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ABSTRACT. The Worm-eating Warbler (Helmitheros vermivorum) is typically described as a mature forest species requiring moderate
to steep slopes and dense understory vegetation for breeding. However, nesting microhabitat characteristics vary regionally. Given the
extensive variation in landscape topography, forest composition, and habitat structure across the breeding range, identification of
important local landscape features and microhabitat characteristics is needed to formulate and implement improved conservation
actions for the species. We characterized important habitat associations at two distinct scales (the landscape scale and the nest scale)
to provide a detailed description of Worm-eating Warbler breeding habitat requirements in southern Indiana. Results from our point
count and nest searching surveys emphasize the importance of terrain variables (i.e., steep SW-facing slopes) within mature forest
habitat in southern Indiana. In addition, the structural microhabitat variable, leaf-litter depth, was an important predictor at the nest
scale. Our dual-scale characterization of important habitat associations during the nesting portion of the breeding season provides a
more complete understanding of Worm-eating Warbler breeding ecology in this portion of its range.

Caractérisation de l'habitat de nidification de la Paruline vermivore (Helmitheros vermivorum) aux
échelles du paysage et du nid
RÉSUMÉ. On décrit habituellement la Paruline vermivore (Helmitheros vermivorum) comme une espèce de forêt mature qui recherche
un terrain en pente modérée à abrupte et un sous-étage végétal dense pour y nicher. Toutefois, les caractéristiques du microhabitat de
nidification varient régionalement. Étant donné les grandes différences de topographie du paysage, de composition forestière et de
structure de l'habitat dans l'aire de reproduction, il faut identifier les éléments locaux importants du paysage et les caractéristiques du
microhabitat pour qu'on puisse définir et mettre en oeuvre de meilleures activités de conservation pour l'espèce. Nous avons caractérisé
les principales relations entre la Paruline vermivore et son habitat à deux échelles distinctes (celle du paysage et celle du nid) afin de
décrire de façon détaillée ses besoins en matière d'habitat de nidification dans le sud de l'Indiana. Les résultats de nos dénombrements
par points d'écoute et de nos recherches de nids soulignent l'importance des variables du terrain (c.-à-d. pentes abruptes exposées au
sud-ouest) en forêt mature dans le sud de l'Indiana. De plus, une variable structurale du microhabitat, soit l'épaisseur de la litière, s'est
avérée explicative à l'échelle du nid. La caractérisation des associations importantes avec l'habitat que nous avons faite à deux échelles
durant l'étape de nidification en saison de reproduction permet une compréhension plus complète de l'écologie de nidification de la
Paruline vermivore dans cette partie de son aire.
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INTRODUCTION
For decades, habitat loss and fragmentation have had a negative
impact on the abundance and reproductive success of birds that
breed in the forests of the eastern United States (Robbins et al.
1989a, Robinson et al. 1995, Bender et al. 1998, Sauer et al. 2017).
Therefore, improved conservation of the remaining contiguous
forested habitat is critical for maintenance of the North American
breeding bird community. Sound management of wildlife habitat
for conservation relies on knowledge of the biological and
ecological factors that affect the survival of species. Several
studies have described habitat requirements and environmental
variables associated with breeding bird density or nesting success
(Gale et al. 1997, Howell et al. 2000, Smith et al. 2008).

Relationships between habitat characteristics and breeding
density may not offer insights on fitness consequences (Van Horne
1983), but a basic understanding of habitat associations is an
important first step for conservation.  

