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ABSTRACT. Citizen science projects provide a vast amount of biological data that can be used to model population trends of species.
Robust statistical modeling techniques are necessary to account for multiple sources of bias inherent to the data. One such citizen
science project, eBird, is an online database of avian checklist data entered by birdwatchers from discrete locations and visits. The eBird
dataset may be large enough to fill information gaps left by other monitoring programs if  biases in the data are modeled appropriately
and if  the models can be validated against reliable survey data. We compared eBird and North American Breeding Bird Survey (BBS)
data from southern Ontario to determine if  patterns in annual indices and long-term trends were similar for 22 species that reach the
northern limit of their range in that region. Mixed-effects models were used to address varying observer skill and uneven geographic
coverage in eBird, and the number of species per checklist was used as a covariate to represent effort and to accommodate historic lists
lacking effort information. The average Pearson’s correlation coefficient between eBird and BBS annual indices across species was 0.35,
and the correlation between trends estimated from the annual indices was 0.72. eBird data generally agreed with BBS data with the
exception of two common species that showed opposite trends, several species with low detection rates, and for two species with little
long-term change in occurrence based on BBS data. Our results suggest that eBird data can be used to generate long-term trends that
could complement data from traditional surveys, yet more work is needed to understand circumstances that lead to disagreement
between eBird and other surveys.

Utilisation des données eBird pour modéliser les tendances de populations d'espèces d'oiseaux
migrateurs
RÉSUMÉ. La participation citoyenne à des projets scientifiques concourt à amasser une grande quantité de données biologiques
pouvant être utilisées pour modéliser les tendances de populations d'espèces. Des techniques de modélisation statistiquement robustes
sont nécessaires afin de tenir compte des diverses sources de biais inhérents aux données. Projet scientifique à participation citoyenne,
eBird est une base de données en ligne colligeant des listes d'oiseaux remplies par les ornithologues amateurs pour un site particulier
et une visite précise. Le jeu de données eBird peut permettre de combler le manque d'information de certains programmes de surveillance
si les biais associés aux données sont modélisés correctement et si les modèles sont validés avec des données d'inventaires fiables. Nous
avons comparé des données provenant d'eBird et du Relevé des oiseaux nicheurs d'Amérique du Nord (BBS) pour le sud de l'Ontario
afin de déterminer si les indices annuels et les tendances sur une longue période étaient similaires pour 22 espèces à la limite nord de
leur aire de répartition. Nous avons utilisé des modèles à effets mixtes dans le but de corriger l'expérience variable des observateurs et
la couverture géographique inégale des données d'eBird; le nombre d'espèces par liste a été utilisé comme covariable indicatrice de
l'effort et pour pallier les listes sans mention d'effort. Le coefficient de corrélation de Pearson moyen entre les indices annuels d'eBird
et du BBS pour l'ensemble des espèces était de 0,35, et la corrélation entre les estimations de tendances obtenues à partir des indices
annuels était de 0,72. Les données d'eBird concordaient généralement avec celles du BBS sauf dans les cas suivants : deux espèces
communes montrant des tendances opposées, plusieurs espèces au faible taux de détection et deux espèces affichant peu de changement
de l'occurrence sur une longue période selon les données BBS. Nos résultats indiquent que les données d'eBird peuvent être utilisées
pour produire des tendances couvrant une longue période et compléter ainsi les données d'inventaires traditionnels; davantage de
travaux doivent toutefois être entrepris pour comprendre les circonstances qui mènent à des divergences entre les données d'eBird et
celles d'autres relevés.
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INTRODUCTION
The proliferation of data generated by citizen science projects
provides a new and valuable resource for biological monitoring
efforts (Dickinson et al. 2012, Theobold et al. 2015). Citizen
science projects are capable of covering geographic and temporal
scales that may exceed what is financially or logistically possible
for structured monitoring regimes, and thus have the potential to
fill important information gaps (Conrad and Hilchey 2011,

Tulloch et al. 2013). However, because citizen science data are
typically collected in a less rigorous manner than formal
biological surveys, there are additional sources of variability and
bias that must be accounted for. These include: observer skill,
geographic coverage, effort (in time and space), detectability (in
time and space), and bias in reporting rates between rare and
common species (Isaac et al. 2014, Kamp et al. 2016). Various
statistical modeling approaches can be used to help account for
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the variability and bias inherent in citizen science data to extract
meaningful biological signals. The benefits and limitations of
some of these methods are described and compared in Hochachka
et al. 2012, Bird et al. 2014, and Isaac et al. 2014.  

One such citizen science project, eBird, is a global online bird
database that compiles bird checklists from discrete locations and
dates made by observers of any skill level, ranging between
beginner and professional ornithologist (Sullivan et al. 2009,
2014). The eBird program uses several basic checklist protocols
(e.g. traveling, stationary, incidental) to categorize the manner in
which most birdwatching checklists are generated, which enables
the aggregation of checklists ranging from simple bird lists to
highly structured surveys in the same format. The database has
been growing exponentially since the project was launched in
2002, and there are currently over 18.8 million checklists from
across the world, with the bulk (17 million+) from North America.
Data are publicly displayed on the eBird web site (http://www.
ebird.org) and available for download for scientific purposes. Data
from eBird have been used extensively for species distribution
modeling and many other contemporary studies (e.g., Fink et al.
2010, Sullivan et al. 2014, Kelling et al. 2015), but to our
knowledge, have not yet been used to model long-term trends in
species abundance. The checklist protocol types offered by eBird
provide a means by which historical checklists can be entered and
archived, provided that each checklist includes, at a minimum, a
date and specific location. A large proportion of eBird checklists
(~85%) are from the past decade, which may limit the utility of
the dataset for modeling historical population trends, but there
exist enough historical checklists from North America to justify
exploratory modeling of long-term population trends using eBird
data.  

The North American Breeding Bird Survey (hereafter BBS), was
initiated in 1966 and is the primary source of long-term
population trend information for most species of birds breeding
in North America (Sauer et al. 2013). Although the BBS protocol
is more structured than that of eBird, the BBS is volunteer based
and subject to some of the same sources of bias and variability
as eBird data, e.g., observer skill, uneven geographic coverage,
and detectability. There are some limitations to the BBS data
because of its volunteer-based, roadside protocol that include:
under- and over-representation of some habitat types along roads,
uneven rates of land cover change between roadsides and interior
areas, lack of coverage in boreal and arctic habitats, and low
detection rates for nocturnal, cryptic, rare, disturbance-prone,
and water-bird species (e.g., Betts et al. 2007, Harris and Haskell
2007, North American Bird Conservation Initiative Canada
2012). The eBird dataset could potentially fill some of the
information gaps left by the BBS by providing long-term
population change estimates for species not well covered by that
protocol. For example, eBird data might be used to assess
population change in boreal and arctic breeding species that are
encountered primarily during migration, as is done with the
Canadian Migration Monitoring Network data (Crewe et al.
2008).  

