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ABSTRACT. Acoustic recordings are increasingly used to quantify occupancy and abundance in avian monitoring and research. The
recent development of relatively inexpensive programmable autonomous recording units (ARUs) has further increased the utility of
acoustic recording technologies. Despite their potential advantages, persistent questions remain as to how comparable data are between
ARUs and traditional (human observer) point counts. We suggest that differences in counts obtained from ARUs versus human
observers primarily stem from differences in the effective detection radius of humans (EDRH) versus ARUs (EDRA). We describe how
paired sampling can be used in conjunction with generalized linear (GLM) or generalized linear mixed models (GLMM) to estimate
correction factors (δ) to remove biases between ARUs and traditional point counts. Furthermore, if  human observers conduct distance
estimation, we show that density estimates can be derived from single ARUs by estimating EDRA as a function of EDRH and δ, thus
providing alternatives to more complicated and expensive approaches. We demonstrate our approach using data from 363 point count
stations in 105 unique boreal study sites at which field staff  conducted point count surveys that were simultaneously recorded by an
ARU and later transcribed in the lab. Finally, we used repeated random subsampling of the data to split the data into model creation
(70%) and validation (30%) subsets to iteratively estimate δ and validate density estimates from ARUs against densities calculated from
human observers at the same independent validation locations. We modeled density of 35 species of boreal forest birds and show that
incorporating δ in statistical offsets successfully removes systematic biases in estimated avian counts and/or density between human
and ARU derived surveys. Our method is therefore easily implemented and will facilitate the integration of ARU and human observer
point count data, facilitating expanded monitoring efforts and meta-analyses with historic point count data.

Standardisation de données de points d'écoute issus d'échantillons appariés d'observateurs et
d'enregistrements acoustiques
RÉSUMÉ. Les enregistrements acoustiques sont de plus en plus utilisés pour quantifier l'occurrence et l'abondance dans le cadre de
suivis et de recherches aviaires. Le développement récent d'unités d'enregistrement autonomes (ARU, pour autonomus recording units),
programmables et plutôt bon marché a contribué à hausser l'utilité des technologies d'enregistrement acoustique. En dépit de leurs
avantages possibles, des questions demeurent quant à la comparabilité des données issues de points d'écoute traditionnels (observateur
humain) et d'ARU. Nous supposons que les différences obtenues entre les dénombrements issus d'ARU et ceux issus d'observateurs
proviennent de différences dans le rayon de détection effectif  (EDR, pour effective dectection radius) des humains (EDRH)
comparativement à celui des ARU (EDRA). Nous décrivons de quelle façon un échantillonnage apparié peut être utilisé de pair avec
des modèles linéaires généralisés ou linéaires généralisés à effets mixtes pour estimer les facteurs de correction (δ) permettant de
supprimer les biais entre les points d'écoute traditionnels et ceux provenant d'ARU. De plus, si les observateurs doivent estimer les
distances, nous montrons comment des estimations de densité peuvent être dérivées à partir de simples ARU, en estimant EDRA en
fonction de EDRH et de δ, fournissant ainsi une alternative aux approches plus complexes et couteuses. Nous démontrons notre
approche à partir de données provenant de 360 stations de point d'écoute localisées dans 105 sites d'étude boréaux, où du personnel
de terrain a réalisé des dénombrements par point d'écoute qui ont été enregistrés simultanément par ARU et ensuite transcrits en
laboratoire. Enfin, nous avons procédé par sous-échantillonnage aléatoire répété des données pour les séparer en sous-ensembles destinés
à la création de modèles (70 %) ou à la validation (30 %) afin d'estimer δ de façon itérative et de valider les estimations de densité
obtenues au moyen d'ARU comparativement à celles calculées à partir des données récoltées par des observateurs aux mêmes sites
indépendants de validation. Nous avons modélisé la densité de 35 espèces d'oiseaux de forêt boréale et montrons que l'incorporation
de δ dans les compensations statistiques enlève correctement les biais systématiques des estimations de dénombrements aviaires et/ou
de densités trouvés entre les relevés faits par des observateurs et ceux obtenus au moyen d'ARU. Notre méthode est simple à utiliser,
facilite l'intégration de données de points d'écoute issus d'observateurs et d'ARU, et permettra des efforts de suivi plus grands et des
méta-analyses avec des données de point d'écoute historiques.
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INTRODUCTION
Long-term monitoring programs such as the North American
Breeding Bird Survey (hereafter BBS; Sauer et al. 2014) and the
Christmas Bird Count (Link et al. 2006) provide crucial data that
help to guide species status assessments and conservation efforts
(Downes et al. 2016). Despite the success of those monitoring
programs, many species are insufficiently monitored because of
large geographic gaps in avian monitoring programs (Sauer et al.
2003, Francis et al. 2009, Machtans et al. 2014), or the species life
history traits, e.g., crepuscular/nocturnal behavior, make them
hard to monitor using traditional census methods (Goyette et al.
2011, Zwart et al. 2014). Many of the gaps in monitoring efforts
exist in regions, e.g., boreal forest, or habitats where poor access
and logistical constraints, high cost, and a lack of skilled observers
have hindered monitoring efforts (Sauer et al. 2003, Francis et al.
2009, Machtans et al. 2014). Thus, it would be beneficial to
augment monitoring efforts with alternative methods for poorly
sampled species, habitats, and regions to better guide species
assessments, conservation prioritization, and test hypotheses for
causes of population change.  

One potential solution to monitor bird populations in regions and
habitats in which it is difficult to send skilled observers is to
augment human observers with stereo recordings (Hobson et al.
2002, Francis et al. 2009, Klingbeil and Willig 2015). This
approach is a plausible solution because most avian monitoring
and research programs collect count data using point count
surveys that primarily rely upon detection of acoustic cues
(Hobson et al. 2002, Blumstein et al. 2011, Matsuoka et al. 2014).
Indeed, several comparisons of data from stereo recordings
against human observers in the field suggest that recordings
provide relatively similar estimates of species abundance and
community composition (Hobson et al. 2002, Blumstein et al.
2011, Venier et al. 2012, Klingbeil and Willig 2015).  