The Worm-eating Warbler (Helmitheros vermivorum) is a forest
bird, which is considered a species of conservation concern by the
U.S. Fish and Wildlife Service (USFWS 2008), and is prioritized
as such on several individual state lists (e.g., Indiana, Illinois,
Wisconsin, New Jersey). In addition, the Worm-eating Warbler
is listed as a priority species by private conservation initiatives,
such as Partners in Flight (Rosenberg et al. 2016). Described as
a forest interior species, the Worm-eating Warbler is vulnerable
to extensive landscape fragmentation (Donovan and Flather
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2002, Keller and Yahner 2007). Thus, most management plans
for the species recommend conservation of large tracts of
contiguous forest, though there is also a clear benefit to some level
of habitat heterogeneity (i.e., provision of early successional
habitat within a matrix of mature forest) for various stages of
Worm-eating Warbler life history (Wallendorf et al. 2007,
Bakermans et al. 2012, Ruhl et al. 2018)  

Across the geographic extent of its breeding range, encompassing
most of the southeastern United States from Louisiana to
Massachusetts, nesting microhabitat characteristics of the Worm-
eating Warbler vary regionally (Vitz et al. 2013). For example, the
importance of slope and canopy cover differs throughout the
breeding range (Vitz et al. 2013). Furthermore, forest tree species
composition varies substantially from largely oak-hickory
(Quercus-Carya) or beech-maple (Fagus-Acer) stands in the
Central Hardwood Region (Wenny et al. 1993) to loblolly pine
(Pinus taeda) plantations in North Carolina (Watts and Wilson
2005). Because Worm-eating Warblers require large forest tracts
for breeding (Hayden et al. 1985, Robbins et al. 1989b) and
experience extensive regional variation in habitat use patterns
including landscape topography, forest composition, and habitat
structure, identification of important landscape and microhabitat
attributes is needed to target more effective conservation actions
for the species throughout its breeding range.  

In addition to geographic differences, Worm-eating Warbler
habitat preferences change throughout the breeding season.
Worm-eating Warbler is known to prefer mature forest habitat
for nesting and utilize early successional habitat during the
postfledging period (Vitz and Rodewald 2006, 2011, Burke et al.
2017, Ruhl et al. 2018). Furthermore, the importance of habitat
characteristics and structural attributes may differ among the
mate-pairing, nest-building, egg-laying, and incubation stages of
the nesting period, depending on the scale of the landscape
associated with each stage (Levin 1992, Turner 2001). For
example, proximity to a nearby forest stream may affect the
efficiency of nest construction if  the availability of wet leaves and
other preferred nesting materials (e.g., sporophyte stems of
Polytrichum spp.) are a limiting factor (Vitz et al. 2013). Similarly,
structural characteristics, such as the presence of dense
understory vegetation, thick leaf-litter layer, or steep slope at the
nest site, could be important variables influencing nest success
(Vitz et al. 2013). Previous research has described a preference of
Worm-eating Warblers to forage in chestnut oaks during the early
breeding season (Greenberg 1987). Thus, tree species composition
in the nesting area could potentially influence foraging efficiency
during the nestling stage. Conservation recommendations for
Worm-eating Warbler and other mature forest species should
reflect the distinct habitat associations of the nesting and
postfledging periods, and their associated implications for
survival and recruitment at multiple spatial scales (King et al.
2006, Vitz and Rodewald 2006, Streby and Andersen 2011).  

Worm-eating Warbler breeding habitat has previously been
characterized using point count surveys, spot mapping, or nest
searching (Wenny et al. 1993, Gale et al. 1997, Watts and Wilson
2005). However, most descriptions of Worm-eating Warbler
breeding and nesting habitat are qualitative in nature, and the few
studies that report quantitative data only focus on habitat
associations relevant to a single scale and method (i.e., only point
counts, only spot mapping, only reproductive success). In this

study, we used quantitative methods to describe Worm-eating
Warbler breeding habitat in southern Indiana at two distinct
spatial scales (landscape and nest), using two techniques (point
counts and nest searches). We predicted that important breeding
habitat characteristics for Worm-eating Warbler would be scale
dependent. More specifically, we predicted that landscape-level
features associated with mature forest habitat and topographic
heterogeneity (e.g., canopy height and slope) would influence
breeding density, and microhabitat features, such as understory
vegetation density and leaf-litter depth, would influence nest
placement. By considering two distinct spatial scales within the
nesting portion of the breeding season, we provide a more
complete understanding of the species’ breeding ecology in this
portion of its breeding range, which is a necessary first step for a
complete characterization of regional habitat requirements for
the species.

