
VOLUME 11, ISSUE 2, ARTICLE 8
Crewe, T. L., P. D. Taylor, and D. Lepage. 2016. Temporal aggregation of migration counts can improve accuracy and precision of trends. Avian
Conservation and Ecology 11(2):8. http://dx.doi.org/10.5751/ACE-00907-110208
Copyright © 2016 by the author(s). Published here under license by the Resilience Alliance.

Research Paper

Temporal aggregation of migration counts can improve accuracy and
precision of trends
Tara L. Crewe 1,2, Philip D. Taylor 2,3 and Denis Lepage 2

1Western University, Canada, 2Bird Studies Canada, 3Acadia University, Canada

ABSTRACT. Temporal replicate counts are often aggregated to improve model fit by reducing zero-inflation and count variability,
and in the case of migration counts collected hourly throughout a migration, allows one to ignore nonindependence. However,
aggregation can represent a loss of potentially useful information on the hourly or seasonal distribution of counts, which might impact
our ability to estimate reliable trends. We simulated 20-year hourly raptor migration count datasets with known rate of change to test
the effect of aggregating hourly counts to daily or annual totals on our ability to recover known trend. We simulated data for three
types of species, to test whether results varied with species abundance or migration strategy: a commonly detected species, e.g., Northern
Harrier, Circus cyaneus; a rarely detected species, e.g., Peregrine Falcon, Falco peregrinus; and a species typically counted in large
aggregations with overdispersed counts, e.g., Broad-winged Hawk, Buteo platypterus. We compared accuracy and precision of estimated
trends across species and count types (hourly/daily/annual) using hierarchical models that assumed a Poisson, negative binomial (NB)
or zero-inflated negative binomial (ZINB) count distribution. We found little benefit of modeling zero-inflation or of modeling the
hourly distribution of migration counts. For the rare species, trends analyzed using daily totals and an NB or ZINB data distribution
resulted in a higher probability of detecting an accurate and precise trend. In contrast, trends of the common and overdispersed species
benefited from aggregation to annual totals, and for the overdispersed species in particular, trends estimating using annual totals were
more precise, and resulted in lower probabilities of estimating a trend (1) in the wrong direction, or (2) with credible intervals that
excluded the true trend, as compared with hourly and daily counts.

Le regroupement à différentes échelles temporelles de dénombrements d'oiseaux en migration peut
améliorer l'exactitude et la précision des tendances
RÉSUMÉ. Le regroupement des dénombrements répétés dans le temps est une technique souvent utilisée pour réduire la
surreprésentation de zéros et la variabilité des dénombrements, et ultimement améliorer l'ajustement des modèles. Dans les cas de
dénombrements d'oiseaux en migration faits à chaque heure durant la période de migration, ce regroupement des données permet aussi
d'ignorer la non-indépendance. Toutefois, ce regroupement peut mener à une perte d'informations potentiellement utiles sur la
distribution horaire ou saisonnière des dénombrements, pouvant en retour affecter notre capacité à obtenir des estimations fiables des
tendances. Nous avons simulé des données de dénombrements de rapaces en migration réalisés à chaque heure pendant 20 ans et dont
le taux de changement était connu afin de tester l'effet du regroupement des dénombrements faits à l'heure en totaux quotidiens ou
annuels sur notre capacité de détecter la tendance connue. Nous avons simulé des données pour trois types d'espèces dans le but de voir
si les résultats variaient avec l'abondance de l'espèce ou sa stratégie de migration : une espèce communément détectée, p. ex. le Busard
St-Martin, Circus cyaneus; une espèce rarement détectée, p. ex. le Faucon pèlerin, Falco peregrinus; et une espèce typiquement dénombrée
en gros groupes avec des dénombrements surdispersés, p. ex. la Petite Buse, Buteo platypterus. Nous avons comparé l'exactitude et la
précision des tendances estimées pour les trois espèces et les types de dénombrements (à l'heure/quotidiens/annuels) au moyen de
modèles hiérarchiques qui assumaient une distribution des données selon les lois de Poisson, binomiale négative (BN) ou binomiale
négative avec une surreprésentation de zéros (BNSZ). Nous avons constaté qu'il y avait peu d'avantages à modéliser la surreprésentation
de zéros ou à modéliser la distribution horaire des dénombrements faits en migration. Pour les espèces rares, les tendances analysées à
l'aide des totaux quotidiens et une distribution des données BN ou BNSZ ont montré une plus grande probabilité de détecter une
tendance exacte et précise. À l'opposé, les tendances des espèces communes ou dont les dénombrements étaient surdispersés gagnaient
à être regroupées en totaux annuels et, particulièrement pour les espèces surdispersées, les tendances estimées au moyen des totaux
annuels étaient plus précises et avaient des probabilités plus faibles d'estimer une tendance (1) dans la mauvaise direction ou (2) avec
des intervalles de crédibilité qui excluaient la vraie tendance, comparativement aux dénombrements faits à l'heure ou au quotidien.
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INTRODUCTION
Population monitoring programs often use temporal or spatial
replicate counts of animals to estimate long-term population
trends (Link and Sauer 2002, Farmer et al. 2007, Kéry et al. 2009,
Fedy and Aldridge 2011). During analysis, counts are often
aggregated, for example, by taking the maximum abundance
across repeated visits of an assumed closed population (Fedy and
Aldridge 2011), or total abundance across assumed independent
stops along a survey route (Link et al. 2008). Similarly, hourly or
daily counts of the number of individuals migrating past or
stopped at a specific geographic location (migration counts),
which are assumed to detect a new cohort of migrants during
each sampling occasion (Dunn 2005), are also often aggregated
to daily or annual totals to estimate long-term trends in the count
population (Farmer et al. 2007, Knudsen et al. 2007). Aggregating
counts to a higher level can reduce zero-inflation and count
variability, and allows one to ignore or “assume away” temporal
autocorrelation (nonindependence) of hourly and/or daily
migration counts. This has the potential to improve model fit and
increase precision of trends, particularly for species with highly
variable counts (Miller et al. 2002).  

