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Abstract 
 
A good understanding of the theories of the interest rate term structure is important when 
elaborating a debt management strategy and, in particular, when choosing the maturity 
structure of the public debt.  “Best practises” of debt management suggest the use of 
modern theories of the term structures based on the seminal papers by Vasicek (1977) 
and Cox, Ingersoll and Ross (1985).  These models have been used to analyse the 
maturity structure of the public debt both at the Bank of Canada and at the Department of 
Finance, and in other countries [e.g., Danish Nationalbank (2001)]. 
 
This paper documents the Vasicek and CIR term structure of the interest rates that has 
been introduced into a macro-economic stochastic simulation model (SSM) developed at 
the Department of Finance.  The final aim will be to use the SSM with alternative term 
structures of interest rates to gauge the robustness of our earlier results described in 
Georges (2003), which suggests that a shorter debt maturity structure is less expensive on 
average and also less risky from the point of view of the overall budget balance if 
demand shocks prevail over the business cycle.   
 
Résumé  

 
Une bonne connaissance des théories de la structure à terme des taux d’intérêts est une 
condition nécessaire à l’élaboration d’une stratégie de la gestion de la dette publique y 
comprit du choix de la maturité de cette dette.  Les pratiques de rigueur en gestion de la 
dette utilisent les théories modernes de la gamme des taux basées sur les études de 
Vasicek (1977) et Cox, Ingersoll et Ross (1985).  Ces modèles ont été utilisés à la Banque 
du Canada et au Ministère des Finances, ainsi que dans d’autres pays [e.g., Banque 
Nationale du Danemark (2001)] afin d’analyser la maturité de la dette publique.  
 
Ce papier documente les structures à terme des modèles de Vasicek et CIR introduits 
dans un modèle macro-économique de simulation stochastique (MSS) développé au 
Ministère des Finances.  L’objectif ultime sera d’utiliser le MSS avec des structures à 
terme alternatives afin d’examiner la sensibilité de nos résultats antérieurs (Georges 
2003) selon lesquels une structure de dette à plus court terme est moins coûteuse en 
moyenne et moins risquée du point de vue du solde budgétaire si les chocs de demande 
dominent au cours du cycle des affaires.             
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Introduction  
 
A good understanding of the theories of the interest rate term structure is important when 
elaborating a debt management strategy and, in particular, when choosing the maturity 
structure of the public debt.  Best practises of debt management suggest the use of 
modern theories of the term structures based on the seminal papers by Vasicek (1977) 
and Cox, Ingersoll and Ross (1985) (henceforth CIR).  These models have been used to 
analyse the maturity structure of the public debt both at the Bank of Canada [Bolder 
(2002)], and at the Department of Finance [Debt Management Strategy 2003-2004], as 
well as in other countries [e.g., Danish Nationalbank (2001)]. 
 
The level of analytical complexity of these models and in particular the extensive use of 
stochastic calculus has often been a barrier to entry for the typical economist.  Although 
some papers provide derivations with a high level of detail (e.g., Bolder 2001), they often 
fail to ultimately convey a clear link between these models and the typical background 
that most economists have related to the theory of the interest rate term structure.  The 
objective of this paper is to demystify these models by demonstrating upfront, with a 
minimum level of analytical derivation, that they belong to the class of the biased 
expectation theory of the term structure and thus that they “simply” imply that the long-
term interest rate is an average of future expected short rates plus a term premium.   
 
The second objective of the paper is to document the Vasicek and CIR term structure of 
the interest rates that has been introduced into one version of a macroeconomic stochastic 
simulation model (SSM) developed at the Department of Finance.  The aim is to use the 
SSM with alternative term structures of interest rates in order to gauge the robustness of 
our earlier results described in Georges (2003), which suggests that a shorter debt 
maturity structure is less expensive on average and also less risky from the point of view 
of the overall budget balance if demand shocks prevail over the business cycle.    
 
A good starting point of our analysis is to describe what “modeling” the term structure 
means.  At any given time, the range of default-free interest rates available in the 
economy is represented by the term structure of interest rates or yield curve.  This relates 
all the interest rates earned on a default-free discount bond to their term to maturity.  For 
example, Figure 2 below shows four hypothetical snapshots of the term structure.  The 
monotonically increasing (decreasing) yield curve illustrates a snapshot of the economy 
where long-term rates are higher (lower) than short-term rates.  The other two yield 
curves are humped with rates being first an increasing, then a decreasing function of the 
term to maturity.   
 
Over time, the shape of the yield curve is liable to change, generating a steepening, a 
flattening or an inversion of the curve.  Yield curve modeling explains how the term 
structure evolves over time.  To do so, it is assumed that the future dynamics of the term 
structure of interest rates depend on the evolution of some factor that follows a stochastic 
process.  
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The papers by Vasicek and Cox, Ingersoll and Ross assume that this specific factor is the 
instantaneous (very short term) default-free interest rate.  A natural assumption is that 
one-stochastic variable models either imply that the term structure is flat or that all 
interest rates move up or down in line with each other.  In fact, this is not the case; a 
fairly rich pattern of term structures is possible.  That said, a shortcoming of the one-
factor model is that all the information about the economy relevant to the determination 
of interest rates is compressed into one stochastic process for very short rates.  Hence, a 
number of researchers have investigated the properties of several factor models.  Both 
models of Vasicek and CIR can readily be extended to incorporate a multi-factor 
analysis, enriching the modeling of the yield curves by explicitly considering the 
covariance structure between the underlying sources of randomness. 
 
To recap, the strong cross-sectional correlation between bond yields of different 
maturities has inspired researchers to decompose the correlation structure into a number 
of “factors” that may drive the entire yield curve of a given national bond market.  One 
initial popular route in the finance literature was to assume some diffusion process for the 
short rate and then use arbitrage arguments to find the functional form and relations 
between observed yields of bonds with varying maturities [Vasicek (1977), CIR (1985)].  
Since then, it has been shown that one class of diffusions for which closed form solutions 
exist is the class of multi-factor affine term structure models [Duffie and Kan (1996)].  
This class embeds as special cases the Vasicek (1977), CIR (1985), and Hull and White 
(1990) models. 
  
The plan of the paper is as follows.  Section 1 shows that the model of Vasicek belongs to 
the class of the biased expectations hypothesis.  Section 2 addresses the same issue for 
the CIR model.  Appendixes 1, 3, and 4 provide detailed derivations for both the Vasicek 
and CIR models and their more general formulation, the “affine” model.  Appendix A2 
reviews the traditional typology of the theories of the interest rate term structure [pure 
expectation theory (return-to-maturity and local interpretation) and biased expectations 
theory (liquidity preference and preferred habitat theory)].  This background material is 
what I consider the standard knowledge of the “non-expert” in this field.  Appendix A5 
provides an example of the coding of the Vasicek model in Portable Troll.  This paper 
can be considered a companion piece to Bolder (2001) in the sense that it treats related 
issues in yield curve modeling (but from a different angle) and uses the same notation.  
The paper also provides in appendixes detailed derivations of important steps not covered 
by Bolder or for that matter, any other papers or textbooks.    
    
1.  The Vasicek model 
 
1. 1 The zero-coupon yield curve 
 
Notation and assumptions 
 
Vasicek analyses pure (zero-coupon) discount bonds, that is, contracts that pay one unit 
of currency at maturity with no intermediary coupon payments. There is no risk of 
default, that is, the payment at maturity will be made with certainty.  We denote the 
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current value or price of a default-free pure discount bond as the function P(t,T).  The 
first argument, t, refers to the current time or period, while the second argument, T, 
represents the bond’s maturity date.  The term to maturity is thus τ =T-t.  As the payment 
at maturity is $1, the value of the bond at maturity is P(T,T) = 1.   
 
The current price of the bound is simply the present value of the final payment, that is: 

     ))(,(

1),( tTTtze
TtP −=  

 
The zero coupon rate or yield to maturity z(t,T), is a p.a. interest rate that is assumed, 
here, to be continuously compounded.  Taking the logarithm of the expression above, 
yields: 

(1)     ( )
tT
TtPTtz

−
−= ),(ln),(  

 
Vasicek assumes that a market exists for bonds of every term to maturity.  That is he 
considers a spectrum of maturities ranging from the very long term (when T-t tends to 
infinity) to the shortest possible maturity, when T tends to t.  In this case, the zero coupon 
rate is effectively the rate of interest demanded over an extremely short period of time.  It 
is referred to as the instantaneous rate of interest (in practice, the overnight interest rate) 
and is denoted as:  
 

),(lim)( Ttztr tT →=  
 
Vasicek assumes that the instantaneous interest rate follows a mean reverting process also 
known as an Ornstein-Uhlenbeck process: 
 
(2)    dWdtrktdr σϑ +−= )()(   
 
This process is a continuous time analogue to an auto-regressive process.1  The 
instantaneous drift )( rk −ϑ represents a force that keeps pulling the short rate towards its 
long-term mean ϑ with a speed k proportional to the deviation of the process from the 
mean.  The stochastic element σdW, which has a constant instantaneous variance σ 2 (i.e., 
a variance per unit of time dt) causes the process to fluctuate around the level ϑ in an 
erratic, but continuous, fashion. dW itself is a standard Wiener process [i.e., 

),0(~ dtdW Ν ]  
 

                                                 
1 For simulation purpose, we need to discretize this stochastic differential equation.  Equation (2) is the 
limiting case as ti –ti-1 → 0 of the following discrete auto-regressive process (see for example Dixit and 
Pindyck 1994): 

( ) ( ) )1,0(~;1
2

)()( )(2
2

)(
1

11 Ne
k

etrtr iiii ttkttk
ii εσεϑϑ −− −−−−
− −+−+= . 
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It can be shown [see Dixit and Pindyck(1994) or Bolder (2001)] that the conditional 
expectation of this process given the current level is: 
 

(3)   
( ) ( )

)()(

)(

)()1(

)()( )(
tTktTk

tTk

etre

etrtrTrE
−−−−

−−

+−=

−+=

ϑ

ϑϑ
  

 
This shows that the conditional expectation of the short rate is a weighted average of the 
last period short rate and its long-term mean. As obvious from equation (3), when the 
current short rate, r(t) is above (below) the mean reverting level,ϑ , it is expected that the 
short rate will decrease (increase) in the future. Point 1 in Figure 1 illustrates such a case 
where it is expected that the future short rate will decrease.  Only in those cases where the 
current short rate is equal to ϑ (as at point 2) will it be expected that future short rates 
remain at this level. 
 