METHODS

Study location
This research was conducted at nine sites (78-110 ha in size)
located within the Morgan-Monroe (39° 19′ 12.4″ N, 86° 26′ 55″ 
W) and Yellowwood (39° 7′ 40.8″ N, 86° 19′ 57″ W) state forests
in southern Indiana, USA. The two state forests together comprise
> 19,000 ha, and the average stand age is 87 and 91 years old (at
Yellowwood and Morgan Monroe state forests, respectively). The
overstory is dominated by oak (Quercus spp.), hickory (Carya 
spp.), and tulip poplar (Liriodendron tulipifera), and the
understory is dominated by sugar maple (Acer saccharum) and
American beech (Fagus grandifolia). Basal area range from
21.7-29.9 m²/ha, and tree densities range from 923-1527 trees/ha
(Saunders and Arseneault 2013). Our research sites were
established as part of the hardwood ecosystem experiment (HEE),
a 100-year study of forest ecosystem responses to forest
management in state forests (Kalb and Mycroft 2013).

Point count surveys
At a broad scale, we used point counts and a combination of
forest inventory, high-resolution GIS, and light detection and
ranging (LiDAR) data to model Worm-eating Warbler breeding
density as a function of habitat variables across the landscape.
Between May 20 and June 20 in 2012 and 2014, we conducted
point counts at 99 points across the 9 research sites (9-13 points
per site). Sampled points were a subset of bird survey points
established as part of a larger study (Kalb and Mycroft 2013) in
which points were placed systematically at a spacing of 150 m to
cover the entire area of each site. To obtain our final subset of
points, we excluded points that were in recently harvested areas
as well as points without a nearby forest inventory plot. All points
in the final set were separated by ≥150 m. We recognize that this
spacing is closer than the 250 m typically recommended for point
count surveys (Ralph et al. 1995, Matsuoka et al. 2014). However,
we are confident that adjacent points were adequately
independent for several reasons. First, the dataset of bird
observations was truncated to only those observations within 75
m of each plot center to ensure there was no overlap in sample
area between adjacent points. Second, adjacent points were
sampled in quick succession temporally, minimizing the number
of birds traveling between points. Finally, observers were trained
to exclude birds known to have been recorded already at an
adjacent point.  
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Points were sampled twice each year between 0600 and 1100 EDT.
On each sampling occasion, a single observer recorded all visual
and auditory detections of birds within 100 m of the point. Time
of observation, distance (estimated visually to nearest 10 m), and
sex (if  possible) were recorded for each detection of a Worm-
eating Warbler. After the observation data were collected, we
truncated the dataset to include only observations made within
75 m of the plot center to ensure there was no overlap in sampled
areas between adjacent point counts.  

Habitat data were collected for each point location from several
sources. Mean maximum canopy height in the 75-m radius area
around each point was derived from a 3-m resolution raster of
canopy height, obtained via airborne LiDAR collected in
2009-2011 (IndianaMap, http://www.indianamap.org; Barnes et
al. 2016). Understory stem density for each point was obtained
from forestry inventory data. Forest inventory plots were part of
a concurrent study at the same sites (Saunders and Arseneault
2013). All bird points included in the study had a forest inventory
plot located randomly within a 75 m radius of the bird point.
Within each 0.005-ha inventory plot, we estimated understory
density as the number of woody stems with < 5 cm diameter at
breast height (i.e., 1.35 m height).  

Using a 1.5-m resolution digital elevation model (DEM) of the
study area (IndianaMap, http://www.indianamap.org), we
calculated mean elevation (m), aspect (degrees), and slope
(degrees) in a 75-m radius around each point using the R package
Raster (Hijmans et al. 2017). Aspect was transformed from
degrees to Beers’ aspect, which ranges from zero (southwestern-
facing slopes) to two (northeastern-facing slopes; Beers et al.
1966).