Although many comparisons of acoustic recordings with point
counts conducted by human observers suggest the data are
generally comparable, subtle differences nonetheless do exist
(Hutto and Stutzman 2009, Venier et al. 2012). For example,
Hutto and Stutzman (2009) found that significantly more species
were detected using point counts than acoustic recordings and
speculated that this may in part be due to differences in the radius
over which species were audible between methods. In addition to
potential differences between a given recording system and
human observers, previous research has also shown variable
species detection between different recording systems (Rempel et
al. 2013). Thus, broader incorporation of ARU-based data into
monitoring programs may require correcting for differential
detectability between ARUs and human observers in the field
(Sidie-Slettedahl et al. 2015). We describe a sampling design and
analysis framework to relate counts from ARUs to traditional
point count data and derive estimated bird densities for both by
correcting data for biases in species availability and perceptibility
following earlier developments by Bart and Earnst (2002) and
Sólymos et al. (2013). Development of this method will allow for
efficient and cost-effective augmentation of acoustic monitoring
programs with ARU technology for species and regions with poor
survey coverage.  

We develop a framework to use simultaneously conducted human
point count and ARU surveys to estimate statistical offsets to
adjust for systematic differences between counts conducted by
humans versus ARUs (following Sólymos et al. 2013). We use field
data to test whether our approach removes bias in ARU-based
counts relative to densities estimated from field observers
conducting point counts using both distance estimation and time
removal sampling. Our proposed approach to correcting counts
between ARUs and humans would be most easily applied if  the
statistical offsets do not vary with other factors affecting
detection, and we therefore tested whether the offsets differed by
habitat or with environmental noise. Based on the literature and
field experience, we hypothesized that ratio of counts from ARUs
relative to counts from human observers conducted at the same
time and location would be < 1 on the assumption that the
detection radius of the ARU would be less than that of a human
observer. We also hypothesized that the same ratio would be
smaller when recordings were made in deciduous vs. other forest
types and/or windy conditions because microphones tend to
amplify leaf rustle (B. Turnbull, personal communication).

METHODS

Avian sampling
We conducted our study in the boreal forest of Saskatchewan,
Canada. Study sites were located in Bird Conservation Region 6
(Boreal Plains Ecozone) and Bird Conservation Region 8 (Boreal
Shield Ecozone) between 53° 34'N, 103° 43' W and 58° 08'N, 109°
28' W (Fig. 1) in the summers of 2014 and 2015. Surveys were
conducted at 363 unique point count stations distributed among
105 study sites, each of which constituted unique forest stands.
We sampled between 1 and 12 point count locations per study site
(median = 3). Effort was approximately equally distributed
between years (n = 205 in 2014 and n = 200 in 2015), with 42 point
count stations in 9 separate study sites surveyed in both years.
Based on the 250 m resolution Land Cover Map of Canada 2005
(LCC05; Latifovic et al. 2008), the most frequently sampled land
cover classes were open coniferous (29.2%), closed mature mixed
(16.3%), and open mature deciduous (11.6%) forest, with the
remainder of the point count samples distributed among 13 other
land cover classes (Table 1).  

All surveys were conducted by one of five observers between 15
minutes prior to sunrise and 4.5 hours after sunrise between 1–
29 June. Upon arriving at the point count station, observers
attached a Song Meter SM2+ ARU with a pair of SMX-II
microphones (Wildlife Acoustics Inc. ©, Maynard, MA) to the
nearest tree at approximately head height and began a manual
recording. ARUs were programmed to record in stereo in wav file
format, using a sampling rate of 44,100 samples per second and
using factory default acoustic gain settings for the microphone
preamplifier. The observer stood approximately 3 m from the
ARU to avoid introducing extraneous noise into the recordings.
Observers then announced when they began and ended a
simultaneous 10-minute point count to ensure data from the
subsequent transcription of ARU recordings were collected over
the identical time frame to point counts conducted by the human
observers.
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Fig. 1. Distribution of 105 study sites (forest stands) surveyed
using paired human observer and autonomous recording unit
point counts (n = 363) in the Boreal Plains (n = 66 stands) and
Boreal Shield (n = 39 stands) ecozones.

Table 1. Distribution of point count samples amongst land cover
classes derived from the 250 m resolution Land Cover Map of
Canada 2005 (LCC05; Latifovic et al. 2008).
 

Land cover class Number of Stations Percent

Open coniferous 106 29.2
Closed Mature Mixed 59 16.3
Open Mature Deciduous 42 11.6
Open Young Mixed 28 7.7
Sparse Coniferous 22 6.1
Poorly Drained 20 5.5
Closed Coniferous 19 5.2
Closed Young Mixed 16 4.4
Open Young Deciduous 15 4.1
Sparse Coniferous Shield 12 3.3
Closed Deciduous Mixed 9 2.5
Burns 4 1.1
Open Herb/Grass 4 1.1
Closed Deciduous 3 0.8
Open Northern 3 0.8
Open Mixed 1 0.3
Total 363 100.0

Our point count protocol followed those recommended in
Matsuoka et al. (2014). In brief, field observers placed observed
or acoustically detected individuals into one of three distance bins
(0–50, 50–100, > 100 m) while conducting point counts. Observers
were trained in distance estimation prior to field work in addition
to opportunistically ground-truthing distance estimates using
GPS units to estimate distances between point count centroids
and birds heard or observed while walking between point count

locations. To account for differences in availability, observers
additionally coded observations to the time interval (0–3, 3–5,
and 5–10 minutes) of initial detection; thus treating any
subsequent detections of the same individual as though it were
“removed” from the population (Farnsworth et al. 2002).  

To avoid introducing additional observer biases, ARU recordings
were transcribed by the same observer that conducted the field
count. During transcriptions, each acoustically identified
individual was coded into one of 10 subset 1-minute long time
periods (0–1, 1–2, through 9–10 minutes, respectively) to facilitate
estimation of availability using a count-removal approach. ARU
based intervals were subsequently collapsed to the 0–3, 3–5, and
5–10 minute intervals to match the human observer-based design.
Transcribers were not privy to field notes during transcription
and transcription was conducted after field season. Unlike counts
conducted under field conditions, transcribers were allowed to
pause and/or rewind the recording, e.g., to confirm identification,
as is frequently done in data transcription. Finally, transcribers
categorized environmental noise recorded from the ARU data for
each point count using a five point scale (1 = none, 2 = light, 3 =
moderate, 4 = heavy, and 5 = excessive).

