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ABSTRACT. Annual counts of migrating raptors at fixed observation points are a widespread practice, and changes in numbers
counted over time, adjusted for survey effort, are commonly used as indices of trends in population size. Unmodeled year-to-year
variation in detectability may introduce bias, reduce precision of trend estimates, and reduce power to detect trends. We conducted
dependent double-observer surveys at the annual fall raptor migration count at Lucky Peak, Idaho, in 2009 and 2010 and applied
Huggins closed-capture removal models and information-theoretic model selection to determine the relative importance of factors
affecting detectability. The most parsimonious model included effects of observer team identity, distance, species, and day of the
season. We then simulated 30 years of counts with heterogeneous individual detectability, a population decline (λ = 0.964), and
unexplained random variation in the number of available birds. Imperfect detectability did not bias trend estimation, and increased
the time required to achieve 80% power by less than 11%. Results suggested that availability is a greater source of variance in annual
counts than detectability; thus, efforts to account for availability would improve the monitoring value of migration counts. According
to our models, long-term trends in observer efficiency or migratory flight distance may introduce substantial bias to trend estimates.
Estimating detectability with a novel count protocol like our double-observer method is just one potential means of controlling
such effects. The traditional approach of modeling the effects of covariates and adjusting the index may also be effective if  ancillary
data is collected consistently.

Détectabilité de rapaces en migration et son effet sur les biais et la précision des estimations de
tendance
RÉSUMÉ. Les décomptes annuels de rapaces en migration faits à partir de lieux fixes représentent un type de relevé répandu, et la
variation des effectifs comptés au fil des ans, ajustée selon l'effort d'inventaire, est utilisée couramment comme indice de l'évolution
de la taille des populations. Le fait de ne pas modéliser la variabilité de la détectabilité d'une année à l'autre peut introduire un biais,
réduire la précision des estimations de tendance et réduire la capacité à détecter les tendances. Nous avons effectué des décomptes
avec double observateurs dépendant lors du suivi annuel des rapaces en migration automnale à Lucky Peak, Idaho, en 2009 et 2010.
Nous avons appliqué des modèles de Huggins avec retrait pour une population fermée et sélectionné les modèles basés sur la théorie
de l'information afin d'évaluer l'importance relative des facteurs qui affectent la détectabilité. Le modèle le plus parcimonieux incluait
les effets de l'identité de l'équipe d'observateurs, de la distance, de l'espèce et du jour durant la saison. Nous avons ensuite simulé 30
années de décomptes comportant une détectabilité individuelle hétérogène, une baisse de population (λ = 0,964) et une variabilité
aléatoire non-expliquée du nombre d'oiseaux disponibles. La détectabilité imparfaite n'a pas biaisé l'estimation de la tendance, mais
a haussé par moins de 11 % le temps nécessaire pour atteindre une puissance de 80% à détecter une tendance. Nos résultats indiquent
que la disponibilité présente une plus grande source de variance que la détectabilité dans les décomptes annuels, de sorte que les
efforts visant à prendre en compte la disponibilité amélioreraient la valeur des décomptes réalisés durant la migration. D'après nos
modèles, les tendances sur de longues périodes de l'efficacité des observateurs ou de la distance des oiseaux en vol peuvent introduire
des biais considérables sur les estimations de tendance. L'estimation de la détectabilité, au moyen d'un protocole de décompte
novateur tel que notre méthode de double-observateur, est un exemple de méthodes permettant de contrôler les effets de ce type.
L'approche traditionnelle dans laquelle l'effet des covariables est modélisé et l'indice ajusté en conséquence pourrait aussi être efficace
si les données complémentaires sont colligées de façon constante.
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INTRODUCTION
Population monitoring is essential to avian conservation (Finch
and Martin 1995, Dunn 2002). The North American Breeding
Bird Survey (BBS) has proven to be an effective monitoring
method for many species, but trend estimates for many raptors
(Accipitriformes and Falconiformes) that breed in the remote
northern reaches of the continent not covered by the BBS are
unreliable (Dunn et al. 2005). Breeding season surveys of North
American raptors can be difficult and costly because raptors breed
at low densities over large ranges (Fuller and Mosher 1981).
Species that breed in forests and do not confront intruders may
be easier to observe on migration (Fuller and Mosher 1987).  

During migration, concentrations of visible raptors occur at
predictable locations (Kerlinger 1989, Zalles and Bildstein 2000,
Bildstein 2006). At such locations, termed watch-sites, observers
record the numbers of each raptor species that pass overhead
hourly or daily during migration (Zalles and Bildstein 2000,
Bildstein et al. 2008). HawkCount (http://hawkcount.org/), an
online data repository for watch-site counts in North and Central
America, lists 203 watch-sites reporting in the last two years, or
with more than five years of counts (E. G. Nolte, personal
observation May 2016). Zalles and Bildstein (2000) listed 58
watch-sites outside North America.  

A watch-site count is a two-stage sample. In the initial sampling
stage, raptors must first fly past the watch-site while an observer
is present; only these raptors are available to count. In the second
stage, the available raptors may be either counted by an observer,
or pass unseen. The count is the product of the available raptors
and their probability of detection (Dunn and Hussell 1995,
Nichols et al. 2009).  

Migration counts are an index and cannot be used to estimate
population size (Fuller and Mosher 1981, 1987, Dunn 2005);
however, migration counts are thought to change roughly in
proportion to change in population size, so population trends
may be estimated (Dunn and Hussell 1995, Dunn 2005, Farmer
et al. 2007, Farmer and Hussell 2008). If, contrary to our
assumptions, the index does not change proportionately to change
in the population, perhaps because of trends in availability or
detection, then trend analysis may be inconclusive or even
misleading (Thompson 2002, Johnson 2008). Field workers and
analysts collectively spend thousands of hours every year to
produce this index, so the underlying assumption deserves
rigorous testing.  

Two previous studies have examined the factors affecting
probability of detection at raptor migration watch-sites. First,
Sattler and Bart (1984), working at the Derby Hill watch-site on
the shoreline of Lake Ontario in New York, compared the
numbers of hawks counted by one observer tasked with watching
the entire sky with six times the number counted by a second
observer watching only one-sixth of the sky at a time. They found
that detectability varied by observer attentiveness, flight density,
flight visibility, and species. Specifically, they found that higher
birds were less detectable than lower birds and that the observer
was more attentive and detected raptors with greater efficiency in
dense flights. Furthermore, raptor species that typically soared
were detected at higher rates than species that often did not soar.