Nest searching
At a fine scale, we analyzed the specific microhabitat preferences
of 23 female Worm-eating Warblers between a 2.5-10 m radius
around each nest. We conducted opportunistic nest searches for
Worm-eating Warbler within all nine of the HEE research sites
from May 16 to June 30, 2016-2017. We located nests using
behavioral cues of adults (e.g., carrying food, territorial singing,
or aggressive chipping). Once a nest was located, we recorded the
location using waypoint averaging with a handheld Garmin eTrex
20 GPS (Garmin International, Olathe, Kansas, USA). After
nesting activity had subsided, we returned to the nest locations
to collect microhabitat data. To compare nest sites with a paired
random point, we selected a point 50 m away from each nest site
in a random direction. We collected the same set of microhabitat
data at nest sites and random points.  

At each nest location or paired random location, we established
4 sampling plots located 2.5 m away in each cardinal direction.
At each plot, we measured leaf-litter depth, understory vegetation
density, and canopy cover. Leaf-litter depth down to the duff layer
was measured with a ruler. We estimated understory vegetation
density using a profile board method modified from MacArthur
and MacArthur (1961) and described in Peterson et al. (2015).
The profile board (2.0 m x 0.25 m) was divided into eight 0.25 m
x 0.25 m alternating black and white squares. One researcher held
the profile board, oriented vertically, in one of the four sampling
plots and an observer stood in the opposite sampling plot. We
estimated (rounded to 10%) the amount of area obscured by

vegetation within each of the eight squares (Peterson et al. 2015).
We estimated percent canopy cover by taking a photograph of
the canopy with a SONY DSC-S650 digital camera (SONY
Corporation, Minato, Tokyo, Japan) positioned 2 m above the
ground, facing north. We used ImageJ software (Rasband
1997-2016) to separate color channels, convert each photograph
to a binary image, and calculate the ratio of black pixels as an
estimate of percent canopy cover (Peterson et al. 2015).
Measurements of litter depth, understory vegetation density, and
canopy cover were averaged across the four sampling plots to
obtain mean values for each location. For each location, we also
calculated mean maximum canopy height and mean Beers’ aspect
within a 10-m buffer using the DEM and LiDAR-derived canopy
height raster. Finally, we used a clinometer to measure percent
slope at the location.

Data analysis
Point counts
We fit a single-visit N-mixture model to the point count data
(Amundson et al. 2014). For the abundance submodel, abundance
at each point was modeled as a Poisson random variable with
canopy height, understory density, elevation, slope, and aspect as
covariates. As we were interested specifically in the effects of these
habitat covariates on abundance, we fit a single model containing
the main effects and did not compare among alternative models.
Tests of model goodness-of-fit indicated a Poisson error structure
was appropriate for the count data. Both visits to each sample
point in a given year were included in the analysis; to account for
this serial and spatial dependence of visits, we included random
effects of both site and sample point in the abundance model. The
detection probability submodel was separated into 2 components:
(1) probability of availability (i.e., whether or not the bird was
visible or singing during the count) and (2) probability of
detection by an observer, given that the bird was available to be
detected (Amundson et al. 2014). Overall detection probability
was the product of these two components. Probability of
availability was estimated using a time-removal model
(Farnsworth et al. 2002), with ordinal date included as a covariate.
Probability of detection was estimated using a distance-sampling
approach (Farnsworth et al. 2005) with wind speed (Beaufort
scale) and a random observer effect included as covariates. All
continuous covariates were standardized to a Z-score prior to
analysis.  

