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ABSTRACT. Automated recording units are increasingly being used to sample wildlife populations. These devices can produce large
amounts of data that are difficult to process manually. However, the information in the recordings can be summarized with
semiautomated sound recognition software. Our objective was to assess the utility of the semiautomated bird song recognizers to
produce data useful for conservation and sustainable forest management applications. We compared detection data generated from
expert-interpreted recordings of bird songs collected with automated recording units and data derived from a semiautomated recognition
process. We recorded bird songs at 109 sites in boreal forest in 2013 and 2014 using automated recording units. We developed bird-song
recognizers for 10 species using Song Scope software (Wildlife Acoustics) and each recognizer was used to scan a set of recordings that
was also interpreted manually by an expert in birdsong identification. We used occupancy models to estimate the detection probability
associated with each method. Based on these detection probability estimates we produced cumulative detection probability curves. In
a second analysis we estimated detection probability of bird song recognizers using multiple 10-minute recordings for a single station
and visit (35–63, 10-minute recordings in each of four one-week periods). Results show that the detection probability of most species
from single 10-min recordings is substantially higher using expert-interpreted bird song recordings than using the song recognizer
software. However, our results also indicate that detection probabilities for song recognizers can be significantly improved by using
more than a single 10-minute recording, which can be easily done with little additional cost with the automate procedure. Based on
these results we suggest that automated recording units and song recognizer software can be valuable tools to estimate detection
probability and occupancy of boreal forest birds, when sampling for sufficiently long periods.

Comparaison de la reconnaissance semi-automatisée de chants d'oiseaux avec des détections
manuelles d'échantillons de chants d'oiseaux enregistrés
RÉSUMÉ. Les unités d'enregistrement automatisé sont de plus en plus utilisées pour échantillonner les populations fauniques. Ces
instruments peuvent produire une grande quantité de données qui s'avèrent difficiles à traiter manuellement. Toutefois, les informations
contenues sur les enregistrements peuvent être résumées à l'aide de logiciels de reconnaissance vocale semi-automatisée. L'objectif  de
notre étude était d'évaluer l'utilité des reconnaisseurs de chants d'oiseaux semi-automatisés pour produire des données utiles à la
conservation et à l'application de mesures d'aménagement forestier durable. Nous avons comparé les données de détection générées par
les experts ayant écouté les enregistrements de chants d'oiseaux collectés au moyen d'unités d'enregistrement automatisé avec les données
obtenues au moyen d'un processus de reconnaissance semi-automatisée. Nous avons enregistré des chants d'oiseaux à 109 sites en forêt
boréale en 2013 et 2014 à l'aide d'unités d'enregistrement automatisé. Nous avons élaboré des reconnaisseurs de chants pour 10 espèces
grâce au logiciel Song Scope (Wildlife Acoustics) et chaque reconnaisseur a été utilisé pour balayer un jeu d'enregistrements qui avait
aussi été écouté par un expert en identification de chants d'oiseaux. Nous avons utilisé des modèles d'occupation pour estimer la
probabilité de détection associée avec chaque méthode. À partir de ces estimations de probabilité de détection, nous avons produit des
courbes de probabilité cumulée de détection. Ensuite, nous avons estimé la probabilité de détection des reconnaisseurs de chants au
moyen d'enregistrements multiples de 10 minutes pour une unique station et visite (35 à 63 enregistrements de 10 minutes dans chacune
de quatre périodes d'une semaine). Nos résultats indiquent que la probabilité de détection de la plupart des espèces dans les
enregistrements de 10 minutes est beaucoup plus élevée lorsque les enregistrements sont écoutés par un expert comparativement à
l'utilisation d'un logiciel de reconnaissance de chants. Cependant, nos résultats montrent aussi que la probabilité de détection par les
reconnaisseurs de chants peut être améliorée si on utilise davantage qu'un seul enregistrement de 10 minutes, ce qui peut aisément être
fait, à faible coût, grâce au processus automatisé. À la lumière de ces résultats, nous pensons que les unités d'enregistrement automatisé
et les logiciels de reconnaissance de chants peuvent être des outils utiles afin d'estimer la probabilité de détection et l'occurrence des
oiseaux forestiers boréaux si l'on échantillonne durant des périodes suffisamment longues.
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INTRODUCTION
Forest birds are effective indicators of forest ecological integrity
and sustainable forest management. They are highly diverse and
have the capacity to capture ecosystem processes, their occurrence
can be measured effectively with standardized methods, their
identification is relatively easy for skilled observers, and the rich
information on their life history makes the interpretation of
patterns more robust (Venier and Pearce 2004). Songbirds are
most often sampled using point-count surveys (Rosenstock et al.
2002), where an observer records all birds heard or seen at a station
for a specified period of time (Ralph et al. 1995). Automated
recording units (ARUs) have been suggested, assessed, and
implemented as a means of conducting surveys of birds and
amphibians (Acevedo and Villanueva-Rivera 2006, Swiston and
Mennill 2009, Goyette et al. 2011, Venier et al. 2012, Holmes et
al. 2014, Sidie-Slettedahl et al. 2015, Leach et al. 2016).
Comparisons of recordings with field observations have varied in
their approaches and have reached different conclusions. For
instance, Hutto and Stutzman (2009) concluded that automated
recording units do not provide a cost-effective alternative to field
point counts because they fail to observe a large proportion of
the detections recorded by human observers in the field and are
more expensive and time consuming to use. In contrast, several
other studies argued that the value of automated recording units
depends on their implementation and study objectives and that
they can be both cost effective and effective at observing birds
because of their ability to collect more data than field observers
(Haselmayer and Quinn 2000, Hobson et al. 2002, Acevedo and
Villanueva-Rivera 2006, Celis-Murillo et al. 2009, Venier et al.
2012).  

ARUs offer many advantages. For instance, these devices can be
left in the field unattended for long periods of time, they
accumulate data that can be assessed repetitively or by multiple
experts if  necessary, and they do not require sending trained
observers in the field during the bird breeding season (Hobson et
al. 2002, Rempel et al. 2005). Recordings can be interpreted by
one or a few experienced observers during the off-season reducing
observer effect (Venier et al. 2012). In addition to increasing the
sampling effort at each point, automated recording units can be
deployed at any time of day, regardless of weather, and record
simultaneously at a suite of sites. The deployment and retrieval
of recorders can occur outside of the breeding season, making
field work more flexible (Venier et al. 2012). Automatic recording
units can generate massive amounts of recordings that would not
be possible to obtain from point count surveys conducted by
observers. This can improve potential detectability at a site, as
well as improve estimates of detectability that can reduce bias in
occupancy estimates (MacKenzie and Royle 2005, Bailey et al.
2007), but also incurs additional postprocessing costs associated
with interpreting additional or longer recordings.  

An alternative to having trained observers interpret recordings is
to scan the recorded data using automated recognition software.
Automated recognition of bird songs is currently a very active
area of research (Kogan and Margoliash 1998, Briggs et al. 2012,
Potamitis et al. 2014, de Oliveira et al. 2015, Katz et al. 2016).
This research has been translated into practical, easy to use, song
recognition tools such as Song Scope (Wildlife Acoustics Inc.,

Concord, MA, USA; I. Agranat, 2009, unpublished manuscript,
https://wildlifeacoustics.com/images/documentation/Automatically-
Identifying-Animal-Species-from-their-Vocalizations.pdf), Raven
(Cornell Laboratory of Ornithology; Charif  et al. 2006), or
monitoR (Katz et al. 2016). In this study, we employed Song Scope
software that features an algorithm based on Hidden Markov
Models (HMM) devised to evaluate spectral and temporal
features of individual syllables as well as how syllables are
structured to form complex songs (Kogan and Margoliash 1998,
Somervuo et al. 2006). Users can develop and validate automated
recognizers for species of interest and apply them to generate lists
of “suspected” positive identifications that can be subjected to
postprocessing review. The review process does not require the
same level of expertise as a complete audio interpretation of a
recording of multiple species. Potamitis et al. (2014) found that
an automatic species recognition approach could reduce the
search time for an observer by up to 98%, but that the current
recognition algorithms still produce many false positives and false
negatives requiring postprocessing of the data (Wimmer et al.
2013).  

