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ABSTRACT. Computer-automated image analysis techniques can save time and resources for detecting and counting birds in aerial
imagery. Sophisticated object-based image analysis (OBIA) software is now widely available and has proven effective for various
challenging detection tasks, but there is a need to develop accessible and readily adaptable procedures that can be implemented in an
operational context. We developed a systematic, repeatable approach using commercial off-the-shelf  OBIA software, and tested its
effectiveness and efficiency to detect and count Lesser Snow Geese (Chen caerulescens caerulescens) in large numbers of images of
breeding colonies across the Canadian Arctic that present a variety of landscapes, numerous confounding features, and varying
illumination conditions and exposure levels. Coarse-scale review of analysis results was necessary to remove conspicuous clusters of
commission errors, thus rendering the technique semiautomated. It was effective for imagery with spatial resolutions of 4–5 cm,
producing overall accurate estimates of goose numbers compared to manual counts (R2 = 0.998, regression coefficient = 0.974) in 41
test images drawn from several breeding colonies. The total automated count (19,920) across all test images exceeded the manual count
(19,836) by just 0.4%. We estimate the typical time required to review images for errors to be only 5–10% of that required to count
birds manually. This could reduce the person-time required to analyze aerial photos of the major Arctic colonies of Snow Geese from
several months to several days. Our approach could be adapted to many other bird detection tasks in aerial imagery by anyone possessing
at least basic skills in image analysis and geographic information systems.

Une approche pour l'utilisation d'un logiciel d'analyse d'images orientée objet grand public afin de
détecter et de compter les oiseaux dans un grand volume d'images aériennes
RÉSUMÉ. Les techniques d'analyse d'images comptées automatiquement par ordinateur peuvent sauver du temps et de l'argent pour
détecter et compter les oiseaux sur des photographies aériennes. Des logiciels sophistiqués d'analyse d'images orientée objet (OBIA;
object-based image analysis en anglais) sont maintenant disponibles à grande échelle et leur efficacité a été démontrée pour diverses
tâches de détection complexes; toutefois, le besoin de créer des procédures accessibles et facilement adaptables qui puissent être mises
en place en contexte opérationnel demeure. Nous avons élaboré une approche systématique et répétable à partir d'un logiciel OBIA
grand public et avons testé son efficacité et sa précision à détecter et à compter les Petites Oies des neiges (Chen caerulescens caerulescens)
sur un grand nombre d'images de colonies de reproduction dans l'Arctique canadien, territoire qui présente une variété de paysages,
de nombreux éléments confondants et des degrés divers de conditions lumineuses et d'exposition. Il a été nécessaire de faire une revue
des résultats d'analyses à une échelle grossière afin d'enlever les agrégations évidentes d'erreurs de commission, permettant ainsi de
semi-automatiser la technique. Le logiciel s'est avéré efficace avec les images ayant une résolution spatiale de 4-5 cm, produisant des
estimations globales du nombre d'oies dont la précision était comparable à celle de comptes manuels (R2 = 0,998, coefficient de régression
= 0, 974) réalisés sur 41 images tests tirées de plusieurs colonies. Le compte automatisé total (19 920) à partir de toutes les images tests
a excédé le compte manuel (19 836) de 0,4 % seulement. Nous avons estimé que le temps généralement requis pour repasser les images
à la recherche d'erreurs était de 5 à 10 % seulement de celui requis pour compter les oiseaux manuellement. L'usage de ce logiciel
permettrait de réduire le temps-personne requis pour analyser les photos aériennes des principales colonies d'Oies des neiges dans
l'Arctique de plusieurs mois à plusieurs jours. Notre approche pourrait être adaptée à de nombreuses autres tâches de détection d'oiseaux
sur des images aériennes par toute personne possédant au moins des notions de base en analyse d'images et en systèmes d'information
géographique.
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INTRODUCTION
Monitoring the distribution and abundance of bird populations
and how they are changing over time provides the foundation for
conservation planning and management. Trends in populations
are used to set conservation priorities and identify species in need

of conservation action (e.g., NABCI 2016, Rosenberg et al. 2017).
Population monitoring is also important for evaluating the
effectiveness of management actions, including those aimed to
control overabundant species such as some geese (e.g., Leafloor
et al. 2012, Lefebvre et al. 2017).  
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The use of aerial surveys to monitor bird populations is a well-
established and widespread practice, enabling rapid coverage of
large areas and facilitating access to remote or otherwise
challenging places such as undeveloped areas, wetlands, marine
environments, and polar regions. They are commonly used to
survey waterbirds (Kingsford and Porter 2009), as well as raptors
(Good et al. 2007) and upland game birds (Butler et al. 2007).
Bird identification and counts are performed either in real time
by airborne observers or using on-board cameras to collect aerial
imagery that is reviewed and analyzed later. Several studies have
indicated that aerial image counts can be more accurate and
consistent than live-observer counts (Boyd 2000, Frederick et al.
2003, Buckland et al. 2012), but a major drawback of the former
is the significant time and effort required to manually analyze
large volumes of imagery (Woodworth et al. 1997, Béchet et al.
2004). With burgeoning use of small low-flying unmanned
aircraft, or drones, as a means of collecting very high-resolution
aerial imagery of birds (Chabot and Bird 2015), as well as
increasing possibilities to census birds in satellite imagery (LaRue
et al. 2017), the challenge of analyzing large volumes of imagery
to detect and count subjects has been receiving increased
attention.  