Vasicek assumes that the price P(t,T) of a discount bound [and thus z(t,T)] is determined 
by the assessment, at time t, of the segment {r(x), t ≤ x ≤ T}of the instantaneous rate of 
interest over the term of the bond.  As will be shown in Subsection 1.2, the expectation 
hypothesis, the liquidity preference hypothesis and the preferred habitat hypothesis are 
theories of the term structure of the interest rates that all conform to this assumption.  
Because the process for the short rate in (2) belongs to the class of Markov processes 
according to which all information needed to forecast the future path of the variable is 
embodied in its current value, Vasicek postulates that P(t,T) is a function of r(t), that is 
P(t,T) = P(t,T,r(t)).  
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Figure 1:  Ornstein-Uhlenbeck process for the very short rate 
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Solution 
 
Based on these assumptions, Vasicek develops an analytical expression for the term 
structure (or yield curve) of zero coupon rates.  This expression is given by:   
 

(4) ( ) ( )2)(
3

2
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22 1
)(4

1
)(

1)(),( tTktTk e
tTk

e
tTkk

tr
k
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−
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





 −+= σγγ  

 

where the parameter 
22

)(
2

2
2

2 σϑσσλϑγ −=−−= k
k

k  

A sketch of the solution method is given in Appendix 1.  The parameter λ is the market 
price of risk and is explained in further details in Appendix 1.   
From equation (4), we observe that the zero coupon rate on a very long-term bond is 

deterministic and given by: 2),(lim
k

TtztT
γ=∞→− .  The yield of a very short-term bond is 

given by )(),(lim 0 trTtztT =→− , the instantaneous rate of interest. 
 
Figure 2 illustrates the family of yield curves implied by equation (4) using the numerical 
values in Table 1.  The yield curves satisfying (4) start at the current level for the very 
short (instantaneous) rate of interest ),(lim)( 0 Ttztr →= τ and approach a common 

asymptote for the very long rate given by 2),(lim
k

TtztT
γ=∞→− .  When the very short rate 

is equal or below 2

2

2 4
1

kk
σγ −  (as at point 1 in Figure 2), the yield curve is monotonically 

increasing.  When the short rate equals or exceeds 2

2

2 2
1

kk
σγϑ +=  (point 2), the yield 

curve is monotonically decreasing.  For intermediary values of the short rate (points 3 
and 4), the yield curve is humped.   
 

The bounds 2

2

2 4
1

kk
σγ −  and 2

2

2 2
1

kk
σγϑ += come from an analysis of equation (4): they 

are not exogenously imposed bounds but simply result from the model.  We will prove 
later how to derive bounds in the CIR model in Appendix A3.  But the reader can 
convince himself/herself that the analytical expression for both bounds is indeed correct 
by coding the formula given by equation (4) and the parameters given in Table 1 in, say, 
a spreadsheet, and observe how the shape of the yield curve changes as the short rate r is 
set below, in between or above these bounds.    
 
Yield curve modeling explains how the term structure evolves over time.  Here, it is 
assumed that the future dynamics of the term structure of interest rates depends on the 
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evolution of the short rate of interest that follows a stochastic process given by (2).   As 
time passes, shocks push the short rate below, in between, or above the bounds, 
generating a steepening, a flattening or an inversing of the curve.2   
 
In conclusion, the Vasicek model implies that the shape of the yield curve essentially 
depends on the value of the short rate relative to some bounds.  This explanation seems, a 
priori, quite different from the “classical” explanations of the yield curve based on 
expected future short rates and premium for risk.  This, however, is not the case, as 
explained in the next section.  In particular, we will show that equation (4) can be 
rewritten as: 

( )
( )Tt

tT

dxtIxrE
Ttz

T

tx t
,

)()((
),( π+

−
= ∫ =

 

 
In other words, the long rate is an average of expected short (instantaneous) rates plus a 
premium, as assumed by the biased expectation hypothesis.  
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Figure 2: yield curve modeling in Vasicek (1977) 
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Table 1:  Parameters for the Vasicek model 
 
  
Parameters  
K 0.147 
ϑ  0.074 
σ 0.029 
λ -0.154 

κ
σλϑϑ −=  

0.104 

2
)(

2
2 σϑγ −= k  

0.001835 

2k
γ

 
0.08491 

2

2

2 4
1

kk
σγ −  

0.07519 

Source: Bolder (2001) 
 
1.2  The forward rate and the expectations hypothesis of the term structure  

 
The forward rate 
 
The yield curves in Figure 2 are the curves for the zero coupon rates.  In order to obtain a 
better understanding of these curves, we can also introduce forward rates curves.  The 
derivation of the zero coupon rates is sufficient for the determination of the forward rates.  
Indeed, we show in this subsection that forward and zero-coupon rates are related to each 
other as marginal and average cost curves in economics.     
 
Suppose the following time line: 
 
 
 
 
 
and de
at time
at time
arbitra

 T1 T2 
t
8

fine z(t, Ti) as the zero coupon interest rate at time t for an investment that matures 
 Ti, and F(t, Ti, T2) as the forward interest rate at time t for an investment that starts 
 T1 and maturing at T2.  Assuming continuous compounding and assuming away 
ge opportunities, the following condition must hold: 
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Given the time line drawn above, we know that: 
 

( ) ( )tTTTtT −+−=− 1122  
 
which permits to rewrite the forward rate as: 
 

(5)   [ ] ( )
( )12

1
12221 ),(),(),(),,(

TT
tTTtzTtzTtzTTtF

−
−−+=  

Equation (5) illustrates the well-known relationship between a zero-coupon yield curve 
and the forward curve.  If the zero coupon curve is flat, then the term in square bracket in 
equation (5) equals zero, and the forward rate is equal to the zero rate.  For an upward- 
(downward-) sloping zero coupon curve the forward rate is higher (lower) than the zero 
rate. 
 
In parallel to the concept of an instantaneous interest rate, there exists an instantaneous 
forward rate.  This is the forward rate that is applicable to a very short future time period 
that begins at time T.  Taking limits as T2 approaches T1 in the equation above and letting 
the common value of the two be T, we obtain a series of equivalent expressions for the 
instantaneous forward rate: 
 

(6)   

( )

( )

( )
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),(

),(

(1))equation (by   ),(ln),(
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),(),(),,(lim),( 2112
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Integrating (6), obtains: 
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Given the fact that )(),( trttf = , the instantaneous rate of interest, equation (7) can also 
be written as: 

tT

dxxtftr
z(t,T)

T

dttx

−

+
= ∫ +=

),()(  

 
Hence, the zero coupon rate is the average of the instantaneous forward rates with trade 
dates between time t and T.  The zero coupon rate is the average cost of borrowing over a 
period (T-t), whereas the forward rate is the marginal cost of borrowing for an infinitely 
short period of time. 
 
The definition of the forward rate in (6) permits to compute the forward rate in the 
Vasicek model (see details in Appendix 1): 
 

(8)  ( ) )()()(
2

2

2 )(1
2

),( tTktTktTk etree
kk

Ttf −−−−−− +−







+= σγ  

  
Given the one-to one relationship between the zero coupon and the forward curves, all we 
need to explain the shape of the zero coupon curve is to explain the shape of the forward 
curve. 
 
The Vasicek model and the expectation hypothesis of the term structure 
 
All term structure theories assume equation (7), that is, they all assume that the long rate 
is an average of forward rates over the life of the bond.  This results from assuming that 
no profitable riskless arbitrage is possible.   
 
Where term structure theories differ is in whether they consider that forward interest rates 
are equal or not to expected future short interest rates.  The diagram below shows a 
typology of term structures theories.  Appendix 2 reviews these theories in detail.  
According to the pure (or unbiased) expectations hypothesis of the term structure, 
forward rates and expected short rates are driven to equality.  If not, forward rates are 
considered to be a biased predictor of future short rates and their difference is the risk 
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premium.  In this section we show that the Vasicek model is consistent with a biased 
expectation theory of the term structure.       
 

A Typology of Term Structure Theories 
 

Return-to-Maturity

Local Interpretation

Pure Expectations Theory

Liquidity Preference Theory

Preferred Habitat Theory

Biased Expectations Theory

Expectations Theory Market Segmentation Theory

Term Structure Theories

 
 
 
Figure 3 illustrates that in the Vasicek model, the forward rate is a biased predictor of the 
expected short rate.  Using numerical values in Table 1, Panel a in Figure 3 illustrates 
that, according to the Vasicek model, if the current short rate r(t), is equal to 

%52.7
4
1%4.7 2

2

2 =−=
kk
σγϑ p , as at point 1, the yield curve z(t,T) will be upward 

sloping.  Also, as shown in the previous subsection, an upward-sloping yield curve is 
associated with a forward rate curve f(t,T) that must be upward-sloping and above the 
zero coupon curve as shown in Figure 3.   
 
But we also know from the previous subsection that when the short rate is equal to ϑ, its 
long-term mean reverting value (as at point 1 in panel b), it is expected that future short 
rates remain at this level.  This implies that the forward rate is not equal to the expected 
future short rate (ϑ in this particular case) or, in other words, that the forward rate is a 
biased predictor of future short rates and thus that the forward rate is equal to the 
expected future short rate plus a risk premium.  Graphically, the premium for the 
particular case illustrated in Figure 3 is the vertical distance between the forward rate 
curve and the horizontal at ϑ.   
 
Analytically, the premium π(t,T), is defined as the difference between the forward rate 
and the expected short rate.   
 
