”> The differential equation (8) becomes:

d —J-rwdr _J'err
(10) S tm-anfet 0 =ce

Second, we substitute the term on the left-hand side with another term using the fact that:
9y _[90) g
dr dr

Thisresult can be derived as follows using derivative rules:

d —jr@dr
—| f(r)e™"®
dr{ (")

g(r) _ra(r)
_df (r) an® L d Tl

= +—e f(r)

dr dr
_di) LT LTos d[ g
== +f(r)e jf(r)dr

90 00 ¢ ekt 90)

dr f(r)

4 ) _ ¢y 90 SR

dr f()

- r@dr
°s(r)=e ™ "0 isafunction of r. The upper limit is not fixed but isthe variabler. This notation can
_[ro
somewhere be confusing because, strictly speaking, we should write: S(r) =e '™ where the symbol
uisthe “dummy” variable of integration. Any other symbol would do equally well. Using r instead of u as
the dummy variable of integration could, however, be confusing when the integral is evaluated at the upper
variable limit of integrationr.
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TIOW
[dfd(r) (r)} 't (r)

This result permits us to transform (10) [and thus (8)] into a differential equation that is
easier to solve:

d g(r)dr - rwdr
(11) & {f(r)e 2 f(n) } =Ce '™
Substituting f(r) and g(r) givenin (8) and using (9), successively obtains:

QLG IGLIG)
d|1 . f g r
alzaz(r)m(r)e (W2)0*(1)g(r) =Ce W2a* (Ne(r)

di1, _
E{EJ (r)¢w(r)8(r)} =Cys(r)
(1) Llorng. msm]=2cs0)
Integrating both sides of (11), successively obtains:

JI%[U 2(f)¢o<,(r)8(r)]dr = IerCls(r)dr

(where b is any constant)

o*(ng..(1)s(r) - o°(b)4..(b)s(b) = ferClS(r)df

Cz(b)=C,
0*(1¢..(1s(r) = 2C,[ s(r)dr +C,
(12) (1) = m[zcl [/ stryar +CZ}

Thisisthe general shape of the unconditional density function of avariabler that follows
the process givenin (7). The constants of integration C; and C, are determined to
guarantee that:

¢.,(r)=0 foral r and: J'_+:¢w(r)dr =1

In order to determine these constants of integration we need to impose specific functional
forms for the variance and the drift of the process givenin (7). In particular, we impose
the functional form of the affine model:
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(13) dr =(a,r +a,)dt + .,/ B,r + B, dW
H(r) o(r)

Substituting the functional forms of p(r) and o(r) given in (13) into (12), yieldsthe
density function specific to this process:

— 2C, ' G,
(9 0-0= s ey o 0% | G s
where, according to (9):
_Ir 2([70r+z71)dr
(15) s(r)y=e ™ AA

Before determining the constant of integration C; and C, in equation (14), we need to
solve (15), by first solving the integral: er(%”"l)

Bor+5
jrz(aor +a'l)dr _ 2a, j(arnr jﬂo

2 Br+ B By =\ Bor + B, ) a,

:2a0J-r r+a,la, dr
By 2\r+ BB,

zzaojr r+ Bl +r+ala,—r =B 15 dr
By 2 r+ 8,10,

:20’0 J‘r 1+a1/ao_,31//80]dr
By r+ 8,15,

_ 20'0 |I’ +(allao—,81/,30)|n(r"‘:81/'80)|;

:ﬁo[”(”ﬂ% Bl B)In(r + B 1 B,)] - °[a+(a1/ao Bl By)In(a+ B, 1 f,)]

ds

= B 1 Bo)In(r + B,1 B,)] +d,

Substituting this result into (15),
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s(r)=e

_2ay

—r

—e A

—e A

-2 oyl Bo) N+ Bl o)

290( @y 1 g~ s/ o) (T + 5,1 o]0

0

2o ay a0yl o) e+ o)~
0

0 d,
——

D,

2a “2af o Ay
=0 ,B Bo \ag Bo
=De % |r+22

0

Equation (15) isthus transformed into

A
16 :DlBl Lt
(16) s(r) e (Hﬁoj
where:
Bl=—2[§z°>0
BO=200(ﬁ_ﬂJ>O=&_ZGO[Z’1
Bo \ay B Po (,Bo)

N %laﬂaﬂao—ﬁl/ﬂo)ln<a+ﬁ1/ﬁo)]
—e t=ef
1

Using (16), and the fact that:

(r +ﬁj_80+1 = (r +&j_80(r +ﬁj = (r +&]_BO (—I’,BO +'81j
Bo Bo Bo Bo Bo

the density function (14) can be successively rewritten as.