A logical first step to assess the utility of the eBird data set to
monitor long-term population change in species is to compare
eBird data to BBS data for species with reliable trend estimates
and constrained (geographically) breeding distributions. Several

other studies have compared population trends derived from
citizen science data to those derived from more formal surveys,
with mixed results. For example, strong correlations in reporting
rates of bird species were found between informal area searches
in locations selected by volunteers, and similar searches conducted
using a formal stratified-random design in Australia (Szabo et al.
2012). In Sweden, a weak correlation was found between presence-
only citizen science based bird data and a national monitoring
program, and for some groups of bird species, the relationship
was negative (Snäll et al. 2011). In the Netherlands, trends in
dragonfly and butterfly site occupancy matched well between a
citizen science dataset and formal monitoring programs (van
Strien et al. 2013). In Denmark, data from an online citizen science
bird database (DOFbasen) were compared to a formal bird
monitoring program, and the citizen science data failed to detect
declining trends for over half  the species for which the monitoring
program showed significant declines (Kamp et al. 2016). In both
the Swedish and Danish studies, bias due to selective reporting of
species was a potential explanation for lack of concordance in
trends from citizen science versus formal monitoring programs
(Snäll et al. 2011, Kamp et al. 2016).  

We compare annual indices and trends generated from a subset
of the North American eBird data set to those generated from
the BBS data set. Our objective was to validate a methodology
for modeling population change using eBird data that could then
be used to estimate population change and trends for species with
unreliable monitoring data. The general approach is comparable
to that employed by Francis and Hussell (1998) for comparing
trends derived from migration monitoring data to BBS. We
focused the analysis on the geographic area of southern Ontario
for the years from 1970 through 2015. We chose southern Ontario
because it is a region with both good BBS and eBird coverage for
the breeding season, and because it contains several well-known
migrant traps that concentrate birds and birders and so also has
reasonable historical coverage. We selected species that were
migratory but near the northern edge of their breeding range so
that eBird data from spring migration would reflect the local
breeding population monitored by BBS routes within the study
area, rather than populations of migrants that might breed
outside the study area. Strong correlations between annual indices
from eBird data and BBS data would indicate that we can have
confidence in applying the methodology to other species of
unknown population status.

METHODS

Study area, dates, and species
We selected southern Ontario, Canada (south of 44.75° latitude
and west of -79.00° longitude) as the geographic region of interest.
Ontario has very good eBird coverage, with more checklists
entered (> 730,000) than any other province in Canada and all
but three states in the U.S. (California, New York, and Texas).
The region selected in southern Ontario lies entirely within the
Lower Great Lakes/St. Lawrence Plain Bird Conservation
Region, where many southern bird species reach the northern
limits of their breeding ranges at the edge of the Canadian Shield
(Environment Canada 2014). The region was historically
dominated by hardwood and mixed forest, but current land cover
mostly comprises agricultural land (59%), forest (17%), wetlands
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(13%), and urban/suburban areas (8%; Environment Canada
2014). The conversion to agriculture historically led to a rise in
grassland bird species and decline in forest species; however, many
farms were abandoned during the second half  of the 20th century
leading to a modest recovery of forested land and an increase in
forest bird species. Grassland bird species have declined in the
region largely because of increasing forest cover and changes in
agricultural practices, e.g., early season haying (Perlut et al. 2008).  

A major migratory stopover site and birdwatching destination,
Point Pelee National Park (hereafter Pelee), is situated within the
study region and was selected as a site for comparing eBird data
from a single location during migration to BBS data from
southern Ontario. Pelee is primarily known as a spring migration
hotspot, and birders from across North America visit in April
and May leading to a wealth of eBird checklists, both
contemporary and historical. The number of eBird checklists
during fall migration from both Pelee and southern Ontario as a
whole were far fewer than during spring (eBird participation rates
peak across North America in May), so only spring migration
and breeding season data were used in this study.  

For our comparisons to BBS data, we used eBird data from June
to mid-July from southern Ontario to represent the breeding
season. To increase sample sizes of historical eBird checklists in
southern Ontario, we also compared eBird data from the
migration and breeding seasons combined (April–mid-July) to
BBS data. Additionally, to determine if  eBird data from a single
popular migratory stopover site were reflective of the regional
breeding population, we compared data from Pelee in April and
May to BBS data for southern Ontario. The years included in the
analysis were 1970–2015 because the BBS was initiated in this
region in 1970.  

Twenty-two species were selected for comparison between eBird
and the BBS in southern Ontario and Pelee, for which BBS trend
data were reliable and whose ranges reached their northern extent
in that region. The species selected were the following: Baltimore
Oriole (Icterus galbula), Black-billed Cuckoo (Coccyzus
erythropthalmus), Blue-gray Gnatcatcher (Polioptila caerulea),
Blue-winged Warbler (Vermivora cyanoptera), Bobolink
(Dolichonyx oryzivorus), Brown-headed Cowbird (Molothrus
ater), Brown Thrasher (Toxostoma rufum), Eastern Meadowlark
(Sturnella magna), Eastern Phoebe (Sayornis phoebe), Eastern
Towhee (Pipilo erythrophthalmus), Field Sparrow (Spizella
pusilla), Great Crested Flycatcher (Myiarchus crinitus),
Grasshopper Sparrow (Ammodramus savannarum), Green Heron
(Butorides virescens), House Wren (Troglodytes aedon), Orchard
Oriole (Icterus spurius), Purple Martin (Progne subis), Red-
headed Woodpecker (Melanerpes erythrocephalus), Upland
Sandpiper (Bartramia longicauda), Warbling Vireo (Vireo gilvus),
Wood Thrush (Hylocichla mustelina), and Yellow-billed Cuckoo
(Coccyzus americanus). Although some of these species do in fact
breed further north than the boundary of the study region, the
bulk of their regional populations were concentrated within the
study area, based on abundance maps in the Ontario Breeding
Bird Atlas (Cadman et al. 2007). Thus, eBird data from the spring
migration were unlikely to be largely influenced by through
migrants for these species, and so would represent populations in
the region.

Data filtering and statistical models
eBird
We downloaded the eBird basic dataset from the eBird web site,
including all checklists entered before November 2015 in Ontario
(eBird Basic Dataset 2015). The eBird basic dataset includes all
validated observations from checklists entered into eBird, and all
covariates entered into the checklists regarding location and effort
(Sullivan et al. 2014). The resulting file from eBird was very large,
so it was converted to an SQLite database with indices for year,
month, day, and species to enable queries on the dataset using R
package RSQLite (Wickham et al. 2014). We filtered the data to
include checklists from within southern Ontario (south of 44.75°
latitude and west of -79.00° longitude), and for Pelee we included
all checklists from within 5 km of a central location (41.952°
latitude, -82.515° longitude), to encompass the numerous public
and personal eBird checklist locations from within the park.  

A pivotal decision in the direction of the modeling approach was
whether to include only checklists with effort, e.g., start time, time
elapsed, or distance travelled, or to be more inclusive in order to
maximize the number of historical checklists. Most broad scale
studies using eBird data have opted to restrict data to effort based
checklists, typically those of short distances and durations from
the early morning hours (e.g., Fink et al. 2010, Kelling et al. 2015).
Large percentages of checklists from years in the 1970s and 1980s
(mean 28%, range 17 to 65%) were from protocol types with
incomplete effort information, i.e., Casual Observation and
Historical, so we elected to include checklists from any protocol
type. Similarly, a high proportion of checklists lacked count data
for some or all species; for years prior to 2012, the mean
proportion of observations lacking count data across our target
species ranged from 25 to 60% (mean = 38%). As a consequence,
we elected to use occurrence as a response variable for all models.  

Some additional filtering and manipulation of the eBird data was
performed prior to fitting statistical models. We included only
checklists labeled as complete lists of species observed in our
models to reduce selective reporting bias. The frequency of
complete checklists reporting just a single species was abnormally
high suggesting that some observers did not accurately label their
checklists as complete or incomplete; we therefore excluded
checklists with only a single observation from the analysis.  