(9)    ),()()((),( TttITrETtf π+=  
 
where I(t) is the relevant information set at time t. 
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In the previous section we saw that the instantaneous forward rate and the expected future 
short rate are respectively given by equations (7) and (3) and restated here as: 
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Hence, the term premium is given by: 
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We can thus rewrite the forward rate as: 
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Observe that: 

 

2)( ),(lim
k

TtftT
γ=∞→−   and )(),(lim 0)( trTtftT =→− . 

 

As well, ϑγπ −=∞→− 2)( ),(lim
k

TttT and 0),(lim 0)( =→− TttT π  

 
These limits explain the way we have drawn the forward rate and the term premium in 
Figure 3. 
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Figure 3:  The forward rate as biased predictor 
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That the (instantaneous) forward rate is a biased predictor of the future (instantaneous) 
spot rate is often expressed in a different but analogous statement that the long rate is the 
average of future expected short rates over the life of the bond, plus a premium.  
Analytically, using (7) and (9), yields: 
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The expectation hypothesis, the liquidity theory and the preferred habitat theory all 
postulate the equation (12), with various specifications for the function ( )Tt,π .     
 
In the particular case of the Vasicek model, substituting equations (3) and (10) into (12), 
obtains: 
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As shown in Appendix 1, the solution of this integral is: 
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After some simple manipulations, we can obtain equation (4), which confirms that the 
Vasicek model provides an analytical solution for the long rate that can be interpreted in 
the traditional framework of the biased expectations hypothesis. 
 
Note that by setting r(t) = ϑ  (as it was assumed in Figure 3) in the equation above, we 
obtain that ),(),( TtTtz πϑ += .  This explains why the premium ),( Ttπ in Figure 3 is 
drawn as the difference between z(t,T) and ϑ .3 

                                                 
3 As an application of the mean-value theorem, ( )Tt,π may be viewed as a distance, as drawn in Figure 3, 
or an average surface.  In case of Figure 3, the average of expected future short rates over the horizon t --T 
is simply ϑ   [This is the area in panel a under ϑ, between t and T, that is ϑ(T-t), divided by (T-t)] plus 

( )Tt,π , which is the area described by the function π(t,T) = f(t,T)-ϑ  divided by (T-t). 
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2.  The Cox, Ingersoll and Ross “1 factor” model 
 

Cox Ingersoll and Ross (1985) establish that when the very short interest rate is below the 

long-term yield given by 
λγ

ϑττ ++
=∞→ k

kz 2)(lim , the term structure is uniformly rising.  

With an interest rate in excess of 
λ

ϑ
+k
k  , the term structure is falling.  For intermediate 

values of the interest rate, the yield curve is humped.   
 
Hence, using the numerical values in Table 2 , CIR derive the shapes for yield curves 
given in Figure 4.  The term to maturity is given by τ = T-t.  It can be shown that the CIR 
model is a particular case of the affine model, whose properties for yield curves are given 
in Figure 5. 
 
Both the CIR model and its more general formulation, the affine model, are consistent 
with the biased expectation theory.  Showing that this is the case is very similar to the 
derivations given for the Vasicek model, and we will not pursue this any further.  
However, we show in Appendix A3 how to derive the bounds given in Figure 4 and 5 for 
the CIR and affine models. 
 
Table 2: Parameters for the CIR model 
 
  
Parameters  
K 0.655 
ϑ  0.073 
σ 0.136 
λ -0.313 

22 2)( σλγ ++= k  
0.392372 

λγ
ϑ
++ k

k2
 

0.13022 

λ
ϑ
+k
k

 
0.13981 

Source: Bolder (2001) 
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3.  Conclusion 
 
Best practises of debt management require the use of modern theories of the term 
structure based on the seminal papers by Vasicek (1977) and Cox, Ingersoll and Ross 
(1985).  These models have been used to analyse the issue of public debt management 
both at the Bank of Canada [Bolder (2002)], and at the Department of Finance [Debt 
Management Strategy 2003-2004], and in other countries [e.g., Danish Nationalbank 
(2001)]. 
 
An objective of this paper is, first, to “demystify” these models to the non-experts of the 
field by showing that they “simply” belong to the class of interest rate term structures 
with biased expectations hypothesis.   Thus, these models generate yield curves where the 
long interest rate is an average of future expected short rates plus a term premium.  In 
these models, the expected future short rates are consistent with an exogenously specified 
process for the short rate.   
 
Secondly, this paper documents the Vasicek and CIR term structure of the interest rates 
that will be introduced into a macro-economic stochastic simulation model (SSM) 
developed at the Department of Finance.  The final aim will be to use the SSM with 
alternative term structures of interest rates to gauge the robustness of our earlier results 
described in Georges (2003), which suggests that a shorter debt maturity structure is less 
expensive on average and also less risky from the point of view of the overall budget 
balance if demand shocks prevail over the business cycle.  One key issue, however, in 
introducing the Vasicek or CIR term structures into a macro-economic simulation model 
is to reconcile the assumed exogenously given process for the short interest rate with the 
typical macro view of a Central Bank’s monetary policy rule that sets short term interest 
rates to offset deviations of expected inflation rate from its target.  There are alternative 
ways to think of this issue and this should be considered in future research. 
 
A well-known shortcoming of the (multi-factors) affine term structure models [e.g., the 
Vasicek and CIR models and their extensions (Duffie and Kan (1996)] is that they cannot 
help us understand the mechanism through which the macro-economy influences the term 
structure.  Describing the joint behavior of the yield curve and macroeconomic variables 
is, however, important for bond pricing, investment decision and public policy.  Macro- 
and financial economists have argued that the term structure is intimately linked to 
macro-variables.  For example, Fama (1986) asserts that term premiums tends to increase 
with maturity during good times, but humps and inversions in the term structure are 
common during recessions.  Bernanke and Blinder (1992), Estrella and Hardouvelis 
(1991), and Mishkin (1980) explore the potential of using the spread between long-term 
and short-term yields as an indicator of monetary policy, future economic activity, and 
future inflation.  We thus plan to examine in future research a new literature that provides 
a macroeconomic interpretation for the affine term structure models [e.g., Ang and 
Piazzesi (2001), Dewachter and Lyrio (2003), Wu (2001)].   
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APPENDIXES 
 

A1.  The Vasicek model 
 

Computing the zero coupon rate in the Vasicek model 
 
We start with the process for the short-term (instantaneous) interest rate, r(t).  Vasicek 
assumes that it follows an Ornstein-Uhlenbeck process: 
 
(1)    dWdtrktdr σϑ +−= )()(   
 
The instantaneous drift )( rk −ϑ represents a force that keeps pulling the short rate 
towards its long-term mean ϑ with a speed k proportional to the deviation of the process 
from the mean.  The stochastic element, which has a constant instantaneous variance σ 2, 
causes the process to fluctuate around the level ϑ in an erratic, but continuous, fashion. 
dW  is a standard Wiener process. 
 
Vasicek assumes that a market exists for bonds of every maturity.  We denote the value 
of a default-free pure discount bond as the function P(t,T,r(t)).  The first argument, t, 
refers to the current time, while the second argument, T, represents the bond maturity 
date. Vasicek also assumes that the price of the bond is a function of the short rate.   
 
Applying Itô’s lemma, and using (1) obtains: 
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This is a stochastic differential equation.  The important contribution of Vasicek is to 
transform this into a differential equation that does not depend on the Wiener process.  
He thus builds a portfolio of bonds with different maturities whose shares are chosen to 
make it risk-free.  Instead of going through the steps of the original paper, we simply do 
the following observations.  Box 1 describes a more “orthodox” route. 
 
Dividing by P(t,T,r(t)), obtains the rate of return of the bond: 
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pdp /µ and pdp /σ are the mean and standard deviation of the instantaneous rate of return at 
time t on a bond with maturity date T, given that the current spot rate is r(t) = r. 
 
If the bond is risk free in the sense that the interest rate is constant (non-stochastic), its 
return over the interval dt is4:    

 

rdt
rTtP
rTtdP =
),,(
),,(  

 
However, given the process in (1), the bond is not risk free because the future value of 
the short rate is stochastic.  Vasicek shows that in this case the return on a bond is given 
by: 
 

(4)   
[ ]

[ ]dtdW
P
Pdttr

rTtP
rTtdP

dtdWdttr
rTtP
rTtdP

r

pdp

λσ

λσ

+=−

+=−

)(
),,(
),,(

)(
),,(
),,(

/

 

 
Note that if σ = 0 in (1) (and thus in (4)), the interest rate would be non-stochastic and the 
bond’s return over the short interval of time dt would equal r(t)dt, the risk free return. 
The right-hand side of (4) contains two terms: a deterministic term in dt and a random 
term in dW.  The presence of the Wiener increments dW shows that this is not a risk-free 
bond. The deterministic term may be interpreted as the excess return above the risk-free 
rate for accepting a certain level of risk.  In return for taking the extra risk the bond return 
makes an extra λdt per unit of extra risk, dW.  The parameter λ is therefore called the 
market price of risk.  
 
Using (3) and (4), obtains: 
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4 This simply means that an amount of money P(t) at time t will grow up to ))(,(

1
11)()( tTTtzetPTP −= over 

the period (T1-t), where z(t,T1) is a continuously compounded p.a. interest rate.  This implies that: 
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Box 1.  Transforming equation (2) into a differential equation that does not depend on the 
Wiener process.   
 
Let us construct a portfolio, denoted V, of two discount bounds that pay 1 unit of currency when 
they mature at time T1 and T2 and with current prices P1(t, T1) and P2(t,T2).  The weights of each 
bond in the portfolio are u1 and u2.  The return of this portfolio over the interval of time dt is 
given by:  
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Substituting equation (2) into (B1), obtains: 
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The key is to build the portfolio V such that it is riskless, and thus independent of the dW term.  
We thus need to pick the weights u1 and u2 such that: 
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Substituting these values for u1 and u2 in (B2) obtains: 
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Because this portfolio is risk free over the interval of time dt, it should earn the risk free 
instantaneous rate: r(t)dt.  This implies that: 
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We note that (B3) holds for any arbitrary maturity T1 and T2.  Thus the ratio in (B3) must be 
independent of the maturity of the bond, that is, constant across all maturities.  Let λ(t) denote the 
common value of such a ratio for a bond of any maturity date: 
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The quantity λ(t) is called the market price of risk, as it specifies the excess return on a bond over 
the risk-free rate per quantity of risk. 
 
