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Abstract

The primary, obscure and normal particles with respective limiting velocities c1, c2 and c3,solutions from bicubic
equation, offer comfortable venues to tackle the newly emergent dark matter particles. Particular emphasis is given
to particles with velocities of O(10−3c) ( with c the velocity of light) and whose energies are from 1eV to over
100GeV for which the congruent parameter z = 3

√
3mv2/2E assumes values of 10−6 and 10−7. At z = 10−6 with

mc2 = 100GeV one can have E = 260GeV or with E = 1eV one can have mc2 = 0.38eV; while at z = 10−7 with
mc2 = 100GeV one can have E = 2.6TeV or with E = 1eV one can have mc2 = 0.038eV . The small values of
the congruent parameter z allow the limiting velocities c1, c2 and c3 as well as the resulting energy expressions be
written down perturbatevly in terms of the congruent parameter z.

It is shown that for mc2 = 100GeV particle in the Milky Way Dark Matter Velocity Profile (Laha, 2016), the derived
limiting velocities of primary, obscure and normal particles as dark matter particles are: c1 = 1, 7c (z = 10−7),
1.34c, 2.15c (z = 10−6); c2 = ±i1, 7c (z = 10−7), ±i1.34c, ±i2.15c (z = 10−6), and c3 = v (z = 10−7, 10−6).
Perturbatively, for a very small common primary and obscure particle velocity v compared to the absolute values
of their limiting velocities, one shows that the obscure particle acquires (−mv2) intrinsic negative energy with
respect to the primary particle,with m being their common mass.

Keywords: Dark matter particles, Implicit causality, Prime, Obscure and Normal particle limiting velocities

1. Introduction

The particle limiting velocity solutions of primary c1, obscure c2 and normal c3 (Soln, 2014, 2015, 2016, [1, 2, 3]),
repeated bellow with (2.0, 1, 2, 3), cathegorize particles respectively into the primary, obscure and normal particles
with the help of dimensionless congruent particle parameter

z =
3
√

3mv2

2E
; − 1 ≤ z ≤ 1 (1.0)

where m, v and E are respectively particle mass, velocity and energy. For a given value of z , relation (1.0)
indicates that m, v and E are in an implicit causality relation with each other,which is affecting their allowed
values, depending on the specific value of z. Some of these may or may not change as z changes from one value to
another, but always respecting that −1 ≤ z ≤ 1 . The values of c1, c2 and c3 change only if the congruent parameter
as a whole changes, as can be seen from relations (2) bellow. That is, the changes in m, v and E must be such that
they change the value of z within allowed limits, which in turn, will change the respective values of c1, c2 and c3.
Of course, although the fixed value of z fixes the values of c1, c2 and c3 it does not mean that all these values are
observable with particles; what it means is that they are allowed to be created. Perhaps what one observes could
be a particle with c3 or particles with c1 and c2.

Complete description of a dark matter particle requires also the knowledge of m, v and E for a given value of its
congruent parameter z. Unfortunately the attributes of dark matter particles are not very well known. The velocities
of dark matter particles appear to be the easiesr to estimate. For instance, Fan, Reece and Wang (2010) as well as
Bezrukov and Gorbunov (2015) found that dark matter particles with v ≈ 10−3c (with c the velocity of light) and
small energy of E ≈ 1eV are likely to exist. From (4), that follows, one sees that with given v and E the maximum

1
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mass is achieved at z = 1 which in Śoln (2016),was treated as a test particle. Dealing with this kind of test
particles,one finds that at z = 1, v ≈ 10−3c and E ≈ 1eV , the corresponding primary, obscure and normal limiting
velocity self energies to be m(1)c2

1,3 ≈ 0.58eV,m(1)
(
−c2

2

)
≈ 1.15eV . As each of these particles has E ≈ 1eV , the

obscure particle has to go through intrinsic self-annihilation so that m(1)
(
−c2

2

)
≈ 1.15eV is sufficiently decreased

so that its energy ends up with E ≈ 1eV as shown in Śoln (2016). Here this self-annihilation phenomenon for the
obscure particle is pointed up perturbatively at the end of Section 2.

One will have to move away from z = 1 in order to be able to discuss dark matter particles with mc2 say, from
bellow 1eV to above 100GeV as advocated recently by Laha (2016), however with velocities that cover the range:
(1/4)10−3 ≼ v ≼ (4/3)10−3c. In fact, the congruent parameter will assume values of z = 10−6 and 10−7for the
energies, from less than 1eV to over 100eV . Specifically,with z = 10−6 ,the implicit causality requires that for
mc2 = 100GeV one has to have at least E = 260GeV ,or for E = 1eV one has to have at least mc2 = 0.38eV; while
at z = 10−7 the implicit causality demands that for mc2 = 100GeV one has to have at least E = 2.6TeV or with
E = 1eV one has tohave at least mc2 = 0.038eV , etc. Of course, one notices that the congruent parameters values
here for possible dark matter particles are different from z = 10−11 like when calculating in Śoln (2014, 2015,
2016) the limiting velocity for OPERA muon electron experiment from Adam et al. (2012), and the Crab Nebula
Flare 2010 observation Stecker (2014) of the superluminal electron limiting velocity (Śoln, 2014, 2015, 2016).

In Section 2 one starts with exact forms of limiting velocities c1, c2 and c3 which depend on inverse trigonometric
functions and the dimensionless congruent parameter z (1). At 10−2 ≤ z ≤ 1 the exact limiting velocity forms in
calculations have to be used, while at z ≤ 10−2 either exact or perturbative forms can be used in calculations,
where perturbative forms are approximations from the Taylor series with the algebraic function forms in z. Also
for small z, if necessary, other relevant relations involving E, v and m will be expressed as algebraic functions in
z, utilizing a new established symmetry between c1 and c2 under reflection of z, z → −z. Also in Section 2, from
Śoln (2016) two different energy expressions for primary, obscure and normal particles are presented. These are
then used to exhibit the self annihilating property of the obscure particle relative to the primary particle for very
small particle velocity compared to respective absolute values of limiting velocities.

Section 3 is devoted to numerical results associated with proposed dark matter particle velocity v ∼ 10−3c , where
c is the velocity of light (Fan, Reece, & Wang, 2010; Bezrukov & Gorbunov, 2015; Laha, 2016). First, a general
approach is given for v ∼ 10−3c dark matter particle observability through primary and normal particles with
respect to related limiting velocities c1 and c3 as well as through possible effects of obscure particle with imaginary
limiting velocity c2 . On a more specific level, Laha,s results (Laha, 2016) on the Milky Way dark matter velocity
profiles is dissected into three segments with velocity values: initial, v = (1/3)10−3, middle, v = (2.5/3)10−3, and
the end, v = (4/3)10−3c. Each of these velocities is associated formally with a respective particle. These way,
one can follow much easier with more precise values of the corresponding congruent parameters and energies and
other things. In fact, in the calculations with these velocities z is selected with implicit causality from acustomary
requirement mc2 ≺ E plus a must requirement −1 ≤ z ≤ 1 yielding allowed values z . 10−6, 10−7. Although the
requirement mc2 ≺ E seems to be working, so far satisfactory, out of curiosity, one should be open to possibility
to replace c with c1, c2 or even with c3 , c to see whether that would make a difference.

2. Particle limiting velocity expressions with different ranges of the congruent parameter z

It has been shown in Śoln (2014, 2015) and particularly in Śoln (2016) that combining the particle nass-shell
condition with the particle momentum, one ends up for c, identified as a limiting velocity, with the bicubic equation

m2
(
c2

)3 − E2c2 + E2v2 = 0 (1.1)

whose three solutions, according to Śoln (2014, 2015, 2016), are squares of the primary c1 ,obscure c2 ,and normal
c3,limiting velocities, which with z from (1.0),are written as,

D =
1
4

3
√

3
2z

4 1 − 4
27

3
√

3
2z

2 = (
3
2

)6 1
z4

(
1 − 1

z2

)
≤ 0, (2.0)

z =
3
√

3mv2

2E
; − 1 ≤ z ≤ 1,

c2
1

v2 =
3
z

sin
(
π

3
− 1

3
sin−1 (z)

)
≻ 0, (2.1)

2
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c2
2

v2 = −
3
z

cos
(

1
3

sin−1 (z) − π
6

)
≺ 0, (2.2)

c2
3

v2 =
3
z

sin
(

1
3

sin−1 (z)
)
≻ 0 (2.3)

With identities, (3.0) where α is a real quantity, one obtains from (2. 2)

sin
(
α +
π

3

)
= cos

(
α − π

6

)
= cos

(
−α + π

6

)
(3.0)

(2.2) :
c2

2

v2 = −
3
z

sin
(

1
3

sin−1 (z) +
π

3

)
≺ 0 (3.1)

From comparison of (2,1) and (3.1) it is easily seen the interesting connection between c2
1 and c2

2 under reflection
of the congruent parameter z→ −z, while c2

3 remains the same,

(2.1)
c2

1

v2 (z→ −z)→ (3.1)
c2

2

v2 (z) ; (2.3)
c2

3

v2 (z→ −z)→ (2.3)
c2

3

v2 (z) (3.2)

The meaning of (3.2) is imposing itself through z; If, for instance, the energy E becomes negative in the primary
particle, then the primary particle transitions into the obscure one, but treating E as its positive energy. Of course,
by the same token the reflection z→ −z can change the obscure particle in (3.1) into the primary particle in (2.1).
Now,as the normal particle is even under z→ −z , it simply remains the normal particle as c2

3 recognizes effectively
only |z|. Furthermore if these transitions between dark matter primary and obscure particles occur causally, one can
see difficulties in pin-pointing a dark matter particle since the basic difference between primary, with real c1, and
obscure, with imaginary c2 ,are in their limiting velocities.

The Taylor series expansions of (2.1, 2, 3)) and of (3.1) for limiting velocities in terms of z ≤ 10−2 , explicitly
demonstrates relations (3.2) in this approximation.

(2.1) :
c2

1

v2 (z) =
3
√

3
2z
− 1

2
−
√

3z
12
− 2z2

27
+ O(

(
z3

)
, (4.1)

(3.1) :
c2

2

v2 (z) = −3
√

3
2z
− 1

2
+

√
3z

12
− 2z2

27
− O(

(
z3

)
, (4.2)

(2.3) :
c2

3

v2 (z) = 1 +
4z2

27
+ O(

(
z4

)
. (4.3)

These relations show more clearly the interrelationship between primary, obscure and normal limiting velocities
c1, c2 and c3 at small z values. One notices that at small z values c2

3 ≃ v2 while the same is not true for either c2
1 or

c2
2.

The zero square sum rule of limiting velocities (Śoln, 2014, 2015, 2015), written here as c2
3(z) = −c2

1(z) − c2
2(z)

and valid for any congruent parameter z value, shows deep interrelationship between c2
1, c2

2 and c2
3. Here, of course

this is explicitly seen for z ≤ 10−2 from (4.1, 2, 3). However, the perturbation relations (4) will be very useful in
evaluating ranges of limiting velocities when v ∼ 10−3c as advocated in Fan, Reece and Wang (2010), Bezukov
and Gorbunov (2015) and more recently by B. Laha in Laha (2016).

For the sake of completeness, according to Śoln (2016) one writes down two different energy expressions for each
of primary, obscure and normal particle whose respective limiting velocities satisfy, c2

1 ≻ 0, c2
2 ≺ 0 and c2

3 ≻ 0,

E(c1) =
3
√

3mv2

2z
=

√
3mc2

1

2 sin
[

1
3

(
π − sin−1 (z)

)] = mc2
1

1 − v2

c2
1

− 1
2

(5.1,2)

= mc2
1 +

mv2

2
+

3
8

mc2
1

v2

c2
1

2

+ mc2
1O

v2

c2
1

3 , (5.3.)

3
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E(c2) =
3
√

3mv2

2z
=

√
3m

(
−c2

2

)
2 sin

[
1
3 sin−1 (z) + π3

] = m
(
−c2

2

) 1 + v2(
−c2

2

) −
1
2

(5.4,5)

= m
(
−c2

2

)
− mv2

2
+

3
8

m
∣∣∣c2

2

∣∣∣  v2∣∣∣c2
2

∣∣∣
2

+ m
∣∣∣c2

2

∣∣∣ O 
 v2∣∣∣c2

2

∣∣∣
3 , (5.6)

E(c3) =
3
√

3mv2

2z
=

√
3mc2

3

2 sin
[

1
3 sin−1 (z)

] = mc2
3

1 − v2

c2
3

− 1
2

(5.7,8)

= mc2
3 +

mv2

2
+

3
8

mc2
3

v2

c2
3

2

+ ... (5.9)

The series expansion for E(c3) is not saturated, indicating slow convergence. Subtracting (5.3) from (5.6) and taking
into account from the Table that c2

1 ≈ −c2
2, then with the same mass m, same v, same z, one obtains perturbatively,

generally very small difference between E(c1) and E(c2),

E(c2) − E(c1) = −mv2 + m
∣∣∣c2

2

∣∣∣ O 
 v2∣∣∣c2

2

∣∣∣
3 − mc2

1O

v2

c2
1

3 ≈ −mv2 (5.10)

Relation (.2) indicates that globally E(c2) relative to E(c1) exhibits self annihilation properties of the obscure
particle relative to the primary particle. Presently, at very low z = 10−7 with mv2 ≪ mc2

1, m
(
−c2

2

)
,then (−mv2) is

rather small compared to E(c2 and E(c1). The importance of (5.10) is in the fact that the negative relative energy
E(c2) − E(c1) under the circumstances of very large congruent parameter z, may become even more negative
indicating deeper physical differences between obscure and primary particle

3. Limiting velocities for (dark matter) particles with small ordinary velocities

A number of authors, such as Fan, Reece, and Wang (2010), Bezrukov and Gorbunov (2015) and Laha (2016)
believe that an ordinary velocity of v ∼ 10−3c would be a natural representative velocity for a bunch of dark matter
particles, either with small mass and energy , mc2 ≼ E ≼ 1eV (Fan, Reece, & Wang, 2010; Bezukov & Gorbunov,
2015) or with large energy and mass, E ≽ mc2 ≽ 100GeV (Laha, 2016). These relatively small velocities of
O(10−3c ) facilitate bunching of these particles and their observation.

The Milky Way Dark Matter Velocity Profiles can be cast in a variety of VDF’s (Velocity Distribution Functions)
(Laha, 2016) of which the simplest is the one like the standard Maxwellian distribution (Laha, 2016),

f (v) = A exp

− (
v
v0

)2 , v =
∣∣∣−→v ∣∣∣ (6.0)

The VDF f (v) has maximum at v0, and v is significantly different from 0 between vmnand vmx , with numerical
values as follows,

kms−1 = (1/3) 10−3c : vmn = 0 kms−1 = 0 c,

v0 = 250 kms−1 = (5/6) 10−3c, vmx = 500 kms−1 =

(
4
3

)
10−3c (6.1)

The constant A in the Dark Matter Velocity Profile is the normalization factor chosen such that the intergral

∫ vmx

vmn

d3v f (v) = 4π
∫ vmx

vmn

v2 dv f (v)

equals the number of dark matter particles in a region of interest (Mao et al., 2013).

An important thing that this Milky Way Dark Matter Velocity Profile offers is a number of particles with veloc-
ities that are close to 10−3c and which kinematically, through primary, obscure and normal particles, could shed
important light on the nature of dark matter particles. To this end, the choice of three different ordinary velocities

4
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between vmn and vmx are assigned to three hypothetical dark matter particles from which then the corresponding
primary, obscure or normal limiting velocities are to be calculated,

v = 100 kms−1 =
1
3

10−3c, (6.2)

v = v0 = 250 kms−1 =
5
6

10−3c, (6.3)

v = 400 kms−1 =
4
3

10−3c (6.4)

The question now is: What kind of limiting velocities one can expect from ordinary velocities from (6.2, 3, 4) ? In
order to use them in the implicit causality relations, one first combines mc2/E,≼ 1 with 0 ≼ z ≺ 1 to obtain

z =
3
√

3v2

2c2

mc2

E
≤ 1;

mc2

E
≼ 1; (7.1, 2)

2c2

3
√

3v2
z ≼ 1 : z ≼ 3

√
3v2

2c2 (7.3, 4)

Since the ordinary velocities are assigned , one simply applies the implicit causality on (7. 4) in order to deduce
the most appropriate values for z .

v =
1
3

10−3c, z ≺ 3
√

3
2 · 9 10−6 = 0.29 · 10−6; z ∼ 10−7 (7.5)

v =
5
6

10−3c, z ≺ 3
√

3
2

(
5
6

)2

10−6 = 1.8 · 10−6; z ∼ 10−6 (7.6)

v =
4
3

10−3c, z ≺ 3
√

3
2

(
4
3

)2

10−6 = 4.62 · 10−6; z ∼ 10−6 (7.7)

In relations (7.5, 6, 7) the choices of z ∼ 10−7 and z ∼ 10 −6 are made with the largest z′s that comfortably satisfy
(7.5, 6, 7) for each particular v . As such they define models that likely will describe the realistic physics of the
possible primary, obscure or even normal dark matter particles. The choices of z ∼ 10−7, 10 −6 cover cases from
references (Fan, Reece, & Wang, 2010; Bezukov & Gorbunov, 2015; Laha, 2016) as long as mc2 ≼ E, despite the
fact that in Fan, Reece, and Wang (2010) and Bezukov and Gorbunov (2015), E ∼ 1eV , while in Laha (2016)
E ≽ 100GeV . It is interesting to compare for these assumed dark matter particles their congruent parameter values
of z ∼ 10−7, 10 −6 with z ∼ 10−11 of the OPERA muon-neutrino velocity experiment (Adam et al., 2012) as shown
in Śoln (2016), as well as, with z ∼ 10−10 of the Crab Nebula Flare 2010 observation of the superluminal electron
velocity (Adam et al., 2012) as shown in Śoln (2014, 2015, 2016). In both of these experiments, v ∼ O(c) while in
present cases v ∼ O(10−3c) , lowering z from 10−10 or 10−11 to 10−6 or 10−7.