Data entered as shared checklists from multiperson birding
parties were collapsed into single checklists including all the
species seen by the party, and assigned to the first observer
associated with the list. Specialized checklist protocol types were
reclassified to correspond to one of the five primary protocol
types (Traveling Count, Stationary Count, Exhaustive Area
Count, Casual Observation, or Historical) based on the effort
information included. Rusty Blackbird Blitz, IBA Canada, and
Random Location Count (with distance) protocols were
reclassified as Travelling Counts, while Standardized Yard Count,
My Yard Count, Random Location Counts (without distance),
and Pri Mig Banding protocols were reclassified as Stationary
Counts. Pelagic and Nocturnal Flight Call protocols were
excluded from these analyses because we were not interested in
pelagic species or detection rates of nocturnal migrants. The
resulting number of eBird checklists per year following the data
filtering are included in Appendix 1.  
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We fit models relating the occurrence of a species on an eBird
checklist to a set of predictor variables using binomial generalized
linear mixed-effects models. We fit all models using package lme4
(version 1.1-11) in the R (version 3.2.5) statistical programming
language (Bates et al. 2015, R Core Team 2016). We fit models to
three separate data sets to assess how the choice of data influenced
the relationship with BBS data. One data set included only data
from the major hotspot in the region (Pelee) during spring
migration (defined as the months of April and May). A second
data set included all checklists from southern Ontario, but only
in the breeding season, and the third data set included all
checklists from southern Ontario but including both the spring
(April and May) and the breeding season (June–July).  

Models were fit for each species including fixed effects for date
(with a second order polynomial to accommodate an expected
curvilinear pattern of detection with date), the number of species
on the checklist (as a surrogate for effort; log-transformed where
that improved model fit), the protocol type, the interaction
between the number of species on a checklist and the protocol
type, and year (modeled as a factor), and random intercept terms
were included for observer and locality. Using the number of
species per checklist as a surrogate for effort has been validated
by several studies (e.g., Roberts et al. 2007, Szabo et al. 2010)
though may have some limitations if  a large proportion of species
have declined (or increased) dramatically (Isaac et al. 2014). The
interaction between the number of species per checklist and the
protocol type allowed for differences in effort by protocol type
that may have changed through time, which would otherwise
introduce bias in the use of the number of species as a measure
of effort. Year was fit as a factor to generate a separate annual
index for each year instead of an overall trend (e.g., as in Crewe
et al. 2008, Sauer et al. 2013, and Smith et al. 2014). This allowed
us to compare annual estimates derived from eBird and BBS data,
which more readily allows comparisons when there are cyclical,
interannual, and other nonlinear patterns of occurrence through
time. The random effect terms are a simple way to account for the
substantial effects of variability in observer skill and familiarity
with target species, and variation between sites due to habitat
suitability on the detection of species. For locality, sites were
aggregated by assigning personal locations to the nearest eBird
hotspot (when entering a checklist, birders may select from a
personal location or a hotspot, where hotspots are public
locations at which multiple observers may submit checklists for
the same site). To derive an annual index for each year, we
calculated predicted values from the models for each year using
the average value for random effects terms, the peak date of
occurrence for each species, travelling count protocol, and the
overall mean of the mean number of species on eBird checklists
per decade.

Breeding Bird Survey
Raw BBS data were downloaded from the BBS web site for Bird
Conservation Region (BCR) 13, the Lower Great Lakes/St.
Lawrence Plain (Pardieck et al. 2016). The BBS data were filtered
similarly to the eBird data to only include routes within southern
Ontario (south of 44.75° latitude and west of -79.00° longitude),
yielding data from 42 routes. To compare indices for year between
eBird and the BBS, we used only the presence or absence of each
species at each stop on a route as a response variable. We fit
binomial generalized linear mixed effects models using package

lme4 (Bates et al. 2015) using route and observer as random effects
in the BBS.  

To ensure that reducing the BBS data to presence/absence data
did not distort patterns in annual occurrence or abundance, the
count data from the same BBS routes were analyzed using models
with identical terms but using a Poisson distribution. Annual
indices from BBS count data were strongly correlated with the
derived presence/absence data for all species, and the mean
Pearson’s correlation coefficient across species was 0.97. The
relationship between the number of BBS stops at which a species
was detected and the number of individuals detected on a route
was linear for all species examined, and except for the three most
common species shared a similar coefficient of 1.13 ± 0.07 birds
per stop, based on a generalized linear model. This indicated that
models of occurrence data were representative as indices for
population size, and trends or annual indices evaluated in terms
of percent change would be directly comparable.  

We examined the similarity between BBS and eBird data for
assessing trends by computing weighted Pearson’s correlation
coefficients between annual indices derived from the BBS
occurrence models and eBird models, using the inverse of the sum
of the variance around BBS and eBird annual parameter estimates
as the weights. The weighting assigned less influence to years with
greater uncertainty in the annual index. We also assessed fit by
plotting annual indices computed from the two datasets beside
each other, along with loess smoothers and trend estimates using
package ggplot2 in R, and by plotting annual indices from the
two datasets against each other (Wickham 2009). Trends were
calculated for eBird from southern Ontario (Apr–Jul) and BBS
data by fitting binomial generalized linear models to the annual
indices of occurrence produced by the mixed models using annual
sample sizes as the weights for each, and extracting the slope
coefficients for year. Pearson’s correlation coefficient was
computed between the slope coefficients from the eBird and BBS
models across species. To aid interpretation, we used trend
estimates from the BBS dataset to group species based on whether
they were declining, increasing, or stable.

RESULTS
The weighted Pearson’s correlation coefficients between annual
indices predicted by the eBird models and those predicted by the
BBS models are shown in Table 1. The models using eBird data
from southern Ontario between April and mid-July had the
highest mean correlation coefficient across species (0.35),
followed by Pelee in April and May (0.26) and southern Ontario
between June and mid-July (0.21). We therefore focused on
assessing the models using data from all of southern Ontario from
April to mid-July. Frequency of occurrence of each species in the
eBird datasets and for BBS stops is included in Table 2. Plots of
annual indices from the eBird models and BBS models for each
species are included in Appendix 2. Plots of predicted annual
indices from the BBS against those from eBird in southern Ontario
(Apr–Jul) are included for each species in Appendix 3 to further
examine the strength of the relationship between the models.  