Substituting equation (3) into (B4), obtains: 
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which is equation (5) of Appendix 1.   
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Hence, the stochastic differential equation (2) has been transformed into a partial 
differential equation that is independent of the Wiener process.  Before solving the 
differential equation, it is interesting to note the following by rewriting (5) as: 
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Hence, this differential equation simply means that the price of the bond P(t,T,r(t)), must 
be such that, for all holding periods, the expected excess return of the bond over the risk-
free rate of interest is the market price of risk of r, (λ), multiplied by the quantity of r-risk 
present in P, ( pdp /σ ): 
 

pdppdp tr // )( λσµ =−  
 
On the right-hand side of the equation, we are, therefore, multiplying the quantity of r-
risk by the price of r-risk.  The left-hand side is the expected return in excess of the risk-
free interest rate that is required to compensate for this risk.  This equation is analogous 
to the capital asset pricing model, which relates the expected excess return on a stock to 
its risk.  
 
We are now ready to solve the differential equation (5).  For this, we will assume that the 
price function has the following shape: 
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where  tT −=τ  is the term to maturity.  This change of variable is introduced for 
simplicity.  The partial derivatives are as follows: 
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Substituting these values into (5), obtains: 
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This can hold only if: 
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and: 
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The boundary conditions are given by the fact that a bond has a terminal value (when 
τ=0) of P(T,T)=P(0) =1, such that, given (6): 
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The solution of the differential equations (8) and (9) are respectively: 
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Given that the zero coupon rate of interest is defined as: 
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Computing the forward rate 
 
First, let us note the following results based on equations (10) and (11): 
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Using (6), and the definition of the forward rate given in the text (equation (6)), we can 
thus derive the forward rate in the Vasicek model.  
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Substituting the results derived above for A’ and B’, yields: 
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Vasicek and the expectations hypothesis 
 
From equations (10) and (12) in the body of the text, the term premium is: 
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From equations (3) and (12) in the body of the text the expectation term is given by: 
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Combining the expectations term and the premium derived above, yields:  
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The local version of the expectations hypothesis 
 
In the previous section of this appendix, we assumed that the expectations hypothesis 
meant that forward rates and expected spot rates are driven to equality; any deviation is 
the term premium.  There are, however, alternate forms or interpretations of the 
expectations hypothesis, as described by Cox, Ingersoll, and Ross (1981) and described 
also in Appendix A2.  According to the “local” version of the expectations hypothesis, 
expected holding period returns of bonds of different maturities (of different T, but for 
same t) must be equalized for one specific holding period.  The natural choice of holding 
period is the next basic (i.e., “shortest”) interval, dt.  In other words, this means that: 
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In this interpretation, the risk premium is thus identified as: 
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We can use the results of this appendix to obtain the premium in the Vasicek model 
implied by the local version of the Expectations Hypothesis.  Using (3) and (4), and 
recalling that the increments of a Wiener process are normally distributed with E(dW) =0 
and Var(dW) = dt, yields: 
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In the Vasicek model, we can compute the risk premium as follows, substituting 
equations (7) and (10) into (14):  
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k
1σλ− , which, by definition, is ϑϑ − . 

We are now left with two versions of deviations from the pure expectations hypothesis. 
According to the deviation from the return-to-maturity interpretation, the term premium 
is:  
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Recalling the definition 
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where ),( Ttlπ is the term premium when deviations from the local interpretation of the 
pure expectation hypothesis are considered. 
 



The Vasicek and CIR Models and the Expectation Hypothesis of the Term Structure 

 

 

28

A2.  A typology of the theories of the term structure of interest rates 
 
All theories of the term structure of interest rates assume away riskless arbitrage 
opportunities arising from differences between current forward and spot rates.  This 
implies equation (7) in the body of the text, rewritten here as: 
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Furthermore, pure and biased expectations theories of the term structure of interest rates 
also assume that investors and borrowers are willing to shift from one maturity sector to 
another to take advantage of opportunities arising from differences between expectations 
of future spot rates and current forward rates.  Thus, a key assumption is that bonds of 
different maturities are (to a certain extent) substitutable.  Another theory, the segmented 
market theory sees markets for different-maturity bonds as completely separate and 
segmented.  Bonds of different maturities are not substitutable.  The interest rate for each 
bond with a different maturity is then determined by the supply and demand for that bond 
with no effects from expected returns on other bonds with other maturity.  In the 
following we focus exclusively on pure and biased expectations theories.    
 
Pure expectations theory  
 
According to the pure expectation theory, the forward rate is equal to the expected 
interest rate, that is: )),((),,( 2121 TTzETTtF t= .  This also holds for an arbitrarily short 
period, when T2→T1 and thus, using instantaneous forward and spot rates, yields:   
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Substituting (17) into (16), results in: 
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In other words, the interest rate on a long-term bond will equal an average of short-term 
interest rates that people expect to occur over the life of the long-term bond.   
 
For example, if people expect that short-term interest rates, r(x), will be 10 percent on 
average over the coming five years, the expectations hypothesis predicts that the interest 
rate on bonds with five years to maturity will also be 10 percent.  If short-term interest 
rates were expected to rise even higher after this five-year period such that the average 
short-term interest rate over the coming 10 years is 11 percent, then the interest rate on a 
10-year bonds would equal 11 percent and would be higher than the interest rate on a 5-
year bond.  Hence, under this view, a rising term structure for the long rates must indicate 
that the market expects short-term rates to rise throughout the relevant future period (in 
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the example, between year 5 and year 10).  Similarly, a flat term structure reflects an 
expectation that future short-term rates will be generally constant, while a falling term 
structure must reflect an expectation that future short-terms rates will decline. 
 
A graphical representation which supposes that the short rate follows a mean-reverting 
process is particularly useful to improve our understanding of the pure expectation 
hypothesis. 
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that if they decrease today, they will then tend to be lower in the future than otherwise.  
Hence a decrease in short-term rates will lower people’s expectations of future short-term 
rates.  This is illustrated in Figure 6 by the shift of the expectation schedule from the 
horizontal line in ϑ to the upward-sloping schedule, ))()(( trTrE .  Given that long-term 
rates are the average of expected future short-term rates, a decrease in current and future 
expected short-term rates will also decrease long-term rates, (to their value shown in the 
graph, z(t, T1) <  z(t, T2) < ϑ ).  This causes short- and long-term rates to move together. 
 
A second empirical fact, which is well explained by the pure expectation hypothesis, is 
that when short-term rates are low, yield curves are more likely to have an upward slope 
and when short-term rates are high, yield curves are more likely to slope downward.  This 
is again well illustrated by Figure 6.  When short-term rates are low, (say at point 1) 
people generally expect them to rise to some normal level (ϑ) in the future, and the 
average of future expected short-term rates is high relative to the current short-term.  
Therefore long-term interest rates z(t, T1) , z(t, T2), etc., will be above current short-term 
rates and the yield curve would then have an upward slope. 
 
Unfortunately, the pure expectations hypothesis cannot explain the empirical fact that 
yield curves usually slope upward.  A typical upward slope implies under this hypothesis 
that short-term interest rates are typically expected to raise in the future (as is shown in 
Figure 6).  In practice, short-term interest rates are as likely to fall as they are to rise, and 
so the expectations hypothesis suggests that the typical yield curve should be flat rather 
than upward-sloping.  As will be shown below, the biased expectation hypothesis can 
explain why a typical yield curve would be upward-sloping.   
 
Before doing this, we should however mention some interpretations of the pure 
expectation theory and highlight some inconsistencies initially considered by Cox 
Ingersoll and Ross (1981).  We saw that if equation (17) and thus (18) held, then the 
interest rate on a long-term bond would equal an average of short-term interest rates that 
people expect to occur over the life of the long-term bond.  However, we did not explain 
why equations (17) or (18) would hold.  There are several interpretations of the pure 
expectation hypothesis.  We will only mention two of them, the return-to-maturity and 
the local interpretations. 
 
First, let us rewrite equation (18) in terms of return: 
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A first interpretation of the pure expected hypothesis, referred to as the return-to-
maturity, suggests that the return that an investor will realize by rolling over short-term 
bonds over some investment horizon will be the same as holding a zero-coupon bond 
with a maturity which has the same investment horizon.  Assuming continuous 
compounding but a discrete-time notation, the return-to-maturity suggests that: 
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Switching to our continuous-time notation such that the one-period rate of interest z(x, 
x+1) becomes the instantaneous rate of interest r(x), we eventually obtain equation (19).  
Hence the return-to-maturity interpretation “rationalizes”, or justifies the statements 
given earlier in equation (19) and thus in equations (18) and (17).   This does not, 
however, imply that these statements are correct.  For the problems associated with these 
statements, see the next subsection. 
 
