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Abstract 

We study a model with repeated moral hazard where financial contracts are not fully 
indexed to inflation because nominal prices are observed with delay as in Jovanovic & 
Ueda (1997). More constrained firms sign contracts that are less indexed to the nominal 
price and, as a result, their investment is more sensitive to nominal price shocks. We also 
find that the overall degree of nominal indexation increases with the uncertainty of the 
price level. An implication of this is that economies with higher price-level uncertainty 
are less vulnerable to a price shock of a given magnitude, that is, aggregate investment 
and output respond to a lesser degree. 
 

JEL classification: E21, E31, E44, E52 
Bank classification: Economic models; Monetary policy framework; Financial markets; 
Transmission of monetary policy 

Résumé 

Les auteurs étudient un modèle qui se caractérise par un aléa moral répété du fait que le 
retard avec lequel les prix nominaux sont observés (hypothèse adoptée par Jovanovic et 
Ueda, 1997) empêche la pleine indexation des contrats financiers. Les entreprises qui 
subissent davantage de contraintes passent des contrats dont l’indexation est plus faible. 
Leurs investissements sont donc plus sensibles aux variations inattendues des prix 
nominaux. Les auteurs constatent également que le degré d’indexation total s’accroît avec 
l’incertitude du niveau des prix. Il s’ensuit que les économies où cette incertitude est plus 
forte sont moins vulnérables à un choc de prix d’ampleur donnée; autrement dit, 
l’investissement et la production (à l’échelle de l’économie) y réagissent moins. 
 

Classification JEL : E21, E31, E44, E52 
Classification de la Banque : Modèles économiques; Cadre de la politique monétaire; 
Marchés financiers; Transmission de la politique monétaire 

 

 



1 Introduction

This paper studies how nominal price-level uncertainty affects the real sector
of the economy in a model in which optimal financial contracts are not fully
indexed to inflation because of agency problems. Limited indexation is not
imposed by assumption but is determined endogenously as a feature of the
optimal and incentive-compatible contract. This allows us to study how the
degree of indexation depends on the properties of the monetary regime and
how different regimes affect the response of the economy to nominal price
shocks.

The model features entrepreneurs who finance investment by entering
into contractual relations with financial intermediaries. Because of agency
problems induced by information asymmetries, the contracts are constrained
optimal. The key mechanism leading to the limited indexation of contracts
is the assumption that the aggregate nominal price is observed with delay
as in Jovanovic & Ueda (1997). This is motivated by the fact that in reality
there is a substantial time lag before the aggregate price level becomes public
information.1 The timing lag creates a time-inconsistency problem in the
optimal long-term contract which leads to renegotiation.

We first characterize the optimal long-term contract in which the parties
commit not to renegotiate in future periods. The contract is fully indexed,
and therefore, inflation is neutral. After showing that the long-term contract
is not immune from renegotiation, we characterize the renegotiation-proof
contract. In doing so we assume that renegotiation can arise at any time
before the observation of the nominal price. Contrary to the environment
considered in Martin & Monnet (2006), this assumption eliminates the opti-
mality of mixed strategies.2

1This is certainly the case for the GDP deflator. According to Bullard (1994) it takes
about a year before it is reliably measured. For the consumer price index the time lag is
much shorter. However, the CPI is an aggregate measure of a representative consumption
basket. Because of heterogeneity, what matters is the individual consumption basket,
whose price could deviate substantially from the nominal price of the representative basket.

2Building on the results of Fudenberg & Tirole (1990), Martin and Monnet show that
the time-consistent policy may also depend on the realization of real output if we allow
for mixed strategies. The optimality of the mixed strategies, however, depends on the
assumption that, once the agent has revealed his/her type, the contract cannot be rene-
gotiated again. This point is clearly emphasized in the concluding section of Fudenberg
& Tirole (1990). In our model we do not impose this restriction, that is, the contract can
be renegotiated at any time before the observation of the price level. Consequently, mixed
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A key property of the renegotiation-proof contract is the limited index-
ation to inflation, that is, real payments depend on nominal quantities. A
consequence of this is that, unexpected movements in the nominal price level
have real consequences for an individual firm as well as for the aggregate
economy. The central mechanism of transmission is the debt-deflation chan-
nel. An unexpected increase in prices reduces the real value of nominal
liabilities improving the net worth of entrepreneurs. The higher net worth
then facilitates investments and leads to a macroeconomic expansion.

This result can also be obtained in a simpler model in which nominal
debt contracts are the only source of funds for entrepreneurs. Therefore, the
lack of nominal indexation is imposed by assumption. However, with this
framework we would not be able to study how different monetary regimes
or policies affect the degree of indexation, and therefore, how the economy
responds to nominal price shocks given the prevailing monetary policy regime.

Although the basic theoretical foundation for limited indexation has been
developed in Jovanovic & Ueda (1997), the structure of our economy and the
questions addressed in the paper are different. First, in our environment
all agents are risk neutral but they operate a concave investment technol-
ogy. Therefore, the role that the concavity of preferences plays in Jovanovic
and Ueda it is now played by the concavity of the investment technology.
Second, we consider agents that are infinitely lived, and therefore, we solve
for a repeated moral hazard problem. This allows us to study how inflation
shocks impact investment and aggregate output dynamically over time. It
also allows us to distinguish the short-term versus long-term effects of differ-
ent monetary regimes. Third, in our model entrepreneurs/firms are ex-ante
identical but ex-post heterogeneous. At each point in time, some firms face
tighter constraints and invest less while other face weaker constraints and in-
vest more. This allows us to study how nominal price shocks impact firms at
different stages of growth. The paper is also related to a recent contribution
by Jovanovic (2009).

There are several findings we are able to show within this framework. The
first finding is that the optimal contract allows for lower nominal indexation
in firms that are more financially constrained (and tend to be smaller in size).
As a result, these firms are more vulnerable to inflation shocks. This finding
is also relevant for cross-country comparisons. More specifically, a country
with less developed financial markets is likely to have a larger share of firms

strategies are time-inconsistent in our set up.
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with tighter financial constraints. Thus, controlling for the monetary regime,
the economies of these countries are more vulnerable to inflation shocks.

The second finding is that the degree of nominal price indexation increases
with the degree of nominal price uncertainty. This implies that the impact
of a given inflation shock is bigger in economies with lower price volatility
(since contracts are less indexed in these economies). On average, however,
economies with greater price uncertainly also face larger inflation shocks on
average. Therefore, the overall aggregate volatility induced by these shocks
is not necessarily smaller in these economies. In fact, we show in the numer-
ical exercise that the relation between inflation uncertainty and aggregate
volatility is not monotone: it first increases and then decreases.