B,
$.(r)= 2, & [jbr DleBlr(r +%) dr] + <, =
(ﬂor + ﬂl) DleBlr (I’ +'§1J ’ (/80r + /Bl)DleBlr [r + ﬂlj
By
pon)=— h D( %j dr]+ S
B,D,e™ [r + 'Blj i B,D,e™ [r + 'Blj
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[ eBﬂ(r +%J_ 0dr]+ < B
’ ﬁo D]_eBlr (I’ +16’1j
J

0

2C,

o ﬁj{
B.e (Hﬂ

0

(18) ¢.(r)=

Wefinally arein position to evaluate the constant of integration in (18).

~Bo
J'reBlr r+ﬁ dr>0forr>b
b B, <0forr <b

Ensuring @, (r) = Ofor al possible r therefore requires setting C;=0, such that the density
function becomes:

First, observe that:

0= —— (Cz ﬁlJ_Boﬂ - e_Blr(r %J °
ﬂODle r+-—-
Bo
which, using that — B;r = -Br _BA | BA , implies:
B 5
Bp| -pfreBr Bo~l
¢_(r) = ﬂco:E)l e[ﬂoﬁl]e ( ﬁo](r +%}
(19) o
-B, r+ﬂ Bo-1
4.(r) :Dize ( 'B"](r +%]

Second, recalling that: j_m¢m (r)dr =1, successively yields, by integrating (19):

N By-1
fmm(r)dr :Dij':oe Bl( ”J[r +ﬂj dr =1
—

D, = e_Bl[Hg](r +ﬁj80_ldr

5

0

As shown above, for asolution in R, the affine model imposesthat r > -

Consequently, changing the lower limit of integration:
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D, :fﬁ; Bl[Hj( glj 0 dr

0

Py

0

Setting z =r +—= = dz = dr and changing the limits of integration accordingly:

D, = J'O e z% dz

Settingt = B,z= dz=idt:

B, -1
(et 1 ty By -1 -8, 1
o,=fe(g) ga-feenga
N —
(By) ™
D, = I e 't®dt
I(Bo)
1
D, = r(B,)
2 (B>

Where I (B,) isthe gammafunction. Substituting D, by its value into (19), and recalling
the definitions of Bpand By [givenin (16)] successively yields:

(20) () =—g—— ! e_Bl[r+ ]( ﬂlj
5 I (Bo) 0
(B)™
2a0( B By-1
$.()=—— Al ﬁ°j(r+ﬁj
& T (B) °
20,
i
B
P .
_ 1 [ ﬂo]( ﬁj%
@..(r) r+ﬁ0

= 5 exp
_ b -B
%l r@,) (2‘)
20, a,
Thisisthe steady-state distribution for the risk-neutral spot short rate of interest

following the process given in (13). This equation is the equivalent (for the affine model)
of equation (20) in CIR (1985).

Our initial question was to derive unconditional mean for the short rate of interest. This
issimply the mean of the distribution given in (20).
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Observethat if avariable z=r + A follows a Gamma distribution given by:
0

@) f.)=—— o :(;) ()
(_ /80 j I_(BO) (OJ
2a, 20,
its mean (first moment) would be given by [see Ramanathan (1993)]:
Bo \n —(_ 5o | 20, _20,5
— Bo = = —
( Zaoj ( 24, j( B (B,) J

Although ther.h.s. termin (21) is equal to ther.h.s. term in (20), what we want to obtain
isthe mean of r, not the mean of z. But thisis easily obtain because

z:r+%:> E(r) = E(z)—%

The short rate r thus has an unconditional mean given by:

B (Zal _ 2aoﬂlj_ B
2O,O 180 (180)2 180 '

This can finally be simplified as 4 , Which isthe result stated initially in equation (6)
0
above.
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A4. The Affine model
(with Yanjun Liu)

The affine model (Duffie and Kan 1996) is described as follows in appendix A3:

P(r,r(t)) = A8

e
@ B = 4= a) (e -1 +2y

AD) =] E BB (7) —alB(r)}dr

) — _lﬂl(y_aojz +al(y_aoj T+(2ﬂlg0 _ 20'1j|n(g(r)j
27 4 Ay g b))\
+‘2ﬂ1y(ao+y>}( 1 _i]
By 9(r) 2y

where: y =./a,’ +28,

and: g(7) = (y—a,)(e" -1 +2y

The boundary conditions are given by the fact that a bond has a terminal value (when
1=0) of P(T,T)=P(0) =1, such that, given (6) in Appendix A1l:

P(O) = eA(O)—B(O)r - 1
= A(0)=B(0)=0
In this appendix, we show how to derive equations (1) and (2) above. We saw in

Appendix Al that in the Vasicek model we had to integrate two ordinary differential
equations given by equations (8) and (9) of that appendix:

B'(r) +kB(r) =1
and:
- A7) - (k9 - aA)B(7) +% B2(r) =0

Similarly, the more general affine model requires integrating two differential equations
given by:

3 - B'(1) +a,B(7) —’BOBTZ(T) =-1
and:
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(4 - A(1)-a,B(1) +%/3182(r) =0

Box 2 shows how to obtain equations (3) and (4). The procedure is similar to the one
used in Appendix 1 and thus requires little explanation.

These two differential equations (3) and (4) are labeled equation (21) in Bolder (2001)
and can also be found, for example, in Wilmott (1998) (equations 33.12 and 33.13).
However, none of these authors provide any details on finding a solution to these two
ordinary differential equations. Wilmott simply gives the solution in the form of equation
(1) and (2) above. Bolder integrates specia cases of (3) and (4). For the Vasicek model,

he postulatesthat: a, = -k; a, =k&-0A; B, =0, B, =o?, whilefor the CIR model, he
postulatesthat: a, = —(k + A); a, =k&;, B, =0?, B, =0. Bolder substitutes these

parametersinto (3) and (4) and integrates these specific and much easier ordinary
differential equationsto obtain the Vasicek and CIR versions of the affine model. (Note

for example that by substituting a, = -k; a, =kd-0A; B, =0, B, =oc?into (3) and (4),
we re-obtain the differential equations (8) and (9) of Appendix Al.)

In this appendix we show how to integrate (3) and (4) instead of integrating specific cases
asdonein Bolder (2001). We are not aware of any other source which presents these
derivations in any detail.

Rewriting (3) as:

B'(r) =1+a,B(7) —%ﬁOBZ(r)

dB(r):_l 2.\ 20, 2
©) =4 Zﬁo[B (1) s B(7) —[),J
dB(7) 1
=-—p,dr
2 2a, 2 2
B -—2B(1)-—
=g PO~ p
Let us define:

©) ' Bo
X Ay =+ 0’5 + 2/80
a B

Using (6), observe that:
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Box 2. Deriving the differential equations (3) and (4)

Following the equations of Appendix A1l (and re-labelling them with an added prime),
we can establish that if the short-rate follows the process:

1) dr(t) = fdt + pdW

we obtain, using Ités lemma that:

@) dP(t,T,r(t)){Pt +%Rrp2+ef}dt+pedw
and so:
1,
P T, 1 (1)) [F“zp”p +Pff} P
(3) ARV dt + 2 aw
P T, (1) P P

Haprp Iapip

Substituting (3') into equation (B4) of Box 1, Appendix 1, yields:

(BS) R +(f -pA®))P +%2P”—r(t)P:o.
Substituting equation (7), Appendix 1 into (B5'), yields:
- A@)-(f —pA)B(r)+%BZ(r)—r(1— B'())=0

To solvethis partia differential equation, we should note that until now, the processin
(1) was written without specifying the drift f or the volatility p. The affine model
specifies the drift and the volatility such that we can actually solve this partial
differential equation explicitly. The affine model assumes that:

f-pl=a,+a,

P =B + B
such that the partial differential equation becomes:

- A(1)-a,B(7) +%ﬂ152(f) {(1— B'(1) +a,B(7) —'BOBTZ(T) r=0,

which implies that equations (3) and (4) of this appendix must hold.
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(B(r) - X,)(B() - X,) = B2(7) - B(1) X, - B(1) X, + X, X,

B(r)a, B(T)\as+2B8, B(1)a, 3 B(r)\a; +25, + XX
3 172

=B*(1) - + -
By By B A

:BZ(Z')—ZGO—B(T)+ &+ Vag-l-zﬁo ﬂ_\/a5+2:80
IBO 180 ﬂo 180 /80

= B2(r) - ZHOB(T) ( J _a§+22,30
,30 ,30 Bs

= B2 0 B(1)-—

(1)~ ,80 () ,30

We can thus rewrite (5) as:

dB(7)
(B0 -X)BO-X,) e

Using the fact that:

1 _ 1 ( 11 j
(B -X)BO-X,) X, =X, (BO)-X, B@D)-X,
we can rewrite the differential equation as:

1 1 1 1
X, —Xl(B(r)—Xz B B(r)—XJdB(T) =T far

Recalling the derivative rules:

din(B()-X,)_ 1 din(X,-B@)_ 1
dB CB()- X, dB T B(1) - X,

thisimplies:

1 -1
X, (din(B@) - X,)~dIn(X, - B@)) =~ Audr

- dln( B(r) - XZ] X% pgr
X, —B(7) 2

Integrating the above expression:
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7 B(r)- X X -X
J. d In ( ) 2 2 ﬂoj d
0 X, = B(7)
B(r)-X, |
— |n( (T) 2} -
X, —B(7) .