Second, Berthiaume et al. (2009), at the Observatoire d’oiseaux de
Tadoussac, on the shoreline of the Saint-Lawrence estuary in
Québec, used a double-observer approach (Nichols et al. 2000)
to assess the relative effects of flight behavior and weather. Species
affected detectability, with small species having lower detectability
than large species. For most species, birds at eye level were most
detectable, and detectability decreased with increasing altitude.
Cloud cover increased the detectability of high-flying raptors
while decreasing the detectability of raptors at lower altitudes.
Additionally, the number of raptors migrating in a group had a
significant positive effect on detectability. Wind direction and
speed, cloud cover, humidity, and hour of the day affected flight
altitude, and thereby affected detectability indirectly (Berthiaume
et al. 2009).  

Some potential factors have not yet been adequately investigated.
Detectability may be affected by site-specific factors and the
number of observers (Kochenberger and Dunne 1985). The
detectability studies of Sattler and Bart (1984) and Berthiaume
et al. (2009) were both performed at shoreline watch-sites in the
northeast where lone observers made official counts.
Interobserver variation in detectability exists in avian point counts
(Sauer et al. 1994, Kendall et al. 1996, Cunningham et al. 1999,
Nichols et al. 2000, Alldredge et al. 2007, Campbell and Francis
2011), and is likely in raptor migration counts (Dunn and Hussell
1995, Dunn et al. 2008). No previous study at a raptor migration
count has tested for interobserver variation in detectability among
more than two unique individual observers, nor compared the
performance of any number of unique teams of observers.  

With the intent to generalize the results of prior raptor
detectability research and investigate observer effects, we
undertook a new double-observer study of detectability at a
Western ridgeline watch-site with teamed observers. Subsequently,
we used our model in simulations of long-term trend analysis to
estimate the effect of detectability on statistical power. We
undertook this study to gain a greater understanding of the
relative importance of various sources of statistical error in
migration counts and suggest methodological changes and areas
of future research to improve the utility of migration counts for
population monitoring.

METHODS

Study site
The Lucky Peak raptor count is performed each fall by the
Intermountain Bird Observatory (formerly Idaho Bird
Observatory), a nonprofit research and public education program
of Boise State University. At a single point, at least two observers
cooperate to count migrating raptors each day, from 25 August
to 31 October, as weather permits. Lucky Peak is situated at the
southern end of the Boise Ridge, on the western front of the Rocky
Mountains, overlooking the Snake River Plain and Boise, Idaho
(43° 36'18.7" N, 116° 3'40.6" W; Zalles and Bildstein 2000, Ruelas
Inzunza 2008). Owing to the elevation of the site (~1000 m above
the plain), visible raptors are distributed both laterally and
vertically. The watch-site also includes a raptor banding station
on the west slope of the mountain, in sight of the observation
point. Captured raptors are reported to the migration observers
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by two-way radio. The watch-site is open to the public, and
observers provide interpretation for visitors.

Data collection
We conducted a double-observer survey (Nichols et al. 2000)
during the autumn raptor migration count at Lucky Peak in 2009
and 2010. Sampled days were 1 – 4 days apart (mean = 1.8, SD =
1.0) on 29 weekend days and 36 weekdays. Four observers were
grouped in teams of two. One team, designated primary, was
positioned at the traditional lookout point and attempted to count
all raptors passing the lookout. The primary observers called out
the identification and location of raptors they observed to avoid
double-counting. The other team, designated secondary, was
positioned approximately three meters behind the primary team.
The secondary observers worked together to record, on a separate
sheet, only those additional raptors that were not counted by the
primary team. Secondary observers could ask the primary
observers questions to clarify which bird had been counted, but
had to be silent when identifying any birds the primary observers
had missed. Therefore, detection by the primary observers was
assumed to be unaffected by the activities of the secondary
observers, while detection by the secondary observers was
conditional on nondetection by the primary observers. Birds
captured by the banding station were reported to the observers
via radio and were removed from the data. We randomly assigned
observers to teams each day. The observation teams remained
consistent over the course of each day, except on four days in 2010
when an observer was substituted mid-day. The teams rotated
between the primary and secondary roles at the end of each hour.  

For individual raptors, observers recorded species and, when
possible, age, sex, and color morph, as well as a distance and
altitude category (Alt.). Observers scored birds by altitude only
when within the range of unaided vision (where differences in
background color and viewing angle are greatest when altitude
varies), and scored more distant birds strictly by visibility with
10X magnification (Table 1). We chose this system because lateral
distance affected apparent size in the same way altitude did, so
distance and altitude were difficult to measure separately, and
their effects on detectability were likely to be similar enough to
complicate inference if  modeled independently. Observers
classified each bird based on its closest approach to the watch-
site, even if  it was initially detected further away.  

At the midpoint of each hour, observers recorded weather
conditions with a hand-held weather station (Kestrel 4000®,
Nielsen-Kellerman, Boothwyn, PA). Observers measured wind
velocity in kilometers-per-hour, wind direction in degrees,
ambient temperature in degrees Celsius, and visually estimated a
cloud cover category. Cloud cover categories (Cloud) were: (1)
Clear (0% – 15%), (2) Partly Cloudy (16% – 50%), (3) Mostly
Cloudy (51% – 75%), and (4) Overcast (76% – 100%).

Statistical analyses
Detectability was estimated by fitting a closed-population mark-
recapture model (closed-capture model; Otis et al. 1978). A
closed-capture model, unlike simpler logistic-regression
approaches, accounts for the presence of animals that were
undetected. Closed-capture models are based on three key
assumptions: (1) each “capture” attempt, in this case the attempt

of an observer team to detect migrant raptors, has access to the
same pool of animals (a closed population), (2) animals are
independent in their detection probabilities, and (3) there is no
heterogeneity in detection probabilities among individual
animals. To relax assumption 3, we used the conditional likelihood
approach developed by Huggins (1989, 1991) to account for
heterogeneity. Individually-varying detectability was modeled as
a linear function of covariates related to the observer, flight,
weather, and species of each bird. Observer-specific detectability
is only estimable for the primary observer role in the dependent
double-observer survey design, so our models require one
additional assumption: (4) the detection probability for an
observer team was not affected by its role (Nichols et al. 2000).
The available migrant raptors were considered a closed
population because observer teams were positioned closely
enough to view the same extent of sky and the two counts occurred
simultaneously. We seldom observed hawks migrating in groups
of more than four (approximately 3% of observations), so
detection of individuals could be considered independent. We
excluded Turkey Vultures (Cathartes aura) from our analysis
because they migrated in much larger groups. We likewise removed
raptors not identified to genus (n = 100) from the analysis.