Framework
Sólymos et al. (2013) previously demonstrated that point count
data can be adjusted for differences in field methodologies if  the
data include information on the time (Farnsworth et al. 2002,
Sólymos et al. 2013) and distance (Matsuoka et al. 2012, Sólymos
et al. 2013) intervals in which the individuals were first heard.
These extra data allow the application of removal (Farnsworth et
al. 2002, Sólymos et al. 2013) and distance modeling (Buckland
et al. 2001, Matsuoka et al. 2012) to estimate components of
detection probability. Specifically, removal or time-of-detection
methods allow the estimation of the probability that an individual
bird present at the time of survey gave a visual or auditory cue
and was therefore available for detection, i.e. availability (p), while
distance sampling allows estimation of the probability that the
available birds were detected (perceptibility [q]) given that they
were available (Alldredge et al. 2007a, Nichols et al. 2009). The
two components of the observation process can be estimated
independent of each other using conditional maximum likelihood
estimation (see Appendix in Sólymos et al. 2013). Sólymos et al.
(2013) established that incorporating the components of
detection probability as statistical offsets in generalized linear
(GLM) or generalized linear mixed effects (GLMM) models
effectively adjusts count data for differences in point count
methodology. The offset based method of Sólymos et al. (2013)
forms the basis of our approach to placing ARUs and human
observers on a similar footing, but assumes we can approximate
both components of detection for both humans and ARUs.
Obtaining p for both ARUs and humans is simply a matter of
removal sampling (Farnsworth et al. 2002, Sólymos et al. 2013)
or employing time-of-detection methods (Alldredge et al. 2007a,
b). The use of Global Positioning System (GPS) synchronized
ARU arrays allows distance to sound source to be directly
estimated via differences in timing of sound arrival to linked
ARUs (Dawson and Efford 2009, Mennill et al. 2012). The use of
synchronized ARU arrays can provide accurate and precise
estimates of density (Dawson and Efford 2009, Mennill et al.
2012), but is expensive owing to the need for many ARUs spaced
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over small distances, e.g., ~30m (Mennill et al. 2012). To reduce
costs, it would therefore be advantageous to devise methods of
estimating distance-related detection error for single ARUs
sampled with an unknown effective detection radius (hereafter
EDR). Thus, we require a method to indirectly estimate
detectability for single ARUs to apply the methods of Sólymos
et al. (2013).  

For a count conducted by the human observer (H), the expected
value of a count for a single species from a point count survey
observer can be expressed as: 
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where YH is the count, N is the species’ abundance, D is the point
level density (per unit area), AH is the area sampled, p(tj) is the
probability of an individual singing (and being detected) at least
once during the cumulative duration of the count (tj) given that
it is present to be detected (j=1,...,J; the number of time intervals),
and q(rk) is the probability that an individual bird within point
count radius (rk) is detected given that it is provides a cue, e.g.,
song, (k=1,...,K; the number of distance intervals). Although the
area sampled (AH) is typically unknown, it can be estimated via
distance sampling, for example using binomial or multinomial
distance estimators to estimate the effective detection radius
(EDR, denoted here as τ) assuming perfect detectability (q = 1)
within this effective distance: 
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The simplest approach to determine the relationship between
counts from human observers and those from ARUs is to conduct
paired sampling (or “double sampling” sensu Bart and Earnst
2002). If  we simultaneously use an ARU (A) to record the same
acoustic environment in which a human observer (H) is
conducting a point count, the population density to which both
are exposed is identical by design; i.e., D = DH = DA. As a result,
if  all else is equal then differences in the observed counts from
ARUs and human observers should be primarily due to
differences in the area sampled by each method. We note, however,
that minor differences in estimated abundances could also be due
to differences in the probability of detecting cues from individuals
birds (pH versus pA) related to differences in how detections are
made in the field versus in laboratory, e.g., possibility of double
checking recordings or lack of external distractions in the
laboratory. This assumption (pH = pA) can be explicitly tested by
estimating pH and pA from the data by recording time intervals in
which individuals were first detected and using removal models
(Farnsworth et al. 2002, Sólymos et al. 2013) or using time-of-
detection methods (Alldredge et al. 2007a,b). For the sake of
simplicity, we start by assuming that pH and pA are equal. If  we
divide the expected values of the counts, we can observe the
expected relationship between the areas sampled by humans
versus ARUs: 
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So, if  we let δ be such that: 
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then 
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 Therefore, Equation 3 could be written as: 
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As a result, the ratio of mean counts derived from the ARU to
mean counts by the human observer provides an estimate of a
squared scaling constant (δ²) that mathematically relates τH to the
unknown EDR of an ARU (τA).  

Counts are often modeled in log-linear Poisson general linear
(GLM) or generalized linear mixed (GLMM) models. If  we
estimate τH and pH using distance and removal sampling,
respectively, following Sólymos et al. (2013) we can calculate a
correction factor (C) and the mean for a count made at point
count location i (i=1,...,n; number of locations) by the human
observer that can be expressed as: 
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Poisson or negative binomial GLM or GLMMs can be fit in this
fashion combining human observer and ARU based counts using
an indicator function (IA) taking 0 value for human observers and
1 for ARU based counts: 
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Log density is estimated as a linear combination of predictor
variables and corresponding coefficients.

Data analysis
Prior to analysis, we removed species, e.g., gulls, ducks, that are
poorly monitored using point count methods because they are
frequently detected as flyovers and thus violate the closure
assumption. We then began by estimating EDRH based on our
model calibration data. We limited analyses to species with at least
15 detections, and fit half-normal binomial distance models to
estimate EDRs (Matsuoka et al. 2012). We then fit count removal
models to both the human observer and ARU data using a model
in which we included survey type as a factor to test for a difference
in species availability. We considered p unequal if  the 95%
confidence interval (hereafter 95% CI) for ARU survey parameter
estimate did not overlap zero. Distance and removal models were
fit using the “detect” package based on conditional maximum
likelihood estimating procedure (Sólymos et al. 2016).  

Although δ² can be approximated based on the square root of the
ratio between arithmetic mean ARU and human observer counts
(see above), we are interested in deriving maximum likelihood
estimates and associated confidence intervals of δ that account
for sampling design. These can be derived from coefficients (δ² =
exp[β]) from Poisson or negative binomial regression, which can
be interpreted as the ratio of the count between levels of a
treatment. We used Poisson GLMMs to estimate δ by including
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a fixed effect factor for survey type (ARU vs. human as the
reference category), and included random intercepts for station
and visit to account for paired observations between human
observers and ARUs. Following Sólymos et al. (2013), we used
our human observer data to derive species specific estimates of
log(EDRH² ∙ π ∙ p) and included these as statistical offsets in our
GLMMs. We estimated δ for each species in which the comparison
of availability between ARU and humans (above) showed pH is
approximately equal to pA as per the assumptions of our
approach.  