A second interpretation of the pure expectation theory, referred to as the local 
expectations form of the pure expectations theory, suggests that the expected holding 
period rate of return of bonds of different maturities must be equalized for one specific 
holding period.  The natural choice of holding period is the next basic (i.e., “shortest”) 
interval.  In other words, this means that: 

 
[ ]

)(),(
),(

tr
dt

TtP
TtdPE

=  (for all T) 
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Recalling that: 
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Taking the exponential and then the expectation operator (at time t), on both sides of the 
equation, recalling that at time t, P(t,T) is known (not random), successively yields: 
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Now, it is tempting to shift the denominator to the nominator by getting rid of the minus 
sign in front of the integral and obtain equation (19).  The local version of the expectation 
hypothesis would then fully rationalize the pure expectation hypothesis, and justify 
statements given earlier in equations (18) and (17).  Strictly speaking, however, as noted 
by CIR (1981), this is incorrect because of Jensen’s inequality.  To see this, set the 
random variable ∫− ===

T
tx trdxxry eex )()(~~ .   Statement (19) would then lead to: 
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whereas the statement in (21) leads to: 
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Hence, strictly speaking, the local version of the expectation hypothesis cannot entirely 
“rationalize”, or justify the statements given earlier in equation (19) and thus in equations 
(18) and (17).   However, that these statements can be exactly interpreted in terms of 
return-to-maturity, or only approximately interpreted in terms of the local form of the 
pure expectations hypothesis, does not imply that the first interpretation is more valid, in 
general than the second.  Indeed, what really matters is whether the statements 
themselves [equations (17), (18), or (19)] are valid.  For one thing, the left side of these 
equations is a rate (the forward or the long rate), or a return, that is known with certainty, 
and this is compared to an uncertain rate or return that depends on the random future 
short rate.  To bring these two concepts into equality implies that it is assumed that agents 
are risk-neutral, and thus indifferent between a certain amount and the expected value of 
a random variable. Risk-averse agents, however, may require compensation for the risk 
involved when acting on the basis of an estimate of the average of short-term interest 
rates that they expect to occur over the life of the long-term bond. The next subsection 
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examines two types of risk involved in this context.  After this, we will review the biased 
expectation hypothesis that compensates risk-averse agents with a risk premium.   
 
Drawbacks of the pure expectations theory 
 
The pure expectations theory neglects the two types of risk inherent in investing in bonds.  
The first, the reinvestment risk involves the uncertainty about the rate at which the 
proceeds from a bond that matures prior to the end of the investment horizon can be 
reinvested.  For example, an investor who plans to invest for five years may invest in a 
five-year bond and hold it for five years, or invest in a 1-year bond and, when it matures, 
reinvest the proceeds in 1-year bonds over the entire five-year horizon.  The risk in the 
second alternative is that the return over the five-year investment horizon is unknown 
because rates at which the proceeds can be reinvested until the end of the investment 
horizon are unknown.  Hence, the return-to-maturity interpretation of the pure 
expectation theory, which suggests that the return that an investor will realize by rolling 
over short-term bonds will be the same as holding a long maturity bond over the same 
investment horizon, neglects the reinvestment risk.  
 
The second is the price or interest risk.  For example, an investor who plans to invest for 
five years might invest in a five-year bond and hold it for five years, or invest, say, in a 
10-year bond and sell it at the end of five-year.  The return of the first strategy is known 
with certainty because the holding period coincides with the term to maturity of the bond.  
The investor knows the price of the bond when he buys it (say, $99.2) and he knows with 
certainty the price of the bond when he sells it because the bond matures and pays the 
promised nominal value (say, $100), which, by arbitrage must be the selling price.  The 
return of the second strategy is unknown because the investor does not know the price of 
the bond when he will sell it five years from now.  Hence, the local expectations form of 
the pure expectations theory, which suggests that the expected holding period returns of 
bonds of different maturities must be equalized for one specific holding period, neglects 
this type of risk. 
 
Biased expectations theories 
 
As said above, risk-averse agents require a compensation for taking risk.  The biased 
expectation hypothesis recognise this by amending equation (17) as follows: 
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where π(t,T) is a positive risk premium. 
 
Substituting (22) into (16), obtains: 
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This leads to a situation where forward rates are greater than expected future spot rates, 
or long rates are greater than the estimation of the average of future short rates. 
 
Statements in equations (22) and (23) are usually rationalized with two forms or 
interpretations of the biased expectations hypothesis: the liquidity preference theory and 
the preferred habitat theory. 
 
The liquidity preference theory starts with the observation that, ceteris paribus, investors 
wish to deposit their money for short terms while borrowers wish to borrow at fixed rates 
for long terms.  If the interest rates offered by financial intermediaries were such that that 
forward rates equalled expected future spot rates, long term rates would equal the average 
of expected future short-term rates.  Investors would tend choose to deposit their funds 
for short terms and borrowers would tend to borrow for long terms simply because they 
would have no incentives to do otherwise given their preferences.  Financial 
intermediaries would then find themselves financing substantial amounts of long-term 
fixed rates loans with short-term deposits.  This would involve excessive interest-rate 
risk.  In practise, in order to match depositors with borrowers and avoid interest-rate risk, 
financial intermediaries raise long-term rates relative to expected future short-term rates.  
This reduces the demand for long-term fixed-rate borrowing and encourages investors to 
deposit their funds for long terms.  It also leads to a situation where forward rates are 
greater than expected future spot rates.  In other words, the forward rate embodies a 
liquidity premium.    
 
The preferred habitat theory states that the interest rate on a long-term bond will equal an 
average of short-term interest rates expected to occur over the life of the long-term bond 
plus a term premium that responds to supply and demand conditions for that bond.  The 
preferred habitat theory’s key assumption is that bonds of different maturities are 
substitutes, which means that the expected return on a bond does influence the expected 
return on a bond of a different maturity, but it allows investors to prefer one bond 
maturity over another.  In other words, bonds of different maturities are assumed to be 
substitutes but not perfect substitutes.  If investors prefer the habitat of short-term bonds 
over longer-term bonds, they might be willing to hold short-term bonds even though they 
have a lower expected return.  This means that investors would have to be paid a positive 
term premium in order to be willing to hold a long-term bond. 
 
The preferred habitat and liquidity premium theories explain the empirical fact that yield 
curves typically slope upward by recognizing that the term premium rises with a bond’s 
maturity because of investors’ preferences for short-term bonds.  Even if short term 
interest rates are expected to stay the same on average in the future, long-term interest 
rates will be above short-term interest rates, and yield curves will typically slope upward.  
Figure 7 illustrates this.  When the short rate at time t is equal to its long-term mean 
reverting value ϑ, as at point 1, short interest rates are expected to stay unchanged but the 
long rate, z(t,T) 1 , is greater than their average value of ϑ  by a premium π(t,T), leading 
to an upward-sloping yield curve [z(t,T) 1 > r(t)]. 
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z(t,T) 2 

How can the preferred habitat and liquidity premium theories explain the occasional 
appearance of inverted yield curves if the term premium is positive?  It must be that at 
times short rates are expected to fall so much in the future that the average of the 
expected short-term rates is well below the current short-term rate.  Figure 7 also explains 
this.  If the short rate is at point 2 at time t, expected future short rates are expected to 
fall, and their average over the time horizon t—T is given by ( )

tT

dxtrxrE
T

tx

−
∫ =

)()( .  Even when the 

positive term premium is added to this average, the resulting long-term rate z(t,T) 2 is 
below the current short-term interest rate r(t), leading to a downward-sloping yield curve 
[r(t) > z(t,T) 2].     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 

Figure 7 
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A3.  The CIR model as a special case of the affine model   
(with Yanjun Liu) 

 
The affine model (Duffie and Kan 1996) is described as follows (detailed derivation in 
appendix A4):  
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where: 0
2

0 2βαγ +=  

and: γαγτ γτ 2)1)(()( 0 +−−= eg  
 
Using the definition of the spot rate of interest, yields: 
 

τ
ττ

τ
ττ rBAPz )()()(ln)( +−=−=  

 
In this appendix we show how deriving the bounds in Figures 4 and 5.  
 
The first bound is simply the limit: )(lim ττ z∞→ .  Given the equations above:  
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Multiplying numerator and denominator by γτ−e : 
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Hence,  
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0-
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This is a ∝ /∝  form and thus, use L'Hôpital's rule to obtain: 
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Substituting B(τ) by its value, finally yields: 
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Substituting 0
2

0 2βαγ += (as set above), results in the bound given in Figure 5: 
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The CIR model is a particular case of the affine model which assumes that: 

)(0 λα +−= k ; ϑα k=1 ; 2
0 σβ = ; 01 =β ; 

 
Substituting these parameters into the limit above: 
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with:  
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 The bound for the CIR given in Figure 4 is thus: 
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 This is equation (26) of Cox, Ingersoll and Ross, (1985).  
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The second bound in Figures 4 and 5 require using the risk-neutral process for the short-
rate.  For example, in CIR, the risk-neutral process is given by:  
 

(5)    dWrdtr
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kkdr σλϑ +
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
 +−= )(  

whereas the true (real) process for the short rate is:  
 
(5’)    [ ] dWrdtrkdr σϑ +−=  
 
What is this risk-neutral process?  We refer the reader to Maes (2003) for an excellent 
discussion of this issue.  Here we simply mention that we have already established in 
Appendix 1 that the expected return of an asset (under the data generating probability 
measure P) equals the risk free rate plus an expected excess return or premium (equation 
B4) for example.  Financial economists construct an artificial risk neutral probability 
measure Q such that you eliminate this risk premium (in expected value).  The change in 
measure implies a change in drift leaving the volatility unchanged (the Girsanov-
Cameron-Martin theorem).  We can always find a Q whenever there are no arbitrage 
opportunities in the economy.  Under Q, it is as if we were a risk neutral investor and the 
solution to the valuation problem simplifies to a discounting exercise where the risk free 
or short rate is used as the discount rate.  Note that P and Q should be equivalent 
measures.  This means that events which can not occur, can not be made possible by 
simply changing the probability measure from one to the other.  Likewise, events that can 
occur, can not be made impossible by changing the probability measure. 

Based on the risk neutral process (5), if r is such that r
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p , r will tend to 

decrease.  If r
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f , r tends to increase.  Hence, r tends to settle to 

λ
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bound given in Figure 4. 
 
We can show this as well for the Affine model.  In this model, the risk-neutral rate 
follows: 
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with (for a solution in R)
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Based on (5’), if r is such that r01 αα p− , r tends to decrease, while if r01 αα f− , r 
tends to increase.  Hence, r tends to settle to:  
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where we rewrite the mean of the steady-state distribution for the risk-neutral spot rate 
using a more complicated but equivalent statement under bracket in (6).  The reason for 
that will become transparent later. 
 