Song Scope recognizers have been developed and tested by
Wildlife Acoustics in an unpublished study where 37% of the
target vocalizations were detected on new test data, with at least
one vocalization detected on 74% of all target recordings with a
false positive rate of 0.4% ( I. Agranat, 2009, unpublished
manuscript). Additional recognizers developed through Song
Scope have been used in several published studies to identify bird
species in recordings (Holmes et al. 2014, Zwart et al. 2014), and
have been found to be particularly useful for detecting rare species
from many hours of recordings (Holmes et al. 2014, Zwart et al.
2014). However, there is currently insufficient published data to
fully evaluate the utility of the Song Scope recognizers.  

In this paper, we compare the detection probability for a suite of
10 selected forest songbirds typically occurring in boreal forest
habitats, between manually interpreted recordings and those
processed using automated recognizers built using Song Scope
software (Wildlife Acoustics, Maynard, MA). We hypothesized
that (1) trained observers listening to 10-min recordings would
have a greater ability to detect bird species than automated
recognizers applied to the same 10-min recordings, but that (2)
using multiple 10-minute recordings, i.e., using a week-long
sample of recorded data, would increase the autorecognizer
detection probability for a given species to a level equal or greater
than that achieved by experts listening to 10-min recordings. In
addition, we estimated the cumulative detection probability to
provide recommendations for when song recognizers could have
greater utility relative to manual interpretation.  

We used single-season site occupancy models to estimate the
influence of the method (manual versus song recognizer) and site
characteristics on the detection probability of each species for
each period at each station (MacKenzie et al. 2002, 2006, Furnas
and Callas 2015). We included a small suite of site characteristics
in the model to account for potential heterogeneity in occupancy
to meet the assumption that heterogeneity in occupancy is
appropriately modeled with covariates. We chose variables that
have been found to predict bird habitat use in boreal forests
(Venier et al. 2005, 2007).
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METHODS

Study area
The study was conducted within the Hearst Sustainable Forest
Licence (Hearst SFL), which is an area of the boreal forest in
northern Ontario of approximately 1.2 M ha size, centered at 49°
36'N and 83°39'W (Fig. 1). Our sampling focused on the north
and central portions of the forest, which are dominated by flat
clay and silty clay soils and predominantly lowland black spruce
(Picea mariana Mill. B.S.P.) stands (Fig. 1). Black spruce is also
the dominant tree species across the entire Hearst SFL, occupying
approximately 67% of the overall forest by area. Such sites are
typically characterized by moderately deep (20–40 cm) to deep (>
40 cm) organic soils over clays, with relatively poor drainage and
low productivity. Nearly pure stands of black spruce compose
approximately 34% of the forest land base or as mixtures with
other conifers including larch (Larix laricina (Du Roi) K. Koch)
and cedar (Thuja occidentalis L.), and less frequently with
intolerant hardwood species including trembling aspen (Populus
tremuloides Michx.) and balsam poplar (Populus balsamifera L.).

Fig. 1. Location of sampling sites where automated recording
units were deployed to detect forest bird species in 2013 and
2014 at 108 stations in Hearst Forest Sustainable Forest
License, Ontario, Canada.

We randomly selected 109 spruce-dominated lowland stands.
These stands spanned across gradients of age and vertical
structural composition (Fig. 1) based on the following criteria:

(a) ≥= 50% black spruce in the overstory, (b) ≥ 10 ha in area, and
(c) within 2 km of a secondary or tertiary forest road where access
to the stand was not blocked by a feature such as a river or large
swamp. Potential sampling sites were identified based on spatial
analysis of available forest inventory data, road and water layers
provided by Hearst Forest Management Inc. on an ArcGIS
platform (ArcMap 9.3, ESRI 2008). Some potential sites were
rejected or moved as plots were being established because of
unforeseen issues with stand access including roads being flooded
by beaver activity or culverts being washed out during spring
runoff events. Overall, we sampled 74 stands in 2013 and 35
different stands in 2014. A single bird sampling station was
positioned in each stand at least 150 m from the edge of the stand
with a minimum of 350 m between stations in any one year. Using
georeferenced forest inventory data, we measured the
proportional cover of black spruce within a 100 m radius circle
around each sampling point. We used airborne Light Detection
and Ranging (LiDAR) data with an average sampling density of
1.1 returns/m² that were acquired between 4 July and 4 September
2007 (Table 1) to capture metrics of vegetation structure (Table
2; see Pitt et al. 2014 for LiDAR sampling details). Airborne
LiDAR data across the entire study area were subdivided into a
400-m² (20 m × 20 m) grid. Height distribution statistics for the
point-clouds in each grid cell were then calculated using all
returns, without any height threshold to filter point data. We
identified five vegetation structure metrics to include in our
models as shown in Table 2.

Table 1. Light Detection and Ranging (LiDAR) acquisition
specifications for the Hearst Forest.
 

Parameter Description

Sensor Leica ALS50
Platform Cessna 310

Pulse Rate 119,000 Hz
Scan Rate 32 Hz

Field of view 30°
Flying height 2400 m
Track spacing 1000 m

Overlap 20%
Vertical accuracy < 30 cm

Return density 1.1/m²

Table 2. Light Detection and Ranging (LiDAR) metrics used to
characterize forest vertical structure within sample plots (100 m
radius circles) in each of 109 lowland black spruce stands.
 
Variable Description

P90 Ninth decile (M) of vegetation returns-index of
stand age

P90_SD Index of canopy height heterogeneity
Veg.less4m The number of vegetative returns in the < 4 m level
Veg.great4m The number of vegetative returns in the > 4m level
Veg.less2m The number of vegetative returns in the < 2m level

Collecting bird recording data
Automated recording units (SM2; Wildlife Acoustics, Inc.,
Concord, MA) were placed at each sampling station. Recording
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units were set to sample at 24000Hz in stereo using the wav format.
The gain was set to factory defaults. In 2013, recorders were
programmed to record for 10 minutes during five periods each
day: half  an hour before sunrise, at sunrise, as well as 30 min, 1.5
h, and 3.5 h following sunrise. The recorders collected 50 minutes
of data per day for 29 or 30 days from 5 June to 3 or 4 July 2013
(Table 3). This sums to approximately 24 h of data per site or 1896
h of recorded data across all 74 sites sampled in 2013. In 2014, a
total of 90 min were captured daily at each site with the same
schedule as 2013 plus additional 10-min recordings: 1 h, 2 h, 2.5
h, and 3 h following sunrise. Recordings in 2014 started on 11
June and continued to 13 or 14 July for a total of approximately
47 hours per site and 1645 hours of recorded data across all 35
sites sampled in that year (Table 3). We chose 10-minute recording
times as recommended by Howe et al. (1997). The timing of the
recordings was chosen based on our knowledge of singing
frequency and in an attempt to capture the span of time when the
vast majority of singing takes place during the day. Recordings
were made in the breeding season for forest passerines in our study
area. We waited until June to sample to reduce the influence of
nonterritorial birds on the observations. We conducted
comparisons between manual and semiautomated detection for
10 bird species representing a range of common and rarer species
typical of boreal forest bird communities.

Table 3. Sampling periods considered for the analysis of recording
data collected from automated recording units deployed at 109
stations in Hearst Forest Sustainable Forest Licence, Ontario,
Canada.
 
Data set Year Visit 1 Visit 2 Visit 3 Visit 4

2013 5 June 14 June 24 June 2 July
2014 12 June 18 June 25 June 2 July

 

Single 10-minute
recordings

2013 5-11 June 12-18 June 19-25 June 26 June-2 July
2014 12-18 June 19-25 June 26 June-3 July 4-14 July

 

Recordings
pooled across
week

Building song recognizer
Each species recognizer was built separately using a suite of high
quality training recordings without background noise such as
rain, cars, or other birds. Song recognizers were parameterized in
a process guided by the Song Scope documentation (Wildlife
Acoustics Inc.), but also included a substantial amount of trial
and error using both cross-training statistics and results from
scanning of test data. Our protocol for building recognizers, the
parameter settings for each recognizer, the cross-validation
statistics for final models, the minimum score and quality settings
for running recognizers and the source of cross training data are
presented in Appendix 1. Song Scope Recognition (SSR) files
were created and used within the Wildlife Acoustics Song Scope
Software to recognize individual species songs (Appendix 2). See
Appendix 1 for a description of the development and use of SSR
files, the source data for training recognizers, the parameter
settings for our song recognizers, and performance estimates..