The N-mixture model was fit in a Bayesian framework using JAGS
(Plummer 2003) called from within R (R Development Core Team
2016) using package jagsUI (Kellner 2015). We ran three Markov
chain Monte Carlo (MCMC) chains each with 70,000 total
iterations, a burn-in of 60,000 iterations, and a thinning rate of
100. We considered the model to have adequately converged when
the Brooks-Gelman-Rubin statistic for all parameters was < 1.1
(Brooks and Gelman 1998). A covariate effect was considered to
have a significant effect on abundance or detection when the
estimated 95% credible interval around the parameter estimate
did not overlap zero.  

Recently, some concerns have emerged over identifiability of
parameters in N-mixture models like the one we fit (Barker et al.
2017). To make sure that our inference was not impacted, we also
fit a Poisson generalized linear mixed model (using package lme4
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in R) to our count data that was identical except that the detection
component was omitted. The results we obtained from the general
linear mixed models (GLMM), in terms of covariate effects, were
essentially identical to the N-mixture model (Appendix 1, Table
A1.1). Hence, subsequent results and discussion focus solely on
the N-mixture models.

Nest searching
We used a multivariate analysis of variance (MANOVA) in
program R (R Development Core Team 2016) to test whether site
type (nest or random point), year, or the interaction between these
two variables influenced Worm-eating Warbler nesting
microhabitat. We used Welch’s paired sample t-tests in program
R to test for differences in maximum canopy height, percent slope,
Beers’ aspect, leaf-litter depth, percent canopy cover, and
understory vegetation density between nest sites and random sites.
Unless otherwise defined, all reported values represent means ±
SE.

RESULTS

Point counts
Overall, we had 259 Worm-eating Warbler detections across the
2 years of point counts. Mean estimated detection probability was
0.53. We found no significant effect of either ordinal date or wind
speed on detection probability (Table 1). Mean estimated
abundance based on the model was 0.75 males/ha. Slope had a
significant positive relationship with Worm-eating Warbler
abundance, with a one-standard deviation increase in slope
(equivalent to an increase of 3.07 degrees) corresponding to a
20% increase in estimated abundance. Aspect had a negative effect
on abundance, with a one-standard deviation increase (a shift of
0.57 Beer’s aspect units from SW to NE) corresponding to a 15%
decrease in abundance (Table 1). Estimated abundance at the
lowest observed slope (3.7 degrees) was 0.43 males/ha, whereas
on the steepest slope (19.6 degrees) estimated abundance was 1.09
males/ha. On perfectly northeastern-facing slopes, estimated
abundance was 0.49 males/ha, whereas estimated abundance on
southwestern-facing slopes was 0.85 males/ha. Elevation, canopy
height, and understory density had no significant effect on Worm-
eating Warbler abundance, although there was a positive trend
for the latter two (Table 1).

Nest searching
We located 23 nests, 8 in 2016 and 15 in 2017. The MANOVA
indicated a significant multivariate effect of site type contributing
to differences in microhabitat (Wilks’ λ = 0.57, F6,37 = 4.59, P <
0.01), but no effect of year (Wilks’ λ = 0.82, F6,37 = 1.35, P = 0.26)
or the interaction between site type and year (Wilks’ λ = 0.77,
F6,37 = 1.87, P = 0.11). Individual t-tests revealed no difference in
mean maximum canopy height (t47.7 = 0.98, P = 0.33), mean Beers’
aspect (t44.0 = -0.90, P = 0.37), mean percent canopy cover
(t41.1 = -0.45, P = 0.66), or mean understory vegetation density
(t43.9 = 0.97, P = 0.34) between nest sites and random points.
However, mean slope (t43.9 = 4.68, P < 0.001) and mean leaf-litter
depth (t44.0 = 2.4, P < 0.01) were significantly greater (averaging
44% and 18% higher, respectively) at nest sites than random sites
(Table 2). Although Beers’ aspect was not statistically different
between nest sites and random sites, 12 of the 23 nests were located
on SW-facing slopes, and only 3-4 nests were located on each of
the 3 remaining slopes (NE, NW, and SE; Fig. 1).

Table 1. Output from the N-mixture model for Worm-eating
Warblers (Helmitheros vermivorum). Estimates of covariates with
effects we considered significant (the 95% credible interval did
not overlap zero) are marked with an asterisk. SD = standard
deviation.
 