There was a strong correlation between trends estimated using
eBird data from southern Ontario (Apr–Jul) and BBS data across
species (r20 = 0.72, P = 0.0002), when trends were calculated as
the slopes of binomial generalized linear models fitted to the
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Table 1. Weighted Pearson’s correlation coefficients between annual indices calculated for eBird data and the Breeding Bird Survey in
southern Ontario, 1970–2015. Group A includes declining species, group B includes increasing species, and group C includes species
with no significant long-term trend (based on trends calculated using BBS data from southern Ontario).
 

eBird

Group Species Pelee S. Ontario S. Ontario

(Apr–May) (Jun–Jul) (Apr–Jul)
A Eastern Meadowlark (Sturnella magna) 0.77* 0.84* 0.89*

Brown Thrasher (Toxostoma rufum) 0.78* 0.81* 0.79*
Bobolink (Dolichonyx oryzivorus) 0.35* 0.78* 0.76*
Eastern Towhee (Pipilo erythrophthalmus) -0.04 0.16 0.61*
Purple Martin (Progne subis) 0.40* 0.42* 0.59*
Field Sparrow (Spizella pusilla) 0.47* 0.44* 0.59*
Green Heron (Butorides virescens) 0.58* 0.08 0.58*
Grasshopper Sparrow (Ammodramus savannarum) 0.13 0.51*
Red-headed Woodpecker (Melanerpes erythrocephalus) 0.50* 0.30* 0.48*
Upland Sandpiper (Bartramia longicauda) 0.46* 0.42*
Black-billed Cuckoo (Coccyzus erythropthalmus) 0.05 0.40* 0.22
Yellow-billed Cuckoo (Coccyzus americanus) -0.27 0.42* -0.03
Baltimore Oriole (Icterus galbula) -0.33* 0.35* -0.20
Brown-headed Cowbird (Molothrus ater)
 

-0.17 -0.15 -0.40*

B Eastern Phoebe (Sayornis phoebe) 0.40* 0.13 0.68*
Warbling Vireo (Vireo gilvus) 0.53* 0.14 0.56*
Orchard Oriole (Icterus spurius) 0.45* -0.29 0.52*
House Wren (Troglodytes aedon) 0.39* -0.14 0.29*
Blue-gray Gnatcatcher (Polioptila caerulea) 0.23 -0.11 0.17
Blue-winged Warbler (Vermivora cyanoptera)
 

0.17 -0.28 0.13

C Wood Thrush (Hylocichla mustelina) -0.27 -0.04 -0.14
Great Crested Flycatcher (Myiarchus crinitus) -0.08 -0.13 -0.21

*P ≤ 0.05

Table 2. Frequency of observation of the 22 species for which eBird and Breeding Bird Survey (BBS) data were compared, 1970–2015. See Table 1 for
scientific species names.

eBird BBS

Pelee S. Ontario S. Ontario S. Ontario
(Apr–May) (Jun–Jul) (Apr–Jul) (Jun)

Species (n = 6361) (n = 19,920) (n = 86,969) (n = 46,650)

Brown-headed Cowbird 0.513 0.308 0.342 0.190
Baltimore Oriole 0.630 0.353 0.278 0.141
House Wren 0.492 0.258 0.186 0.141
Warbling Vireo 0.448 0.195 0.169 0.130
Great Crested Flycatcher 0.272 0.199 0.128 0.083
Blue-gray Gnatcatcher 0.557 0.054 0.124 0.001
Eastern Phoebe 0.171 0.092 0.119 0.031
Field Sparrow 0.188 0.103 0.102 0.050
Eastern Towhee 0.355 0.074 0.101 0.011
Brown Thrasher 0.224 0.074 0.100 0.049
Purple Martin 0.259 0.066 0.091 0.028
Wood Thrush 0.291 0.081 0.081 0.036
Orchard Oriole 0.498 0.060 0.070 0.004
Eastern Meadowlark 0.044 0.098 0.070 0.223
Bobolink 0.073 0.099 0.059 0.254
Red-headed Woodpecker 0.233 0.015 0.037 0.006
Green Heron 0.067 0.047 0.037 0.009
Blue-winged Warbler 0.152 0.025 0.033 0.002
Black-billed Cuckoo 0.069 0.037 0.022 0.017
Grasshopper Sparrow 0.022 0.040 0.018 0.016
Yellow-billed Cuckoo 0.053 0.044 0.017 0.004
Upland Sandpiper 0.001 0.020 0.008 0.012
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predicted annual indices of occurrence from the mixed effects
models (Fig. 1). The estimated slopes for year with 95% confidence
intervals for eBird data from southern Ontario (Apr–Jul) and BBS
data are presented in Table 3.

Fig. 1. Slopes of binomial regressions (log odds scale) fit to
annual indices from eBird models against those from Breeding
Bird Survey (BBS) models for the 22 species of birds analyzed in
southern Ontario, using eBird data from Apr–Jul. The diagonal
line has a slope of 1.

There were 14 species for which BBS data indicated declining
populations (group A), six species showing increasing populations
(group B), and two species that showed no long-term change in
occurrence (group C). For the 14 species in group A, there was good
agreement between the annual indices from eBird and those from
the BBS, and significant positive correlations between the datasets
for 10 species (71%; Table 1; e.g., Brown Thrasher in Fig. 2) Trend
estimates agreed on direction and significance for 11 species (79%;
Table 3). Of the four species that did not show agreement between
datasets, two species Black-billed and Yellow-billed Cuckoos were
detected very infrequently in both eBird and the BBS and there
were few detections in the historical data (Table 2). However,
correlations between the datasets were positive and significant for
the two cuckoo species when eBird data were limited to the breeding
season (Table 1). For the other two species Baltimore Oriole and
Brown-headed Cowbird correlations were negative (-0.20 and -0.40,
respectively) and annual indices from the two data sets clearly
showed opposite trends (Fig. 2). In both cases, trends derived from
eBird data showed gradual increases where trends from the BBS
data showed sharp declines. These were the two most frequently
reported species in the eBird data set of the 22 species analyzed
(Table 2).  

Of the six species in Group B, four had significant positive
correlations between annual indices from the two datasets (67%)
and three agreed on direction and significance of trend estimates
(50%). However, for two of the species that disagreed Blue-gray
Gnatcatcher and Blue-winged Warbler the discrepancy appears to
be driven by lack of detections in the BBS rather than in eBird, and
overall patterns in the annual indices matched well between datasets
based on the plots in Appendix 2 (Figs. A2.19-A2.20, e.g., Blue-
winged Warbler in Fig. 2). For House Wren, there was a positive
correlation between annual indices between datasets, but the

confidence interval of the eBird trend estimate overlapped with
zero while the trend in BBS did not. The eBird data for House Wren
appear to be affected by three outlying years in the 1970s and one
in the 1980s, but otherwise show a similar pattern to BBS data (Fig.
A2.18)

Fig. 2. Example plots of annual indices for (top to bottom)
Brown Thrasher (Toxostoma rufum), Baltimore Oriole (Icterus
galbula), Brown-headed Cowbird (Molothrus ater), and Blue-
winged Warbler(Vermivora cyanoptera), as predicted by models
of eBird data from southern Ontario Apr-Jul (left), and BBS
data (right). The solid line is a LOESS smooth with a span of 2,
and the dashed line is from a binomial generalized linear model
fit to the annual indices. Both are weighted by annual sample
size. See appendix 2 for a complete set of plots for all species and
datasets analyzed.

Neither of the two species in group C showed statistical agreement
between the two datasets, however plots of the annual indices
showed some similarities (Figs. A2.21 and A2.22). For Great
Crested Flycatcher, neither dataset indicated that there had been a
large change in frequency, and both showed a gradual declining
trend (though not significant in BBS data) and substantial year to
year variation compared to the overall trend (Fig. A2.22, Table 3).
For Wood Thrush, the relationship was affected by several large
outliers in the 1970s in the eBird dataset, but otherwise both
datasets showed high interannual variation relative to the overall
trend and little long-term change in frequency (Fig. A2.21).
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Table 3. Slope coefficients and their 95% confidence intervals (scaled by annual percent change) from binomial general linear models
fit to annual indices generated using eBird data from southern Ontario (Apr-Jul) and Breeding Bird Survey (BBS) data, 1970-2015.
Group A includes declining species, group B includes increasing species, and group C includes species with no significant long-term
trend (based on trends calculated using BBS data from southern Ontario). See Table 1 for scientific species names.
 
