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ABSTRACT. Population declines of many wildlife species have been linked to habitat loss incurred through land-use change.
Incorporation of conservation planning into development planning may mitigate these impacts. The threatened Lesser Prairie-
Chicken (Tympanuchus pallidicinctus) is experiencing loss of native habitat and high levels of energy development across its
multijurisdictional range. Our goal was to explore relationships of the species occurrence with landscape characteristics and
anthropogenic effects influencing its distribution through evaluation of habitat suitability associated with one particular habitat
usage, lekking. Lekking has been relatively well-surveyed, though not consistently, in all jurisdictions. All five states in which Lesser
Prairie-Chickens occur cooperated in development of a Maxent habitat suitability model. We created two models, one with state as
a factor and one without state. When state was included it was the most important predictor, followed by percent of land cover
consisting of known or suspected used vegetation classes within a 5000 m area around a lek. Without state, land cover was the most
important predictor of relative habitat suitability for leks. Among the anthropogenic predictors, landscape condition, a measure of
human impact integrated across several factors, was most important, ranking third in importance without state. These results
quantify the relative suitability of the landscape within the current occupied range of Lesser Prairie-Chickens. These models,
combined with other landscape information, form the basis of a habitat assessment tool that can be used to guide siting of
development projects and targeting of areas for conservation.

Évaluation de la qualité d'habitat dans l'ensemble de l'aire du Tétras pâle
RÉSUMÉ. Les baisses de population de nombreuses espèces fauniques ont été associées à la perte d'habitat consécutive aux
changements d'utilisation des terres. L'incorporation de la planification de la conservation dans la planification du développement
pourrait modérer ces impacts. Le Tétras pâle (Tympanuchus pallidicinctus) est une espèce menacée qui fait face à la perte d'habitat
naturel et à des niveaux élevés de développement énergétique dans l'ensemble de son aire multi autorités. L'objectif  de notre étude
était d'explorer les relations existantes entre les occurrences de l'espèce et les caractéristiques du paysage ainsi que les effets
anthropiques qui influencent sa répartition, au moyen de l'évaluation de la qualité de l'habitat utilisé pour la parade (aire de lek),
un habitat à usage particulier. Les aires de lek ont été relativement bien inventoriées, bien que de façon non constante, par toutes
les autorités concernées. Les cinq États dans lesquels se trouve le Tétras pâle ont tous coopéré dans l'élaboration d'un modèle de
qualité de l'habitat Maxent. Nous avons créé deux modèles : l'un comprenant l'État comme variable explicative et l'autre ne la
comprenant pas. Lorsque l'État était inclus dans le modèle, il se révélait la variable explicative la plus importante, suivi par le
pourcentage de couverture du sol correspondant aux classes de végétation connues ou pressenties dans un rayon de 5000 m autour
d'une aire de lek. Sans l'inclusion de l'État dans le modèle, la couverture du sol se révélait la variable explicative la plus importante
de la qualité des leks. Parmi les variables anthropiques explicatives, la condition du paysage - une mesure de l'impact humain calculée
à partir de plusieurs facteurs - était la plus importante et se classait au troisième rang en l'absence de l'État. Ces résultats quantifient
la qualité relative du paysage de l'aire occupée actuellement par le Tétras pâle. Les présents modèles, combinés à d'autres informations
sur le paysage, forment la base d'un outil d'évaluation de l'habitat pouvant être utilisé afin d'orienter l'emplacement des projets de
développement et la conservation de milieux.
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INTRODUCTION
Land-use change resulting in habitat loss is one of the primary
factors affecting population declines of many wildlife species
(Morrison et al. 2007). Minimization of the effects of land
development and land-use change on species’ conservation may
be possible if  conservation planning can be included in
development decisions. However, this is only possible if  data to
inform conservation needs are available at the time decisions are
being made. Models of species distribution and habitat suitability
can be created using fewer than 25 locations to successfully guide
future field surveys (Pearson et al. 2007) and can inform
conservation decisions related to land-use conversion (Marini et
al. 2009, Thorn et al. 2009).  

In general, logistical constraints and sparse, clustered, or
observational (rather than probabilistically sampled) data often
limit statistical analyses that can be conducted and the interpretive
value of results for rapid conservation management decisions.
Thus, decisions are often based on models made with readily
available data, ranging from presence-only to binary models
(presence-absence) to count-based models (abundance). Models
based on nonrandom data may be misleading because of sampling
biases, such as nonrandom road surveys (Elith et al. 2011).
Nonrandom presence-only data are often all that are available,
especially for rare species, and when implemented carefully can
lead to useful models as indicated in the application mentioned
above. Maxent, a machine learning method that uses the principal
of maximum entropy to identify relationships between available
environment and observed locations (Phillips et al. 2006, Phillips
and Dudik 2008), is part of a suite of techniques known as species
distribution modeling, and identifies relationships between
observations of species and the available environment to predict
habitat suitability at unknown locations (Guisan and Thuiller
2005, Franklin 2010).  

The Lesser Prairie-Chicken (Tympanuchus pallidicinctus) is a
prairie grouse species distributed on the Great Plains of the
United States, including the states of Colorado, Kansas, New
Mexico, Oklahoma, and Texas. Lesser Prairie-Chickens have
experienced an estimated 90% reduction in range since the 1800s
(Taylor and Guthery 1980, Hagen et al. 2004) and evidence
suggests population changes vary greatly across the region (Holt
2012, McDonald et al. 2014, Garton et al. 2016). As a result, the
Lesser Prairie-Chicken was petitioned for protection under the
Endangered Species Act in 1995, and the species was listed as
threatened across its range in May 2014 (U.S. Fish and Wildlife
Service 2014). Biologists cite the loss of native prairie as the main
cause of decline for Lesser Prairie-Chickens. Among other things,
losses can occur from grazing practices resulting in reduced
vegetation structure and woody vegetation encroachment, which
fragment and deteriorate habitat (Hagen and Giesen 2005).  

