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ABSTRACT. Autonomous recording units (ARUs) are emerging as an effective tool for avian population monitoring and research.
Although ARU technology is being rapidly adopted, there is a need to establish whether variation in ARU components and their
degradation with use might introduce detection biases that would affect long-term monitoring and research projects. We assessed
whether microphone sensitivity impacted the probability of detecting bird vocalizations by broadcasting a sequence of 12 calls toward
an array of commercially available ARUs equipped with microphones of varying sensitivities under three levels (32 dBA, 42 dBA, and
50 dBA) of experimentally induced noise conditions selected to reflect the range of noise levels commonly encountered during avian
surveys. We used binomial regression to examine factors influencing probability of detection for each species and used these to examine
the impact of microphone sensitivity on the effective detection area (ha) for each species. Microphone sensitivity loss reduced detection
probability for all species examined, but the magnitude of the effect varied between species and often interacted with distance.
Microphone sensitivity loss reduced the effective detection area by an average of 25% for microphones just beyond manufacturer
specifications (-5 dBV) and by an average of 66% for severely compromised microphones (-20 dBV). Microphone sensitivity loss
appeared to be more problematic for low frequency calls where reduction in the effective detection area occurred most rapidly.
Microphone degradation poses a source of variation in avian surveys made with ARUs that will require regular measurement of
microphone sensitivity and criteria for microphone replacement to ensure scientifically reproducible results. We recommend that research
and monitoring projects employing ARUs test their microphones regularly, replace microphones with declining sensitivity, and record
sensitivity as a potential covariate in statistical analyses of acoustic data.

Variabilité et dégradation des microphones: implications pour les programmes de surveillance utilisant
des unités d'enregistrement autonomes
RÉSUMÉ. Les unités d'enregistrement autonome (UEA) apparaissent comme un outil efficace pour la recherche et le suivi des
populations aviaires. Bien que la technologie UEA ait été rapidement adoptée, il est nécessaire d'établir si la variation des composants
des UEA et leur dégradation avec l'utilisation pourraient introduire des biais de détection qui affecteraient les projets de recherche et
le suivi à long terme. Nous avons évalué si la sensibilité du microphone a une incidence sur la probabilité de détecter les vocalisations
d'oiseaux en diffusant une séquence de 12 chants d'oiseaux vers une série d'UEA disponibles dans le commerce, équipées de microphones
de sensibilités variables, testés sous trois niveaux (32 dBA, 42 dBA et 50 dBA) de bruit induit expérimentalement. Ces conditions ont
été sélectionnées pour reproduire la gamme de niveaux de bruit généralement rencontrés lors des études aviaires. Nous avons utilisé
une régression binomiale pour examiner les facteurs influençant la probabilité de détection pour chaque espèce et les avons utilisés
pour examiner l'impact de la sensibilité du microphone sur la zone de détection (ha) pour chaque espèce. La perte de sensibilité du
microphone a réduit la probabilité de détection de toutes les espèces testées, mais l'ampleur de l'effet variait selon les espèces et interagissait
souvent avec la distance. La perte de sensibilité du microphone a réduit la zone de détection d'en moyenne 25% pour les microphones
juste en dessous des spécifications du fabricant (-5 dBV) et en moyenne de 66% pour les microphones fortement compromis (-20 dBV).
La perte de sensibilité du microphone semble être plus problématique pour les chants d'oiseaux de faible fréquence où la réduction de
la zone de détection s'est produite le plus rapidement. La dégradation du microphone induit une source de variation dans les recherches
aviaires réalisées avec des ARU qui nécessiteront une mesure régulière de la sensibilité du microphone et des critères de remplacement
du microphone afin d'obtenir des résultats scientifiquement reproductibles. Nous recommandons que les projets de recherche et de
suivi utilisant des ARU testent régulièrement leurs microphones, remplacent les microphones dont la sensibilité est décroissante, et
tiennent compte de la sensibilité comme covariable potentielle dans les analyses statistiques des données acoustiques.

Key Words: acoustic surveys; autonomous recording units; bird monitoring; detection probability; effective detection radius; environmental
noise; microphone sensitivity

INTRODUCTION
Ornithologists use a number of methods to track changes in avian
populations, with point count–based methods being one of the
most commonly employed approaches (Ralph et al. 1995,

Matsuoka et al. 2014). Point counts generally make use of trained
observers who conduct surveys over a set duration during which
all birds seen or heard within a specified distance of the observer
are counted (Ralph et al. 1995, Matsuoka et al. 2014). Point count
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protocols are widely used in monitoring programs such as the
North American Breeding Bird Survey (BBS) to infer population
status, trends, and habitat relationships, thus providing an
important tool for species conservation (Peterjohn and Sauer
1999, Sauer et al. 2003, Sauer et al. 2013). For many groups of
birds, detections during point count surveys are primarily based
upon acoustic cues (Dejong and Emlen 1985, Brewster and
Simons 2009); therefore, acoustic recording technologies offer an
alternative sampling method to supplement traditional point
counts (Hobson et al. 2002, Klingbeil and Willig 2015). Although
point counts by either human observers or using acoustic
recordings are widely used, there is increasing recognition that
these methods are susceptible to imperfect detection that can lead
to biased estimation of species density or abundance (Thompson
2002, Royle et al. 2005). Imperfect detection results from variable
availability of cues (e.g., songs) given by a species or individual,
and variation in the ability of observers to perceive these signals
once they are available (Alldredge et al. 2007a, b, Diefenbach et
al. 2007). Although several studies have focused on factors
influencing detection probability by human observers (e.g.,
Alldredge et al. 2007a, b, Simons et al. 2007, Stanislav et al. 2010),
less is known about what factors drive variation in detection
probability where acoustic recording technologies are used as the
primary survey tool. The recent emergence and growing
popularity of autonomous recording units (ARUs) in avian
monitoring has created a need to investigate how variation in
electronic components of these recording technologies could
influence potential biases with this survey method.  

Interest in the application of ARUs in avian research is in part
because of their potential to address several of the known biases
associated with traditional point count surveys. Programmability
facilitates devising recording schedules that can directly reduce
or possibly eliminate biases associated with variation in call
availability with respect to time of day or season (Brandes 2008,
Venier et al. 2012). Furthermore, the ease of obtaining repeat
“visits” to the same location can also facilitate the application of
statistical methods such as N-mixture modeling (Royle and
Nichols 2003) to estimate and account for biases in detection
probability. ARUs are well suited to monitor species that are
logistically difficult to monitor (e.g., nocturnal species) using
human observers (Goyette et al. 2011, Rognan et al. 2012) and
can reduce impacts on wildlife (Carey 2009) as well as potential
biases caused by the presence of an observer (Gutzwiller and
Marcum 1997, Riffell and Riffell 2002). In addition, recordings
have the added benefit of creating a permanent record of the
acoustic environment that can be viewed on a spectrogram (Digby
et al. 2013), listened to multiple times (Haselmayer and Quinn
2000), analyzed by multiple analysts to verify species
identifications (Hobson et al. 2002), or even slowed down to
enumerate certain species based on temporal separation between
calls (Drake et al. 2016).  

Despite the many advantages of ARUs, they also present several
potential challenges to application in research and monitoring.
Unlike ARUs, human observers can use visuals cues, estimate
distance to observations, directly associate observations with
specific microhabitats, and generally detect birds over a larger
area than most sound recorders (Hutto and Stutzman 2009, Sidie-
Slettedahl et al. 2015). Although most of the above limitations
can be addressed via appropriate survey design, ARUs have the

additional challenge that the ability to detect a signal can vary
with the choice of recording unit (Venier et al. 2012, Rempel et
al. 2013) and microphone specifications (Fristrup and Mennitt
2012). Microphone sensitivity (essentially how efficiently a
microphone converts a signal from sound pressure to electrical
energy) is not only a concern when initially purchasing recording
equipment for a project, but also through time as the equipment
is used and potentially degraded.  

Similar to long-held concerns regarding the impact of age-related
hearing loss in humans on point count surveys (Ramsey and Scott
1981, Emlen and DeJong 1992, Farmer et al. 2014), degradation
of microphone sensitivity through time could affect the detection
of sounds by the recorder and therefore the conclusions of long-
term studies. We are unaware of any studies discussing
microphone sensitivity loss relating to bioacoustic monitoring,
but other fields have identified sensitivity loss in microphones as
an issue. For example, in cochlear implants, more than 25% of
microphones examined experienced a gradual loss of sensitivity
over time where a one decibel reduction in sensitivity reduced
speech recognition by one word per minute (Razza and Burdo
2011), illustrating the impact that equipment degradation can
have on performance. As more monitoring programs incorporate
ARUs, it becomes increasingly important to understand how
equipment wear might affect detection to ensure that data quality
is maintained through time.  

We conducted an experiment by broadcasting species calls toward
an array of ARUs with microphones of varying quality to assess
the effect of microphone sensitivity loss and environmental noise
on distance-related probability of detecting sounds recorded by
ARUs. Specifically, our objective was to quantify the differences
in detection caused by microphone sensitivity loss over a realistic
range of survey conditions. We recognize that the types (brand/
model) of ARUs and microphones may vary between studies;
however, our experiment provides a clear example of how
degradation of equipment may affect data collection. We discuss
the implications of microphone degradation for long-term
projects and provide general recommendations for quality
control.