Group Species eBird BBS

trend 95% CI trend 95% CI

A Eastern Meadowlark -7.25 (-7.48, -7.01) -4.70 (-4.89, -4.52)
Brown Thrasher -3.53 (-3.77, -3.28) -2.87 (-3.25, -2.50)
Bobolink -4.60 (-4.83, -4.36) -3.75 (-3.92, -3.58)
Eastern Towhee -1.47 (-1.89, -1.05) -1.81 (-2.66, -0.95)
Purple Martin -1.41 (-1.94, -0.88) -2.94 (-4.07, -1.81)
Field Sparrow -3.84 (-4.09, -3.59) -1.80 (-2.16, -1.44)
Green Heron -4.40 (-4.67, -4.12) -1.92 (-2.76, -1.06)
Grasshopper Sparrow -5.08 (-5.74, -4.42) -1.81 (-3.00, -0.61)
Red-headed Woodpecker -3.83 (-4.52, -3.14) -5.77 (-7.31, -4.21)
Upland Sandpiper -6.85 (-9.17, -4.46) -4.97 (-6.00, -3.93)
Black-billed Cuckoo -0.57 (-0.97, -0.17) -1.64 (-2.25, -1.04)
Yellow-billed Cuckoo -0.16 (-0.73, 0.40) -2.61 (-4.14, -1.06)
Baltimore Oriole 2.99 (2.81, 3.18) -1.18 (-1.40, -0.96)
Brown-headed Cowbird
 

1.21 (1.02, 1.40) -1.29 (-1.47, -1.10)

B Eastern Phoebe 1.17 (0.97, 1.36) 0.91 (0.43, 1.38)
Warbling Vireo 3.32 (3.08, 3.55) 1.61 (1.36, 1.86)
Orchard Oriole 2.94 (2.00, 3.88) 4.65 (0.24, 9.26)
House Wren 0.20 (0.00, 0.39) 1.46 (1.23, 1.68)
Blue-gray Gnatcatcher 2.59 (2.07, 3.11) 5.06 (0.69, 9.61)
Blue-winged Warbler
 

-1.66 (-2.28, -1.04) 3.90 (0.52, 7.39)

C Wood Thrush -1.60 (-1.89, -1.30) 0.05 (-0.39, 0.49)
Great Crested Flycatcher -0.77 (-0.94, -0.59) -0.20 (-0.49, 0.09)

DISCUSSION
Correlations between the annual indices from models using eBird
data and those using BBS data suggest that using eBird data to
estimate population change is a promising avenue for future work.
Modeling probability of occurrence on a checklist using the
number of species per checklist as a measure of effort avoided
removing a high proportion of historical checklists that lacked
effort, and was effective in estimating trends that were similar to
those estimated from BBS for 15 of 22 (68%) species analyzed.
The models used were effective at reproducing both decreasing
and increasing population trajectories evident in the BBS data,
which indicates that some of the bias due to changes in eBird
usage through time had been accounted for.  

Those species with large absolute trends in the BBS data had
positive correlations between annual indices derived from the two
data sets, except for several species for which frequency of
detection was very low in either eBird or BBS data, and two
common species (Baltimore Oriole and Brown-headed Cowbird).
Correlations between annual indices for those species with small
or no BBS trends were weaker, which was expected because those
species exhibit smaller signal to noise ratios in the data. Annual
indices for those species with small or no underlying trends were
also more susceptible to the effects of outliers from older years
in the eBird dataset with limited numbers of checklists. However,
patterns in overall change in occurrence were generally similar for
those species, suggesting that the eBird data were sufficient for
estimating whether or not there had been a large long-term change
in occurrence. The results also suggest that monitoring long-term

trends of some locally rare species may in fact be more readily
accomplished using eBird data than BBS. For example, Blue-gray
Gnatcatchers and Blue-winged Warblers were not detected along
BBS routes for most of the 1970s and 1980s, yet eBird data
indicated both species were present in the region at that time.
However, other rare species such as Upland Sandpiper and
Grasshopper Sparrow, were not well documented in the eBird
data set and highlight a possible bias of observers toward parks
and forested areas and away from grassland habitats.  

The large differences in eBird and BBS estimates for Baltimore
Orioles and Brown-headed Cowbirds could arise from their high
frequencies of occurrence on eBird checklists. If  a species occurs
on most checklists and the average number of species per checklist
is high, then the approach we have used means that ability to
detect a change in that species is limited. This problem would be
rectified by using count data, but as indicated in our methods,
that would seriously diminish the numbers of historical checklists
available. In the case of Baltimore Orioles, Canadian Migration
Monitoring Network data from Long Point Bird Observatory in
southern Ontario also show an increasing long-term trend similar
to that produced by the eBird data and contrary to BBS data for
the area (Crewe et al. 2008). There were sufficient detections and
captures of Brown-headed Cowbirds at Long Point Bird
Observatory for analysis, but unfortunately, annual indices are
not generated from those data (Crewe et al. 2008). Other
explanations for the discrepancy in the annual indices generated
by the two methods include changes in breeding phenology,
changes in northern limit of breeding range, feeder bias, or
observer bias in eBird data toward productive birdwatching sites
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and habitats. To expand on these explanations, if  breeding
phenology has advanced and peaks in detectability are earlier in
the season, then the BBS would show a decline because survey
dates are essentially fixed, while eBird would still capture the peak
in detectability if  data from spring and early summer are
combined. If  the extent of the breeding range of the focal species
has expanded to the north of the study area, the eBird data from
the spring and summer combined could include the birds breeding
north of the study area as they pass through in migration, while
BBS data would only include the portion of the population
breeding within the study area. Feeder bias could be present in
the eBird dataset because it is well known that many eBird
checklists come from yards. Feeders may artificially increase
detectability of some species, which could introduce bias if  the
proportion of checklists from feeders has changed over time, or
if  occurrence of the target species at feeders does not reflect
changes in occurrence across the landscape. Note that of the 22
species analyzed, Baltimore Orioles, Brown-headed Cowbirds,
and Eastern Towhees are the only species that visit feeders
regularly. Similarly, patterns of occurrence at parks and protected
areas frequented by birdwatchers may change at different rates
than those across the landscape, and may not reflect changes in
occurrence at a regional scale for some species.  

Sample sizes of eBird checklists per year appeared to be adequate
for most species in question in southern Ontario when the
migration and breeding season were combined, except for those
species that were reported on fewer than 3% of checklists.
However, it was evident that the eBird data from the breeding
season in southern Ontario (June through mid-July) were
insufficient for modeling annual indices at that geographic scale,
given the lower correlation coefficients with the BBS. The
minimum number of checklists required for these analyses
depends on their quality, the locations sampled, and the number
of species on each list. In our results, years that appear to be
outliers in most models had fewer than approximately 100
checklists per year. That meaningful results are obtained with so
few checklists suggests that encouraging birders to submit
historical checklists to eBird with or without effort data, entering
checklists from notebooks of deceased birders, or incorporating
checklists from other sources such as Breeding Bird Atlases or
bird banding stations could make a huge difference in assessing
population trends of species over historical periods. The
advantage of doing this through eBird is that it provides a
common mechanism for birders and ornithologists to undertake
this endeavor, provides ready public access to the data, and
perhaps most importantly, provides a simple means of achieving
long-term (archival) storage for historically valuable data.  