However, the temporal aggregation of counts can result in the
loss of potentially useful information. Analytical methods to
estimate population trends from count data are in a constant state
of development (Hochachka and Fiedler 2008, Kéry and Royle
2010, Dail and Madsen 2011, Ross et al. 2012, Dennis et al. 2016),
and methods are now available that can garner information from
nonaggregated count data that was lost using previous analysis
techniques. This includes the estimation of detection probability
from repeated counts (Kéry et al. 2009, Kéry and Royle 2010) and
home range centers from spatial mark-recapture data (Royle et
al. 2013). In terms of typical hourly raptor migration counts, the
realized count is a product of the size of the migratory population
(N) and the probability that migrants will be detected (p) at the
count site (Counts = N×p; Nichols et al. 2009). In other words,
detection and abundance are confounded and variation in
detection cannot be estimated without the collection of additional
data (e.g., a double-surveyor approach can be used to estimate
one component of detection probability, i.e., observer detection
given presence during the count period; Berthiaume et al. 2009).
Thus, the primary information lost by aggregating hourly raptor
migration counts to daily or annual totals is information about
the hourly and seasonal distribution of counts. Modeling the
seasonal distribution of counts can account for missing
observations, which may improve the precision of long-term
trends (Dennis et al. 2013).  

Further, in the past decade, regression techniques that
accommodate overdispersed, zero-inflated, and temporally
autocorrelated counts have become more common and accessible
(e.g., Ross et al. 2012). A negative binomial distribution of counts
is often assumed when variance is larger than the mean, and a
zero-inflation parameter can model excess zero-observation
counts that arise from true absence or nondetection given presence
(Zipkin et al. 2010, Ross et al. 2012). Importantly, the ability to
model the hierarchical structure of errors among hourly, daily,
and annual counts, and to acknowledge and model temporal
autocorrelation of counts, can result in more realistic estimates
of precision that better reflect the true variability in the data (Ross
et al. 2012). The effect of temporal aggregation of hourly raptor
migration counts on the precision and accuracy of estimated

trends, and whether aggregation is necessary given the more recent
development of analytical tools that accommodate overdispersion,
zero-inflation, and random errors, have not been validated using
data with known underlying trend.  

In this paper, we used simulated hourly raptor migration counts
with known underlying rate of change, consistent effort, and
constant detection probability over time, to test the effect of
temporal aggregation of counts on accuracy and precision of
estimated trends. We compared the recovery of known trend
among raw hourly counts and daily or annual totals corrected for
sampling effort. To test whether the effect of temporal aggregation
of counts varied with species abundance or migration strategy,
we simulated data to represent three types of count distributions,
following the methodology of Crewe et al. (2016a): a commonly
detected species (hereafter “common”), e.g., Northern Harrier,
Circus cyaneus (Crewe et al. 2013); a rarely detected species with
a high proportion of zero-observation counts (hereafter “rare”),
e.g. Peregrine Falcon, Falco peregrinus (Crewe et al. 2013); and a
common but super-flocking species with highly overdispersed
counts (hereafter “over-dispersed”), e.g., Broad-winged Hawk,
Buteo platypterus (Crewe et al. 2013). Further, we compared the
recovery of simulated trend between a Poisson data model and a
negative binomial data model with and without a zero-inflation
parameter, to test whether modeling overdispersion and excess
zero-observation counts improved model fit.  