In addition to loss of native habitat, an emerging and potentially
critical threat is energy development within the current
distribution of the Lesser Prairie-Chicken (Pruett et al. 2009,
Hagen et al. 2011, Jarnevich and Laubhan 2011). The North
American Great Plains is currently undergoing rapid land-use
change as a result of increasing energy development throughout
the region (Allred et al. 2015, American Wind Energy Association
2015). This development has the potential to impact the habitat

of species in the region, and cause declines or hasten declines of
species’ populations. Several recent studies have documented
avoidance of anthropogenic structures and human disturbance
by prairie grouse species (Centrocercus and Tympanuchus spp.;
Holloran 2005, Pitman et al. 2005, Walker et al. 2007, Pruett et
al. 2009, Grisham et al. 2014). The number of Greater Sage-
Grouse (C. urophasianus) males displaying at leks decreased with
increasing natural gas field-related disturbances around leks
(Holloran 2005, Walker et al. 2007). Additionally, male
attendance at leks and the number of active Sage-Grouse leks
declined at a faster rate within natural gas fields compared with
areas outside natural gas fields (Holloran 2005, Walker et al.
2007). In Kansas and Texas, Lesser Prairie-Chicken nests were
located further than expected from transmission lines, improved
roads, and oil or gas wellheads even though otherwise-suitable
habitat surrounded these features (Pitman et al. 2005, Grisham
et al. 2014). Pruett et al. (2009) examined the avoidance behavior
of Lesser and Greater Prairie-Chickens (T. cupido) to power lines
and highways in Oklahoma and found birds avoided the power
lines and few nests were found within 2 km of the power lines.
Other studies in northcentral Kansas, at the center of the Greater
Prairie-Chicken extant range, found that although nest site
selection and survival were not negatively affected by proximity
to wind turbines (McNew et al. 2014), females avoided wind
turbines that could lead to local extirpation of the species in
proximity to wind turbines (Winder et al. 2014). In Texas, Timmer
et al. (2014) found the density of Lesser Prairie-Chicken leks
decreased as the density of active oil and gas wells and paved
roads increased.  

The distribution and population of Lesser Prairie-Chickens have
been monitored by state wildlife biologists and managers through
lek surveys, but until recently a considerable amount of interstate
variation existed in survey methodologies (D. M. Davis, R. E.
Horton, E. A. Odell, R. D. Rodgers, and H. A. Whitlaw 2008,
unpublished manuscript). Nesting habitat is considered a factor
limiting population size (Wisdom and Mills 1997), although
nesting site data are only available from a few, localized research
studies. On the other hand, landscape features indicative of
lekking activity are not thought to limit the population, but lek
data is available across much more of the species’ range. Breeding
habitats are closely associated with lek sites (Hagen and Giesen
2005, Pitman et al. 2006), and leks have been used as a surrogate
for nesting habitat over broad spatial extents in the past (Jarnevich
and Laubhan 2011). Given that lek data are the only somewhat
consistent data available range wide, we chose to focus our
modeling efforts on this single life history event. Even so, the
available data for Lesser Prairie-Chicken management decisions
vary in terms of survey effort, methodology, and spatial coverage,
and many are derived from nonrandom sampling. For example,
some states have set routes that are monitored with a set protocol,
while others visit historic and currently known lek locations (see
Van Pelt et al. 2013 for detailed descriptions of each states’
monitoring efforts). Until recently, surveys also lacked specific
absence data or information on survey extents and effort.
Therefore, Maxent is an appropriate technique to estimate
relationships between environmental characteristics and lek
occurrence because much of the available data for Lesser Prairie-
Chicken populations consist of presence-only locations from
nonrandom samples with an unknown sampling frame.  
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The objectives of our study were to predict habitat suitability for
Lesser Prairie-Chicken leks and to explore relationships of
occurrence with landscape characteristics and anthropogenic
effects that may influence their distribution. We used Maxent to
develop habitat suitability models for Lesser Prairie-Chicken leks
using existing data merged from multiple collection efforts
throughout the current occupied range. We then applied these
models to all counties intersecting the 2012 estimated occupied
range of the Lesser Prairie-Chicken (Van Pelt et al. 2013) to
identify areas of higher habitat suitability for the species. Our
overarching goal in reaching these objectives was to inform
management decisions related to identifying locations for habitat
conservation and developing a habitat conservation program for
Lesser Prairie-Chickens.

METHODS
Our study extent included the 2012 estimated occupied range of
the Lesser Prairie-Chicken buffered by 16.1 km as defined by the
Lesser Prairie-Chicken Interstate Working Group and mapped
on the Southern Great Plains Crucial Habitat Assessment Tool
web site (Fig. 1; Van Pelt et al. 2013). We expanded the area to
county boundaries to match political jurisdictions for
management applications. This resulted in a 28,420,417 ha area,
covering 89 counties in Colorado, New Mexico, Kansas,
Oklahoma, and Texas.

Fig. 1. Location map showing the estimated occupied range
(Van Pelt et al. 2013) and the study area consisting of 89
counties in the five state region historically occupied by Lesser
Prairie-Chickens.

Data sets
All five states encompassing the historic range cooperated in an
effort to compile lek location data from across the species’ range.
We selected lek locations from each state that had been observed
between 2002 and 2012 to limit issues related to changes in land
use since the time of observation. The definition of a lek, i.e.,
number of birds required to be present at the time of observation,
varied by state, and given that some locations were opportunistic
and not revisited we did not require leks to be observed in multiple
years. We removed lek locations within 100 m of each other from
different years and used only the most recent location to avoid
pseudo-replication in the data. Because of potential issues related
to coordinate accuracy as reported by the states collecting data,
we dropped any locations that state representatives, headed by the
coauthor from each state agency, believed had a spatial accuracy
less than 100 m, i.e., removed leks with location data uncertainty
such that it may have been assigned to an incorrect grid cell. We
developed the lek model using a grid cell resolution of 210 m.
These criteria resulted in 1402 unique locations including 76 in
Colorado, 669 in New Mexico, 189 in Kansas, 185 in Oklahoma,
and 283 in Texas. The sample size difference by state results from
both the actual distribution of leks on the landscape, i.e., real
differences in lek occupancy that exist between states, and artifacts
from different historical survey methodologies discussed above
and availability of data (sampling bias and privacy issues).  