Given that the CIR model assumes that: )(0 λα +−= k ; ϑα k=1 ; 2

0 σβ = ; 01 =β , 
substituting these values into (6), the mean of the steady state distribution for the risk-

neutral spot rate becomes: 
λ

ϑ
+k
k , which is the solution given for the CIR model.   

 
In the reminder of this appendix we show how to derive (6) mathematically.  Although 
this is a mathematical exercise, the actual details of the derivation are interesting as it 
features arguments often used in this literature, and we are unaware of other sources that 
goes through this derivation in any detail.   
 
The starting point is to establish the Kolmogorov (forward) transition equation to 
describe the evolution of the probability distribution function );;;( 0 trtr oϕ of the spot rate 
r that follows the process given in (5’’) above.  
 
Let us start with a more general process by assuming that the spot rate follows the 
process: 
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In this case, the Kolmorogov transition equation is given by:  
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Then, in a steady-state equilibrium, the probability distribution function will settle down 
to a distribution )(r∞ϕ which is independent of the initial value of the spot rate and of 
time such that the distribution satisfies an ordinary differential equation.  
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Integrating both sides, this becomes: 
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Our objective is to solve the differential equation in (8) to eventually obtain the density 
function )(r∞ϕ .  This differential equation is easier to solve if we apply two successive 
transformations. 
 
First, multiply both sides by: 
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where a is any constant.5  The differential equation (8) becomes: 
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Second, we substitute the term on the left-hand side with another term using the fact that:  
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This result can be derived as follows using derivative rules: 
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)( is a function of r.  The upper limit is not fixed but is the variable r.  This notation can 

somewhere be confusing because, strictly speaking, we should write: 
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)(  where the symbol 
u is the “dummy” variable of integration.  Any other symbol would do equally well.  Using r instead of u as 
the dummy variable of integration could, however, be confusing when the integral is evaluated at the upper 
variable limit of integration r.   
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This result permits us to transform (10) [and thus (8)] into a differential equation that is 
easier to solve:   
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Substituting f(r) and g(r) given in (8) and using (9), successively obtains:    
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Integrating both sides of (11), successively obtains: 
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This is the general shape of the unconditional density function of a variable r that follows 
the process given in (7).  The constants of integration C1 and C2 are determined to 
guarantee that: 
 

 0)( ≥∞ rϕ for all r and: 1)( =∫
+∞

∞− ∞ drrϕ  

 
In order to determine these constants of integration we need to impose specific functional 
forms for the variance and the drift of the process given in (7).  In particular, we impose 
the functional form of the affine model: 
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Substituting the functional forms of µ(r) and σ(r) given in (13) into (12), yields the 
density function specific to this process: 
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Substituting this result into (15),  
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Equation (15) is thus transformed into 
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Using (16), and the fact that: 
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the density function (14) can be successively rewritten as: 
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β
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β
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(18)    1
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
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+

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






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


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


+






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
+

= ∫ B
rB

r
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B
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B
rB reD
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β
ββ

β
β

β
ββ

ϕ  

 
We finally are in position to evaluate the constant of integration in (18). 
 
First, observe that:  
























+∫

−

br
br

drre
r

b

B
rB

pp

ff

for  0
for  00

1

0

1

β
β

 

 
Ensuring 0)( ≥∞ rϕ for all possible r therefore requires setting C1=0, such that the density 
function becomes: 

  
1

0

1
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2
1

0

1
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2
0

1

0

1

)(
−

−
+−∞ 








+=









+

=
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rB
B
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re
D

C

reD

Cr
β
β

β

β
ββ

ϕ  

which, using that 
0

11

0

11
11 β

β
β
β BBrBrB +−−=− , implies: 

(19)  
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
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



∞









+=









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B
rB

B
rB

D
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D

r
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D

Cr

β
βϕ

β
β

β
ϕ

β
β

β
ββ

β
β

43421
 

 

Second, recalling that: 1)( =∫
+∞

∞− ∞ drrϕ , successively yields, by integrating (19): 

 

drreD

drre
D

drr

B
rB

B
rB

∫

∫∫

∞
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
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






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⇒

=







+=

1

0

1
2

1

0

1

2

0
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1
1

0

0

1
1

11)(

β
β

β
βϕ

β
β

β
β

 

As shown above, for a solution in R, the affine model imposes that 
0

1

β
β

−≥r .    

Consequently, changing the lower limit of integration: 
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drreD
B

rB

∫
∞

−

−
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β
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β
β

β
β

 

 

Setting drdzrz =⇒+=
0

1

β
β

and changing the limits of integration accordingly: 

dzzeD BzB∫
∞ −−=
0

1
2

01  
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B

dzzBt
1

1
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0

0
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B

B
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B
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=
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






=

Γ

∞ −−
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−
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∫

∫∫
−

43421

43421

 

Where )( 0BΓ is the gamma function.  Substituting D2 by its value into (19), and recalling 
the definitions of B0 and B1 [given in (16)] successively yields: 

(20)  
1

0
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0
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0

1
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







+−
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


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This is the steady-state distribution for the risk-neutral spot short rate of interest 
following the process given in (13). This equation is the equivalent (for the affine model) 
of equation (20) in CIR (1985).  
 
Our initial question was to derive unconditional mean for the short rate of interest.  This 
is simply the mean of the distribution given in (20). 



The Vasicek and CIR Models and the Expectation Hypothesis of the Term Structure 

 

 

46

 

Observe that if a variable 
0

1

β
β

+= rz follows a Gamma distribution given by: 

(21) ( ) ( ) 1

0

0
0

0

0

0

0

2

exp

)(
2

1)( −
∞














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









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

 −
−

Γ






 −
= B

B zz

B

z

α
β

α
β

ϕ  

 
its mean (first moment) would be given by [see Ramanathan (1993)]: 
 

( ) 









−








−=








− 2

0

10

0

1

0

0
0

0

0 22
22 β

βα
β
α

α
β

α
β

B  

 
Although the r.h.s. term in (21) is equal to the r.h.s. term in (20), what we want to obtain 
is the mean of r, not the mean of z.  But this is easily obtain because  
 

0

1

0

1 )()(
β
β

β
β

−=⇒+= zErErz  

The short rate r thus has an unconditional mean given by:  

( ) 0

1
2

0
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0

1

0

0 22
2 β

β
β

βα
β
α

α
β −








−− . 

 

This can finally be simplified as 
0

1

α
α

− , which is the result stated initially in equation (6) 

above.  
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A4.  The Affine model  
(with Yanjun Liu) 

 
The affine model (Duffie and Kan 1996) is described as follows in appendix A3:  
 

rBAetrP )()())(,( τττ −=  
 

(1)    
γαγ

τ γτ

γτ

2)1)((
)1(2)(

0 +−−
−=

e
eB  

 

(2)   







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





 +
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


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




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







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
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 −
+




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 −
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
 −= ∫

γτβ
γαγβ

γ
τ

β
α

β
αβτ

β
αγα

β
αγβ

ττατβτ
τ

2
1

)(
1)(2

2
)(ln22

2
1

)()(
2
1)(

2
0

01

0

1
2
0

01

0

0
1

2

0

0
1

0 1
2

1

g

g

dBBA

 

 

where: 0
2

0 2βαγ +=  

and: γαγτ γτ 2)1)(()( 0 +−−= eg  
 
The boundary conditions are given by the fact that a bond has a terminal value (when 
τ=0) of P(T,T)=P(0) =1, such that, given (6) in Appendix A1: 
 

0)0()0(
1)0( )0()0(

==⇒
== −

BA
eP rBA

 

 
In this appendix, we show how to derive equations (1) and (2) above.  We saw in 
Appendix A1 that in the Vasicek model we had to integrate two ordinary differential 
equations given by equations (8) and (9) of that appendix:  
 
     1)()(' =+ ττ kBB  
and: 

   ( ) 0)(
2

)()(' 2
2

=+−−− τστσλϑτ BBkA  

Similarly, the more general affine model requires integrating two differential equations 
given by: 
 

(3)   1
2

)(
)()('

2
0

0 −=−+−
τβτατ BBB  

 and: 
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(4)   0)(
2
1)()(' 2

11 =+−− τβτατ BBA  

Box 2 shows how to obtain equations (3) and (4). The procedure is similar to the one 
used in Appendix 1 and thus requires little explanation.  
 
These two differential equations (3) and (4) are labeled equation (21) in Bolder (2001) 
and can also be found, for example, in Wilmott (1998) (equations 33.12 and 33.13). 
However, none of these authors provide any details on finding a solution to these two 
ordinary differential equations.  Wilmott simply gives the solution in the form of equation 
(1) and (2) above.  Bolder integrates special cases of (3) and (4).   For the Vasicek model, 
he postulates that: 2

1010   ;0  ;  ; σββσλϑαα ==−=−= kk , while for the CIR model, he 
postulates that: 0  ;  ;  );( 1

2
010 ===+−= βσβϑαλα kk .  Bolder substitutes these 

parameters into (3) and (4) and integrates these specific and much easier ordinary 
differential equations to obtain the Vasicek and CIR versions of the affine model.  (Note 
for example that by substituting 2

1010   ;0  ;  ; σββσλϑαα ==−=−= kk into (3) and (4), 
we re-obtain the differential equations (8) and (9) of Appendix A1.) 
 
In this appendix we show how to integrate (3) and (4) instead of integrating specific cases 
as done in Bolder (2001).  We are not aware of any other source which presents these 
derivations in any detail. 
 