Currently, rare species are often excluded from trend analyses
using migration counts (Bildstein et al. 2008, Crewe et al. 2008),
and trend analyses for raptor migration are often restricted to
sites that submit hourly counts (e.g., the Raptor Population Index,
http://rpi-project.org/index.php). A large number of species and
sites are thus excluded from trend updates. Results from this paper
will help inform whether, given the tools currently available to
data analysts, aggregation of migration counts is necessary or
recommended in the estimation of population trends, and thus,
whether the current restriction of analyses based on species
abundance or submission of hourly count data is warranted.

METHODS

Real migration count data
We acquired hourly migration count data online through Nature
Counts (http://naturecounts.ca/) for three raptor species detected
at Hawk Mountain Sanctuary, Pennsylvania (1991-2010), which
represented the following: (1) a commonly detected migrant with
low variation in counts among hours, days, and years (Northern
Harrier); (2) a rarely detected migrant with low counts, but
intermediate levels of variation in counts among hours and days
(Peregrine Falcon); and (3) a commonly detected, super-flocking
migrant with highly overdispersed hourly and daily counts (i.e.,
counts varied widely in magnitude among hours and days; Broad-
winged Hawk). Migration counts were collected as the total
number of individuals of each species detected flying overhead
on an hourly basis during daylight hours (Barber et al. 2001). We
included only the inner 95th percentile of observation days across
years for each species, to exclude outlying observations and excess
zero-observation counts at the tail-ends of the migration. We also
included only the inner 99th percentile of observation hours
across days and years for each species, to exclude excess zero-
observations and hours of the day that were not typically sampled.
We then summarized counts to calculate the mean, median and
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coefficient of variation (CV) of annual, daily, and hourly counts,
and of the proportion of 0-observation hours and days (Table
A1.1).

Simulated migration count data
We simulated 100 20-year migration count datasets for all three
species in R (R Core Team 2014) using the simulation model
described in Crewe et al. (2016a), and assuming a decline in the
count population of 3.6%year-1. The simulation model assumed
a normal density for the daily and hourly distribution of counts,
which allowed peak availability of migrants to occur midseason
or midday, with added random and stochastic error (Crewe et al.
2016a). The daily count distribution was further modified by
including a binomial probability that available birds were
recruited to, or arrived at, the count site each day. Below a specified
threshold, no birds arrived at the site on a given day, thus
introducing zero-observation days, and resulting in a seasonal
distribution of counts that more closely approximated a gamma
than a normal distribution (see Crewe et al. 2016a for details and
R code). Simulation parameter values (Table A2.1) were chosen
such that simulated data approximated the distribution of real
hourly and daily migration count data (Tables A2.1, A3.1, Figs.
A3.1–A3.6).  

Because datasets were simulated to have complete hourly, daily,
and annual coverage at a site, we dropped observations from each
dataset to mimic incomplete sampling coverage, which might
occur, for example, at sites dependent on volunteers for data
collection. To do so, we included counts collected on day j and
year i (nij) with binomial probability 0.8 (nij = binom(1, 0.8)), which
resulted in the random exclusion of approximately 20% of
observation days from each simulated dataset. For the remaining
observation days, we dropped zero to six hours from the beginning
or end of each day according to a Poisson distribution
(nHoursDroppedij = Pois(λij = 1)), which allowed a higher
proportion of days having no hours dropped, and a decreasing
proportion of days having one to six hours dropped from a given
day. Hours were dropped from the beginning of the day with
binomial probability 0.5, which allowed an approximately equal
distribution of days with hours being dropped from the beginning
or end of the day, i.e., we simulated random, not systematic,
variation in sampling effort over time. We did not drop hours
midday, because it is more likely that surveys would either start
late or end early on a given day depending on observer availability.
We examined correspondence between real and simulated count
distributions using quantile-quantile (qq) plots (qqplot function,
R version 3.0.3; R Core Team 2014; Table A3.1) and plots of the
daily and hourly distribution of counts (Figs. A3.1–A3.6). A
Pearson correlation of qq-scores near 1 (an approximately 1:1
relationship) suggests a similar distribution of counts, even if
counts in one dataset tend to be larger than in the other.  

For each of the simulated datasets, we aggregated hourly counts
into daily and annual totals by summing all counts across days
and years, respectively. The number of hours sampled each day
and year was also calculated and used as an offset variable to
account for daily or annual variation in sampling effort in the
regression analyses.

Statistical analyses
We analyzed all simulated datasets in a Bayesian framework using
Integrated Nested Laplace Approximation (R-INLA; Rue et al.