Potential predictor variables were chosen based on the life history
of the species, and included land-cover metrics, topography, and
anthropogenic features for a total of 15 predictors (Table 1). Our
models were partially limited by the availability of consistent
quality land-cover data throughout the range. We used three
different sets of land-cover data based on which land-cover data
set was determined as best for each state by the state
representatives. We began with National Land Cover Dataset
(NLCD) vegetation classes for all states (Fry et al. 2011), focusing
on shrubland, grassland/herbaceous, and pasture/hay classes as
important, but because of errors in this dataset we replaced it for
Texas and New Mexico. For Texas, we used the Texas Ecological
Systems Classification Project data set (Elliot et al. 2014); for New
Mexico, we used the southwest regional gap analysis project land
cover (USGS National Gap Analysis Program 2004). We also
included a metric quantifying the amount of land in the
conservation reserve program (CRP), because this land-use type
has been important in previous models (Jarnevich and Laubhan
2011).  

Because of the large number of land-cover classes, the quality of
the classifications at a fine thematic scale, and our interest in the
spatial context of location, experts from each state classified their
land cover into known or suspected used and unused classes based
on annual lek surveys and monitoring data (see Appendix 1 for
more details and a list of the classes). To explore what landscapes
may be important to the occurrence of leks, we created vegetation
predictors of percent known used, percent suspected used, and
percent CRP summarizing a 1600 m diameter neighborhood and
a 5000 m diameter neighborhood around each location. These
distances cover the range in reported area around leks used by
Lesser Prairie-Chickens (newer estimate around 1.5 km from
Pitman et al. 2006, Boal and Pirius 2012, and Grisham et al. 2014
to older estimates of 4.8 km used by Fuhlendorf et al. 2002).
Known used consisted of vegetation broadly classified as
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Table 1. All predictor variables considered in Lesser Prairie-Chicken lek suitability models including the variable name, steps taken to
create the variables, the source of the original data, if  the variable was included and, if  not, the identity of the predictor with which it
was correlated, a justification for inclusion, and the range in values (minimum to maximum) in the training data including both presence
and background locations. FAA indicates Federal Aviation Administration.
 
Variable Creation step Source Included Justification Range in values

Distance to
FAA structure

Euclidean distance
(meters) to FAA
obstructions taller than
50 feet using ArcGIS
Spatial Analyst tools.

Federal Aviation Administration,
January 2011

Yes Robel et al. 2004, Pitman
et al. 2005, Pruett et al.
2009, Hagen et al. 2011

1 m to 31.2 km

Distance to
highway

Euclidean distance
(meters) using ArcGIS
Spatial Analyst tools to
highways.

ESRI ArcGIS Data and Maps,
version 10, “mroads” layer from the
North America Streetmap dataset
including interstates, freeways, state
and county highways

Yes Robel et al. 2004, Pitman
et al. 2005, Hagen et al.
2011

0 to 24.4 km

Distance to all
roads

Euclidean distance
(meters) using ArcGIS
Spatial Analyst tools to
roadways.

ESRI ArcGIS Data and Maps,
version 10, North America Streetmap
database subset to named roads (field
“DISP_NAME”; except for Kansas,
which is from 2010 Kansas
Department of Transportation data)

Yes Robel et al. 2004, Pitman
et al. 2005, Hagen et al.
2011

0 to 10.8 km

Distance to
transmission
lines

Euclidean distance
(meters) using ArcGIS
Spatial Analyst tools to
any transmission lines.

Platts “North America Electric
Transmission Lines GIS Layer,”
obtained April 2011

Yes Robel et al. 2004, Pitman
et al. 2005, Pruett et al.
2009, Hagen et al. 2011

0 to 46.3 km

Distance to
wells

Euclidean distance
(meters) using ArcGIS
Spatial Analyst tools to
wells.

Well data compiled from each state
government in 2011, removing those
with indication no longer active or
plugged.

Removed
because of
correlation with
well density
(Appendix 2)

Robel et al. 2004, Pitman
et al. 2005, Hagen et al.
2011

0 to 37.4 km

Well density
(800m, 1600m)

Point statistics in
ArcGIS Spatial
Analyst neighborhood
functions, summing the
number of points in a
circle with an 800m
radius and with a
1600m radius

Well data compiled from each state
government in 2011, removing those
with indication no longer active.

Retained 1600m
(Appendix 2)

Robel et al. 2004, Pitman
et al. 2005, Hagen et al.
2011

800 m radius: 0 to 31.2 km
1600 m radius: 0 to 24.4
km

Average EVI Average of average
annual Enhanced
Vegetation Index (EVI)
from 2000 to 2009

MODerate resolution Imaging
Spectroradiometer (MODIS)
Vegetation Indices: http://ladsweb.
nascom.nasa.gov/data/search.html

Yes 1 to 6083

Average
minimum EVI

Average of minimum
annual Enhanced
Vegetation Index (EVI)
from 2000 to 2009

MODerate resolution Imaging
Spectroradiometer (MODIS)
Vegetation Indices

Removed
because of
correlation with
average EVI

-289 to 3293

Average
maximum EVI

Average of maximum
annual Enhanced
Vegetation Index (EVI)
from 2000 to 2009

MODerate resolution Imaging
Spectroradiometer (MODIS)
Vegetation Indices

Removed
because of
correlation with
average EVI

0 to 7843

Topographic
Ruggedness
Index (TRI)

Topographic
Ruggedness Index
calculated following
Riley et al. (1999);
resampled to 240 m

National Elevation Dataset 1 arc-
second Digital Elevation Model
(http://ned.usgs.gov/index.html)

Yes Riley et al. 1999, Hagen et
al. 2004, Hagen and
Giesen 2005

0 to 25

State Categorical value for
each of the five states

National Atlas of the United States,
State Boundaries of the United
States: National Atlas of the United
States, Reston, VA. (http://
nationalmap.gov/)

Yes States differ in
management strategies
and CRP land treatment

Na

Percent
“known used”
(Appendix 1)

Focal Statistics
(suitable_2010, Sum) /
Focal Statistics
(constant, Sum) * 100,
Calculated for a 5000
m radius and a 1600 m
radius, then resampled
to 210 m

Regional land cover map derived
from the Southwest Regional Gap
Land Cover Dataset in New Mexico,
the National Land Cover Dataset for
Colorado, Kansas and Oklahoma,
and Ecological Mapping Systems of
Texas.