We validated the predictive performance of our models and
examined bias in density estimates (relative to those estimated by
the human observers in the field) by using repeated random
subsampling of the data. In each repeated subsample, data were
partitioned by randomly selecting 70% of the study sites (n = 74)
for developing GLMMs from which we estimated δ, and 30% of
the study sites (n = 31) were withheld as independent validation
samples. We repeated this random sampling 50 times. In each
repeated sample, we estimated δ using the aforementioned
GLMM structure and calculated the 95% CI across the 50
replicated analyses. We also calculated empirical estimates of δ 
by dividing the mean ARU count by the mean human observer
count in the withheld validation data for each of the 50 repeated
subsampling events. We then assessed whether the 95% CIs for
the GLMM-based estimates of δ overlapped with 95% CIs from
the empirical estimates of δ and examined the (Pearson’s)
correlation between both estimates of δ. In addition, we also
examined whether the inclusion of δ in statistical offsets reduced
bias in predicted densities from ARU surveys within each random
subsampling. We began by estimating density for human
observations by fitting a GLMM to the subset of each validation
subsample in which we included a random intercept for study site
and a statistical offset, i.e., log(EDRH² ∙ π ∙ p) to generate mean
study site level density estimates. We then fit two competing
models to the ARU data from the same sites with the same random
effects structure as used for the human observer data, but fit one
(our “null” model) in which we included the statistical offset used
for the human observer data, and a competing model in which
we used the δ estimate from the model calibration data within the
same iteration to estimate the offset as log([δ *EDRH]² ∙ π ∙ p).
Based on these models, we calculated bias as the difference
between the mean density predicted from the models fit to the
ARU data minus the predicted mean density estimated from the
human observer data. We were interested in testing whether δ 
values estimated by different approaches were statistically
different. Because δ represents a relative difference between two
methods and we used the same EDRH estimates, incorporating
the uncertainty around EDRH would not have changed our
results. It should be noted however that propagating the error
through modeling (e.g. as described in Sólymos et al. 2013) might
be required when estimating bird densities.  

Finally, we used our full data set to assess whether δ varied
between habitat types (deciduous/mixed wood habitat types
versus all other categories) and environmental noise conditions.
We constructed six a priori GLMM models that all included
random intercepts for station and visit as per above and offsets
based on those calculated from human observer data. We included
a null (intercept only) model, a model with fixed effects for survey
type (two-level factor: ARU vs. human), habitat type (two-level

factor: deciduous/mixed vs. other) and models with both survey
type plus habitat type or survey type plus environmental noise as
main effects. Although noise was an ordinal variable, previous
analyses suggest a reasonably linear response of counts to our
noise variable and thus we treated noise as a linear covariate.
Finally, in addition to the main effects models, we included two
models that incorporated interactions between survey type and
habitat type versus one with survey type and noise interaction.
We did not consider models including all three main effects and
interactions. We selected among competing models based on
Akaike’s information criterion (AIC, Burnham and Anderson
2002), and we only considered models with a ΔAIC of < 2 as
potentially competitive. If  habitat or environmental noise
differentially impacted the detection radius of an ARU relative
to a human observer, models including the interaction terms
should receive the greatest support.

RESULTS
Forty-one species met our minimum sample size criteria (Table
A1.1). Across species, effective detection radii (EDRH) ranged
from ~34 to 167 m (median = 68 m; Table A1.1). Of the 41 species
for which we estimated availability based on count-removal
models, models did not successfully converge for one species
(Northern Flicker, Colaptes auratus), and five species did not meet
the assumption of equal availability based on parameter estimates
for the ARU factor in removal models. Estimates of availability
(p) were strongly correlated (Pearson’s r = 0.81, p < 0.001) between
count removal models fit to human observer versus ARU count
data (Fig. 2; Table A1.1). Species not meeting the assumption of
equal availability include Ruffed Grouse, Bonasa umbellus (survey
effect for ARU; β = 0.84, SE = 0.37), Red-eyed Vireo, Vireo
olivaceus (β = 0.30, SE = 0.09), Tennessee Warbler, Oreothlypis
peregrina (β = 0.25, SE = 0.10), Chestnut-sided Warbler,
Setophaga pensylvanica (β = 0.43, SE = 0.20), and Chipping
Sparrow, Spizella passerina (β = 0.66, SE = 0.24).

Fig. 2. Relationship between probability of a bird singing at
least once (and being detected) during a 10-minute point count
survey estimated from count-removal models fit to data from
41 species from simultaneous point counts conducted by
human observers in the field (x-axis) versus from autonomous
recording units (ARUs, y-axis). Dashed diagonal line indicates
1:1 correspondence.
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Models examining variation in paired counts between human
observers and ARUs suggested that the majority of species were
slightly less detectable on ARU recordings than in the field (Fig.
3; Table A1.2). Across species, the median estimate of δ was 0.95
(minimum = 0.78, maximum = 1.11); however, 95% CIs
overlapped one for 18 out of 35 species (Fig. 3; Table A1.2).
Comparison of 95% CIs around estimates of δ against those for
empirical ratios of ARU to human observer counts showed
overlap for all 35 species (Table A1.2). Across species, estimates
of δ from our calibration models were positively correlated with
empirical ratios derived from the withheld validation samples
(Fig. 3; Pearson’s r = 0.84, p < 0.001).

Fig. 3. Comparison of Poisson generalized linear mixed model
based (GLMM) estimates of δ (± 95% confidence intervals)
against empirical estimates of δ (± 95% confidence intervals)
calculated by dividing the mean ARU count by the mean
human observer count in the withheld validation data. GLMM
estimates were derived from iteratively (50 repeated random
subsamples) fitting GLMMs to 70% of the study sites and
compared against the empirical estimates of δ which were
estimated from the 30% of withheld study sites. Dot-dash
diagonal line (red) indicates 1:1 correspondence.