Now, because z ∼ 10−6, 10−7 ≪ 1, in place of exact limiting velocity solutions (2), one can use the small congruent
parameter z limiting velocity solution expressions (4,1, 2, 3) to O(z0). Next, the three limiting velocities c1, c2 and
c3, calculations are done within three respective (z, v) combinations (7.5, 6, 7) according to (4,1, 2, 3). Furthermore,
consistent with Laha (2016), the mass value of mc2 ≈ 100GeV is assumed. Then as seen from exact energy
expressions (5.1, 4, 7) (compare with Śoln, 2016) the calculated energy expressions satisfy, E(c1, z) = E(c2, z) =
E(c3z). Limiting velocities with the energies are presened in two tables that follow.

In the Table terms with v2/c are negligible for cases from relations (7). They are here for the sake of completeness
and if it is desired to increase v’s to higher values. Each normal limiting velocity c3,as relation (4.3) indicates is
for the values of z = 10−6 and 10−7, just slightly larger than v, which is the reason for keeping the same value as
v. In the Table a velocity v can be understood as a velocity of just created or instantaneously interacting particle;
which is the reason that in such situations real v goes with every particle.

The energy E, calculated from non-perturbative relations (5.1), (5. 4) and (5.7) show the same value for each c1, c2
and c3 with fixed values of v and z. What one sees here is that after the creation or engagement a particle becomes
free and assumes limiting velocity, real c1 for the primary particle, imaginary c2 for the obscure particle and real

5
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c3 for the normal particle. These limiting velocity values are not universal but rather reflect from which specific v
value, that is to say, z value they started.

As shown in Śoln (2016), the energy of every kind of particle, primary, obscure or normal particle is globally gov-
erned with implicit causality from the congruent parameter z through the expression (1), E = 3

√
3mv2/2z . This

expression changes into forms with which one emphasizes differences between primary, obscure and normal par-
ticles through respective limiting velocities c1, c2 and c3. Globally, primary, obscure and normal particles with the
same m, v and z will have the same energy. For instance, a difference for the obscure particle is that perturbativelly
the lower order terms of energy expression will yield negative contribution as compared to the primary particle,
which is due to the fact that the obscure limiting velocity c2 is imaginary.

Tables 1. Limiting velocities and energies of dark matter particles of selected model velocities from the Milky Way
Dark Matter Velocity Profile (Laha, 2016)

z : 10−7, 10−6

v : 1
3 10−3c, 5

6 10−3c
c1 : 1.7c − 0.15(v2/c), 1.34c − 0.19(v2/c)
c2 ±i[1.7c + 0.15(v2/c)], ±i[1.34c + 0.19(v2/c)]
c3

1
3 10−3c, 5

6 10−3c
E/GeV 289, 180




z : 10−6

v : 4
3 10−3c

c1 : 2.15c − 0.12(v2/c)
c2 ±i[2.15c + 0.12(v2/c)]
c3

4
3 10−3c

E/GeV 462


4. Conclusion

Three particle limiting velocities c1, c2 and c3 either in the original analytical forms (Śoln, 2014, 2015, 2016) or in
the present perturbative forms for very small congruent parameters z ∼ 10−6, 10−7, suggest that the corresponding
primary (c1), obscure (c2) and normal (c3) particles be good candidates for dark matter particles for the velocities of
O(10−3c) and energies from 1eV through 100GeV . These facts agree with evaluations and analyses of Fan, Reece,
and Wang (2010), Bezrukov and Gordunov (2015) and Laha (2016) with his formulation of the Milky Way Dark
Matter Velocity Profiles. The analysis consists of casting these Profiles in a variety of VDF’s from which, as here
pursued, one could extract ”dark matter particles” with velocities of O(10−3c) as it was done here.
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Abstract 
The duality waves/particle and the dynamic of propagation of electromagnetic emanations suggest the existence 
of a natural kind of waves, which differently from de classic ones, are originating by kinetic thrust and propagating, 
also though vacuum, by inertial force. The model taken into consideration, to which has been given the name of 
“kinetic waves” is, like the classic one, a concretely existing natural phenomenon which can also be visually 
perceived if produced on molecular scale. Results suggest, by giving consistent mathematical proof, that kinetic 
waves offer many more points of similarity, in dynamic and behavior, than the classic ones, which were taken, 
since the discovery of electromagnetic waves, as basic model. 
Applying the obtained results relatively to this model, to the astrophysical red-shift, taking as example the quasar 
3C-273 and the recently found, most far galaxy GN-z11, we could find a mathematical sustainable and logic 
answer about still unsolved problems with regard to the origin and the dynamic of the universe. 
In the appendix, a suggested and accurately described experiment on base of Radar Astronomy to possibly confirm 
the validity of this model. 
Keywords: light propagation, classic waves, kinetic waves, particles, Doppler-shift, redshift 
1. Introduction 
1.1 About Waves 
Around the end of the17th century Isaac Newton argued that light consists of small particles or corpuscles. By his 
“Corpuscular Theory” he sustained that those particles were literally shouted from the source in the form of beams. 
Basically a ballistic theory, as we should call it today. 
Christian Huygens (1629-1695), the Dutch mathematician, physicist and astronomer, in the same time, formulated 
the “Huygens principle”, nowadays better known as Huygens–Fresnel principle, and generally argued that light 
consists of waves. He connected the dynamics of light-waves to that of sound-waves. 
In 1865 the Scottish physicist James Maxwell, arrived by experiment to the formulation of the Theory of the 
Magnetic Fields, concluding that light propagates in form of waves through space. This discovery sustained 
Huygens’s theory, so that Newton’s Corpuscular Theory, was finally disregarded. 
The common concept of “waves” is connected to vibrations of matter through the matter itself. So we could without 
doubt state that, in the classical concept of waves, these must necessarily make use of a basic material – liquid, 
solid, gassy, etheric (as it was speculated before 1887) or finally in de form of magnetic fields (as theorized today) 
- to be able to propagate; since the very concept of "waves" contains a dynamic of vibration of matter through 
matter itself. It is understood that the conclusions of Maxwell naturally referred to the classic concept of waves as 
above described (according to the Huygens-Fresnel hypothesis), that also include the principle of Doppler Effect 
as a result of variation of frequencies caused by the movement of the light source through space, with respect to 
an observer. 
It is a fact that all theories of Modern Physics and quantum mechanics that have followed till nowadays, are – 
originally - based and further developed, on the wavy dynamics connected to the sound-waves model of 
propagation. That means: constancy of the speed of propagation and variation of the wavelength as an increase or 
decrease of the originally emitted frequencies, when the source moves through space.  
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In other words, the whole modern physics is sustained by the pillars of the constancy of the speed of light and the 
fact that this remains unchanged regardless the movements of the source with respect to the observers.  
The path of scientific research that has followed during the last century to the present day, has certainly not been 
free of contradictions and doubts on the validity/consistency of mathematical-physics theories that have gradually 
met in the course of more than a century. Many problems have been solved by means of quantum theories and by 
the “Standard Model” with regard to the Particles Physics, but certainly not all of them. Especially those with 
regard to Astrophysics and Cosmology, where some important interrogatives are still without an answer. 
Of course, as long as the non-constancy of light-speed won’t be finally proven, things remain unchanged and the 
theoretical research must go on, although, we may consider that Science, till date, has never taken into 
consideration that electromagnetic waves may not be connected to the classic ones. As previously announced, 
there is in nature a different kind of waves with a strong similarity in structure, behavior and dynamic of 
propagation with the electromagnetic ones, that concretely could explain all unsolved problems, especially with 
regard to Astrophysics and Cosmology, in a logic and sustainable way.  
This research aims to give of it an analytical description and mathematical proof. 
2. Doppler Shift on Base of Sound Waves 
Regarding the classic Doppler, we consider two different aspects: a) when an emitting source is moving to or from 
a stationary observer or: b) when an observer is moving to or from a stationary emitting source. Just for clarity, 
we shall call a) Doppler 1 and b) Doppler 2 
Doppler 1 
Treating of classical waves (sound waves), we have to consider that an objective variation of the wavelength can 
be registered when a source is moving through a matter. Let us take a look at the following figure (1): 
 

  
Figure 1. Doppler-shift 1: source moves to/from observers 

 
As we can see, the movements of the source through the matter produce a real, objective increasing or decreasing 
of the wavelength, so that the observer, at a constant speed of propagation, receives an increased or decreased 
frequency.  
In case of increase or decrease of wavelength, the observer will receive a frequency: 

  ( )u
o e

u

vf f
v v

=
±

   (1) 

( of = observed frequency; ef = original emitted; uv = velocity of waves through matter; v = velocity of source 
with regard to observers.) 
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Doppler 2 
We examine the case when the observer is moving to a stationary source of waves (Figure 2): 
When the emitting source is stationary, we see that there is no difference between wavelength emitted and 
wavelength observed: 
 

 
Figure 2. Doppler-shift 2:observers move to/from source 

 
By observing this last figure, it is evident that we are dealing with a completely different phenomenon than that 
described in Figure 1 What we can see in Figure 2 is that when a source is stationary there is no variation of 
wavelength, but a difference in frequency the observer subjectively records due to the relative motion between the 
latter and the source. In this case the frequency observed has been calculated by: 

   (1 )o e
u

vf f
v

= −   when the observer is regressing from source.   (2) 

And:  (1 )o e
u

vf f
v

= +   when is approaching.  (3) 

Or:  
)( u

o e
u

v vf f
v
±=   (4) 

(fe = frequency original emitted; fo=frequency obs.;vu = speed of waves through matter; v = speed of the observers 
with regard to source)  
 
a) Speaking of sound waves, in this case the source emits a constant wavelength (Figure2) which is proportional 

to the speed- or frequency - of vibrations of the source (a wire, for example.) = fv and the constant speed of 
propagation ( uv ). The moving observer at velocity v receives a frequency, which is the number of wave-tops, 
transmitted through the atmosphere, the observer receives in a measure of time at constant speed of 
propagation: 

 
1 1

e u o u
v

v f v
f

λ
λ

= → =    (5) 

in absence of relative motion between source and observer, at constant speed of propagation:  
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  and v o e of f λ λ= =   (6) 
To make it more clear, let us see the following example: 
Let’s say that a wire is vibrating at a frequency fv = 500/s; Constant speed of propagation vu =300m/s; v = 0: 

1 1300 0,6 300 500
500 0,6e ofλ = = → = =  

b) By relative motion between source and observer the wavelength remains constant (Figure2) but the frequency 

undergoes a variation relatively to the value of the speed v: 

 
1 ( )  and:  o u e o

e

f v v λ λ λ
λ

= ± = =    (7) 

Now, the observer moves towards the source at a speed v = 20m/s: 

  
1 (300 20) 533,33

0,6of = + =  

The difference in observed frequency calculated by Doppler 1 (eq. 1) and Doppler 2 (eq. 2, 3 or 4) is very small 
when dealing with a low speed v, but it grows quadratic the more the difference between v and vu, decreases: 
By Doppler 1, using Equation 1, when the source is moving towards a stationary observer at the same speed v = 
20m/s: 

 
300( ) 500( ) 535,71

300 20
u

o e o
u

vf f f
v v

= = = =
− −

 

As already mentioned the difference between the results in observed frequency by Doppler 1 and Doppler 2 
increases the more the speed v approaches that of vu. Taking in the same example a velocity v = 40m/s, by Doppler 
2: 566, 66

o
f = ; and by Doppler 1: 576, 92

o
f = . Increasing the speed v to 80m/s, by D2: 633, 33

o
f = ; by D1: 

681, 81
o

f = .  
To resume: Doppler 1 modifies the frequency on base of the variation of the value of wavelength. Doppler 2 
modifies the frequency on base of the value of relative motion (v) between source and observer. 
3. Kinetic Waves and Duality Waves/Particles 
The original Corpuscular Theory of Newton is, as told, basically a ballistic theory. Newton argued that light was 
made up of particle beams projected from the source. He, in his time, had not the notion of the fact, found a century 
later by Maxwell, that the light propagated in the form of waves. For over a century it is known that the composition 
of the light beams consists in a duality of waves and particles. 
In classical physics the principle of “waves” is connected to the concept of rippling of the material by the material 
itself; sound, movements of water which propagate across its surface or the vibrations that run along a wire. 
What the three kinds of waves described above have in common is the fact that they need a material substance 
through which to propagate, be it in a gassy, liquid or solid state. The speed of these waves is, therefore, calculated 
in relation to the material substance in which they occur. 
Electromagnetic waves, in several aspects, are not similar to the above-mentioned waves. There are some 
important differences, like: 
1) It appears that they do not need a field of any kind in which to propagate: 
When we speak about “Doppler-shift” we implicitly speak of rippling of material substances through the matter 
self. Any theorizing referring to the Doppler 1 must be connected to classical waves in the sense above explained.  
2) Electromagnetic emanation consists of both waves and particles. 
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The structure of magnetic waves on the field of research can never be considered as a synthetic phenomenological 
context. Research can just be made on particles or, separately, on waves, treating (on field of research) the two 
parts of the same energy emanation as two different phenomena. 
Differently, classical waves can be contained in a single context: there is a matter and rippling of the matter self. 
3) Regarding the Doppler Effect, there is not any difference in observed frequency, when the source is moving 
from the observer or vice versa. 
3.1 Method. 
We integrate those data in a single context, in order to obtain an image of what the structure and the nature of 
magnetic waves concretely could be on ground of Newton’s Theory and the model of Doppler 2: 
The most relevant data which we can use is the knowledge of the fact that the particles making up matter contain 
a vibratory motion. It is also well-known that the speed of these vibrations is directly proportional to the degree of 
heat of the matter in a relation that in rough synthesis we may define thus: the hotter the matter the faster its 
particles vibrate, the higher the frequencies it emanates.  
Now let us imagine that, due to kinetic thrust, these particles are literally fired from electrons into space in the 
form of continuous jets, at the original constant speed - in relation to the source - of approx. 300 thousand Km/s. 
With regard to the fact that the electrons have a vibratory movement, the result that we would obtain is that of 
rippling fluxes, or better of particle waves, whose original wavelength would vary in relation to the degree of 
heating of the source emitting them. (as solved by eq. 5)  

This figure shows what a vibrating electron would look like: 
 

 
Figure 3. add a title here 

 
It is already well known that each electron sends photons. Let us imagine that those small particles together have 
been shot in a continuing flux from vibrating electrons. Then we see something like this: 
 

 

Figure 4. add a title here 

 

   
1

e
v

c
f

λ =  

Although each small particle follows a straight line, all parts together give the flux a waving motion. This would 
give a concrete explanation of the fact that research on the field of electromagnetic emission have to consider 
waves and particles separately from each other: if we take a look at figure 4 we clearly see that every single particle 
follows a straight line, so that when researching particles, it is impossible to get an idea of a wavy structure. If not, 
when researching waves, we must synthetize the particle emission in a global wavy flux. 
Heated matter is never heated uniformly: usually the nucleus is the part most heated. The temperature gradually 
decreases towards the external parts of the matter. Making a relation between thermic degree and speed of the 
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particles' vibration, we would logically find that the highest frequencies would be emanated from the hottest layers 
while the lowest from the coldest. 
That means, the hotter the matter, the faster the electrons vibrate, the shorter the wavelength of the waving flux, 
so that the distance between two wave tops becomes smaller: 

 
Figure 5. add a title here 

1'                       ( ' )
'e v v

v

c f f
f

λ = >  

This model offers us the following conclusions:  
1) Waves do not need any material substance in which to propagate. Since they originate from the source that 
produces them, they can propagate even through vacuum and proceed by inertial force. In the absence of gravity 
and agents of attrition, we could suppose that the speed originally imparted and so the wavelength remains unvaried 
(constant) to the infinite.  
2) From this point of view we can see how the duality of emission regarding waves and particles can be totally 
and concretely explained: looking at this structure we can easily conclude that we are dealing with waves and with 
particles emanation as well. In fact, the particles are making up a wavy flux. This would be a concrete way to 
connect waves and particles emission in a synthetic phenomenological context conform to Newton’s Corpuscular 
Theory and Maxwell’s field equations. 
3) Regarding Doppler 2, in this hypothesis the behavior of the waves in relation to the frequency variations 
ascribable to the relative motion is perfectly coherent with the premise: the variation of frequency recorded in 
relation to the source’s movements with respect to the observer, or vice versa, are not a consequence of Doppler 1 
effect: in the sense that they do not represent a variation of wavelength, but a variation of the registered frequency, 
caused by the relative increase or decrease in relative speed of the flux between source and observer. 
Frequency is depending on movements of the source with regard to an observer. Which means that every variation 
of the emission speed – due to a performing relative speed - will be perceived by an observer as a variation of 
frequency.  
Dealing with electromagnetic waves, using the formulas relative to Doppler 2 we can observe: 
a) The wavelength emitted is related to the frequency of vibrations of the electrons and the constant speed of 
propagation: 
(fv= frequency of vibrations) 

 1
v

c
f

λ =  

b) The stationary observer receives a frequency: 

  
1

of c
λ

=  

 
c) The moving source relatively to the observer or the moving observer with regards to the source at a relative 
velocity v receives a frequency: 

  
1 ( )of c v
λ

= ±  (8) 
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Comparing electromagnetic waves to kinetic waves, as above explained, we expect that the variation in frequency 
we register when the source moves to a stationary observer, or when the latter moves to a stationary source, are 
exactly the same, as we can show by these results:  

a) The observer is moving away from the source: speed of vibration = f/s. Speed of the flux = vu. velocity of the 

observer= v. The distance between two wave-tops is: 
1d
f

=  of uv  

uv
d

f
=  

oO a vt= +  
1 o uW b v t= +  
2 o uW b d v t= − +  
2( )

1( ) ( )

2( )

( ) ( )

( )
( )1

t t o u o t

o o o o

t t o u o t

t u t u
u

u

u

u
o

u

W O b d v t a v
W O b a
W O b d v t a v

dd v v v v t t
v v

v
t

v v f
v v f

f
t v

Δ Δ Δ

Δ Δ Δ

Δ Δ

=  − + Δ = +

=  =

=  − + Δ = +

−− = − = − Δ  Δ =
−

Δ =
−

−
= =

Δ

 

b) The source is moving away from the observer:  
Speed of the flux + distance  

1

2

'

'

' ( )
' ' ( )

' 0

u

u u

o u

o u

v v vd
f f

v dv v v
d

f f
W a v v t
W a d v v t
O

−
= +

− +
= =

= + −
= − + −

=

 

1( ) ( )

( ) ( )

' ' 0
' ' ' ( ) 0

' ( ) 0
( ) '

'
( )

( ) ( )1' '
'

o o o

o t t o u

u

u

u

u u
o o

u

W O a
W O a d v v t

d v v t
t v v d

dt
v v

v v v vf f f
t d v

Δ Δ

=  = 
→  =  − + − Δ = 

→ + − Δ =
Δ − =

Δ =
−

− −
= =  =

Δ

 

If the source approaches the observer the sign will be ( +) 
In both cases (source moves to observer or vice versa, approaching or moving away) will be as solved in (4). 

c) In absence of relative motion between source and observer the wavelength is constant and at constant speed of 

propagation the frequency observed will be the same of the original emitted vibration frequency:  
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1
o vf c f

λ
= =    (9) 

To resume: 
1) Sound waves are originating by the vibrations of a source (a wire for example) which emits a wavelength 

that is directly proportional to the speed of the vibration. Sound waves propagate trough a matter - at a 
constant speed - which can change the structure of the wavelength by moving through the atmosphere. The 
wavelength remains constant when the source is stationary, but an observer can receive a lower or higher 
number of wave-tops in the same measure of time, as consequence of the relative motion between source and 
observer. The frequency observed, in the two cases, is different. A difference which is very small, when 
dealing with low relative speed, but increasing on square scale the more the difference between speed of 
propagation and that of relative motion become smaller. 