:In(B(T)_XZJ—In(B(O)_XZJ X, - Xzﬂo( _0)
X, = B(1) X, = B(0)

M % Botl,

Recalling the boundary conditions that B(0) =O0:

|(B<>_XJ|(X] Xi=X; 5o
Xl_B(T) xl

:In(B(r)—xz Xl] X, xzﬁ0

B(1) - X, X,
Recalling the definitions of X; and X givenin (6), yields:
B(r)- X, X ( 2 )T
Inf| ———-2"1 |=\Ja; +2
(B(r)—xl xzj o 2o

B(r)X, - X, X, _ e(\/agwo)r

(7)
B(r)X, - X, X,
= B(r) = e( ) -1
ie(«/a§+2ﬁo)r 1
Xl XZ
We defined in (2) that \/a; +23, = y. Thus, using (6):
—-a,)\y+a
(82) 5=V °)2(y 2
(8b) i: ﬂO — y_ao
X, a,ty 2
(8¢) i: B —_Yra,
X, a,-y 2

Substituting (8) into B(1) givenin (7) yields:
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({eF280)r

B(r) = e -1 _ e’ -1
ie(M)r_i y-a, eyr+y+ao
X, X, 2 2
) _ 2(e‘”r—1)
(V-ay)e” +y+a,
2(e" -1

C(y-an)e - (y-ay) +2y
And hence, we obtain our solution for B(t) given in (1) and rewritten here as:

2" -1

10 B(7) =
10 *) (y—a )€ -1)+2y

Now it remains to obtain A(T) by solving equation (4):

- K(1)-a,B(D) +%ﬁ182(r) =0

(11) =0 1 per) a8
dr 2
= AD)=[ dg(rr) dr= G BB (1) - alB(r)jdr

To solve thisintegral, we thus have to use the solution derived above for B(1). Itiseaser
to transform B(t1) asfollows:

(12) B(r) = 2(e" -1 _2(e" -]
(y-a)e -D+2y  g(1)
such that:
(13) g(r) = (V—a’o)(e"’ -D+2y=9(0) =2y
g9'(1) =(y—a,)e”
and so:
(14) 0(0) = (v-a0)e” + (@, +1) = LD 4 g, +y)

= g'(1) = /(9(1) ~ (@, + ) = (@) - y(@, +y)

Now recall that we obtained above under (8a) that:
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5 = (y-ao)2(y+ao) o= (y-ao;(ywo)

This permits us to rewrite B(t) in (12) as:

B(7) = 2(e” -1) _ 2(e” -1) _ (y—ao)(y+ ao) e -1)
(y-ag)(e -D+2y 9(7) B, g(7)
(15)
= (V—O'O) (y+a0)(eyr -1
Bo g(7)
Observe aso that:
(V+ao)(€ -1 =(-y+ay)E" -1 +2p(e" -1) =—-g(r) +2)" = - g(7) +2 g'_(r)
using (13) e 0
SO that:
_g(z-)_l_z gl(r) I
B(r) =X~ % y-a, _y-a, (_“Lg (r)j
By 9(7) B, y—a, 9(7)
(16) =
B(r) = —ﬂ{iﬂj
By B, 9(7)

Recall that our objective isto solve equation (11) above. We thus want to substitute B(T)
and B(1) in that equation. Therefore:

(17) Bz(r):(ﬂJ2+i2(g'2(T))2 490 Wy-a,)
Po Bs 9’(r) B 9(m) B

Now, we also know that:

(G@) _ g0 _ @) -ma,+y) _y'(@) _y@a,+1)g'()
9°(7) 9°(7) 9°%(7) 9(7) 9°(7)

using (14)

so that equation (17) can now be rewritten as:
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Bz(r):(y—ao]: 1 (»g'(r)_y(awy)g'(r)j_ig'(r) (v - )
g ) Blee @ ) Bo@ A
82 = (y—aojz W@ +y) 9(0) |, 44, ()

2 B9 B 90

(18)

We can now substitute B(t) given in (16) and B(t) given in (18) into (11):