Applying δ estimates within the statistical offsets resulted in
reduced bias for 33 out of 35 species compared to modeling the
data using offsets taken solely from human observer data (Fig.
4). Failing to incorporate δ estimates within the statistical offsets
resulted in 24 species with negative biases in their density estimates
(Fig. 4). Of the 24 species with negatively biased density estimates
derived using uncorrected offsets (taken from human observer
data), five species (Ovenbird [Seiurus aurocapilla], Dark-eyed
Junco [Junco hyemalis], Ruby-crowned Kinglet [Regulus
calendula], Clay-colored Sparrow [Spizella pallida], and
Connecticut Warbler [Oporornis agilis]) had 95% CIs that did not
overlap zero (Fig. 4), whereas density estimates for these same
species were unbiased when δ was incorporated in the offsets (Fig.
4). For Ovenbird, failing to incorporate δ within the offset resulted
in density being underestimated by 0.10 birds ha-1 on average.
Similarly, densities of Dark-eyed Junco, Ruby-crowned Kinglet,
Clay-colored Sparrow, and Connecticut Warbler were
underestimated by 0.07 birds ha-1, 0.04 birds ha-1, 0.02 birds ha-1,
and

Fig. 4. Bias in estimated densities (birds ha-1) from point count
data derived from autonomous recording units (ARUs)
compared to densities derived from human point counts
conducted at the same time and location. Densities from
human point counts were derived by adjusting counts for biases
in availability (p) and perceptibility (q) using QPAD approach
(Sólymos 2013) by inclusion in a statistical offset (i.e., log
[EDRH² ∙ π ∙ p], see Methods). Densities from ARU surveys
were derived by applying QPAD offsets from human observer
data (open circles - log[EDRH² ∙ π ∙ p]), versus adjusting the
offsets to account for the scaling constant δ (i.e., log[(δ *
EDRH)² ∙ π ∙ p], closed red circles). Bias was estimated from
fitting models to 70% of the study sites and validated against
the withheld external validation sites (30%) over 50 repeated
random subsamples of the data. See Table 2 for scientific
names of bird species.

0.01 birds ha-1, respectively. Conversely, estimates of Philadelphia
Vireo (Vireo philadelphicus) and Cedar Waxwing (Bombycilla
cedrorum) densities were less biased on average when the statistical
offsets did not incorporate δ; however, 95% CIs overlapped zero
for both offset approaches (Fig. 4), suggesting both methods
produced unbiased estimates. Although the remainder of the
species had 95% CIs that overlapped zero for both of the statistical
offset approaches, incorporating δ also (on average) reduced
overestimation of densities (Fig. 4). For example, using
uncorrected versus δ corrected statistical offsets resulted in greater
overestimation of density on average for Cape May Warbler
(Setophaga tigrina; 0.02 vs. 0.01 birds ha-1), Palm Warbler
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Table 2. Model selection based on Akaike’s Information Criterion (AIC) for Poisson generalized linear mixed effects models examining
variation in counts of 35 species of boreal forest birds. Presented are ΔAIC values that rank models relative to the model with the lowest
AIC value, with the lowest value (i.e., 0) representing the most parsimonious model.
 
Species Null Survey Type Survey Type +

Habitat
Survey Type *

Habitat
Noise + Habitat Noise * Habitat

Yellow-bellied Sapsucker
(Sphyrapicus varius)

2.41 0.30 0.00 3.46 1.30 4.33

Hairy Woodpecker
(Picoides villosus)

0.16 0.00 1.98 5.84 1.41 5.28

Pileated Woodpecker
(Dryocopus pileatus)

2.54 4.04 0.00 3.75 4.37 7.91

Alder Flycatcher
(Empidonax alnorum)

0.00 1.71 3.55 5.53 3.66 7.29

Least Flycatcher
(Empidonax minimus)

0.00 1.51 3.47 6.93 3.38 7.38

Philadelphia Vireo
(Vireo philadelphicus)

0.00 0.66 2.33 6.29 2.22 5.44

Black-capped Chickadee
(Poecile atricapillus)

0.00 1.45 3.24 7.07 2.70 6.62

Red-breasted Nuthatch
(Sitta canadensis)

0.93 2.70 4.11 8.09 0.00 3.98

Brown Creeper
(Certhia americana)

0.00 1.53 3.48 7.26 1.90 5.76

Winter Wren
(Troglodytes hiemalis)

1.52 1.44 0.00 3.98 1.97 5.94

Ruby-crowned Kinglet
(Regulus calendula)

12.52 8.77 0.00 3.93 9.65 13.58

Swainson’s Thrush
(Catharus ustulatus)

10.13 11.93 12.41 16.25 0.00 3.76

Hermit Thrush
(Catharus guttatus)

2.16 0.89 2.89 6.72 0.00 3.99

American Robin
(Turdus migratorius)

8.66 3.39 2.37 6.20 0.00 3.21

Cedar Waxwing
(Bombycilla cedrorum)

0.00 1.91 3.41 7.38 2.78 5.84

Ovenbird
(Seiurus aurocapilla)

20.86 18.64 0.00 3.68 17.41 21.40

Orange-crowned Warbler
(Oreothlypis celata)

0.00 1.25 0.20 4.18 3.25 5.29

Nashville Warbler
(Oreothlypis ruficapilla)

0.00 1.75 1.27 5.27 3.71 6.36

Connecticut Warbler
(Oporornis agilis)

0.00 1.19 2.49 6.29 3.18 6.88

Mourning Warbler
(Geothlypis philadelphia)

4.76 6.13 0.00 3.91 7.89 10.56

Common Yellowthroat
(Geothlypis trichas)

0.00 1.88 3.58 7.51 3.84 7.07

American Redstart
(Setophaga ruticilla)

0.00 1.99 0.26 3.58 3.49 7.18

Cape May Warbler
(Setophaga tigrina)

0.00 1.80 3.77 7.71 3.44 7.23

Magnolia Warbler
(Setophaga magnolia)

5.21 6.75 8.33 12.18 0.00 3.85

Bay-breasted Warbler
(Setophaga castanea)

0.00 1.28 2.98 6.93 2.98 6.69

Blackburnian Warbler
(Setophaga fusca)

0.00 1.95 3.65 6.37 3.94 6.96

Palm Warbler
(Setophaga palmarum)

0.00 1.98 2.62 4.60 3.98 7.77

Yellow-rumped Warbler
(Setophaga coronata)