Retained 5000 m
(Appendix 2)

0 to 100%

(con'd)
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Percent
conservation
reserve
program (CRP)
land

Focal Statistics (suit_*,
Sum) / Focal Statistics
(constant, Sum) * 100,
Calculated for a 5000
m radius and a 1600 m
radius, then resampled
to 210 m

Conservation Reserve Program
information summarized from 2012

Retained 5000m
(Appendix 2)

0 to 66.3%

Percent
“suspected
used”
(Appendix 1)

Focal Statistics (suit_*,
Sum) / Focal Statistics
(constant, Sum) * 100,
Calculated for a 5000
m radius and a 1600 m
radius, then resampled
to 210 m

Regional land cover map derived
from the Southwest Regional Gap
Land Cover Dataset in New Mexico,
the National Land Cover Dataset for
Colorado, Kansas and Oklahoma,
and Ecological Mapping Systems of
Texas.

Merged with
“known used”

Na (merged with “known
used”)

Landscape
condition

Comer, P. J. and J.
Hak. 2012, http://yale.
databasin.org/pages/
natureservemethodsdetail

WGA landscape condition data
created from Landfire, wells, roads,
transmission lines, railroad, and
vertical structures. It is a measure of
human impact (cropland counts as
impact). Scale is 1-10,000 with higher
values less impacted.

Yes 1 to 8398

WGA indicates Western Governor’s Association

“shrubland, steppe and savanna systems” while suspected used
consisted of vegetation broadly classified as “grassland systems”
(Appendix 1). Introduced grasses also contributed to the two
categories. We collapsed known used and suspected used into a
single predictor after preliminary runs, resulting in a single land-
cover variable represented by percent of area within 5000 m with
land cover classified as either known used or suspected used (see
Appendix 2). We created predictors for well density using counts
of active wells in an 800 m and 1600 m diameter neighborhood
around the locations, which we later restricted to a 1600 m area
based on preliminary runs (Table 1; see Appendix 2). These
distances were based on expert opinion and the set back
recommendations from anthropogenic features in Hagen et al.
(2011). Other anthropogenic variables included distance to active
wells, roads, highways, transmission lines, tall structures, and
landscape condition (a measure of human impact integrating
several anthropogenic factors; Table 1). Additional predictors
included topographic ruggedness index (a measure of
topographic heterogeneity in the region around a focal cell), state,
and enhanced vegetation index (EVI; a spectral vegetation index
that calculates photosynthetically active vegetation while
accounting for effects from atmospheric and soil influences;
Huete et al. 2002). All predictors were created at a 210 m resolution
to match decisions regarding the minimum mapping unit for
modeling leks as described in Table 1.

Modeling
To develop species distribution models, we used Maxent (version
3.3.3k). Maxent requires presence locations of a species,
background or pseudo-absence locations representative of the
sampled environment, and environmental predictors. It utilizes
the principle of maximum entropy to determine statistical
relationships between presence locations and the environment by
comparing the environment where an organism is found to the
available environment. We implemented Maxent within the
Software for Assisted Habitat Modeling (SAHM; version 1.0;
Morisette et al. 2013).  

Predictor importance and response curves in Maxent are sensitive
to cross-correlations, so we removed variables with high
correlations of |r|>0.7 using the maximum of the Pearson’s,
Spearman’s, and Kendall’s correlation coefficients (Dormann et
al. 2013). The three methods use different ways to identify
correlations, which is useful given that Maxent utilizes linear and
nonlinear relationships. We retained the variable from correlated
pairs that was thought to be most directly related to Lesser Prairie-
Chicken presence, indicating which predictor was retained and
why others were dropped in Table 1.  

All five states contributed lek data with varying degrees of
completeness because of landowner confidentiality requirements.
Colorado and Kansas provided all known lek locations that were
collected with a GPS unit, and some locations were omitted for
Oklahoma, New Mexico, and Texas. However, we do not know
the exact number of locations or the specific areas of omitted
data within these states. Thus, we limited the random selection of
the 10,000 background locations to within 10 km of a recorded
lek so that we did not sample areas outside the known sampled
area (a 3,672,555 ha area; Phillips et al. 2009, VanDerWal et al.
2009). We chose 10 km because it extended the available area to
several pixels beyond each presence location, allowing for enough
environmental variation between presence locations and
background locations to produce a meaningful model while still
minimizing the inclusion of potentially unsampled areas. The
number of background points required to adequately represent
the available environment is estimated to be 10,000 (Phillips and
Dudik 2008, Barbet-Massin et al. 2012).  

We fit the lek model 25 times, withholding a different random
30% of presence locations during each of the 25 replicate model
runs. We also set the maximum number of iterations to 5000 to
allow models to converge. Otherwise we used the default settings
for Maxent. However, in preliminary models we noticed signs of
overfitting in the models including very complex response curves
and large differences between receiver operating characteristic
area under the curve (AUC) values calculated for training and
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testing data (i.e., > 0.05). We therefore tested alternate values of
the regularization parameter that controls model complexity in
Maxent and chose a value of two for subsequent runs. We ran
models that both included and excluded state as a predictor to
account for the potential differences in sample sizes between states
mentioned above. Models including state assumed that differences
in number of observed leks were an artifact of sampling bias as
described above, and the state variable was meant to account for
this difference. Models excluding state assumed that these
differences reflected actual differences in occupancy, i.e., sample
size differences arose because of environmental conditions differing
between states. Because truth is probably some combination of
these hypotheses, the two model scenarios provided bounds around
the expected answer.  