2) Kinetic waves (by original model) are beams of particles originating by kinetic thrust, from a vibrating source 
(think of the wavy effect of a flow of water produced by a vibrating garden hose), which emit a wavelength 
that is directly proportional to the speed of vibration. Kinetic waves propagate at constant speed through 
matter (atmosphere) and trough vacuum as well, by inertial thrust. The wavelength remains constant even 
when the source is moving through space, but the observed frequency changes by effect of the relative motion 
between source and observer (eq. 8). Kinetic waves make no difference in observed frequency whether the 
source moves to the observer or vice versa. 

3.2 Experimental Results 
The following mentioned experimental results:  
Michelson-Morley  
Fizeau convection coefficient 
Kennedy-Thorndike 
Moving sources and Mirrors 
Aberration 
since they are performed on ground of the movements of sources through space, in absence of relative motion 
between source and observer, did not register any different observed frequency than that original emitted. (as 
solved by eq. 7) On this point we can also take into account the calculations made by Walther Ritz in his ballistic 
Emission Theory, published in 1908 (Ritz, 1908; Ritz, 1908; Tolman, 1910).  
By kinetic waves, as we have seen, the constancy of the speed of emitted wavy light-beams and the constancy of 
the wavelength, give as result that the frequency remains unchanged in observation (as solved by eq. 9).  
Experimental results like De Sitter Spectroscopic Binaries which disagree with ballistic theories, are starting 
from the ground of Doppler 1 which is based on the constancy of propagation speed of electromagnetic waves, 
and the variations of wavelength.  
De Sitter Spectroscopic Binaries is the most mentioned experimental result in disagree with Ritz emission theory. 
Just to remind:  
“According to simple emission theory, light thrown off by an object should move at a speed of c with respect to 
the emitting object. If there are no complicating dragging effects, the light would then be expected to move at this 
same speed until it eventually reached an observer. For an object moving directly towards (or away from) the 
observer at v meters per second, this light would still be expected to be travelling at (c+v) or (c-v) at the time it 
reached us.  
In 1913, Willem de Sitter argued that if this was true, a star in a double-star system would usually have an orbit 
that caused it to have alternating approach and recession velocities, and light emitted from different parts of the 
orbital path would then travel towards us at different speeds. De Sitter made a study of double stars and found 
no cases where the stars' computed orbits appeared. Since the total flight-time difference between "fast" and 
"slow" light-signals would be expected to scale linearly with distance in simple emission theory, and the study 
would (statistically) have included stars with a reasonable spread of distances and orbital speeds and orientations,  
De Sitter concluded that the effect should have been seen if the model was correct, and its absence meant that the 
emission theory was almost certainly wrong.” 
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(Figure 6 and italics text are taken from Wikipedia.org as referred in De Sitter double star experiment (2016)) 

 

 

 
Figure 6 

 
Comparing electromagnetic waves to classic waves the arguments deducted by De Sitter’s astronomical 
observation, would be certainly correct. It won’t be correct whether we connect them to the model of kinetic waves 
and Doppler 2. 
As we take a look at Figure 6, the expected extra increasing of frequency due to the relative speed of approaching 
of the source is calculated on decreasing of the wavelength (Doppler 1), adding the increasing of relative speed v 
(Doppler 2) so that the conclusion deducted by this experiment is calculated by a measuring made on ground of 
variations of wavelength due to approaching speed plus that of increased relative speed: 

  ( )o e e
c vf f f

c v c
= +

−
  

Which was not in line to the expected results by Ritz’s model, because, on base of Doppler 2 and kinetic waves, 
the variation in frequency must be calculated just on ground of the variation of the observed speed of emission: (c 
+ v) or (c – v). So that we expect that when the source is moving to/from us the observed frequency will be given 
by:  

When the source is approaching: 
1 ( )of c v
λ

= +    (11) 

when the source is regressing:  
1' ( )of c v
λ

= −    (12) 

From this angle we also expect that these two results will be constantly alternate each other in approach and 
recession velocities. We don’t expect any ulterior increasing or decreasing of speed of the fluxes, just because the 
variations in speed is already taken into account as only consequence of the differences in observed frequency 
between approaching of de source and regressing of it. 
4. Redshift as Progressive Decreasing of Light-Speed on Travelled Distance 
We make use of Doppler 2 model to recalculate the redshift, starting from the premise that the emitting sources 
finding them self at very great distances from us are stationary and the frequency we observe registers a decreasing 
with regard to the original emitted, due to a decreased original emitted light-speed, proportionally to the travelled 
distance. Whether light-beams travel by inertial force through great distances, the original kinetic thrust could be 
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decreased by effect of gravity fields they have to cross or scattered atomic waste present in space that crossed at 
very high speed (that of light) can offer a substantial material consistency.  
4.1 Results 
Let us consider the following examples: 
Example 1: 
We take as first the quasar known as 3C-273: 
 (for these calculations has been used a round light-speed of c = 300.000Km/s) 
Calculation of the redshift of 3C-273 on base of Doppler 1  
Doppler 1 fixes the constant factor in the value of speed of propagation and the variable one in the value of 
wavelength.  
The hydrogen Ballmer-alpha line in stationary stand registers a wavelength of 656n.m. The observed wavelength of 
this body in 760n.m. Calculating redshift and recession velocity on base of Doppler 1: 

. .
656  ; 760  ;  0,1585 ( ) 47550 /  o e

e n m o n m

e

z v cz km s
λ λ

λ λ
λ

−
= = = = → = = (recession speed on base of wavelength) 

457  ; 394  ;  0,1585 ( ) 47550 /  e o

e THz o Thz

o

f f
f f z v cz km s

f

−
= = = = → = =  (on base of frequency) 

The calculation of the redshift this way, would be possible till z < 1. When z > 1, the regression speed will be 
greater than that of light. If we take the quasar 5C 02.56 discovered in 1970 (Illingworth, 1999), it shows a redshift 
of: z= 2,399, corresponding to a regression speed of: v= 719.700km/s; GB1428+4217 (Space Daily, 2012) =z= 
4,72 and recession speed = 1.416.000km/s; GRB090423 (NASA, 2009) = z= 8,2 and recession speed = 
2.460.000km/s. Going on to the most recent time, the galaxy GN-z11 (Drake, 2016), which shows a redshift 
calculated in z = 11,09, on base of Doppler 1, it would pretend to move away from us at a speed of more than 3,5 
million km/s. 
The Law of Hubble, which is based on the calculations of Doppler 1, is grounded on the astronomical observations 
and relative spectrum analysis made since 1929. At the time of Hubble’s publication, the most distant observable 
body was the galaxy NGC-7619 (Trimble, 1996) which registered a redshift of 0,012 and a regression speed of 
about 3.700km/s: a surprising result, at that time, but still contained in the limits allowed by Relativity.  
4.2 Calculation of the Redshift of 3C-273 on Base of Doppler 2. 
Doppler 2, differently from Doppler 1, considers the observed result of frequency, based on constancy of the 
wavelength and progressive decreasing of light-speed. In other terms and according to what explained about the 
original Doppler 2 model: the source produces a wavelength and the observer receives a frequency, which is 
directly proportional to the value of decreased light-speed. This way, is to understand that the redshift would not 
be consequence of a progressive regression of light-sources on distance, relatively to the observer, but to a 
decreasing of the observed light-speed which results in a decreased frequency.  
According to that, we have to suppose that 656n.m. remains constant in emission as in observation. In stationary 
stand and at constant speed of emission, an observer will receive a frequency: 

1 457THzf c
λ

= =  and  .656e o n mλ λ λ= = =  

In case of decreasing of original emission-speed to (c-v): 

 
1 ( )f c v
λ

= −  (14) 

Now we don’t know yet the value of v, so we have to fix it on base of which we think to be an observed wavelength. 
As told, the Hydrogen Ballmer-alpha line relative to this body is on 760n.m.. which correspond to a decreased 
observed frequency of 394THz. It means that when on spectrum appears the line on 760n.m., in fact we are receiving 
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a frequency of 394THz. Since the calculations are programmed on base of Doppler 1, the result on frequency is 
automatically translated into a value of increased wavelength, although the frequency effectively observed is the 
value we really register and in this model, we need to reach the value of decreasing in velocity (v). So we can state: 
the original emitted wavelength (656) is the same observed and the corresponding emitted frequency (457) is 
decreased by effect of decreased original emission speed to c-v: 

 394 457
0,1378 41.340 /

457
o e

e

f f
z v cz km s

f

− −
= = = − → = = −  (15) 

In this case the negative sign of the shift doesn’t mean blue-shift, but the value that must be detracted from the 
original emitted speed. This way:  

 ( ) 300.000 41340 258.660 /obsc c v km s= − = − =  (16) 

Now we obtained the value of v, we can complete the eq. 14 with the missing value: 

 
1 1

( ) (258660) 394
656o THzf c v

λ
= − = =   (17) 

As already explained, this value of decreased observed frequency (394THz) which by Doppler 1 will be 
automatically interpreted as an increased wavelength of 760n.m. from this angle it expresses a value of decreased 
light-speed. 
Example 2:  
4.3 Calculation of the Redshift of the Galaxy GN-z11, on Base of Doppler 2. 
The redshift of this body is calculated in z = 11,09: 

656 457fλ = → =  
The Hydrogen-Ballmer-alpha-line signs a wavelength on 8.462n.m. which corresponds to a frequency: 

 300.000
35, 5

8462o THz

o

c
f

λ
= = =  

 35, 5 457
0, 9223

457
o e

e

f f
z

f

− −
= = = −  ; (300.000)( 0,9223) 276.695v cz= = − = −   

 
1 1

( ) (300.000 276695) 35,5
656o THzf c v

λ
= − = − =   (18) 

Whit regard to the galaxy GN-z11, is to suppose that objects finding them self on distances >30Gly would be 
impossible to be optical perceived, because the observed frequency will be decreased below the optical frequency 
limit. 
The results obtained by the calculations on base of Doppler 2 model, taking as example 3C-273 and GN-z11, 
would give theoretical proof that none of the cosmic objects we can optically perceive is regressing. 
5. Conclusion 
The model of kinetic waves (KW), we have described and analyzed in the present theoretical research, in addition 
to a correct mathematical analysis based on classic mechanics, offers many more points of similarity with the 
behavior of electromagnetic waves and correct results than the waves model offered by the classic model. 
1) KW are expected to behave in full agreement with the experimental results which confirm there is no 

difference in variation of frequency whether a source is moving to a stationary observer or vice versa.  
2) KW could give a concrete explanation about the duality particles/waves, in the way that wavy fluxes consist 

in particles beams 
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3) KW do not need any material substance or magnetic field through which propagate, since they are sent by 
kinetic thrust and proceeding by inertia through vacuum. 

4) KW, as basically connected with a ballistic emission theory, agree with all experimental results performed 
on this field. KW offers a correct, sustainable and logical answer about the causes of the redshift, next to the 
classic physical laws we know. 
The relation travelled distance/redshift, in the described and analyzed way would give us the image of a 
globally static universe and as consequence, the indication that light coming from the most distant celestial 
bodies undergoes a slowdown which is directly proportional to the distance from us: the bigger the distance 
that light have to travel to reach us, the stronger the slowdown, the sharper the redshift. 
The “Big-Bang Theory” is grounded on the statement made by Hubble in 1929, about the principle of 
universal expansion. When this ground would be missing, there will not be any other reason to sustain the 
universe originated by an enormous explosion of a concentrated cosmic matter. However, it will exonerate 
us to find or imagine explanations with regard to where and how each cosmic object finds the necessary 
energy to move from all others in a constant, progressive acceleration to all direction and find a way to meet 
again at a common point . Besides, through this way would be useless to try giving an age to our Universe or 
fix an origin of it, which probably never took place. 

Suggested experiment: 
Assuming that variations between emitted and observed frequencies are consequence of variations of emitted light-
speed and not of those of wavelength it would be possible to perform the following experiment, based on the speed 
of revolution of earth around the sun, with regard to an external body. In this example has been taken Jupiter as 
model. Our planet, related to the orbit of Jupiter presents two phases: one with sign plus (+) when the earth is 
approaching Jupiter, for example in March, and one with sign minus (-), when the earth is regressing from it, in 
September.  

 
Figure 7 

5. Results 
C = 299.792,458 
Velocity of earth’s revolution (v) = 30 km/s 
Average distance Earth/Jupiter (s) = 588.000.000 Km. 
Using radar astronomy by sending a beam of microwaves in March in direction of Jupiter, the distance we have to 
calculate it to reach Jupiter and reflecting back will be: 

S = 1.173.000.000 km. 
To recover this distance at light-speed (C) the signal would take: 
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  ௦௖ =  ଵ.ଵ଻ଷ.଴଴଴.଴଴଴ଶଽଽ.଻ଽଶ.ସହ଼ = 3922", 7137  

If we add the average rotation’s speed of Earth around the sun in March, we obtain: 

  ௦(௖ା௩) = ଵ.ଵ଻ଷ.଴଴଴.଴଴଴ଶଽଽ.଼ଶଶ,ସହ଼ = 3922", 3212 

Corresponding to a frequency variation calculated by: 

  1 ( )of c v
λ

= +  

Repeating the same experiment on September:  

  ௦(௖ି௩) =  ଵ.ଵ଻ଷ.଴଴଴.଴଴଴ଶଽଽ.଻଺ଶ,ସହ଼  = 3923”, 1063 

And a frequency variation: 