The use of computer-automated techniques to count birds in
aerial imagery dates back three decades (Gilmer et al. 1988), but
did not gain much traction until the 21st century when a
combination of advancements in image analysis software,
computer processing performance, and digital camera technology
have progressively made the techniques more accessible (Chabot
and Francis 2016). When the color of subjects contrasts sharply
with image backgrounds, they can in some cases be automatically
isolated and counted using simple spectral thresholding in
general-purpose image editing software (Chabot and Bird 2012).
Additional size-based filtering of features isolated by
thresholding can help reduce erroneous counting of nontarget
features with similar colors to the birds (Bajzak and Piatt 1990,
Laliberte and Ripple 2003, Trathan 2004). Descamps et al. (2011)
developed an application for counting large aggregations of birds
on the ground in aerial images that automatically detects and
tallies ellipse-shaped features that contrast with the background.  

More versatile techniques, such as object-based image analysis
(OBIA; Blaschke 2010), are required when subjects contrast
weakly with the background, vary in size or shape, and/or are
more sparsely distributed throughout large numbers of images
with varying backgrounds and numerous confounding features.
OBIA is founded on segmenting images into a patchwork of
spectrally distinct, multipixel objects that tend to correspond to
coherent “real-world” features. Objects can then be analyzed in
elaborate ways based on a large variety of spatial, spectral, and
texture attributes. OBIA has notably been used to detect birds at
sea (Groom et al. 2007, 2013) and on inland waters (Groom et al.
2011, Liu et al. 2015), as well as terrestrial mammals in a nature
park (Chrétien et al. 2015, 2016). In recent years, commercial off-
the-shelf  OBIA software has become increasingly accessible, but
there is a need to develop standardized and readily adaptable
procedures for using the software to detect and count birds
(Chabot and Francis 2016).  

We evaluated the utility and efficiency of automated image
analysis to count Lesser Snow Geese (Chen caerulescens

caerulescens) from aerial surveys of breeding colonies throughout
the Canadian Arctic. Population monitoring by the Canadian
Wildlife Service (CWS) and the United States Fish and Wildlife
Service (USFWS) has been ongoing for two decades (Kerbes et
al. 2006, 2014) following action aimed at reducing Snow Goose
numbers to minimize damage to Arctic habitats (Batt 1997,
Leafloor et al. 2012). Population estimates from aerial
photographic surveys of major known breeding colonies
indicated an increase from 4.3 million birds in 1995–1998 to 5.1
million in 2005–2008 (Kerbes et al. 2014). To date, estimates have
been obtained by manually counting geese in thousands of photos
across all colonies, constituting a very labor-intensive task that
can take several months of a technician’s time, even when the
images are subsampled. Following a transition to digital
photography in 2009, the imagery is more readily amenable to
computer-automated analysis.  

Previous studies successfully used basic image thresholding and
size-filtering techniques to count white-phase Snow Geese
(Gilmer et al. 1988, Bajzak and Piatt 1990, Laliberte and Ripple
2003, Chabot and Bird 2012), but these studies mostly involved
dense concentrations of staging or wintering geese, few total
images, processing of images one at a time to adjust threshold
levels to varying illumination/exposure conditions, and/or
manually cropping images to include only areas containing birds.
In contrast, we were interested in processing large numbers of
images capturing a wide variety of landscapes, numerous
confounding features, and bird concentrations ranging from very
dense in a minority of images to comparatively sparse in the
majority of images, and completely absent in others. Although
Snow Geese are sexually monomorphic, there are two color
morphs: white-phase geese are largely white viewed from above,
while blue-phase geese are largely blue-gray with a white head,
and contrast much less against the background. With surveys
having been flown over the course of several years at different
times of day and under a variety of sky conditions, there is also
significant variation in illumination and exposure across the
image sets, resulting in varying spectral-radiometric characteristics
of geese.  