Comparing manual vs song recognizer on
single 10 minute recordings
We chose a single 10-minute recording taken half  an hour after
sunrise for each of four dates within the breeding season of each

bird species. These four recordings at each station were processed
using the manual and song recognizer approaches (Table 3). Thus,
four recordings for each of 109 stations (436 recordings) were
interpreted manually and scanned using a song recognizer. Dates
were chosen to be evenly spaced throughout the breeding season.
Recordings that contained excessive noise from wind or rain that
obscured the audio signal were substituted by those from the next
or previous day.  

Manual interpretation of the recordings consisted of viewing and
listening to all 10 minutes of each recording using spectrogram
software (Song Scope, Wildlife Acoustics, Inc., Concord, MA),
and noting each unique species heard or seen on the spectrogram.
Only the first observation within the 10-minute recording of each
species was noted. This process produced a single datum
(detection or nondetection) for each of four separate days for each
station and each species. Recordings were interpreted by one of
two technicians very experienced in conducting auditory bird
surveys. Both technicians have more than five years of experience
conducting bird surveys and interpreting recordings in a
professional capacity. They both found that using the
spectrograms in conjunction with listening improved their ability
to detect species.  

The song recognizer processing of the recordings consisted of
scanning each of the same four recordings per station used on the
manual detection (four recordings on four separate days), with a
song-recognizer built by one of the authors (AR) for each of the
10 species (Table 4). Song recognizer scanning of all 436
recordings (109 stations x 4 recordings = 4360 minutes) was
conducted overnight in a batch scan for a single species at a time.
This scanning process creates a results file of potential positives
for the target species that includes the identity of the source data,
i.e., which recording the hit came from, and links it to the location
of the hit. This location on the recording must then be validated
by a technician by listening to the audio signal and visually
examining the spectrogram signal. This is a relatively simple
recognition task that does not require expert level song
recognition and takes only a few seconds per hit. The hits are
examined sequentially and as soon as a true positive is validated
then the bird is noted as present and the postprocessing is
stopped.  

In this study, we were interested in the ability of the recognizer to
identify the presence of the target bird on each 10-min recording.
Each recognizer was built separately using a suite of high quality
recordings of the species of interest and specifications for the
recognizer are adjusted to optimize the cross-validation statistics
(see Appendix 1 for more details). The song recognizer processing
yielded a single datum consisting of a detection or nondetection
for each of the 10 bird species, for each of four recordings at each
sampling station.

Song recognizer performance with multiple
recordings pooled across week
One of the biggest advantages of song recognition software is the
low cost incurred with scanning additional recordings. To
quantify the gain in information from using multiple recordings,
we used our recognizers to scan the complete recordings from the
breeding season at each station in each year. This included five
10-min recordings each day in 2013 and nine 10-min recordings
each day in 2014. We divided the recordings into four (week long)
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Table 4. Species list with number of detections in recordings out of 436 and in stations out of 109 for each of (1) manual detection in
single 10-minute recordings, (2) song recognition in single 10-minute recordings, and (3) song recognition in each pooled week of 10-
minute recordings. Values in parentheses represent the number of occupied stations based on four recordings.
 
Species Code Species Common Name Species Latin Name Number of recordings

(stations)† with manual
detections: based on

single
10 min recording

Number of recordings
(stations)

with recognizer
detections: based on

single
10 min recording

Number of weeks
(stations) with recognizer
detections: based on 35

to 63 ten minute
recordings

BBWA Bay-breasted Warbler Setophaga castanea 22 (14) 18 (11) 84 (36)
BRCR Brown Creeper Certhia americana 19 (15) 6 (6) 70 (39)
GCKI Golden-crowned Kinglet Regulus satrapa 161 (68) 84 (49) 262 (78)
HETH Hermit Thrush Catharus guttatus 230 (95) 86 (55) 302 (96)
LISP Lincoln’s Sparrow Melospiza lincolnii 42 (17) 33 (14) 48 (16)
MOWA Mourning Warbler Geothlypis philadelphia 34 (17) 18 (9) 18 (7)
NOWA Northern Waterthrush Parkesia noveboracensis 32 (16) 13 (7) 33 (15)
RCKI Ruby-crowned Kinglet Regulus calendula 244 (95) 119 (68) 296 (93)
SWTH Swainson's Thrush Catharus ustulatus 164 (79) 33 (28) 187 (74)
YBFL Yellow-bellied Flycatcher Empidonax flaviventris 186 (81) 95 (52) 237 (85)
†Four recordings per station.

time windows matching the four dates that were used for the
individual scans of 10-min recordings in the previous section
(Table 3). These week-long sampling periods included either 35
or 63 10-minute recordings depending on year. For each time
window and station, the multiple recordings were scanned and
then postprocessed to validate “hits” or positives as described in
the previous section. This yielded the detection data (a single
presence or absence) for each of four time windows, 109 stations,
and 10 species. We conducted a graphical comparison of these
detection probabilities to the manual detection probabilities of
10-minute recordings.

Statistical analyses
Data sets
We created two data sets for analysis. The first consisted in
combining the detection data from the manual and song
recognizer processing of 10-min recordings into detection
histories for each station. Thus, each station had two observations
(one for manual, one for song recognizer) for each visit
(recording). The second data set consisted solely of the multiple
recordings pooled across each of four weeks. In both cases, the
data are in a format amenable to site occupancy analysis.

Comparison on individual 10-minute recordings
We used single-species, single-season site occupancy models
(MacKenzie et al. 2002, 2006) to estimate the influence of the
method and five site characteristics on the detection probability
and occupancy of each species for each period at each station.
This model type uses detection data to estimate parameters on
the probabilities of detection and occupancy. The main
assumptions of the model include the following: (1) the occupancy
state remains static between the first and last visit (no extinctions
or colonizations during the study), (2) the heterogeneity in
detection probability and occupancy is appropriately modeled
with covariates, (3) detections at a given station and visit are
independent, and (4) there are no false positives (species
misidentification). We are confident that model assumptions were

met because we collected the data during the breeding season of
the species, we used covariates to model heterogeneity, and an
experienced technician postprocessed the detection data to
remove false-positives. Each of the 10 species was analyzed
separately.  

We used a model selection and multimodel inference framework
to assess the influence of different covariates on detection
probability as well as occupancy of a given species (Burnham and
Anderson 2002, Mazerolle 2006). We included the effect of site
characteristics on occupancy to account for potential
heterogeneity in occupancy to meet model assumptions, although
we do not examine the occupancy results in this paper. We
conducted two series of analyses. The first involved a comparison
of the detections from the single 10-minute recordings (four 10-
min recordings on each of four separate days for each station)
using the manual and semiautomated approaches. To do so, we
tested eight hypotheses on the detection probability involving the
method, the visit, the vegetation structure, and the stand age
(Table 5). We tested three hypotheses on the occupancy
probability involving the effects of the proportion of black spruce
cover, the vegetation structure, as well as the stand age and canopy
height heterogeneity (Table 6). We built models for each scenario
on detection probability and occupancy, yielding a total of 24
candidate models. We computed model-averaged predictions
based on the observed explanatory variables.

Cumulative detection probabilities from individual 10
minute recording data
We calculated cumulative detection probability estimates for each
species. The first four estimates (1–4 visits) were computed using
our data and models. The later estimates (> four visits) were
computed using average detection probabilities from the first four
visits; we computed the cumulative detection probability of
detecting a given species for different scenarios of the number of
visits using the equation, 1 - (1 - p)t, where p is the probability of
detecting the species conditional on its presence at a station during
a single visit, and t is the number of visits.

http://www.ace-eco.org/vol12/iss2/art2/
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Table 5. Biological hypotheses tested on detection probability (p)
and occupancy (ψ) of forest birds from the detection data
obtained from four 10-min recordings in 2013 and 2014 at 109
stations in Hearst Forest Sustainable Forest License, Ontario,
Canada.
 