Table 1. Ordinal scale used in estimating effects of distance and
altitude on detectability. Migratory flights at Lucky Peak are
distributed laterally, with relatively few raptors flying high
overhead. Thus, altitude was only noted at close distances, where
potential differences in background color and viewing angle were
substantial, and altitude could be estimated with confidence. We
excluded all birds assigned to category 6 from analysis because
they represent birds not within the standard search radius at this
site, and not available to all observers because only one spotting
scope was present. The distance classification scheme is adapted
from flight altitude codes on the data form published by the Hawk
Migration Association of North America (2009).
 

Distance code
(Alt.)

Definition

0 Below level of the observers, within range of
unaided vision.

1 0 – 30m above observers, within range of unaided
vision.

2 > 30 m above observers, within range of unaided
vision.

3 Difficult, but possible to see without binoculars.
4 Visible only with aid of 10X binoculars (but clearly

seen).
5 Raptor sometimes fades out while viewing with 10X

binoculars.
6 Visible only with a ≥ 20X spotting scope.

We used an information-theoretic model-selection approach with
Akaike’s information criterion corrected for small sample size
(AICc) as the selection criterion to assess the relative effects of
these factors on detection probability (Burnham and Anderson
2002). . Model-fitting was performed using the Huggins closed-
capture data type in Program MARK (White and Burnham 1999).
We coded raptors recorded by the primary observers with
encounter history “11,” and raptors recorded only by the
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Table 2. Best candidate models estimating the detectability of migrating raptors in double-observer counts conducted at Lucky Peak
in 2009 and 2010. ΔAICc is the difference in AICc between the model and the model with the lowest AICc. L is the model likelihood,
and w is the AICc weight of evidence. K is the number of parameters in the model. For all models, see Appendix 2.
 
Model ΔAIC

c
† w L K

p{Team + Alt. + Alt.² + Wingspan + Genus + Windspeed + Day + Day²} 0 0.257 1 22
p{Team + Alt. + Alt.² + Wingspan + Genus + Day + Day²} 0.39 0.212 0.823 21
p{Team + Alt. + Alt.² + Wingspan + Genus + Cloud + Windspeed + Day + Day²} 1.13 0.146 0.568 23
p{Team + Alt. + Alt.² + Wingspan + Genus + Cloud + Day + Day²} 1.92 0.099 0.384 22
p{Team + Alt. + Alt.² + Wingspan + Genus} 2.28 0.082 0.320 19
p{Team + Alt. + Alt.² + Wingspan + Genus + Windspeed} 2.34 0.080 0.311 20
p{Team + Alt. + Alt.² + Wingspan + Genus + Cloud + Windspeed} 2.63 0.069 0.268 21
p{Team + Alt. + Alt.² + Wingspan + Genus + Cloud} 3.10 0.055 0.212 20
† Lowest AIC

C
 = 7098.77

secondary observers with encounter history “01.” We fixed the
value of the probability of recapture (c) equal to one because birds
detected by the primary observers could not fail to be detected
by the secondary observers.  

We measured several covariates related to each of the four
hypothesized sources of variation in detectability: observers,
migratory flight, weather, and species. We examined independent
measurable covariates for correlation and any with coefficients >
± 0.4 we did not use in combination during model-building.
Initially, we fit all possible models separately for each of the four
hypothetical sources of variation, along with a null model with
no covariates, and a model with only the effect of year (42 models).
At this stage, we removed any variables that reduced model
deviance by < 3 from further consideration, and built a general
model. From subsets of variables in the general model, we built
an all-combinations candidate model set (64 models). In doing
so, we kept together any sets of model parameters describing a
single covariate (e.g., five genus variables and wingspan, all
describing the species).  

We modeled the effects of observer teams (combinations of two
individual observers) as dichotomous (dummy) variables. Ten
teams, representing pair-wise combinations of seven regular
observers, participated under a representative range of conditions
(> 7 days). We pooled the 17 other observer teams with insufficient
samples. The seven regular observers (Tables 2 and 3) were all
recent (2004 – 2010, median = 2009) university graduates with B.
Sc. degrees from wildlife and natural resource programs. All had
prior professional experience assisting with field studies of
wildlife (6 – 40 months, median = 15), but only one had prior
experience observing bird migration (5 months). We used the
number of days since the beginning of the season and the hour
of the day as covariates to account for possible effects of practice
or fatigue. We also modeled a second-order effect to allow for a
nonlinear effect of practice (e.g., diminishing returns).  

Two variables described the migratory flight. We used the number
of birds observed per hour, including vultures (BPH), a naïve
estimate of flight density, as a covariate for all birds observed in
that hour. We used the distance category (see Table 1) as an
individual covariate to model the effect of flight-line. Because we
had decided (for the sake of efficient use of model parameters)
to model the ordinal categories as a linear covariate, we considered

it necessary to include a second-order effect in model-selection to
allow for unequal units and nonlinear effects.  

Wind speed, wind direction, ambient temperature, and cloud
cover category were used to describe the effects of weather.
Circular variables cannot be used in linear models so we used the
cosine of wind direction as a linear covariate. This number ranges
from -1 (wind from the south, a headwind) to 1 (wind from the
north, a tailwind). We also used the product of the cosine of wind
direction and the wind speed as a covariate. This number was
highest for strong tailwinds, and lowest for strong headwinds, with
lighter winds and crosswinds having intermediate values. We
chose these transformations because the resulting variables were
likely to be correlated with the speed of migrating raptors. We
chose to limit the number of wind variable interactions to avoid
colinearity and make the effect of migration volume and flight
line distinguishable from more proximate effects of wind.  

We hypothesized that detectability might vary among species
because species were of different visible size or flew with different
styles. We used an approximate average wingspan for each species
(from Sibley 2000) to account for differences in visible size.
Raptors of unknown species (n = 417) were assigned a roughly
approximate size, based on the information available (e.g., genus,
large or small). The second-order effect of wingspan was also
considered, in case detectability might increase nonlinearly with
size. We used a dichotomous variable for each common genus of
raptors observed (Accipiter n = 3088, Buteo n = 1680, Circus n =
331, Falco n = 1525, and Pandion n = 119) to account for
differences in flight style among raptors of similar wingspan.
Golden Eagles (Aquila chrysaetos n = 27) and Bald Eagles
(Haliaeetus leucocephalus n = 4) composed the reference (null)
category.  