2009) in R (version 3.0.3; R Core Team 2014). For a given count
type (hourly, daily, or annual totals), we compared models that
assumed (1) a Poisson data distribution where 
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; or (3) a zero-inflated NB (ZINB) data distribution (hourly and
daily data only), where 
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An NB distribution is often assumed for overdispersed counts
with variance greater than the mean, but will approximate a
Poisson distribution when variance approaches the mean (Bolker
2008). A ZINB distribution was not considered for annual counts,
because aggregating to annual totals would negate the need for a
zero-inflated model. We fit all data models using log-linear
regression, with a continuous year effect to estimate the overall
log-linear trend in annual, daily, or hourly migration counts (Ross
et al. 2012), and first and second order polynomial effects for day
and hour to model the seasonal and hourly distribution of counts,
respectively, where appropriate. Thus, for counts collected on year
i, day j, and hour k, the linear regression models for annual, daily
and hourly counts were: 
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where γi is a hierarchical term to account for random variation in
counts among years 
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, and ηij and δk are first order autoregressive (AR1) hierarchical
terms to account for temporal autocorrelation (Rue et al. 2009,
Ross et al. 2012) among days within years and among hours,
respectively. We did not include an AR1 structure on the random
year effect because estimated correlation (Rho) of the AR1 effect
for year was 1% or less across all simulated datasets for each
species. To account for the simulated random variability in daily
sampling effort, we included number of hours sampled each day
or year as an offset variable in the daily and annual regressions,
respectively. We back-transformed the year coefficient estimate
into a rate of change on the response scale (%year-1) using
100×(exp[year coefficient]-1).  
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Table 1. Parameter estimates from linear models (Gaussian distribution) that examined the influence of count type (hourly, daily, or
annual), model structure (negative binomial [NB], zero-inflated NB [ZINB], or Poisson [POIS]), and their interaction on bias (estimated
- simulated trend) or half-width of the credible interval (0.5×[upper credible limit - lower credible limit]) of trends estimated for datasets
simulated to represent a commonly detected species (e.g., Northern Harrier, Circus cyaneus, NOHA), a rarely detected species with
zero-inflated counts (e.g., Peregrine Falcon, Falco peregrinus, PEFA), or a super-flocking species with highly overdispersed counts (e.
g., Broad-winged Hawk, Buteo platypterus, BWHA).
 

Bias Precision

Species Parameter Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|)

NOHA Intercept (Hourly, NB) -0.40 0.09 -4.66 < 0.01 1.57 0.03 52.16 < 0.01
Daily 0.29 0.12 2.42 0.02 -0.13 0.04 -3.04 < 0.01
Annual 0.32 0.12 2.67 0.01 1.38 0.04 32.39 < 0.01
ZINB 0.01 0.12 0.05 0.96 -0.01 0.04 -0.31 0.76
POIS 0.15 0.12 1.24 0.21 0.03 0.04 0.73 0.47
Daily:ZINB 0.14 0.17 0.83 0.41 0.00 0.06 0.08 0.94
Daily:POIS -0.28 0.17 -1.63 0.10 0.13 0.06 2.21 0.03
Annual:POIS -0.03 0.17 -0.16 0.87 -1.38 0.06 -23.05 < 0.01

PEFA Intercept (Hourly, NB) -0.06 0.14 -0.43 0.67 2.48 0.03 88.01 < 0.01
Daily 0.12 0.20 0.57 0.57 0.31 0.04 7.79 < 0.01
Annual 0.04 0.20 0.22 0.83 1.31 0.04 32.84 < 0.01
ZINB 0.25 0.20 1.25 0.21 -0.23 0.04 -5.81 < 0.01
POIS -0.09 0.21 -0.41 0.68 0.28 0.04 6.84 < 0.01
Daily:ZINB -0.23 0.29 -0.78 0.43 0.14 0.06 2.45 0.01
Daily:POIS -0.03 0.29 -0.11 0.91 -0.32 0.06 -5.64 < 0.01
Annual:POIS 0.35 0.29 1.22 0.22 -2.02 0.06 -35.56 < 0.01

BWHA Intercept (Hourly, NB) -0.47 0.34 -1.38 0.17 6.66 0.09 73.00 < 0.01
Daily 0.21 0.48 0.44 0.66 0.66 0.13 5.09 < 0.01
Annual 0.35 0.48 0.73 0.47 -2.61 0.13 -20.22 < 0.01
ZINB -0.02 0.49 -0.04 0.96 -0.01 0.13 -0.08 0.94
POIS 0.33 0.48 0.69 0.49 -0.10 0.13 -0.79 0.43
Daily:ZINB 0.15 0.69 0.22 0.83 -0.27 0.18 -1.46 0.15
Daily:POIS -0.40 0.69 -0.58 0.56 -0.71 0.18 -3.90 < 0.01
Annual:POIS -0.40 0.68 -0.59 0.56 -0.49 0.18 -2.69 0.01

For each species, we used the trends and credible intervals
estimated for each simulated dataset d to test whether bias (mean
difference between estimated and simulated trends) and precision
(mean of 0.5*[upper credible interval-lower credible interval])
varied with count type (hourly, daily, or annual) and model
structure (NB, ZINB, or POIS). We fit linear models that assumed
a Gaussian data distribution (MASS function, Venables and
Ripley 2002; R version 3.0.3, R Core Team 2014), and for each
species, the difference between true and estimated trend or the
half-width of the credible interval was the response variable (n =
100 datasets × 3 count types × 2 model structures = 600 bias
estimates), and data type (hourly, daily, annual), model structure
(NB, ZINB, POIS) and their interaction were explanatory factors:
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Model fit was assessed by examining plots of residuals.  