Parameter

Model structure Biological hypothesis

Detection probability
p(.) constant detection probability
p(Method) detection probability is greater with the

manual method than the
semiautomated method

p(Year + Visit) detection probability varies with year
and visit

p(Year + Visit + Method) detection probability varies with year,
visit, and method

p(Method + Veg.less2m) detection probability varies with
method and decreases with increasing
vegetation structure below 2 m
(additive effects)

p(Method + Veg.less2m + Method:
Veg.less2m)

detection probability of a method
depends on vegetation structure below
2 m (interactive effects of method and
vegetation structure below 2 m)

p(Method + Stand.age) detection probability varies with
method and stand age (additive effects)

p(Method + Stand.age + Method:
Stand.age)

detection probability of a given
method depends on stand age
(interactive effects of stand age and
method)

Occupancy
ψ(Spruce.cover) occupancy probability varies with

spruce cover in the stand
ψ(Veg.less4m + Veg.great4m) occupancy probability varies with

vegetation structure below 4 m and
above 4 m

ψ(Stand.age + Canopy.diversity) occupancy probability varies with
stand age and canopy diversity

Song recognizer performance with multiple
recordings pooled across week
The second analysis focused exclusively on the semiautomated
approach and involved the detections obtained from the data
spanning each week (based on 35 to 63, 10-min recordings for
each of four time periods for each station). Here, we tested four
hypotheses on detection probability involving vegetation
structure and stand age, as well as three hypotheses on the
probability of occupancy identical to the ones for the first analysis
(Table 6). We did not consider the “method” variable in this second
exercise because only data from the song recognizers were used
for this part. We considered a total of 12 candidate models in the
second analysis.

Modeling protocols for both data sets
We standardized all numerical variables before entering them in
models. We checked the correlations between variables and never
included variables with (|r| > 0.7) in the same model. Models were
fit with maximum likelihood estimation in the unmarked package
for R 3.3.0 (Fiske and Chandler 2011, R Core Team 2016). Model
selection and multimodel inference based on the second-order
Akaike information criterion (AICc) was implemented with the
AICcmodavg package (Mazerolle 2016). The ratio of

Table 6. Biological hypotheses tested on detection probability (p)
and occupancy (ψ) of forest birds from the detection data
obtained from recordings spanning each of the four weeks in 2013
and 2014 at 108 stations in Hearst Forest Sustainable Forest
Licence, Ontario, Canada.
 
Parameter

Model structure Biological hypothesis

Detection probability
p(.) constant detection probability
p(Year + Visit) detection probability varies with year

and visit
p(Veg.less2m) detection probability decreases with

increasing vegetation structure below 2
m

p(Stand.age) detection probability varies with stand
age

Occupancy
ψ(Spruce.cover) occupancy probability varies with

spruce cover in the stand
ψ(Veg.less4m + Veg.great4m) occupancy probability varies with

vegetation structure below 4 m and
above 4 m

ψ(Stand.age + Canopy.diversity) occupancy probability varies with stand
age and canopy diversity

observations to the number of estimated parameters was < 40
therefore we used the small sample AIC (aka AICc; Burnham and
Anderson 2002).  

We checked the fit of the top-ranking model for each species with
the MacKenzie and Bailey (2004) goodness of fit test with 10,000
iterations. When there was evidence for overdispersion (i.e., c-hat
> 1), we used the QAICc for our inferences and adjusted the
standard errors by multiplying with the square-root of the
overdispersion estimate.

RESULTS

Comparison on individual 10-minute
recordings
Based on the 10-min recordings with manual detection, the 10
species that we evaluated were detected at between 13% (14/109)
and 87% (95/109) of the stations (Table 4). Detection patterns
agreed between 67 and 99% of the 436 survey periods, between
the manual method on 10-min recordings and of the song
recognizer on the 10-min recordings, depending on the species
(Table 7). The manual detection method often detected the species
when the recognizer (on the 10-minute recording) did not, but the
converse, i.e., the recognizer detecting the species when the manual
method did not, was not common (Table 7). Overall agreement
between methods was strongly influenced by instances of no-
detection using either method. This represents an important
indicator of the postprocessing effectiveness, however, because
false positives are relatively common using recognizers and
postprocessing appears to be effective in distinguishing between
false and true positives. Without consideration of the 0-0 case,
detection patterns agreed between 19 and 82% of the time between
the manual method on 10-min recordings and of the song
recognizer on the 10-min recordings (Table 7).  

http://www.ace-eco.org/vol12/iss2/art2/


Avian Conservation and Ecology 12(2): 2
http://www.ace-eco.org/vol12/iss2/art2/

Table 7. Summary of detection (1) and nondetection (0) patterns for two comparisons. The first compares manually interpreted 10-
minute recordings against 10-minute recordings processed by a recognizer. The second comparison contrasts manually interpreted 10-
minute recordings against week-long compiled recordings (between 350 and 630 10-minute recordings). In all three methods (10-minute
manual, 10-minute recognizer, and week-long recognizer) we have 436 observations of presence or absence. (0-0 = true negatives for both
methods, 0-1 = false negative with manual approach and true positive for recognizer, 1-0 = true positive for manual approach and false
negative for recognizer, 1-1 = true positive for both methods). As a measure of agreement between methods, we calculated accuracy and
sensitivity. Accuracy was computed as the number of true positives and true negatives (0-0 or 1-1) divided by the total number of
observations (109 sites x 4 visits = 436), whereas sensitivity was estimated as the number of true positives (1-1) divided by the number
of true positives (1-1) and false negatives (0-1). See Table 4 for species codes.
 
Species Manual 10 min vs Recognizer 10 min Manual 10 min vs Recognizer

(35-63 10-min recordings)

0-0 0-1 1-0 1-1 Agreement
(accuracy)

Agreement
(sensitivity)

0-0 0-1 1-0 1-1 Agreement
(accuracy)

Agreement
(sensitivity)

BBWA 414 0 4 18 0.99 0.82 349 65 3 19 0.84 0.22
BRCR 416 1 14 5 0.97 0.25 357 60 9 10 0.84 0.13
GCKI 274 1 78 83 0.82 0.51 160 115 14 147 0.70 0.53
HETH 206 0 144 86 0.67 0.37 91 115 43 187 0.64 0.54
LISP 393 1 10 32 0.97 0.74 379 15 9 33 0.94 0.58
MOWA 402 0 16 18 0.96 0.53 397 5 21 13 0.94 0.38
NOWA 405 0 18 13 0.96 0.42 390 15 13 18 0.94 0.39
RCKI 188 4 129 115 0.69 0.46 103 89 37 207 0.71 0.62
SWTH 271 1 132 32 0.69 0.19 190 82 59 105 0.68 0.43
YBFL 248 2 93 93 0.78 0.49 158 92 41 145 0.69 0.52

The analysis (single season site occupancy models) of the single
10-min recordings, (one recording collected on each of four
separate visits) suggested adequate model fit for all 10 species with
little to no overdispersion (Appendix 3). For every species except
BBWA (Bay-breasted Warbler, Setophaga castanea), the detection
probability component of the top-ranked model included the
effect of method (manual vs recognizer), either alone or with the
additive effects of stand age, year, visit, or vegetation structure <
4 m (Appendix 3). For all species except BBWA and MOWA
(Mourning Warbler, Geothlypis philadelphia), the manual
detection method had a greater detection probability than the
semiautomated approach alone (comparing solid shapes within
species in Fig. 2, Table 8). Detection probability also varied with
stand age and visit for certain species (Fig. 3, Table 8).

Cumulative detection probabilities from
individual 10-minute recording data
Based on the cumulative detection probability of 10-min
recordings, as an example, for Bay-breasted warbler, as few as five
10-min recordings processed with the song recognizer yielded a
90% chance of detecting the species at least once (Fig. 4). In
contrast, semiautomated processing of at least 26 10-minute
recordings of MOWA are required to yield comparable
cumulative detection probabilities to manually processing four
10-minute recordings. At least five species were predicted to
require six or more visits to reach an 80% detection probability
with song recognizers. With the manual approach using 10-min
recordings, most species are predicted to reach a 90% chance of
being detected after only five visits (based on the equation 1-(1-
p)t to predict cumulative detection probabilities) and all but three
species is predicted to need no more than three visits to reach an
80% detection probability.

Fig. 2. Detection probability of forest birds based on single 10-
min recordings and multiple recordings pooled within each week
collected with automated recording units in 2013 and 2014 at 109
stations in Hearst Forest Sustainable Forest License, Ontario,
Canada. Solid symbols indicate detection probability based on a
single 10-minute recording (triangles represent manual detection
and squares represent automated song recognition). Open
symbols indicate estimated detection probability for multiple
recordings pooled into four separate weeks. These symbols
represent detection probability based on 35 to 63 10-minute
recordings). Error bars represent 95% confidence intervals. See
Table 4 for species codes.