(1
A7) = jo (5 B,B(1) - alB(r)jdr
Note that the expression in brackets can be expressed as:
1,52
_,818 (1) —a,B(7)

1 ﬂl(y aojz_z,ely(azow) 9() , 280,40, , V=0 _a{ 2 w}
By g o’ B oo B B 9

[ ﬁl(y aj 1y—aoH2ﬂlao_2a1}g'(r)_2ﬂly(ao+y) g'(r)

Bs By Bs By | 9() B3 9%(1)
and thus;
A(T) = j [ B,B3(T) - alB(r)jdr
(19) :IT lﬁl[y_aoj +al[y_aoj dr+(2,31?0 _20’ J g (T) dr
o|2 By Bo Bs B J° g(7)
{Zﬂly(a +y)}j g() 4
g (r)

Now observe that:

90 4 - [ ding(r) =Ing(r); =Ing(r) ~Ing(0) = In(@J
° g(7) 0 2y

if werecadl that g(0)=2y [see equation (13)].

Aswell, setting a change of variable:
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r=g(r) = dr = dg(r) = 390 =97 _
dr dr
yields:
(900 Lo L U713 1)
g’ g ® T ho Ty (r) o, 90 90 \g@® 2y

and thus, substituting the results above into (19):

A7) = LF BB (7) —alB(r)}dr

(20) - _ﬂl(y a j +al(y_a0j T+(2ﬂ120,0 — 2alj|n(g(r)j
ﬂO ﬂO 180 180 2y
+‘2ﬂ1y(ao+y>}( 1 ‘iJ
By g(r) 2y

which is equation (2) above.

In the last step, we show that the affine model is ageneral case of the CIR model. To see
this, ssmply define that:

a, =—-(k+A1);
a, = k&,
By =0

B =0

(21)

Substituting these parameter valuesinto (1), yields:

2(e” -1 _ 2(e” -1)
(y-a,))€" -)+2y (y+k+A)(€" -D)+2y

where y = \Ja,> + 28, =/(k+ )% +20°

This corresponds to the first part of equation (29) in Bolder (2001). The second part can
be recovered as follows by substituting again the parameter values defined in (21) into
equation (2):

(22) B(7) =
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AT) =
= lﬂl(y_aoJ +a,1(y_aoJ T+(2131?0_Zaljm(g(r)j_*_{zﬁﬂ/(azo+V)}( 1 _ij
| 2 B, B, ] Bs B, 2y Bs a(r) 2y

. _O+kz9(y+—k+)lﬂr— 29 Mjm

o’ o’ 2y

Now, recall that we defined in (13) that: g(7) = (y —a,)(e” —1) + 2y, such that:

yr _
A(r):kﬁ(”k;"jr—Zkfln (yrk+A)Ee” ~D+2y
g g 2y

_ 2kz9(y+k+/1 T_ln((y+k+/1)(e‘” —1)+2yD

o? 2y

=

2K y+ke | ﬁ.[w]
A(T) — o2 o? 2y
e (T) _eﬂ 2 e

20

2kﬂ[y+k+/1]r ,n[ 2y jaz
— g2 2 +k+1)(7-1)+2
—e? g \(rHkEA)(eT D2y
2kS

ST
(

y+k+A) (€ - +2y
2ks

+k+A Uz

(y 2 )T

2)e
(y+k+A) (" -D+2y

2k8
(23) Gy

= Ine™” = A(1) =In 21
(Y+k+A)(e" -D+2y

which corresponds to the second part of equation (29) in Bolder (2001).

56



The Vasicek and CIR Models and the Expectation Hypothesis of the Term Structure

A5. Codingthe Vasicek model

This appendix provides the code for three files that can be used in Portable Troll to
simulate the Vasicek model. The first two files are input files and the third is a macro.
The first input file describes the parameters of the model presented in Table 1 of the
paper. The second input file describes the Vasicek model as explained in Appendix Al.
Finally, the macro is used to simulate the Vasicek model over a 10-year horizon and for a
large number of times or runs (RNS=500). The reader can smply copy and save these
files as, respectively, Param.inp, Vasicek.inp. and Simulate.src. Then, in the Troll input
window, simply type:

Input Param;

Input Vasicek;
Compile Simulate;
& Simulate

This should launch the simulation. Once the simulation is done, (which takes about 5
seconds for one single run), the reader may want to plot some results into the Troll
environment, by typing into the input window, say:

&plot variableout dat | 1out dat | 4out dat | 8out dat | 20 out_dat | 80, range
200191 to 201194

Thisshould giveaplot for|_1, ..., |_80, the one-quarter ..., 80-quarter interest rates,
over a 10-year horizon for the particular “run” chosen. From this, we can observe
(vertically) ayield curve for each quarter of the 10-year horizon and observe how the
shape of the yield curve evolves over the ten-year horizon.