We evaluated models by examining the AUC value for the test data,
which generally ranges between 0.5 and 1 and is a measure of
discrimination ability of the model (Fielding and Bell 1997). Values
less than 0.5 are no better than random, values between 0.5 and 0.7
are rather low accuracy, values between 0.7 and 0.9 are useful for
some purposes, and values above 0.9 represent high accuracies
(Swets 1988). Maxent provides two different evaluations of variable
contribution to models. Permutation importance is calculated on
the converged model only by examining change in AUC when
randomly permuting the values among the presence and
background data for each variable while holding the other variables
constant. This metric provides a model-independent measure of
the relative influence of each predictor in each model. The second
contribution criterion is variable contribution, which is calculated
based on the additive regularized training gain (positive addition
or negative subtraction) at each iteration of the algorithm as it
reaches convergence. Maxent also produces a multidimensional
environmental similarity surface (MESS) when projecting the
model onto new locations, e.g., such as from our constrained
background locations to counties encompassing the historic range.
The MESS surface includes increasingly negative values as the
environmental conditions at the new location depart from those
used in developing the model by comparing the range in values for
each environmental variable at the locations used to develop the
model (presence and background) to the value at the new location
(Elith et al. 2010). We used this surface as a measure of uncertainty
in predictions, classifying any negative value as a location with novel
environmental conditions, i.e., conditions that were outside the
range of parameters used to train the model.  

To compare model results and provide a simplified product, we
discretized the model predictions into suitable and unsuitable
classes using three threshold rules produced in Maxent. The rules
included the minimum training presence, which determines the
minimum predicted value for any presence location used to train
the model to use as the threshold; five percentile training presence
threshold, which orders the predicted values for the presence
locations used to train the model and selects the value that would
misclassify the bottom 5%; and the 10 percentile training threshold,
which misclassifies the bottom 10%. Because Maxent produces
maps with a continuous index of relative habitat suitability rather
than a probability, using these thresholds highlight areas in four
different classes of relative suitability, with the 10% being the
highest class followed in order by 5%, minimum training presence,
and unsuitable.

RESULTS
As expected, several predictor variables were correlated. Our
reduced, uncorrelated set included 11 predictors (Table 1;
Appendix 3). The lek model performed well with an average test
AUC value of 0.79 (Table 2). The lek locations used to train the
model captured much of the available environment in the region
of interest, with only 2.7% of the study area containing novel
environments. New Mexico and Oklahoma contributed most to
the novel area (Figs. 2 and 3).

Table 2. Metrics for the different Lesser Prairie-Chicken lek
suitability models including AUC values for the test and the
training data sets, percent of the study area classified as novel,
three threshold values to discretize the model (minimum training
presence [MTP], 5 percentile training presence threshold, [5 per.]
and the 10 percentile training presence [10 per.]), and the percent
of the study area (estimated occupied range [EOR]) and total area
classified as suitable by the thresholds.
 
Model AUC Novel

%
Threshold
method

Threshold
value

%
EOR

Suitable

Area
suitable

(ha)

Test Train

0.79 0.81 2.7 MTP 0.025 86 24,473,586
5 per. 0.173 40 11,296,572

With
State

10 per. 0.234 28 7,805,854
Without 0.78 0.79 2.7 MTP 0.021 90 25,684,016
State 5 per. 0.189 45 12,906,209

10 per. 0.255 34 9,512,251

Fig. 2. Lesser Prairie-Chicken lek suitability model predictions
including state as a predictor for the study area including (a)
the continuous habitat suitability index with areas exhibiting
novel environmental conditions overlaid and (b) three different
thresholds used for binary classification of the model results
into suitable and unsuitable habitat, including minimum
training presence (MTP), 5 percentile, and 10 percentile
thresholds.
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Table 3. Variable importance as measured by permutation importance and percent contribution for the top two Lesser Prairie-Chicken
lek suitability models. The top three predictors are highlighted in bold. Permutation importance is calculated by randomly permutating
the values for presence and background locations for each predictor while holding all other predictors constant. The percent contribution
is calculated based on the path the variable follows in reaching convergence. CRP indicates conservation reserve program; FAA indicates
Federal Aviation Administration.
 
Variable† With State Without State

Percent contribution Permutation
importance

Percent contribution Permutation
importance

State 35.9 34.5 n/a n/a
Known or suspected used land cover within 5000 m 21.9 31 13 19.8
Mean annual enhanced vegetation index 11.6 3.9 20.5 10.9
Topographic ruggedness index 9 9.4 22.9 20.3
Landscape condition 7.8 2.4 22 17.7
Distance to highways 3.3 2.6 4.2 5.5
Distance to transmission lines 3 4.1 4.9 6.4
Distance to secondary roads 2.7 2.3 5.2 5.4
Percent CRP within 5000 m neighborhood 2.1 5.5 1.1 3.4
Distance to FAA structure 1.7 2.8 3.8 6.7
Active well density with 1600 m neighborhood 1 1.4 2.5 3.9
†Variables explained in Table 1.

Fig. 3. Lesser Prairie-Chicken lek suitability model predictions
without state as a predictor for the study area including a) the
continuous habitat suitability index with areas exhibiting novel
environmental conditions overlaid and b) three different
thresholds used for binary classification of the model results in
to suitable and unsuitable habitat, including minimum training
presence (MTP), 5 percentile, and 10 percentile thresholds.

For the model including state, relative ranking of the top two
important predictors was the same regardless of method used to
calculate importance, with state and land cover contributing at
least 50% (Table 3). State was the most important predictor in the
model, with the New Mexico category, which also had the largest
sample size, associated with the greatest lek suitability. The
univariate response for the other state categories were similar, but
the Colorado response was associated with higher suitability when
the marginal effect was calculated (varying one variable while
holding all others constant at their mean value). Topographic
ruggedness was also a high predictor, ranking third according to
permutation importance, and closely followed by average EVI.
With removal of state, topographic ruggedness index and

landscape condition increased in importance, forming the top
three predictors along with land cover and again followed by EVI.
In both models there was a general trend of increasing suitability
with increasing percentage of known or suspected used land cover,
and a decreasing suitability with increasing topographic
ruggedness.  