To the extent that price-level uncertainty depends on the particular mon-
etary policy regime chosen by a country and one of the goals of the policy-
maker is to ensure macroeconomic stability, the results of this paper have
important policy implications. More specifically, if an inflation targeting
regime has different implications for the uncertainty about the nominal price
compared to a price-level targeting regime, then our results have relevant
implications for the choice of these two regimes.

The plan of the paper is as follows. In the next section we describe
the model. Section 3 characterizes the long-term financial contract and
shows that such a contract is not time-consistent. Section 4 characterizes
the renegotiation-proof contract and Section 5 discusses the relationship be-
tween the monetary regime and the degree of indexation. Section 6 presents
additional properties of the model numerically and Section 7 concludes.

2 The model

Consider a continuum of risk-neutral entrepreneurs with utility E0
∑∞
t=0 β

tct,
where β is the discount factor and ct is consumption. Entrepreneurs have
the skills to run an investment technology as specified below. They finance
investments by signing optimal contracts with ‘competitive’ risk-neutral in-
termediaries. We will also refer to intermediaries as investors. Given the
interest rate r, the market discount rate is denoted by δ = 1/(1 + r). We
assume that β ≤ δ, that is, the entrepreneur’s discount rate is at least as
large as the market interest rate.

The investment technology run by an entrepreneur generates cash rev-
enues s = pzkθ, where p is the nominal price level, z is an ‘unobservable’
idiosyncratic productivity shock and k is a publicly observed input of capital

3



that fully depreciates after production. The full depreciation of capital is
not essential for the results. It is only made to simplify the notation. We
assume that the idiosyncratic productivity shock is iid and log-normally dis-
tributed, that is z ∼ LN(µz, σ

2
z). The price level is also iid and log-normally

distributed, that is, p ∼ LN(µp, σ
2
p). For later reference we denote by z̃ and

p̃ the logarithm of these two variables. Given the log-normality assumption,
the logarithms of z and p are normally distributed, that is, z̃ ∼ N(µz, σ

2
z)

and p̃ ∼ N(µp, σ
2
p).

It is important to emphasize that z is not observable directly. It can only
be inferred from the observation of the cash revenue s and the nominal price
p (given that k is public information).

The central feature of the model is the particular information structure
where the aggregate prices is observed with delay. There are two stages in
each period and the price level is observed only in the second stage. In the
first stage the cash revenue s = pzkθ is realized. The entrepreneur is the
first to observe s but this is not sufficient to infer the value of z because the
general price p is unknown at this stage.

The fact that the entrepreneur is the first to observe the revenues gives
the opportunity to divert the cash revenue for consumption purposes without
being detected by the investor (consumption is also not observable). There-
fore, there is an information asymmetry between the entrepreneur and the
investor which is typical in investment models with moral hazard such as
Clementi & Hopenhayn (2006), Gertler (1992) and Quadrini (2004).

In the second stage the general price p becomes known. Although the
observation of p allows the entrepreneur to infer the value of z, the investor
can infer the true value of z only if the entrepreneur chooses not to divert
the revenues in the first stage.

The actual consumption purchased in the second stage with the diverted
revenue will depend on the price p, which is only revealed in the second stage.
Therefore, when the revenue is diverted, the entrepreneur is uncertain about
the real value of the diverted cash. As we will see, this is the key feature
of the model creating the conditions for the renegotiation of the optimal
long-term contract.

3 The long-term contract

In this section we characterize the optimal long-term contract, that is, the
contract that the parties commit not to renegotiate consensually in later
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periods. We will then show that this contract is not free from renegotiation
given the particular information structure where the nominal aggregate price
is observed with delay. The renegotiation-proof contract will be characterized
in the next section.

The long-term contract is characterized by maximizing the value for the
investor subject to a value promised to the entrepreneur. We will write the
optimization problem recursively. Assuming that the idiosyncratic produc-
tivity is not persistent, the only ‘individual’ state for the contract at the end
of period is the utility q promised to the entrepreneur. This is the end-of-
period utility after consumption.

The contract chooses the current investment, k, the next period consump-
tion, c′ = g(z, p), and the next period continuation utility, q′ = h(z, p), where
z and p are the productivity and the aggregate price for the next period. For
the contract to be optimal we have to allow the next period consumption
and continuation utility to be contingent on all additional information that
become available (directly or indirectly) in the next period, that is, z and p.

The maximization problem is subject to two constraints. First, the
utility promised to the entrepreneur must be delivered (promise-keeping).
The contract can choose different combinations of next period consumption
c′ = g(z, p) and next period continuation utility q′ = h(z, p), but the ex-
pected value must be equal to the utility promised from the previous period,
that is,

q = βE
[
g(z, p) + h(z, p)

]
.

Second, the entrepreneur must not have an incentive to divert, for any
possible realization of the revenues s (incentive-compatibility). This requires
that the value received when reporting the true s is not smaller than the
value of reporting a smaller s and keeping the difference. If the entrepreneur
reports ŝ, the real value of the diverted revenues is φ(s−ŝ)/p, where φ ≤ 1 is a
parameter that captures the efficiency in diversion. Smaller values of φ imply
lower gains from diversion. We interpret φ as a proxy for the characteristics
of the of financial markets (less developed financial markets have higher φ).

At the moment of choosing whether to divert the revenues, the nominal
p is unknown. Therefore, what matters is the expected value conditional on
the observation of s, that is, E[φ(s − ŝ)/p | s]. Using the definition of the
revenue function, this can also be written as E[φ(z − ẑ)kθ | s]. Thus, for
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incentive-compatibility we have to impose the following constraint:

E
[
g(z, p) + h(z, p)

∣∣∣ s] ≥ E
[
φ (z − ẑ)kθ + g(ẑ, p) + h(ẑ, p)

∣∣∣ s]
for all ẑ < z, where z is the true value of productivity and ẑ is the value
that the investor will infer in the second stage if the entrepreneur diverts the
revenues s− ŝ.