9.79 4.40 0.00 4.00 5.73 9.64

Canada Warbler
(Cardellina canadensis)

1.27 3.24 0.00 4.00 5.23 9.15

Clay-colored Sparrow
(Spizella pallida)

1.40 0.00 1.56 4.98 1.93 3.39

Fox Sparrow
(Passerella iliaca)

0.00 1.96 2.67 5.33 3.80 7.31

Lincoln’s Sparrow
(Melospiza lincolnii)

0.00 1.90 2.86 4.39 3.87 7.68

White-throated Sparrow
(Zonotrichia albicollis)

0.00 1.61 3.19 7.11 3.60 7.39

Dark-eyed Junco
(Junco hyemalis)

25.81 26.44 0.00 3.43 27.51 30.13

Rose-breasted Grosbeak
(Pheucticus ludovicianus)

5.23 7.17 0.00 3.99 9.12 12.96

http://www.ace-eco.org/vol12/iss1/art13/


Avian Conservation and Ecology 12(1): 13
http://www.ace-eco.org/vol12/iss1/art13/

(Setophaga palmarum; 0.03 vs. 0.00 birds ha-1), American Redstart
(Setophaga ruticilla; 0.03 vs. 0.02 birds ha-1), Brown Creeper
(Certhia americana; 0.03 vs. 0.01 birds ha-1), Orange-crowned
Warbler (Oreothlypis celata; 0.03 vs. 0.01 birds ha-1), and
Nashville Warbler (Oreothlypis ruficapilla; 0.04 vs. 0.01 birds
ha-1).  

Based upon AIC model selection, the null model was the most
parsimonious for 18 species, the model only including the survey
type factor was the most parsimonious for two species, the model
including factors for both survey and habitat type was the most
parsimonious for 10 species, and the model including survey type
and noise was the most parsimonious model for five species (Table
2). There was substantial model uncertainty for virtually all
species; however, neither of the interaction models received
substantial support (Table 2). Across species, the minimum ΔAIC
(3.43) for the survey type by habitat type interaction was observed
for Dark-eyed Junco, and parameter estimates from the
interaction in that model show little evidence for an effect (β 
= -0.38, SE = 0.51). Similarly, the most substantial support for
the survey type by noise interaction was observed for American
Robin (Turdus migratorius; ΔAIC = 3.21), which similarly showed
little evidence for an effect (β = 0.17, SE = 0.32).

DISCUSSION
Our results provide further evidence supporting the conclusions
of previous researchers (Haselmayer and Quinn 2000, Hobson et
al. 2002, Celis-Murillo et al. 2009, Blumstein et al. 2011) that the
raw counts derived from both acoustic recordings and human
observers are relatively comparable. In paired comparisons
between ARU and human observers, we found that the null
models were favored over models incorporating a survey type
effect for 18 out of 35 species. This was further supported by
parameter estimates for the survey effect (δ) that overlapped one
for the majority of the species that we modeled. Together, these
lines of evidence suggest occasional minor biases exist in count
data from ARUs relative to human observations.  

Despite the relative similarity of many of the raw counts,
systematic biases were apparent, and for five species the 95% CIs
for estimated bias in densities did not overlap zero if  the statistical
offsets did not incorporate δ; thus analytically dealing with these
biases will be important for data integration. This may be
especially important since the biases may differ between acoustic
recorder types and brands (Rempel et al. 2013, Yip et al. 2017)
and/or may change with equipment wear (Turgeon et al. 2017).
We demonstrated that correcting ARU data for differential
detectability can effectively remove the majority of these biases.
Because our experimental design and statistical analysis resulted
in similar species availability, we suggest that the key source of
bias in the counts derives from differences in detection radius
between human observers and ARUs.  

Our results suggest that the relatively simple approach of pairing
human observers with ARUs allows data to be successfully
corrected for systematic biases between counts. Repeated random
subsampling of our data suggested that δ estimates were relatively
robust to sampling variation and were correlated with empirical
estimates calculated from withheld data from independent study
sites. In addition, applying offsets incorporating δ reduced bias
for almost every species examined. Furthermore, we found little

support for interactions between survey type and habitat type and
survey type and environmental noise effects on δ. The lack of
support for the interaction models suggests that biases between
ARUs and human observers are apparently relatively consistent
(but see below). Therefore, paired sampling can generally be used
to derive corrections that can be readily obtained using relatively
common Poisson (GLM or GLMM) regression models simply
by including survey type as a factor available in most modern
statistical software.  

In addition to our approach facilitating integration of ARU data
with human point counts, it has the added benefit that avian
density estimates can be derived from single ARUs as long as the
human observers include distance estimation in their survey
protocol. Alternative methods exist to derive densities from
ARUs, typically employing acoustic localization from arrays of
synchronized ARUs (Dawson and Efford 2009, Campbell and
Francis 2012, Mennill et al. 2012). Acoustic arrays require a
greater financial investment in ARUs because multiple ARUs are
required for an array and each is more expensive owing to
additional hardware (GPS). For example, as of the time of
writing, Wildlife Acoustics Inc. (http://www.wildlifeacoustics.
com/store#song-meter-sm3) charges US$1049 for a single SM3
ARU plus an additional US$299 for the accompanying GPS
module. Although acoustic localization is rapidly evolving, it can
be logistically and computationally difficult. Thus, our approach
provides a logistically feasible and affordable alternative to more
complicated designs. Future paired comparisons between ARU
and/or human point counts placed within acoustic arrays or
traditional spot mapping grids (Bart and Earnst 2002) would
further improve certainty in point count density estimation and
would naturally fit with the analytical approach we describe here.  