/IParam.inp
/IBenchmark parameter value for the Vasicek model: Table 1, in this paper

access benchmark typetrolldb id "param.trd" modec;
search benchmark w;

dofilek = 0.147; //k = mean reverting speed

dofiletheta=0.074; //theta= mean reverting level of the short rate

dofile sigma = 0.029; //sigma = voldtility

dofile lambda = -0.154; /Imarket price of risk

dofile thetabar = theta - sigma*lambda/k; // (=0.10438) upper bound in Vasicek
dofile gamma = ((k** 2)* thetabar)-(sigma** 2)/2;

dofile tau = 0.25; [ltau = time to maturity = T-t
dofiledt = 1/4; //Continuous-time process approximated to quarterly time interval

delsearch all;
delaccess al;

/IVasicek.inp
/I The Vasicek model as described in Appendix 1

usemod,;
addsym
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endogenous

Rinst

B_800B_80B _40B_20B_12B_8B_4B_2B_1

A_800A_80A_40A_20A_12A 8A 4A 2A_1
P 800P 80P 40P 20P 12P 8P 4P 2P 1
1_8001_801_401_201_121_81_41_21_1

parameter
k theta sigma lambda thetabar gammatau dt;

addeq bottom

/lprocess for "instantaneous’ very short rate, rinst (noted r in this paper)
//See Footnote 2 in this paper
rinst = theta + (rinst(-1)-theta)* exp(-k* dt) + sgrt(((sigma** 2)/2*k)* (1-exp(-2* k* dt)))*el,

/I for one-quarter maturity instrument

B_1=(1- Exp(-k*tau)) / k, //See Equation (10) Appendix 1

A_1 = (Gamma* (B_1-tau)/k**2)-((sigma**2)* (B_1**2))/(4*k), //See Equation (11) Appendix 1
P_1=Exp(A_1-B_1*ringt), //See Equation (6) in Appendix 1

I_1=(-(Log(P_1) / Log(2.718282)) / (tau))* 100, //See Equation (12) in Appendix 1.

/Inote: change of notation: | in code = z in paper.

/lexample: |_1 =z(1/4), i.e,, theinterest rate on a one-quarter maturity instrument

/Inote: natural log in paper are transformed into basis 10 log in code. See Chiang (1984), p 291.

[[for 2-quarters maturity instrument
B_2=(1- Exp(-k*tau*2)) / k,
A_2 = (Gamma* (B_2-tau* 2)/k** 2)-((sigma** 2)* (B_2** 2))/(4*k),
P 2 EXp(A_2-B_2*rinst),
= (-(Log(P_2) / Log(2.718282)) / (tau*2))* 100,

I/ for 1-year maturity instrument

B_4=(1- Exp(-k*tau*4)) / k,

A_4 = (Gamma* (B_4-tau* 4)/k** 2)-((sigma** 2)* (B_4** 2))/(4*k),
P_4 = Exp(A_4-B_4*ringt),

I_4=(-(Log(P_4) / Log(2.718282)) / (tau*4))* 100,

B_8=(1- Exp(-k*tau*8)) / k,

A 8 (Gamma* (B_8-tau* 8)/k** 2)-((sigma** 2)* (B_8**2))/(4*k),
P Exp(A_8-B_8*ringt),

8= ( (Log(P_8) / Log(2.718282)) / (tau*8))* 100,

B_12 = (1 - Exp(-k*tau*12)) / K,

A_12 = (Gamma* (B_12-taur* 12)/k** 2)-((sigma** 2)* (B_12**2))/(4*K),
P 12 = Exp(A_12-B_12*ringt),

| 12 = (-(Log(P_12) 7 Log(2.718282)) / (ta* 12))* 100,

B_20 = (1 - Exp(-k*tau*20)) / k,
A_20 = (Gamma* (B_20-tau* 20)/k** 2)-((Sigma* 2)* (B_20%* 2))/(4*K),
P_20 = Exp(A_20-B_20*rinst),

|20 = (-(Log(P_20) / Log(2.718282)) / (tau*20))* 100,

B_40 = (1 - Exp(-k*tau*40)) / k,

A_40 = (Gamma* (B_40-tau* 40)/k** 2)-((sigma* * 2)* (B_40** 2))/(4*k),
P_40 = Exp(A_40-B_40*ringt),