Song recognizer performance with multiple
recordings pooled across week
Based on the pooled weekly data species were detected at between
6% (7/109) and 88% (96/109) of the stations (Table 4). Detection
patterns agreed between 64 and 94% of the time (Table 7). The
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Table 8. Summary of detection (1) and nondetection (0) patterns by species comparing manual 10-minute approach (a single recoding) to
each of recognizer 10-minute approach (a single recording) and recognizer week-long approach (between 35 and 63 10-minute recordings).
(0-0 = not detected with either method, 0-1 = not detected with manual approach but detected with recognizer, 1-0 = detected with manual
approach but not detected with recognizer, 1-1 = detected with both methods). See Table 4 for species codes.
 
Species Manual 10 min vs Recognizer 10 min Manual 10 min vs Recognizer

(35-63 10-min recordings)

0-0 0-1 1-0 1-1 0-0 0-1 1-0 1-1

BBWA 414 0 4 18 349 65 3 19
BRCR 416 1 14 5 357 60 9 10
GCKI 274 1 78 83 160 115 14 147
HETH 206 0 144 86 91 115 43 187
LISP 393 1 10 32 379 15 9 33
MOWA 402 0 16 18 397 5 21 13
NOWA 405 0 18 13 390 15 13 18
RCKI 188 4 129 115 103 89 37 207
SWTH 271 1 132 32 190 82 59 105
YBFL 248 2 93 93 158 92 41 145

Fig. 3. Effect of stand characteristics on detection probability of
forest birds based on 10-min recordings collected with automated
recording units in 2013 and 2014 at 109 stations in Hearst Forest
Sustainable Forest License, Ontario, Canada. See Table 4 for
species codes.

Fig. 4. Cumulative probability of detecting the species at least
once with a given number of visits computed from model-
averaged estimates of detection probability for the automatic
song recognizer and manual methods. The first four cumulative
detection estimates were computed using the estimates for each
visit based on the data and models (solid line). The later visits
(dotted line) were computed using the equation 1-(1-p)^t, where p
was the average detection probability derived from for the first
four visits. Although we processed 350 to 630 minutes of
recordings using the automated recognizers, we could not use this
data to build cumulative detection past 4 visits because the
recorded sample was processed as a single long recording rather
than individual 10-minute recordings. Each species name appears
next to its curve. See Table 4 for species codes.
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recognizer detection on pooled weekly data often detected the
species when the manual interpretation on the 10-minute
recording did not indicate true positives for the recognizer
approach and false negatives for the manual approach, but the
converse was much less frequent (Table 7). In a classic confusion
matrix, one observation is considered truth and the other is
observed. In our case, we assume that if  the species is observed
by either method then it is actually present. Either method can
miss species so we do not assume that one is more correct than
the other. Thus a 0-1 case is a false negative for the first approach
and a true positive for the second approach. A 1-0 case is a true
positive for the first approach and a false negative for the second
approach. Agreement between methods in this comparison
(manual on 10-minute recording vs recognizer on week-long
recording) was generally lower, mostly because of improved
detection rates of the song recognizer method when more
recorded data are used.  

For the recording data pooled for the week exclusively based on
the song recognizer technique, we found substantial lack of fit of
the models for GCKI (Golden-crowned Kinglet, Regulus satrapa,
Х² = 60.533, P < 0.0001), HETH (Hermit Thrush, Catharus
guttatus, Х² = 54.526, P < 0.0001), RCKI (Ruby-crowned Kinglet,
Regulus calendula, Х² = 119.13, P = 0.0001), and YBFL, Yellow-
bellied Flycatcher, Empidonax flaviventris, Х² = 82.67, P < 0.0001).
Thus, we excluded these species from subsequent analysis. Among
the six species remaining for analysis, there was considerable
model selection uncertainty regarding the variables included on
detection probability and occupancy of forest birds, revealing
weak or no effects (Appendix 4). We found evidence of a negative
effect of stand age on detection probability of MOWA (model-
averaged shrinkage estimate: -4.24, 95% CI: -7.24, -1.23). We
found a similar but weaker effect of stand age on LISP (Lincoln’s
Sparrow, Melospiza lincolnii, model-averaged shrinkage
estimate: -2.79, 95% CI: -5.92, 0.33). Based on visual inspection
of Figure 2, the detection probability of most species was slightly
higher with data pooled within each week, than that using the
manual approach based on the single 10-minute recording.

DISCUSSION
Our first hypothesis was that the manual approach has higher
detection probabilities than the song recognizer approach for the
same 10-minute recordings. The results provide no evidence to
reject the hypothesis. The manual detection approach had a
greater detection probability than the song recognizer for six out
of 10 species investigated. These results indicate that for an
equivalent sampling time, i.e., a 10-minute recording), song
recognizers are inferior to an experienced human interpreter. This
result is not surprising because there has been some skepticism
about the ability of these algorithms to consistently recognize
songs of individual species as effectively as a human observer
(Swiston and Mennill 2009, Goyette et al. 2011; personal
observation).  

Creating a generalized song recognition algorithm for real-world
field conditions is a complex task. Our recordings included
singing and calling from multiple individuals and species, with
overlapping songs, and background noise including other
nonavian species, wind, rain, and traffic. Thus, the signal-to-noise
ratio in the data in some cases could be weak. To deal with these
issues, the Song Scope algorithms preprocess the recorded data

to reduce the effects of noise (I. Agranat, 2009, unpublished
manuscript). Also, songs from individuals within species can be
quite variable. As a result, the algorithm must be flexible enough
to recognize individuals that did not form part of the training set.
We have found that the trade-off  with flexibility is the generation
of false positives, whereby individuals from other species are
misclassified as the target species. Our song recognition approach
accepts high levels of false positives in the interest of generating
fewer false negatives. Our postprocessing protocol effectively
removes the false positives with limited cost in time and effort.
Because of the requirement of post-processing, we term this
approach semiautomated.  

Our results highlight that the effectiveness, i.e., detection
probability, of the song recognizers varies among different species.
Song recognizer detectability for the 10-minute recordings ranged
from less than 0.1 for BRCR (Brown Creeper, Certhia americana)
to as high as 0.5 for BBWA. Narrow-band whistled vocalizations,
lacking any distinctive spectral features, are expected to be
difficult to identify, whereas broadband vocalizations with
complex spectral properties should be easier. Longer
vocalizations are also expected to be more easily recognized
because of their greater information content. There is, however,
also a lot of variability in the manual detection probabilities,
where detectability ranges from 0.2 to 0.7. Investigators should
estimate detection probability explicitly whenever detection
probability of any method is lower than 1 (Mazerolle et al. 2007,
Williams et al. 2002). This is a strong argument for the use of
sampling protocols that can estimate detectability (repeated
measures) and yield useful estimates of resource use, occupancy,
or species richness, such as protocols using automated recording
units.  

The comparison of 10-min recordings quantifies the gap in
detectability between the two methods. Manual detection is much
better than song recognition when based on a 10-minute
recording. However, this is not the most relevant comparison
because although 10-minute counts are regularly used to assess
bird presence and abundance (Ralph et al. 1995, Howe et al. 1997,
Venier and Pearce 2005, 2007), recording and automated
recognition protocols would be unlikely to use a single 10-minute
recording to assess the presence of a species at a site (e.g., Holmes
et al. 2014). One of the most significant advantages of the
recording and automated song recognition approach is the ability
to collect and process large amounts of recorded data at a site
with very little additional cost compared to collecting and
processing a single 10-minute sample. Although computer
processing time is directly related to the amount of recorded data
being used, the semiautomated song recognizer approach greatly
reduces the time required for a technician to review the recordings
for suspected detections and remove false positives. A better
comparison would have been to interpret all of the recorded data
and compare that to the song recognizer interpretations from the
same data although we did not have the resources to make that
comparison. As an alternative, we developed our second
hypothesis that compared single 10-minute recordings using
manual interpretation with multiple 10-minute recordings using
song recognition software.  

Our second hypothesis was that increasing the length of the
recording (in this case to 350 to 630 minutes over seven days)
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increases the detection probability of the species by the song
recognition software to equal or surpass that from the 10-min
recordings processed by trained listeners. The data for four species
yielded models that lacked fit and were removed from analysis.
Of the remaining six species, three had higher detection
probability using recognizers on multiple recordings from entire
weeks (BRCR, NOWA [Northern Waterthrush, Parkesia
noveboracensis], SWTH [Swainson’s Thrush, Catharus ustulatus])
than the manual detection on single 10-min recordings. In
contrast, LISP, BBWA, and MOWA detection probability did not
improve using additional recording time. For some species,
pooling recordings within each week greatly improved the
detection probability of the song recognizers to similar or greater
levels as the manual method from a single 10-minute recording.  