We therefore investigated an OBIA approach for detecting the
geese, aiming for a solution that enabled fully automated
processing of large batches of images. To this end, we developed
a systematic approach to establish optimal image segmentation
and classification parameters, which could be readily applied to
processing aerial images of other birds or wildlife targets. We used
a commercial remote sensing image analysis program, ENVI 5.3
(Exelis Visual Information Solutions, Boulder, CO, USA),
bundled with the OBIA-capable Feature Extraction module and
the IDL (Interactive Data Language) programming application
to execute batch-processing, although our general approach could
also be implemented in other similar software packages. To
maximize its accessibility, we largely limited ourselves to the use
of basic functions and avoided overly complex or customized
operations. In this paper, we present and discuss (1) the steps
involved in our approach as they were carried out in our trial with
imagery of Snow Geese, providing background on certain
foundational image analysis concepts for the benefit of others
who may wish to adopt the approach; (2) the results and
performance of the developed analysis routine on a large batch
of imagery.

http://www.ace-eco.org/vol13/iss1/art15/


Avian Conservation and Ecology 13(1): 15
http://www.ace-eco.org/vol13/iss1/art15/

METHODS

Description of the imagery
We used existing digital aerial imagery collected and
postprocessed by the USFWS with the assistance of the CWS.
The imagery was collected from 2009 to 2014 over Lesser Snow
Goose breeding colonies throughout the Canadian Arctic,
divided into four main regions (Fig. 1): the Western Arctic
(surveyed in 2009 and 2013), Baffin Island (2011), Southampton
Island (2014), and West Hudson Bay (2014). Three-band true-
color (RGB) photos were acquired with a DSS 439 (Applanix,
Richmond Hill, ON, Canada) 39-megapixel aerial camera and
direct georeferencing system through a 40- or 60-mm focal-length
lens at spatial resolutions ranging from 2 to 39 cm. Photos were
postprocessed with POSPac MMS (Applanix) to convert them to
8-bit TIFF format and correct for lens vignetting. Inpho
OrthoMaster (Trimble, Sunnyvale, CA, USA) was then used to
correct for lens distortion and orthorectify images to the ASTER
GDEM (global digital elevation map) or GDEM2. In some cases,
images were combined into orthomosaics containing up to a
dozen photos using Inpho OrthoVista; in other cases, image files
consisted of single, nonoverlapping orthophotos. Colonies
covering smaller areas were generally imaged in their entirety,
whereas those covering larger areas were sampled with strip
transects. Traditional manual counts of geese in the imagery have
been performed in a subset of images from each colony, with the
results then extrapolated to the measured or estimated total area
of the colony to produce a population estimate.

Fig. 1. Canadian Arctic regions where digital aerial imagery of
Lesser Snow Goose (Chen caerulescens caerulescens) breeding
colonies was collected from 2009 to 2014: (A) Western Arctic,
(B) Baffin Island, (C) Southampton Island, and (D) West
Hudson Bay.

Upon preliminary review of the imagery, we judged that spatial
resolutions coarser than 6 cm were unlikely to be amenable to
computer-automated detection of geese because of the decreasing
confidence with which birds could be manually identified. We
therefore focused our trial on resolutions of 3 cm (1736 total files,
mostly single photos, from Southampton Island and West
Hudson Bay), 4 cm (52 multiphoto mosaic files from the Western
Arctic), 5 cm (238 files of both types from Baffin Island and the
Western Arctic), and 6 cm (612 mosaic files from Southampton
Island and West Hudson Bay), enabling us to evaluate how the
capacity to automatically detect geese is affected by resolution.

Depending on posture, a goose on the ground covers an area of
~500–1000 cm² when viewed from above. Thus, a 3-cm spatial
resolution results in ~55–110 pixels per bird, while a 6-cm
resolution results in ~14–28 pixels per bird.

Selecting training images and manually
identifying birds
We reviewed all available imagery at the selected resolutions by
opening all image files in QGIS 2.18 (QGIS Development Team),
one colony at a time, and panning through them at low zoom
levels (1:2000–1:8000) on a 1920 x 1080-pixel monitor.
Throughout this process, we noted features that could potentially
be misidentified as Snow Geese based on spectral and spatial
similarities. Predominant confounding features included patches
of snow and ice, bright rocks and boulders, clumps of froth or
ice along the edges of water, and glint reflected from water
surfaces. We then selected a limited number of “training images”
to be used to develop and perform initial testing of OBIA
segmentation and classification parameters, deliberately selecting
seemingly challenging images that contained both geese and
confounding features. We selected a single training image for
colonies with ≤ 50 total image files, and additional images for
colonies containing larger numbers of files. Overall, we selected
21 training images at 3-cm resolution, one image at 4-cm
resolution, seven images at 5-cm resolution, and 13 images at 6-
cm resolution.  

We manually identified all geese in each training image by creating
a point shapefile in QGIS and marking each goose with a point.
This was done by panning through the entire area of each image
file at zoom levels of 1:250–1:500, occasionally zooming in further
if  necessary to confidently identify geese in more challenging
landscapes. Although geese could be confidently identified
throughout most of the training images, some omissions as well
as false identifications may have occurred, especially in areas with
dense bright rocks interspersed with geese and in the coarser 6-
cm imagery. We identified a total of 900, 1350, 772 and 5138 geese
in the 3-, 4-, 5- and 6-cm training images, respectively.