METHODS

Microphone sensitivity
We measured the sensitivity of SMX-II microphones for the Song
Meter (Models SM2 and SM2+, Wildlife Acoustics, Maynard,
Massachusetts, USA) ARU, which are commonly used in bird
monitoring programs. Specifically, we installed the latest
firmware version available (version 3.3.7) and set the gain jumpers
on the ARUs to 0 dB while leaving all other jumpers at the factory
settings (i.e. 2.5V bias enabled and 3Hz high pass filter cut-off).
We then set the Song Meters to calibration mode and let the ARU
stabilize for a minimum of two minutes prior to microphone
calibration. After removing windscreens from the microphones,
we attached each microphone to the left microphone jack of the
ARU and fit a sound level calibrator (Model 407744, Extech
Instruments, Nashua, New Hampshire, USA) over the end of the
microphone. The sound level calibrator emits a 1 KHz pure tone
at 94 dB, from which a sensitivity reading can be obtained from
the ARU.  
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Fig. 1. Schematic showing the experimental setup used to evaluate the effect of microphone sensitivity loss on
detection of calls. The setup consisted of 12 triads (4 are pictured) of autonomous recording units (ARUs)
arranged in a linear array spanning 220 m with individual triads spaced at 20-m intervals. Within each triad,
ARUs were spaced 15 cm apart and equipped with one microphone from each of the three sensitivity classes. We
simulated environmental noise caused by windy conditions by broadcasting white noise from speakers installed 1
m in front of each triad (WN) and broadcasted calls 20 m (B2) and 30 m (B1) in front of the first triad of ARUs.

To determine if  microphone sensitivity varied in relation to
microphone age, we measured the sensitivity of a population of
369 microphones and divided them into three groups based on
the number of field seasons (> 1 mo) the microphones were
deployed: microphones used during 2 to 4 field seasons (n = 75),
microphones used during a single field season (n = 151), and
microphones purchased in 2014 but never deployed (n = 143). We
performed a Kruskal-Wallis test followed by post hoc Mann-
Whitney U tests to determine whether groups differed from one
another.

Field experiment
We conducted our field experiment in the rural municipality of
Foam Lake, Saskatchewan, Canada, in an open field with flat
terrain covered by graminoid vegetation ~0.5 m tall. We
performed three replicate trials after the breeding season was
largely over (26 July-8 August) on nights (22:30-01:45 hours) with
little to no wind (average wind 0 to 2.2 km/h; measured using an
anemometer; Kestrel 4000 NV Wind Meter, Kestrel Meters,
Birmingham, Michigan, USA). Average ambient noise ranged
from 32.1 to 33.0 dBA during broadcast trials, measured using a
data-logging sound pressure level meter (Model C-322, Reed
Instruments, Wilmington, North Carolina, USA).  

We deployed 12 triads of ARUs in a linear array spanning 220 m
with triads spaced at 20-m intervals (Fig. 1). We used a
combination of SM2 and SM2+ units in the array, after first
ensuring that all ARUs operated within 0.5 dBV of one another
using the sound level calibrator, and repositioned the gain jumpers
to factory settings (i.e., 48 dB) while leaving all other jumpers in
place. Within each triad, we spaced recorders 15 cm apart based
on the position of the microphone jack and aligned the left
channel toward the broadcast location because our objectives
only required one microphone per recorder.  

Using the results of our microphone sensitivity test (described
above), we quantified the deviation of the sensitivity of each
individual microphone (n = 331) from the mean sensitivity
rounded to the nearest integer of our unused cohort of
microphones (i.e., -41 dBV). Microphones were then assigned to
one of three sensitivity classes: sensitivity loss (0 to 10th percentile;
deviation of -20.50 to -2.30 dBV), no sensitivity loss (45th to 55th
percentile; deviation of -0.05 to 0.30 dBV), and above mean
sensitivity (90th to 100th percentile; deviation of +1.40 to +3.30
dBV). For every broadcast trial, we randomly drew 12

microphones from each of the three sensitivity classes and
equipped a recorder within each triad with a microphone from
each sensitivity class, permitting us to compare the effect of
microphone sensitivity loss on detection under identical
conditions.  

During trials, we broadcast white noise to simulate environmental
noise experienced under wind conditions representative of those
experienced during most bird surveys. We used an experimental
approach because it allowed us to assess the effect of ambient
noise while minimizing potential complications brought about by
variable (uncontrolled) wind speed and direction. Prior to our
experiment, we empirically determined the ambient noise
experienced under wind conditions falling within standardized
protocols for avian surveys such as the BBS and the North
American Marsh Bird Monitoring Protocol (Conway 2011).
Specifically, we simultaneously measured wind speeds (km/h)
using a Kestrel 2000 anemometer (Kestrel Meters, Birmingham,
Michigan, USA) and sound pressure level (dBA) using a model
C-322 sound pressure level meter (Reed Instruments,
Wilmington, North Carolina, USA). Based on graphical
inspection of the relationship between wind speed and sound
pressure level, we simulated Beaufort 3 winds (13-19 km/h) using
50 dBA of white noise and Beaufort 2 winds (6-12 km/h) using
42 dBA of white noise, and did not use any white noise to represent
Beaufort 0 (< 2 km/h) and Beaufort 1 (2-5 km/h) winds. To
simulate wind noise, we placed speakers 1 m in front of each triad
of recorders and broadcast white noise to expose microphones to
42 dBA and 50 dBA of noise for each of the respective “wind
trials” (Fig. 2).  

We broadcast a sequence of bird calls toward the array of
recorders using a FoxPro Firestorm digital game caller (FOXPRO
Inc., Lewistown, Pennsylvania, USA). We repeated the broadcast
from 20 and 30 m away from the first triad of recorders; combined
with the positioning of our 12 triads (above), this produced
recording samples at 24 10-m intervals for distances ranging from
20-250 m. The majority of our broadcast sequence consisted of
wetland-associated species because ARUs are likely the most
effective way to monitor this group of birds (Sidie-Slettedahl et
al. 2015). We included the primary vocalizations of American
Bittern Botaurus lentiginosus (AMBI), Le Conte’s Sparrow
Ammodramus leconteii (LCSP), Nelson’s Sparrow Ammodramus
nelsoni (NESP), Pied-billed Grebe Podilymbus podiceps (PBGR),
Sedge Wren Cistothorus platensis (SEWR), and Yellow Rail
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Coturnicops noveboracensis (YERA). The sequence also
contained Sora Porzana carolina (SORA) “per-weep” and
“whinny” calls and Virginia Rail Rallus limicola (VIRA) “tick-it”
and “grunt” calls. We also included songs of two forest-dwelling
species (Black-and-white Warbler Mniotilta varia, BAWW;
Ovenbird Seiurus aurocapilla, OVEN) to allow comparison of our
findings to those of Alldredge et al. (2007a), who looked at similar
effects on surveys by human observers.

Fig. 2. Experimental setup showing one of 12 triads of
autonomous recoding units used to evaluate the effect of
microphone sensitivity loss on detection of calls. We simulated
wind noise by broadcasting 42 dBA and 50 dBA (measured 1 m
away) of white noise from a pair of speakers placed in front of
each triad.

Because call loudness will influence the distance over which calls
can be detected, we attempted to have the broadcast sequence
reflect the volume of actual bird calls to improve the applicability
of our findings. To achieve this, we broadcast species calls toward
four experienced birders standing 50 m away (following Hobson
et al. 2002), but repeated this over 5 dBA increments and had the
birders identify which volumes they considered accurate for each
species. To encompass the range of observer estimates and
represent a potential range of variation in a species call loudness,
we broadcast each call type at two decibel levels; quieter species
(BAWW, LCSP, NESP, SEWR, YERA) were broadcast with a
maximum dBA of 95 and 105 at the source, whereas louder species
(OVEN, PBGR, SORA, VIRA) were broadcast with a maximum
dBA of 105 and 120 at source (as opposed to 1 m from source).
We broadcast AMBI calls with a maximum source dBA of 105
and 111 because we could not create a recording of this species
that reached 120 dBA without noticeable distortion. With the use
of two data-logging decibel meters, we determined that calls
broadcast at 95, 105, and 120 dBA at the source corresponded to
approximately 70 (SD 2.9), 75 (SD 4.4), and 86 dBA (SD 4.4) at

1 m away, respectively. These sound levels are consistent with
previous studies that have attempted to measure the volume of
bird vocalizations (Brackenbury 1979, Drake et al. 2016).  

All recordings were processed in a laboratory setting by a single
analyst using Raven Pro software (version 1.5 beta) and high-
quality, noise-cancelling headphones (Bose® QC15; Bose
Corporation, Framingham, Massachusetts, USA). The analyst
could use either visual evidence on spectrograms or sound to
identify vocalizations. We ensured the analyst was blind to all
treatment information (i.e., distance from sound source,
microphone sensitivity, and noise level) by saving broadcast
sequences as randomly numbered files.

Analysis
Data were entered as binomial outcomes where a call type for a
given volume was either detected (1) or not detected (0). For each
species, we used generalized linear regression modeling with a
binomial error family and a complementary log-log link to
examine factors influencing the probability that calls were
detected. We chose the complementary log-log link because it
tends to provide better fit to skewed data (Hosmer et al. 2013)
and comparison against initial fits using logit link functions
suggested better fits, especially near the intercept where
probability of detection should equal 1 in our experiment. We
treated distance and microphone sensitivity loss as independent
continuous variables, whereas white noise treatment was included
as a categorical variable. We did not treat broadcast volume as a
variable, but rather pooled the two volumes together to account
for uncertainty and variability in actual loudness of species. All
models treated distance as a second-order polynomial fit to
account for the expected decay in sound pressure level following
the inverse square law (Marten and Marler 1977).  

We developed a set of a priori candidate models (Table 1) that
considered main effects and relevant interactions. For most
models, we computed 85% confidence intervals based on the
normal approximation interval. However, certain models
experienced complete separation; when this occurred we
calculated 85% confidence intervals based on profile likelihoods
(Heinze and Schemper 2002) using the MASS package in R
(Venables and Ripley 2002).

Table 1. Candidate set of models used in analyses including
distance to the sound source (Dist), noise treatment (Treat),
microphone sensitivity loss (Mic), and relevant interactions
among them.
 
Model

Dist + Treat + Mic + Dist : Mic + Dist : Treat
Dist + Treat + Mic + Dist : Mic
Dist + Treat + Mic + Dist : Treat
Dist + Treat + Mic
Dist + Treat + Dist : Treat
Dist + Treat

We used Akaike’s information criteria corrected for small sample
size (AICc; Burnham and Anderson 2002) to determine the most
parsimonious model for each species. We discarded models in
which the 85% confidence interval contained zero (Arnold 2010)
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and defaulted to the next best model that did not contain
“pretending parameters” (sensu Anderson 2008). Using the best
approximating model, we determined the effective detection
radius and subsequently the effective detection area of the ARU
for each call type.