To better understand how accuracy and precision of estimated
trends influenced inference drawn, we also assessed for each
species, data type, and model structure (1) proportion of
simulated datasets where a trend was estimated with credible
intervals (CI) that included the simulated trend and did not
include zero (hereafter “correct trend”); (2) proportion of
simulated datasets with credible intervals that excluded the true
trend (hereafter “error in CI”); (3) proportion of simulated
datasets with estimated trend in the wrong direction (hereafter

“error in direction”); and (4) proportion of simulated datasets
with an error in direction and an error in CI (hereafter “error in
CI/Dir”).

RESULTS
Overall, trends tended to be negatively biased (95% CI did not
overlap the true trend) for the common species when trends were
estimated using hourly counts, and when trends were estimated
using daily totals and assuming a Poisson distribution of counts
(Table 1, Fig.1, Fig. A4.1). Trends for the rare and over-dispersed
species were unbiased, with 95% CI that included the true trend,
for all data distributions and model structures (Fig. 1).  

For the common and rare species, a similar distribution of trend
estimates suggests that precision of the three model types was
comparable among hourly, daily, and annual counts (Fig. 1).
However, trends were less precise (larger CI) for both the common
and rare species when annual totals were analyzed assuming a
negative binomial distribution, suggesting poor model fit (Table
1, Fig. 2). In contrast, both the precision of the models (Fig. 1)
and the precision of trends (Fig. 2) improved when counts of the
overdispersed species were analyzed as annual totals as compared
with hourly and daily counts.  

For the common species, a Poisson data model resulted in
comparable probabilities of detecting a correct trend, and
comparable probabilities of error in CI, error in direction, and
error in CI/Direction across all three data types (hourly, daily,
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Fig. 1. Box and whisker plots showing estimated trend %year-1 across 100 datasets simulated to represent a
commonly detected species (e.g., Northern Harrier, Circus cyaneus), a rarely detected species with zero-inflated
counts (e.g., Peregrine Falcon, Falco peregrinus) and a super-flocking species with highly over-dispersed (OD)
counts (e.g., Broad-winged Hawk, Buteo platypterus). Results are shown for trends estimated using hourly, daily,
and annual migration counts, and assuming a negative binomial (NB), zero-inflated NB (ZINB; hourly and
daily data only), or Poisson (POIS) distribution of counts. Boxplots show 25th, 50th, 75th quartiles of the
estimates, with black whiskers extending 1.5*interquartile range in each direction. Mean (± 95% CI) across
simulated datasets are also shown by black dots with associated grey error bars. The solid horizontal line depicts
the true, simulated trend of -3.6%year-1.

annual; Fig. 3). For the rare species, the probability of estimating
a correct trend was greatest when hourly or daily counts were
analyzed assuming an NB or ZINB data distribution, though the
greater precision of hourly counts resulted in a slightly higher

probability of estimating a trend with error in CI compared with
daily and annual counts (Fig. 3). In contrast, estimating trends
for the overdispersed species using annual counts and assuming
a Poisson data distribution maximized the probability of
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Fig. 3. Proportion of 100 simulated datasets where (1) simulated trend fell within the 95% credible
intervals (CI) of the estimated trend and CI did not include zero (“Correct”); (2) simulated trend
fell outside the CI of the estimated trend (inaccurate; “Error CI”); (3) estimated trend was positive,
i.e., in the wrong direction (“Error Dir”); and (4) estimated trend was in the wrong direction and
credible intervals did not include the simulated trend (“Error CI/Dir”). Results are shown for data
simulated to represent a commonly detected species (e.g., Northern Harrier, Circus cyaneus,
NOHA), a rarely detected species with zero-inflated counts (e.g., Peregrine Falcon, Falco
peregrinus, PEFA), and a super-flocking species with highly overdispersed counts (e.g., Broad-
winged Hawk, Buteo platypterus, BWHA), analyzed as hourly, daily, or annual counts, and fit
assuming either a negative binomial (NB) or zero-inflated NB (ZINB; hourly and daily data only),
or Poisson (POIS) data model.

detecting a correct trend and minimized the probability of errors
compared with the NB model and hourly and daily counts, though
differences between data models were small. In no case was a
significant error in direction detected for either species, i.e., an
error in direction where the CI of the trend excluded both the true
trend and zero.