Establishing image segmentation parameters
Effective segmentation of target image features is crucial to their
successful subsequent classification based on spatial, spectral,
and texture attributes. Improper delineation of feature
boundaries, oversegmentation (target features are divided into
multiple objects), and omission (target features are lumped into
larger objects containing other adjacent features) can all hinder
classification performance.  

ENVI’s Feature Extraction module uses a “watershed”
segmentation algorithm (Roerdink and Meijster 2001), which first
transforms the input image into a contrast gradient map in which
higher values are assigned to pixels along the boundaries of
spectrally contrasting features, e.g., the contour of a Snow Goose
against a darker ground, while lower values are assigned to pixels
in more spectrally homogeneous areas. This results in a patchwork
of “basins,” i.e., objects, delineating contrasting features, where
the brightness of pixels separating the basins can be likened to
the height of dams (Fig. 2). The contrast gradient map is then
“flooded” from the bottom up, with the adjustable “scale level”
parameter determining to what height the image is flooded along
a normalized scale of 0–100. Increasing the scale level results in
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Fig. 2. Simplified illustration of how a watershed segmentation is performed on a portion of an image
containing a bright object and a dark object against a uniform background. The image is first transformed into
a contrast gradient map in which dark “basins” represent spectrally homogeneous parts of the image, separated
by “dams” of varying height, i.e., brightness, proportionate to the magnitude of spectral contrast between the
adjacent image features. Segmentation of the image is achieved by “flooding” the basins to a specified level. In
this example, progressive flooding from the bottom up will cause the dark object to be amalgamated with
adjacent background objects before the bright object, because the former’s magnitude of contrast with the
background is smaller than the latter’s.

the amalgamation of basins separated by shorter dams,
preserving only those surrounded by increasingly tall dams, which
represent image features with increasingly distinct edges (Fig. 2).
Although increasing the scale level results in fewer objects of
larger average size, there is no direct relationship between the scale
level and the real-world size of the objects. Next, a “merge” step
can be used to further combine spectrally similar adjacent objects.
This tends to be useful for reducing clutter and oversegmentation
so as to generate objects that properly capture target features.
Increasing the “merge level” parameter between 0 and 100 results
in preserving only objects that are increasingly spectrally
dissimilar from adjacent or encapsulating objects. Finally, once
the image has been segmented, a series of spatial, spectral, and
texture attribute values are calculated for each object, which can
be used for subsequent object classification.  

To achieve our aim of batch-processing images, we needed to
select a set of standard segmentation parameters that was suitably
effective across many different images. As a result of variation in
scene composition, illumination and exposure among images,
optimal segmentation parameters to capture a given type of
feature vary from image to image. For example, a given set of
parameters that yields optimal segmentation of Snow Geese in
one image might tend to oversegment or omit geese in others (Fig.
3). To find a suitable compromise, we tested each training image
under varying segmentation parameters, detailed below.
Segmentation is computationally intensive, often requiring ≥ 30
min to fully process a multigigabyte orthomosaic file on our high-
end desktop computer. To accelerate the process, we used the
segmentation previewing function in the Feature Extraction
workflow, which displays the objects generated by the currently
defined parameters in a small window that can be panned over
the original image and is updated in real time when parameters
are modified. Given the large numbers of geese in many of the
images, we focused parameter testing on a sample of birds in each
image, particularly ones that were observed to have a tendency to
be oversegmented or omitted.

Preprocessing
Following initial testing, we applied two preprocessing operations
to the training images in ENVI to improve segmentation results.

First, we excluded the black rectangular backdrops encasing the
imagery in each file—composed of pixels with a value of 0 in all
image bands—by setting a “no data” value of 0. The backdrops
skewed segmentation results by introducing an artificial sharp
contrast around the edges of the imagery. Removing them better
normalized the response of the images to varying segmentation
scale and merge levels. Second, we applied a low-pass smoothing
filter that adjusted the value of every pixel to the mean of a 9-
pixel square box centered on each pixel (Laliberte and Ripple
2003). This had the effect of reducing spectral contrasts within
individual geese that tended to cause oversegmentation, while
preserving their strong contrast with the background.

Segmentation bands
We assessed segmentation effectiveness when performed on
varying combinations of the three image bands. The small image
silhouettes of geese were subject to fine-scale spatial misalignment
of the bands, with the red and blue bands often appearing slightly
shifted to either side of the green band. In addition, whereas the
contrast of geese with the background appeared generally
consistent across images in the green and blue bands, it was
noticeably more variable in the red band, appearing much sharper
in images captured under sunny/clear sky conditions than under
cloudy/overcast conditions. Consequently, we found that entirely
excluding the red band from segmentation and merging resulted
in improved delineation of geese across the training images. We
determined that performing segmentation on a combination of
the green and blue bands produced good delineation of geese
while minimizing omission of blue geese, and restricting merging
to only the green band minimized oversegmentation.