RESULTS
A cohort of 143 new (unused) microphones had a median
microphone sensitivity of -40.9 dBV (range -37.7 to -43.5 dBV;
SD 1.2; Fig. 3). We note that our measurements differ by 5 dBV
from the manufacturer’s sensitivity specifications of -36 ± 4 dBV
associated with the internal microphone element, but hereafter
use our measurements (i.e., -41 ± 4 dBV) when discussing
microphone specifications. Field use had a statistically significant
(Kruskal-Wallis test χ2 = 130.44, p < 0.0001) effect on microphone
sensitivity (Fig. 4), and post hoc Mann-Whitney U tests between
the groups show that all groups differ significantly from one
another. The median sensitivity of microphones deployed for one
season was 1.0 dBV lower (U = 4224, p < 0.0001) than the median
sensitivity of new microphones at -40.9 dBV (Fig. 4). Similarly,
the median sensitivity of microphones deployed for two or more
seasons was 1.9 dBV less sensitive (U = 1126, p < 0.0001) than
new microphones at 40.9 dBV corresponding to a median
sensitivity difference of 0.9 (U=3580, p < 0.0001) between
microphones deployed for a single season and microphones
deployed for two or more seasons (Fig. 4).

Fig. 3. Frequency distribution of sensitivity readings
obtained from 143 new SMX-II microphones for SM2
recorders (Wildlife Acoustics, Maynard,
Massachusetts, USA). Microphone specifications are
not -36 ± 4 dBV as stated by the manufacturer but
rather -41 ± 4 dBV.

Our initial design should have yielded 648 6-minute sound files;
however, mechanical failure and human error caused a subset of
recordings to be lost or discarded. In total, we processed 576 6-
minute sound files resulting in 13,824 calls across the 12 call types
potentially available for detection.  

Our model selection process resulted in different models being
selected to explain variation in call detection between species;
however, all of the selected models included the main effects for
microphone sensitivity, distance, and noise treatment (Table 2).
The most frequently selected model among species included the
main effects as well as an interaction between distance and
treatment and provided the best fit for five call types (BAWW,
LCSP, SEWR, SORA whinny calls, VIRA grunt calls). Two call
types (AMBI and VIRA tick-it calls) included the main effects
with the distance by microphone interaction as the best model. A
model having main effects with the distance by treatment
interaction as well as the distance by microphone interaction was
the most appropriate model for NESP and YERA calls. Finally,
three call types (OVEN, PBGR, SORA per-weep calls) had top
models that only included the main effects. LCSP was the only
species for which we selected the second ranking model as our
best model because the 85% confidence interval around the
estimate included zero. A summary of parameter estimates and
model ranking is available in Appendices 1-3.

Fig. 4. Box plot of measured microphone sensitivity (dBV) of
three cohorts of SMX-II microphones representing
microphones purchased in 2014 and never deployed (n = 143),
microphones used for only one field season (n = 151), and
microphones used for 2-4 consecutive field seasons (n = 75).
The centerline of each box represents the median microphone
sensitivities of -40.9, -41.9, -42.8 dBV, respectively. Boxes
represent the data between 25th and 75th percentiles, and the
whiskers represent 1.5 times the interquartile range. Outliers in
each population are represented by dots. The solid and dotted
horizontal lines depict the stated manufacturer specifications of
mean sensitivity and expected variation of -36 dBV ± 4dBV.
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Table 2. Top binomial regression models for 12 species call types
based on model rankings obtained using Akaike’s information
criteria corrected for small sample size (AICc). Models include
distance to the sound source (Dist), noise treatment (Treat),
microphone sensitivity loss (Mic), and relevant interactions.
Species calls include American Bittern (AMBI), Black-and-white
Warbler (BAWW), Le Conte’s Sparrow (LCSP), Nelson’s Sparrow
(NESP), Ovenbird (OVEN), Pied-billed Grebe (PBGR), Sedge
Wren (SEWR), and Yellow Rail (YERA), as well as Sora (SORA)
per-weep and whinny calls, and Virginia Rail (VIRA) grunt and
tick-it calls. A summary of model ranking for each call type is
available in Appendix 2.
 
Species Call Type Top Model

AMBI Pump-er-lunk† Dist + Treat + Mic + Dist : Mic
BAWW Song Dist + Treat + Mic + Dist : Treat
LCSP Song Dist + Treat + Mic + Dist : Treat
NESP Song Dist + Treat + Mic + Dist : Mic + Dist : Treat
OVEN Song Dist + Treat + Mic
PBGR Owhoop† Dist + Treat + Mic
SEWR Song Dist + Treat + Mic + Dist : Treat
SORA Per-weep† Dist + Treat + Mic

Whinny† Dist + Treat + Mic + Dist : Treat
VIRA Grunt† Dist + Treat + Mic + Dist : Treat

Tick-it† Dist + Treat + Mic + Dist : Mic
YERA Click-click† Dist + Treat + Mic + Dist : Mic + Dist : Treat
†Standardized call names from Conway (2011).

For all species, increasing distance, noise, and loss of microphone
sensitivity decreased detection probability (see Appendix 4). The
effect of microphone sensitivity loss on detection decreased with
increasing distance for the four species (NESP, Fig. A4.2a;
YERA, Fig. A4.3a; VIRA tick-it calls, Fig. A4.5b; AMBI, Fig.
A4.6a) that have a distance by microphone interaction in their
top model. For distance by treatment interaction terms that do
not include zero in the confidence interval, the effect of noise
decreased the probability of detection with increasing distance
for all species (LCSP, Fig. A4.1b; NESP, Fig. A4.2a; SEWR, Fig.
A4.2b; YERA, Fig. A4.3a; SORA whinny calls, Fig. A4.4b; and
VIRA grunt calls, Fig. A4.5a), except the BAWW, which had a
positive interaction between the 50 dBA noise treatment and the
distance squared term (Fig. A4.1a).  

We identified the effective detection radius of each call type under
various noise treatments and with increasing levels of microphone
sensitivity loss (Table 3) to determine the effective detection area.
We did not calculate the effective detection area of loud species
under ambient conditions because their effective detection radii
were beyond our experimental range of 250 meters. Additionally,
NESP calls exceeded our experimental range under ambient
conditions, so we excluded this species from the quiet group when
summarizing our results.  

The effective detection area (ha) of all species decreased with
increasing microphone sensitivity loss (Fig. 5, Fig. 6, and Table
4). For quiet species, LCSP calls were least affected by microphone
sensitivity loss, whereas SEWR calls were most affected under all
noise treatments except ambient conditions, where the effective
detection area of YERA initially dropped faster. For loud species,
VIRA tick-it calls were least affected by microphone sensitivity

Table 3. Effective detection radius in meters for ten species (and
12 calls) under three levels of environmental noise (dBA) and for
microphones 0, 5, 10, 15, and 20 dBV below our measured
manufacturer sensitivity specifications. Species include American
Bittern (AMBI), Black-and-white Warbler (BAWW), Le Conte’s
Sparrow (LCSP), Nelson’s Sparrow (NESP), Ovenbird (OVEN),
Pied-billed Grebe (PBGR), Sedge Wren (SEWR), Sora (SORA;
per-weep and whinny calls), Virginia Rail (VIRA; grunt and tick-
it calls), and Yellow Rail (YERA). Results omit species/noise
combinations where predicted effective detection radii were
beyond the range of measured distances in our experiment.
 
Species Noise

(dB)
Sensitivity (dBV) Relative to Manufacturer

Specifications

0 -5 -10 -15 -20

LCSP 32 124 115 106 96 86
42 68 61 54 47 40
50 36 33 30 26 23

BAWW 32 135 123 112 100 89
42 69 59 49 38 26
50 36 33 29 26 23

SEWR 32 166 137 112 89 67
42 77 63 48 33 16
50 44 36 29 21 13

YERA 32 203 158 132 114 99
42 89 77 67 57 48
50 53 47 42 36 29

NESP 42 104 92 83 76 70
50 60 57 54 51 49

VIRA
 Tick-it 42 136 132 129 126 123

50 106 104 102 100 98
 Grunt 42 143 128 114 100 88

50 109 96 82 68 52
SORA
 Per-weep 42 153 137 121 107 93

50 105 91 78 65 53
 Whinny 42 154 135 117 102 88

50 119 106 92 78 64
OVEN 42 156 144 133 122 112

50 106 97 88 80 72
AMBI 42 187 124 87 61 42

50 168 111 77 52 34
PBGR 42 197 155 122 95 71

50 128 100 75 53 33

loss, whereas AMBI calls were most severely affected under both
noise treatments analyzed. A complete summary of the effective
detection area (ha) and the percent loss of each call type with
increasing levels of microphone sensitivity loss is available in
Appendix 5.  

Wind noise reduced the effective detection area across the range
of microphone sensitivity; for brevity, we present the effect of
noise based on microphones showing no sensitivity losses. The
difference in noise between calm conditions to Beaufort 2
conditions caused the effective detection area of quiet species to
decrease by an average of 76% (range 70–81%; SD 5%) and a
further reduction of 69% (range 64–72%; SD 4%) between
Beaufort 2 and Beaufort 3 conditions. Thus, the effective detection
area was reduced by 93% (range 92–93%; SD 1%) between calm
and Beaufort 3 conditions for quiet species. With loud species,
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noise caused approximately 25% less of a reduction in effective
detection area than observed for quiet species; the change of noise
between Beaufort 2 and Beaufort 3 conditions caused the effective
detection area of these species to decrease by 44% (range 19–58%;
SD 13%). AMBI calls were least affected by the increase of noise,
losing only 19% its effective detection area.