Rewriting (3) as: 
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β
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τ
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τ
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d
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Let us define: 
 

(6)    

0

0
2
00

2

0

0
2
00

1

2

2

β
βαα

β
βαα

+−
≡

++
≡

X

X
 

Using (6), observe that: 
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Box 2.  Deriving the differential equations (3) and (4) 
 
Following the equations of Appendix A1 (and re-labelling them with an added prime), 
we can establish that if the short-rate follows the process: 
 
(1’)     dWfdttdr ρ+=)(  
 
we obtain, using Itôs lemma that: 
 

(2’)   dWPdtfPPPtrTtdP rrrrt ρρ +



 ++= 2

2
1))(,,(  

 
and so: 
 

(3’)   
{

dW
P
Pdt

P

fPPP

trTtP
trTtdP

PdPPdP

r
rrrt

//

2

2
1

))(,,(
))(,,(

σµ

ρ
ρ

+




 ++

=
444 3444 21

 

 
Substituting (3’) into equation (B4) of Box 1, Appendix 1, yields: 
 

(B5’)   ( ) 0)(
2

)(
2

=−+−+ PtrPPtfP rrrt
ρρλ . 

Substituting equation (7), Appendix 1 into (B5’), yields: 

 ( ) ( ) 0)('1)(
2

)()(' 2
2

=−−+−−− ττρτρλτ BrBBfA  

To solve this partial differential equation, we should note that until now, the process in 
(1’) was written without specifying the drift f or the volatility ρ.  The affine model 
specifies the drift and the volatility such that we can actually solve this partial 
differential equation explicitly.  The affine model assumes that: 
 

10

10

ββρ

ααρλ

+=

+=−

r

rf
 

such that the partial differential equation becomes: 

0
2

)(
)()('1()(

2
1)()('

2
0

0
2

11 =







−+−−+−− r

B
BBBBA

τβταττβτατ ,  

which implies that equations (3) and (4) of this appendix must hold. 
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We can thus rewrite (5) as: 
 

( )( ) τβ
ττ

τ d
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dB
0

21 2
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Using the fact that: 
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
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we can rewrite the differential equation as: 
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Recalling the derivative rules: 
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this implies: 
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Integrating the above expression: 
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Recalling the boundary conditions that B(0) =0: 
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Recalling the definitions of X1 and X2 given in (6), yields: 
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We defined in (2) that γβα =+ 0
2
0 2 .  Thus, using (6): 
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Substituting (8) into B(τ) given in (7) yields: 
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And hence, we obtain our solution for B(τ) given in (1) and rewritten here as: 
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Now it remains to obtain A(τ) by solving equation (4): 
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To solve this integral, we thus have to use the solution derived above for B(τ).  It is easier 
to transform B(τ) as follows: 
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and so: 
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Now recall that we obtained above under (8a) that: 
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This permits us to rewrite B(τ) in (12) as: 
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Observe also that: 
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Recall that our objective is to solve equation (11) above.  We thus want to substitute B(τ) 
and B2(τ) in that equation.  Therefore: 
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Now, we also know that: 
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so that equation (17) can now be rewritten as: 
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We can now substitute B(τ) given in (16) and B2(τ) given in (18) into (11): 
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and thus: 
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Now observe that: 
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if we recall that g(0)=2γ  [see equation (13)]. 
 
As well, setting a change of variable:  
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and thus, substituting the results above into (19): 
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which is equation (2) above. 

 
In the last step, we show that the affine model is a general case of the CIR model.  To see 
this, simply define that:  
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Substituting these parameter values into (1), yields: 
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This corresponds to the first part of equation (29) in Bolder (2001).  The second part can 
be recovered as follows by substituting again the parameter values defined in (21) into 
equation (2): 
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Now, recall that we defined in (13) that: γαγτ γτ 2)1)(()( 0 +−−= eg , such that: 
 

(23)  
2

2

2
2

2
2

2

22

2

2
)(

2

2

2

2
2

2)1)((
2ln

2
2

2
2)1)((ln2

2
2

)(

2

22

2)1)((
2ln)(ln

2)1)((
2

2)1)((
2

2
2)1)((ln

2
2

2
2)1)((ln2)(

σ
ϑ

γτ

τλγ

τ

σ
ϑ

γτ

τλγ

σ
ϑ

γτ

τλγ
σ

ϑ

γλγ
γ

τλγ
σ

ϑ

γ
γλγ

σ
ϑ

τλγ
σ

ϑ
τ

γτ

γτ

γλγ
γτ

γλγ
γ

γλγ
γ

γ
γλγτλγ

σ
ϑ

γ
γλγ

σ
ϑτ

σ
λγϑτ

σ

ϑ

γτ

γτ

k
k

A

k
k

k
kk

ek
kk

ekkkk
A

ek
eAe

ek
e

ek
e

ee

eee

ekkk

ekkkkA

k

















+−++
==⇒

















+−++
=









+−++

=

=

=

⇒
















 +−++−++=








 +−++−





 ++=







 ++







 ++







 ++












+−++





 ++










 +−++−++

 

 
which corresponds to the second part of equation (29) in Bolder (2001).  
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A5.  Coding the Vasicek model 
 
This appendix provides the code for three files that can be used in Portable Troll to 
simulate the Vasicek model.  The first two files are input files and the third is a macro.   
The first input file describes the parameters of the model presented in Table 1 of the 
paper.  The second input file describes the Vasicek model as explained in Appendix A1. 
Finally, the macro is used to simulate the Vasicek model over a 10-year horizon and for a 
large number of times or runs (RNS=500).  The reader can simply copy and save these 
files as, respectively, Param.inp, Vasicek.inp. and Simulate.src.  Then, in the Troll input 
window, simply type: 
 
Input Param; 
Input Vasicek; 
Compile Simulate; 
&Simulate   
 
This should launch the simulation.  Once the simulation is done, (which takes about 5 
seconds for one single run), the reader may want to plot some results into the Troll 
environment, by typing into the input window, say: 
 
&plot variable out_dat_I_1 out_dat_I_4 out_dat_I_8 out_dat_I_20 out_dat_I_80, range 
2001q1 to 2011q4; 
 
This should give a plot for I_1, …, I_80, the one-quarter …, 80-quarter interest rates, 
over a 10-year horizon for the particular “run” chosen.  From this, we can observe 
(vertically) a yield curve for each quarter of the 10-year horizon and observe how the 
shape of the yield curve evolves over the ten-year horizon.     
 
 
 
//Param.inp 
//Benchmark parameter value for the Vasicek model: Table 1, in this paper 
 
access benchmark type trolldb id "param.trd" mode c; 
search benchmark w; 
 
dofile k = 0.147;  //k = mean reverting speed 
dofile theta = 0.074; //theta = mean reverting level of the short rate 
dofile sigma = 0.029; //sigma = volatility 
dofile lambda = -0.154; //market price of risk 
dofile thetabar = theta - sigma*lambda/k; // (=0.10438) upper bound in Vasicek  
dofile gamma = ((k**2)*thetabar)-(sigma**2)/2; 
 
dofile tau = 0.25; //tau = time to maturity = T-t 
dofile dt = 1/4; //Continuous-time process approximated to quarterly time interval   
 
delsearch all; 
delaccess all; 
 
 
//Vasicek.inp 
// The Vasicek model as described in Appendix 1  
 
usemod; 
addsym 
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endogenous 
 Rinst 
 B_800 B_80 B_40 B_20 B_12 B_8 B_4 B_2 B_1  
 A_800 A_80 A_40 A_20 A_12 A_8 A_4 A_2 A_1 
 P_800 P_80 P_40 P_20 P_12 P_8 P_4 P_2 P_1 
 I_800 I_80 I_40 I_20 I_12 I_8 I_4 I_2 I_1 
, 
 
parameter 
 k theta sigma lambda thetabar gamma tau dt; 
 
addeq bottom 
 
//process for "instantaneous" very short rate, rinst (noted r in this paper)  
//See Footnote 2 in this paper 
rinst = theta + (rinst(-1)-theta)*exp(-k*dt) + sqrt(((sigma**2)/2*k)*(1-exp(-2*k*dt)))*e1,  
 
// for one-quarter maturity instrument 
B_1 = (1 - Exp(-k*tau)) / k, //See Equation (10) Appendix 1  
A_1 = (Gamma*(B_1-tau)/k**2)-((sigma**2)*(B_1**2))/(4*k), //See Equation (11) Appendix 1  
P_1 = Exp(A_1-B_1*rinst), //See Equation (6) in Appendix 1  
I_1 = (-(Log(P_1) / Log(2.718282)) / (tau))*100, //See Equation (12) in Appendix 1.   
//note: change of notation: I in code = z in paper.     
//example: I_1 = z(1/4), i.e., the interest rate on a one-quarter maturity instrument 
//note: natural log in paper are transformed into basis 10 log in code.  See Chiang (1984), p 291.  
 
//for 2-quarters maturity instrument 
B_2 = (1 - Exp(-k*tau*2)) / k, 
A_2 = (Gamma*(B_2-tau*2)/k**2)-((sigma**2)*(B_2**2))/(4*k), 
P_2 = Exp(A_2-B_2*rinst), 
I_2 = (-(Log(P_2) / Log(2.718282)) / (tau*2))*100, 
 
// for 1-year maturity instrument  
B_4 = (1 - Exp(-k*tau*4)) / k, 
A_4 = (Gamma*(B_4-tau*4)/k**2)-((sigma**2)*(B_4**2))/(4*k), 
P_4 = Exp(A_4-B_4*rinst), 
I_4 = (-(Log(P_4) / Log(2.718282)) / (tau*4))*100, 
 
B_8 = (1 - Exp(-k*tau*8)) / k, 
A_8 = (Gamma*(B_8-tau*8)/k**2)-((sigma**2)*(B_8**2))/(4*k), 
P_8 = Exp(A_8-B_8*rinst), 
I_8 = (-(Log(P_8) / Log(2.718282)) / (tau*8))*100, 
 
B_12 = (1 - Exp(-k*tau*12)) / k, 
A_12 = (Gamma*(B_12-tau*12)/k**2)-((sigma**2)*(B_12**2))/(4*k), 
P_12 = Exp(A_12-B_12*rinst), 
I_12 = (-(Log(P_12) / Log(2.718282)) / (tau*12))*100, 
 
B_20 = (1 - Exp(-k*tau*20)) / k, 
A_20 = (Gamma*(B_20-tau*20)/k**2)-((sigma**2)*(B_20**2))/(4*k), 
P_20 = Exp(A_20-B_20*rinst), 
I_20 = (-(Log(P_20) / Log(2.718282)) / (tau*20))*100, 
 