Merge algorithm
The default “full lambda schedule” merge algorithm (Redding et
al. 1999) is effective at creating a relatively clean patchwork of
objects representing predominant image features, e.g., broad
patches of vegetation or other land cover, tending to merge small
contrasting objects that might be regarded as noise into larger
encapsulating objects, and in our case increasing omission of
geese. Instead, we used the “fast lambda” algorithm (Exelis Visual
Information Solutions), which merges adjacent objects based on
their degree of spectral similarity as well as on the length of their
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Fig. 3. Example of an oversegmented bird (A) and an omitted bird (B) among adequately segmented birds and
other segmented features in aerial imagery of Canadian Arctic-breeding Lesser Snow Geese (Chen caerulescens
caerulescens).

shared border, such that larger contrasting features are more likely
to be merged than smaller ones. Thus, small bright Snow Goose
objects tended to be preserved at high merge levels while larger
features tended to be merged into a single common background
object, with the added benefit of reducing the total number of
objects generated, and consequently processing time.

Scale and merge levels
With the above operations and settings applied, we found that
optimal results across the 4- and 5-cm training images were
achieved at a segmentation scale level of 90 and merge level of
90. For the 6-cm images, a lower scale level of 85 and merge level
of 85 worked better, reflecting the fact that geese were noticeably
darker and less contrasting at this coarser resolution. We did not
succeed in achieving satisfactory segmentation of geese across the
3-cm training images using a common set of parameters because
the increased level of detail revealed at this resolution was
markedly more prone to causing oversegmentation in certain
images. As a result, we ceased analyses of 3-cm imagery at this
stage, although we consider potential approaches for analyzing
these data in the discussion.

Texture kernel
Finally, we adjusted the size of the texture kernel (Warner 2011),
a square box of pixels serving as a sampling grid that is applied
to every pixel in each object to compute the object’s texture
attributes. The value of each attribute is calculated within the
kernel for each pixel, then averaged across all pixels in the object
to arrive at a single value for the object. For pixels along the edges
of the object, the kernel crosses the boundary of the object and
includes outside pixels in the texture calculations (Fig. 4). We
exploited this “spillover” to quantify the magnitude of contrast
between geese and their immediate surroundings via the texture
range and variance attributes (Warner 2011), reasoning that while

the absolute brightness of geese varied across the imagery because
of illumination/exposure variation, their relative contrast with the
background should remain more consistent and consequently of
value for their classification. To capture an ample amount of
background surrounding each goose object, we increased the
texture kernel size from the default 3 x 3 pixels to 5 x 5 pixels for
the 5- and 6-cm imagery, and to 7 x 7 pixels for the 4-cm imagery.
This ensured that the texture kernel extended outside the object
when applied to virtually every pixel inside it, resulting in the bird-
background contrast being strongly reflected in the texture range
and variance attributes (Fig. 4). In ENVI, the kernel size must be
set prior to segmenting the image, and is then applied to texture
attribute calculations once objects have been formed. It should
be noted that a larger texture kernel size requires more processing
time for attribute calculations.

Compiling attribute data of segmented bird
objects
Once segmentation parameters were established, we executed the
full segmentation process on all training images, outputting for
each image a polygon shapefile delineating all segmented objects
and an associated attribute table containing the spatial, spectral,
and texture attribute values for each object. We then overlaid the
segmentation polygon file, the point file of manually identified
Snow Geese, and the image raster of each training image in QGIS.
Using the point layer’s attribute table, we successively zoomed to
every manually identified bird and cumulatively selected each
corresponding object in the segmentation polygon layer. We then
copied and pasted the selected rows of the polygon layer’s attribute
table, i.e., the attribute values for all objects representing geese,
into a spreadsheet. In this manner, we compiled a dataset of
attribute values for all manually identified geese throughout the
training images, with the exception of those that were omitted by
the segmentation. We also excluded oversegmented geese when
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Fig. 4. Typical pixel dimensions of a Lesser Snow Goose (Chen caerulescens caerulescens) object following
segmentation of 5-cm (left) and 4-cm (right) resolution aerial imagery, showing the surrounding area included in
object texture calculations when using a kernel size of 5 x 5 pixels and 7 x 7 pixels, respectively. The values
assigned to the pixels represent the cumulative number of times each pixel is sampled by the kernel when applied
to every pixel inside the object in the process of calculating texture attributes. With the total number of times
outside pixels are sampled approaching the number of times inside pixels are sampled, the magnitude of
contrast between birds and background is strongly reflected in the texture range and variance attributes.

there was no clearly dominant object that covered most of the
bird, as well as occasional flying geese because of their highly
variable shapes and sizes. We grouped the attribute data by image
resolution, and for each attribute at each resolution we generated
a frequency histogram and calculated the mean, standard
deviation, range, minimum, maximum, and a series of percentiles
ranging from the 1st to the 99th. These statistics were then used
to guide the development of classification rule sets to distinguish
geese from other image objects.