There were enough historical checklists at Pelee to model changes
in occurrence at that scale, which was surely assisted by the high
average number of species per checklist at that site. Overall,
patterns of annual occurrence at Pelee were very similar to those
in southern Ontario in the eBird data, and correlations with BBS
annual indices were nearly as strong as those between southern
Ontario eBird data and BBS data. Thus, data from a single
migratory stopover area and popular birdwatching destination
appear to be representative of breeding migratory species in that
region, provided that the species in question occurred at that site
regularly. Using a subset of eBird data from popular migrant
hotspots across North America could be a valid method for

estimating long term trends because numbers of historical
checklists should be high for these sites, and site specific
differences in relative frequency between species could be modeled
accurately. Such an effort could complement data from migration
monitoring stations that are used partially for the same purpose.  

Despite uneven sampling intensity over time, eBird data capture
the long-term population trends for species with large changes in
abundance through time, as well as those that are relatively stable.
The eBird dataset should thus be considered as a useful addition
to the suite of surveys used to monitor populations of North
American bird species, and in select cases, should be used to
estimate annual indices for species not monitored well by the BBS.
Further work should be undertaken to understand the
circumstances under which models using eBird data produce
results contrary to the BBS (and why) as well as the extent to
which improved or more sophisticated statistical models might
improve estimates (or confidence in them). Our study focused on
a region with dense eBird coverage, and although there are many
regions with comparable eBird participation that could be
investigated in this manner, there are also entire U.S. states and
Canadian provinces for which historical eBird data are
insufficient. We strongly encourage birders and researchers to
submit any historical checklists regardless of effort content,
because the information content of each list is increasingly
valuable with age.

Responses to this article can be read online at: 
http://www.ace-eco.org/issues/responses.php/960

Acknowledgments:

Funding was provided under the Contributions to Support
Biodiversity - Wildlife and Habitat Program from Environment and
Climate Change Canada. We thank J. Brzustowski for technical
support working with SQLite databases. We thank C. Francis, M.
Cadman, and A. Smith for review of the manuscript and critique of
the modeling approach, and an anonymous reviewer for comments
that improved the manuscript. We would also like to thank the
volunteers who conducted Breeding Bird Survey routes, contributors
to eBird including the observers, project team, and data reviewers,
and the United States Geological Survey and Cornell Lab of
Ornithology who have provided open access to their datasets.

LITERATURE CITED
Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. Fitting
linear mixed-effects models using lme4. Journal of Statistical
Software 67(1):1-48. http://dx.doi.org/10.18637/jss.v067.i01  

Betts, M. G., D. Mitchell, A. W. Diamond, and J. Bêty. 2007.
Uneven rates of landscape change as a source of bias in roadside
wildlife surveys. Journal of Wildlife Management 71
(7):2266-2273. http://dx.doi.org/10.2193/2006-004  

Bird, T. J., A. E. Bates, J. S. Lefcheck, N. A. Hill, R. J. Thomson,
G. J. Edgar, R. D. Stuart-Smith, S. Wotherspoon, M. Krkosek, J.
F. Stuart-Smith, G. T. Pecl, N. Barrett, and S. Frusher. 2014.
Statistical solutions for error and bias in global citizen science

http://www.ace-eco.org/vol12/iss1/art4/
http://www.ace-eco.org/issues/responses.php/960
http://dx.doi.org/10.18637%2Fjss.v067.i01
http://dx.doi.org/10.2193%2F2006-004


Avian Conservation and Ecology 12(1): 4
http://www.ace-eco.org/vol12/iss1/art4/

datasets. Biological Conservation 173:144-154. http://dx.doi.
org/10.1016/j.biocon.2013.07.037  

Cadman, M. D., D. A. Sutherland, G. G. Beck, D. Lepage, and
A. R. Couturier. 2007. Second atlas of breeding birds of Ontario
(2001-2005). Bird Studies Canada, Environment Canada,
Ontario Field Orni-thologists, Ontario Ministry of Natural
Resources, and Ontario Nature, Toronto, Ontario, Canada.  

Conrad, C. C., and K. G. Hilchey. 2011. A review of citizen science
and community-based environmental monitoring: issues and
opportunities. Environmental Monitoring and Assessment 
176:273-291 http://dx.doi.org/10.1007/s10661-010-1582-5  

Crewe, T. L., J. D. McCracken, P. D. Taylor, D. Lepage, and A.
E. Heagy. 2008. The Canadian migration monitoring network -
réseau canadien de surveillance des migrations: ten-year report on
monitoring landbird population change. CMMN-RCSM Scientific
Technical Report #1. Produced by Bird Studies Canada, Port
Rowan, Ontario, Canada.  

Dickinson, J. L., J. Shirk, D. Bonter, R. Bonney, R. L. Crain, J.
Martin, T. Phillips, and K. Purcell. 2012. The current state of
citizen science as a tool for ecological research and public
engagement. Frontiers in Ecology and the Environment 10:291-297.
http://dx.doi.org/10.1890/110236  

eBird Basic Dataset. 2015. Version: EBD_relNov-2015. Cornell
Lab of Ornithology, Ithaca, New York, USA.  

Environment Canada. 2014. Bird conservation strategy for bird
conservation region 13 in Ontario region: Lower Great Lakes/St.
Lawrence Plain. Abridged Version. Environment Canada,
Ottawa, Ontario, Canada. [online] URL: https://www.ec.gc.ca/
mbc-com/F43BE8A4-376F-4525-B1CD-2E78B43989D8/BCR_13_ON%
20FINAL_Abridged_October_2014.pdf  

Fink, D., W. M. Hochachka, B. Zuckerberg, D. W. Winkler, B.
Shaby, M. A. Munson, G. Hooker, M. Riedewald, D. Sheldon,
and S. Kelling. 2010. Spatiotemporal exploratory models for
broad-scale survey data. Ecological Applications 20(8):2131-2147.
http://dx.doi.org/10.1890/09-1340.1  

Francis, C. M., and D. J. T. Hussell. 1998. Changes in numbers
of land birds counted in migration at Long Point Bird
Observatory, 1961-1997. Bird Populations 4:37-66.  

Harris, J. B. C., and D. G. Haskell. 2007. Land cover sampling
biases associated with roadside bird surveys. Avian Conservation
and Ecology - Écologie et conservation des oiseaux 2(2):12. http://
dx.doi.org/10.5751/ace-00201-020212  

Hochachka, W. M., D. Fink, R. A. Hutchinson, D. Sheldon, W.-
K. Wong, and S. Kelling. 2012. Data-intensive science applied to
broad-scale citizen science. Trends in Ecology & Evolution 27
(2):130-137. http://dx.doi.org/10.1016/j.tree.2011.11.006  

Isaac, N. J. B., A. J. van Strien, T. A. August, M. P. de Zeeuw, and
D. B. Roy. 2014. Statistics for citizen science: extracting signals of
change from noisy ecological data. Methods in Ecology and
Evolution 5:1052-1060. http://dx.doi.org/10.1111/2041-210x.12254  

Kamp, J., S. Oppel, H. Heldbjerg, T. Nyegaard, and P. F. Donald.
2016. Unstructured citizen science data fail to detect long-term
population declines of common birds in Denmark. Diversity and
Distributions 22:1024-1035. http://dx.doi.org/10.1111/ddi.12463  