  1 ( )of c v
λ

= −  

The difference in terms of time between March and September would be 8/10th of a second: when this result would 
support the expectation, will confirm that the differences of frequency produced by the movements of a source are 
ascribable to the relative motion between source and observer. This kind of experiments, meant to a direct 
measuring of the speed of light on base on distance and time taken to cover it, in the age of Modern Physics, has 
never been performed. 
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Abstract 
In previous publications, we showed that Maxwell’s equations are an approximation to those of General Relativity 
when ܸ ≪ ܿ , where ࢂ  is the velocity of the particle submitted to the electromagnetic field. This was 
demonstrated by showing that the Lienard-Wiechert potential four-vector ܣఓ created by an electric charge is the 
equivalent of the gravitational four-vector ܩఓ created by a massive neutral point when ܸ ≪ ܿ.  
In the present paper, we generalize these results for ࢂ non-restricted to be small. To this purpose, we show first 
that the exact Lagrange-Einstein function of an electric charge ݍ submitted to the field due an immobile charge ݍ଴ is of the same form as that of a particle of mass ݉ submitted to the field created by an immobile particle of 
mass ݉଴. Maxwell’s electrostatics is then generalized as a case of the Einstein’s general relativity. In particular, 
it appears that an immobile ݍ଴ creates also an electromagnetic horizon that behaves like a Schwarzschild horizon. 
Then, there exist ether gravitational waves constituted by gravitons in the same way as the electromagnetic waves 
are constituted by photons.  
Now, since ܣఓ and ܩఓ, are equivalent, and as we show, ܩఓ produces the approximation, for ܸ ≪ ܿ, of ݃ఓସ 
created by ݉଴ mobile, where the ݃ఓజ are the components of Einstein’s fundamental tensor, it follows that ܣఓ ܸ ఓ produces the approximation, forܩ+ ≪ ܿ, of ℶఓସ , where the ℶఓఔ created by ݉଴ and by ݍ଴, generalize the ݃ఓఔ. 
Résumé. Dans des publications antérieures nous montrâmes que l’électromagnétisme de Maxwell est une 
approximation de la Relativité Générale quand ܸ ≪ ܿ, ou ࢂ est la vitesse de la particule soumise au champ 
électromagnétique. Ceci a été prouvé en montrant que le quatre-vecteur potentiel de Lienard-Wiechert ܣఓ créé 
par une charge électrique est l’équivalent du quatre-vecteur gravitationnel ܩఓ  créé par une masse ponctuelle 
neutre quand ܸ ≪ ܿ.  
Dans le présent article, nous généralisons ces résultats pour ࢂ non-restreinte à être petite. A cette fin, nous 
montrons d’abord que la fonction exacte de Lagrange-Einstein créé par une charge électrique ݍ soumise au champ 
créé par une charge électrique ݍ଴ immobile est de la même forme que celle d’une particule de masse ݉ soumise 
au champ créé par une particule immobile de masse ݉଴. L’électrostatique de Maxwell est donc généralisée comme 
étant un cas de la relativité générale d’Einstein. En particulier, il apparait qu’une ݍ଴ immobile crée aussi un 
horizon électromagnétique qui se conduit comme un horizon de Schwarzschild. Puis qu’il existe des ondes 
gravitationnelles constituées de gravitons de la même façon que les ondes électromagnétiques sont constituées de 
photons.  
Or, puisque ܣఓ and ܩఓ sont équivalents, et que, comme nous le montrons, ܩఓ produit l’approximation de ݃ఓସ 
pour ܸ ≪ ܿ, due a ݉଴ mobile, ou les ݃ఓఔ sont les composants du tenseur fondamental d’Einstein, il s’en suit 
que ܣఓ + ܸ ఓ produit l’approximation de ℶఓସ, pourܩ ≪ ܿ, ou les ℶఓఔ créés par ݉଴ et par ݍ଴ généralisent les ݃ఓఔ. 
Keywords: Relativistic electromagnetism, completion of Einstein’s relativity theory, gravitons and photons 
I. Introduction 
In Zareski (2014) and in Sec. IX of Zareski (2015), we showed, in particular, that from the elastic ether theory it 
appears that the form of Maxwell’s Electromagnetism emerges as an approximation of General Relativity. The 
main lines of this demonstration were the following. Einstein’s fundamental tensor of components ݃ఓఔ, is the 
solution of the system of equations (44) of Einstein (1916) obtained from pure mathematical reasoning not related 
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a priori only to gravitation. This is the reason why, in my opinion, the title of his famous paper: ”The foundation 
of the general theory of relativity”, do not comport the word ‘gravitation’. Therefore, one can suppose that these 
equations are more general than defining only the gravitational field, and could define also other fields as the 
electromagnetic field. 
Indeed, in Zareski (2014) and in Sec. IX of Zareski (2015), we have shown this fact in the case where the velocity ࢂ of the particle is such that ܸ ≪ ܿ, that is to say that we have shown that Maxwell’s electromagnetism is of the 
same form as Newton’s gravitation. This was shown as following.  
a) First, we showed that Coulomb’s electrostatic potential ܣସ,ௌ, (s for static), created by an immobile electric 
charge, is of the same form as the Newton gravitostatic potential ܩସ,ௌ created by an immobile neutral massive 
particle.  
b)Then, we generalized the result a) for ܸ ≪ ܿ , by showing that the Lienard-Wiechert potential four-vector ܣఓ 
created by a moving electric charge, differs from the gravitational four-vector ܩఓ created by a moving massive 
point by only a constant multiplicative coefficient. 
From a) and b), it appears that for non-small ܸ, Maxwell’s electromagnetism could be generalized as a case of 
Einstein’s general relativity. In the present paper, the result a) is indeed generalized for ܸ non-restricted to be 
small. That is to say that we show that the exact Lagrange-Einstein function of an electric charge ݍ submitted to 
the field due an immobile charge ݍ଴ and its motion equation are the same as those of a particle of mass ݉ 
submitted to only the field created by an immobile particle of mass ݉଴ . That is, we generalized Maxwell’s 
electrostatic to a case of Einstein’s general relativity. In particular, it appears that an immobile ݍ଴ creates also an 
electromagnetic horizon that behaves like a Schwarzschild horizon, that is, when another electric charge q is 
attracted by ݍ଴ and reaches this electromagnetic horizon, then its velocity is there null. Then that there exist ether 
gravitational waves constituted of gravitons in the same way as the electromagnetic waves are constituted by 
photons.  
Then we arrive to the conclusion that, since in the approximation ܸ ≪  ఓ differs by only a constantܩ ఓ andܣ  ,ܿ
multiplicative coefficient and since as we show, ܩఓ produces then the approximation of ݃ఓସ, where one recalls 
that the ݃ఓఔ are the components of Einstein’s fundamental tensor created by ݉଴ whether it moves or not, it 
follows that ܣఓ + ܸ ఓ produces the approximation forܩ ≪ ܿ of ℶఓସ , where the ℶఓఔ are the components of a 
tensor that generalizes Einstein’s fundamental tensor ݃ఓఔ by taking into account the contribution of the electrical 
charge ݍ଴. 
2. Notations and Recalls  
2.1 Some Generalities 
The Greek indexes take the values 1,2,3,4 and the Latin the values 1,2,3 the index 4 corresponding to ct. The low 
indexes are covariant while the high are contravariant. We use the Einstein summation, the time derivative ݀ݕ ⁄ݐ݀  
of y is denoted simply ݕሶ . A particle of mass m and electric charge q will be denoted ܲ(݉,  ఓఔ denotes݃ .(ݍ
Einstein’s tensor which is a solution of the system of equations (44) of Einstein (1916). In the present paper, we 
do not take into account dark matter since we consider only individual particles. The velocity of the free light is 
denoted ܿ, and the constant of gravitation is denoted k. The coordinates origin is denoted O.  
The Lagrange-Einstein function ீܮ of a ܲ(݉, 0) submitted to a field ݃ఓఔ is 

ீܮ   =  ሶ (1)ݏܿ݉−
where 

ሶݏ   = ඥ݃ఓఔݔሶ ఓݔሶ ఔ (2) 
and the motion equation of this particle Cf. e.g., Zareski (2012), or Eq. (3.3) of Zareski (2015), is 

 ௗௗ௧ ቀ డడ௫ഋሶ ቁீܮ − ఓ߲ீܮ = 0 .  (3)  

The field created by an immobile ܲ(݉଴, 0) located at O, is of Schwarzschild, and ீܮ denoted then ீܮௌீ the 
indexes ܵܩ referring to static-gravitation, is then  

ௌீீܮ  = −݉ܿඥܿଶߛଶ − ܸଶߛణଶ , (4)  
where, Cf., e.g., Zareski (2012), or Eq. (3.62) and (3.63) of Zareski (2015),  

ଶߛ  ≡ 1 − ߙ ⁄ݎ , (5)  
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ణଶߛ  ≡ 1 + ߙ (cosଶ (ߴ ⁄(ଶߛݎ) , (6) 

where ߙ is the constant defined by  

ߙ  = 2݉଴݇ ܿଶ⁄  , (7) 
and ߴ  denotes the angle made by the velocity ܸ  of this ܲ(݉, 0) and the radius vector ݎ  issued from O. 
Inserting (6) into (4), one obtains  

ௌீீܮ  = −݉ܿඥܿଶ(1 − ߙ ⁄ݎ ) − ܸଶ(1 + cosଶ)ߙ (ߴ ݎ) − ⁄(ߙ ) (8) 
and, Cf. Eq. (3.68) of Zareski (2015), the expression for the absolute value of the velocity ܸ of this ܲ(݉, 0) of 
total energy ்ܧ is  

   ܸ = ߛ)ܿ ⁄ణߛ )ඥ1 − ଶܿ݉ߛ) ⁄்ܧ )ଶ.  (9) 
The motion equation is then given by Eq. (3) with ீܮௌீ instead of ீܮ. Furthermore, Eq. (9) shows that ܸ = 0 
at ݎ = ,݉)ܲ i.e., the ,ߙ 0) stops on the Schwarzschild horizon (SH).  

Now, if ௥ܸ(ݎ) denotes the expression for ܸ when the trajectory of this ܲ(݉, 0) is a ray issued from O, 
that is, when ߴ = 0, then (9) becomes  
   ௥ܸ(ݎ) = ܿ(1 − ߙ ⁄ݎ )ඥ1 − (1 − ߙ ⁄ݎ )(݉ܿଶ ⁄்ܧ )ଶ .  (10) 
2.2 Dirac’s Considerations Regarding the ܲ(݉, 0) in a Schwarzschild Field 
Expression (10) is of the same form as the absolute Dirac expression for the radial velocity of this ܲ(݉, 0) as it 
appears in the fifth equation of page 33 of Dirac’s book. Cf. Dirac (1975). Indeed, he wrote there that the 
expression ݀ݎ ⁄ݐ݀  for the radial velocity directed toward the SH, of this ܲ(݉, 0) is  

ݎ݀   ⁄ݐ݀ = −ܿ ቀ1 − ଶெ௥ ቁ ට1 − ቀ1 − ଶெ௥ ቁ ݇஽ଶൗ  .   (11) 

In this equation I use the notation ܯ and ݇஽ instead of ݉ and of ݇ used by Dirac, and add ܿ that missed in 
its original expression, the sign (– ) is due to the fact that Dirac considered that the motion is directed toward the 
origin. We see that, if one writes 2ܯ ܯ        ,ߙ ≡ ≡ ݉଴݇ ܿଶ⁄  ,        ݉ܿଶ ⁄்ܧ ≡ 1 ݇஽⁄ , 
the expression for |݀ݎ ⁄ݐ݀ | is identical to that for ௥ܸ(ݎ). Furthermore, using Dirac’s reasoning, let us demonstrate 
that the time taken by the ܲ(݉, 0) to reach the SH is infinite, i.e., near the SH, the velocity of the particle is very 
small, and null on it.  
Indeed, near the SH, the term (1 − ߙ ⁄ݎ )(݉ܿଶ ⁄்ܧ )ଶ is negligible in front of 1 since (1 − ߙ ⁄ݎ ) tends then 
toward 0, that is to say that in this case, Eq. (11) yelds  

ݐ݀    ≅ − ݎ݀ߙ ሾܿ(ݎ − ⁄ሿ(ߙ ,  
which yields, after integration:  

ݐ  ≅ ߙ) ܿ⁄ ሾ1݃݋݈( ݎ) − ⁄(ߙ ሿ +   (12)  .ݐݏ݊݋ܿ
Equation (12) shows that the ܲ(݉, 0) reaches the SH after an infinitely long time measured by an immobile clock.  
It appears that our unifying ether theory englobes the Dirac theory regarding the behavior of the particle in a 
Schwarzschild field for ݎ ≥  In the frame of this unification we do not treat the case where particles could be .ߙ
located into the black hole.  
2.3 The Newton Motion Equation as Approximation of the Real Motion Equation 
The exact motion equation of the ܲ(݉, 0) in the Schwarzschild field is given by Eq. (3) in which ீܮ is replaced 
by ீܮௌீ defined in Eq. (8). That is, this exact motion equation is  

  −݉ܿ ቄ ௗௗ௧ ቂ డడ௫ഋሶ ඥܿଶߛଶ − ܸଶߛణଶቃ − ఓ߲ඥܿଶߛଶ − ܸଶߛణଶቅ = 0  (13) 

where ߛଶ and ߛణଶ are given by (5)-(7). Now, with an evident notation, it appears from (8) that  

ܸ)ௌீீܮ    ≪ ݎ ݀݊ܽ ܿ ≫ (ߙ = −݉ܿ√ܿଶ − ܸଶ + ݉ܿଶ ߙ ⁄(ݎ2)  ,  (14) 
and when one inserts ீܮௌீ(ܸ ≪ ݎ ݀݊ܽ ܿ ≫  one obtains instead of (13), the following ீܮ in (3) instead of (ߙ
approximated motion equation  

 ݉ ሷ࢘ ≅ −݉ܿଶܚߙ/(ݎ2ଷ) ≡ −݉݉଴݇ ݎ/ܚଷ ,  (15)  
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Equation (15) is the approximated motion equation of a ܲ(݉, 0) submitted to the gravitational field due to an 
immobile ܲ(݉଴, 0).  
2.4 Some Recalls on the Elastic Interpretation of Maxwell’s Equations  
Let us first recall Maxwell’s opinion on the elastic interpretation of electromagnetism, he wrote in Art. 866 of 
Maxwell (1954)  

"Hence all these theories lead to the conception of a medium in which the propagation takes place, and if we 
admit this medium as an hypothesis, I think it ought to occupy a prominent place in our investigations.".  

And Einstein wrote Cf. Einstein (1920):  

“According to the general theory of relativity space without ether is unthinkable……”  
We recall now some results regarding the elastic interpretation of Maxwell’s equations, presented in Zareski (2001), 
(rewritten in Zareski, 2015). There we considered a particular elastic medium, the ‘ether’, governed by the 
continuity equation (2) of Zareski (2001) and by the following equation of elasticity  

࡯)࢒࢛࢘ࢉ   2⁄ − (ࣈ࢒࢛࢘ࢉ଴ߟ =  (16)   ,ࣈ଴߲௧௧ߩ
that defines the elastic changes ࣈ in the ether due to the density of couples of forces ࡯ applied to it, and from 
which one deduces the Maxwell equations of electromagnetism as recalled he below. In Eq. (16), ߟ଴ denotes the 
inverse of the free induction coefficient, which, in the elastic interpretation, is the free elastic restoring rotation 
coefficient, and ߟ଴ is related to ܿ by the relation  

଴ߟ  =   ଴ܿଶ  (17)ߩ
where ߩ଴ denotes the ether density. We recall in particular that by introducing the new variables  , ࢋࡶ , ࡮ , ࡴ , and ࢋߩ , defined by  

ࡱ   = ࣈ࢒࢛࢘ࢉ଴ߟ − ࡯ (2)⁄  (18) 
 

ࡴ   = ߲௧࡮   ,ࣈ =  (20)(19)   , ࣈ଴߲௧௧ߩ
ࢋࡶ    = ࡯࢚ࣔ (૛ߟ଴)⁄ ࢋߩ   , = − ࡯ ݒ݅݀ (૛ߟ଴)⁄ ,  (21)(22)  

and by eliminating ࣈ and ࡯ between these equations, one obtains the Maxwell equations.  
For example, from Eqs. (16), (18) and (20), one obtains  

ࡱ࢒࢛࢘ࢉ   + ߲௧࡮ = ૙ , (23) 
and by differentiating Eq. (18) with respect of the time and taking into account Eqs. (19) and (21), one obtains  

ࡴ ݈ݎݑܿ   − ߲௧ ࡱ ⁄଴ߟ =   (24)  . ࢋࡶ 
Equations (23) and (24) are Maxwell’s equations, the others being obtained in the same way.  

Remark. Since an electrically charged particle musts possess a mass, it follows that the results of this 
Sec. 2.4, i.e., Maxwell’s electromagnetism is only an approximation. In the exact case one has to take 
into account the mass of this electrically charged particle that is to say one has to take into account the 
General Relativity as done here below.  

3. Relativistic Electromagnetism and Gravitation Equivalence for a ࢓)ࡼ, (ࢗ  in the Field Due to an 
Immobile ࢓)ࡼ૙,   (૙ࢗ
3.1 Generalities  
One recalls that since Einstein’s Eqs. (44) of Einstein (1916) were obtained by pure mathematical reasoning, one 
can suppose that these equations are more general than defining only the gravitational field. Indeed, as we show 
now, they define also the exact electromagnetic equations that complete the Maxwell equations shown to be an 
approximation, by taking into account the general relativity.  
We generalize now first Maxwell’s electrostatic as a case of the Einstein’s static general relativity and show that, 
in particular, an immobile ݍ଴ creates also an ‘electromagnetic horizon’ that behaves like a SH, that is to say that, 
when another electric charge ݍ is attracted by ݍ଴ and reaches this electromagnetic horizon, then its velocity is 
there null. In that context, we generalize first the value of the constant ߙ.  

Remark. From here on, we use the notation ீߛ ,ீߛ ,ீߙణ instead of ߛ ,ߛ ,ߙణ, the index ܩ referring 
to gravitation.  
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3.2 Generalization of the Constant ீߙ for the Static Gravito-Electromagnetic Case 
When a ܲ(݉,  ଴, it is also submitted to a gravitational fieldݍ is submitted to an electrostatic field created by a (ݍ
due to the mass ݉଴ of the charge ݍ଴, since an electric particle possess also a mass. It follows that, when a ܲ(݉, ,is submitted to the total field due to the immobile ܲ(݉଴ (ݍ  ଴), that is, to the sum of the gravitational fieldݍ
due to ݉଴ and of the electrostatic field due to ݍ଴, then, the approximation ீܮௌ்(ܸ ≪ ݎ ݀݊ܽ ܿ ≫  of the (்ߙ
Lagrange-Einstein ீܮௌ், the index ܵܶ referring to static total fields, is then  

ܸ)ௌ்ீܮ   ≪ ݎ ݀݊ܽ ܿ ≫ (்ߙ = −݉ܿ√ܿଶ − ܸଶ + ቀ− ௤௤బସగఌబ + ݉݉଴݇ቁ ଵ௥ .  (25)  

Now, let the constant ߙா be defined by  

ாߙ   = − ଶ௖మ(௠ ௤⁄ ) ௤బସగఌబ , (26) 

the constant ߙ be denoted now ீߙ that is Cf. Eq. (7),  

ீߙ   = 2݉଴݇ ܿଶ⁄ , (27) 
and let the constant ்ߙ be defined by 

்ߙ   = ீߙ +  ா. (28)ߙ
With these notations, (25) and the non-relativistic motion equation can be written  

ܸ)ௌ்ீܮ   ≪ ݎ ݀݊ܽ ܿ ≫ (்ߙ = −݉ܿ√ܿଶ − ܸଶ + ௠௖మଶ ்ߙ ଵ௥ ,  (29)  

 ݉ ሷ࢘ ≅ − ௠௖మଶ ்ߙ ଵ௥య ࢘ . (30) 

Note: For elementary electrically charged particles, then in general, as shown, e.g., in Zareski (2015), ݉݉଴݇ |଴ݍݍ|≫ ⁄଴ߝߨ4 , therefore, in this non-relativistic electrostatic case, (30) can be written. ݉ܚሷ ≅ ௤௤బସగఌబ ଵ௥య ࢘ ≡  where ,ࡱݍ

ࡱ = ௤బସగఌబ ଵ௥య ࢘ denotes the electrical field created by ݍ଴.  