Developing bird object classification rule sets
We generated an initial classification rule set template using the
ENVI Feature Extraction workflow, containing a single “Snow
Goose” class that consisted of a single rule incorporating all object
attributes for which geese in the training images showed a
clustered and well-defined distribution of values, totalling 11
spatial, 12 spectral, and 12 texture attributes (see Appendix 1,
Table A1.1 for a listing of attributes and their descriptions). We
then saved the rule set as a text file, created a dedicated file for
each image resolution, and performed all further modifications
in a text editor. We adjusted the “class threshold” so that objects
would only be classified as geese if  all 35 attribute criteria were
satisfied, and set the “operation” for each attribute to “between”
to express each attribute criterion as a minimum-to-maximum
range of values.  

We determined appropriate attribute value ranges based on the
descriptive statistics for the attributes of the manually identified
Snow Geese in the training images. We assumed that the
distributions of the spatial attributes describing their size and
shape remain consistent among images at a given resolution, and
that the values recorded among geese in the training images were
therefore representative of the broader population. With a view
to minimize omission errors, we set the lower and upper thresholds
for each spatial attribute near the minimum and maximum values
recorded in the training images, conspicuous outliers excluded.
Examples of the distribution of values for four spatial attributes
among geese in the 4-cm resolution imagery are shown in Fig. 5.

Fig. 5. Frequency histograms showing the distribution of values
for four spatial attributes among 1335 manually identified
Lesser Snow Geese (Chen caerulescens caerulescens) in 4-cm
resolution aerial imagery.

Unlike the spatial attributes, we expected that the values of certain
spectral attributes of Snow Geese, namely the mean, minimum,
and maximum, could vary beyond the ranges recorded in the
training images because the broader image sets potentially
contained darker/lower exposure as well as brighter/higher
exposure imagery than captured among the training images. We
therefore set looser ranges for these attributes to accommodate
additional variation, with the lower and upper thresholds set to
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one to three standard deviations below the 1st percentile and above
the 99th percentile, respectively, of values recorded in the training
images. Because of the overall greater spectral consistency of geese
in the green band than in the red and blue bands (Fig. 6), this resulted
in generally narrower ranges for green band attributes.

Fig. 6. Frequency histograms showing the distribution of values
for the “spectral mean” attribute in each of the three image bands
among 744 manually identified Lesser Snow Geese (Chen
caerulescens caerulescens) in 5-cm resolution aerial imagery.
Greater spectral consistency of geese in the green band is evident
compared to the red and blue bands.

Similar to the spatial attributes, we set the lower thresholds for the
texture range and variance attributes, used as proxies for the
magnitude of contrast between geese and background, near the
minimum values recorded among geese in the training images,
outliers excluded. As was observed while establishing image
segmentation parameters, the contrast of geese was more consistent
in the green and blue bands than in the red band (Fig. 7). By setting
loose lower thresholds for spectral attributes while maintaining
stricter lower thresholds for these texture attributes, the rule set
allowed geese in darker imagery to be correctly classified as long as
their relative contrast with the background was sufficient. It also
prevented misclassification of nongoose objects in brighter imagery
that met the spectral criteria but did not contrast sufficiently with
the background to meet the texture range and variance criteria. We
set looser thresholds for the other texture attributes using the same
approach as with the spectral attributes.  

We performed initial tests of the classification rule sets developed
for each image resolution on the training images, prompting us to
make a series of minor adjustments to attribute value ranges in an
effort to improve the balance between omission and commission
error rates. At this stage, we observed that classification performance
was strikingly poor in the 6-cm resolution imagery, with automated
counts exceeding manual counts by an average of 3460% per image
(range = 30–13,154%, median = 783%), even after several
adjustments to the rule set. We attributed this poor performance to
the significantly darker and less distinct appearance of Snow Geese
in the 6-cm imagery than at higher resolutions (Fig. 8), which was
already evident in the need to use lower segmentation scale and
merge levels to capture them as objects. Consequently, we ceased
further testing of 6-cm imagery and focused on the 4- and 5-cm
imagery.

Batch-processing full image sets
We used IDL to write a script to sequentially process all image files
contained in a given directory in accordance with our established

Fig. 7. Frequency histograms showing the distribution of values
for the “texture range” attribute, used as a proxy for magnitude of
contrast between object and background, in each of the three
spectral bands among 744 manually identified Lesser Snow Geese
(Chen caerulescens caerulescens) in 5-cm resolution aerial imagery.
Contrast is sharpest and most consistent in the green band, and
least consistent in the red band.