Although the constraint is imposed for all possible values of ẑ < z, we
can restrict attention to the lowest value ẑ = 0. It can be shown that, if the
incentive compatibility constrain is satisfied for ẑ = 0, then it will also be
satisfied for all other ẑ < z. Using this property, the contractual problem
can be written as:

V (q) = max
k, g(z,p), h(z,p)

{
− k + δE

[
zkθ − g(z, p) + V (h(z, p))

]}
(1)

subject to

E

[
g(z, p) + h(z, p)

∣∣∣ s] ≥ E[φ zkθ + g(0, p) + h(0, p)
∣∣∣ s] (2)

q = βE

[
g(z, p) + h(z, p)

]
(3)

g(z, p), h(z, p) ≥ 0. (4)

The problem maximizes the value for the investor subject to the value
promised to the entrepreneur. In addition to the incentive-compatibility and
promise-keeping constraints, we also impose the non-negativity of consump-
tion and continuation utility. These are limited liability constraints.

The following proposition characterizes some properties of the optimal
contract.

Proposition 1 The optimal policies for next period consumption and con-
tinuation utility depend only on z, not p.

Proof 1 See Appendix A.
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Therefore, the contract is fully indexed to nominal price fluctuations. The
intuition behind this result is simple. What affects the incentive to divert is
the ‘real’ value of the cash revenues. But the real value of revenues depends
on z not p. Although z is not observable when the entrepreneur decides
whether to divert, conditioning the payments on the ex-post inference of z
is sufficient to discipline the entrepreneur. Therefore, we can rewrite the
optimal policies as c′ = g(z) and q′ = h(z).

3.1 Rewriting the optimization problem

It will be convenient to define u(z) = g(z) + h(z) the next period utility
before consumption. Then the optimization problem can be split in two sub-
programs. The first program optimizes over the input of capital and the total
next period reward for the entrepreneur, that is,

V (q) = max
k, u(z)

{
− k + δE

[
zkθ +W (u(z))

]}
(5)

subject to

E
[
u(z) | s

]
≥ E

[
φ zkθ + u(0) | s

]
q = βEu(z)

u(z) ≥ 0

The second program determines how the total reward for the entrepreneur,
u(z), will be delivered with immediate or future payments, that is,

W (u′) = max
c′, q′

{
− c′ + V (q′)

}
(6)

subject to

u′ = c′ + q′

c′, q′ ≥ 0
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This program is solved at the end of the period, after observing p and,
indirectly, z.

Proposition 2 There exists q and q̄, with 0 < q < q̄ < ∞, such that V (q)
and W (q) are continuously differentiable, strictly concave for q < q̄, linear
for q > q̄, strictly increasing for q < q and strictly decreasing for q > q. The
entrepreneur’s consumption takes the form:

c′ =


0 if u′ < q̄

u′ − q̄ if u′ > q̄

Proof 2 See Appendix B.

The key for understanding these properties is to think of q as the en-
trepreneur’s net worth. Because of incentive compatibility, together with
the limited liability constraint, the input of capital is constrained by the
entrepreneur’s net worth. As the net worth increases, the constraints are
relaxed and more capital can be invested. This can be seen by integrating
the incentive compatibility constraint over s and eliminating Eu(z) using the
promise-keeping constraint. This will give the condition:

q

β
≥ φEzkθ + u(0).

Because u(0) cannot be negative, k must converge to zero as q converges to
zero. Then for very low values of q the input of capital is so low and the
marginal revenue is so high that marginally increasing the value promised
to the entrepreneur leads to an increase in revenues bigger than the increase
in q. Therefore, the investor would also benefit from raising q. This is no
longer true once the promised value has reached a certain level (q ≥ q) and
the value function becomes downward sloping.

The concavity property derives from the concavity of the revenue func-
tion. However, once the entrepreneur’s value has become sufficiently large
(q > q̄), the firm is no longer constrained to use a suboptimal input of cap-
ital. Thus, further increases in q will not change k but they only involve
a redistribution of wealth from the investor to the entrepreneur. The value
function will then become linear.
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We should point out that the consumption policy characterized in the
proposition is unique only if β < δ. In the case of β = δ, c and q are not
uniquely determined when u′ > q̄. However, it is still the case that c′ = 0
and q′ = u′ when u′ ≤ q̄.

3.2 The long-term contract is not renegotiation-proof

The optimal long-term contract characterized above assumes that the parties
commit not to renegotiate in future periods even if changing ex-post the terms
of the contract could be beneficial for both of them. Obviously this is a very
strong assumption. What we would like to do in this section is to show that
both parties could benefit from changing the terms of the contracts in later
periods or stages. In other words, the optimal long-term contract is not free
from (consensual) renegotiation.

Consider the optimal policies for the long-term contract c′ = g(z) and
q′ = h(z). The utility induced by these policies after the observation of s
(and after the choice of diversion) is:

ũ = E
[
g(z) + h(z) | s

]
≡ f(s).

Now suppose that, after the realization of s, we consider changing the
terms of the contract in a way that improves the investor’s value but does
not harm the entrepreneur. That is, the value received by the entrepreneur is
still ũ. The change is only for one period and then we revert to the long-term
contract. In doing so we solve the following problem:

Ṽ (k, s, ũ) = max
u(z)

{
− k + δE

[
zkθ +W (u(z)) | s

]}
(7)

subject to

ũ = E
[
u(z) | s

]
where W (.) is the value function with commitment defined in (6).

Notice that everything is now conditional on s because the problem is
solved after observing the revenues. At this point the agency problem is
no longer an issue in the current period, and therefore, we do not need the
incentive-compatibility constraint. The optimal choice of next period utility
is characterized by the following proposition.
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Proposition 3 The optimal policy for the next period utility after the ob-
servation of s does not depend on z and it is equal to u(s) = ũ.

Proof 3 Proposition 2 has established that the value function W (.) is strictly
concave for q < q̄. Therefore, given the promise-keeping constraint ũ =
E[u(z)|s], the expected value of W (u(z)) is maximized by choosing the next
period utility to be constant, that is, u(z) = ũ for all z. Q.E.D.

This property derives from the concavity of W (.). Because at this stage
the incentive problem has already been solved (the entrepreneur has already
reported the revenues), the expected value of W (u(z)) is maximized by choos-
ing a constant value for the next period utility. Because the optimal u(z)
in the long-term contract depends on z, Proposition 3 establishes that this
contract is not free from renegotiation.

There is also another reason why the optimal long-term contract is not
free from renegotiation, even if there is not a lag in the observation of the
price level. After a sequence of negative shocks, the value of q approaches the
lower bound of zero. But low values of q also imply that k approaches zero.
Given the structure of the production function, the marginal productivity of
capital will approach infinity. Under these conditions, increasing the value
of q—that is, renegotiating the contract—will also increase the value for the
investor. Essentially, for low values of q the value function V (q) is increasing
in q, as established in Proposition 2. The proof of this proposition also shows
that, if β < δ, the increasing segment of the value function will be reached
with probability 1 at some future date.3 Therefore, the long-term contract
will eventually become vulnerable to renegotiation.