An alternative method to correcting biases between ARUs and
human point counts would be through playback experiments. Yip
et al. (2017) conducted playback experiments in which species
calls were played along transects at various distances away from
human observers and ARUs. An experimental approach has the
advantage of the calls coming from known distances, however it
also requires the experimenter to make assumptions about the
amplitude at which birds sing/call because how loud wild birds
sing is variable and generally unknown (Brackenbury 1979). In
addition, the effects of directionality on song amplitude in wild
birds are not well described but are known to impact detection
probability from experimental playbacks (Alldredge et al. 2007a,
c). Therefore experimentally replicating the impact of bird
orientation relative to point count location complicates the
approach. In contrast, with respect to density estimation our
approach assumes that observers accurately estimated distance,
which can be inaccurate (Alldredge et al. 2007c). We suggest that
both paired comparisons and experimental playbacks could be
used in a complementary fashion to estimate correction factors
between human point counts and ARUs. Further, we suggest that
paired sampling is a pragmatic approach to obtain statistical
offsets for the majority of species and does not require
assumptions about amplitude and directionality of songs. Where
sample sizes become limiting because of species rarity, the
experimental approach of Yip et al. (2017) would allow estimates
to be obtained for species for which δ cannot be estimated because
of a lack of detections.  
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Similar to our results, Yip et al. (2017) generally found estimates
of δ that were less than 1. Unlike our results however, Yip et al.
(2017) found evidence for habitat related variation in δ.
Presumably detection for both human observers and ARUs were
similarly affected by habitat and environmental noise in our
experiment and thus our density estimates may be biased low;
however, systematic differences between survey types were
apparently corrected. Given the apparent difference between our
results and those of Yip et al. (2017), future analyses under a
broader set of habitat conditions and with a broader range of
species may provide evidence suggesting the need for stratification
to improve the corrections we have employed here. For example,
we did not fit observer or habitat specific distance models that
would presumably improve precision because there can be
substantial interobserver variation in distance estimation
(Nadeau and Conway 2012). Despite not having estimated
observer or habitat specific offsets, our validation still suggests a
substantial reduction in bias despite randomly sampling among
habitats and observers. Greater effort should be put into
replicating our design with more combinations of species,
habitats, and environmental conditions to facilitate estimating
how much annual effort should be placed on paired sampling
because the added time for transcription is an added cost of our
method.  

Our results and external validation provide evidence that data
from both human observers and ARUs can be placed on a similar
footing. We therefore recommend monitoring and research
programs begin further integration of ARUs and human observed
point counts to take advantage of the relative merits of both
methods. Not only would this improve sample sizes, but would
also allow researchers to gain a better understanding of factors
influencing detection probability owing to the ease of obtaining
repeated samples with programmable ARUs. Although further
sampling could provide refinements to our estimates, we have
shown that our approach reduces bias related to survey type. Our
method therefore provides an easily implemented method that
facilitates the integration of ARU data with human observer point
counts to allow expanded monitoring efforts and will facilitate
meta-analyses with historic point count data to examine factors
influencing avian populations (Cumming et al. 2010, Sólymos et
al. 2013).

Responses to this article can be read online at: 
http://www.ace-eco.org/issues/responses.php/975
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Appendix 1.  

Table A1.1 Estimated effective detection radius (EDR) and parameter estimates from count removal models 

including both the human observer and autonomous recording unit (ARU) data with survey type included as a 

fixed effect factor (ARU (1) versus human as the reference category (0)) to test for a difference in species 

availability for 41 species (see Methods). Bold denotes parameter estimates for which 95% confidence intervals 

suggest the probability of an individual singing (and being detected) at least once during the cumulative duration of 

the count differed between human observer (p
H
) and transcription from ARU (p

A
). 