B_40 = (1 - Exp(-k*tau*40)) / k, 
A_40 = (Gamma*(B_40-tau*40)/k**2)-((sigma**2)*(B_40**2))/(4*k), 
P_40 = Exp(A_40-B_40*rinst), 
I_40 = (-(Log(P_40) / Log(2.718282)) / (tau*40))*100, 
 
B_80 = (1 - Exp(-k*tau*80)) / k, 
A_80 = (Gamma*(B_80-tau*80)/k**2)-((sigma**2)*(B_80**2))/(4*k), 
P_80 = Exp(A_80-B_80*rinst), 
I_80 = (-(Log(P_80) / Log(2.718282)) / (tau*80))*100, 
 
//The following is for a 200-year maturity instrument:   
//This is supposed to illustrate the long-term properties of the model that  
//the zero-coupon rate on a very long-term rate is deterministic and tends to gamma/(k**2)   
B_800 = (1 - Exp(-k*tau*800)) / k, 
A_800 = (Gamma*(B_800-tau*800)/k**2)-((sigma**2)*(B_800**2))/(4*k), 
P_800 = Exp(A_800-B_800*rinst), 
I_800 = (-(Log(P_800) / Log(2.718282)) / (tau*800))*100,   
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; 
 
filemod vasicek; 
 
 
//Simulate.src 
//Macro to simulate the vasicek model 
 
Addfun Main; 
 
Procedure Main () 
Begin; 
&timesecs ; >> on 
>>Delsearch all; 
>>Delaccess all; 
>>sysopt log off; 
 
>>ACCESS BASE TYPE TROLLDB ID "MAIN.TRD" MODE c; 
 
//The shape of the yield curve depends on the value of the short rate (rinst) relative to some bounds 
//The following 4 lines give four different starting point for rinst and thus four different intial shapes for yield curves.   
//Use only one of the four lines below, comment out the 3 others using double bars // and experiment!!! 
  
>>dofile base_rinst = RESHAPE(CRMAT(400, 1, 0.12), 1961Q1);  // This should provide an initially inverted yield curve with 
//existing parameter set 
//>>dofile base_rinst = RESHAPE(CRMAT(400, 1, 0.095), 1961Q1); // Humped-shaped 
//>>dofile base_rinst = RESHAPE(CRMAT(400, 1, 0.084921), 1961Q1); //Humped-shaped 
//>>dofile base_rinst = RESHAPE(CRMAT(400, 1, 0.074), 1961Q1);   // This should initially yield an upward sloping yield curve 
 
>>DOFILE BASE_B_800 = RESHAPE(CRMAT(400, 1, 0), 1961Q1); 
>>DOFILE BASE_A_800 = RESHAPE(CRMAT(400, 1, 0), 1961Q1); 
>>DOFILE BASE_P_800 = RESHAPE(CRMAT(400, 1, 0), 1961Q1); 
>>dofile base_I_800 = reshape(crmat(400, 1, 0), 1961q1); 
 
>>DOFILE BASE_B_80 = RESHAPE(CRMAT(400, 1, 0), 1961Q1); 
>>DOFILE BASE_A_80 = RESHAPE(CRMAT(400, 1, 0), 1961Q1); 
>>DOFILE BASE_P_80 = RESHAPE(CRMAT(400, 1, 0), 1961Q1); 
>>dofile base_I_80 = reshape(crmat(400, 1, 0), 1961q1); 
 
>>DOFILE BASE_B_40 = RESHAPE(CRMAT(400, 1, 0), 1961Q1); 
>>DOFILE BASE_A_40 = RESHAPE(CRMAT(400, 1, 0), 1961Q1); 
>>DOFILE BASE_P_40 = RESHAPE(CRMAT(400, 1, 0), 1961Q1); 
>>dofile base_I_40 = reshape(crmat(400, 1, 0), 1961q1); 
 
>>DOFILE BASE_B_20 = RESHAPE(CRMAT(400, 1, 0), 1961Q1); 
>>DOFILE BASE_A_20 = RESHAPE(CRMAT(400, 1, 0), 1961Q1); 
>>DOFILE BASE_P_20 = RESHAPE(CRMAT(400, 1, 0), 1961Q1); 
>>dofile base_I_20 = reshape(crmat(400, 1, 0), 1961q1); 
 
>>DOFILE BASE_B_12 = RESHAPE(CRMAT(400, 1, 0), 1961Q1); 
>>DOFILE BASE_A_12 = RESHAPE(CRMAT(400, 1, 0), 1961Q1); 
>>DOFILE BASE_P_12 = RESHAPE(CRMAT(400, 1, 0), 1961Q1); 
>>dofile base_I_12 = reshape(crmat(400, 1, 0), 1961q1); 
 
>>DOFILE BASE_B_8 = RESHAPE(CRMAT(400, 1, 0), 1961Q1); 
>>DOFILE BASE_A_8 = RESHAPE(CRMAT(400, 1, 0), 1961Q1); 
>>DOFILE BASE_P_8 = RESHAPE(CRMAT(400, 1, 0), 1961Q1); 
>>dofile base_I_8 = reshape(crmat(400, 1, 0), 1961q1); 
 
>>DOFILE BASE_B_4 = RESHAPE(CRMAT(400, 1, 0), 1961Q1); 
>>DOFILE BASE_A_4 = RESHAPE(CRMAT(400, 1, 0), 1961Q1); 
>>DOFILE BASE_P_4 = RESHAPE(CRMAT(400, 1, 0), 1961Q1); 
>>dofile base_I_4 = reshape(crmat(400, 1, 0), 1961q1); 
 
>>DOFILE BASE_B_2 = RESHAPE(CRMAT(400, 1, 0), 1961Q1); 
>>DOFILE BASE_A_2 = RESHAPE(CRMAT(400, 1, 0), 1961Q1); 
>>DOFILE BASE_P_2 = RESHAPE(CRMAT(400, 1, 0), 1961Q1); 
>>dofile base_I_2 = reshape(crmat(400, 1, 0), 1961q1); 
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>>DOFILE BASE_B_1 = RESHAPE(CRMAT(400, 1, 0), 1961Q1); 
>>DOFILE BASE_A_1 = RESHAPE(CRMAT(400, 1, 0), 1961Q1); 
>>DOFILE BASE_P_1 = RESHAPE(CRMAT(400, 1, 0), 1961Q1); 
>>dofile base_I_1 = reshape(crmat(400, 1, 0), 1961q1); 
 
>>DELACCESS ALL; 
>>DELSEARCH ALL; 
 
SDATE = 2001Q1; 
QRT = 44; 
cqrt = 152; 
//RNS below implies that there will be 500 simulations of a 44 quarters time horizon 
RNS = 500; 
 
 
NAMES=COMBINE("B_800","B_80","B_40","B_20","B_12","B_8","B_4","B_2","B_1",          
  "A_800","A_80","A_40","A_20","A_12","A_8","A_4","A_2","A_1",  
  "P_800","P_80","P_40","P_20","P_12","P_8","P_4","P_2","P_1", 
  "I_800","I_80","I_40","I_20","I_12","I_8","I_4","I_2","I_1", 
  "rinst"); 
NUM=NVALS(NAMES); 
nshks=combine("e1"); 
nums=nvals(nshks); 
 
>>access par type trolldb id "param.trd"; 
>>access base type trolldb id "Main.trd" mode o; 
>>access vas type trolldb id "vasicek.trd" mode c; 
>>access out type trolldb id "outdata.trd" mode c; 
>>access shk type trolldb id "shocks.trd" mode c; 
>>access mat type trolldb id "gm.trd" mode c; 
 
for (K=1; K<=num; k=k+1) 
  { 
  name=names[K]; 
  >>do mat_&(name)=crmat(&qrt,0); 
  } 
 
//introduction of shocks 
 
//To generate 500 simulations of the same 44 quarters horizon write instead 
// For (X=1; X<=RNS; X=X+1), otherwise experiment with the following line   
 
For (X=1; X<=1; X=X+1) 
  { 
   >>do shk_vec_e1 = randnorm(1262+&x,9783-&X,base_rinst); 
 
   FOR (K=1; K<=NUM; K=K+1) 
    { 
    NAME=NAMES[K]; 
    >>DO OUT_DAT_&(NAME)=BASE_&(NAME); 
    } 
 
 FOR (qq=SDATE; qq<=SDATE+QRT-1; qq=qq+1) 
     { 
 
     FOR (S=1; S<=NUMS; S=S+1) 
         { 
            NSHK=NSHKS[S]; 
            >>DO 
SHK_&(NSHK)=OVERLAY(SUBRANGE(SHK_vec_&(NSHK),&qq,&QQ),RESHAPE(CRMAT(&CQRT*2,1,0),&SDATE-7));  
         }  
 
        >>DO PRINT("vas",":","QQ","RUN",":",&X); 
     >>DELSEARCH ALL; 
     >>SEARCH FIRST shk OUT_DAT PAR base; 
    >>USEMOD vasicek; 
    >>CONOPT CONCR 0.0001 STOP 100; 
    >>SIMULATE OLDSTACK 50; 
    >>SIMSTART &qq; 
    >>DOSTACK 1; 
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    >>FILESIM vas; 
 FOR (K=1; K<=NUM; K=K+1) 
       {  
       NAME=NAMES[K]; 
       >>DOFILE OUT_DAT_&(NAME)=OVERLAY(vas_&(NAME),OUT_DAT_&(NAME)); 
             } 
         } 
  FOR (K=1; K<=NUM; K=K+1) 
   {  
   NAME=NAMES[K]; 
   >>DO 
MAT_&(NAME)=ADDCOL(MAT_&(NAME),0,RESHAPE(SUBRANGE(OUT_DAT_&(NAME),&SDATE,&SDATE+&QRT-
1),&QRT,1)); 
   } 
>>delsearch all; 
} 
&timesecs ; >> off 
>>quit; 
end; 
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