3.3 Exact Motion Equation and Velocity of a ܲ(݉, ,due to an Immobile ܲ(݉଴ (ݍ   (଴ݍ
This exact relativistic motion equation of a ܲ(݉, ,in the field of an immobile ܲ(݉଴ (ݍ   ଴) isݍ

  ቀ ௗௗ௧ డడ௫ണሶ − డడ௫ೕቁ ௌ்ீܮ = 0 ,  (31)  

the Lagrange-Einstein function ீܮௌ் being defined by 

ௌ்ீܮ   =  ሶௌ், (32)ݏܿ݉−
where ݏሶௌ் is defined by  

ሶௌ்ݏ   = ඥܿଶ்ߛଶ − ܸଶߛణ்ଶ ,  (33)  
and, ்ߛ and ߛణ் by  

ଶ்ߛ   ≡ 1 − ்ߙ ⁄ݎ ణ்ଶߛ   , ≡ 1 + ்ߙ (cosଶ (ߴ ⁄(ଶ்ߛݎ)   (34) 
In this generalized Schwarzschild case, the expression for the velocity ܸ given in Eq. (9) is generalized by ்ܸ  
defined by  

  ்ܸ = ்ߛ)ܿ ⁄ణ்ߛ )ඥ1 − ଶ்ܿ݉ߛ) ⁄்ܧ )ଶ . (35)  
From Eq. (35) it appears that ்ܸ = 0 at ݎ = ,݉)ܲ that is, the ,்ߙ   submitted to the static (ݍ
field due to ܲ(݉଴, ݉ When .(ܪܵܩ) ,’଴) stops on the ‘generalized Schwarzschild horizonݍ = 0,  
then, Cf. Eq. (3.12) and Eq. (3.14) of Zareski (2015) where ݃ସସ is ்ߛଶ,  

  lim௠→଴(݉ ⁄ሶௌ்ݏ ) = ℎߥ (ܿଷ்ߛଶ)⁄  .  (36) 

and Eq. (35) becomes  
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 lim௠→଴(்ܸ ) = ܿ ்ߛ ⁄ణ்ߛ . (37) 

Equation (35) shows that even the photons stop on the ܪܵܩ. In fact even ்ܸ  defined in (35) does not depend 
upon ݉ near to the ܪܵܩ since there (்ܿ݉ߛଶ ⁄்ܧ )ଶ is infinitly small. 
3.4 Ether Changes, General Waves Due to an Immobile ܲ(݉଴, ,݉)ܲ ଴) and to Mobileݍ  that are Gravitons ݏ(ݍ
or Photons when ݉ = ݍ = 0  
Equation (16) refers to the particular case where we considered that the density of couples of forces ࡯ is due to 
only electric charges that create the electromagnetic field to which is submitted another electric charge. But here 
we generalize this case to the one where ࡯ denoted now ࢀ࡯  is due also to the mass of massive neutral or 
electrically charged particles, remembering that an electrically charged particle must have a mass. That is, in 
presence of ࢀ࡯, the ether is such that the phase velocity ௉ܸ propagated in it, is different from the light velocity ܿ. Therefore in presence ࢀ࡯, Eq. (16) has to be completed into the following  

்ܥ)࢒࢛࢘ࢉ   2⁄ − (ࣈ࢒࢛࢘ࢉߟ =   (38)  ,ࣈ଴߲௧௧ߩ
where now 

ߟ  = ଴ߩ ௉ܸଶ .  (39) ߟ being the non-free ߟ଴ since the phase velocity ௉ܸ is different from ܿ. From (38) and (39), one can obtain the 
generalized Maxwell equations as in Sec. 2.4.  
In that context, let us first consider the field created by an immobile ܲ(݉଴, ,݉)ܲ of a ࢀࢂ ଴). The expression for the velocityݍ  submitted to this field is given in (35) and the expression for the phase velocity ௉ܸ associated (ݍ
to it, is, Cf. Eq. (3.69) of Zareski (2015), 

  ௣ܸ = ்ߛܿ ⁄(்ܤణ்ߛ)  . (40) 
where  
்ܤ   ≡ ඥ1 − ଶ்ܿ݉ߛ) ⁄்ܧ )ଶ .  (41) 
In particular, for ݉ = 0, then ܤ = 1, and (35) and (40) are identical, that is, the velocity of the photon, i.e., of 
the group velocity is identical to the phase velocity, i.e., 

  ௉ܸ(݉ = 0) = ்ܸ (݉ = 0) = ்ߛܿ ⁄ణ்ߛ  . (42)  
Since here one considers that the ܲ(݉଴,  ଴) is immobile at O, it follows that at any point not situated at O, (38)ݍ
becomes  

൫࢒࢛࢘ࢉ−   ௉ܸଶࣈ࢒࢛࢘ࢉ൯ = ߲௧௧(43) . ࣈ  
where ௉ܸ is defined in (40) when ݉ ≠ 0 or in (42) when ݉ = 0. In the monochromatic case of pulsation ߱, 
(43) becomes  

ଶ(்ߛܿ)ሾ࢒࢛࢘ࢉ   ⁄ଶ(்ܤణ்ߛ) ሿࣈ࢒࢛࢘ࢉ = ߱ଶ(44) ,ࣈ  
in which, for the graviton, ݉ = 0, and ߙா = 0, and for the photon, ݉ = 0, and ீߙ = 0.  
We consider now the solutions of the equations of the ether changes (44) due to an immobile ܲ(݉଴,  ଴) in theݍ
two following cases: to ܲ(݉଴, ,݉)ܲ ଴) is submitted aݍ ,(ݍ ,0)ܲ ܽ ݎ݋ 0). To this purpose, let us consider the 
vector ࣈ for which the expression is  

ࣈ   =  ૙݁௜ம,  (45)ࣈ
where, when ݉ ≠ 0, ߶ is defined by  

   ߶ = ்ܧ) ℏ⁄ ݐ−)( + ׬ ݀ℓ ௉ܸ⁄ ), (46)  
or by  

  ߶ = ்ܧ) ℏ⁄ )ሾ−ݐ + ׬ ݀ℓ ܸ(݉ = 0)⁄ ሿ , (47)  
when ݉ = 0, and where ࣈ૙ is a vector depending only upon the spatial coordinates, Cf. Zareski (2012). 
In Zareski (2016), we have shown that ࣈ is the solution of Eq. (44) when the ܲ(݉, ,describes a circle around ܲ(݉଴ (ݍ  .଴), or a rectilinear trajectory directed toward itݍ
In Zareski (2013), and in Zareski (2015), Sec. IV. 2, we proved that, for sufficiently large ்ܧ, then ࣈ is the 
solution of Eq. (44) for any trajectory of the particle in the field created by a ܲ(݉଴,   .(଴ݍ
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The complete demonstration being laborious, one may suppose that ࣈ defined in (45) and (46) is very close to the 
exact solution of (44) and might be the exact solution.  
Now it appears that ࣈ, defined by (44) where one imposes (ܿீߛ)ଶ ⁄ଶ(ܤణீߛ)  instead of (்ܿߛ)ଶ ⁄ଶ(்ܤణ்ߛ) , by 
(45), and by (47), is a gravitational wave defined by  

ࣈ  = ݐ−ሼ݅߱ሾ݌ݔ଴݁ࣈ + ׬ ݀ℓߛణீܤ ⁄ீߛܿ ሿሽ . (48) 
If in order to fix the idea, one considers that the trajectory is rectilinear and passes by the immobile ܲ(݉଴,  ,(଴ݍ
then (48) becomes for large ݎ 

ࣈ   = ݌ݔ଴݁ࣈ ቈ݅߱ ቆ−ݐ + ଵ௖ ׬ ௗ௥ଵିమ೘బೖ೎మೝ ቇ቉ . (49) 

Now, for very large ݎ, then  

ࣈ   ≅ ݌ݔ଴݁ࣈ ቂ݅߱ ቀ−ݐ + ௥௖ቁቃ. (50)  

Equation (49) is a gravitation wave that for very very large ݎ becomes Eq. (50) which is of the same form as a 
free electromagnetic ether wave. From these equations (49) and (50), one deduces the equivalent Maxwell’s 
equations for gravitation as done in Zareski (2001). 
3.5 Ether Globule Associated to the Particle and Creation of the Schwarzschild Field  
3.5.1 Some General Recalls on the Ether Globule Associated to the Particle 
To fix the idea, let us consider a ܲ(ܯ, ܳ) of constant velocity ܯ)ࢂ, ܳ) directed along the x-axe, to which is 
associated the phase velocity ܯ)ࡼࢂ, ܳ) , Cf. Eq. (21) of Zareski (2013), or Eq. (3.43) of Zareski (2015). 
Considering our above development, to this ܲ(ܯ, ܳ) is associated a “single particle wave” ࣈ෠(Δ߱) for which the 
expression is, Cf. Eq. (17) of Zareski (2014),  

෠(Δ߱)ࣈ   = ݌ݔ଴݁ࣈ ቂ݅߱ ቀ−ݐ + ௫ࡼࢂ(ெ,ொ)ቁቃ ܥܰܫܵ ቂ୼ఠଶ ቀ−ݐ + ௫ࢂ(ெ,ொ)ቁቃ (51)  

where ܵ(ݕ)ܥܰܫ ≡ (ݕ݊݅ݏ) ⁄ݕ , and ࣈ૙  denotes a vector depending of only upon the spatial coordinates. This 
equation is another form of the following wave packet Cf. Eq. (18) of Zareski (2014),  

෠(Δ߱)ࣈ   = ׬ ݌ݔ଴݁ࣈ ቂ݅߸ ቀ−ݐ + ௫ࡼࢂ(ெ,ொ)ቁቃఠା୼ఠ ଶ⁄ఠି୼ఠ ଶ⁄ ݀߸. (52) 

Equation (51) shows that: ࣈ෠(߱߂) is a packet of waves, i.e., is a globule that moves with the velocity ܯ)ࢂ, ܳ). In this globule, 
the ether vibrates at the frequency ߥ = ߱ ⁄(ߨ2) , and a wave moves with the phase velocity ܯ)ࡼࢂ, ܳ). 

3.5.2 The Globule Associated to the Free Gravitons or Photons  
The photon and the graviton are ܲ(0,0), when they are free, (51) becomes  

࢚࢕ࢎ࢖ ࢘࢕ ࢜ࢇ࢘ࢍ෠(Δ߱)ࣈ   = ݌ݔ଴݁ࣈ ቂ݅߱ ቀ−ݐ + ௫ࢉቁቃ ܥܰܫܵ ቂ୼ఠଶ ቀ−ݐ + ௫௖ቁቃ  (53)  

This shows that the free graviton and the free photon move with the same velocity c which is also the phase velocity 
of the waves associated to them. 
3.5.3 Behaviour of the Immobile ܯ)ࡼ, ܳ) 
Let us consider what happens when the ܯ)ࡼ, ܳ) is immobile, that is when ܯ)ࢂ, ܳ) = 0. In this case ܯ)ࡼࢂ, ܳ) 
is infinite, ்ܧ = ݉଴ܿଶ, and Cf. Eq. (22) of Zareski (2014), and Eq. (3.43) of Zareski (2015), (51) becomes  

෠(Δ߱)൧ࣈ૙ൣ→(ெ,ொ)ࢂܕܑܔ  = ݌ݔ଴݁ࣈ ቀ−݅ ଶగ௛ ݉ܿଶݐቁ ܥܰܫܵ ቂ୼ఠଶ ቀ−ݐ + ௫଴ቁቃ .   (54)  

Now, since ܵܥܰܫ(∞) = 0 because ܵܥܰܫ ቂ୼ఠଶ ቀ−ݐ + ௫଴ቁቃ = 0, it follows that  

  limࢂ(ெ,ொ)→૙ൣࣈ෠(Δ߱)൧ = 0, (55) 

that is to say that when the globule ࣈ෠(Δ߱) becomes immobile, it loses its form and becomes a Schwarzschild 
field since an immobile particle creates such a field. 
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4. Relativistic Electromagnetism and Gravitation Equivalence for a ࢓)ࡼ, (ࢗ  in the Field Due to a ࢓)ࡼ૙,  ૙) of Given Motionࢗ
4.1 Approximation of the Lagrange-Einstein function of the ܲ(݉, ,Submitted to the Field Due to a ܲ(݉଴ (ݍ  (଴ݍ
of Given Motion 
Let ࢂ૙ denote the given velocity of a ܲ(݉଴, ,݉)ܲ ଴) that creates the field to which is submitted aݍ   and let ఓܹ denote the tensor defined by ,(ݍ

  ఓܹ ≡ ଴ܸ,ఓ ܿݎ) − ࢘ ∙ ⁄(૙ࢂ , (56) 
where the ଴ܸ,௝  are the covariant components of ࢂ૙  and ଴ܸ,ସ = ܿ  . Let ீܮ(ܸ ≪ ݎ ݀݊ܽ ܿ ≫ (ߙ  denote the 
approximation of the Lagrange-Einstein function ீܮ  of a ܲ(݉, (ݍ  submitted to the field created by this ܲ(݉଴,  From the consideration .்ߙ denotes a certain length such that, in the static case it is simply ߙ ଴) whereݍ
of Sec. V of Zareski (2014), or of Eq. (9.23) of Zareski (2015), and of Eqs.  
(9.1)-(9.11) of Zareski (2015) it follows that in this case, one has  

ܸ)ீܮ  ≪ ݎ ݀݊ܽ ܿ ≫ (ߙ = −݉ܿ√ܿଶ − ܸଶ + ௠௖ଶ ்ߙ ఓܹݔሶ ఓ ,  (57)  

where ்ߙ is defined in Sec. 3.2. One sees that when ࢂ૙ = 0 , then Eq. (57) becomes Eq. (25). 
Conclusion regarding Maxwell’s electrodynamics: Since, when ࢂ૙ = ૙ and when one imposes theoretically ݇ = 0 then Eq. (57) becomes Eq. (14) with ߙா instead of ߙ, it follows that (57) produces only an approximation 
of the exact motion equation of the ܲ(݉,  ૙. Itࢂ ଴ of velocityݍ submitted to the field created by the charge (ݍ
appears therefore that Maxwell’s electrodynamics theory is a non-relativistic approximation of the exact 
electrodynamics theory, and the Lienard-Wiechert potential ܣఓ defined by  

ఓܣ  = −ሾݍ଴ ⁄(଴ߝߨ4) ሿ ఓܹ . (59)  
yields only an approximation of the motion equation.  
Conclusion regarding classical gravitation: Since, when ࢂ૙ = ૙, and ݍ = 0, Eq. (57) becomes Eq. (14) which 
is an approximation of Eq. (3), it follows that (57) can produce only an approximation of the exact motion equation 
of the ܲ(݉,  ૙. This confirms as we know thatࢂ submitted to the field created by the mass ݉଴ of velocity (ݍ
classical gravitation is an approximation of the relativistic gravitation, i.e., the gravitational Lienard-Wiechert 
potential ܩఓ defined by  

ఓܩ   ≡ ݉଴݇ ఓܹ, (60) 
yields only an approximation of the motion equation. One recalls that ܩఓ is a gravitational Lienard-Wiechert 
potential tensor seen at an observation point ࡾ௢௕ due to the particle of mass ݉଴ that moves with the velocity ࢂ૙, and r is the distance between the position of ݉଴ at the time t’ where the signal was emitted and reaches the 
point ࡾ௢௕  at the time t such that (ݐ − ܿ(′ݐ = ݎ . It follows that the Lagrange-Einstein function ீீܮ(ܸ ݎ ݀݊ܽ ܿ≫ ≫ ଴ݍݍ is obtained from (57) by inserting (ߙ = 0.  

One sees the similarity of the effects of the ether perturbations on the ܲ(݉, (ݍ  of velocity ܸ ݎ ݀݊ܽ ܿ≫ ≫  ଴ , that is to say, the similarity of the electromagnetic Lienard-Wiechert potential tensor (59) with theࢂ ૙ or due to the massive particle ݉଴ of sameࢂ ଴ of velocityݍ due to the electric charge ,ߙ
gravitational tensor (60). But, Maxwell’s equations do not take into account Einstein’s General 
Relativity. That is to say that these equations are only an approximation for ܸ ≪ ݎ ݀݊ܽ ܿ ≫  of the ߙ
exact electromagnetism equations that takes into account general relativity.  