 Parameter Estimate 95% Credible Interval

Availability Model
 Intercept 0.11 (-0.12, 0.31)
 Ordinal Date -0.17 (-0.39, 0.05)

 
Detection Model
 Intercept 42.49 (29.38, 63.71)
 Observer SD 0.42 (0.18, 0.94)
 Wind -0.08 (-0.17, 0.02)

 
Abundance Model
 Intercept 0.28 (0.01, 0.55)
 Site SD 0.13 (0.00, 0.44)
 Point SD 0.08 (0.01, 0.22)
 Canopy Height 0.07 (-0.10, 0.23)
 Understory Density 0.06 (-0.08, 0.20)
 Elevation 0.06 (-0.13, 0.25)
 Slope 0.18* (0.03, 0.33)
 Aspect -0.16* (-0.34, -0.01)

Table 2. Beers’ aspect, slope, canopy height, leaf-litter depth,
percent canopy cover, and understory vegetation density values
at Worm-eating Warbler (Helmitheros vermivorum) nest sites and
random points in southern Indiana in 2015-2017 (mean ±
standard error). Asterisks indicates a significant difference in
means (P ≤ 0.05).
 
Habitat Variable Nest Site Random Point

Aspect 0.66 (± 0.15) 0.85 (± 0.15)
Slope * 64.09 (± 4.39) * 35.61 (± 4.20)
Canopy Height 25.27 (± 0.94) 23.85 (± 1.11)
Leaf-Litter Depth * 4.20 (± 0.22) * 3.45 (± 0.22)
% Canopy Cover 0.81 (± 0.01) 0.81 (± 0.01)
Understory Vegetation 13.79 (± 1.92) 11.09 (± 2.01)

DISCUSSION
In this study, we identified terrain variables (e.g., slope and aspect)
as significant predictors of Worm-eating Warbler breeding
habitat use at both spatial scales. In addition, we identified leaf-
litter depth as an important microhabitat characteristic at the
nest-site scale. Although we observed a positive trend with respect
to mature forest habitat structure metrics in the landscape-level
analysis, variables such as maximum canopy height, canopy cover,
and understory vegetation density were not significant predictors
at either of the two spatial scales. Given the described life history
of the species (Vitz et al. 2013), as well as the available breeding
records for Indiana (Castrale et al. 1998, Brock 2006), it is clear
that Worm-eating Warbler is restricted to largely forested
landscapes within the state. However, our results also emphasize
the importance of steep SW-facing slopes for breeding habitat
selection within mature forest in Indiana.
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Fig. 1. Total number of Worm-eating Warbler (Helmitheros
vermivorum) nests located on NE [0-90], SE [90-180], SW
[180-270], and NW [270-360] facing slopes during the 2016 and
2017 breeding seasons in southern Indiana.

Throughout various stages of the nesting period of the breeding
season (i.e., mate pairing, nest building, egg laying, incubation,
nestling provision), Worm-eating Warblers use the forest
ecosystem in multiple ways. Thus, multiscale characterization of
important habitat features using multiple techniques is necessary
to fully understand the complexity of this system (Levin 1992).
Males occupy reliable singing perches within a delineated territory
early in the breeding season, and females seek out suitable habitat
for nest sites within these territories. Our study identified the
importance of leaf-litter depth for female nest site selection.
However, males may also influence nest locations if  other factors,
such as tree species composition (e.g., the predominance of oak
species within a given area; Greenberg 1987), have an impact on
Worm-eating Warbler territory delineation.  