We found that using recognizers on more recorded data provides
much higher detection probabilities than using recognizers on a
single 10-minute recording and often produced similar or higher
detection probabilities than the manual technique. Other studies
have found that increasing survey time, which is strength of
(automated) recorded data, can produce more detections than
using data acquired in the field by technicians (Venier et al. 2012,
Klingbeil and Willig 2015). There are many advantages to using
a recording protocol rather than field observations, especially the
ability to collect much more auditory data (Venier et al. 2012),
but it provides less information on abundance. Using automated
recognizers provides only presence/absence data, while manual
detection may allow for some minimal abundance data to be
collected. Once a decision has been made to use recorded data,
however, the use of automated processing over manual detection
allows the processing of orders of magnitude more recorded data
in the same time frame.  

Four species were excluded from the analysis of the week-long
recording data. Although being detected at a large number of sites
(72%–88%), these species yielded overdispersed detection data,
as c-hat estimates were much larger than 4. The lack of fit was
mainly due to an underrepresentation of certain detection
histories relative to those expected under the model, namely those
with three detections across four visits (0111, 1011, 1101, 1110).
This lack of fit could stem from heterogeneity in detection
probabilities or occupancy not explained by the variables at hand.
As with any statistical technique, this also highlights the
importance of assessing model fit for each species before making
inferences instead of applying the technique to every species
without discernment.  

Comparisons of manual detection vs automated recognition
approaches are relatively rare (Swiston and Mennill 2009, Goyette
et al. 2011, Towsey et al. 2012, Stowell and Plumbley 2014). When
comparisons are made based on a paired approach where the same
recording is analyzed by the different methods, the manual
interpretation is consistently better and usually used as the
benchmark against which automated identification is measured
(Goyette et al. 2011, Towsey et al. 2012; our data). At an even
finer scale, comparisons are sometimes made at the level of
individual songs (Goyette et al. 2011). This may be important if
one is interested in measuring something like song rate or other
song metrics, i.e., where correctly identifying individual songs is
the goal (Swiston and Mennill 2009). At this point in the
technology development, however, it is not possible to

consistently recognize all songs of a target species. In a study of
nocturnal tropical birds, Goyette et al. (2011) found sensitivity
(the proportion of known calls of target species identified by
recognizers) ranging from 0.17 to 0.79 and a positive predictive
value (the proportion of detected sounds that corresponded to
target species) ranging from 0.39 to 0.60.  

Song recognizers can perform effectively when the objective is to
identify the presence of a species at a site based on a minimum
amount of recorded data. Based on our results, we can conclude
that 10 minutes is not enough but 350–630 minutes is probably
more than enough. The cost of using a song recognizer on multiple
recordings is minimally more than for a single recording. Thus,
the reduced detection probability of the recognizers compared to
the manual method can be offset by the capacity of the recognizers
to deal with more data relatively quickly. In addition, where the
goal is to identify rare species, it will be advantageous to be able
to sample much longer than what can be reasonably accomplished
with manual detection (Swiston and Mennill 2009, Holmes et al.
2014). The lower detection probability for the automatic
recognizer can be mostly offset by sampling fewer than 30
recordings (300 minutes) for even the poorest recognizers that we
examined.  

We expect that the ecology of species will influence their
detectability. We observed large differences in detectability by
species ranging from less than 10% to 70% for a single 10-minute
count. There are a number of ecological factors that are expected
to influence detectability including differences in habitat
preferences, habitat use, abundance, song behavior, and song
phenology (McShea and Rappole 1997, Alldredge et al. 2007,
Royle and Nichols 2003). The cumulative detection probability
curves suggest that differences in detection probability are greater
for the automated recognizer method than the manual detection
method, but that increasing the amount of recorded data can
greatly reduce differences between methods. But our primary
interest in estimating detection probability here is to compare
methods with the assumption that increasing probability of
detection increases the quality of our data.  

Based on our experience, the time required for the technician to
postprocess (check for false positives and confirm the true
positives) for 1400–2520 (35–63 recordings x 10 minutes x 4 visits)
minutes of recordings per station per species ranges from around
1 minute/site when detection probability for the species is high to
20 minutes when the species is not detected at the site. Rare or
absent species take longer to process because the technician is
required to review all of the false positives in the results files. In
contrast, common species appear early in the results file and the
postprocessing can stop after confirmation of the technician of
the first detection. The average human processing time is 5.7
minutes/species/station for the 1400–2520 minutes of recordings.
Manual interpretation of 40 minutes of recordings to assess the
entire community takes about 1 hour per station. The time to
assess 10 species semiautomatically is approximately equivalent
to the time taken for the manual approach to assess the entire
community.  

The time needed to process recorded data with recognizers is
largely affected by the number of species considered. If  the goal
is to monitor all species in the community, then recognizers will
probably not be an efficient choice because many forest bird
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communities have more than 40 species. On the other end of the
spectrum, conservation work focused on a single species will be
quicker to implement with recognizers. (Swiston and Mennill
2009, Holmes et al. 2014, Zwart et al. 2014). Rare or individual
species detection is clearly a very effective use of recognizers
because it allows the sampling of much more recorded time that
increases the probability of detection necessary for uncommon
species. In between these two approaches is the potential use of
recognizers to monitor a suite of indicator species that may
provide enough community information necessary to assess
sustainability or ecological integrity. Some studies have suggested
an indicator framework to select such a suite of species that could
act as a bioassay to evaluate the sustainability of forest
management (Venier and Pearce 2004, Rempel 2007). For this
purpose, Rempel (2007) proposed a suite of 13 songbirds
capturing a broad range of habitat conditions to represent the
boreal songbird community in Ontario. For this type of
application, song recognizers may be a more efficient approach
for acquiring data. Another relevant factor is the lack of expert
interpreters to process the data manually. Some organizations
including Canadian national parks have a requirement to monitor
ecological integrity, but do not necessarily have qualified staff  to
complete interpretations of recordings. Recognizers could
provide an alternative that requires much less expertise and the
additional benefits of an approach to scan for species at risk, and
archived acoustic data.

CONCLUSIONS
Based on our results, we suggest that recording and automated
recognition methods can be useful tools for generating occupancy
and detectability information for forest bird communities. Using
song recognizers on recorded data from a sufficient number of
surveys, we can achieve detection probabilities similar to listening
to recordings manually, i.e., manual detection. In addition, song
recognizers offer several advantages over manual detection
including the ability to process large amounts of recorded data
relatively quickly, less stringent requirements for technical
expertise to identify songs, and potentially a reduction in
variability among observers. However, one significant pitfall is
the additional time required to process multiple species. We
suggest that the use of song recognizers is sensible when individual
or small suites of species are being considered, when larger
quantities of recorded data are feasible to collect, and particularly
when bird identification expertise is limited. In contrast, where
knowledge of full community diversity is a requirement, we
suggest that manual interpretation by an expert remains the most
efficient and accurate method of assessing avian bioacoustics data
acquired by automated recording devices. Next steps should
include the manual interpretation of more individual recording
to develop an understanding how standard error of occupancy
estimates are related to increasing sampling times.  

Alternative algorithms have been developed and tested for the
automated recognition of bird songs from continuous recordings
(Kogan and Margoliash 1998, Acevedo et al. 2009, Katz et al.
2016) and it is likely that there will be continued progress on the
development of new and improved algorithms over time,
including multispecies approaches (Briggs et al. 2012). However,
results from our study suggest that current algorithms are effective
for many existing applications when sufficient recording data is

assessed, and can, in broad context, enhance our collective ability
to achieve both conservation and sustainable forest management
goals when used appropriately.

Responses to this article can be read online at: 
http://www.ace-eco.org/issues/responses.php/1029
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Appendix 1 Protocols, parameters and cross validation for song recognizers. 