4.2 Analogy of the Known Approximated Gravitation Tensor due to a ࢓)ࡼ૙, ૙)  of Given Motion with the 
Electromagnetic Tensor due to an Electric Charge of Same Motion  
Let ݃ఓఔ be the gravitational field created by ܲ(݉଴, ,݉)ܲ ૙ to which is submitted aࢂ of given velocity (݋ 0) of 
velocity ࢂ. What we know about these components ݃ఓఔ is that: from Eqs. (7) and (60), one deduces that, far 
from the source that creates the field ݃ఓఔ, and for not large velocity of ܲ(݉,  in front of ܿ, we know the (ݍ
approximate values of the ݃ఓସ  denoted specifically by ݃ఓସ(ܸ ≪ ݎ ݀݊ܽ ܿ ≫  ,for which the expression is (ߙ
considering (60),  

 ݃ସఓ(ܸ ≪ ݎ ݀݊ܽ ܿ ≫ (ߙ = ସఓߜ − ൫ߜସఓ + 1൯݉଴݇ ఓܹ ܿଶ⁄  (61)  
where ߜఔఓ is the Kronecker delta. 
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Indeed, Cf. Zareski (2014) & Zareski (2015), when a ܲ(݉, 0) is submitted to a gravitational field ݃ఓఔ , we 
consider ீܮ defined by (1) and (2), now ݃ఓఔݔሶ ఓݔሶ ఔ can be written  

  ݃ఓఔݔሶ ఓݔሶ ఔ = ݃ఓఓݔሶ ఓݔሶ ఓ + 2݃ସ௝ݔሶ ସݔሶ ௝ + 2Δ௜ஷ௝,  (62)  
where Δ௜ஷ௝ is defined by  

  Δ௜ஷ௝ ≡ ଵ݃ଶݔሶ ଵݔሶ ଶ + ଵ݃ଷݔሶ ଵݔሶ ଷ + ݃ଶଷݔሶ ଶݔሶ ଷ (63) 
and ݃ఓఓ, as following  

  ݃ఓఓ = ݃଴,ఓఓ +  ఓఓ,  (64)݃ߜ
 
where ݃଴,ఓఓ denotes the free value of ݃ఓఓ. With these notations (62) can be written: 

 
  ݃ఓఔݔሶ ఓݔሶ ఔ = ܿଶ − ܸଶ + ሶݔఓఓ݃ߜ ఓݔሶ ఓ + 2݃ସ௝ݔሶ ସݔሶ ௝ + 2Δ௜ஷ௝  (65)  
and (1) as following  

ீܮ   = −݉ܿ√ܿଶ − ܸଶ − ݉ܿ ൫ఋ௚ഋഋ௫ሶ ഋ௫ሶ ഋାଶ௚రೕ௫ሶ ర௫ሶ ೕାଶ୼೔ಯೕ൯ଶඥ௖మି௏మ + ⋯ (66)  

We now define the NA, ீܮ,ே஺ of ீܮ, considering (66), one sees that  

ே஺,ீܮ   = −݉ܿ√ܿଶ − ܸଶ + ሶݔఓܩ݉ ఓ/ܿ  (67)  
where ܩఓ is the tensor defined by  

ସܩ  ≅ −ܿଶ ସସ݃ߜ 2⁄ ௝ܩ  , ≅ −ܿଶ݃ସ௝. (68) 
That is to say where (61)is verified. 
Now, one sees that ܩఓ and ܣఓ differ only by a constant multiplicative coefficient, furthermore considering (57) 
one see that that these two coefficients are added therefore a more general form of ݃ସఓ(ܸ ≪ ݎ ݀݊ܽ ܿ ≫  that (ߙ
takes into account gravitation and electromagnetism, will be denoted ℶସఓ(ܸ ≪ ݎ ݀݊ܽ ܿ ≫  for which the ,(ߙ
expression is 

  ℶସఓ(ܸ ≪ ݎ ݀݊ܽ ܿ ≫ (ߙ = ସఓߜ − ൫ߜସఓ + 1൯்ߙ ఓܹ 2⁄  . (69)  
Now since in absence of electromagnetism the ݃ସఓ(ܸ ≪ ݎ ݀݊ܽ ܿ ≫  are the approximation of ݃ସఓ, it follows (ߙ
that the ℶସఓ(ܸ ≪ ݎ ݀݊ܽ ܿ ≫  are the approximations of the exact components ℶସఓ of the field ℶఔఓ which is (ߙ
the exact solution of Einstein’s general relativity equations, and since the ℶସఓ(ܸ ≪ ݎ ݀݊ܽ ܿ ≫  differ from the (ߙ
components ݃ఓସ(ܸ ≪ ݎ ݀݊ܽ ܿ ≫ (ߙ  only by a constant coefficient, i.e., by the fact that ݉଴݇ ܿଶ⁄  becomes ்ߙ 2⁄ , it follows one can determine a tensor of components ℶఔఓ such that these components will differ from the 
components ݃ఓఔ only by the fact that ݉଴݇ ܿଶ⁄  will becomes ்ߙ 2⁄ ; therefore this tensor ℶఔఓ is a solution of 
Einstein’s general relativity equations. 
5. Conclusion  
It appears that Maxwell’s electromagnetism can be generalized as to be a case of the General Relativity, that is, 
the exact Lagrange-Einstein function of an electric charge ݍ submitted to the field due an immobile charge ݍ଴ 
and its motion equation are the same as those of a particle of mass ݉ submitted to only the field created by an 
immobile particle of mass ݉଴. In particular, it appears that an immobile ݍ଴ creates also an electromagnetic 
horizon that behaves like a Schwarzschild horizon on which the velocity is null. Then that it exists ether 
gravitational waves constituted by gravitons in the same way as electromagnetic waves are constituted by photons.  
Then we arrive to the conclusion that, since in the approximation ܸ ≪  ఓ differs by only a constantܩ ఓ andܣ  ,ܿ
multiplicative coefficient and since as we show, ܩఓ produces then the approximation of ݃ఓସ, it follows that ܣఓ ఓܩ+  produces the approximation for ܸ ≪ ܿ  of ℶఓସ  , where the ℶఓఔ  are the components of a tensor that 
generalizes Einstein’s fundamental tensor ݃ఓఔ by taking into account the contribution of the electrical charge ݍ଴ 
whether it moves or not.  
Acknowledgements 
I thank Professor Lawrence Horwitz from Tel Aviv University for his advice and encouragement.  
References  
Dirac, P. A. M. (1975). General Theory of Relativity. John Wiley & Sons, Inc. 



apr.ccsenet.org Applied Physics Research Vol. 9, No. 3; 2017 

30 

Einstein, A. (1916). The Foundation of the General Theory of Relativity. Annalen der Physik, 49, 1916. reprinted 
in Lorentz, Einstein, Minkowski & Weyl, here below precised , VII, pp. 109-164. 

Einstein, A. (1920). Ether and the theory of relativity: The collected papers of Albert Einstein. Berlin: Springer. 
Lorentz, H. A., Einstein, A., Minkowski, H., & Weyl, H. (1923). The Principle of Relativity: A Collection or 

Original Memoirs on the Special and General Theory of Relativity. Dover. 
Maxwell, J. C. (1954). A Treatise on Electricity and Magnetism. New-York: Dover. 
Zareski, D. (2001). The elastic interpretation of electrodynamics. Foundations of Physics Letters, 14(5), 447-469.  
Zareski, D. (2012). On the elasto-undulatory interpretation of fields and particles. Physics Essays, 25(2). 
Zareski, D. (2013). Fields and wave-particle reciprocity as changes in an elastic medium: The ether. Physics Essays, 

26(2), 288-295. 
Zareski, D. (2014). The ether theory as implying that electromagnetism is the Newtonian approximation of general 

relativity. Physics Essays, 27(4), 517-522. 
Zareski, D. (2015). Unification of Physics by the Ether Elasticity Theory. LAP LAMBERT Academic Publshing,         

102 pages.   
Zareski, D. (2016). On particle waves solutions of the equation of the ether. Journal of Advances in Physics (JAP), 

9(2). 
 
Copyrights 
Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 
license (http://creativecommons.org/licenses/by/4.0/). 



Applied Physics Research; Vol. 9, No. 3; 2017 
ISSN 1916-9639   E-ISSN 1916-9647 

Published by Canadian Center of Science and Education 

31 

An Elucidation of the Symmetry of Length Contraction Predicted by 
the Special Theory of Relativity 

Koshun Suto1 
1 Chudaiji Buddhist Temple, Isesaki, Japan 
Correspondence: Koshun Suto, Chudaiji Buddhist Temple, Isesaki, Japan. Tel: 81-270-23-9980. E-mail: 
koshun_suto129@mbr.nifty.com 
 
Received: April 17, 2017 Accepted: April 28, 2017 Online Published: May 31, 2017 
doi:10.5539/apr.v9n3p31               URL: https://doi.org/10.5539/apr.v9n3p31 
 
Abstract 
In this paper, consider a rod A (inertial frame A) and rod B (inertial frame B) moving at constant velocity relative 
to each other. Assume that the lengths of two rods are equal when they are stationary. According to the STR, when 
length in the direction of motion of rod B, moving at constant velocity, is measured from inertial frame A, the rod 
contracts in the direction of motion. Also, the time which elapses on clock in inertial frame B is delayed compared 
to the time which elapses on clock in inertial frame A. If, conversely, inertial frame A is measured from inertial 
frame B, rod A contracts in the direction of motion, and the time which elapses on clock is delayed. However, 
according to classical common sense, if rod B contracts when measured from inertial frame A, then rod A measured 
from rod B must be longer than rod B. Thus, this paper discusses the symmetry of rod contraction, and elucidates 
this problem. It is found, based on the discussion in this paper, that the contraction of a rod includes true physical 
contraction, and relativistic contraction obtained due to measurement using the method indicated by Einstein. 
However, in the STR, any two inertial frames are equivalent, and therefore is not possible to accept points such as 
the fact that reasons for contraction are different. This paper concludes that STR is not a theory which describes 
the objective state of reality. 
Keywords: Special Theory of Relativity, Classical Stationary System, Classical Moving System, Relativistic 
Stationary System, Length Contraction, Velocity Vector  
1. Introduction 
In the era of classical physics, as exemplified by Newtonian mechanics, it was thought that physical laws exist 
independently of the existence of human beings. The role of physics was to discover physical laws, and describe 
them in the language of mathematics.  
Now, consider a rod A (inertial frame A) and rod B (inertial frame B) moving at constant velocity relative to each 
other. Assume that the lengths of two rods are equal when they are stationary.  
According to the STR, when length in the direction of motion of rod B, moving at constant velocity, is measured 
from inertial frame A, the rod contracts in the direction of motion. Also, the time which elapses on clock B in 
inertial frame B is delayed compared to the time which elapses on clock A in inertial frame A. 
If, conversely, inertial frame A is measured from inertial frame B, rod A contracts in the direction of motion, and 
the time which elapses on clock A is delayed.  
According to Einstein’s “principle of relativity,” the two inertial frames are equivalent, and thus the same results 
are obtained no matter which inertial frame measurement is carried out from. The essence of STR is the symmetry 
of the theory.  
However, according to classical common sense, if rod B contracts when measured from inertial frame A, then rod 
A measured from rod B must be longer than rod B. 
The author has already discussed the symmetry of time delay in another paper (Suto, 2016-2017): The symmetry 
of length contraction is derived quantitatively from the formula for Lorentz transformations. However, the STR 
does not explain the reason why the rod contracts. Thus, this paper discusses the symmetry of rod contraction, and 
elucidates this problem.  
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Sections 2 to 5 are preparatory stages for section 6. Section 2 discusses the “principle of constancy of light speed” 
adopted by Einstein. Section 3 explains the method of discriminating between a “classical stationary system” and 
“classical moving system.” Sections 4 and 5 discuss the contraction which can be predicted from a classical 
perspective. Here, the term “classical” is used when discussing objective reality which exists regardless of the 
observer. Section 6 employs the method of clock synchronization proposed by Einstein. It also elucidates the 
symmetry of rod contraction by applying the principle of relativity.  
2. The “Principle of Constancy of Light Speed E” Introduced by Einstein 
When Einstein developed the STR, he assumed the “principle of relativity” and the “principle of constancy of light 
speed.” The latter includes the following two principles. 

“Any ray of light moves in the “stationary” system of coordinates with the determined velocity c, whether the 
ray be emitted by a stationary or by a moving body.” (Einstein, 1923):  

“Let a ray of light start at the “A time” At  
from A towards B, let it at the “B time” Bt be reflected at B in the 

direction of A, and arrive again at A at the “A time” At′ . 
In agreement with experience we further assume the quantity 

A A

2AB ,c
t t

=
′ −

 

to be a universal constant ― the velocity of light in empty space.” (Einstein, 1923):  

 
In this paper, we distinguish between the former principle as the “principle of constancy of light speed I” and the 
latter principle as the “principle of constancy of light speed II.” The “principle of constancy of light speed I” asserts 
that the light speed in vacuum does not depend on the speed of the light source. The “principle of constancy of 
light speed II” asserts that the light speed calculated from the round-trip travel time is constant. 
Let there be a given stationary rigid rod of length L as measured by a ruler which is stationary, and assume that 
the rod is placed along the positive direction of the stationary system’s x-axis.  
Assume that clocks A and B of the same type are set up at points A and B on the rear and front end of this rod. 
Here clock A will be abbreviated as CA, and clock B as CB. 
Suppose a ray of light is emitted in the direction of B from A at time At of CA, reaches and is reflected at B at time 

Bt of CB, and then returns to A at time At ′ of CA. Einstein determined that if the following relationships hold 
between these times, then the two clocks represent the same time by definition (Einstein, 1923):  

 B A A B.t t t t′− = −   (1) 

 ( )A A B
1 .
2

t t t′+ =   (2) 

If the relationship in Equation (1) does not hold for the times of CA and CB, then it is necessary to adjust the time 
of CB so that the relationship in (1) holds. (Actually, either clock can be adjusted.) 
Next, assume that the stationary rod has been accelerated, and has attained the constant velocity v (see Figure 1).  
 

 
Figure 1. A rod is moving at constant velocity v relative to stationary system. Clock A and B are set up at A and 
B at each end of this rod, and the times of each of these clocks are synchronized while the system is stationary 
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Then the time CB must be adjusted again so that the relationship in Equation (1) holds between the times CA and 
CB. Due to this operation, the light speed on the outward and return paths measured in the moving system of the 
rod is measured as c on both paths. 
Considered classically, an inertial frame in which light propagates isotropically is a stationary system, and an 
inertial frame in which light propagates anisotropically is a moving system. 
However, if clock time is adjusted according to the requirements of Einstein, light propagates isotropically at the 
same speed in all inertial frames. (Relativistic isotropic propagation). 
Also, all inertial frames become stationary systems in the sense of the theory of relativity. 
In this paper, the principle introduced by Einstein is called the "principle of constancy of light speed E." (where 
"E" stands for Einstein.) That is, 
Principle of constancy of light speed E: In all inertial frames, light speed of the outward path and return path is 
constant (c). 
This principle is not a universal principle, but a personal principle introduced by Einstein. To maintain this 
principle, the observer in a stationary system must adjust the time on a clock each time the velocity of a moving 
system changes. If the observer neglects this task, the principle of constancy of light speed E is no longer a principle. 
3. Classical Length Contraction Derived by Applying Principle of Constancy of Light Speed I and II 
Let us imagine that times At , Bt , At ′ of this moving system corresponds to times At′ , Bt′ , At ′′ of the stationary system.  
Now when the time required for the light signal emitted from point A at the rear of the rod to travel from point A 
to point B is measured with the clock in moving system, it is B A( ).t t−  Also, if this time is measured with the 
clock in the stationary system, it is expressed as ( )B A .t t′ ′−  
According to the STR, the rod seen from stationary system contracts by 1 / γ times in the direction of motion. Also, 
the observer in stationary system applies the "principle of constancy of light speed I" to the propagation of light 
emitted from moving system, and thus B A( )t t′ ′− is given by the following equation. 

 
( )B A (s),Lt t
c v

′ ′− =
−γ

   ( ) 1/ 22 21 / .v c
−

= −γ    (3) 

Also, the time A B( )t t′′ ′− required for the light signal to return from point B to point A is given by the following 
equation.  

 
( )A' B (s).Lt t
c v

′ ′− =
+γ

   (4) 

However, the denominator on the right side of Equations (3) and (4) does not signify that the light speed changes. 
According to the STR, the relationship of ( )B At t− and ( )B At t′ ′− is: 

 B A B A
1 ( ).t t t t′ ′− = −
γ

  (5) 

Here, if the right side of Equation (3) is substituted for ( )B At t′ ′−  in Equation (5), 

  B A 2

( )  (s).L c vt t
c
+− =    (6) 

Similarly, if the time A' B( )t t− which passes on the clock in moving system while the light signal returns from point 
B to point A is, 

 A' B 2

( )  (s).L c vt t
c
−− =    (7) 

If we set A 0t =  to simplify the equation, A't becomes the time which passes in moving system while the light 
signal makes a round trip between A and B. Thus, the observer in moving system determines that the time of CB 
when the light has arrived at B is A' / 2.t This time can be found from Equations (6) and (7). That is, 

 ( ) ( )A' B A A B
1 1  
2 2

t t t t t′=  − + −    (8a) 

 (s).L
c

=  (8b) 
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However, since 2( ) / /L c v c L c+ > , the time on CB must be later than the time on CA to resolve this discrepancy. 
If this adjustment time is taken to be tΔ , 

( )B A A'
1  
2

t t t tΔ = − −
 

 (9a)
 

  2 (s).Lv
c

=
 

 (9b) 

If the time of CB is delayed by 2/ (s)Lv c , then a state is achieved where the times of CA and CB can be said to be 
simultaneous in moving system.  
At the time 2/ (s)t Lv cΔ = , it can be determined that the coordinate system where the rod was initially stationary 
was the coordinate system where light propagates isotropically. 
In this paper, this coordinate system is defined as the classical stationary system clS . The cl subscript of clS is 
taken to mean a classical inertial frame. Two clocks whose times have been synchronized in clS  match in an 
absolute sense. 
On the other hand, at the time 2/ (s)t Lv cΔ ≠ , it can be determined that the coordinate system where the rod was 
initially stationary was the coordinate system where light propagates anisotropically (Suto, 2010):  
In this coordinate system, the principle of constancy of light speed II holds, but the principle of constancy of light 
speed E does not hold. In this paper, this coordinate system is defined as the classical moving system clS ′ .The cause 
of anisotropic propagation of light in clS ′ is the velocity vector attached to this coordinate system (Suto, 2015): 
The author has previously presented a thought experiment for discriminating between clS  and clS ′ . However, 
Einstein believed it was impossible to discriminate these inertial frames through experiment. Also, Einstein 
proposed that the time on two clocks in an inertial frame be adjusted so that the relationship in Equation (1) holds. 
As a result, the speed of light became c for both the outward path and return path, even in clS ′ . Also, all inertial 
frames became equivalent in the sense of the theory of relativity (a stationary system reS  in the sense of the theory 
of relativity). The following summarizes the above: 

      Classical physics             Special theory of relativity 

cl
re

cl

Classical  stationary system  
  Relativistic stationary system 

Classical moving system   
S

S
S

 
→ ′ 

 

Now, how should we imagine clS ? In the latter half of the 19th century, it was thought that a medium was needed 
for light to propagate as a wave. The physicists at the time called this medium the “aether.” However, Einstein 
eliminated the aether from the STR, and thus discussion of the existence of this hypothetical substance gradually 
disappeared. However, if the principle of constancy of light speed I holds, then there needs to be a medium for 
transmitting light as a wave. Thus, this paper looks at the pairs of virtual particles and antiparticles which constitute 
the vacuum. The countless relative velocities between the clS  coordinate system and the countless virtual particle 
pairs in the vicinity are indicated as vectors, and then composed. If the size of the vector becomes zero at this time, 
then the coordinate system is clS  where light propagates isotropically. On the other hand, if the composed vector 
has magnitude, then the coordinate system is clS ′  where light propagates anisotropically. 
4. Length Contraction and Time Delay Explainable using Classical Considerations  
Consider a laboratory whose interior floor is a square. The Michelson interferometer is placed in this laboratory 
(see Figure 2). At the center of the room, there is a glass plate (beam splitter) P with a semi-transparent metal 
coating on its front face. The angle between this glass plate and the x-axis is 45°. Light emitted from the light 
source S strikes this glass at an angle, and the light is split in two. One beam passes through the plate, strikes a 
mirror Mx, is reflected, and retraces its path to the splitting point P. On the second light path, the beam is reflected 
by the glass plate P, arrives at mirror My, is reflected there, and returns to the splitting point P. (Only the essential 
parts of the experimental instrument are shown here. Equipment not needed for the discussion in this paper has 
been omitted.) 
This laboratory is moving at constant velocity v along the x-axis of clS . The light path length PMx measured 
indoors is taken to be Lx and the path length PMy is taken to be Ly. (However, in measurements in the laboratory,

xL  and yL are equal.) In addition, the light path length when xL  is measured from clS  is taken to be xL′ , and 
the light path length when yL  is measured from clS  is taken to be yL′ . (However, yL and yL′ are equal.) 
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Figure 2. This figure shows the view from above of a laboratory moving at constant velocity with respect to clS  
 
Here, the time required for light to make a round trip over PMx is measured from clS . If this round trip time is 
taken to be xt′ , then the observer in clS  applies the principle of constancy of light speed I to this light propagation, 
and thus: 

 ( )2 2 2 2

2 2+ .
1 /

x x x x
x

L L L c Lt
c v c v c v c v c

′ ′ ′ ′′ = = =
− + − −

  (10) 

Next, the time for light to make a round trip over PMy is measured. If this round trip time is measured in clS  and 
taken to be yt′ , then: 

   
( )1/ 22 2

2
.