Fig. 8. Frequency histograms showing the distribution of values
for the “spectral mean” attribute in the green band among
manually identified Lesser Snow Geese (Chen caerulescens
caerulescens) in 4-cm (n = 1335), 5-cm (n = 744), and 6-cm (n =
5024) resolution aerial imagery. Geese appear considerably darker
in the 6-cm imagery compared to the 4- and 5-cm imagery.

preprocessing operations, segmentation parameters, and classification
rule sets. We used the script to perform initial testing of our
classification rule sets on the training images and, following
refinement of the rule sets, to process all available imagery at 4- and
5-cm resolutions (totalling 290 files and 234 GB; see sample images
of the different colonies in Appendices 2–9) for further evaluation
of our routine’s performance. An example of the full script code is
shown and detailed in Appendix 10, Fig. A10.1. For each image, the
script outputs a polygon shapefile delineating all objects classified
as Snow Geese. When opened in a geographic information system
(GIS), the total bird count can be obtained via the layer’s attribute
table or summary statistics, and the shapefiles for multiple images,
e.g., all image files comprising a colony, can be merged into a single
file to streamline tallying of counts. The time required to batch-
process images depends on the number of files to be processed, the
size of each file, the number of objects generated by the segmentation
of each image, the kernel size for texture attribute calculations, and
the computer hardware’s performance. In some cases, several days
of continuous processing may be required, although once initiated,
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Fig. 9. Examples of typical commission errors resulting from automated object-based analysis of large volumes
of aerial imagery to detect Lesser Snow Geese (Chen caerulescens caerulescens) throughout Canadian Arctic
breeding colonies: small patches of snow around the periphery of large patches (A), clumps of ice or froth along
the edges of water (B), speckles of glint on the surface of water (C), and large bright rocks (D). Objects
classified as geese are delineated in red, all of them commission errors except those indicated by green arrows.

the process is fully automated and can be left unattended until all
files have been processed.

RESULTS
The automated analysis classified a total of 85,267 objects as
Snow Geese across all available 4- and 5-cm resolution image files.
As noted above, we found that geese had an excessive propensity
for oversegmentation in 3-cm imagery and excessively poor
classification performance in 6-cm imagery, so we did not process
the full image sets at those resolutions. To evaluate the
performance of the automated analysis, we selected at least two
images per colony (more for colonies with larger numbers of

image files) in addition to the training images, for a total of 41
test images spanning a wide range of automated counts (0–5285),
in which we performed manual counts for comparison (Table 1).  

Across the test images, the automated analysis identified 22,307
total objects as potential Snow Geese, compared to 19,836
manually counted geese, indicating significant numbers of
commission errors. The most common sources of error were small
patches of snow or ice, clumps of froth or ice along the edges of
water, speckles of glint on water surfaces, and large bright rocks
(Fig. 9). In many cases, errors of the former three types were
conspicuously clustered; for example, large patches of snow with
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Table 1. Comparison of computer-automated Lesser Snow Goose (Chen caerulescens caerulescens) counts, adjusted counts in which
conspicuous clusters of commissions errors have been removed, and fully manual counts in 41 aerial images of breeding colonies in
the Canadian Arctic. Image filenames beginning with “or” are single orthophotos whereas others are multiphoto orthomosaics.
 
Colony (year) Spatial

resolution
Image filename Auto count Adj. count Manual

count
Error (%)

Banks Island- 4 cm CanadaUTM10_004GSD_06222009_112 281 264 290 -9.0
Egg River CanadaUTM10_004GSD_06222009_52 619 576 561 +2.7
(2009) CanadaUTM10_004GSD_06222009_92 919 770 681 +13.1

CanadaUTM10_004GSD_06222009_132 1010 991 961 +3.1
CanadaUTM10_004GSD_06222009_111 1615 1454 1387 +4.8
CanadaUTM10_004GSD_06222009_131† 1919 1432 1350 +6.1
CanadaUTM10_004GSD_06222009_91 4641 3593 3826 -6.1
Colony total
 

11,004
 

9080 9056 +0.3

Cape Dominion 5 cm or17668560 0 0 0 0.0
+ Bowman Bay or17668704 3 3 2 +50.0
(2011) or17668680 7 7 7 0.0

or17667858 10 10 9 +11.1
or17663301 12 12 14 -14.3
or17668384 15 9 9 0.0
or17669001 17 17 14 +21.4
or17668158 22 22 22 0.0
or17667702 25 25 23 +8.7
or17668977† 27 27 27 0.0
or17668985 32 32 33 -3.0
or17668288† 40 40 38 +5.3
or17668264 41 41 43 -4.7
or17668170 43 31 29 +6.9
or17668360 48 35 18 +94.4
or17662957 66 63 63 0.0
FWS_SGS44_005GSD_06272011_M06 67 67 83 -19.3
or17668376† 70 27 19 +42.1
or17668240 72 72 74 -2.7
or17668200† 91 91 88 +3.4
or17668232 104 102 96 +6.3
or17668248 107 107 107 0.0
or17668208 189 189 194 -2.6
or17668224 347 347 357 -2.8
Colony total
 