Anthropogenic features also contributed to the models. In the
model with state, all anthropogenic predictors except landscape
condition had a relative contribution of less than 5% based on
permutation importance. However, if  viewed in aggregate their
contribution is 13.2% (sum of highways, transmission lines,
Federal Aviation Administration structures, and well density).
With removal of state, importance of anthropogenic features
besides landscape condition increased, with an additional four
features having contributions > 5% and a total sum of 27.9%. Of
the anthropogenic features, landscape condition was most
important, followed by transmission lines. Examining the
response curves (data not shown), landscape condition had a
sharp increase in suitability followed by a slow, noisy decrease.
Distance from transmission lines, highways, secondary roads, and
Federal Aviation Administration structures followed a similar
pattern, with a sharp increase in suitability as distance increased
(up to roughly 2.5 km [with a noticeable drop in steepness around
150 m], 1.2 km, 3 km, and 23 km, respectively) followed by a more
variable pattern dependent on the specific variable. Active well
density had a negative relationship with suitability, with a small
decrease with even one well followed by a very precipitous decline
in suitability with more than 5 wells in the 1600 m area around a
lek. Variable importance as measured by a change in training gain
using a jackknife test was similar for both training and testing
data.  

The habitat suitability index for the study area discriminated areas
within each state as having relatively high suitability compared
with other areas within our study region (Fig. 2a). As expected,
the three different thresholds we examined to discretize the
continuous habitat suitability index to suitable and unsuitable

http://www.ace-eco.org/vol11/iss1/art2/


Avian Conservation and Ecology 11(1): 2
http://www.ace-eco.org/vol11/iss1/art2/

habitat classifications differed. The minimum training presence
classified 86% of the study area as suitable, while the 10 percentile
threshold decreased this amount to 28% of the study area (Tables
2 and 4, Figs. 2b and 3b). There were minimal differences in spatial
predictions when state was removed (Tables 2 and 4, Figs. 2a and
3a).

Table 4. The total amount of the study area (area suitable) and
the percent of estimated occupied range (EOR) classified as
suitable by the thresholds for each state. Values are calculated for
the two suitability models, the one with state included as a
predictor and the one without state. MTP indicates minimum
training presence.
 
Model

State Area suitable (ha) % EOR suitable

MTP 5 per. 10 per. MTP 5 per. 10 per.

With State
CO 2,860,992 870,344 493,695 93 28 16
KS 6,872,667 2,303,264 1,509,102 79 26 17
NM 5,626,992 3,524,243 2,508,011 92 58 41
OK 3,602,578 1,999,512 1,446,533 90 50 36
TX 5,510,357 2,599,210 1,848,513 85 40 28

Without State
CO 2,897,445 1,344,552 872,113 95 44 28
KS 7,575,983 2,761,974 1,948,378 87 32 22
NM 5,489,255 3,084,874 2,244,086 90 51 37
OK 3,757,205 2,179,175 1,650,769 93 54 41
TX 5,964,128 3,535,634 2,796,906 92 54 43

Disagreement
CO 82,762 622,013 492,421 2.7 19.8 15.5
KS 796,997 932,203 815,643 9.1 10.7 9.3
NM 175,192 750,661 736,148 2.8 12.0 11.8
OK 185,057 443,986 468,267 4.4 10.1 11.1
TX 569,794 1,114,606 1,124,030 8.7 16.8 17.0

Examining the model predictions for each state, Colorado and
Oklahoma always had the lowest area of predicted suitable
habitat, but the percent of the study area for the state that was
suitable was high (93 and 90%, respectively; Table 4). With the
more conservative threshold values (5 and 10 percentile), Texas
and New Mexico had the largest amount of suitable habitat.
Comparing the two models, Colorado, Kansas, and Texas all had
increased area predicted as suitable when state was removed
(Appendix 4).

DISCUSSION
Given the threats facing declining Lesser Prairie-Chicken
populations (U.S. Fish and Wildlife Service 2014), there is a recent
interest in the use of spatial models to relate landscape features
with density or occurrence or to identify suitable habitat (Gregory
et al. 2011, Jarnevich and Laubhan 2011, Timmer et al. 2014).
These models are particularly useful when there is a need for
science-based decisions to balance energy development and
habitat requirements for species of conservation concern, such as
Lesser Prairie-Chickens (Jarnevich and Laubhan 2011).
Maximum entropy models estimate the statistical relationship
between the environment where a species occurs, i.e., presence-
only data, and the available environment (Elith et al. 2011).
Gregory et al. (2011) developed hierarchical entropy models to

categorize Greater Prairie-Chicken lek suitability in eastern
Kansas to target areas for conservation efforts. Jarnevich and
Laubhan (2011) also developed Maxent models of environmental
and anthropogenic features to predict relative habitat suitability
for Lesser Prairie-Chicken leks in Kansas to guide energy
development. Timmer et al. (2014) developed spatially-explicit
models, based on hierarchical distance sampling, to relate Lesser
Prairie-Chicken lek density with anthropogenic and vegetative
features in Texas. Previous models of prairie-chicken lek habitat
have been built for a subset of the entire range (e.g., Jarnevich
and Laubhan 2011, Timmer et al. 2014), but produced similar
results to our range-wide assessment. All models highlighted the
importance of anthropogenic features in predicting habitat
suitability for Lesser Prairie-Chicken leks. Further, range-wide
models such as ours identify species relationships with biotic and
abiotic variables and their response to disturbance across the
entire range, providing important information of range-wide
patterns for conservation and management.  