DISCUSSION
Overall, our results suggest that there is no apparent reason to
not aggregate hourly raptor migration count data into daily or
annual totals for the analysis of long-term trends, provided a
temporal trend in effort or other factor influencing detection
probability has not occurred. For the overdispersed species in
particular, a Poisson data model fit to annual counts minimized
variability around mean bias and resulted in more precise trend
estimates compared with hourly or daily counts or a negative
binomial data distribution. This resulted in lower probabilities of
estimating trends with CI that excluded the true trend and of
estimating trends in the wrong direction. In general, these results

support the work of Miller et al. (2002), who found that
population trend was more precise when highly overdispersed
raptor migration counts were analyzed as annual as opposed to
daily totals. In contrast, trends of the rare species became less
precise (larger CI) with aggregation from hourly to daily and
annual totals. For this species, estimating trends using daily counts
and assuming an NB data distribution appeared to balance
maximizing the probability of detecting a correct trend (CI
included true trend and excluded zero) and minimizing the
probabilities of (1) estimating a trend with credible intervals that
excluded the true trend or (2) estimating a trend in the wrong
direction.  

Hourly counts of the common species resulted in negatively
biased trends. The same was not observed for the rare and
overdispersed species, though with more simulations and an
associated decline in variance, a difference in bias among data
types might also become apparent for the overdispersed species.
In general, we would not expect a difference in mean trend among
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data types given a good model fit and simulation model.
Comparisons of simulated and real data suggest the overall
distribution of hourly counts were comparable. However,
compared to the rare and overdispersed species, counts of the
common species were spread over a longer migration season
(Appendix 2), and as a result, counts were more consistent over
the season, with less of a migration peak. Further, the negative
binomial dispersion parameters (k.day and k.hr, Appendix 2)
were specified to more closely reflect a Poisson distribution of
counts, and the negative binomial distribution tended to result in
a more negative mean trend than the Poisson model for hourly
data. Thus, a combination of simulation model specification and
poor model fit might have led to the observed bias in trends for
hourly (all models) and daily (Poisson model) counts of the
common species.  

Compared with an NB or Poisson data model, a ZINB data model
applied to hourly or daily counts did not improve bias or precision
of trends for any of the three species. Accounting for zero-
inflation in addition to assuming overdispersed counts through
an NB data distribution likely resulted in an overparameterized
model. Further, in these simulations, additional zero observations
were introduced to the data in response to simulated weather
conditions. We did not subsequently include weather as a
covariate to model zero-inflation independently. Doing so may
have improved the performance of the ZINB model over the NB
model, particularly for hourly migration counts.  

The use of migration counts to estimate a population trend relies
on the assumption that the relationship between migration counts
and the population they are monitoring has not changed
directionally over time. In other words, we assume that factors
influencing the proportion of the monitored population detected
each year varied randomly and not systematically over time
(Crewe et al. 2015). In this study, we simulated random variation
in sampling effort over time. Systematic variation in sampling
effort, migration route (Vardanis et al. 2011), breeding and
wintering distribution (Paprocki et al. 2014), or in stopover
duration in response to climate change or other extrinsic factor,
has the potential to bias population trends and lead to poor
inference from results (Kéry and Schmidt 2008, Crewe et al. 2015).
We did not assess whether or how aggregating counts in the
presence of a systematic change in detection might affect the
accuracy and precision of trends, though the simulations
described here could be modified for that purpose. The analysis
of real migration count data should take potential sources of
detection bias into consideration, either by including ancillary
data (e.g., weather, effort, habitat, stopover duration,
methodology) as covariates, or, at a minimum, by explicitly stating
how potential sources of bias might impact the results reported.
Combining alternative sources of data from throughout the
annual life cycle (Link et al. 2008, Paprocki et al. 2014), for
example into an integrated population model (Link et al. 2008),
also has the potential to improve inference drawn about
population trends derived from migration counts.  

The half-width of the credible interval was on average 4%/year
for annual counts of the overdispersed species, and 3%/year for
daily counts of the rare species. It is not surprising, then, that the
probability of estimating a trend in the correct direction with
credible intervals that excluded 0 was less than 0.5 and 0.7 for the

overdispersed and rare species, respectively, for the magnitude of
change simulated here (-3.6%year-1 over 20 years). The rate of
change we simulated was fairly extreme, and is a rate often used
to assess population status of species at risk (COSEWIC 2012).
Because rare species are typically those being assessed for
conservation status, these results suggest that migration counts
collected over a 20-year period would detect this magnitude of
decline only about 60% of the time for rare species with mean
annual abundance less than 20 individuals per year (Table A2.2).
Our ability to estimate a trend in the correct direction would
improve with more extreme trends. More importantly, our ability
to estimate an accurate trend would improve with length of the
time series and with the number of sites providing monitoring
data (Crewe et al. 2016b). Because the number of raptors and
songbirds migrating and detected by counts can be largely
influenced by weather (Hall et al. 1992, Allen et al. 1996,
Barriocanal et al. 2002, Berthiaume et al. 2009) and other factors
including observer differences (Sauer and Link 2002) or local
habitat conditions (Harrison et al. 2000), modeling environmental
or other relevant covariates to account for some of the observed
variation in counts (Francis and Hussell 1998) might also improve
precision, and therefore our ability to detect trends. The effect of
including covariates for weather or other factors on model fit
using hourly or daily count data should be explored, particularly
for overdispersed species, which may then benefit from being
analyzed as daily as opposed to annual totals (e.g., Crewe and
McCracken 2015).  