Although there are some known exceptions in the flatter portion
of the breeding range (e.g., North Carolina; Watts and Wilson
2005), Worm-eating Warbler is generally associated with
moderate to steep slopes for nesting (Vitz et al. 2013). As expected,
in our study, slope was a significant predictor of abundance at
the broad landscape scale (Table 1) and was also significantly
greater at nest sites than at random points at the fine scale (Table
2). At the population level, Worm-eating Warbler is not declining
as rapidly as some other mature forest species across its breeding
range (e.g., Cerulean Warbler or Wood Thrush; Rosenberg et al.
2016). However, Worm-eating Warbler is listed as a species of
special conservation concern in the state of Indiana and would
therefore benefit from conservation efforts specifically directed at
providing ample and adequate habitat (i.e., sites on steep, SW-
facing slopes with well-developed leaf litter) availability during
the nesting portion of the breeding season.  

In Indiana, there are currently no logging restrictions based on
percent slope, other than the physical and safety limitations of

logging equipment. However, if  slopes are too steep to
accommodate mechanical harvesters, timber can be harvested
with a chainsaw and cable-skidded out with a tractor. Thus, the
physical attributes of Worm-eating Warbler nesting habitat alone
do not render them de facto protected, because steep slopes in
our region do not pose significant logistical constraints to forestry
operations. Our results, which demonstrate the significance of
steep slopes for Worm-eating Warbler breeding habitat at two
distinct spatial scales, highlight the importance of terrain
considerations when managing forest habitat for the species.  

The role of aspect on breeding density and nest site selection in
our study was unexpected. Southwest-facing slopes were a
significant predictor of Worm-eating Warbler breeding density
in our point count models (Table 1). In addition, at the nest scale,
we located 12 nests on SW-facing slopes as opposed to 4 on NE-
facing slopes (n = 23; Fig. 1). The association of Worm-eating
Warbler nest sites with SW-facing slopes has not been previously
described. Based on the variation in habitat (e.g., tree species
composition and topographic heterogeneity) across its extensive
breeding range (Vitz et al. 2013), it is reasonable to suspect that
the factors driving the observed association of Worm-eating
Warbler with SW-facing slopes may also vary regionally.  

The specific factors driving the association of Worm-eating
Warbler with SW-facing slopes are unclear. The structural
makeup of leaf litter could differ on NE- and SW-facing slopes
in our study system based on differences between mesophytic and
xeric tree species composition and the associated leaf-litter
characteristics (Crosby and Loomis 1974, Schwilk and Caprio
2011, Kreye et al. 2013), potentially providing better nesting
material for Worm-eating Warblers on SW-facing slopes. Leaves
from xeric tree species (e.g., oaks) provide a drier, more loosely
compacted litter layer than mesophytic tree species (e.g., maples;
Crosby and Loomis 1974). This difference in litter composition
could influence the nesting appeal for ground-nesting species such
as Worm-eating Warbler. In addition, during the nesting portion
of the breeding season in Maryland, 80% of Worm-eating
Warbler foraging efforts were directed toward leaf gleaning in
chestnut oak (Quercus montana; Greenberg 1987). Thus, it is
possible that foraging preference (i.e., selecting sites with a
prevalence of xeric oak species), rather than nesting microhabitat
on the forest floor, may be driving the association of Worm-eating
Warbler nest sites with SW-facing slopes. There may also be a
thermoregulatory benefit for a ground-nesting warbler species to
orient the nest toward the southwest if  slightly higher ambient
temperatures throughout the day can provide an evolutionarily
advantageous trade-off  with respect to time spent brooding on
the nest or foraging away from the eggs (Conway and Martin
2000).  