1_40 = (-(Log(P_40) / Log(2.718282)) / (tau*40))* 100,

B_80 = (1 - Exp(-k*tau*80)) / k,

A_80 = (Gamma* (B_80-tau* 80)/k** 2)-((sigma**2)* (B_80** 2))/(4*K),
P_80 = Exp(A_80-B_80*ringt),

1_80 = (-(Log(P_80) / Log(2.718282)) / (tau*80))* 100,

/IThefollowing is for a 200-year maturity instrument:

/IThisis supposed to illustrate the long-term properties of the model that

/lthe zero-coupon rate on avery long-term rate is deterministic and tends to gamma/(k** 2)
B_800 = (1 - Exp(-k*tau*800)) / k,

A_800 = (Gamma* (B_800-tau* 800)/k** 2)-((sigma** 2)* (B_800** 2))/(4*k),

P_800 = Exp(A_800-B_800*rinst),

1_800 = (-(Log(P_800) / Log(2.718282)) / (tau*800))* 100,
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filemod vasicek;

/ISimulate.src
/IMacro to simulate the vasicek model

Addfun Main;

Procedure Main ()
Begin;
&timesecs ; >>on
>>Delsearch all;
>>Delaccess all;
>>sysopt log off;

>>ACCESSBASE TYPE TROLLDB ID "MAIN.TRD" MODE c;

/IThe shape of the yield curve depends on the value of the short rate (rinst) relative to some bounds
/IThe following 4 lines give four different starting point for rinst and thus four different intial shapes for yield curves.
//Use only one of the four lines below, comment out the 3 others using double bars // and experiment!!!

>>dofile base_rinst = RESHAPE(CRMAT(400, 1, 0.12), 1961Q1); // Thisshould provide an initially inverted yield curve with
/lexisting parameter set

//I>>dofile base_rinst = RESHAPE(CRMAT (400, 1, 0.095), 1961Q1); // Humped-shaped

//>>dofile base_rinst = RESHAPE(CRMAT (400, 1, 0.084921), 1961Q1); //Humped-shaped

//>>dofile base _rinst = RESHAPE(CRMAT(400, 1, 0.074), 1961Q1); // Thisshould initially yield an upward sloping yield curve

>>DOFILE BASE_B_800 = RESHAPE(CRMAT(400, 1, 0), 1961Q1);
>>DOFILE BASE_A_800 = RESHAPE(CRMAT(400, 1, 0), 1961Q1);
>>DOFILE BASE_P_800 = RESHAPE(CRMAT(400, 1, 0), 1961Q1);
>>dofile base_|_800 = reshape(crmat(400, 1, 0), 1961q1);

>>DOFILE BASE_B_80 = RESHAPE(CRMAT(400, 1, 0), 1961Q1);
>>DOFILE BASE_A_80 = RESHAPE(CRMAT(400, 1, 0), 1961Q1);
>>DOFILE BASE_P_80 = RESHAPE(CRMAT(400, 1, 0), 1961Q1);
>>dofile base_|_80 = reshape(crmat(400, 1, 0), 1961q1l);

>>DOFILE BASE_B_40 = RESHAPE(CRMAT(400, 1, 0), 1961Q1);
>>DOFILE BASE_A_40 = RESHAPE(CRMAT(400, 1, 0), 1961Q1);
>>DOFILE BASE_P_40 = RESHAPE(CRMAT(400, 1, 0), 1961Q1);
>>dofile base_|_40 = reshape(crmat(400, 1, 0), 1961q1);

>>DOFILE BASE_B_20 = RESHAPE(CRMAT(400, 1, 0), 1961Q1);
>>DOFILE BASE_A_20 = RESHAPE(CRMAT(400, 1, 0), 1961Q1);
>>DOFILE BASE_P_20 = RESHAPE(CRMAT(400, 1, 0), 1961Q1);
>>dofile base_|_20 = reshape(crmat(400, 1, 0), 1961q1);

>>DOFILE BASE_B_12 = RESHAPE(CRMAT(400, 1, 0), 1961Q1);
>>DOFILE BASE_A_12 = RESHAPE(CRMAT(400, 1, 0), 1961Q1);
>>DOFILE BASE_P_12 = RESHAPE(CRMAT(400, 1, 0), 1961Q1);
>>dofile base_|_12 = reshape(crmat(400, 1, 0), 1961q1l);

>>DOFILE BASE_B_8 = RESHAPE(CRMAT(400, 1, 0), 1961Q1);
>>DOFILE BASE_A_8 = RESHAPE(CRMAT(400, 1, 0), 1961Q1);
>>DOFILE BASE_P_8 = RESHAPE(CRMAT(400, 1, 0), 1961Q1);
>>dofile base_|_8 = reshape(crmat(400, 1, 0), 1961g1);