Tests of differences in covariates between years were performed
with Fisher Exact Tests for dummy variables and Welch t Tests
for quantitative variables (H0: x̅1 = x̅2). Means of detectability
estimates were calculated with weights of 1 / [p̂1 + ((1-p̂1) p̂2)],
where p̂1 is the individual raptor’s estimated detectability for the
primary observers and p̂2 is the individual raptor’s estimated
detectability for the secondary observers. The denominator is an
estimate of the total probability of the individual being detected
by either of the observer teams. Weighting observations by the
inverse of the detection probability is necessary to correct for the

http://www.ace-eco.org/vol11/iss2/art9/


Avian Conservation and Ecology 11(2): 9
http://www.ace-eco.org/vol11/iss2/art9/

Table 3. Estimates of coefficents from the most parsimonious model (β) with standard errors (SE), odds ratios (eβ), and AICC model-
selection importance weights (Σw). All covariates were scaled to range from 0 to 1 to show relative magnitudes of effects. Asterisks
indicate informative variables (H0: β ≠ 0, α = 0.15). Unique observer letters represent individuals. Reference categories are: Observer
team “Other” (17 teams that participated on < 7 days each) and Genus “Eagles” (Haliaeetus and Aquila pooled).
 
Source Σw Variable β SE eβ

Distance 1 Alt. 1.18 0.48 3.26 *
Alt.2 -2.48 0.51 0.08 *

Species 1 Wingspan 2.05 0.78 7.77 *
Falco 1.17 0.98 3.22

Accipiter 1.07 0.93 2.91
Circus 0.80 0.80 2.22
Buteo 0.82 0.74 2.23

Pandion -0.21 0.72 0.81
Wind 0.55 Windspeed -0.47 0.30 0.63 *
Observer team 1 B & C 0.52 0.13 1.69 *

B & F 0.40 0.15 1.50 *
E & G 0.10 0.16 1.10
E & A 0.01 0.11 1.01
D & G -0.07 0.16 0.93
F & C -0.25 0.14 0.78 *
D & C -0.31 0.13 0.74 *
D & E -0.39 0.12 0.68 *
D & F -0.45 0.12 0.64 *
D & B -0.59 0.13 0.56 *

Day 0.71 Day 0.07 0.89 1.07
Day² 0.47 0.89 1.60

Model 1 Intercept -0.15 1.00 0.86

sample bias caused by heterogeneous detectability, i.e., more
detectable birds get sampled disproportionately often (Horvitz
and Thompson 1952). Descriptive values are presented as means
± SD.

Simulation
A simulation of the number of birds passing the watch site and
the number that were detected (Appendix 1), was written in R
(Revolution R Community 4.3 build of R 2.12.2, Revolution
Analytics, Palo Alto, California). The number of birds available
to detect in year k (for k > 1) was Nk = N1 λ

k-1 + εk . We made λ 
= 0.964, so N would be expected to decline by 50% in 20 years.
The Raptor Population Index project adopted a similar
benchmark trend (λ = 0.965) to evaluate power (Farmer and
Hussell 2008, Smith et al. 2008). The εk were normally distributed
with mean 0 and σk = Nk ∙ CV(Nk). CV(Nk) represents the square
root of the variance in annual number of birds available, as a
proportion of the expected N.  

We used our data to define the attributes of a statistical population
of possible individuals. We weighted the probability of selecting
any record (the attributes of an observed bird) to be simulated by
1/pi to make less detectable attribute combinations occur with
realistic frequency. We randomly sampled the population (with
replacement) in each year to simulate Nk available individuals. We
used the attributes of the available individuals (inherited from the
original records) in the model to determine their individual
probabilities of detection.  

Unlike all the other attributes, the observer team coefficient was
modified for the purpose of simulating a realistic sequence of
years. In most years at Lucky Peak the counts are predominantly

made by a single pair of observers, and a pair seldom stays the
same from one year to the next. Therefore, we applied a single
observer team coefficient to all individuals in a year, and changed
the coefficient between years. The distribution of observer team
effects was a normal distribution with a mean taken from the
estimated values for the 10 observer teams and a variance inflated
by 20% because the observers in two years were probably more
similar than a 30-year sample of observers would be.  

We determined whether each bird was detected using a random
number generator and the detection probability for the bird. If
the random decimal from a uniform distribution between zero
and one was greater than the detection probability, the bird was
not detected (otherwise, it was). The sum of birds detected in year
k was the annual count Ck.  

Trends were estimated by fitting an exponential curve to the
counts. These regressions were performed for each of 3000 trials
for every unique combination of simulation parameters tested.
We estimated detectability bias as the absolute difference between
the means of trend coefficients from the regressions of Ck and
Nk. We assessed precision with a 90% confidence interval (the fifth
to 95th percentiles) of trend estimates. Power to detect the trend
was estimated as the proportion of trials in which the upper bound
of the 90% confidence interval for the trend estimate parameter
(β) was < 0. The effect of variable detection on power was
determined using two methods. First, we compared the mean
number of years required to achieve 80% power with perfect
detection (by regression of Nk) and variable detection (by
regression of Ck). Second, we plotted power with perfect and
variable detection as a function of survey duration with durations
of five to 30 years.  
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Analyses were carried out for the Sharp-shinned Hawk (Accipiter
striatus) and Northern Harrier (Circus cyaneus). Both species were
common at Boise Ridge, rarely traveled in groups, and are high
priorities for alternative range-wide surveys by Partners in Flight,
i.e., are not satisfactorily monitored by the BBS (Dunn et al. 2005).
To avoid potentially drastically underestimating the number of
distant Sharp-shinned Hawks, we included all birds identified only
as Accipiter in the sample. One set of simulations presumed no
trend in observer skill over time, included three starting population
sizes (N1), and three values for CV(Nk). Historical annual counts
at Lucky Peak suggest an N1 of  Sharp-shinned Hawks of roughly
2000, with a CV(Nk) of 0.26. Counts of Northern Harriers
suggested an N1 of  roughly 450, with a CV(Nk) of 0.38 (pers. obs.).
The third N1 of  100 was simulated to show what could be expected
when the species is locally rare. The third CV(Nk) of 0.18
approximates the minimum interannual variation in available birds
to be expected for any raptor species at any watch-site (Fuller and
Mosher 1981, Lewis and Gould 2000). To examine a possible
scenario where trend estimates would be biased in the opposite
direction of the true trend, thereby dramatically reducing power,
we ran a second pair of simulations in which the mean observer
effect trended from low (-0.59) in year 1 to high (0.52) in year 30.
For these, we only used the realistic population parameters for
Sharp-shinned Hawks (N1 = 2000, CV(Nk) = 0.26), and Northern
Harriers (N1 = 450, CV(Nk) = 0.38).