4 The renegotiation-proof contract

The implication of Proposition 3 is that a policy that is free from renegoti-
ation would make the promised utility dependent on s, not on z. In other
words, the real payments associated with the renegotiation-proof contract
depend on nominal quantities. This is in contrast to the long-term con-
tract where real payments depend only on real quantities, and therefore, it
is immune from price level fluctuations.

3In the case with β = δ, the renegotiation interval will be reached with a positive
probability only if the current q is smaller than q̄.
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We have also seen from Proposition 2 that the long-term contract is not
free from renegotiation unless we impose a lower bound on q. Therefore, we
will consider the following problem:

V (q) = max
k,u(s)

{
− k + δE

[
zkθ +W (u(s))

]}
(8)

subject to

u(s) ≥ φE
[
zkθ | s

]
+ u(0), ∀ s

q = βEu(s)

u(s) ≥ u

where W (.) is again defined by (6). In this problem we have imposed that the
future utility can be contingent only on s. Furthermore, we have imposed
that the future utility cannot take a value smaller than u. The value of
u is endogenous and will be determined so that the contract is free from
renegotiation as in Wang (2000) and Quadrini (2004). For the moment,
however, we take u as exogenous and solve Problem (8) as if the parties
commit not to renegotiate.

We establish next a property that will be convenient for the analysis that
follows.

Lemma 1 The incentive-compatibility constraint is satisfied with equality.

Proof 1 This follows directly from the concavity of the value function. If the
incentive compatibility constraint is not satisfied with equality, we can find an
alternative policy for u(s) that provides the same expected utility (promise-
keeping) but makes next period utility less volatile and allows for a higher
input of capital. The concavity of W (.) implies EW (u(s)) will be higher
under the alternative policy. Q.E.D.

Using this result, we can combine the incentive-compatibility constraint
with the promised-keeping constraint and rewrite the optimization problem
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as follows:

V (q) = max
k

{
− k + δE

[
zkθ +W (u′)

]}
(9)

subject to

u′ = φ
[
E(z | s)− z̄

]
kθ +

q

β
(10)

q

β
− φz̄kθ ≥ u (11)

where z̄ = Ez is the mean value of productivity.
The first constraint defines the law of motion for the next period util-

ity while the second insures that this is not smaller than the lower bound
u. Notice that, in deriving these constraints, we have used the result that
E[E(z | s)] = Ez = z̄. See Appendix C for the derivation of these two
equations.

Proposition 4 There exists u > 0 such that the solution to problem (9) is
renegotiation-proof.

Proof 4 See Appendix D.

The lower bound u insures that the utility promised to the entrepreneur
does not reach the region in which the promised utility would be renegotiated
ex-post. This is at the point in which the derivative of the value function is
zero, that is, Vq(q = u) = 0. Therefore, changing the value promised to the
entrepreneur does not bring, on the margin, neither gains nor losses to the
investor.

4.1 First order conditions

Denote by δµ the Lagrange multiplier for constraint (11). The first order
conditions are:

δθkθ−1

[
z̄(1− φµ) + φE

(
E(z|s)− z̄

)
Wu′

]
= 1, (12)

Wu′ = max
{
Vq′ ,−1

}
, (13)
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and the envelope condition is:

Vq =

(
δ

β

)(
EWu′ + µ

)
(14)

The investment k is determined by equation (12). If the entrepreneur does
not gain from diversion, that is, φ = 0, we have the frictionless optimality
condition for which the discounted expected marginal productivity of capital
must be equal to the marginal cost. When φ > 0 the investment policy is
distorted.

Before continuing, it will be instructive to compare the first order condi-
tions for the renegotiation-proof contract with those for the long-term con-
tract, that is, Problem (1). In this case we obtain:

δθkθ−1

[
z̄(1− φµ) + φE

(
z − z̄

)
Wu′

]
= 1 (15)

Wu′ = max
{
Vq′ ,−1

}
, (16)

which is the same as for the renegotiation-proof contract except that E(z|s)
is replaced with z.

The comparison of conditions (12) and (15) illustrates how the lack of in-
dexation in the renegotiation-proof contract affects the dynamics of the firm.
If there is no price uncertainty, then E(z|s) = z, and the renegotiation-proof
contract is equivalent to the long-term contract. Because Wu′ is negative
and decreasing (due to the concavity of W (.)), the term E(z− z̄)Wu′ is neg-
ative. So in general, the input of capital is reduced by a higher volatility of
z. Another way to say this is that capital investment is risky for the investor
because a higher k requires a more volatile u′ to create the right incentives
(see equation (10)). Because the value of the contract for the investor is
concave, a higher volatility of u′ reduces the contract value.

With price uncertainty, the entrepreneur’s (expected) value from diver-
sion is less dependent on the realization of revenues because they provide less
information about the true value of z, which ultimately determines the value
of diversion.

4.2 Equilibrium with renegotiation-proof contracts

The equilibrium is defined under the assumption that there is a unit mass
of entrepreneurs or firms, and investors have unlimited assess to funds (so
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that the interest rate is constant). The equilibrium is characterized by a
distribution of firms over the entrepreneur’s value q. The support of the
distribution is [u, q̄]. Because of nominal price fluctuations, the distribution
moves over time. Only in the limiting case of σp = 0 (absence of nominal price
uncertainty), the distribution of firms converges to an invariant distribution.
In this case, in fact, there are only idiosyncratic shocks and the application of
the law of large numbers implies convergence to a steady state distribution.

With aggregate price uncertainty, however, the distribution is continu-
ously moving. Within the distribution, firms move up and down depending
on the realization of the idiosyncratic productivity z (and the nominal price
level). The firm moves up in the distribution when it experiences a high
value of z (unless it has already reached q = q̄), and moves down when the
realization of z is low (unless the firm is at q = u). The idiosyncratic nature
of the productivity insures that at any point in time some of the firms move
up and others move down.

5 Monetary policy regimes and indexation

We can use the results established in the previous section to characterize how
inflation shocks affect the economy under alternative monetary regimes. In
this framework, monetary regimes are fully characterized by the volatility of
the price level, σp. Therefore, we will use the terms ‘monetary regime’ and
‘price level uncertainty’ interchangeably.

We are interested in asking the following question: Suppose that there
is a one-time unexpected increase in the price level (inflation shock). How
would this shock impact economies with different degrees of aggregate price
level uncertainty σp?