 

Each species recognizer was built separately using a suite of high quality training recordings 

(clean recordings with little background noise including rain, cars, other birds etc.). Song 

recognizers were parameterized in a process guided by the Song Scope documentation (Wildlife 

Acoustics Inc.), but also included a substantial amount of trial and error using both cross-training 

statistics and results from scanning of test data. Training recordings were downloaded from 

online digital libraries of audio recordings; Borror Library of Bioacoustics  

http://blb.osu.edu/database) as the primary source, and xeno-canto (http://www.xeno-canto.org/) 

as a secondary source) in MP3 format (see Table A1 on source data below).  MP3s were 

converted into .wav files using free online software (Freemake Audio Converter; freemake.com). 

Target species songs were annotated in the digital file and uploaded into a new recognizer in 

Song Scope. Songs were inspected in the spectrogram window using log frequency scale with 

normalized power levels. The resolution of the time scale was altered to optimize the view of 

individual syllables (uninterrupted segment of song) in the song. Uncharacteristic songs were 

excluded from the training data.  

 

Parameter values for each song recognizer model are found in Table A2; Parameter Values 

below. The maximum complexity was set to the default setting of 32 because we found that the 

results were not sensitive to this parameter. Maximum resolution should also reflect complexity 

of the song such that higher resolution is needed to model more complex song. Overfitting with a 

resolution that is too high will result in highly specific recognizers that generate higher levels of 

false negatives, whereas a resolution that is too low will result in higher levels of false positives. 

Sampling rate is set to reflect the frequency of the song of the target species. The default is 

16000 Hz which is sufficient for most species but too low for the BBWA and GCKI that sing at 

8,000 to 10,000 Hz. The sampling rate is split between 2 channels (stereo) so a bird that sings at 

10,000Hz requires a sampling rate of at least 20,000 Hz. Larger FFT (fast Fourier transform) 

sizes will show more frequency resolution at the expense of detail on the time axis.  For 

example, songs with rapid variation in frequency require smaller FFT values to optimize 

temporal resolution. In practice, we used trial and error to set FFT values to optimize 

recognizers. We set minimum frequency and frequency range to limit the window of frequencies 

to those specific to individual species. We set the background filter to 1 second as recommended 

by the software documentation to reduce background noise. Maximum syllable size, maximum 

inter syllable gaps and max song length (in milliseconds), were initially estimated from 

inspection of the spectrogram of the training data and adjusted to optimize cross-training and test 

scan results. Dynamic range adjusts the sensitivity of the recognizer to the signal to noise ratio. A 

larger dynamic range value is used when signal to noise ratio was low.  

 

When running test data, each ‘hit’ is assigned a score and quality value which act as sensitivity 

filters. Score and quality values were examined from the test data results. Normally the lowest 

score and quality values are associated with false positives so a minimum score and  minimum 

quality criterion is set to filter the results. This has the effect of filtering our many false positives. 

The minimum score and quality settings used for each recognizer run are found in Table A3: 



Score and Quality table below. During the model development phase, the training data are used 

to generate cross-validation statistics (Table A3). These values are then used to assess the model 

fit while the parameters are adjusted. When the technician feels that the cross validation cannot 

be improved, the recognizer is tested against a test recording that has been manually interpreted 

and that includes multiple species and background noise. A second round of parameter 

adjustments are then made to maximize the agreement between the recognizer results and the 

know bird songs.  

 

  



Table A1.1: Source of training data for song recognizers. 

 

 

Species Recordings from Borror Recordings from xeno-

canto 

# of individual songs 

BBWA 3402, 4641, 6364, 17527 XC133258, XC137479 28 

BRCR 14773,84786,100884, 119458, 

133327 

 16 

GCKI 17541 XC144683, XC161131, 

XC168196,XC189416 

12 

HETH 3671, 3673, 3675, 3691  12 

LISP 17551, 18807, 29218, 29378  26 

MOWA 13957, 13961, 22525  17 

NOWA 10554, 10569, 11189, 12597 XC189085, XC192527, 

XC195608 

14 

RCKI 4729, 5937, 10457, 11451, 

29059 

 10 

SWTH 10503, 10601, 11458, 14412  9 

YBFL  XC110097, XC110098, 

XC187564, XC189407 

33 

 

 

  



Table A1.2: Parameter values for each of 10 song recognizers. See text above for descriptions of the parameters.  

 

          

Species 

Max 

Complex 

Max 

Res 

Sample 

Rate 

FFT 

Size 

Min 

Freq 

Freq 

Range Filter 

Max 

Syllable 

(ms) 

Max 

Syllable 

Gap (ms) 

Max 

Song 

Length 

Dynamic 

Range 

BBWA 32 4 20000 512 152 104 1s 410 154 1306 12 

BRCR 32 9 16000 256 53 68 1s 328 216 1720 30 

GCKI 32 8 20000 512 164 85 1s 282 333 3866 20 

HETH 32 11 16000 256 13 88 1s 400 152 1624 24 

NOWA 32 10 16000 512 64 144 1s 144 112 1936 20 

LISP 32 7 16000 256 21 128 1s 216 136 1944 16 

MOWA 32 6 16000 256 29 70 1s 192 128 1296 30 

RCKI 32 4 16000 512 72 70 1s 96 64 1392 16 

SWTH 32 11 16000 128 10 40 1s 288 176 1176 25 

YBFL 32 6 16000 256 32 59 1s 96 8 200 22 

Default 32 6 16000 256 0 128 0 500 500 3000 20 

All other settings were left at default 

         

 

 



Table A1.3: Performance of song recognizers.  Cross training indicates the average and standard 

deviation of the fit of excluded annotation identifications.  Total training indicates the average 

and standard deviation of the fit of all the training data in the final model which includes the 

training data.  

Recognizer Minimum 

Quality  

Minimum 

Score 

Cross Training 

with standard 

deviation 

BBWA 50 70 78.85 +/- 5.77  

BRCR 40 60 73.62 +/- 3.05 

GCKI 40 60 71.27 +/- 5.48 

HETH 50 50 74.42 +/- 6.79 

LISP 50 70 77.49 +/- 5.16 

MOWA 60 60 75.17 +/- 1.87 

NOWA 50 65 72.24 +/- 2.78 

RCKI 35 65 83.98 +/- 6.06 

SWTH 40 60 72.98 +/- 2.00 

YBFL 35 60 87.16 +/- 2.27 

 

 



Appendix 2. zipped folder with SRC files

Please click here to download file ‘Spec_SSR.zip’.

http://www.ace-eco.org/1029/Spec_SSR.zip
http://www.ace-eco.org/1029/Spec_SSR.zip
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Appendix 2. Model selection results (delta QAICc < 4) for the bird detection data obtained from four 10-

min recordings collected by automated recording units in 2013 and 2014 at 109 stations in Hearst Forest 

Sustainable Forest Licence, Ontario, Canada. 

Species Model K QAICc 

QAICc 

Akaike 

weight

BBWA (c-

hat = 1.61) 

(Spruce.cover) p(Year + Visit) 8 145.78 0 0.30

(Spruce.cover) p(.) 4 147.37 1.59 0.14

 (Spruce.cover) p(Year + Visit + Method) 9 147.73 1.95 0.11

 (Veg.less4m + Veg.great4m) p(Year + Visit) 9 147.83 2.05 0.11

 (Spruce.cover) p(Method) 5 149.19 3.41 0.06

 (Stand.age + Canopy.diversity) p(Year + Visit) 9 149.45 3.67 0.05

      

BRCR (c-

hat = 1.53) 

(Stand.age + Canopy.diversity) p(Method) 6 140.90 0 0.17

(Spruce.cover) p(Method) 5 141.51 0.62 0.13

 (Spruce.cover) p(Method + Veg.less2m) 6 141.92 1.02 0.10

 (Stand.age + Canopy.diversity) p(Method + Veg.less2m) 7 142.04 1.15 0.10

 (Spruce.cover) p(Method + Stand.age) 6 142.43 1.54 0.08

 (Stand.age + Canopy.diversity) p(Method + Stand.age) 7 142.78 1.89 0.07

 (Veg.less4m + Veg.great4m) p(Method) 6 143.57 2.67 0.05

 (Veg.less4m + Veg.great4m) p(Method + Veg.less2m) 7 143.87 2.97 0.04

 (Stand.age + Canopy.diversity) p(.) 5 143.98 3.09 0.04
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 (Spruce.cover) p(Method + Veg.less2m + 

Method:Veg.less2m) 

7 144.01 3.11 0.04

 (Stand.age + Canopy.diversity) p(Method + Veg.less2m 

+ Method:Veg.less2m) 