Species Latin Name Sample size  Intercept Survey Effect 

  Human ARU EDR (m)  β SE β SE 

Ruffed Grouse Bonasa umbellus 43 87 95 -1.73 0.34 0.84 0.37 

Yellow-bellied Sapsucker Sphyrapicus varius 65 54 68 -2.10 0.36 -0.03 0.56 

Hairy Woodpecker Picoides villosus 18 16 53 -1.02 0.27 0.02 0.43 

Northern Flicker Colaptes auratus 39 24 128 -15.50 NA 12.95 NA 

Pileated Woodpecker Dryocopus pileatus 47 55 167 -1.71 0.31 0.21 0.39 

Alder Flycatcher Empidonax alnorum 69 64 102 -1.12 0.13 -0.22 0.22 

Least Flycatcher Empidonax minimus 18 19 46 -0.95 0.22 -0.10 0.32 

Philadelphia Vireo Vireo philadelphicus 24 30 53 -1.54 0.35 0.53 0.43 

Red-eyed Vireo Vireo olivaceus 229 217 81 -1.00 0.07 0.30 0.09 

Black-capped Chickadee Poecile atricapillus 33 31 56 -1.62 0.30 -0.16 0.48 

Red-breasted Nuthatch Sitta canadensis 65 56 88 -2.12 0.38 -0.31 0.67 

Brown Creeper Certhia americana 47 63 42 -1.28 0.21 -0.14 0.30 

Winter Wren Troglodytes hiemalis 111 100 101 -0.89 0.11 0.09 0.16 

Ruby-crowned Kinglet Regulus calendula 98 77 86 -1.21 0.12 0.18 0.18 

Swainson's Thrush Catharus ustulatus 135 136 91 -1.23 0.11 0.20 0.14 

Hermit Thrush Catharus guttatus 163 145 139 -1.29 0.10 0.03 0.15 

American Robin Turdus migratorius 64 52 92 -1.94 0.30 0.68 0.36 

Cedar Waxwing Bombycilla cedrorum 42 49 34 -2.51 0.57 -0.08 0.83 

Ovenbird Seiurus aurocapilla 203 201 77 -0.91 0.06 0.14 0.08 

Tennessee Warbler
†
 Oreothlypis peregrina 200 192 63 -1.08 0.07 0.25 0.10 

Orange-crowned Warbler Oreothlypis celata 43 35 59 -2.07 0.43 0.18 0.58 

Nashville Warbler Oreothlypis ruficapilla 33 41 46 -1.55 0.30 0.16 0.39 

Connecticut Warbler Oporornis agilis 24 25 74 -1.28 0.25 0.48 0.34 

Mourning Warbler Geothlypis philadelphia 73 76 64 -1.31 0.16 0.15 0.22 

Common Yellowthroat Geothlypis trichas 19 19 62 -0.91 0.27 -0.24 0.41 

American Redstart Setophaga ruticilla 40 42 51 -0.66 0.14 -0.05 0.19 

Cape May Warbler Setophaga tigrina 22 27 37 -1.31 0.32 0.40 0.40 

Magnolia Warbler Setophaga magnolia 122 122 54 -1.24 0.11 0.21 0.16 

Bay-breasted Warbler Setophaga castanea 62 59 39 -1.60 0.22 0.25 0.30 

Blackburnian Warbler Setophaga fusca 40 39 41 -0.93 0.19 -0.60 0.34 



Chestnut-sided Warbler Setophaga pensylvanica 51 47 55 -1.13 0.15 0.43 0.20 

Palm Warbler Setophaga palmarum 34 37 65 -1.51 0.26 0.19 0.34 

Yellow-rumped Warbler Setophaga coronata 134 115 64 -1.72 0.16 0.35 0.21 

Canada Warbler Cardellina canadensis 20 22 61 -0.82 0.24 0.49 0.34 

Chipping Sparrow Spizella passerina 160 151 73 -2.10 0.21 0.66 0.24 

Clay-colored Sparrow Spizella pallida 20 15 70 -1.25 0.29 -0.31 0.55 

Fox Sparrow Passerella iliaca 17 19 131 -1.59 0.44 -0.04 0.60 

Lincoln's Sparrow Melospiza lincolnii 26 28 69 -0.82 0.23 -0.22 0.34 

White-throated Sparrow Zonotrichia albicollis 260 259 99 -1.15 0.06 0.08 0.08 

Dark-eyed Junco Junco hyemalis 76 65 70 -1.89 0.23 0.54 0.29 

Rose-breasted Grosbeak Pheucticus ludovicianus 33 39 85 -0.87 0.21 -0.40 0.32 

  



Table A1.2 Estimated scaling constants (δ and both lower (LCL) and upper (UCL) 95% confidence intervals) 

relating counts from autonomous recording units (ARUs) to those by human observers for 35 species and 

calculated as √exp⁡(𝛽) from generalized linear mixed effects regression models (see Methods). Presented are 

maximum likelihood (MLE) estimates of δ and 95% CIs estimated as the median and the 2.5 and 97.5% quantiles 

from 10,000 Monte Carlo simulations drawn from a multivariate normal distribution treating the model coefficients 

(including the survey effect β) as the mean and the estimated variance-covariance matrix. Also presented are 

calibration δ and empirical ratios (dividing the mean ARU count by the mean human observer count) derived from 

50 repeated random (70% versus 30%) sub-samples of the data (see Methods). 

 MLE estimates  Repeated Random Sampling 

     Calibration  Empirical Ratio 

Species LCL δ UCL  LCL δ UCL  LCL δ UCL 

Yellow-bellied Sapsucker 0.71 0.86 1.03  0.80 0.87 0.94  0.66 0.85 1.20 

Hairy Woodpecker 0.62 0.84 1.14  0.71 0.84 0.99  0.41 1.03 2.12 

Pileated Woodpecker 0.84 1.03 1.26  1.00 1.06 1.11  0.96 1.08 1.23 

Alder Flycatcher 0.76 0.90 1.06  0.81 0.86 0.92  0.64 0.93 1.38 

Least Flycatcher 0.73 0.93 1.18  0.90 0.95 1.03  0.81 0.97 1.24 

Philadelphia Vireo 0.77 1.00 1.31  0.86 1.00 1.16  0.73 0.97 1.22 

Black-capped Chickadee 0.70 0.88 1.11  0.83 0.91 0.97  0.66 0.92 1.35 

Red-breasted Nuthatch 0.74 0.90 1.08  0.89 0.93 0.99  0.82 0.91 1.16 

Brown Creeper 0.83 1.01 1.23  0.97 1.05 1.14  0.91 1.11 1.37 

Winter Wren 0.78 0.91 1.05  0.88 0.92 0.94  0.81 0.91 1.18 

Ruby-crowned Kinglet 0.76 0.87 1.00  0.83 0.86 0.90  0.68 0.80 1.11 

Swainson's Thrush 0.91 1.01 1.12  0.96 0.99 1.03  0.91 1.00 1.18 

Hermit Thrush 0.84 0.93 1.02  0.88 0.91 0.94  0.82 0.91 1.05 

American Robin 0.68 0.82 0.98  0.77 0.82 0.88  0.62 0.83 1.21 

Cedar Waxwing 0.85 1.02 1.23  0.94 1.00 1.07  0.90 1.04 1.25 

Ovenbird 0.86 0.92 0.99  0.91 0.93 0.95  0.84 0.90 1.03 

Orange-crowned Warbler 0.75 0.95 1.20  0.94 1.10 1.21  0.70 1.10 1.49 

Nashville Warbler 0.87 1.10 1.39  1.00 1.11 1.21  0.70 1.10 1.49 

Connecticut Warbler 0.69 0.88 1.13  0.76 0.85 0.91  0.57 0.73 0.83 

Mourning Warbler 0.86 1.01 1.18  0.90 0.98 1.06  0.80 0.99 1.29 

Common Yellowthroat 0.74 1.00 1.34  0.87 0.95 1.05  0.76 1.14 2.17 

American Redstart 0.92 1.09 1.30  0.98 1.04 1.11  0.79 1.03 1.24 

Cape May Warbler 0.80 1.06 1.42  0.97 1.07 1.17  0.76 1.09 1.43 

Magnolia Warbler 0.82 0.93 1.05  0.92 0.95 0.98  0.85 0.96 1.12 

Bay-breasted Warbler 0.77 0.92 1.09  0.90 0.94 0.99  0.80 0.95 1.18 

Blackburnian Warbler 0.80 1.00 1.25  0.85 0.94 1.02  0.74 0.95 1.27 

Palm Warbler 0.87 1.11 1.42  0.97 1.10 1.23  0.70 1.09 1.55 

Yellow-rumped Warbler 0.79 0.89 1.00  0.84 0.89 0.94  0.77 0.89 1.10 

Canada Warbler 0.73 1.00 1.36  0.94 1.00 1.07  0.90 1.05 1.27 

Clay-colored Sparrow 0.55 0.77 1.09  0.65 0.78 0.86  0.71 0.75 0.81 

Fox Sparrow 0.84 1.12 1.49  1.01 1.09 1.19  0.87 1.13 1.44 

Lincoln's Sparrow 0.81 1.12 1.55  0.86 0.99 1.19  0.79 1.15 1.85 

White-throated Sparrow 0.91 0.97 1.03  0.96 0.98 1.00  0.92 0.97 1.08 



Dark-eyed Junco 0.71 0.84 0.98  0.77 0.85 0.94  0.62 0.87 1.29 

Rose-breasted Grosbeak 0.86 1.10 1.39  0.97 1.06 1.13  0.86 1.05 1.25 
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