Table 4. Percent reduction (and standard deviation) in the effective
detection area (ha) of quiet and loud calls under various noise
treatments with 5, 10, 15, and 20 dBV of microphone sensitivity
loss. Quiet calls include Black-and-white Warbler (BAWW), Le
Conte’s Sparrow (LCSP), Nelson’s Sparrow (NESP), Sedge Wren
(SEWR), and Yellow Rail (YERA) whereas loud calls include
American Bittern (AMBI), Ovenbird (OVEN), Pied-billed Grebe
(PBGR), Sora (SORA; per-weep and whinny calls), and Virginia
Rail (VIRA; grunt and tick-it calls). Results omit call/noise
combinations where predicted effective detection radii were
beyond the range of measured distances in our experiment. A
complete summary showing the reduction in effective detection
area for each call type is available in Appendix 5.
 
Calls Noise

(dBA)
Sensitivity (dBV) Relative to Manufacture

Specifications

-5 -10 -15 -20

Quiet 32 26 (12) 43 (15) 56 (16) 67 (15)
Quiet 42 26 (6) 48 (11) 66 (13) 79 (14)
Quiet 50 22 (6) 40 (11) 57 (14) 70 (15)
Loud 42 26 (17) 42 (22) 54 (24) 63 (25)
Loud
Both

50
All

26 (17)
25

44 (23)
42

58 (26)
56

69 (28)
66

Fig. 5. Effective detection area (ha) of Black-and-white Warbler
(BAWW), Le Conte’s Sparrow (LCSP), Nelson’s Sparrow
(NESP), Sedge Wren (SEWR), and Yellow Rail (YERA) calls
during Beaufort 2 noise conditions (42 dBA) for increasing
degrees of microphone sensitivity loss (dBV).

Fig. 6. Effective detection area (ha) of American Bittern
(AMBI), Ovenbird (OVEN), Pied-billed Grebe (PBGR), Sora
(SORA) per-weep and whinny calls, and Virginia Rail (VIRA)
grunt and tick-it calls during Beaufort 2 noise conditions (42
dBA) for increasing degrees of microphone sensitivity loss
(dBV).

DISCUSSION
We provide strong evidence that microphone sensitivity decreases
with field use. Furthermore, we show that lower microphone
sensitivity reduces the effective area sampled by a microphone
and thus induces distance-related biases in detection probability
for all species. The observed reduction of effective detection area
suggests that our results are similar to those found in cochlear
implants (Razza and Burdo 2011) in that any sensitivity loss in a
microphone results in reduced performance. Compared with
microphones showing no sensitivity loss, microphones with
sensitivity readings of 5 dBV below (i.e., -46 dBV) manufacturer
specifications reduced species’ effective detection areas by an
average of 25% and by an average of 66% for the least sensitive
microphones tested (i.e., -61 dBV). Large reductions in effective
detection area should not be surprising given that microphones
have the same function as ears during point counts, and variation
in hearing ability among observers has the potential to greatly
reduce the sampling area (Ramsey and Scott 1981). Although
humans tend to experience the greatest age-related hearing losses
at high frequencies (Ramsey and Scott 1981, Emlen and DeJong
1992, Farmer et al. 2014), our results suggest that microphones
may be more vulnerable to low frequency losses; AMBI and
PBGR calls, the two calls included in our experiment that are
primarily below 1.5 KHz, experienced the fastest decline in
effective detection area (58% and 39% decline with a 5 dBV loss
in sensitivity, respectively), and both experienced reductions of >
85% with a 20 dBV reduction in sensitivity.  
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An initial inspection of spectrograms from recordings made with
worn microphones suggests possible mechanisms for the lower
detection rates of low frequency calls. Microphones appear to
exhibit greater static over low frequencies and may be more
vulnerable to sensitivity losses at low frequencies only. Although
more detailed experiments and quantification would be required
to define the mechanisms and frequency-specific wear that may
be occurring in microphones, our results suggest that there may
be no single (uniform) clear criterion to determine when a change
in microphone sensitivity is sufficient to warrant replacement
because multiple methods exist to process sound recordings and
each will vary in the degree that damage affects them. For example,
although the lower signal-to-noise ratio caused by static will lower
detection for sound analysts (Fig. 7; compare sound files in
Appendices 6 and 7), auditory inspections of recordings may yield
higher detection rates than visual scans because masked visual
signatures may still be audible (Fig. 7a; see sound file in Appendix
6). Furthermore, automated detection or recognition software
will likely be more affected by worn microphones compared with
human analysts because noise impedes the ability of automated
recognizers to detect sounds (Bardeli et al. 2010).

Fig. 7. Spectrogram of a Pied-billed Grebe call made from an
autonomous recording unit equipped with (1) a degraded
microphone showing severe static and (2) a normally
functioning microphone showing no static. Both recordings
were recorded within the same triad and during the same
broadcast trial. Accompanying recordings for these
spectrograms are available in Appendices 6 and 7, respectively.

For most species, background noise greatly reduced the analyst’s
ability to detect calls, suggesting that noise affects recording-based
surveys in a similar way as point count surveys (e.g., Simons et
al. 2007, Pacifici et al. 2008). Not surprisingly, the magnitude of
the noise effect was greater for quiet species than loud species. For
example, for microphones at -41 dBV, the addition of 8 dBA of
white noise (from Beaufort 2 to Beaufort 3 conditions) reduced
the effective detection area of loud calls by 19–58% and 64–72%
across the quiet species. Past research suggests that wind affects
detection of calls in ARU surveys more severely than in-person
surveys (Digby et al. 2013), and it is possible we did not experience
the true effect wind has on recordings because our experimental
design did not include wind gusts, which would tend to cause
recordings to “clip” (Zakis 2011) and further affect detection.
Additionally, white noise may not have been ideal to represent
sound produced by wind in open habitats, where greater
environmental noise can occur at lower frequencies (Zakis 2011),
thereby masking only portions of a call and not affecting detection

as severely (Koper et al. 2015). However, our use of white noise
was likely appropriate to simulate the interference caused by leaf
rustle in deciduous forests and likely dense cattail vegetation,
which tend to follow a similar sound profile (Turnbull, personal
commuication). Our approach also allowed us to reduce variation
associated with changes in wind speed and direction and thus
allow more refined inference with regard to the interaction
between microphone sensitivity and realistic levels of
environmental noise.  

The predicted effective detection radii of all species appear large
when comparing them with other studies (e.g., Alldredge et al.
2007a), but this may be because we broadcast calls at night in
conditions with little to no wind—conditions ideal for
temperature inversions that can increase the distance at which
sounds are heard—or because we performed the experiment in
an area lacking trees and other tall vegetation that can attenuate
sound (Schieck 1997, Pacifici et al. 2008). We were surprised to
find that NESP calls traveled further than YERA calls, but this
is likely because our broadcast volume for NESP was
unrealistically loud. Despite large effective detection radii, groups
of calls attenuated as we expected within the boundaries of our
experiment when ARUs were equipped with microphones near
manufacturer specifications. Specifically, quiet species had
smaller effective detection radii than loud species, and high
frequency sounds attenuated faster than low frequency sounds
(Schieck 1997, Alldredge et al. 2007a). These volume- and
frequency-dependent attenuations did not necessarily hold true
when ARUs were equipped with degraded microphones. For loud
species, certain low-frequency calls became less detectable than
mid-frequency calls once microphone sensitivity dropped to -44
dBV, and for quiet species, certain mid-frequency calls became
less detectable than high-frequency calls once microphone
sensitivity dropped to -48 dBV. Additionally, certain loud species
became less detectable than quiet species once microphones
sensitivity dropped to -52 dBV.  

Loss of microphone sensitivity with repeated field use could
confound temporal comparisons in monitoring and research
programs if  quality control guidelines are not established. For
example, failure to replace damaged microphones over multiyear
studies could create the appearance of a decline in an otherwise
stable population, whereas periodic replacement of microphones
could theoretically induce cyclic patterns in detection based on
the frequency of microphone renewal in long-term studies. If  a
10% difference in number of birds detected can cause undesirable
bias in trend estimates from index-based surveys (as stated in
Rempel et al. 2013), ensuring that monitoring programs use
microphones within a certain range of sensitivity will maintain
data quality. Some units may be able to compensate for varying
microphone sensitivity by adjusting a gain setting on the unit.
However, further experiments will be needed to determine what
effect this may have on detection because adjusting the gain based
on the 1 KHz test tone may result in excessive gain at higher
frequencies and may not change the signal-to-noise ratio of
microphones that exhibit static at the lower frequencies.  

We recommend that all microphones be uniquely identified
(labeled) and the sensitivity measured immediately upon purchase
and subsequently tested after each field season to track changes
in microphone sensitivity. Furthermore, recording the time-
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specific estimates of microphone sensitivity and tracking which
microphones were deployed on a given ARU and recording
location would allow the inclusion of microphone sensitivity as
a covariate in statistical models to potentially adjust for
differences in detection between sites or years. Performing a single
point check using a commercially available 1 KHz/94 dB sound
level calibrator should be sufficient to identify microphones with
poor sensitivity because sensitivity loss appears to be greatest in
the low frequencies. However, we did not sweep the whole
frequency spectrum of our microphones to detect frequency-
specific damage; thus, future work over a broader frequency range
would be useful, but the difficulties and costs associated with this
might not be worthwhile. Furthermore, although static appeared
to occur more frequently in microphones with lower sensitivity
readings, an increase in the noise floor of a microphone can occur
independently of sensitivity loss, meaning a single point check
will not reliably detect this kind of damage. Thus, periodic
inspection of spectrograms would also be useful to determine if
other problems exist. This may be especially important for
programs heavily reliant upon recognition software.  

The cost of a sound level calibrator and replacement
microphones, as well as the work involved with testing
microphones, presents additional costs that should be accounted
for in cost-benefit scenarios (sensu Hutto and Stutzman 2009),
but such scenarios should also consider the benefit of repeat visits
obtainable via ARU use. It would be useful to conduct
longitudinal studies to understand rates of microphone decay and
determine whether damage is associated to specific environmental
conditions, and examine whether the magnitude at which
microphone sensitivity loss affects detection is equal across
various habitat types. Lastly, although our experiment used a
single microphone per recorder, ARUs function with two
microphones and record in stereo; thus, further research should
investigate whether matching microphones with similar
sensitivities for sound localization is preferred to pairing
microphones with different sensitivities to sample similar areas.