Because there is no precedent in the literature for the association
of breeding Worm-eating Warblers with SW-facing slopes, it is
also important for us to consider potential caveats with this
association within an ecological framework. Understory biomass
and plant diversity are known to be higher on mesic NE-facing
slopes in comparison to xeric SW-facing slopes (Olivero and Hix
1998). Along with steep slopes and contiguous mature forest,
dense understory vegetation is a commonly described
characteristic feature of Worm-eating Warbler breeding and
nesting habitat (Rodewald and Smith 1998, Vitz et al. 2013). In
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our study, understory vegetation was not a significant predictor
of Worm-eating Warbler breeding habitat at either the broad scale
or the fine scale. In fact, most Worm-eating Warbler nests
occurred on slopes with a relatively open understory. Although
we did not preferentially select SW-facing slopes during
opportunistic nest searches, Peterson et al. (2015) demonstrated
the inherent bias associated with traditional nest searching
techniques. Thus, it is possible that nest-searching efforts were
more successful along SW-facing slopes due to lower understory
vegetation density. In addition, we did not monitor nesting success
in this study, therefore it is possible that nests on SW-facing slopes
may have reduced nest success. Future research involving more
detailed nest observations is needed to fully elucidate this
association with SW-facing slopes. Likewise, researchers should
be cautious when using the abundance or density of breeding
males within a given habitat type to ascribe a value to breeding
or nesting grounds (Van Horne 1983). Depending on the breeding
ecology of an organism, a low breeding density may actually
reflect territorial exclusion of high quality breeding habitat by a
few high-quality males (Van Horne 1983). However, we observed
a positive association between SW-facing slopes and breeding site
usage at two distinct ecological scales and emphasize the need for
more research to more fully understand this association.  

Previous research has demonstrated the importance of large
sections of intact mature forest to fulfill Worm-eating Warbler
breeding habitat requirements (Vitz et al. 2013), but specific
estimates of minimum area requirements vary drastically among
studies (21-340 ha; Hayden et al. 1985, Robbins et al. 1989a). The
two state forests we surveyed (i.e., Morgan Monroe and
Yellowwood state forests) represent > 19,000 ha of mature forest
habitat in southern Indiana (Kalb and Mycroft 2013). Although
these two state forests are subject to active forest management,
Worm-eating Warbler is known to be resilient to low levels of
even- and uneven-aged forest management occurring on the
landscape (Gram et al. 2003, Wallendorf et al. 2007, Kellner et
al. 2016). In addition, Worm-eating Warbler can actually benefit
from anthropogenic forest openings during the postfledging
period within the context of a forest-dominated habitat matrix
(e.g., clearcuts; Vitz and Rodewald 2006, Burke et al. 2017, Ruhl
et al. 2018). Given the availability of contiguous mature forest
habitat within the Morgan Monroe and Yellowwood state forests,
and the known compatibility of Worm-eating Warbler with low
levels of active forest management on the landscape, our study
highlights the potential importance of terrain features for Worm-
eating Warbler breeding and nesting success in the southern
Indiana portion of the breeding range. However, we cannot make
strong forest management recommendations based solely on our
results without further scientific investigation.  

Management efforts for Worm-eating Warbler often focus heavily
on the importance of vegetative, as opposed to terrain,
characteristics (Vitz et al. 2013, but see Gale et al. 1997), which
is understandable given the pressing threat of habitat
fragmentation throughout the breeding range. However, based on
our results from analysis at two ecologically relevant scales, we
present evidence that terrain variables such as slope and aspect
are also correlated with Worm-eating Warbler breeding habitat
use within the Yellowwood and Morgan-Monroe state forests of
southern Indiana. More research is needed to fully understand

the ecological implications associated with the perceived
differences between Worm-eating Warbler utilization of NE- and
SW-facing slopes, but based on our results, we suggest that private
landowners and forestry companies in the southern Indiana
region of the breeding range consider the importance of steep
SW-facing slopes when designating habitat for conservation
purposes.

Responses to this article can be read online at: 
http://www.ace-eco.org/issues/responses.php/1185
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Appendix 1. Table A1.1. 
 

Parameter Estimate SD P-value 
Intercept -0.35 0.07 <0.01 
Site SD 0.01 0.09 - 
Point SD 0.00 0.00 - 
Canopy Height 0.06 0.07 0.37 
Understory Density 0.05 0.07 0.46 
Elevation 0.11 0.08 0.18 
Slope 0.17 0.08 0.03* 
Aspect -0.15 0.08 0.07 
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