Although state was the most important predictor when included,
our results suggest vegetation type (percent used or suspected
used) was important as expected in the lek suitability model.
Including state as a predictor did not greatly alter model results,
and its importance was likely partly driven by sampling bias. These
results are not surprising because Lesser Prairie-Chickens
conduct most of their daily activities and complete their life cycle
within 1.5 km of known leks (Pitman et al. 2006, Boal and Pirius
2012, Grisham et al. 2014). Therefore, lek suitability should
increase in landscapes that contain high amounts of vegetation
classes known to be used by Lesser Prairie-Chickens, i.e.,
shrubland or grassland systems, for other life stages such as those
described by Hagen et al. (2013). Woodward et al. (2001) found
suitable composition of vegetation in a 4.8 km area around leks
varied between New Mexico, Texas, and Oklahoma for Lesser
Prairie-Chicken populations, but had similar patterns of
vegetation and land use. Here, we found that suitability increased
with increasing amounts of known or suspected used land cover
within a 5000 m around a lek. Landscapes, on average, comprised
86.5% native vegetation, which generally consisted of shrubland
though the amount varied by state (Woodward et al. 2001). In
Texas, Timmer et al. (2014) found percent grassland, total percent
of grassland and shrubland, paved road density, and active oil
and gas well density were the best predictors of lek density. They
observed an inverse relationship between the anthropogenic
variables and lek density. However, more complex relationships
were observed for the vegetative variables, e.g., a quadratic
relationship for percent grassland that varied by region. In
Cochran County, Texas, lek density was highest in native shinnery
oak (Quercus havardii) rangeland interspersed with some
cultivated land (5-37% grain sorghum fields; Crawford and Bolen
1976).  

Although avoidance of anthropogenic features has been
demonstrated in Kansas, Oklahoma, and Texas (Robel et al. 2004,
Pitman et al. 2005, Pruett et al. 2009, Hagen et al. 2011, Grisham
et al. 2014), the relative impact of these features remains unknown
across the remainder of the Lesser Prairie-Chicken’s distribution.
In Kansas, nest sites were located further from utility lines,
buildings, and improved roads than expected at random (Pitman
et al. 2006). Pruett et al. (2009) found few Lesser Prairie-Chicken
nests within 2 km of a power line in an Oklahoma study and only
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one Greater Prairie-Chicken nest within 2 km of the power line.
Hagen et al. (2011) found a general pattern of avoidance to
anthropogenic features in monthly home ranges in Kansas, and
a before-after-control-impact design revealed that Lesser Prairie-
Chicken monthly use areas were less likely to include utility lines.
Although the causative agents behind avoidance of
anthropogenic features remain unknown, it may be due to the
functional elimination of suitable habitat (Robel et al. 2004)
through general avoidance of noise, the potential for predators
to perch on features, or a neophobic response to these features
from evolving on a landscape devoid of tall structures. Our models
provide evidence that these factors are important across the entire
range of Lesser Prairie-Chickens, with a positive relationship
between suitability and distance to features over distances
examined in the above studies.  

The Lesser Prairie-Chicken data available to create the models
had several biases related to sampling. We attempted to control
for some of the problems by limiting selection of background
points, but the bias may still have affected model results. By
limiting background point selection to areas we knew were
sampled, we left out areas on the edges of the historic range that
could still potentially provide some habitat. Inclusion of these
other areas could potentially alter model results and variable
relationships. Several different methods of assessing uncertainty
in the model can be used to guide model usage. Locations where
the two models did not overlap, had high standard deviation
among replicate runs, or had novel environments, e.g., portions
of New Mexico and Oklahoma, would be good places to target
sampling to improve future modeling efforts (Crall et al. 2013).
Predictor variables also had uncertainty, such as the three land
cover data sets that were merged to create the land cover predictor.
These were created at different points in time, which may affect
model results. However, the NLCD evaluation, visualization and
analysis tool indicated minimal land cover change for each state
within our study region for 2001 to 2011 (0.46% of Kansas, 3.62%
of Texas, 2.12% of Oklahoma, 1.34% of Colorado, and 0.95% of
New Mexico; https://www.sciencebase.gov/catalog/
item/541369e9e4b0239f1986bcc6). By collapsing to two
categories (known or suspected used versus not used), we may
have minimized some of these land cover differences. All three
data sets were created during our sampling time frame.  

Recently a range-wide aerial survey for Lesser Prairie-Chickens
has been developed and is now operational (McDonald et al.
2014). As these data continue to be collected, they could provide
the basis for better species distribution models which could
incorporate abundance information to move beyond simple
habitat suitability models. The data have already been used to
estimate probability of occupancy range-wide (L. McDonald, F.
Hornsby, T. Ritz, and G. Gardner 2013, unpublished data).
Additionally, some nest data have been aggregated across the five
state range and could be used to develop models for nesting habitat
suitability. Adding another life history event would provide
another layer of information that managers could use to inform
decision making.

Management implications
Loiselle et al. (2003) cautioned against overpredicting suitable
habitat because this may misguide conservation efforts. Using a
higher threshold value such as 5 or 10 percentile training presence

could minimize false-positive errors by limiting locations in less
optimal habitat. However, these thresholds misclassify some
known leks as being in unsuitable habitat. These models can then
be used for targeting of conservation actions such as easements
and management contracts. Using the moderate 5 percentile
threshold, more than 50% of the study area was classified as
unsuitable and focusing development within these areas could
potentially minimize impact to Lesser Prairie-Chickens. The three
thresholds presented provide a way to rank habitat suitability
depending on management objectives, with the 10 percentile
threshold highlighting areas with the highest relative suitability
compared to the others.  

These results have been integrated with other information
regarding Lesser Prairie-Chicken habitat including focal areas
determined by teams in each state as priority locations with intact
suitable habitat (with suitability based on the Maxent models),
habitat corridors, and the estimated occupied range based on state
surveys to produce a coarse scale map to classify the historic range
into four classes of conservation priority. This tool, the Southern
Great Plains Crucial Habitat Assessment Tool (http://kars.ku.
edu/maps/sgpchat/), can be used to guide siting of development
and targeting of conservation. This tool is a component of the
Western Association of Fish and Wildlife Agencies mitigation
framework as described in the Lesser Prairie-Chicken Range-wide
Conservation Plan (Van Pelt et al. 2013).