CONCLUSION
Microphone variation and degradation present a potential source
of bias that monitoring and research programs will have to guard
against to maintain data quality. Although our results are specific
to the particular products we tested, the patterns observed in this
study can be generalized across all ARUs. While we have
highlighted distance-related heterogeneity in detection probability
caused by variation in microphone sensitivity, it is important to
note that the range of variation in microphone sensitivity we
observed is still roughly half  of that observed between human
observers (Ramsey and Scott 1981). We have outlined approaches
that can easily be used to document and maintain quality control
on microphone sensitivity by testing and replacing microphones
as necessary. Determining when to replace microphones will
depend on a project’s objectives, target species, and methods used
to process the recordings.  
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Appendix 1. Parameter estimates from selected models explaining variation in the detection/non-detection of species calls from 

experimental playback trials.  

 Intercept Dist
Ϯ
 Dist

2
 Mic‡ 42 dB

§
 50 dB

|
 Dist:Mic Dist

2
:Mic Dist: 42 dB Dist

2
: 42 dB Dist: 50dB Dist

2
: 50 dB 

Call β SE β SE β SE β SE β SE β SE β SE β SE β SE β SE β SE β SE 

AMBI 1.7 0.1 -32.5 3.2 2.7 2.8 0.2 0.0 -1.0 0.1 -1.3 0.1 2.0 0.8 0.1 0.8         

BAWW -0.1 0.2 -69.7 6.9 3.1 8.5 0.1 0.0 -3.2 0.7 -5.6 1.7     -37.5 28.6 -13.9 16.2 -15.6 58.2 45.2 25.5 

Grunt 1.4 0.1 -17.5 4.4 -2.3 3.6 0.1 0.0 -1.3 0.2 -2.4 0.2     -26.4 6.2 8.1 5.9 -39.7 8.3 -4.3 6.4 

LCSP -0.7 0.2 -71.2 7.4 -4.5 8.0 0.1 0.0 -3.2 1.0 -7.3 5.9     -55.0 37.4 -9.6 19.2 -102.8 207.6 12.6 73.5 

NESP 1.2 0.2 -25.5 6.4 2.1 4.9 0.1 0.0 -2.4 0.3 -7.3 1.8 1.7 0.8 -0.2 0.8 -42.9 11.2 -7.5 8.6 -167.5 68.8 -38.7 28.7 

OVEN 1.8 0.1 -37.1 2.5 7.1 2.1 0.0 0.0 -1.6 0.1 -2.4 0.2             

Perweep 1.9 0.1 -40.3 2.6 4.6 2.1 0.1 0.0 -1.7 0.2 -2.6 0.2             

PBGR 1.0 0.1 -25.4 1.8 5.1 1.7 0.1 0.0 -0.5 0.1 -1.2 0.1             

SEWR 0.5 0.1 -42.6 4.9 6.2 4.8 0.1 0.0 -3.1 0.5 -8.6 4.3     -52.3 21.3 -13.8 12.4 -174.2 153.0 -26.8 56.5 

Tickit 2.1 0.1 -36.4 2.7 6.9 2.5 0.0 0.0 -2.1 0.2 -2.7 0.2 0.9 0.5 0.8 0.7         

Whinny 1.4 0.2 -19.2 6.2 2.3 4.6 0.0 0.0 -1.3 0.2 -2.0 0.2     -8.8 6.9 3.8 5.6 -20.0 7.5 -3.7 5.9 

YERA 0.8 0.1 -30.0 4.5 2.3 4.1 0.1 0.0 -1.9 0.2 -6.1 1.8 2.0 1.0 0.7 0.8 -18.3 7.5 3.9 6.4 -121.6 66.2 -17.2 27.7 

Ϯ
 Distance (m) between call broadcast and microphone  
‡ Microphone sensitivity loss (dB) relative to manufacture specifications 
§ 42 dB of experimentally added noise reaching the microphone 
| 50 dB of experimentally added noise reaching the microphone 

 



Appendix 2. Model ranking based on Akaike’s information criteria corrected for small sample size (AICc) for each call type. Models 

include distance (Dist), noise treatment (Treat), microphone sensitivity loss (Mic), and relevant interactions. 

Call Type Model ΔAICc 
Degrees of 

Freedom 
Log Likelihood 

AMBI Dist + Treat + Mic + Dist:Mic 0 8 -389.2 

AMBI Dist + Treat + Mic 2.8 6 -392.6 

AMBI Dist + Treat + Mic + Dist:Treat + Dist:Mic 5 12 -387.6 

AMBI Dist + Treat + Mic + Dist:Treat 8.4 10 -391.4 

AMBI Dist + Treat + Dist:Treat 180.8 9 -478.6 

AMBI Dist + Treat 182 5 -483.2 

BAWW Dist + Treat + Mic + Dist:Treat 0 10 -258 

BAWW Dist + Treat + Mic + Dist:Treat + Dist:Mic 1.9 12 -256.9 

BAWW Dist + Treat + Dist:Treat 12.8 9 -265.4 

BAWW Dist + Treat + Mic 12.8 6 -268.5 

BAWW Dist + Treat + Mic + Dist:Mic 14.1 8 -267.1 

BAWW Dist + Treat 30 5 -278.1 

GRUNT Dist + Treat + Mic + Dist:Treat 0 10 -397 

GRUNT Dist + Treat + Mic + Dist:Treat + Dist:Mic 3.9 12 -396.9 

GRUNT Dist + Treat + Mic 15.9 6 -409 

GRUNT Dist + Treat + Mic + Dist:Mic 19 8 -408.5 

GRUNT Dist + Treat + Dist:Treat 20.7 9 -408.3 

GRUNT Dist + Treat 48.9 5 -426.5 

LCSP Dist + Treat + Mic + Dist:Treat + Dist:Mic 0 12 -248.1 

LCSP Dist + Treat + Mic + Dist:Treat 2.2 10 -251.2 

LCSP Dist + Treat + Dist:Treat 8.2 9 -255.3 

LCSP Dist + Treat + Mic + Dist:Mic 12.6 8 -258.5 

LCSP Dist + Treat + Mic 14.3 6 -261.3 

LCSP Dist + Treat 23.2 5 -266.8 



Call Type Model ΔAICc 
Degrees of 

Freedom 
Log Likelihood 

NESP Dist + Treat + Mic + Dist:Mic + Dist:Mic 0 12 -314.8 

NESP Dist + Treat + Mic + Dist:Treat 2 10 -317.8 

NESP Dist + Treat + Mic 23.9 6 -332.9 

NESP Dist + Treat + Mic + Dist:Mic 25.4 8 -331.5 

NESP Dist + Treat + Dist:Treat 28.6 9 -332.2 

NESP Dist + Treat 68.5 5 -356.2 

OVEN Dist + Treat + Mic 0 6 -424.2 

OVEN Dist + Treat + Mic + Dist:Treat 0.1 10 -420.2 

OVEN Dist + Treat + Mic + Dist:Mic 2.4 8 -423.4 

OVEN Dist + Treat + Mic + Dist:Treat + Dist:Mic 2.4 12 -419.4 

OVEN Dist + Treat + Dist:Treat 5.9 9 -424.1 

OVEN Dist + Treat 5.9 5 -428.2 

PERWEEP Dist + Treat + Mic 0 6 -408.8 

PERWEEP Dist + Treat + Mic + Dist:Treat 2.2 10 -405.8 

PERWEEP Dist + Treat + Mic + Dist:Mic 3.6 8 -408.5 

PERWEEP Dist + Treat + Mic + Dist:Treat + Dist:Mic 5.8 12 -405.5 

PERWEEP Dist + Treat + Dist:Treat 16.3 9 -413.9 

PERWEEP Dist + Treat 18.4 5 -419 

PBGR Dist + Treat + Mic 0 6 -530.7 

PBGR Dist + Treat + Mic + Dist:Treat 0.3 10 -526.8 

PBGR Dist + Treat + Mic + Dist:Mic 3.4 8 -530.4 

PBGR Dist + Treat + Mic + Dist:Treat + Dist:Mic 3.8 12 -526.5 

PBGR Dist + Treat + Dist:Treat 38.4 9 -546.8 

PBGR Dist + Treat 38.4 5 -550.9 

SEWR Dist + Treat + Mic + Dist:Treat 0 10 -310 

SEWR Dist + Treat + Mic + Dist:Treat + Dist:Mic 0.2 12 -308 



Call Type Model ΔAICc 
Degrees of 

Freedom 
Log Likelihood 

SEWR Dist + Treat + Mic 18.9 6 -323.5 

SEWR Dist + Treat + Mic + Dist:Mic 20.2 8 -322.1 

SEWR Dist + Treat + Dist:Treat 29.2 9 -325.6 

SEWR Dist + Treat 60.5 5 -345.3 

TICKIT Dist + Treat + Mic + Dist:Mic 0 8 -414.1 

TICKIT Dist + Treat + Mic 0.9 6 -416.5 

TICKIT Dist + Treat + Mic + Dist:Treat + Dist:Mic 5.2 12 -412.6 

TICKIT Dist + Treat + Mic + Dist:Treat 5.8 10 -414.9 

TICKIT Dist + Treat 5.9 5 -420.1 

TICKIT Dist + Treat + Dist:Treat 10.1 9 -418.1 

WHINNY Dist + Treat + Mic + Dist:Treat 0 10 -458.5 

WHINNY Dist + Treat + Mic 2.6 6 -463.9 

WHINNY Dist + Treat + Mic + Dist:Treat + Dist:Mic 3.4 12 -458.2 

WHINNY Dist + Treat + Mic + Dist:Mic 6.1 8 -463.6 

WHINNY Dist + Treat + Dist:Treat 13.5 9 -466.3 

WHINNY Dist + Treat 19.1 5 -473.2 

YERA Dist + Treat + Mic + Dist:Treat + Dist:Mic 0 12 -366.8 

YERA Dist + Treat + Mic + Dist:Treat 1 10 -369.3 

YERA Dist + Treat + Mic 19.6 6 -382.7 

YERA Dist + Treat + Mic + Dist:Mic 21.4 8 -381.6 

YERA Dist + Treat + Dist:Treat 29.3 9 -384.5 

YERA Dist + Treat 59.3 5 -403.5 

 



Appendix 3. Parameter estimates for all binomial regression models. Within a species, models are ranked from lowest to highest 

ΔAICc score. 
 