1 /
y

y

L
t

c v c

′
′ =

−
    (11) 

The method of deriving Equation (11) is explained in many textbooks so here it is omitted (Feynman, 1963; French, 
1968): 
Incidentally, the predicted effect could not be detected from the Michelson-Morley experiment. This means that 

xt′  and yt′  are equal. In the end, the following relationship can be derived from Equations (10) and (11). 

 .y
x

L
L

′
′ =

γ
  (12) 

Here, yL′  and xL  are equal, so Equation (12) can be written as follows.  

    .x
x

LL′ =
γ

  (13) 

When measured from clS , the laboratory contracts by 1 / γ  times in the direction of motion. This contraction is 
physical contraction due to the fact that some force has acted on the laboratory, and this can be regarded as true 
contraction (contraction I).  
Incidentally, an observer in the coordinate system clS ′  of the laboratory applies the principle of constancy of light 
speed II to this light propagation, and thus the round trip times of light xt  and yt  are predicted as follows: 

  2 .x
x

Lt
c

=  (14) 

   
2

.y
y

L
t

c
=   (15) 

In the end, yt′  elapses in clS  while yt  elapses in cl.S ′  In addition, y yL L′=  and thus Equation (11) can be 
written as follows: 

  
2

.y
y

L
t

c
′ =

γ
 (16) 
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Next, if this is compared with Equations (15) and (16): 
 .y yt t′ = γ   (17) 
When observed from cl ,S the time which elapses in clS ′  is delayed compared to the time which elapses in cl.S
Actually, this prediction has been verified by experiments where the life of elementary particles is extended. In 
the end, space contraction and time delay in clS ′  can be predicted if the principles of constancy of light speed I 
and II are assumed.  
5. Rod Contraction which can and cannot be Classically Explained  
In this section, the lengths of rod A (inertial frame A) and B (inertial frame B) moving at constant velocity relative 
to each other are measured using two types of methods. 
1) Two methods for an observer in inertial frame A ( clS ) to measure the length of rod B moving at constant velocity  
Measurement 1.  In this case, observer A1 is at the rear end and observer A2 is at the front end of rod A of length 
L placed on the x-axis of cl.S  Also, at an arbitrary time, a light signal is emitted from a point light source S placed 
in the center of rod A. That light signal propagates isotropically from S, and arrives at both ends of the rod with 
absolute simultaneity. At this time, observers A1 and A2 read off the position of both ends of rod A from the Bx′
coordinates. (This Bx′ -axis is parallel to the x-axis.) 
Since rod B contracts by 1 / γ times in the direction of motion, the length of rod A read off from the Bx′ -axis 
becomes γL if we refer to Equation (15). From this, 

 Length of rod A : Length of rod B,   1: 1: ,L L →γ
γ

  1.>γ  (18) 

Here, if the length of rod B measured from clS  is taken to be L′ , then Equation (18) can be written as follows;  

  .LL′ =
γ

    (19) 

Contraction in this case is a result of the fact that some physical force acted on rod B, and this can be called true 
contraction (contraction I). 
Measurement 2. First we consider rod B moving at constant velocity v along the x-axis of cl.S (Length when the 
rod is at rest is L.) When the front end of the rod passes in front of observer A in clS , observer A starts the 
stopwatch, and measures the time At until the rear end of the rod passes. According to the STR, the rod B contracts 
by 1 / γ times in the direction of motion at this time. That is,  

 A .LL vt′ = =
γ

 (20) 

The results obtained from measurement 1 and 2 verify the contraction in Equation (13).  
2) Two methods for an observer in inertial frame B ( clS ′ ) to measure the length of rod A.  
Measurement 3a. In this case, contrary to measurement 1, observers at both ends of rod B compare the length of 
rod B and A with absolute simultaneity. The clocks are used at both ends of rod B have been synchronized when 
the rod was at rest in clS . If Equation (19) is taken into account, the length of rod B read off from the x coordinates 
by observers at both ends of rod B is shorter than rod A. That is, 

 Length of rod B : Length of rod A,  : 1: .L L → γ
γ

 (21) 

Considered classically, if rod B contracts, then rod A is longer than rod B. 
Measurement 4a. This case is the inverse of measurement method 2. Observer on rod B measures the length of rod 
A of length L placed on the x-axis of clS . If observer measures the time required to pass both ends of rod A, and 
this is taken to be Bt , then classically Bt is, 

   B .Lt
v

=  (22) 

However, the time which passes in the coordinate system of rod B is delayed compared to the time which passes 
in cl.S Therefore, the time Bt which passes in clS ′  becomes 1 / γ times Equation (22). That is,   
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 B .Lt
v

=
γ

  (23)  

Incidentally, it is impossible for rod A to contract because rod B began to move at constant velocity. Thus, the 
observer of rod B determines that time elapsing in his own coordinate system is delayed, and he does not regard 
rod A as having contracted. In classical measurement, contraction of rod A cannot be observed.  
6. Contraction of Rod Interpreted by Borrowing Einstein’s Measurement Method 
The measurement in this section employs the following operation and principle used when developing the STR. 
1) Times on the clocks at both ends of rod B moving at constant velocity are synchronized so that the relationship 
in Equation (1) holds. 
2) The principle of relativity is applied to the coordinate system of rod B. 
Measurement 3b. Next, the moving observer B uses the same method as measurement method 1, and reads off the 
position of both ends of rod B from the x coordinate in cl.S  Observer B1 is at the rear end and observer B2 is at the 
front end of the moving rod B. 
At an arbitrary time, a light signal is emitted from SB in the center of rod B. An observer in clS applies the principle 
of constancy of light speed I to this light propagation. When the light signal emitted from SB has arrived at both 
ends of the rod, observers B1 and B2 read off the x coordinates in cl.S  
Then the two observers of rod B compare the length of the x coordinate they themselves read off, and the length 
of the stationary rod A. 
Now, the observer in clS measures time until the light signals emitted from SB arrives at the observers B2 and B1 
at both ends of the rod. If these times are taken to be 2t′  and 1,t′ then since the distance from SB to the rod end is 
rod L/2,  

  1 .
2 ( )

Lt
c v

′ =
+γ

 (24) 

 2 .
2 ( )

Lt
c v

′ =
−γ

  (25) 

Incidentally, the observer in clS determines the following values for the distance traveled by the light signal until 
it reaches both ends of the rod.  
Travel distance x−  in the negative direction of the x-axis 

    1 .
2 ( )

Lcct
c

x
v− ′ =

+
=

γ
 (26) 

Travel distance x+  in the positive direction of the x-axis 

    2 .
2 ( )

Lcct
c

x
v+ ′ =

−
=

γ
  (27) 

The observers at both ends of rod B obtain the following values as the length of the rod read off from the x-axis of 
the stationary system, based on Equations (26) and (27). 
  ,L x x L+ −′ = + = γ   .L L′<  (28) 
Contrary to Equation (21), the length of rod B in this case is longer than rod A. That is,  

     Length of rod B : Length of rod A,  : :1.L L →γ γ   (29) 
Incidentally, if the principle of relativity is applied to the coordinate system of rod B, the length of A must match 
Equation (19).  
Thus, the observers on rod B make the following judgment based on Equation (28).  

 1: 1: .L Lγ
γ

→   (30) 

When the length of rod A is measured from the coordinate system of rod B, rod A is contracted by 1 / γ  times in 
the direction of motion (contraction II).  
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Measurement 4b. An observer of rod B who has applied the principle of relativity believes that his own coordinate 
system is a stationary system. Therefore, Equation (23) is explained using the contraction of rod A rather than a 
delay in the time of clS ′  (contraction III). If it is assumed that the principle of relativity holds in clS ′ , then the 
results of measurement 3b and 4b match the values of measurement 1 and 2.  
7. Discussion 
In section 4, an observer in clS  applied the principle of constancy of light speed I, and an observer in clS ′  applied 
the principle of constancy of light speed II, to propagation of light emitted from a light source in cl.S ′  At this time, 
the length of the laboratory measured by the observer in clS  contracted in the direction of motion. This 
contraction is physical contraction which occurred as a result of some force having acted on the moving laboratory, 
and is true contraction (contraction I). 
Next, in measurement 3a, clocks synchronized in clS  were used as the two clocks in clS ′  used for measurement. 
Therefore, the times of the two clocks matched absolutely. The observer in clS ′  determined the rod B to be shorter 
than rod A (Equation (21)). 
Thus, the method of clock synchronization proposed by Einstein was used in this paper. As a result, in 
measurement 3b, rod B was determined to be longer than rod A (Equation (29)). 
However, even this is unacceptable, and therefore in this case the principle of relativity was applied to this 
coordinate system. According to the principle of relativity, any two inertial frames are equivalent, and thus 
measured values must match. In measurement 3b, the ratio of the lengths of rod B and rod A was interpreted as 
1:1 / γ (contraction II). However, actually it is not the case that rod A has physically contracted. This is relativistic 
contraction which occurs when measurement is done using the method indicated by Einstein. 
The delay in time which elapses in the coordinate system of rod B was observed in measurement 4a, but it was not 
determined that rod A contracted based on Equation (23). However, in measurement 4b the principle of relativity 
was applied to inertial frame B, and therefore, observer B believed his own coordinate system to be a stationary 
system. With regard to the fact that Equation (23) was obtained, it was determined to be the result of rod A having 
contracted. This contraction is tentative contraction (contraction III) observed because the passage of time in 
inertial frame B was delayed. With this, the values for measurements 1 to 4 all match.  
Now, how is this problem handled in the STR? The STR assumes the principle of relativity. If contraction of rod 
B is observed in measurement 1 and 2, then by definition contraction of rod A is also observed in measurement 3b 
and 4b. If physics is a science which pursues the nature of reality as it is, then contraction II and contraction III 
cannot be accepted. In the end, the STR should be regarded not as something which describes physical law existing 
in the natural world, but as a mathematical expression of the universe as imagined by Einstein. The velocity vectors 
present in the natural world are missing from the STR.  
8. Conclusion 
Through the discussion in this paper, it was determined that there are the following three types of contraction of a 
rod moving at constant velocity.   
Contraction I (physical contraction): This is the contraction obtained from measurements 1 and 2, and it is true 
contraction due to fact that some physical force has acted on rod B which is moving at constant velocity. It was 
possible to explain this contraction with the classical discussion in section 5. 
Contraction II (relativistic contraction): Reasons why contraction of rod A was observed in measurement 3b: 
1) True contraction of rod B which is moving at constant velocity (contraction I) 
2) Times of the clocks at both ends of rod B were adjusted to achieve simultaneity in the sense of the theory of 
relativity.  
3) The principle of relativity was applied to inertial frame B. 
It was possible to predict Equation (29) from 1) and 2). In addition, by applying the principle of relativity, it was 
possible to interpret Equation (29) like Equation (30), and explain the contraction of rod A.  
Contraction III (relativistic contraction): The principle of relativity was applied to inertial frame B in measurement 
4b. Therefore, with regard to the fact that Equation (23) was obtained, it was determined to be the result of rod A 
having contracted.  
In measurement 1 and 3b, there was contraction I and II so results matching the predictions of the STR were 
obtained. Also, in measurement 2 and 4b, contraction I and III are the reason why symmetry of length contraction 
was observed.  
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In the end, the fact that symmetry of rod contraction, which is classically impossible, could be explained in this 
paper is due to the following three reasons.  
1) The inertial frame A was assumed to be a classical stationary system. 
2) An operational definition of simultaneity was used in measurement 3b. 
3) In measurement 3b and measurement 4b, the principle of relativity was applied to inertial frame B. 
As a result, relativistic contraction II and III occurred, and the measurement results in measurement 3b and 
measurement 4b matched the results of measurement 1 and measurement 2.  
The STR is an astonishing theory in which rod A, undergoing no change in itself, is forced to contract. This paper 
concludes that there should be serious discussion of whether or not the STR can really be called a physical theory.  
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Abstract 
In the history of physics trigonometric functions played several times a very critical role at crossroads. This time 
we are at a crossroads with the interpretation of correlation events of entangled particles. In this approach we 
propose to describe the experimental data of Alice and Bob using not so known trigonometric functions. Claudius 
Theorem (based on the trigonometric family of Sagitta and Cosagitta) evalutes the probabilistic occurrence of 
correlated and anticorrelated events. David Theorem (based on the trigonometric family of Hacoversine) describes 
the probability of the following identical events and gaps between the following identical events. In this 
trigonometric concept the Team of Alice, Bob, Claudius and David formulated a camouflage legend for Eve – 
“spooky action at a distance”. Merlin (with unbounded computational ability) should verify the truth of this 
statement. Trent (a trusted arbitrator, who acts as a neutral third party) should analyze these data and this 
trigonometric concept. Victor (a verifier) should make his decision which way we should continue in our future 
research: either through the Niels Bohr avenue or through the Albert Einstein sidewalk. 
Keywords: Trigonometric functions at a crossroads, Sagitta, Cosagitta, Hacoversine, a camouflage legend.  
1. Introduction 
The application of trigonometric functions played several times in the history of physics a very critical role. The 
analysis of experimental data with a chosen trigonometric function and its known precise value at that time 
determined the model explaining those phenomena.  
E.g., Claudius Ptolemy described the experimental data of planet motions using the trigonometric function chord 
(at his time the only trigonometric function developed earlier by Hipparchus). During the following 1400 years 
trigonometric functions were intensively studied by Old Masters - the historical overview of the development of 
trigonometry can be found in the works of Von Braumühl (1900), Datta and Singh (1983), Matvievskaya (1990), 
Maor (1998), Van Brumelen (2009, 2013, 2014), and Smýkalová (2015). Johann Müller (called Regiomantus, 
1436 - 1476) summarized the knowledge about trigonometric functions in his book “De triangulis Omnimodis” 
(On Triangles of Every Kind). This book served as “the foot of the ladder to the stars” and inspired Copernicus, 
Rheticus, Brahe, Kepler and many others. Nicolaus Copernicus created his model using the trigonometric function 
sine. Georg Rheticus (1514 – 1574) continued to further develop trigonometric functions in his “Opus Palatinum 
de Triangulis” (Canon of the Science of Triangles) which became the first printed publication of tables of all six 
trigonometric functions. Johannes Kepler analyzed the experimental data of Tycho Brahe using these more precise 
trigonometric functions and discovered the elliptical paths of planets around the Sun. 
Today, we are again at a crossroads: we have available very precise experimental data of correlations of entangled 
particles that are excellently described by the trigonometric functions derived by the Quantum Mechanics. 
However, in this case we have to give up the concept of the local realism. 
The latest experiments of leaders in this field closed all experimental loopholes for the local realism: Jan-Åke 
Larsson in 2014, Marissa Gustina et al. in 2015, Lynden K. Shalm et al. in 2015, Bradley G. Christensen et al. in 
2015, Alain Aspect in 2015, Johannes Handsteiner et al. in 2017, Reinhold Bertlmann and Anton Zeilinger in 2017. 
Andrei Khrennikov organized in June 13 – 16, 2016 a great meeting with presentations about the state of the art 
in this field – see the video presentations on his website. Amir D. Aczel (2001) surveyed the complexity of this 
long research. 
It seems it makes no sence to continue to protect the local realism. However, there remains one hidden door leading 
to the local realism – the realm of trigonometric functions. We have still a possibility to describe the correlation 
events of entangled particles by less known (partly forgotten and partly not yet discovered) trigonometric functions. 
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In the first stage we have to describe the known experimental data of Alice and Bob by some other trigonometric 
approach as was done by the Quantum Mechanics. For this case we will apply the Claudius Theorem based on the 
trigonometric family Sagitta and Cosagitta that describes probabilistically numbers of correlated and anticorrelated 
events. However, this Claudius Theorem does not meet the requirement of the Karl Popper´s concept of the 
falsification of data (1959) because it only reproduces the concept of Max Born – the Born rule. Moreover, we 
have to fulfill two conditions of Werner Heisenberg and Albert Einstein. Werner Heisenberg stated that any good 
theory must be based only on directly observable magnitudes. On the other hand Albert Einstein stated that it is 
the a good theory which decides what we can observe. We have to discover a new trigonometric function for the 
falsification of the existing concept and its interpretation. For this purpose we will use the David Theorem based 
on the trigonometric family of Hacoversine that enables newly to describe correlation events. In this case we will 
quantify the gaps between the following identical events. This concept could be accepted both by Werner 
Heisenberg and Albert Einstein. 
In this trigonometric scenario the Team of Alice, Bob, Claudius and David formulate a camouflage legend for Eve 
–“spooky action at a distance”. Merlin (with unbounded computational ability) should verify the truth of this 
statement. Trent (a trusted arbitrator, who acts as a neutral third party) should analyze these data and this 
trigonometric concept. Victor (a verifier) should make his decision which way we should continue in our future 
research: either through the Niels Bohr avenue or through the Albert Einstein sidewalk. 
2. Trigonometric Functions in Circles with Radius R = 1, R = 1/2, and R = 1/4  
 