RESULTS

Double-observer trials
Observers detected 6773 raptors in 390 hours on 65 days. Primary
observers detected 77% of raptors observed, and secondary
observers made 23% of detections (effective sample size = 1571).
Many variables differed significantly between years (Appendix 2).
Comparison of AICc between the year-effect model and models
representing other hypotheses suggested that the other covariates
had superior explanatory value, so we did not consider year in any
additional model-selection to avoid co-linearity (Appendix 3).  

The general model (K = 23) included variables for observer,
distance, species, cloud cover, wind speed, and day. The most
parsimonious model (AICc = 7098.77, selection weight = 0.26, K
= 22) included all the terms of the general model except cloud cover
(Table 2). Eight models of the 64 candidates were reasonably
competitive in model selection (ΔAICc < 4) and every one included
all the variables for observer, distance, and species (Table 2). The
rest of the models had ΔAICc > 20 (Appendix 2).  

Coefficients from the most parsimonious model suggest detection
probabilities differed by observer team (Table 3). Detectability
greatly decreased with distance beyond the range of unaided vision
(Fig. 1). Species with longer wingspans were generally more
detectable, but Ospreys (Pandion haliaetus) were unusually difficult
to detect for their size (Fig. 2). Weather variables and day had
relatively little effect on detectability independent of species, flight,
and observers (Table 3), but in four of the top eight models (Table
2) wind speed was estimated to have a negative effect on detectability
(Table 3).

Fig. 1. Effect of relative distance and altitude on detectability.
For definitions of distance categories, see Table 1. Points are
weighted mean detectability with bars of ± 1 SD, labeled with the
number of individuals detected. The curve shows the model
prediction for a hypothetical individual with average covariates.
The effect of ordinal distance category was modeled as a
quadratic function (Table 3).

Estimated detectability of individual raptors observed ranged from
0.36 to 0.94 for the two primary observers and 0.59 to 0.99 for all
four observers. Weighted mean detectability was 0.72 ± 0.11 with
the two primary observers and 0.92 ± 0.07 with all four observers.

Simulation
Imperfect detection and heterogeneous detectability affected power
mainly by increasing count variance. The bias in trend estimation
introduced by imperfect detection was minimal in simulations with
no predefined trend in detectability (|βC - βN| ≤ 2.6 ∙ 10-4). Bias was
greater when observer ability was simulated to improve over time
(|βC - βN| ≈ 0.01 Fig. 3).  

The relative effect of limited detectability on power is inversely
related to variation in the number of raptors available CV(Nk) (Figs.
4 and 5). The effect of heterogeneous detectability on power was
minimal and accounted for ≤ 1 year difference in time to attain the
80% power benchmark with realistic parameters and no trend in
observer skill. The effect of imperfect detectability on precision and
power in both species was more negative when variation in
availability was lower and population size was smaller. When the
two species were compared with equal N1 and CV(Nk) values, the
decline in power resulting from imperfect detectability was greater
in Sharp-shinned Hawks, the smaller and less perceptible species.
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Fig. 2. Estimated mean detectability of selected species, in order
of increasing wingspan. Points are weighted means with bars of
± 1 SD. Species effects on detectability were modeled by
additive effects of wingspan and genus (Table 3). The curve
illustrates the modeled effect of varying wingspan, with genus
as “Circus” and all other covariates fixed at median values.
Species are: AK = American Kestrel (Falco sparverius), SS =
Sharp-shinned Hawk (Accipiter striatus), ML = Merlin (Falco
columbarius), CH = Cooper’s Hawk (Accipiter cooperii), BW =
Broad-winged Hawk (Buteo platypterus), NG = Northern
Goshawk (Accipiter gentilis), NH = Northern Harrier (Circus
cyaneus), RT = Red-tailed Hawk (Buteo jamaicensis), SW =
Swainson’s Hawk (Buteo swainsoni), OS = Osprey (Pandion
haliaetus), and GE = Golden Eagle (Aquila chrysaetos).

We estimate that Lucky Peak Hawk-Watch would require 19 years
to achieve 80% power to detect a decline in Sharp-shinned Hawks
with 90% confidence when the true trend is -3.5% annually.
Twenty-five years of counts would be required in the case of
Northern Harriers. Harriers’ greater probability of detection did
not compensate much for the loss of precision from small
population size and highly variable availability. When mean
observer skill was simulated to improve over the 30 years, the
average number of years necessary to achieve 80% power to detect
a decline increased to 26 years for Sharp-shinned Hawks and
exceeded 30 years for Northern Harriers. Moreover, the decline
detected can be expected to be of lesser magnitude than the true
trend (Fig. 3).

DISCUSSION
Detectability of migrant raptors at Lucky Peak depended on the
observer team, the distance of the migratory flight, and species
characteristics. It is important to note that as much as individual
detectability varied, the mean detectability was considerably

Fig. 3. Precision (90% CI) of trend parameter estimates with
increasing study duration from 3000 simulation trials. Solid
black lines are from the regressions of simulated counts with
imperfect detectability. The dashed black lines are from the
regressions of the available population. The gray line is the
value for the true trend. When no trend in observer skill was
simulated (the observer effect varied in each year but the mean
did not change) there was little bias, and only a slight loss of
precision from imperfect detection. When the mean observer
skill was simulated to improve over time the trend in counts was
biased high, relative to the population trend. As a result,
increased precision with longer study duration ceases to
improve the likelihood of detecting the true magnitude of
population decline.

higher than in some other surveys of raptors (McLeod and
Andersen 1998, Ayers and Anderson 1999). Interspecific
differences in detectability will not bias species-specific estimates
of trend for population monitoring. The sizable effects of
observers and distance, however, may be detrimental to data
quality and should be addressed at raptor watch-sites. Specifically,
the number and ability of observers may change over time (Dunn
et al. 2008), and changing weather may change flight distance over
time (Berthiaume et al. 2009). Longer term trends in these effects
would contribute to bias in trend estimates and greater loss of
power (Kéry et al. 2009, Paprocki et al. 2014, Crewe et al. 2015).  