Kelling, S., A. Johnston, W. M. Hochachka, M. Iliff, D. Fink, and
J. Gerbracht, C. Lagoze, F. A. LaSorte, T. Moore, A. Wiggins,
W.-K. Wong, C. Wood, and J. Yu. 2015. Can observation skills of
citizen scientists be estimated using species accumulation curves?
PLoS ONE 10(10):e0139600. http://dx.doi.org/10.1371/journal.
pone.0139600  

North American Bird Conservation Initiative Canada. 2012. The
state of Canada’s birds, 2012. Environment Canada, Ottawa,
Ontario, Canada. [online] URL: http://www.stateofcanadasbirds.
org/State_of_Canada's_birds_2012.pdf  

Pardieck, K. L., D. J. Ziolkowski Jr., M.-A. R. Hudson, and K.
Campbell. 2016. North American breeding bird survey dataset
1966 - 2015. Version 2015.0. U.S. Geological Survey, Patuxent
Wildlife Research Center, Laurel, Maryland, USA. http://dx.doi.
org/10.5066/F71R6NK8  

Perlut, N. G., A. M. Strong, T. M. Donovan, and N. J. Buckley.
2008. Regional population viability of grassland songbirds:
effects of agricultural management. Biological Conservation 141
(12):3139-3151. http://dx.doi.org/10.1016/j.biocon.2008.09.011  

R Core Team. 2016. R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna,
Austria. [online] URL: http://www.R-project.org/  

Roberts, R. L., P. F. Donald, and R. E. Green. 2007. Using simple
species lists to monitor trends in animal populations: new
methods and a comparison with independent data. Animal
Conservation 10:332-339. http://dx.doi.org/10.1111/
j.1469-1795.2007.00117.x  

Sauer, J. R., W. A. Link, J. E. Fallon, K. L. Pardieck, and D. J.
Ziolkowski Jr. 2013. The North American breeding bird survey
1966-2011: summary analysis and species accounts. North
American Fauna 79:1-32. http://dx.doi.org/10.3996/nafa.79.0001  

Smith, A. C., M.-A. R. Hudson, C. Downes, and C. M. Francis.
2014. Estimating breeding bird survey trends and annual indices
for Canada: How do the new hierarchical Bayesian estimates
differ from previous estimates? Canadian Field-Naturalist 128
(2):119-134. http://dx.doi.org/10.22621/cfn.v128i2.1565  

Snäll, T., O. Kindvall, J. Nilsson, and T. Part. 2011. Evaluating
citizen-based presence data for bird monitoring. Biological
Conservation 144:804-810. http://dx.doi.org/10.1016/j.biocon.2010.11.010  

Sullivan, B. L., J. L. Aycrigg, J. H. Barry, R. E. Bonney, N. Bruns,
C. B. Cooper, T. Damoulas, A. A. Dhondt, T. Dietterich, A.
Farnsworth, D. Fink, J. W. Fitzpatrick, T. Fredericks, J.
Gerbracht, C. Gomes, W. M. Hochachka, M. J. Iliff, C. Lagoze,
F. A. La Sorte, M. Merrifield, W. Morris, T. B. Phillips, M.
Reynolds, A. D. Rodewald, K. V. Rosenberg, N. M. Trautmann,
A. Wiggins, D. W. Winkler, W.-K. Wong, C. L. Wood, J. Yu, and
S. Kelling. 2014. The eBird enterprise: an integrated approach to
development and application of citizen science. Biological
Conservation 169:31-40. http://dx.doi.org/10.1016/j.biocon.2013.11.003  

Sullivan, B. L., C. L. Wood, M. J. Iliff, R. E. Bonney, D. Fink,
and S. Kelling. 2009. eBird: A citizen-based bird observation
network in the biological sciences. Biological Conservation 
142:2282-2292. http://dx.doi.org/10.1016/j.biocon.2009.05.006  

http://dx.doi.org/10.1016%2Fj.biocon.2013.07.037
http://dx.doi.org/10.1016%2Fj.biocon.2013.07.037
http://dx.doi.org/10.1007%2Fs10661-010-1582-5
http://dx.doi.org/10.1890%2F110236
https://www.ec.gc.ca/mbc-com/F43BE8A4-376F-4525-B1CD-2E78B43989D8/BCR_13_ON%20FINAL_Abridged_October_2014.pdf
https://www.ec.gc.ca/mbc-com/F43BE8A4-376F-4525-B1CD-2E78B43989D8/BCR_13_ON%20FINAL_Abridged_October_2014.pdf
https://www.ec.gc.ca/mbc-com/F43BE8A4-376F-4525-B1CD-2E78B43989D8/BCR_13_ON%20FINAL_Abridged_October_2014.pdf
http://dx.doi.org/10.1890%2F09-1340.1
http://dx.doi.org/10.5751%2Face-00201-020212
http://dx.doi.org/10.5751%2Face-00201-020212
http://dx.doi.org/10.1016%2Fj.tree.2011.11.006
http://dx.doi.org/10.1111%2F2041-210x.12254
http://dx.doi.org/10.1111%2Fddi.12463
http://dx.doi.org/10.1371%2Fjournal.pone.0139600
http://dx.doi.org/10.1371%2Fjournal.pone.0139600
http://www.stateofcanadasbirds.org/State_of_Canada's_birds_2012.pdf
http://www.stateofcanadasbirds.org/State_of_Canada's_birds_2012.pdf
http://dx.doi.org/10.5066/F71R6NK8
http://dx.doi.org/10.5066/F71R6NK8
http://dx.doi.org/10.1016%2Fj.biocon.2008.09.011
http://www.R-project.org/
http://dx.doi.org/10.1111%2Fj.1469-1795.2007.00117.x
http://dx.doi.org/10.1111%2Fj.1469-1795.2007.00117.x
http://dx.doi.org/10.3996%2Fnafa.79.0001
http://dx.doi.org/10.22621%2Fcfn.v128i2.1565
http://dx.doi.org/10.1016%2Fj.biocon.2010.11.010
http://dx.doi.org/10.1016%2Fj.biocon.2013.11.003
http://dx.doi.org/10.1016%2Fj.biocon.2009.05.006
http://www.ace-eco.org/vol12/iss1/art4/


Avian Conservation and Ecology 12(1): 4
http://www.ace-eco.org/vol12/iss1/art4/

Szabo, J. K., R. A. Fuller, and H. P. Possingham. 2012. A
comparison of estimates of relative abundance from a weakly
structured mass-participation bird atlas survey and a robustly
designed monitoring scheme. Ibis 154:468-479. http://dx.doi.
org/10.1111/j.1474-919X.2012.01229.x  

Szabo, J. K., P. A. Vesk, P. W. J. Baxter, and H. P. Possingham.
2010. Regional avian species declines estimated from volunteer-
collected long-term data using list length analysis. Ecological
Applications 20:2157-2169. http://dx.doi.org/10.1890/09-0877.1  

Theobald, E. J., A. K. Ettinger, H. K. Burgess, L. B. DeBey, N.
R. Schmidt, H. E. Froehlich, C. Wagner, J. HilleRisLambers, J.
Tewksbury, M. A. Harsch, and J. K. Parrish. 2015. Global change
and local solutions: tapping the unrealized potential of citizen
science for biodiversity research. Biological Conservation 
181:236-244. http://dx.doi.org/10.1016/j.biocon.2014.10.021  

Tulloch, A. I. T., H. P. Possingham, L. N. Joseph, J. Szabo, and
T. G. Martin. 2013. Realising the full potential of citizen science
monitoring programs. Biological Conservation 165:128-138.
http://dx.doi.org/10.1016/j.biocon.2013.05.025  

van Strien, A. J., C. A. M. van Swaay, and T. Termaat. 2013.
Opportunistic citizen science data of animal species produce
reliable estimates of distribution trends if  analysed with
occupancy models. Journal of Applied Ecology 50:1450-1458.
https://doi.org/10.1111/1365-2664.12158  

Wickham, H. 2009. ggplot2: Elegant graphics for data analysis. 
Springer-Verlag, New York, New York, USA.  