The analysis of Raptor Population Index (RPI) data as daily or
annual totals has the potential to expand the geographic coverage
of RPI trend results by including sites that are currently excluded
because they submit daily and not hourly totals (Crewe et al.
2013). Although our results suggest that daily totals can be
analyzed without consequence to the precision and accuracy of
population trends when a systematic change in detection
probability has not occurred, the submission of counts at the raw
observation level would ensure that any change in effort, or other
potentially biasing factor, can be identified and accounted for
during the analysis and/or interpretation of trends. We thus
recommend that count sites continue to submit data at the
observation level, with as much detail as possible, including the
number of hours and which hours were sampled each day, so that
analysts can test for, and potentially account for, any systematic
change in detection probability over time.

Responses to this article can be read online at: 
http://www.ace-eco.org/issues/responses.php/907
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Appendix 1. Summary of real migration count data. 

Table A1.1. Mean, median, range and coefficient of variation (CV) for annual, daily and hourly 

counts, proportion of 0-observation days and hours ('0-Obs Days', '0-Obs Hours'), and number of 

days between first and last detection ('N Days') for three raptor species detected at Hawk 

Mountain Sanctuary, Pennsylvania (1991-2010).  Values were used as a guide to simulate data 

with a similar distribution of counts. 

Variable Species Mean Median Range CV 

      

Annual Count Northern harrier 210 194 (118-338) 0.31 

 Peregrine falcon 46 45 (24-67) 0.26 

 Broad-winged hawk 6800 6381 (1773-11838) 0.42 

Daily Count Northern harrier 2 1 (0-36) 1.34 

 Peregrine falcon 1 0 (0-30) 2.35 

 Broad-winged hawk 120 9 (0-7508) 3.44 

Hourly Count Northern harrier 0 0 (0-13) 2.31 

 Peregrine falcon 0 0 (0-9) 5.02 

 Broad-winged hawk 19 0 (0-4927) 5.47 

0-Obs Days Northern harrier 0.33 0.32 (0.22-0.49) 0.21 

 Peregrine falcon 0.69 0.68 (0.62-0.85) 0.07 

 Broad-winged hawk 0.20 0.19 (0.12-0.28) 0.25 

0-Obs Hours   Northern harrier 0.82 0.82 (0.74-0.88) 0.05 

 Peregrine falcon 0.94 0.94 (0.92-0.97) 0.01 

 Broad-winged hawk 0.57 0.56 (0.51-0.66) 0.08 

N Days   Northern harrier 95 97 (78-102) 0.07 

 Peregrine falcon 40 39 (15-65) 0.29 

 Broad-winged hawk 53 54 (42-58) 0.08 



  Across years, median first and last date of detection for Northern Harrier: Aug. 22, 

Nov. 27; for Peregrine Falcon: Sept. 13, October 22; for Broad-winged Hawk: Aug. 

14, Oct. 8. 

  Data collected between 06:30 and 17:15 were included in calculations. 

 



Appendix 2.  Simulation parameter values and simulation data summary. 

Table A2.1. Parameter values used to simulate hourly raptor migration counts for a common 

(e.g., Northern Harrier), rare (e.g., Peregrine Falcon), and a super-flocking species (e.g., Broad-

winged Hawk).  For simulation code, see 'Crewe et al. (2016) Effect of sampling effort on bias 

and precision of trends in migration counts. The Condor: Ornithological Applications 118:117-

138'. 

Simulation Parameter Common Rare Super-flocking 

nyears 20 20 20 

Y.1 500 50 12500 

trend -0.036 -0.036 -0.036 

trend.err 0.2 0.1 0.4 

sday -60 -37 -30 

sday.err 9 3 3 

prob.move 0.95 0.95 0.90 

weath.pois 1.2 1.2 1.2 

m.peak 32 10 8 

m.peak.err 5 2 2 

m.spread 0 0 2 

m.spread.err 0.8 0.8 0.8 

day.err 0.05 0.1 0.1 

k.day 13 6 0.07 

shr -9 -9 -5 

shr.err 1 1 0.5 

m.peak.hr 3 3 2 

m.peak.err.hr 0.3 0.3 0.2 

m.spread.hr -2 -2 -2 



m.spread.err.hr 0.4 0.4 0.4 

hr.err 0.1 0.1 0.3 

k.hr 5 1 0.6 

 

 

Table A2.2. Mean across 100 simulated datasets of the mean, median, standard deviation (SD) 

and coefficient of variation (CV) for annual, daily and hourly counts, proportion of 0-observation 

days and hours, and number of days between first and last detection for three raptor species.   