 Intercept DistϮ Dist2 Mic‡ 42 dB§ 50 dB| Dist:Mic Dist2:Mic Dist: 42 dB Dist2: 42 dB Dist: 50dB Dist2: 50 dB 

Call β SE Β SE β SE β SE β SE β SE β SE β SE β SE β SE β SE β SE 

AMBI 1.7 0.1 -32.5 3.2 2.7 2.8 0.2 0.0 -1.0 0.1 -1.3 0.1 2.0 0.8 0.1 0.8         

AMBI 1.8 0.1 -36.8 2.7 4.4 2.2 0.2 0.0 -1.0 0.1 -1.3 0.1             

AMBI 1.7 0.2 -29.2 9.0 5.0 6.1 0.2 0.0 -1.0 0.2 -1.2 0.2 2.2 0.8 0.2 0.8 -1.8 9.2 -4.7 6.9 -6.3 9.2 -3.6 7.0 

AMBI 1.9 0.3 -41.4 9.8 10.3 6.3 0.2 0.0 -1.1 0.3 -1.4 0.3     6.0 10.2 -8.1 7.2 1.9 10.3 -6.9 7.3 

AMBI 0.8 0.1 -21.3 3.7 2.8 3.3   -0.6 0.1 -0.8 0.1     -8.7 4.8 -1.5 4.6 -13.6 5.0 -1.1 4.9 

AMBI 0.9 0.1 -29.1 2.0 3.5 1.9   -0.6 0.1 -0.8 0.1             

BAWW -0.1 0.2 -69.7 6.9 3.1 8.5 0.1 0.0 -3.2 0.7 -5.6 1.7     -37.5 28.6 -13.9 16.2 -15.6 58.2 45.2 25.5 

BAWW -0.1 0.2 -71.9 7.9 1.7 8.9 0.1 0.0 -3.2 0.7 -5.6 1.8 -0.7 1.4 -1.5 1.1 -38.0 29.0 -15.7 16.5 -15.9 61.4 42.6 26.5 

BAWW -0.4 0.2 -63.9 6.0 -1.7 7.3   -3.0 0.7 -5.4 1.8     -44.1 28.6 -8.8 15.7 -23.5 62.9 48.1 26.6 

BAWW 0.2 0.2 -77.2 5.7 14.1 4.1 0.1 0.0 -2.8 0.2 -4.3 0.3             

BAWW 0.1 0.2 -79.3 6.5 11.1 4.6 0.1 0.0 -2.8 0.2 -4.4 0.3 -0.8 1.4 -1.8 1.1         

BAWW -0.1 0.1 -72.3 5.3 14.2 3.9   -2.5 0.2 -4.0 0.3             

Grunt 1.4 0.1 -17.5 4.4 -2.3 3.6 0.1 0.0 -1.3 0.2 -2.4 0.2     -26.4 6.2 8.1 5.9 -39.7 8.3 -4.3 6.4 

Grunt 1.4 0.1 -17.1 4.8 -1.8 4.0 0.1 0.0 -1.3 0.2 -2.4 0.2 0.1 0.5 0.2 0.6 -26.6 6.1 8.0 5.9 -39.9 8.4 -4.3 6.3 

Grunt 1.9 0.1 -40.4 2.6 6.5 2.1 0.1 0.0 -1.8 0.2 -2.6 0.2             

Grunt 1.9 0.1 -41.8 2.9 6.9 2.6 0.1 0.0 -1.8 0.2 -2.6 0.2 -0.5 0.6 0.1 0.7         

Grunt 1.1 0.1 -15.6 3.5 -1.6 3.1   -1.2 0.1 -2.3 0.2     -27.0 5.4 6.7 5.4 -41.5 7.8 -4.7 6.0 

Grunt 1.5 0.1 -37.1 2.3 7.0 2.0   -1.5 0.1 -2.3 0.2             

LCSP -0.6 0.2 -66.1 7.7 -5.8 7.9 0.2 0.1 -3.2 1.0 -7.5 6.1 4.9 3.5 0.7 1.9 -56.2 37.7 -8.8 19.4 -113.5 213.5 9.5 75.4 

LCSP -0.7 0.2 -71.2 7.4 -4.5 8.0 0.1 0.0 -3.2 1.0 -7.3 5.9     -55.0 37.4 -9.6 19.2 -102.8 207.6 12.6 73.5 

LCSP -0.8 0.2 -69.4 7.3 -5.3 7.5   -3.1 1.0 -7.6 6.2     -58.0 37.8 -8.9 19.2 -120.8 216.7 7.2 76.4 

LCSP -0.3 0.2 -74.1 6.8 12.1 4.8 0.1 0.1 -2.3 0.2 -3.9 0.3 3.3 2.9 -0.4 1.6         

LCSP -0.3 0.2 -77.7 6.4 13.5 4.6 0.1 0.0 -2.3 0.2 -3.9 0.3             

LCSP -0.5 0.2 -75.3 6.1 13.8 4.5   -2.2 0.2 -3.7 0.3             



 Intercept DistϮ Dist2 Mic‡ 42 dB§ 50 dB| Dist:Mic Dist2:Mic Dist: 42 dB Dist2: 42 dB Dist: 50dB Dist2: 50 dB 

Call β SE Β SE β SE β SE β SE β SE β SE β SE β SE β SE β SE β SE 

NESP 1.2 0.2 -25.5 6.4 2.1 4.9 0.1 0.0 -2.4 0.3 -7.3 1.8 1.7 0.8 -0.2 0.8 -42.9 11.2 -7.5 8.6 -167.5 68.8 -38.7 28.7 

NESP 1.3 0.2 -31.7 6.8 5.0 5.1 0.1 0.0 -2.5 0.3 -7.1 1.8     -38.9 11.5 -9.2 8.7 -156.1 67.9 -37.4 28.5 

NESP 1.9 0.1 -56.1 3.5 17.4 2.5 0.1 0.0 -2.6 0.2 -4.2 0.3             

NESP 1.9 0.1 -54.5 3.7 15.9 2.8 0.1 0.0 -2.6 0.2 -4.2 0.3 0.9 0.8 -0.7 0.8         

NESP 0.9 0.1 -25.6 4.5 2.8 3.9   -2.3 0.3 -7.2 1.9     -44.9 10.3 -7.1 8.1 -172.5 69.9 -39.6 29.0 

NESP 1.4 0.1 -49.9 3.1 17.5 2.4   -2.2 0.2 -3.7 0.2             

OVEN 1.8 0.1 -37.1 2.5 7.1 2.1 0.0 0.0 -1.6 0.1 -2.4 0.2             

OVEN 1.6 0.3 -26.8 9.9 5.5 6.3 0.0 0.0 -1.2 0.3 -2.2 0.3     -19.1 11.2 5.9 8.2 -11.0 10.7 -3.7 7.3 

OVEN 1.8 0.1 -35.7 2.7 6.9 2.4 0.0 0.0 -1.6 0.1 -2.4 0.2 0.7 0.6 0.0 0.7         

OVEN 1.5 0.2 -23.1 9.7 4.5 6.3 0.0 0.0 -1.2 0.3 -2.1 0.3 0.7 0.5 0.2 0.7 -20.9 10.7 6.7 8.0 -13.5 10.3 -2.4 7.2 

OVEN 1.5 0.3 -27.8 10.3 6.8 6.6   -1.2 0.3 -2.2 0.3     -17.2 11.5 3.9 8.3 -10.1 11.1 -4.9 7.5 

OVEN 1.7 0.1 -36.9 2.4 7.5 2.1   -1.5 0.1 -2.3 0.2             

PBGR 1.9 0.1 -40.3 2.6 4.6 2.1 0.1 0.0 -1.7 0.2 -2.6 0.2             

PBGR 1.5 0.2 -22.4 7.2 -2.6 5.0 0.0 0.0 -1.3 0.2 -2.2 0.2     -21.5 8.4 5.9 6.9 -20.4 8.6 4.8 6.4 

PBGR 1.9 0.1 -41.0 2.9 5.4 2.6 0.1 0.0 -1.7 0.2 -2.6 0.2 -0.3 0.5 0.4 0.7         

PBGR 1.5 0.2 -22.1 7.1 -1.7 5.0 0.1 0.0 -1.3 0.2 -2.2 0.2 0.0 0.5 0.5 0.6 -21.7 7.9 5.9 6.6 -20.6 8.2 4.8 6.2 

PBGR 1.3 0.1 -20.0 5.2 -2.8 4.0   -1.2 0.2 -2.1 0.2     -22.7 6.7 5.5 6.0 -22.8 7.0 5.2 5.7 

PBGR 1.7 0.1 -38.5 2.4 5.1 2.0   -1.6 0.1 -2.4 0.2             

Perweep 1.0 0.1 -25.4 1.8 5.1 1.7 0.1 0.0 -0.5 0.1 -1.2 0.1             

Perweep 1.1 0.1 -28.5 5.4 11.2 4.4 0.1 0.0 -0.6 0.1 -1.3 0.2     5.7 6.0 -11.4 5.1 -0.6 6.2 -5.9 5.3 

Perweep 1.0 0.1 -26.3 2.1 5.5 2.1 0.1 0.0 -0.5 0.1 -1.2 0.1 -0.4 0.5 0.2 0.6         

Perweep 1.1 0.1 -29.9 5.7 11.9 4.5 0.1 0.0 -0.7 0.2 -1.3 0.2 -0.4 0.5 0.1 0.5 6.3 6.1 -11.7 5.2 0.0 6.4 -6.2 5.4 

Perweep 0.8 0.1 -24.2 4.3 9.4 3.7   -0.5 0.1 -1.2 0.1     1.9 5.0 -9.4 4.6 -4.6 5.3 -3.9 4.8 