The channel through which the monetary regime affects the financial
contract is by changing the expected value of z given the observation of s,
that is E[z|s]. This can be clearly seen from the law of motion of next
period utility, equation (10), and from the first order condition (12). As it
is well known from signaling models, the greater the volatility of the signal,
the lower is the information that the signal provides. The assumption that
p̃ = log(p) and z̃ = log(z) are normally distributed allows us to show this
point analytically.

Agents start with a prior about the distribution of z̃, which is the normal
distribution N(µz, σ

2
z). They also have a prior about s̃, which is also normal

N(µz + µp, σ
2
z + σ2

p) since s̃ = z̃+ p̃. What we want to derive is the posterior
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distribution of z̃ after the observation of s̃. Because the prior distributions
for both variables are normal, the posterior distribution of z̃ is also normal
with mean:

E(z̃|s̃) =
σ2
p

σ2
z + σ2

p

µz +
σ2
z

σ2
z + σ2

p

(s̃− µp), (17)

and variance:

V ar(z̃|s̃) =
σ2
zσ

2
p

σ2
z + σ2

p

. (18)

This derives from the fact that the conditional distribution of normally dis-
tributed variables is also normal.4 A formal proof can be found in Greene
(1990, pp. 78-79).

Expression (17) makes clear how the volatility of nominal prices, σp, af-
fects the expectation of z given the realization of revenues. In particular,
the contribution of s to the expectation of z decreases as the volatility of
prices increases. In the limiting case in which σp = ∞, E(z̃|s̃) = µz (and
E(z|s) = z̄). Therefore, the observation of s does not provide any informa-
tion about the value of z. Given this, the law of motion for the next period
utility, equation (10), converges to u′ = q/β. Hence, in the limit, the next
period utility does not depend on s, that is, the contract becomes fully in-
dexed. Of course, if u′ does not depend on s, the contract cannot be incentive
compatible. But this is just a limiting result. With finite values of σp the
next period utility does depend on s but the sensitivity declines with σp.

Proposition 5 Consider a one-time unexpected increase in price ∆p. The
impact of the shock on the next period promised utilities strictly decreases in
σp and converges to zero as σp →∞.

Proof 5 See Appendix E.

The intuition behind this property is simple. When σp = 0, agents inter-
pret an increase in nominal revenues induced by the change in the price level
as deriving from a productivity increase, not a price level increase. Therefore,
the utility promised to the entrepreneur has to increase in order to prevent
diversion. But in doing so, the promised utilities will increase on average for
the whole population. Essentially, the inflation shock redistributes wealth

4It can be also be shown that the covariance between z̃ and p̃, Cov(z̃, p̃) = σ2
z .
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from investors to entrepreneurs. As the entrepreneurs become wealthier, the
incentive-compatibility constraints in the next period are relaxed and this
allows for higher aggregate investment. For higher values of σp, however,
increases in revenues induced by nominal price shocks are interpreted less
as change in z. As a result, the next period utilities will increase less on
average.

This result suggests that economies with very volatile nominal prices are
less vulnerable than economies with more stable monetary regimes to the
same price level shock. However, this does not mean that economies with
more volatile prices display lower volatility overall because they experience
larger shocks on average. Ultimately, how the contribution of different mon-
etary policy regimes affect the business cycle is a quantitative question. But
a-priori we cannot say whether countries with more volatile inflation experi-
ence greater or lower macroeconomic instability. This point will be illustrated
numerically in the next section.

6 Numerical analysis

This section further characterizes the properties of the economy numerically
with a parameterized version of the model. Although we do not conduct a
formal calibration exercise, the quantitative analysis allows us to illustrate
additional properties that cannot be established analytically but seem to be
robust to alternative parametrization values.

The model period is a year and the discount factor of the entrepreneur is
β = 0.95. The gross real-revenue is given by zAkθ. The scale parameter A is
such that the optimal capital input is normalized to k = 1. The idiosyncratic
productivity z is log normally distributed with parameters µz = 0.125 and
σz = 0.5. The decreasing return to scale parameter θ is set to 0.85.

The market discount rate is set to δ = 0.96, which is higher than the
entrepreneur discount factor. The parameter φ governs the degree of financial
frictions (ie, the return from diversion) and it is set to φ = 1. This means that
the entrepreneur is able to keep the whole hidden cash-flow. The general price
level is log normally distributed with parameters µp = 0.01 and σp = 0.02.
We will also report the results for alternative values of σp. For the description
of the solution technique see Appendix F.
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6.1 Some steady state properties

Assuming that the economy experiences a long sequence of prices equal to the
mean value Ep = eµp+σ2

p/2 = p̄, the economy would converge to a stationary
equilibrium. With some abuse of terminology, we will refer to this stationary
equilibrium as ‘steady state’. Notice that, even if the realized prices are
always the same, agents do not know this in advance, and therefore, they
assume that the price level is stochastic and form expectations accordingly.

Panel (a) of Figure 1 reports the decision rule for investment as a function
of the entrepreneur’s value q in the steady state. Investment k is an increas-
ing function of q. For very high values of q, the capital input is no longer
constrained, and therefore, investment k reaches the optimal scale which is
normalized to one.

Panel (b) plots the distribution of firms over their size k in the steady
state. As Panel (a) shows, some firms will ultimately reach the highest size.
Even if some of them will be pushed back after a negative productivity shock,
there is always a significant mass in this class.

6.2 Degree of indexation

The central feature of the model is that the degree of indexation depends
on nominal price uncertainty. If financial contracts were fully indexed, then
a price shock would not affect the values that the entrepreneur and the in-
vestor receive from the contract. On the other hand, if contracts were not
indexed, a price shock would generate a redistribution of wealth. For exam-
ple, if entrepreneurs borrow with standard debt contracts that are nominally
denominated (instead of using the optimal contracts characterized here), an
unexpected increase in the price level redistributes wealth from the investor
(lender) to the entrepreneur. Therefore, a natural way to measure the de-
gree of indexation is the elasticity of next period entrepreneur’s value—the
promised utility u′—with respect to a nominal price shock.

Essentially, the next period value of the contract for the entrepreneur
is the net worth of the firm. With an elasticity of zero, the financial con-
tract would be fully indexed because the net worth is insulated from inflation
shocks. If the elasticity is different from zero, the financial contract is im-
perfectly indexed.