Apart from the observer effect, our results were consistent with
the findings from Berthiaume et al. (2009) suggesting double-
observer sampling is a robust technique for quantifying relative
detectability at many raptor migration watch sites. In both studies
detectability was greatest for raptors within the range of unaided
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Fig. 4. Sharp-shinned Hawk (Accipiter striatus) trend analysis
simulation results. Estimated statistical power (α = 0.1, two-
tailed test) to detect a significant declining trend (λ = 0.964) by
the number of years of study duration. Dashed lines depict
power in simulations with detectability = 1. Solid lines depict
power in simulations with imperfect detectability. N1 is the
expected available population in the first year and CV(Nk) is the
square root of variance in the annual number of birds available
as a proportion of N. Each simulated scenario was iterated
3000 times.

vision viewed against sky, lower for raptors viewed against the
ground, and declined with increasing distance or altitude.
Likewise, smaller species were considerably less detectable than
larger species. Ospreys were an exception to this trend and were
less detectable than smaller Buteo species and Northern Harriers.
The low detectability of Ospreys was more pronounced in this
study than in Berthiaume et al. (2009), but was consistent with
the results of Sattler and Bart (1984). Ospreys at Lucky Peak in
2009 and 2010 were relatively uncommon (< 2% of raptors
detected), and often flew along very different flight lines than the
majority of migrants. Observers seeking to detect the greatest
proportion of migrants may pay more attention to heavily-
populated flight lines than regions in the field of view with few
raptors, making uncommon raptors with atypical migration
strategies less consistently detectable. This hypothesis closely
resembles the one suggested by Kochenberger and Dunne (1985),
to explain low counts of Peregrine Falcons (Falco peregrinus) on
busy days at Cape May, New Jersey. If  this is true, “specialty”
watch-sites with concentrations of species that are rare at high-
volume watch-sites may offer excellent monitoring value, e.g., the
Florida Keys site for Peregrine Falcons (Lott 2006).

Fig. 5. Northern Harrier (Circus cyaneus) trend analysis
simulation results. Estimated statistical power (α = 0.1, two-
tailed test) to detect a significant declining trend (λ = 0.964) by
the number of years of study duration. Dashed lines depict
power in simulations with detectability = 1. Solid lines depict
power in simulations with heterogeneous detectability < 1. N1 is
the expected available population in the first year and CV(Nk) is
the square root of variance in the annual number of raptors
available as a proportion of N. Each simulated scenario was
iterated 3000 times.

Comparing the results of this study with previously published
results (Sattler and Bart 1984, Berthiaume et al. 2009), it appears
some factors may predict detectability better at some sites than
others. Cloud cover was associated with greater detectability in
all three studies, but the effect was of lesser predictive value at
Lucky Peak than at Tadoussac (Berthiaume et al. 2009). This
might be expected because Lucky Peak is a mountaintop site
where raptors are often detected near or below the horizon,
whereas Tadoussac is a shoreline site close to sea level, and birds
may be detected at higher angles. Sattler and Bart (1984) observed
that cloud cover improved visibility at Derby Hill, another low-
elevation shoreline watch-site. At Derby Hill, flight density had
a significant direct effect on detectability, whereas at Tadoussac
and Lucky Peak flight density was of little value in predicting
detectability (Sattler and Bart 1984, Berthiaume et al. 2009). This
difference may be attributable to the relatively high peak flight
densities observed at the Derby Hill watch-site (over 200 raptors
in 30 minutes).  

Our simulation results support the findings of prior power
analyses. Lewis and Gould (2000) estimated the power of trend
analysis for seven watch-sites and concluded that an interannual
CV of 30% or less was necessary to have 80% power (α = 0.1) to
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detect a 50% population decline in 25 years, provided the mean
number of birds counted per year was at least 20. At their seven
watch-sites, among species counted in numbers > 20 per year, only
43% of species-by-site combinations had a CV that met this
standard. In our simulations of a slightly faster decline (-50% in
20 years) we estimate that a CV ≤ 38% is necessary to attain 80%
power in 25 years (Figs. 4 and 5). Detectability-correction alone
is unlikely to increase the number of species or watch-sites from
which reliable trend estimates may be obtained because
detectability had little effect on CV when CV was ≥ 30%.  

The results of these simulations provide insight into the
conditions in which double-observer or distance-sampling
detectability correction may be useful. The most important
consideration is the potential for a trend in detectability over time,
as we simulated with a trend in observer ability. Policies may be
adopted to attempt to keep such trends to a minimum. Watch-
site managers should consider adopting staffing policies that
produce minimal changes in observer ability at longer time scales,
i.e., month to month or year to year. We concur with Dunn et al.
’s (2008) recommendation to use teams of two or more observers
and rotate a pool of equivalently trained observers from day to
day, instead of employing only one or two observers each year
who may be exceptionally skilled or unexpectedly mediocre.
Methodological drift may be avoided by producing written
protocols, training new observers carefully, and periodically
having more experienced observers check the work of those less
experienced. Official observers can sometimes be isolated from
visitors. Alternatively, a detectability-estimating survey method
can be used.  

In our simulations without a trend in detectability and low bias,
detectability had a substantial effect on power when the number
of available birds was consistent from year-to-year (CV(N) <
25%), the species was uncommon at the watch-site (20 to a few
hundred observed each year), and individuals of the species were
relatively difficult to detect. Few combinations of species and
watch-sites are likely to meet these qualifications. Raptor
migration counts have rates of detection of 66% or higher
(Berthiaume et al. 2009), utilize an index approach (Dunn and
Hussell 1995), and are primarily useful for long-term monitoring
(Fuller and Mosher 1981, 1987), making double-observer or
distance-sampling detectability correction less potentially
beneficial in this method.  

Short-term detectability studies can yield valuable insights into
cost-effective ways to improve count protocols. For example, our
results show that there may be substantial differences in raptor-
counting ability among individuals who are very comparable in
terms of bird-watching experience, age, or visual acuity. For this
reason, prior screening of observers may not be an effective
safeguard against observer variation. Further research into the
causes of variation in observer ability may suggest more effective
screening criteria, or methods to adjust annual indices for
observer ability.  

The relative importance of factors affecting availability is in need
of further research. Apart from survey effort, the proportion of
the population available to count may be affected by changes in
migration routes, distances, and timing, as well as rates of

fecundity and survival. Temporal data on the rate of passage of
raptors at watch-sites are collected at an hourly scale at most
watch-sites in North America, providing a rich source of
information for availability compensation in trend analyses
(Farmer et al. 2007, Farmer and Hussell 2008). Collecting
similarly useful spatial datasets should be a priority.  