>>DOFILE BASE_B_4 = RESHAPE(CRMAT(400, 1, 0), 1961Q1);
>>DOFILE BASE_A_4 = RESHAPE(CRMAT (400, 1, 0), 1961Q1);
>>DOFILE BASE_P_4 = RESHAPE(CRMAT(400, 1, 0), 1961Q1);
>>dofile base_|_4 = reshape(crmat(400, 1, 0), 1961q1);

>>DOFILE BASE_B_2 = RESHAPE(CRMAT (400, 1, 0), 1961Q1);
>>DOFILE BASE_A_2 = RESHAPE(CRMAT(400, 1, 0), 1961Q1);
>>DOFILE BASE_P_2 = RESHAPE(CRMAT (400, 1, 0), 1961Q1);
>>dofile base_|_2 = reshape(crmat(400, 1, 0), 1961qg1);
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>>DOFILE BASE_B_1 = RESHAPE(CRMAT(400, 1, 0), 1961Q1);
>>DOFILE BASE_A_1 = RESHAPE(CRMAT (400, 1, 0), 1961Q1);
>>DOFILE BASE_P_1 = RESHAPE(CRMAT(400, 1, 0), 1961Q1);
>>dofile base_|_1 = reshape(crmat(400, 1, 0), 1961q1);

>>DELACCESSALL;
>>DELSEARCH ALL;

SDATE = 2001Q1;

ORT = 44;

cgrt = 152;

/IRNS below implies that there will be 500 simulations of a 44 quarters time horizon
RNS = 500;

NAMES=COMBINE("B_800","B_80","B_40","B_20","B_12","B_8","B_4","B_2","B_1",
"A_800","A_80","A_40","A_20","A_12""A_8""A_4""A_2""A_1",
"P_800","P_80","P_40","P_20","P_12","P_8""P_4","P_2","P_1",
"1_800","1_80","1_40","1_20","I_12","1_8","1_4","I_2","I_1",

"ringt");

NUM=NVALS(NAMES);

nshks=combine("el");

nums=nvals(nshks);

>>access par type trolldb id "param.trd”;
>>gccess base typetrolldb id "Main.trd" mode o;
>>access vas type trolldb id "vasicek.trd" mode c;
>>access out type trolldb id "outdata.trd" mode c;
>>access shk typetrolldb id "shocks.trd" mode c;
>>access mat type trolldb id "gm.trd" mode c;

for (K=1; K<=num; k=k+1)

name=namesgK];
>>do mat_& (name)=crmat(&qrt,0);
}

/lintroduction of shocks

/ITo generate 500 simulations of the same 44 quarters horizon write instead
/I For (X=1; X<=RNS; X=X+1), otherwise experiment with the following line

For (X=1; X<=1; X=X+1)
{
>>do shk_vec_el = randnorm(1262+&x,9783-& X ,base _rinst);
FOR (K=1; K<=NUM; K=K+1)

{

NAME=NAMES[K];

>>DO OUT_DAT_& (NAME)=BASE_& (NAME);
}

FOR (qg=SDATE; qq<=SDATE+QRT-1; qo=qq+1)

FOR (S=1; S<=NUMS; S=S+1)

{
NSHK=NSHKS[S];
>>DO
SHK_&(NSHK)=OVERLAY (SUBRANGE(SHK_vec_& (NSHK),&0q,& QQ),RESHAPE(CRMAT(&CQRT*2,1,0),& SDATE-7));
}

>>DO PRINT("vas",":","QQ","RUN",":",& X);
>>DELSEARCH ALL;
>>SEARCH FIRST shk OUT_DAT PAR base
>>USEMOD vasicek;
>>CONOPT CONCR 0.0001 STOP 100;
>>SIMULATE OLDSTACK 50;
>>SIMSTART &qg;
>>DOSTACK 1,
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>>FILESIM vas;
FOR (K=1; K<=NUM; K=K+1)

{
NAME=NAMES[K];
>>DOFILE OUT_DAT_& (NAME)=OVERLAY (vas &(NAME),OUT_DAT_&(NAME));

}
}
FOR (K=1; K<=NUM; K=K +1)

{
NAME=NAMESK];
>>DO
MAT_&(NAME)=ADDCOL(MAT_&(NAME),0,RESHAPE(SUBRANGE(OUT_DAT_&(NAME) & SDATE,& SDATE+&QRT-

1),&QRT,1));

>>delsearch all;

}

&timesecs ; >> off
>>quit;

end;
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