Perweep 0.8 0.1 -24.4 1.7 5.2 1.7   -0.5 0.1 -1.1 0.1             

SEWR 0.5 0.1 -42.6 4.9 6.2 4.8 0.1 0.0 -3.1 0.5 -8.6 4.3     -52.3 21.3 -13.8 12.4 -174.2 153.0 -26.8 56.5 

SEWR 0.5 0.1 -40.3 5.3 4.4 5.0 0.1 0.0 -3.1 0.5 -9.0 4.4 1.3 1.2 -0.7 0.9 -55.0 21.7 -14.7 12.6 -191.6 156.7 -33.3 57.4 

SEWR 0.9 0.1 -58.7 3.8 18.8 2.9 0.1 0.0 -2.6 0.2 -4.0 0.3             



 Intercept DistϮ Dist2 Mic‡ 42 dB§ 50 dB| Dist:Mic Dist2:Mic Dist: 42 dB Dist2: 42 dB Dist: 50dB Dist2: 50 dB 

Call β SE Β SE β SE β SE β SE β SE β SE β SE β SE β SE β SE β SE 

SEWR 0.9 0.1 -57.6 4.1 17.1 3.1 0.1 0.0 -2.6 0.2 -4.0 0.3 0.8 1.1 -1.1 0.9         

SEWR 0.2 0.1 -37.6 3.9 3.8 4.1   -3.0 0.5 -9.2 4.5     -57.7 21.1 -11.3 12.1 -208.0 161.1 -35.8 58.8 

SEWR 0.4 0.1 -53.3 3.4 18.4 2.7   -2.2 0.2 -3.6 0.3             

Tickit 2.1 0.1 -36.4 2.7 6.9 2.5 0.0 0.0 -2.1 0.2 -2.7 0.2 0.9 0.5 0.8 0.7         

Tickit 2.0 0.1 -38.2 2.5 5.5 2.1 0.0 0.0 -2.1 0.2 -2.6 0.2             

Tickit 2.7 1.0 -61.4 34.0 21.7 15.9 0.0 0.0 -2.8 1.0 -3.4 1.0 0.9 0.5 0.8 0.7 25.6 34.1 -14.0 16.4 21.1 34.2 -19.3 16.4 

Tickit 2.9 1.0 -69.1 34.4 22.7 16.0 0.0 0.0 -2.9 1.0 -3.6 1.0     31.6 34.6 -16.2 16.5 27.2 34.7 -21.8 16.5 

Tickit 1.9 0.1 -38.2 2.4 5.9 2.1   -2.0 0.2 -2.6 0.2             

Tickit 2.9 1.0 -74.5 33.9 25.9 15.8   -3.0 1.0 -3.6 1.0     37.1 34.1 -19.3 16.3 32.6 34.2 -24.8 16.3 

Whinny 1.4 0.2 -19.2 6.2 2.3 4.6 0.0 0.0 -1.3 0.2 -2.0 0.2     -8.8 6.9 3.8 5.6 -20.0 7.5 -3.7 5.9 

Whinny 1.7 0.1 -29.9 2.1 5.6 1.8 0.1 0.0 -1.5 0.1 -2.1 0.1             

Whinny 1.4 0.2 -18.9 6.2 3.5 4.7 0.0 0.0 -1.3 0.2 -2.0 0.2 0.1 0.5 0.5 0.6 -9.1 6.7 3.6 5.4 -20.2 7.4 -4.0 5.8 

Whinny 1.7 0.1 -30.3 2.3 6.5 2.2 0.1 0.0 -1.5 0.1 -2.1 0.1 -0.2 0.5 0.4 0.6         

Whinny 1.2 0.1 -17.2 4.9 2.0 3.9   -1.2 0.1 -1.9 0.2     -10.5 5.7 4.3 5.0 -22.0 6.5 -3.1 5.4 

Whinny 1.5 0.1 -28.9 2.0 6.0 1.8   -1.4 0.1 -2.0 0.1             

YERA 0.8 0.1 -30.0 4.5 2.3 4.1 0.1 0.0 -1.9 0.2 -6.1 1.8 2.0 1.0 0.7 0.8 -18.3 7.5 3.9 6.4 -121.6 66.2 -17.2 27.7 

YERA 0.8 0.1 -34.3 4.6 2.7 4.2 0.1 0.0 -1.9 0.2 -6.0 1.7     -16.2 7.7 3.1 6.5 -117.1 65.4 -17.3 27.5 

YERA 1.1 0.1 -49.2 3.1 14.0 2.4 0.1 0.0 -2.1 0.2 -3.4 0.2             

YERA 1.1 0.1 -47.0 3.3 14.3 2.6 0.1 0.0 -2.1 0.2 -3.4 0.2 1.3 0.9 0.4 0.8         

YERA 0.5 0.1 -30.4 3.5 1.0 3.5   -1.8 0.2 -6.1 1.8     -20.1 7.1 5.1 6.1 -130.1 68.2 -19.2 28.2 

YERA 0.7 0.1 -45.4 2.8 13.9 2.3   -1.9 0.2 -3.1 0.2             

Ϯ Distance (m) between call broadcast and microphone  

‡ Microphone sensitivity loss (dB) relative to manufacture specifications 

§ 42 dB of experimentally added noise reaching the microphone 

| 50 dB of experimentally added noise reaching the microphone 
 



Appendix 4. Selected binomial regression model of each species demonstrating differences in 

detection probabilities for each of the three noise treatments (32dB, 42dB, and 50dB) and for 

5dBV increments of microphone sensitivity loss. 

Figure A4.1 Detection probabilities of a) Black-and-white Warbler and b) Le Conte’s Sparrow 

for five levels of microphone sensitivity loss and under three noise conditions based on selected 

binomial regression model. The dotted horizontal line indicates where detection is 0.5.

 



Figure A4.2. Detection probabilities of a) Nelson’s Sparrow and b) Sedge Wren for five levels of 

microphone sensitivity loss and under three noise conditions based on selected binomial 

regression model. The dotted horizontal line indicates where detection is 0.5.

 

 



Figure A4.3. Detection probabilities of a) Yellow Rail and b) Ovenbird for five levels of 

microphone sensitivity loss and under three noise conditions based on selected binomial 

regression model. The dotted horizontal line indicates where detection is 0.5.

 

 



Figure A4.4. Detection probabilities of a) Sora per-weep calls and b) Sora whinny calls for five 

levels of microphone sensitivity loss and under three noise conditions based on selected binomial 

regression model. The dotted horizontal line indicates where detection is 0.5.

 

 



Figure A4.5. Detection probabilities of a) Virginia Rail grunt calls and b) Viginia Rail tick-it 

calls for five levels of microphone sensitivity loss and under three noise conditions based on 

selected binomial regression model. The dotted horizontal line indicates where detection is 0.5.

 

 



Figure A4.6. Detection probabilities of a) American Bittern and b) Pied-billed Grebe calls for 

five levels of microphone sensitivity loss and under three noise conditions based on selected 

binomial regression model. The dotted horizontal line indicates where detection is 0.5.

 



Appendix 5. Summary of the effects of microphone sensitivity loss on the effective detection area (ha) of each call type for different noise 

treatments.  

Table A5.1. Effective detection area (ha) of the four call types that did not exceed our experimental range for varying degrees of microphone 

sensitivity loss and under ambient noise conditions (32 dBA). 

dBV Loss LCSP BAWW SEWR YERA NESP TICKIT GRUNT PERWEEP WHINNY OVEN AMBI PBGR 

0 4.8 5.7 8.6 13.0 - - - - - - - - 

1 4.7 5.5 8.0 11.4 - - - - - - - - 

2 4.6 5.3 7.4 10.2 - - - - - - - - 

3 4.4 5.2 6.9 9.3 - - - - - - - - 

4 4.3 5.0 6.4 8.5 - - - - - - - - 

5 4.2 4.8 5.9 7.8 - - - - - - - - 

6 4.0 4.6 5.4 7.2 - - - - - - - - 

7 3.9 4.4 5.0 6.7 - - - - - - - - 

8 3.8 4.3 4.6 6.3 - - - - - - - - 

9 3.6 4.1 4.3 5.9 - - - - - - - - 

10 3.5 3.9 3.9 5.5 - - - - - - - - 

11 3.4 3.8 3.6 5.2 - - - - - - - - 

12 3.3 3.6 3.3 4.9 - - - - - - - - 

13 3.1 3.4 3.0 4.6 - - - - - - - - 

14 3.0 3.3 2.7 4.3 - - - - - - - - 

15 2.9 3.2 2.5 4.1 - - - - - - - - 

16 2.8 3.0 2.2 3.9 - - - - - - - - 

17 2.7 2.9 2.0 3.7 - - - - - - - - 

18 2.6 2.7 1.8 3.5 - - - - - - - - 

19 2.5 2.6 1.6 3.3 - - - - - - - - 

20 2.3 2.5 1.4 3.1 - - - - - - - - 



Table A5.2. Effective detection area (ha) of 12 call types for varying degrees of microphone sensitivity loss under 42 dBA noise conditions. 