This study and Berthiaume et al. (2009) both used simple
visibility-based metrics to model effects of distance on individual
raptors and found similar effects. This suggests that visibility-
based distance and altitude codes, already in use at most watch-
sites, may be useful covariates for adjusting counts to more
accurately reflect the number of raptors present. However, at most
sites, the code is recorded hourly, and represents a poorly defined
central tendency for all the birds observed in that hour. The hourly
measure provides no information on the distribution of distances,
or how flight lines differ among species. A visibility-based distance
(or altitude) code for each individual raptor or flock can be
recorded with very little additional effort (E. G. Nolte, personal
observation).  

Present techniques for trend analysis of raptor migration counts
avoid addressing the issues of detectability and availability by
making no estimate of total migratory volume at any scale
(Farmer and Hussell 2008, Crewe et al. 2013). This approach
limits raptor migration counts to detecting long-term, continental
trends in populations. Progress in stable hydrogen isotope analysis
(Domenech et al. 2015, Hobson et al. 2015, Nelson et al. 2015)
may make producing accurate trends at smaller spatial scales
especially informative, by linking fluctuations in certain watch-
site counts with climate, habitat, or prey base changes in specific
regions. Simple innovations in data-collection and analysis to
account for detectability and availability bias, such as recording
individual flight distances, rotating observers, and empirically
studying the relative efficiency of observers, may enable watch-
site networks to engage in more hypothesis-based research
addressing current conservation issues of interest (e.g.,
Dennhardt et al. 2015).

Responses to this article can be read online at: 
http://www.ace-eco.org/issues/responses.php/894
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Appendix 2  Descriptive statistics for all covariates by year.  Continuous and ordinal 

variables are presented as mean (SD), and compared with Welch t-tests.  Dummy 

(Boolean) variables are presented as ratios and are compared with Fisher’s Exact tests.   

Variable Min. Max. 2009 (n = 4150) 2010 (n = 2623) P-value 

Observers B&C 0 1 0.22 
   

 

Observers F&C 0 1 0.19 
   

 

Observers B&F 0 1 0.16 
   

 

Observers D&B 0 1 0.14 
   

 

Observers D&F 0 1 0.13 
   

 

Observers D&C 0 1 0.11 
   

 

Observers E&A 0 1 
  

0.21 
 

 

Observers D&E 0 1 
  

0.12 
 

 

Observers D&G 0 1 
  

0.11 
 

 

Observers E&G 0 1 
  

0.10 
 

 

Observers (Other) 0 1 0.05 
 

0.47 
 

<0.001 

Genus Accipiter 0 1 0.43 
 

0.50 
 

<0.001 

Genus Buteo 0 1 0.25 
 

0.25 
 

  0.75 

Genus Falco 0 1 0.25 
 

0.18 
 

<0.001 

Genus Circus 0 1 0.05 
 

0.05 
 

  0.73 

Genus Pandion 0 1 0.02 
 

0.02 
 

  0.78 

Genus (Eagles) 0 1 0.004 
 

0.006 
 

  0.27 

Wingspan (cm) 56 203 83.0 (31.0) 83.4 (30.8)   0.55 

Wind-speed (kph) 0 38.5 11.4 (5.8) 8.3 (5.0) <0.001 

cos(Wind dir.) -1 1 0.01 (0.61) -0.18 (0.57) <0.001 

Temperature (°C) -3.6 39.1 18.7 (8.4) 21.4 (5.6) <0.001 

Cloud 0 3 0.6 (0.9) 0.9 (1.1) <0.001 

Alt. 0 5 2.5 (1.6) 2.2 (1.7) <0.001 

BPH 0.5 216 42.1 (30.8) 35.9 (23.7) <0.001 

Day 3 67 27.9 (14.6) 33.1 (12.1) <0.001 

Hour 10 19 14.2 (2.0) 14.0 (1.9) <0.001 
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Appendix 3 All models grouped by stage of selection, then ordered by increasing AICC.  Lowest AICc was 7098.769.  K is the 

number of model parameters.  For relative model likelihoods and AICC weights, see Table 2 (All but the top eight models have 

zero relative likelihood). 

Stage Model K Deviance ΔAICC 

Final p{Team + Alt + Alt2 + Wingspan + Genus + Windspeed + Day + Day2} 22 7054.12 0  
p{Team + Alt + Alt2 + Wingspan + Genus + Day + Day2} 21 7056.56 0.39  
p{Team + Alt + Alt2 + Wingspan + Genus + Cloud + Windspeed + Day 

+ Day2} 

23 7053.19 1.13 

 
p{Team + Alt + Alt2 + Wingspan + Genus + Cloud + Day + Day2} 22 7056.03 1.92  
p{Team + Alt + Alt2 + Wingspan + Genus} 19 7062.56 2.28  
p{Team + Alt + Alt2 + Wingspan + Genus + Windspeed} 20 7060.56 2.34  
p{Team + Alt + Alt2 + Wingspan + Genus + Cloud + Windspeed} 21 7058.81 2.63  
p{Team + Alt + Alt2 + Wingspan + Genus + Cloud} 20 7061.33 3.10  
p{Team + Alt + Alt2 + Windspeed + Day + Day2} 16 7088.30 21.88  
p{Team + Alt + Alt2 + Day + Day2} 15 7091.24 22.78  
p{Team + Alt + Alt2 + Cloud + Windspeed + Day + Day2} 17 7087.60 23.23  
p{Team + Alt + Alt2 + Cloud + Day + Day2} 16 7090.89 24.47  
p{Team + Alt + Alt2 + Cloud + Windspeed} 15 7103.98 35.52  
p{Team + Alt + Alt2 + Cloud} 14 7107.06 36.56  
p{Team + Alt + Alt2 + Windspeed} 14 7107.41 36.91  
p{Team + Alt + Alt2} 13 7109.74 37.20  
p{Team + Wingspan + Genus + Day + Day2} 19 7146.29 86.01  
p{Team + Wingspan + Genus + Cloud + Day + Day2} 20 7144.24 86.01  
p{Team + Wingspan + Genus + Cloud} 18 7148.86 86.53  
p{Team + Wingspan + Genus + Cloud + Windspeed + Day + Day2} 21 7143.08 86.91  
p{Team + Wingspan + Genus + Windspeed + Day + Day2} 20 7145.59 87.36  
p{Team + Wingspan + Genus + Cloud + Windspeed} 19 7147.94 87.66  
p{Team + Wingspan + Genus} 17 7152.19 87.82  
p{Team + Wingspan + Genus + Windspeed} 18 7151.75 89.42 