Figure 2 plots the elasticity as a function of the current value of the firm
(current promised utility q). The elasticity is computed for a positive 25
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percent shock to the price level.
The first feature shown by the figure is that the optimal contract is not

fully indexed: for any size of firms, a positive inflation shock redistributes
wealth to the firm while a negative shock redistributes wealth to the investor
(lender). The second feature is that the degree of indexation increases with
the size of the firm. Therefore, smaller and more constrained firms are more
vulnerable to inflation shocks. Because the next period entrepreneur’s value
affects next period investment, this also means that the investment of smaller
firms is more vulnerable to inflation shocks.

Table 1 presents the overall degree of indexation in an economy with low
nominal price uncertainty (σp = 0.02) and with high nominal price uncer-
tainty (σp = 1.5). In this experiment, the degree of indexation is given by the
elasticity of the aggregate next period value of entrepreneurs, computed by
aggregating over the whole distribution of firms. The elasticity is computed
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Table 1: Degree of Indexation for Different Price Level Uncertainty

Positive Price Negative Price
Level Shock Level Shock

Low Price Level Uncertainty 0.667 0.839
High Price Level Uncertainty 0.011 0.045

by considering separately a positive and a negative 25 percent shock to the
price level.

As can be seen from the table, the degree of indexation increases with
price uncertainty. For example, when σp = 0.02, the elasticity is 0.67 while
it is only 0.01 when σp = 1.5. The result that the degree of indexation is
higher in economies with high nominal price uncertainty is consistent with
the experiences of several countries such as Brazil and Argentina where price
uncertainty has been high and indexation widely diffuse.

Table 1 also shows that the degree of indexation is asymmetric. Specifi-
cally, the elasticity of firms’ value is higher after a negative price level shock
than a positive shock. The asymmetry stems from the fact that a negative
price level shock not only tightens the financial constraints of smaller firms
(with q < q) but also pushes a larger fraction of unconstrained firms (those
with q = q) to become constrained. Put differently, while a positive inflation
shock affects large firms by a smaller margin (since they are operating at the
optimal scale), a negative shock decreases also the scale of large firms.

6.3 Aggregate investment, output and price level uncertainty

Table 2 presents aggregate capital and output for low and high price level
uncertainty economies. The table highlights that the stock of capital is bigger
when price level uncertainty is higher.

This finding derives from the characteristics of the contractual frictions.
When the price level is very volatile, the observation of the nominal revenues
by the firm in the first stage of the period does not provide enough informa-
tion about the actual value of the productivity z. The signal becomes noisier
and the information content of the signal is smaller. This implies that the
incentive to divert is not affected significantly by the observation of revenues.
Because of this, the value of the contract for the entrepreneur is less volatile
and the distribution of firms over k is more concentrated around the optimal
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Table 2: Aggregate Capital and Output for Different Price Level Uncertainty

Capital Output
Low Price-Level Uncertainty 0.644 0.835
High Price-Level Uncertainty 0.963 1.187

investment.
This finding may appear to conflict with the fact that countries with

monetary policy regimes that feature greater price level uncertainty are also
countries with lower output per-capita. However, it is also plausible to as-
sume that in these countries the contractual frictions, captured by the pa-
rameter φ, are higher than in rich countries. As we will see later, more severe
contractual frictions may offset the impact of greater price level uncertainty
on capital accumulation.

6.4 Impulse responses of different firms

The impulse responses to a nominal price shock is computed assuming that
the economy is in the steady state when the shock hits. As before, we define
a steady state as the limiting equilibrium to which the economy converges
after the realization of a long sequence of prices equal to the mean value
Ep = eµp+σ2

p/2 = p̄.
Starting from this equilibrium, we assume that the economy is hit by a

one-time price level shock. After the shock, future realizations of p revert
to the mean value p̄ and the economy converges again to the steady state.
Notice that, even if the price stays constant before and after the shock, agents
assume that prices are stochastic and form expectations accordingly.

We start examining the response of different size classes of firms. In
particular, we concentrate on two groups: (i) firms that are currently at
q = q; and (ii) firms that are at q < q. We label the first group ‘large firms’
and the second group ‘small firms’. Figures 3 and 4 plot the responses for
the investment and relative fraction of these two groups of firms.

Panel (a) of Figure 3 shows that a one-time price level increase has no
effect on the average investment of large firms, that is, firms that keep q = q̄.
But, the same shock has a positive effect on the average size of small firms,
that is, small firms expand. Large firms are not affected by a positive price
level shock because they are already at the optimal scale.
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We now contrast the effects of a positive price level shock when the price
level uncertainty is high (σp = 1.5) and low (σp = 0.02). The average firm
size of large firms is not affected by the shock independently of the nominal
price uncertainty. On the contrary, the response of the average size of small
firms does depend on the nominal price uncertainty. In particular, we see
that it rises only slightly when the price uncertainty is high. This is because
the average size of small firms was initially close to the optimal scale in the
economy with high price level uncertainty.

Figure 4 also shows that the fraction of large firms increases after the
positive shock when the price uncertainty is low. This is due to the fact
that a positive shock relaxes the financial constraints of small firms and, as
result, the average size of small firms rises. Contrary to the economy with
low price uncertainty, the increase in the number of large firms is small in
the economy with high price uncertainty. This stems from the fact that most
firms are large and operating close to the optimal scale when the nominal
price uncertainty is high.

6.5 Impulse responses for the aggregate economy

Figure 5 presents the dynamics of aggregate capital after a one-time change
in the price level when the nominal price uncertainty is low (ie., σp = 0.02)
and high (σp = 1.5). It can be seen from Panel (a) that capital increases
after a positive price level shock. The maximum increase in capital happens
in the same period that the shock occurs and slowly converges to the initial
level. Although the shock is temporary, the effect is persistent.

Panel (c) presents the effects of the same increase in the price level on
capital accumulation when the price uncertainty is high. Comparing Panels
(a) and (c), one can observe that a positive price level shock has a small effect
on capital when the price uncertainty is high. This is due to the fact that
the degree of indexation is higher in the economy with high price uncertainty
and that most firms operate at or close to the optimal input of capital.

Figure 5 suggests that countries with a monetary policy regime that is
characterized by a low nominal price uncertainty is more vulnerable than
countries with greater price uncertainty to the same nominal price shock.
However, countries with greater price uncertainty experience on average
larger shocks. This leads to the following question: Are economies with
low price uncertainty more unstable that economies with high price uncer-
tainty? To answer this question, we conduct a simulation exercise for several
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Table 3: Volatility of Investment and Output for Different Price Level Un-
certainty

Standard Deviation Standard Deviation
Capital Output

Price-Level Uncertainty (σp)
σp = 0.02 0.008 0.009
σp = 0.20 0.073 0.082
σp = 1.50 0.134 0.147
σp = 1.70 0.120 0.130

economies that differ only in the volatility of the price level, σp. Each econ-
omy is simulated for 20,000 periods. We report the standard deviation of
investment and output in Table 3.