CONCLUSION
These models represent a collaborative effort across management
agencies to work toward the conservation of a threatened species.
We used existing data for a single, well-observed range-wide
habitat use, lekking, to make inferences about general habitat
requirements for a species. These results provide information that
can be used to meet management objectives and potentially guide
further sampling efforts in the absence of other information.
Information on habitat use for other life stages could be useful in
better quantifying seasonal habitat needs (D’Elia et al. 2015).
These analyses represent a means to utilize existing data from
multiple sources for a single use to make inferences regarding
locating energy development and conservation efforts.
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Appendix 1. Originally we used the National Land cover Database (NLCD) for all five states, 
calculating percent of the area around a pixel that was shrubland, percent grassland/ herbaceous, 
and percent pasture/ hay.  These vegetation data, however, resulted in what was agreed as great 
over-prediction in the southwest driven by the NLCD shrubland classification including large 
expanses of unused vegetation.  Texas had recently developed a new land cover, Ecological 
Mapping Systems of Texas for Texas (Elliot et al. 2014),  which was thought to be more accurate 
for the region than the NLCD.  For New Mexico the most accurate land cover was believed to be 
the Southwest Regional Gap Land Cover Dataset.  Cover categories were selected by each state’s 
biologists as known used or suspected used (included below) with other categories assumed as 
unused.  Lek location data were examined in relation to the vegetation categories along with 
biological knowledge.   

 

Table A1.1. Land cover classes in the National Land Cover Dataset for Colorado, Kansas, and 
Oklahoma. 

Class Area (ha) 

Shrubland (Dwarf Scrub and Shrub/ Scrub) 703,436

Grassland/ Herbaceous 7,350,080

Pasture/ Hay 233,199

 
  



Table A1.2. Classes included from the Southwest Regional Gap Land Cover for New Mexico. 

Class Area (ha) 
Apacherian-Chihuahuan Mesquite Upland Scrub 1,156,120
Apacherian-Chihuahuan Semi-Desert Grassland and 
Steppe 549,528
Chihuahuan Creosotebush, Mixed Desert and Thorn 
Scrub 627,038
Chihuahuan Gypsophilous Grassland and Steppe 4,784
Chihuahuan Mixed Salt Desert Scrub 29,570
Chihuahuan Sandy Plains Semi-Desert Grassland 14,432
Chihuahuan Stabilized Coppice Dune and Sand Flat 
Scrub 11,946
Chihuahuan Succulent Desert Scrub 447
Coahuilan Chaparral 8,064
Colorado Plateau Mixed Low Sagebrush Shrubland 217
Inter-Mountain Basins Montane Sagebrush Steppe 160
Inter-Mountain Basins Semi-Desert Grassland 715
Inter-Mountain Basins Semi-Desert Shrub Steppe 67,798
Madrean Juniper Savanna 15,304
Mogollon Chaparral 4,001
Rocky Mountain Gambel Oak-Mixed Montane 
Shrubland 3,168
Rocky Mountain Lower Montane-Foothill Shrubland 7,100
Southern Rocky Mountain Juniper Woodland and 
Savanna 37,141
Southern Rocky Mountain Montane-Subalpine 
Grassland 875
Western Great Plains Foothill and Piedmont Grassland 448
Western Great Plains Mesquite Woodland and 
Shrubland 108,558
Western Great Plains Shortgrass Prairie 2,470,784

 

  



Table A1.3. Classes from the Ecological Mapping Systems of Texas for Texas. 

Class Area (ha) 

CRP / Other Improved Grasslands 2,341,747

High Plains: Sand Prairie 310,563

High Plains: Sandhill Shinnery Duneland 35,312

High Plains: Sandy Deciduous Shrubland 195,982

High Plains: Sandy Shinnery Shrubland 35,232

High Plains: Shortgrass Prairie 963,522

Native Invasive: Deciduous Shrubland 52,794

Native Invasive: Sand Sage Shrubland 459,313

Rolling Plains: Mixed Grass Prairie 840

 



Appendix 2. Metrics for the different lesser prairie-chicken lek suitability models including two 
different vegetation neighborhood sizes (1,600 m and 5,000 m) and three different layers related 
to wells (count within 1,600 m, count within 800 m, and distance to nearest well).  Metrics in the 
table include AUC values for the test and the training data sets, percent of the historic area 
classified as novel, two threshold values to discretize the model (minimum training presence 
[MTP] and the 10 percentile training presence [10 per.]), and the percent of the historic area 
classified as known used by the thresholds.  Distance to wells resulted in a much greater amount 
of novel area, so we only retained well density.  Assessment metrics were similar for the 
remaining models.  Experts agreed that the 1,600 m vegetation models were over predicting 
known used habitat, so we chose 5,000 m.  Well count within 1,600 m performed slightly better 
than well count within 800 m. 

Model AUC  Threshold 
value 

Known used 
(%) 

Vegetation 
neighborhood 

Well 
layer 

Test Train Novel 
% 

MTP  10 per. MTP 10 
per. 

1,600m Count 
1600m 

0.819 0.836 32.1 0.018 0.179 74 13 

Count 
800m 

0.814 0.839 31.1 0.019 0.182 73 12 

Distance 
to 

0.827 0.844 49.8 0.022 0.18 64 9 

5,000m Count 
1,600m 

0.805 0.829 35 0.024 0.2 52 10 

Count 
800m 

0.803 0.829 34.1 0.021 0.198 56 10 

Distance 
to 

0.81 0.838 50.7 0.023 0.189 46 9 

 



Appendix 3. Correlation matrix produced by the Software for Assisted Habitat Modeling 

CovariateCorrelationAndSelection module showing the 11 predictor variables that were 

uncorrelated below the 0.7 threshold we used.  The diagonal shows a histogram for each 

predictor.  Above the diagonal is the correlation coefficient for each pair, with text scaled by size 

of the coefficient.  Where an ‘S’ is present in the bottom right the value is the Spearman rank 

coefficient; otherwise it is the Pearson’s coefficient.  Below the diagonal is a scatterplot of the 

presence (red) and background (yellow) locations for each pair. 

 



Appendix 4. Lesser prairie-chicken lek suitability agreement between models including and 
excluding state as a categorical variable, including agreement between a) the minimum training 
presence threshold, b) the five percentile threshold, and c) the ten percentile threshold.  The 
‘maybe suitable’ category indicates locations where one model classified a location as suitable 
while the other classified it as unsuitable. 
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