 

 

Stage Model K Deviance ΔAICC 

Final, cont. p{Team + Day + Day2} 13 7172.98 100.44  
p{Team + Cloud + Day + Day2} 14 7171.43 100.93  
p{Team + Windspeed + Day + Day2} 14 7172.46 101.96  
p{Team + Cloud + Windspeed + Day + Day2} 15 7170.58 102.12  
p{Team + Cloud} 12 7184.19 109.63  
p{Team + Cloud + Windspeed} 13 7183.45 110.91  
p{Team} 11 7188.99 112.39  
p{Team + Windspeed} 12 7188.70 114.13  
p{Alt + Alt2 + Wingspan + Genus + Cloud + Windspeed + Day + Day2} 13 7211.95 139.42  
p{Alt + Alt2 + Wingspan + Genus + Windspeed + Day + Day2} 12 7214.28 139.72  
p{Alt + Alt2 + Wingspan + Genus + Cloud + Windspeed} 11 7217.58 140.98  
p{Alt + Alt2 + Wingspan + Genus + Windspeed} 10 7221.03 142.41  
p{Alt + Alt2 + Wingspan + Genus + Day + Day2} 11 7219.59 142.99  
p{Alt + Alt2 + Wingspan + Genus + Cloud + Day + Day2} 12 7218.17 143.60  
p{Alt + Alt2 + Wingspan + Genus + Cloud} 10 7223.87 145.24  
p{Alt + Alt2 + Wingspan + Genus} 9 7226.21 145.56  
p{Alt + Alt2 + Windspeed + Day + Day2} 6 7246.57 159.85  
p{Alt + Alt2 + Cloud + Windspeed + Day + Day2} 7 7244.63 159.93  
p{Alt + Alt2 + Day + Day2} 5 7252.26 163.53  
p{Alt + Alt2 + Cloud + Day + Day2} 6 7251.11 164.40  
p{Alt + Alt2 + Cloud + Windspeed} 5 7260.70 171.97  
p{Alt + Alt2 + Windspeed} 4 7265.84 175.10  
p{Alt + Alt2 + Cloud} 4 7267.68 176.94  
p{Alt + Alt2} 3 7271.52 178.77  
p{Wingspan + Genus + Cloud + Windspeed + Day + Day2} 11 7288.52 211.92  
p{Wingspan + Genus + Cloud + Windspeed} 9 7293.73 213.07  
p{Wingspan + Genus + Windspeed + Day + Day2} 10 7293.31 214.69  
p{Wingspan + Genus + Cloud + Day + Day2} 10 7293.52 214.89 



 

 

Stage Model K Deviance ΔAICC 

Final, cont. p{Wingspan + Genus + Cloud} 8 7298.58 215.91  
p{Wingspan + Genus + Day + Day2} 9 7297.08 216.42  
p{Wingspan + Genus + Windspeed} 8 7299.70 217.03  
p{Wingspan + Genus} 7 7303.22 218.52  
p{Cloud + Windspeed + Day + Day2} 5 7314.28 225.55  
p{Windspeed + Day + Day2} 4 7318.12 227.38  
p{Cloud + Day + Day2} 4 7318.42 227.68  
p{Day + Day2} 3 7321.31 228.55  
p{Cloud + Windspeed} 3 7326.62 233.87  
p{Cloud} 2 7330.94 236.18  
p{Windspeed} 2 7333.76 239.00 

Initial: Observer p{Team + Day + Day2 + Hour} 14 7170.55 99.82  
p{Team + Day + Day2} 13 7172.98 100.24  
p{Team + Day + Hour} 13 7173.99 101.25  
p{Team + Day} 12 7176.34 101.60  
p{Team} 11 7188.99 112.24  
p{Team + Hour} 12 7188.26 113.51  
p{Day + Day2 + Hour} 4 7317.80 227.03  
p{Day + Hour} 3 7320.58 227.81  
p{Day + Day2} 3 7321.31 228.54 

 p{Year} 2 7323.95 229.19  
p{Day} 2 7323.97 229.20  
p{.} 1 7336.82 240.05  
p{Hour} 2 7335.50 240.74 

Initial: Flight p{Alt + Alt2 + BPH} 4 7269.00 178.24  
p{Alt + Alt2} 3 7271.52 178.75  
p{Alt + BPH} 3 7291.06 198.29  
p{Alt} 2 7293.64 198.87 



 

 

Stage Model K Deviance ΔAICC 

Initial: Flight p{Year} 2 7323.95 229.19 

(cont.) p{BPH} 2 7333.16 238.39 

Initial: Species p{Wingspan + Genus} 7 7303.22 218.46  
p{Wingspan + Wingspan2} 3 7311.71 218.94  
p{Wingspan} 2 7314.54 219.77  
p{Wingspan + Wingspan2 + Genus} 8 7302.91 220.15  
p{Genus} 6 7308.41 221.65 

Initial:Weather p{Year} 2 7323.95 229.19 

 p{Cloud + Windspeed} 3 7326.62 233.85  
p{Cloud + Windspeed + cos(Wind dir.)} 4 7325.68 234.91  
p{Cloud + Windspeed + Temperature) 4 7326.32 235.55  
p{Cloud + Windspeed + cos(Wind dir.) + Temperature} 5 7324.65 235.88  
p{Cloud + [Windspeed × cos(Wind dir.)]} 3 7328.85 236.08 

 p{Cloud} 2 7330.94 236.18 

 p{Cloud + cos(Wind dir.)} 3 7329.17 236.41  
p{Cloud + [Windspeed × cos(Wind dir.)] + Temperature} 4 7328.41 237.65  
p{Cloud + cos(Wind dir.) + Temperature} 4 7328.77 238.00  
p{Cloud + Temperature} 3 7330.94 238.18  
p{Windspeed} 2 7333.76 239.00  
p{Windspeed + Temperature} 3 7332.54 239.77  
p{Windspeed + cos(Wind dir.) + Temperature} 4 7330.78 240.01  
p{.} 1 7336.82 240.05  
p{Windspeed + cos(Wind dir.)} 3 7333.17 240.41  
p{[Windspeed × cos(Wind dir.)]} 2 7335.53 240.76  
p{cos(Wind dir.)} 2 7335.64 240.87  
p{[Windspeed × cos(Wind dir.)] + Temperature} 3 7334.11 241.34  
p{cos(Wind dir.) + Temperature} 3 7334.22 241.46  
p{Temperature} 2 7336.45 241.68 
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