Before discussing the results, it is useful to describe intuitively how the
volatility of investment and output changes when σp increases. There are
two opposing effects of σp on the volatility of investment and output. On the
one hand, a high σp reduces the volatility of investment since the economy is
more indexed. On the other, a higher σp implies that on average the economy
experiences larger price shocks.

Table 3 shows that these two opposing forces lead to a non monotone re-
lation between the nominal price uncertainty and the volatility of investment
and output. For low or moderate values of σp, the volatility of investment
increases with σp. This means that the fact that the economy experiences
larger shocks dominates the lower elasticity to each shock (greater indexa-
tion). However, for high values of σp, the volatility of investment decreases
with σp, implying that higher indexation more than offsets the increase in
the magnitude of the price shocks. Recall from the previous analysis that, in
the limit with σp =∞, the economy is fully indexed and the real economy is
muted from nominal price shocks.

6.6 Price-level uncertainty and financial development

In this section we discuss how the interaction between the nominal price un-
certainty and the degree of financial development affects the level and the
volatility of the real economy. In our model the degree of financial develop-
ment is captured by the parameter φ. A high value of φ corresponds to a
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less developed financial system since firms can gain more from the diversion
of resources.

In the previous experiments, φ was set to one. In this section we will
compare the previous results with an alternative economy where φ = 0.5. We
think of the economy with φ = 0.5 as an economy with a ‘more developed
financial system’. The standard deviations of aggregate capital and output
are reported in Table 4.

As expected, investment is lower when financial markets are less devel-
oped. This is because when φ is high, financial constraints are tighter and, as
result, investment is lower on average. We can also see that investment, for
a given price level uncertainty (i.e., monetary policy regime), is more volatile
in the economy with a less developed financial system.

Table 4: Standard deviation of investment and aggregate investment for
different degree of financial development and price-level uncertainty.

More developed Less developed
financial system financial system

(φ = 0.50) (φ = 1.00)

Low Price Level Uncertainty (σp = 0.02)
Aggregate Capital 0.803 0.644
Standard Deviation Capital 0.006 0.008

Moderate Price-Level Uncertainty (σp = 0.20)
Aggregate Capital 0.812 0.658
Standard Deviation Capital 0.050 0.073

High Price-Level Uncertainty (σp = 1.5)
Aggregate Capital 0.984 0.963
Standard Deviation Capital 0.092 0.134

Extreme Price-Level Uncertainty (σp = 1.70)
Aggregate Capital 0.986 0.955
Standard Deviation Capital 0.085 0.130

How can we interpret these results? We know that some low income
countries experience very high volatility of inflation. As we have seen in
Table 2, our model predicts that these countries should have a higher stock
of capital (after controlling for the technology level of these countries). At
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the same time, these countries are also likely to face more severe contractual
frictions which, according to our model, induce a lower stock of capital. If
the impact of financial development dominates the impact of greater price
uncertainty, the model would still predict a lower stock of capital for poorer
countries as the data seem to suggest.

7 Conclusion

In this paper we have studied a model with repeated moral hazard where
financial contracts are not fully indexed to inflation because, as in Jovanovic
& Ueda (1997), the nominal price level is observed with delay.

Nominal indexation is endogenously determined in the model and it is
different for different types of firms. In particular, we find that small, more
constrained firms are more vulnerable to unexpected inflation, that is, they
are constrained to sign contracts with a lower degree of nominal indexation.
As a result, the impact of inflation shocks on aggregate investment and output
derives predominantly from the response of constrained firms.

Another finding is that the overall degree of nominal indexation increases
with price uncertainty. An implication of this is that economies with higher
price uncertainty are less vulnerable to a given inflation shock, that is, in-
vestment and output respond less. However, this does not imply that these
economies display lower overall volatility: even if the response to a given
shock is smaller, the economy experiences larger shocks on average.

This paper has important policy implications if price-level uncertainty
depends, to some extent, on the monetary policy regime chosen by a coun-
try. This is because the economic outcomes under different monetary policy
regimes can change when the extent of nominal indexation is endogenous.
This may be an important consideration when assessing the relative merits
of alternative monetary policy regimes that have different implications for
the unpredicted component of price uncertainty.
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Appendix

A Proof of Proposition 1

To simplify the proof we make a change of variables in Problem (1). Define

y = kθ. After substituting k = y
1
θ , the optimization problem becomes:

V (q) = max
y, g(z,p), h(z,p)

{
− y

1
θ + δE

[
zy − g(z, p) + V (h(z, p))

]}
(19)

subject to

E

[
g(z, p) + h(z, p) | s

]
≥ E

[
φ zy + g(0, p) + h(0, p) | s

]
(20)

q = βE

[
g(z, p) + h(z, p)

]
(21)

g(z, p), h(z, p) ≥ 0. (22)

The change of variables is useful because it makes the incentive-compatibility
constraint linear in all the decision variables. In this way it is easier to show
that this is a well defined concave problem.

We can verify that Problem (19) satisfies the Blackwell conditions for
a contraction mapping. Therefore, there is a unique fix point V ∗. The
mapping preserves concavity. This implies that the fixed point for V ∗ is
concave, although not necessarily strictly concave.

Consider a particular solution S1 ≡ {y1, g1(z, p), h1(z, p)}, where the next
period consumption and continuation utility are dependent on both z and p.
Now consider the alternative solution S2 ≡ {y2, g2(z), h1(z)}, where y2 = y1,
g2(z) =

∫
p g1(z, p)dF (p), h2(z) =

∫
p h1(z, p)dF (p). In the alternative solution,

the next period consumption and continuation utility are contingent only on
z, not p.

We can verify that, if S1 satisfies all the constraints to problem (19), then
the constraints are also satisfied by S2. Therefore, S2 is a feasible solution.
The next step is to show that S2 provides higher value than S1. This follows
directly from the concavity of the value function. Essentially, by choosing
S2 we make the next period utility less volatility and increase EV (h(z, p)).
Q.E.D.
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B Proof of Proposition 2

In the proof of Proposition 1, we established that the value function is concave
(although not strictly). By verifying the condition of Theorem 9.10 in Stokey,
Lucas, & Prescott (1989), we can also established that the value function is
differentiable.