Variable SpeciesCode Mean Median SD CV 

Annual Count Northern Harrier 192.5 185.18 59.39 0.31 

 Peregrine Falcon 19.31 18.84 7.59 0.39 

 Broad-winged Hawk 6870.26 6150.87 3639.39 0.53 

Daily Count Northern Harrier 2.3 1 3.21 1.39 

 Peregrine Falcon 0.55 0 1.22 2.25 

 Broad-winged Hawk 175.6 9.28 557.14 3.16 

Hourly Count Northern Harrier 0.24 0 0.65 2.73 

 Peregrine Falcon 0.06 0 0.31 5.38 

 Broad-winged Hawk 21.98 0 119.43 5.42 

0 Obs. Days Northern Harrier 0.43 0.43 0.09 0.20 

 Peregrine Falcon 0.76 0.76 0.07 0.10 

 Broad-winged Hawk 0.33 0.31 0.12 0.37 

0 Obs. Hours Northern Harrier 0.84 0.85 0.04 0.05 

 Peregrine Falcon 0.96 0.96 0.02 0.02 



 Broad-winged Hawk 0.60 0.60 0.09 0.16 

N Days Detect Northern Harrier 97.37 98.99 5.94 0.06 

 Peregrine Falcon 29.50 30.18 7.51 0.26 

 Broad-winged Hawk 42.16 43.66 5.67 0.14 

 

 



Appendix 3.  Comparisons of real and simulated raptor migration counts.   

 

Table A3.1. Mean, min and max of Pearson correlation of qq-scores between real and simulated 

migration count datasets (n = 100) for a common (Northern Harrier), rare (Peregrine Falcon) and 

overdispersed (Broad-winged Hawk) raptor species.  A Pearson correlation near 1 suggests a 

comparable distribution of counts between datasets.  In all cases, p < 0.0001.  Real data were 

collected at Hawk Mountain Sanctuary, Pennsylvania (1991-2010). 

 

Species Mean Min Max 

Broad-winged Hawk 0.96 0.90 1.00 

Northern Harrier 0.93 0.91 0.96 

Peregrine Falcon 0.93 0.88 0.96 

 

 

 

Figure A3.1. Example distribution of real and simulated daily migration counts for a commonly 

detected species (Northern Harrier).  Real migration counts were collected at Hawk Mountain 

Sanctuary, Pennsylvania in 2000 (year 1, top panel) and 2001 (year 2, bottom panel).   



 

Figure A3.2. Example distribution of real and simulated daily migration counts for a rarely 

detected species (Peregrine Falcom).  Real migration counts were collected at Hawk Mountain 

Sanctuary, Pennsylvania in 2000 (year 1, top panel) and 2001 (year 2, bottom panel).   

 

Figure A3.3. Example distribution of real and simulated daily migration counts for a species 

with highly overdispersed counts (Broad-winged Hawk).  Real migration counts were collected 

at Hawk Mountain Sanctuary, Pennsylvania in 2000 (year 1, top panel) and 2001 (year 2, bottom 

panel).   



 

Figure A3.4. Comparison of mean (SD) raptor migration count by hour of the day between data 

collected at Hawk Mountain, Pennsylvania (1966-2010) and simulated data (20 years), for a 

commonly detected species (Northern Harrier). 

 

Figure A3.5. Comparison of mean (SD) raptor migration count by hour of the day between data 

collected at Hawk Mountain, Pennsylvania (1966-2010) and simulated data (20 years), for a 

rarely detected species (Peregrine Falcon). 



 

Figure A3.6. Comparison of mean (SD) raptor migration count by hour of the day between data 

collected at Hawk Mountain, Pennsylvania (1966-2010) and simulated data (20 years), for a 

species that typically has highly overdispersed counts (Broad-winged Hawk). 

 



Appendix 4. Additional comparisons of estimated trend among species and data distributions. 

 

Figure A4.1. Scatter plots with loess smooth, showing estimated trend           for each of 100 
datasets simulated to represent a commonly detected species (e.g., Northern Harrier), a rarely detected 
species with zero-inflated counts (e.g., Peregrine Falcon) and a super-flocking species with highly over-
dispersed counts (e.g., Broad-winged Hawk).  Results are shown for trends estimated using hourly, daily 
and annual migration counts, and assuming a negative binomial (NB), zero-inflated NB (ZINB; hourly and 
daily data only), or Poisson (POIS) distribution of counts.  The solid grey horizontal line depicts the true, 
simulated trend of -3.6%year-1.   
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