 
Figure 1 Three Rheticus triangles in the circles with radius R = 1 and R = 1/2 - the realm of trigonometric 

functions 
 
The development of trigonometric functions has a very rich and long history. This knowledge was flowing from 
the ancient Egyptians, Babylonians and Greeks through India and Arabic countries back to Europe. The Old 
Masters related trigonometric functions to arcs of circles and lengths of chords subtending their arcs. Regiomantus 
determined values from right-triangle ratios. Modern scholars have been using mostly the unit circle with radius 
R = 1 for the analysis of properties of the main six trigonometric functions. 
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Figure 2. Trigonometric functions in circles with radius R = 1, R = 1/2 and R = 1/4 

 

 
Figure 3. Orbits with radius R = 1, R = 1/2 and R = 1/4 and the trigonometric functions 

 
Galileo gave to us his advice in Opere Il Saggiatore p. 171: “[The Universe] cannot be read until we have learnt 
the language and become familiar with the characters in which it is written. It is written in mathematical language, 
and the letters are triangles, circles and other geometrical figures, without which means it is humanly impossible 
to comprehend a single word.” 
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This Galileo´s advice inspired us on one side to describe those circles and triangles with the existing known 
trigonometric relations, and on the other side to discover some new trigonometric relations that might be useful 
for the description of correlation events among entangled particles. 
In our concept we are searching for the new trigonometric functions in circles with radius R = 1/2 and R = 1/4. In 
these circles we have found several new trigonometric functions that might be useful for the description of 
correlations among the entangled particles. 
In Figure 1 we can see an opened door to the realm of trigonometric functions that prepared for us Georg Rheticus 
in his book “Canon of the Science of Triangles” in 1551 – see the video lecture of Glen van Brummelen in 2014 
and the Figure 2.2. in Radka Smýkalová (2015). 
Figure 2 and Figure 3 show circles with the radius R = 1, R = 1/2 and R = 1/4 and several triangles that reveal 
many trigonometric functions hidden in those lines. We will focuse our attention on trigonometric families Sagitta, 
Cosagitta and Hacoversine. 
3. Claudius Theorem and David Theorem 
 
Table 1. Claudius Theorem describing the total probabilities of joint detections and David Theorem describing 
probabilities of the following identical events and gaps between them 

Claudius Theorem – probabilistic occurence of joint detections 
P++ P+- P-+ P-- 

    

    

David Theorem – probabilities of the following identical detections 
P++ ↔ P++ P+- ↔ P+- P-+ ↔ P-+ P-- ↔ P-- 

    

    

David Theorem – gaps between identical detections 
P++ ↔ P++ P+- ↔ P+- P-+ ↔ P-+ P-- ↔ P-- 

    

    

 
The mathematical language of Quantum Mechanics perfectly describes probabilistically correlation events among 
entangled particles. This is the reason why most of researchers stated that this mathematical language completely 
characterizes those correlation events and that there is no hope to find anything better. A minority of researchers 
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tries to discover another mathematical language that could bring more information from the microworld of 
correlated particles and to protect the local realism. 
We propose to apply two Theorems for the description of correlation events among entagled particles: 
1) Claudius Theorem describes the probabilities of joint correlated or anticorrelated detections. The hidden 

microworld sends to us these signals that are described by symmetric trigonometric functions Sagitta and 
Cosagitta. It could be a very clever trick of Nature to create a camouflage legend for Eve as “spooky action 
at a distance”. Eve´s knowledge based on the mathematical language of Quantum Mechanics has to come to 
this camouflage legend. This trigonometric model documents that Nature has a great hiding power to protect 
Her secrets. 

2) David Theorem brings a new additional concept for the description of the correlation of entangled particles. 
David (see the statue of Michelangelo) proposed to measure gaps between the following identical events in 
the SPDC Type I process where horizontally and vertically pairs have been created. 

Table 1 summarizes our trigonometric model for the SPDC Type I (spontaneous parametric down-conversion type 
I) where pairs of entangled photons are created either horizontally or vertically polarized. The predictions of this 
David Theorem can be easily experimentally tested in the Laboratories of Leaders in this field. The probabilistic 
terminology P++, P+-, P-+, P-- describing the correlated and anticorrelated “clicks” was inspired by Alain Aspect. 
Both Quantum Mechanics and Trigonometric Mechanics cannot with certainty predict the outcome of all single 
events, but instead they predict probabilities of outcomes. The mathematical language of Quantum Mechanics 
does not protect the local realism. The mathematical language of Trigonometric Mechanics protects the local 
realism. In the Trigonometric Mechanics quantum systems are probabilistically controlled by “hidden variables” 
coming form the realm of trigonometric functions that determine the outcomes of measurements. 
Ladislav Kvasz (2008) discussed how the mathematical language influences the interpretation of observed 
phenomena. 
6. Conclusions 
1) In the circles with radius R = 1/2 and R = 1/4 several less known trigonometric functions were found and 

several new trigonometric relations were discovered. 
2) Family of trigonometric functions based on Sagitta and Cosagitta was used for the description of probabilities 

of joint detections of entangled particles – Claudius Theorem. 
3) Family of trigonometric functions based on Hacoversine was proposed as a new measure for the quantitative 

determination of gaps between the detections of identical events – David Theorem. 
4) David Theorem can be easily tested in Laboratories of Leaders in this field. 
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Abstract 
This paper aims to qualitatively summarize the results up until now obtained in investigating the compatibility 
between the absoluteness of time and several well-known phenomena, such as the alleged increase of the mean 
lifetime of muons and the so-called relativistic corrections for GPS, whose explanation is commonly provided by 
resorting to Einstein’s Relativity. To make the discussion more flowing, we have herein preferred to completely 
avoid the writing of equations. All the analytical solutions, as well as several explicative figures, can be found in 
the first six articles cited in the references, drafted by the same author of this manuscript.  
Keywords: Absoluteness of Time, Extra Dimensions, Relativistic Motion, Muons Mean Lifetime, General 
Relativity, GPS Relativistic Corrections, Gravitational Redshift  
1. Introduction 
All the models we have elsewhere discussed (Cataldo, 2016a, 2016b, 2017a, 2017b, 2017c, 2017d) start from 
hypothesizing a closed Universe, homogeneous and isotropic, belonging to the so-called oscillatory class (O1 type 
in the Harrison classification) (Harrison, 1967). More precisely, we postulate a Universe that approximately 
evolves following a simple-harmonic motion, whose pulsation is equal to the ratio between the speed of light and 
the value of the mean radius, taken as reference (Cataldo, 2017b, 2017c). In spite of this, we consider the variations 
of cosmological distances as being exclusively metric: in other terms, we postulate that the amount of space 
between whatever couple of points remains the same with the passing of time. In particular, once hypothesized a 
variability over time of the Planck constant (Cataldo, 2017a; Seshavatharam et al., 2013a, 2013b), the 
Cosmological Redshift may be banally explained by taking into account the conservation of energy. The existence 
of at least a further spatial dimension is postulated: more precisely, the Universe in its entirety is imagined as being 
flat and identifiable with a four-dimensional ball. Although the Universe is to be considered as being globally flat, 
the space we are allowed to perceive, when we are at rest, is curved, since it is identified with a hyper-sphere 
whose radius depends on our state of motion (Cataldo, 2016a, 2017c). All the points are replaced by straight line 
segments: more precisely, what we perceive as being a point may actually be a straight-line segment crossing the 
centre of the 4-ball with which we identify our Universe (Cataldo, 2016b). Time is considered as being absolute: 
however, it is fundamental to underline how this strong assumption does not imply that instruments and devices 
of whatever kind, finalized to measure time, are not influenced by motion and gravity (Cataldo, 2017d). 
2. Motion and the Absoluteness of Time 
The Lorentz transformations can be considered, without any doubt whatsoever, as the backbone of the theory of 
Special Relativity. Nonetheless, both the conventional derivation of the transformations and the meaning 
commonly assigned to them have been often savagely criticized, to the extent that, despite an alleged empirical 
evidence, the whole Special Relativity, in several occasions, has been brought into question. Firstly, it is worth 
underlining that, as Lorentz himself was forced to admit at a later time (Lorentz, 1909), the transformations had 
been already conceived, several years before the publication of the famous paper (Lorentz, 1904), by someone else 
(Voigt, 1887). Secondly, the work of Lorentz was anything but concretely linked to relativistic issues, at least in 
the Einsteinian sense of the term. Very simply, Lorentz’s aim fundamentally lay in finding some transformations 
able to formally make the Maxwell equations (Maxwell, 1873) invariant. On this subject, moreover, it has been 
proved how the Lorentz transformations are not the only ones able to preserve the formal validity of the Maxwell 
equations (Di Mauro et al., 1997).  
We have elsewhere (Cataldo, 2016a) shown how the Lorentz transformations can be alternatively deduced, albeit 
with a different meaning, once some noteworthy hypotheses concerning our Universe have been assumed, among 
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which the existence of at least a further spatial dimension and the absoluteness of time stand out. Our alternative 
deduction, what is more, allows us to overcome a well-known misleading problem related to the so-called time 
transformations. It is commonly said that, when the speed assumed by the mobile frame of reference is far less 
than that of light, the Lorentz transformations tend to the Galilean ones. In other terms, according to the previous 
assertion, Galilean Relativity should be interpreted as a particular case of the Einsteinian one. This is an erroneous 
conviction (Ghosal et al., 1961). In fact, it is easy to verify how no limitation turns out to be formally imposed, as 
far as the numerators of the time transformations are concerned, on the spatial coordinates. Therefore, since the 
above-mentioned coordinates can evidently assume arbitrarily large values, an unconditional identification of the 
Lorentz transformations with the Galilean ones, when the speed tends to zero, should be considered as being de 
facto impossible (Di Mauro et al., 1995). 
The procedure we exploit to alternatively deduce the Lorentz transformations is fundamentally based upon the 
conservation of energy. Firstly, taking advantage of the hypotheses highlighted in the introduction, we can easily 
obtain the so-called mass-energy equivalence. Bearing in mind that, according to our models, each point may 
actually be a straight-line segment crossing the center of the four-dimensional ball with which we identify our 
Universe, we can state that what we perceive as being a translatory motion is nothing but a rotation around the 
center of the above-mentioned ball. We have elsewhere (Cataldo, 2017c) proven that, by virtue of the conservation 
of energy, the radial extension of any segment depends on its state of motion: the more the speed increases, the 
more the radial extension decreases. When a point (actually a segment) is at rest, the corresponding radial extension, 
obviously, equates the radius (of curvature) of the Universe: in other terms, the point is placed on the external 
hyper-surface. In no case can the local speed exceed that of light. Nonetheless, we can also define a virtual speed 
(the speed measured by an observer at rest) whose value is provided by the product between the local (real) speed 
and the relativistic factor. Very evidently, the virtual speed can exceed that of light, and it tends to infinity when 
the radial extension tends to zero (when the local speed tends to that of light). When a point, initially at rest, starts 
moving (when a segment, initially at rest, starts rotating), the radial extension undergoes a reduction: consequently, 
once considered a second point, placed at a certain angular distance from the first (the angular distance is meant 
as the one measured by an ideal observer placed at center of the 4-ball), the corresponding arc distance depends 
on the state of motion. Ultimately, time does not undergo any dilation whatsoever due to the motion: on the 
contrary, the arc distance between two generic points (the only one we can actually measure) is not symmetric, 
and it depends on the value of the speed.  
The alleged increase of the lifetime of muons, although coherent with Special Relativity, may be easily explained 
avoiding time dilations. Muons evidently succeed in covering a distance clearly not compatible with their mean 
lifetime: this is irrefutable. On the one hand, we may admit that time, for muons, starts slowing down due to the 
high value of their speed, but on the other hand, and for the same reason, we may also imagine that, for muons, 
both the radial extension and the distances undergo a reduction (the phenomenon, according to our theory, is no 
longer restricted to the direction of the motion). In the latter case, the speed perceived by an observer at rest is 
greater than what it really is, and time does not undergo any dilation whatsoever. Two different explanations, one 
of which based upon the absoluteness of time, both fully compatible with the Lorentz transformations, that 
consequently, though, acquire a completely different meaning in the two cases. 
3. Gravity and the Absoluteness of Time 
We have elsewhere (Cataldo, 2017d) proposed a simple qualitative model, finalized to discuss the compatibility 
between gravity and the absoluteness of time. At the beginning, taking into account a global symmetry, matter is 
imagined as being evenly spread on the hyper-sphere with which we identify the Universe we are allowed to 
perceive (actually, according to our hypotheses, matter fills homogeneously the corresponding 4-ball in its entirety). 
Let's consider a circumference, belonging to the surface of the ball, and the corresponding center: in a curved space, 
obviously, the predicted radius (the ratio between the perimeter of the circumference and 2π) does not coincide 
with the measured one (related, as far as the scenario initially hypothesized is concerned, to the component g11 of 
the Robertson – Walker metric tensor). We postulate that, if the center acquires a greater mass, the circumference 
undergoes a contraction, but the value of the measured radius (the measured distance between the center and 
whatever point of the circumference) remains exactly the same, as well as the corresponding angular distance (as 
perceived by an ideal observer placed at the center of the 4-ball) (Cataldo, 2017d). If all the available mass is 
ideally concentrated in a single point, we may discuss the so-called vacuum field solution. Let’s consider now a 
test particle orbiting around a point with a constant angular distance (the path is circular). We can state that the 
more the above-mentioned point acquires mass, the more the orbit followed by the particle turns out to be reduced. 
In spite of this, the measured distance, according to our model (Cataldo, 2017d), remains the same (the proper 
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radius, consequently, is no longer related, as far as the so-called vacuum field solution is concerned, to the 
component g11 of the Schwarzschild metric tensor) (Schwarzschild, 1919). 
As we know, there are two kinds of so-called relativistic corrections for GPS (Global Positioning System). Special 
Relativity predicts that time, on satellites, should slow down by virtue of their (relative) motion: this phenomenon, 
that we consider as being merely apparent, has been discussed in the previous paragraph. On the contrary, 
General Relativity requires that time, on satellites, should flow faster than it does on the surface of the Earth (in 
other terms, clocks closer to a massive object should tick more slowly, so to say, than those located at a greater 
distance). According to our model, the more a gravitational singularity acquires mass, the more the time needed 
to cover a whole orbit, at a fixed angular distance, turns out to be reduced, in spite of the fact that, by virtue of 
our hypotheses, the proper radius remains exactly the same: consequently, the more a particle approaches a 
gravitational source, the more time turns out to be apparently dilated. Ultimately, once again, we may state that 
time dilation is nothing but a merely apparent phenomenon, exclusively related, as far as gravity is concerned, to 
the contraction of the orbits.  
Now, let’s suppose that we are not disposed to accepting such a situation. More precisely, let’s imagine that, 
instead of admitting that the orbit drawn by a test particle undergoes a contraction, we prefer to hypothesize that, 
due to a gravitational source placed at the origin, time starts slowing down. By virtue of this interpretation, taking 
into account the fact that, coherently with our model, a light impulse takes the same time, with or without 
gravitational singularity, to cover the distance (once fixed the angular one) between the origin and any other point, 
we are forced to modify the value of the proper radius. The reason is very simple. On the one hand, the speed of 
light cannot be influenced by the singularity; on the other hand, we forcefully postulate that, due to the gravitational 
source, time starts to slow down (we refuse to admit that the orbit undergoes a contraction). As a consequence, in 
order to keep the speed of light constant, we have to imagine that the proper radius undergoes a dilation. In the 
light of this interpretation, we have elsewhere (Cataldo, 2017d) deduced a Schwarzschild-like metric (more 
precisely a Droste/Brillouin/Hilbert-like metric) without using General Relativity.  
If we postulate the absoluteness of time, the so-called Gravitational Redshift, obviously, can no longer be 
legitimized by means of time dilation. To explain the above-mentioned phenomenon, experimentally verified more 
than half a century ago, we hypothesize a local variability of the Planck constant (Kentosh et al., 2012a, 2012b; 
Flambaum et al., 2012) and impose, very intuitively, the conservation of energy (Cataldo, 2017a). Up until now, 
we have tacitly accepted the fact that mass is capable to warp space. Actually, if mass were to really warp space, 
we would be forced into admitting that, in a certain sense, the shape of the Universe can be modified with respect 
to something else, taken as reference. In the light of the foregoing remark, we may rather imagine that the value 
of space could be somehow modified by the presence of a gravitational source. Once accepted that a test particle, 
that we perceive as being punctual, is actually characterized by a radial extension, we could simply state that the 
more we approach the gravitational source, the more the value of the radial extension decreases. It has been 
previously claimed that the Universe we are allowed to perceive, when we are at rest, may be assimilated to a 
hypersphere. This assumption is not entirely correct: in fact, the space we perceive should be rather identified with 
a hyper-spherical shell, obviously characterized by a thickness (Cataldo, 2017c). In order to understand the 
previous assertion, suffice it to consider that we are undeniably used to identifying a paper sheet with a bi-
dimensional surface. Nonetheless, we are well aware of the fact that a bi-dimensional surface represents nothing 
but a pure abstraction, and the above-mentioned sheet is evidently characterized by a thickness, whose value in no 
case should be considered as being null. We have to imagine the Planck constant as being linearly dependent on 
the dimensional thickness that, in turn, is linearly dependent on the radial coordinate (Cataldo, 2017a). In this way, 
by assigning a new meaning to the parameter usually identified with a Schwarzschild coordinate (our parameter 
does not represent a distance nor a radius of curvature) (Cataldo, 2017d), imposing the conservation of energy, we 
can obtain, without using General Relativity, the well-known expression for the Gravitational Redshift.  
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