Consider the incentive-compatibility constraint E[u(z)|s] ≥ φE(z|s)y +
u(0) and the promise-keeping constraint q = βEu(z). The IC constraint
can be integrated over p to get Eu(z) ≥ φz̄y + u(0). Remember that we
have made the change of variable y = kθ. Using this condition with the
promise-keeping constraint we can write:

q = βEu(z) ≥ βφz̄y (23)

This says that, as q converges to zero, y (and therefore k = y
1
θ ) also

converges to zero. This also implies that the marginal cost of y converges
to zero (or equivalently, the marginal productivity of capital converges to
infinity). Therefore, starting from a value of q close to zero, by marginally
increasing q we can increase the marginal revenue by a large margin, which
makes the value of the contract for the investor higher. Therefore the function
V (q) is increasing for very low values of q.

Define k̄ as the input of capital for which the expected marginal revenue
is equal to the interest rate, that is, θkθ−1 = 1/δ. Obviously, the input of
capital chosen by the contract will never exceed k̄.

Now consider a very large q, above the level that makes k̄ feasible, that
is, condition (23) is satisfied. Because the contract will never choose a value
of k > k̄, further increases in q will not change the input of capital. This
implies that V (q) (the value for the investor) decreases proportionally to the
increase in q. Therefore, for q above a certain threshold q̄, the value function
is linear. The value function being linear for q > q, it is easy to see from
Problem (6) that c′ = u′ − q̄ if β < δ. However, if β = δ, then there are
multiple solutions for c′.

Below the threshold q̄, however, q does constrain k. The strict concavity
of the value function derives from the fact that the revenue function is strictly
concave. The optimal policy for c′ then becomes obvious. Q.E.D.
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C Derivation of equations (10) and (11)

Consider the incentive-compatibility constraint

u(s) = φE(z|s)kθ + u(0). (24)

Integrating over s we get Eu(s) = φE{E(z|s)}kθ+u(0). BecauseE{E(z|s)} =
z̄, this can also be written as:

Eu(s) = φz̄kθ + u(0). (25)

Consider now the promise-keeping constraint q = βEu(s). Using equation
(25), this can be written as:

q

β
= φz̄kθ + u(0). (26)

Using this to eliminate u(0) in (24) we get:

u(s) = φ
[
E(z | s)− z̄

]
kθ +

q

β
, (27)

which is equation (10).
The lower bound on total utility u(s) ≥ u requires u(0) ≥ u. This is

because u(s) is increasing in s. From equation (26) we have that u(0) =
q/β − φz̄kθ. Therefore, the condition u(0) ≥ u can be written as:

q

β
− φz̄kθ ≥ u, (28)

which is equation (11).

D Proof of Proposition 4

See Quadrini (2004).

E Proof of Proposition 5

Consider the law of motion for the next period utility (10) which for conve-
nience we rewrite here:

u′ = φ
[
E(z | s)− z̄

]
kθ +

q

β
(29)
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The effect of the shock is to increase E(z | s) for each realization of z.
Given the distributional assumptions about z and p, the conditional expec-
tation takes the form:

E(z|s̃) = e
σ2
p

σ2
z+σ2

p
µz+

σ2
z

σ2
z+σ2

p
(s̃−µp)+

σ2
zσ

2
p

2(σ2
z+σ2

p)

Given a realization of the aggregate log-price p̃ and the idiosyncratic log-
productivity z̃, the firm observes s̃ = z̃ + p̃. We want to compute how
a deviation of the log-price from its mean value µp affects the conditional
expectation of firms. More specifically, we want to compare the case in which
the observed revenue is s̃1 = z̃+µp with the case in which the revenue is s̃2 =
z̃ + µp + ∆. This is done by computing the ratio of conditional expectations
E(z|s̃2)/E(z|s̃1). Using the formula for the conditional expectation written
above we get:

E(z|s̃2)

E(z|s̃1)
= e

σ2
z

σ2
z+σ2

p
∆

Therefore, the change in the conditional expectation decreases with σp.
From the law of motion (29) we can then observe that, for each z, the change
in next period utility decreases with σp. Q.E.D.

F Solution method

The solution is based on the iteration of the unknown function Vq = ψ(q).
We create a grid of points for q and guess the value of the function ψ(q) at
each grid point. The values outside the grid are joined with step-wide linear
functions. The detailed steps are as follows:

1. Create a grid for q ∈ {q1, ..., qN}.

2. Guess V i
q = ψ(qi), for i = 1, ..., N .

3. Solve for k and µ at each grid point of q:

(a) Check first for the binding solution:

• Solve for k using (11).

• Solve for µ using (12).

(b) If the µ from the binding solution is smaller than zero, the solution
must be interior. Then solve for the interior solution:

32



• Set µ = 0.

• Solve for k using (12).

4. Given the solutions for k and µ, find Wu′ using (13). Then update
the guess for the function ψ(q) at each grid point using the envelope
condition (14).

5. Restart from step 3 until convergence in the function ψ(q).

33



References

Bullard, J. (1994). How reliable are inflation reports?. Monetary Trends,
Federal Reserve Bank of St. Louis, February, 1.

Clementi, G. & Hopenhayn, H. A. (2006). A theory of financing constraints
and firm dynamics. Quarterly Journal of Economics, 121 (1), 229–65.

Fudenberg, D. & Tirole, J. (1990). Moral hazard and renegotiation in agency
contracts. Econometrica, 58 (6), 1279–1319.

Gertler, M. (1992). Financial capacity and output fluctuations in an economy
with multiperiod financial relationships. Review of Economic Studies,
59 (2), 455–72.

Greene, W. H. (1990). Econometric Analysis. MacMillan, New York.

Jovanovic, B. & Ueda, M. (1997). Contracts and money. Journal of Political
Economy, 105 (4), 700–708.

Jovanovic, B. (2009). Nominal shocks and long-term contracts. Unpublished
Manuscript, Department of Economics, New York University.

Martin, A. & Monnet, C. (2006). Contracts and money revisited. Berkeley
Electronic Press, Topics in Macroeconomics, 6 (1).

Quadrini, V. (2004). Investment and liquidation in renegotiation-proof con-
tracts with moral hazard. Journal of Monetary Economics, 51 (4), 713–
751.

Stokey, N. L., Lucas, R. E., & Prescott, E. C. (1989). Recursive Methods
in Economic Dynamics. Harvard University Press, Cambridge, Mas-
sachusetts.

Wang, C. (2000). Renegotiation-proof dynamic contracts with private infor-
mation. Review of Economic Dynamics, 3 (3), 396–422.

34