dBV Loss LCSP BAWW SEWR YERA NESP TICKIT GRUNT PERWEEP WHINNY OVEN AMBI PBGR 

0 1.4 1.5 1.9 2.5 3.4 5.8 6.4 7.3 7.5 7.6 11.0 12.3 

1 1.4 1.4 1.8 2.3 3.2 5.7 6.1 7.0 7.1 7.4 9.1 11.1 

2 1.3 1.3 1.6 2.2 3.1 5.7 5.9 6.7 6.7 7.2 7.7 10.0 

3 1.3 1.3 1.5 2.1 2.9 5.6 5.6 6.4 6.3 6.9 6.6 9.1 

4 1.2 1.2 1.4 2.0 2.8 5.5 5.4 6.1 6.0 6.7 5.6 8.3 

5 1.2 1.1 1.3 1.9 2.7 5.5 5.1 5.9 5.7 6.5 4.8 7.5 

6 1.1 1.0 1.1 1.8 2.6 5.4 4.9 5.6 5.4 6.3 4.2 6.9 

7 1.1 1.0 1.0 1.7 2.5 5.4 4.7 5.4 5.1 6.1 3.6 6.3 

8 1.0 0.9 0.9 1.6 2.4 5.3 4.5 5.1 4.8 5.9 3.2 5.7 

9 1.0 0.8 0.8 1.5 2.3 5.2 4.3 4.9 4.6 5.7 2.8 5.2 

10 0.9 0.8 0.7 1.4 2.2 5.2 4.1 4.6 4.3 5.5 2.4 4.7 

11 0.9 0.7 0.6 1.3 2.1 5.1 3.9 4.4 4.1 5.4 2.1 4.3 

12 0.8 0.6 0.6 1.2 2.0 5.1 3.7 4.2 3.9 5.2 1.8 3.9 

13 0.8 0.6 0.5 1.2 2.0 5.1 3.5 4.0 3.7 5.0 1.6 3.5 

14 0.7 0.5 0.4 1.1 1.9 5.0 3.3 3.8 3.5 4.9 1.4 3.2 

15 0.7 0.5 0.3 1.0 1.8 5.0 3.2 3.6 3.3 4.7 1.2 2.8 

16 0.7 0.4 0.3 1.0 1.8 4.9 3.0 3.4 3.1 4.5 1.0 2.6 

17 0.6 0.4 0.2 0.9 1.7 4.9 2.9 3.2 2.9 4.4 0.9 2.3 

18 0.6 0.3 0.2 0.8 1.7 4.8 2.7 3.0 2.7 4.2 0.8 2.0 

19 0.5 0.3 0.1 0.8 1.6 4.8 2.6 2.9 2.6 4.1 0.6 1.8 

20 0.5 0.2 0.1 0.7 1.6 4.8 2.4 2.7 2.4 4.0 0.5 1.6 

 

 

 



Table A5.3. Effective detection area (ha) of 12 call types for varying degrees of microphone sensitivity loss under 50 dBA noise conditions. 

dBV Loss LCSP BAWW SEWR YERA NESP TICKIT GRUNT PERWEEP WHINNY OVEN AMBI PBGR 

0 0.4 0.4 0.6 0.9 1.1 3.5 3.7 3.5 4.5 3.5 8.9 5.1 

1 0.4 0.4 0.6 0.8 1.1 3.5 3.5 3.3 4.3 3.4 7.4 4.7 

2 0.4 0.4 0.5 0.8 1.1 3.5 3.4 3.1 4.1 3.3 6.2 4.2 

3 0.4 0.4 0.5 0.8 1.1 3.4 3.2 2.9 3.9 3.2 5.3 3.8 

4 0.3 0.4 0.5 0.7 1.0 3.4 3.0 2.8 3.7 3.0 4.5 3.5 

5 0.3 0.3 0.4 0.7 1.0 3.4 2.9 2.6 3.5 2.9 3.9 3.1 

6 0.3 0.3 0.4 0.7 1.0 3.4 2.7 2.5 3.3 2.8 3.3 2.8 

7 0.3 0.3 0.4 0.6 1.0 3.3 2.6 2.3 3.2 2.7 2.9 2.5 

8 0.3 0.3 0.3 0.6 1.0 3.3 2.4 2.2 3.0 2.6 2.5 2.3 

9 0.3 0.3 0.3 0.6 0.9 3.3 2.3 2.0 2.8 2.5 2.2 2.0 

10 0.3 0.3 0.3 0.5 0.9 3.3 2.1 1.9 2.7 2.4 1.9 1.8 

11 0.3 0.3 0.2 0.5 0.9 3.2 2.0 1.8 2.5 2.3 1.6 1.6 

12 0.3 0.2 0.2 0.5 0.9 3.2 1.8 1.7 2.4 2.2 1.4 1.4 

13 0.2 0.2 0.2 0.5 0.9 3.2 1.7 1.6 2.2 2.2 1.2 1.2 

14 0.2 0.2 0.2 0.4 0.8 3.2 1.6 1.4 2.1 2.1 1.0 1.0 

15 0.2 0.2 0.1 0.4 0.8 3.1 1.4 1.3 1.9 2.0 0.9 0.9 

16 0.2 0.2 0.1 0.4 0.8 3.1 1.3 1.2 1.8 1.9 0.7 0.8 

17 0.2 0.2 0.1 0.3 0.8 3.1 1.2 1.1 1.7 1.8 0.6 0.6 

18 0.2 0.2 0.1 0.3 0.8 3.1 1.1 1.1 1.5 1.8 0.5 0.5 

19 0.2 0.2 0.1 0.3 0.8 3.0 1.0 1.0 1.4 1.7 0.4 0.4 

20 0.2 0.2 0.1 0.3 0.8 3.0 0.9 0.9 1.3 1.6 0.4 0.3 

 

 

 



Table A5.4. Percent effective detection area loss of the four call types that did not exceed our experimental range and for varying degrees of 

microphone sensitivity loss under ambient noise conditions (32 dBA). 

dBV Loss LCSP BAWW SEWR YERA NESP TICKIT GRUNT PERWEEP WHINNY OVEN AMBI PBGR 

1 3 4 7 12 - - - - - - - - 

2 6 7 14 21 - - - - - - - - 

3 9 10 20 29 - - - - - - - - 

4 11 14 26 35 - - - - - - - - 

5 14 17 32 40 - - - - - - - - 

6 17 20 37 44 - - - - - - - - 

7 20 23 42 48 - - - - - - - - 

8 22 26 46 52 - - - - - - - - 

9 25 29 51 55 - - - - - - - - 

10 28 32 55 58 - - - - - - - - 

11 30 35 58 60 - - - - - - - - 

12 33 37 62 62 - - - - - - - - 

13 35 40 65 65 - - - - - - - - 

14 38 43 68 67 - - - - - - - - 

15 40 45 71 68 - - - - - - - - 

16 42 48 74 70 - - - - - - - - 

17 45 50 77 72 - - - - - - - - 

18 47 52 79 73 - - - - - - - - 

19 49 55 81 75 - - - - - - - - 

20 51 57 83 76 - - - - - - - - 

 

 

 



Table A5.5. Percent effective detection area loss of 12 call types for varying degrees of microphone sensitivity loss under 42 dBA noise 

conditions. 

dBV Loss LCSP BAWW SEWR YERA NESP TICKIT GRUNT PERWEEP WHINNY OVEN AMBI PBGR 

1 4 6 7 6 5 1 4 4 5 3 17 10 

2 8 11 14 11 9 3 8 8 10 6 30 18 

3 11 16 21 16 14 4 12 12 15 9 40 26 

4 15 22 27 20 17 5 16 16 19 12 49 32 

5 19 27 33 25 21 6 20 20 24 15 56 39 

6 22 32 40 29 24 7 23 24 28 17 62 44 

7 26 37 45 33 28 8 27 27 32 20 67 49 

8 29 41 51 37 31 9 30 31 35 23 71 54 

9 33 46 56 40 33 10 33 34 39 25 75 58 

10 36 50 61 44 36 11 36 37 42 27 78 62 

11 39 55 66 47 38 12 39 40 45 30 81 65 

12 42 59 71 50 40 13 42 43 48 32 84 68 

13 46 63 75 53 43 13 45 46 51 34 86 71 

14 49 67 79 56 45 14 48 49 54 36 88 74 

15 52 70 82 59 46 15 50 51 56 38 89 77 

16 55 74 86 61 48 16 53 54 59 40 91 79 

17 57 77 89 64 50 16 55 56 61 42 92 81 

18 60 80 91 66 51 17 58 59 63 44 93 83 

19 63 83 94 69 53 18 60 61 66 46 94 85 

20 66 86 96 71 54 18 62 63 68 48 95 87 

 

 

 



Table A5.6. Percent effective detection area loss of 12 call types for varying degrees of microphone sensitivity loss under 50 dBA noise 

conditions. 

dBV Loss LCSP BAWW SEWR YERA NESP TICKIT GRUNT PERWEEP WHINNY OVEN AMBI PBGR 

1 3 4 7 4 2 1 5 5 4 3 17 9 

2 7 8 13 8 5 2 9 10 9 7 30 18 

3 10 11 19 12 7 2 14 15 13 10 40 25 

4 14 15 25 16 9 3 18 20 17 13 49 32 

5 17 18 31 20 11 4 22 25 21 16 56 39 

6 20 22 36 24 13 5 27 29 25 19 62 45 

7 23 25 42 28 15 5 31 33 29 22 67 51 

8 26 28 47 31 17 6 35 37 33 25 72 56 

9 29 32 52 35 19 7 39 41 37 28 76 61 

10 32 35 56 38 21 7 43 45 40 31 79 65 

11 35 38 61 42 22 8 47 49 44 33 82 69 

12 38 40 65 45 24 9 51 52 47 36 84 73 

13 40 43 69 49 25 9 54 55 51 39 87 77 

14 43 46 73 52 27 10 58 58 54 41 89 80 

15 46 49 77 55 28 11 61 61 57 43 90 83 

16 48 51 80 58 30 12 65 64 60 46 92 85 

17 51 54 83 61 31 12 68 67 63 48 93 88 

18 53 56 86 64 32 13 71 70 66 50 94 90 

19 55 59 89 67 33 14 74 72 68 52 95 92 

20 58 61 91 70 34 14 77 75 71 54 96   93 

             

             

 



Appendix 6. Sound recording (.WAV) of a Pied-billed Grebe call made with an ARU equipped with a microphone experiencing
sensitivity loss and severe static.

Please click here to download file ‘appendix6.wav’.

http://www.ace-eco.org/958/appendix6.wav
http://www.ace-eco.org/958/appendix6.wav


Avian Conservation and Ecology 12(1): 9
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Appendix 7. Sound recording (.WAV) of a Pied-billed Grebe call made with an ARU equipped with a microphone showing no signs
of static.

Please click here to download file ‘appendix7.wav’.

http://www.ace-eco.org/vol12/iss1/art9/
http://www.ace-eco.org/958/appendix7.wav
http://www.ace-eco.org/958/appendix7.wav
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