Wickham, H., D. A. James, and S. Falcon. 2014. RSQLite: SQLite
Interface for R. R package version 1.0.0. R Foundation for
Statistical Computing, Vienna, Austria. [online] URL: https://
CRAN.R-project.org/package=RSQLite

Editor-in-Chief: Ryan Norris
Subject Editor: Scott Wilson

http://www.ace-eco.org/vol12/iss1/art4/
http://dx.doi.org/10.1111%2Fj.1474-919X.2012.01229.x
http://dx.doi.org/10.1111%2Fj.1474-919X.2012.01229.x
http://dx.doi.org/10.1890%2F09-0877.1
http://dx.doi.org/10.1016%2Fj.biocon.2014.10.021
http://dx.doi.org/10.1016%2Fj.biocon.2013.05.025
https://doi.org/10.1111/1365-2664.12158
https://CRAN.R-project.org/package=RSQLite
https://CRAN.R-project.org/package=RSQLite


Appendix 1.  The number of eBird checklists per year from Point Pelee in Apr-May, from 

southern Ontario from Jun-Jul, from southern Ontario from Apr-July, and the number of 

Breeding Bird Survey stops conducted per year in southern Ontario. 

 

 eBird  
 Pelee S. Ontario S. Ontario BBS 

Year (Apr-May) (Jun-Jul) (Apr-Jul) (Jun) 

1970 6 36 52 700 
1971 108 4 166 750 
1972 474 6 523 700 

1973 20 5 84 700 
1974 5 8 56 650 
1975 37 38 275 800 
1976 17 17 95 750 
1977 22 40 121 750 
1978 19 8 55 800 
1979 21 19 147 800 
1980 40 21 140 850 
1981 36 12 106 850 
1982 34 28 135 800 

1983 55 36 221 750 
1984 27 47 205 600 
1985 25 55 235 500 
1986 29 29 159 600 
1987 28 49 209 650 
1988 27 37 231 600 
1989 20 47 215 600 
1990 33 56 256 650 
1991 26 37 182 650 
1992 25 32 180 950 
1993 42 47 339 950 

1994 33 55 371 1300 
1995 48 114 385 1400 
1996 26 80 344 1400 
1997 45 106 361 1200 
1998 41 87 273 1050 
1999 60 82 291 1250 
2000 47 104 323 1150 
2001 73 159 486 1200 
2002 73 369 664 950 
2003 37 456 744 950 

2004 31 155 588 1000 
2005 63 217 571 1000 



2006 55 271 717 1300 
2007 125 245 1138 1200 
2008 82 382 1577 1300 
2009 164 463 1960 1400 
2010 164 535 2508 1550 
2011 364 1044 4913 1300 
2012 656 2570 10643 1500 
2013 802 3317 15431 1550 
2014 1002 3802 17817 1400 
2015 1194 4593 20477 1450 

Total 6361 19920 86969 46650 
 

 



Appendix 2.  Plots of predicted annual indices for 22 migratory bird species that reach the 

northern extent of their range in Southern Ontario.  For each species, predicted values are plotted 

for models using eBird data from Pelee (Apr-May), southern Ontario (Jun-Jul), and southern 

Ontario (Apr-Jul), and for models using BBS data from southern Ontario.  Solid lines are LOESS 

curves with a span of 2, and dashed lines are trends fit to the annual indices using binomial 

generalized linear models.  Both lines use annual sample size for weights. 

 

Group A: species that show declining trends in BBS data. 

 

Fig. A2.1.  Predicted annual indices from eBird and BBS models for Eastern Meadowlark. 

 

Fig. A2.2.  Predicted annual indices from eBird and BBS models for Brown Thrasher. 



Fig. A2.3.  Predicted annual indices from eBird and BBS models for Bobolink. 

Fig. A2.4.  Predicted annual indices from eBird and BBS models for Eastern Towhee. 

Fig. A2.5.  Predicted annual indices from eBird and BBS models for Purple Martin. 



Fig. A2.6.  Predicted annual indices from eBird and BBS models for Field Sparrow.  

Fig. A2.7.  Predicted annual indices from eBird and BBS models for Green Heron. 

Fig. A2.8.  Predicted annual indices from eBird and BBS models for Grasshopper Sparrow 



Fig. A2.9.  Predicted annual indices from eBird and BBS models for Red-headed Woodpecker.  

The y-axes were adjusted for Pelee, S. Ontario (Jun-Jul), and S. Ontario (Apr-Jul) so that large 

outliers would not affect interpretation.  Outliers not depicted are Pelee: (1970, 0.67) and 

(1974, 1.00); S. Ontario (Jun-Jul): (1973, 0.54); and S. Ontario (Apr-Jul): (1974, 0.15).   

 

Fig. A2.10.  Predicted annual indices from eBird and BBS models for Upland Sandpiper.  The  

y-axis was adjusted for S. Ontario (Apr-Jul) so that a large outlier would not affect interpretation 

of the plot.  The outlier not depicted was for 1974 with a predicted frequency of 0.028. 

 



Fig. A2.11.  Predicted annual indices from eBird and BBS models for Black-billed Cuckoo. 

Fig. A2.12.  Predicted annual indices from eBird and BBS models for Yellow-billed Cuckoo. 

 

Fig. A2.13.  Predicted annual indices from eBird and BBS models for Baltimore Oriole. 



Fig. A2.14.  Predicted annual indices from eBird and BBS models for Brown-headed Cowbird. 

 

 

 

 

Group B:  species that show increasing trends in BBS data. 

Fig. A2.15.  Predicted annual indices from eBird and BBS models for Eastern Phoebe. 

 

 

 

 

 

 

 

 

 

 



Fig. A2.16.  Predicted annual indices from eBird and BBS models for Warbling Vireo. 

Fig. A2.17.  Predicted annual indices from eBird and BBS models for Orchard Oriole. 

 

Fig. A2.18.  Predicted annual indices from eBird and BBS models for House Wren. 



Fig. A2.19.  Predicted annual indices from eBird and BBS models for Blue-gray Gnatcatcher. 

Fig. A2.20.  Predicted annual indices from eBird and BBS models for Blue-winged Warbler. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Group C: species that show no significant trend in BBS data. 

Fig. A2.21.  Predicted annual indices from eBird and BBS models for Wood Thrush. 

 

Fig. A2.22.  Predicted annual indices from eBird and BBS models for Great Crested Flycatcher. 



Appendix 3. Plots of predicted annual indices from the BBS against those of eBird data from 

southern Ontario between April and mid-July, 1970-2015. 

 

 Group A: species that show declining trends in BBS data.  

   

 

 

 



 

 

 

 

 

 

 

 

  



Group B:  species that show increasing trends in BBS data. 

 

 

Group C: species that show no significant trend in BBS data. 
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