8 144.16 3.27 0.03

 (Spruce.cover) p(Method + Stand.age + 

Method:Stand.age) 

7 144.36 3.47 0.03

 (Spruce.cover) p(.) 4 144.65 3.75 0.03

 (Stand.age + Canopy.diversity) p(Method + Stand.age + 

Method:Stand.age) 

8 144.78 3.89 0.02

      

GCKI (c-

hat = 1.17) 

(Veg.less4m + Veg.great4m) p(Method + Stand.age) 7 685.70 0 0.76

(Veg.less4m + Veg.great4m) p(Method + Stand.age + 

Method:Stand.age) 

8 687.97 2.27 0.24

      

HETH* (Veg.less4m + Veg.great4m) p(Method + Stand.age) 6 957.65 0 0.55

 (Stand.age + Canopy.diversity) p(Method + Stand.age) 6 959.89 2.25 0.18

 (Veg.less4m + Veg.great4m) p(Method + Stand.age + 

Method:Stand.age) 

7 959.92 2.28 0.18

      

LISP (c-

hat = 1.50) 

(Veg.less4m + Veg.great4m) p(Method + Stand.age) 7 161.48 0 0.53

(Veg.less4m + Veg.great4m) p(Method + Stand.age + 

Method:Stand.age) 

8 162.44 0.96 0.33

      



MOWA* (Stand.age + Canopy.diversity) p(Method + Stand.age + 

Method:Stand.age) 

7 237.08 0 0.56

 (Stand.age + Canopy.diversity) p(Method + Stand.age) 6 237.60 0.52 0.43

      

NOWA 

(c-hat = 

1.34) 

(Stand.age + Canopy.diversity) p(Method + Stand.age) 7 189.93 0 0.15

(Veg.less4m + Veg.great4m) p(Method + Stand.age) 7 189.97 0.05 0.15

 (Spruce.cover) p(Method + Stand.age) 6 190.52 0.60 0.11

 (Stand.age + Canopy.diversity) p(Method + Stand.age + 

Method:Stand.age) 

8 190.96 1.04 0.09

 (Veg.less4m + Veg.great4m) p(Method + Stand.age + 

Method:Stand.age) 

8 191.03 1.10 0.09

 (Spruce.cover) p(Method + Stand.age + 

Method:Stand.age) 

7 191.44 1.51 0.07

 (Stand.age + Canopy.diversity) p(Method) 6 191.61 1.69 0.07

 (Veg.less4m + Veg.great4m) p(Method) 6 191.72 1.80 0.06

 (Spruce.cover) p(Method) 5 191.81 1.88 0.06

 (Veg.less4m + Veg.great4m) p(Method + Veg.less2m) 7 193.65 3.72 0.02

 (Stand.age + Canopy.diversity) p(Method + Veg.less2m) 7 193.89 3.97 0.02

      

RCKI (c-

hat = 1.72) 

(Veg.less4m + Veg.great4m) p(Year + Visit + Method) 10 606.53 0 0.63

(Spruce.cover) p(Year + Visit + Method) 9 608.27 1.73 0.26

      



SWTH (c-

hat = 1.35) 

(Veg.less4m + Veg.great4m) p(Year + Visit + Method) 10 575.84 0 0.50

(Veg.less4m + Veg.great4m) p(Method + Stand.age) 7 578.21 2.38 0.15

 (Veg.less4m + Veg.great4m) p(Method) 6 578.67 2.83 0.12

 (Veg.less4m + Veg.great4m) p(Method + Stand.age + 

Method:Stand.age) 

5 579.70 3.86 0.07

      

YBFL (c-

hat = 2.20) 

(Spruce.cover) p(Method + Veg.less2m) 6 444.07 0 0.21

(Spruce.cover) p(Year + Visit + Method) 9 445.31 1.24 0.12

 (Spruce.cover) p(Method) 5 445.51 1.43 0.10

 (Veg.less4m + Veg.great4m) p(Method + Veg.less2m) 7 446.06 1.98 0.08

 (Spruce.cover) p(Method + Veg.less2m + 

Method:Veg.less2m) 

7 446.27 2.19 0.07

 (Stand.age + Canopy.diversity) p(Method + Veg.less2m) 7 446.31 2.24 0.07

 (Spruce.cover) p(Method + Stand.age) 6 446.53 2.46 0.06

 (Veg.less4m + Veg.great4m) p(Year + Visit + Method) 10 447.33 3.25 0.04

 (Veg.less4m + Veg.great4m) p(Method) 6 447.34 3.26 0.04

 (Stand.age + Canopy.diversity) p(Year + Visit + 

Method) 

10 447.71  3.63 0.03

 (Stand.age + Canopy.diversity) p(Method) 6 447.71  3.64 0.03

*There was no evidence for overdispersion for HETH and MOWA, thus AICc was used for model 

selection of these species. 



Appendix 3. Model selection results (delta QAICc < 4) for the bird detection data obtained from 

recordings spanning each of the four weeks in 2013 and 2014 collected by automated recording units in 

2013 and 2014 at 109 stations in Hearst Forest Sustainable Forest License, Ontario, Canada. Note that 

MOWA occurred too infrequently for analysis and that models for GCKI, HETH, RCKI, YBFL lacked fit 

and were excluded from analysis. 

Species Model K QAICc 

QAICc 

Akaike 

weight

BBWA (c-

hat = 2.81) 

(Veg.less4m + Veg.great4m) p(.) 5 123.43 0 0.30

(Spruce.cover) p(.) 4 124.59 1.16 0.17

 (Veg.less4m + Veg.great4m) p(Veg.less2m) 6 124.73 1.31 0.16

 (Veg.less4m + Veg.great4m) p(Stand.age) 6 125.67 2.24 0.10

 (Spruce.cover) p(Veg.less2m) 5 126.13  2.71 0.08

 (Stand.age + Canopy.diversity) p(.) 5 126.48 3.05 0.07

 (Spruce.cover) p(Stand.age) 5 126.74 3.32 0.06

      

BRCR (c-

hat = 1.61) 

(Veg.less4m + Veg.great4m) p(Stand.age) 6 212.17 0 0.30

(Veg.less4m + Veg.great4m) p(.) 5 213.24 1.06 0.18

 (Stand.age + Canopy.diversity) p(.) 5 213.49 1.32 0.16

 (Stand.age + Canopy.diversity) p(Stand.age) 6 213.52 1.35 0.15

 (Veg.less4m + Veg.great4m) p(Veg.less2m) 6 214.22 2.05 0.11

 (Stand.age + Canopy.diversity) p(Veg.less2m) 6 215.53 3.36 0.06

      

Appendix 4.



LISP (c-

hat = 1.31) 

(Stand.age + Canopy.diversity) p(Stand.age) 6 94.62 0 0.35

(Spruce.cover) p(Stand.age) 5 94.64 0.02 0.34

 (Veg.less4m + Veg.great4m) p(Stand.age) 6 95.64 1.02 0.21

MOWA* (Stand.age + Canopy.diversity) p(Stand.age) 5 69.78 0 0.50 

(Spruce.cover) p(Stand.age) 4 70.52      0.74   0.34 

(Veg.less4m + Veg.great4m) p(Stand.age) 5 72.20 2.43 0.15 

NOWA* (Veg.less4m + Veg.great4m) p(Stand.age) 5 170.08 0 0.31

 (Stand.age + Canopy.diversity) p(Stand.age) 5 170.50 0.41 0.25

 (Spruce.cover) p(Stand.age) 4 171.93 1.85 0.12

 (Stand.age + Canopy.diversity) p(.) 4 173.01 2.93 0.07

      

SWTH (c-

hat = 3.74) 

(Veg.less4m + Veg.great4m) p(.) 5 144.97 0 0.31

(Veg.less4m + Veg.great4m) p(Stand.age) 6 146.49 1.52 0.15

 (Spruce.cover) p(.) 4 146.54 1.57 0.14

 (Veg.less4m + Veg.great4m) p(Veg.less2m) 6 147.11 2.14 0.11

 (Stand.age + Canopy.diversit) p(.) 5 147.74 2.78 0.08

 (Spruce.cover) p(Stand.age) 5 147.84 2.87 0.07

 (Spruce.cover) p(Veg.less2m) 5 148.48 3.51 0.05

*There was no evidence for overdispersion for MOWA and NOWA, thus AICc was used for model 

selection of this species.
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