1455
 

1376 1369 +0.5

Cory Bay 5 cm FWS_SGS44_005GSD_06192011_06 192 192 153 +25.5
(2011) FWS_SGS44_005GSD_06192011_05 293 265 238 +11.3

FWS_SGS44_005GSD_06192011_03† 608 331 193 +71.5
Colony total
 

1093
 

788 584 +34.9

Taverner Bay 5 cm FWS_SGS44_005GSD_06262011_12 51 51 38 +34.2
(2011) FWS_SGS44_005GSD_06262011_02† 88 88 79 +11.4

FWS_SGS44_005GSD_06262011_07 104 104 101 +3.0
FWS_SGS44_005GSD_06262011_01 127 127 119 +6.7
Colony total
 

370 370 337
 

+9.8

Banks Island- 5 cm FWS_SG46_005GSD_06222023_BANKS31† 408 339 328 +3.4
Egg River FWS_SG46_005GSD_06222023_BANKS25 2692 2684 2843 -5.6
(2013) FWS_SG46_005GSD_06222023_BANKS35 5285 5283 5319 -0.7

Colony total 8385 8306 8490 -2.2

 †Denotes images used to initially train and test automated analysis parameters.

multiple small patches misclassified as geese scattered around the
periphery, or numerous speckles of glint over the surface of a
single water basin. These clusters of errors were usually evident
at coarse zoom levels and could be rapidly deleted from the
classification polygon file (Fig. 10). For each test image, we
consequently calculated an “adjusted count” equal to the

automated count minus manually removed clusters of
commission errors, and compared manual counts to these
adjusted counts in the final evaluation (Table 1).  

After reviewing the test images to remove clusters of commission
errors (totalling 2307, or 11% of all objects classified as geese)
there remained 19,920 geese identified by the automated analysis,

http://www.ace-eco.org/vol13/iss1/art15/


Avian Conservation and Ecology 13(1): 15
http://www.ace-eco.org/vol13/iss1/art15/

Fig. 10. Coarse-scale overview of a mosaic of aerial images captured along two parallel flight lines over the
Banks Island-Egg River Lesser Snow Goose (Chen caerulescens caerulescens) breeding colony in 2009, with the
automated classification layer overlaid, showing all features classified as geese in red. A dense cluster of
commission errors caused by speckles of glint on the surface of water is evident near the top right-hand corner,
as well as errors caused by small patches of snow around the periphery of the large patches in the bottom part
of the image. Deleting these errors from the classification layer took 2 min, compared to 107 min to manually
count all geese in the image.

that is, 84 more than the manual count, for an overall error rate
of +0.4%. The overall error rate was +0.3% (automated = 9080,
manual = 9056) in the 4-cm imagery and +0.6% (automated =
10,840, manual = 10,780) in the 5-cm imagery, and the overall
error rate within individual colonies was between ±10% for all
but one colony (Table 1). The total automated count across the
eight training images had a higher overestimation rate (+12%)
than that of the overall test set, which was an expected
consequence of having selected them on the basis of containing
numerous potential confounding features that could cause
commission errors. Overall, there was a strong linear relationship
between adjusted automated counts and manual counts across
the test set (Fig. 11; R² = 0.998, P < 0.001, ß ± SE = 0.974 ± 0.007).  

The time required to review automated analysis results and
remove clusters of commission errors in all 41 test images was
35.5 min (mean = 0.9 min/image), ranging from ~10 s for a single
orthophoto containing no conspicuous clusters of errors (mean
= 0.3 min/image across all single photos) to 4 min for a large
orthomosaic containing multiple clusters of errors (mean = 1.6

min/image across all mosaics). By comparison, it took 690 min
(~20 times longer) to manually count the geese in all test images
(mean = 16.8 min/image), with count time varying considerably
among images, from ~1 min for a single orthophoto containing
no geese (mean = 3.6 min/image across all single photos) to 116
min for the most populous orthomosaic containing 5319 geese
(mean = 33.8 min/image across all mosaics). Manual count rate
in terms of birds per minute generally increased with density of
geese, and decreased in more challenging landscapes, notably
those cluttered with bright rocks.

DISCUSSION
We demonstrated how an automated analysis routine developed
using commercial off-the-shelf  OBIA software can be used to
detect and count Snow Geese in large volumes of aerial imagery
much more efficiently, in terms of person-time, than through
manual processing. Based on a systematic analysis of manually
identified geese in a small subsample of images, we established
standard image segmentation and classification parameters that
could be applied through an automated batch-processing script
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Fig. 11. Scatter plot of semiautomated counts vs. manual counts of Lesser Snow Geese (Chen
caerulescens caerulescens) in 41 aerial images of breeding colonies in the Canadian Arctic.

to produce accurate counts of geese in images taken in a range of
habitats and lighting conditions (Appendices 2–9). This
represents one of the few examples to date of successful use of
automated aerial image analysis to detect animals over such a
large and varied geographic extent (Hollings et al. 2018).  

Owing to large numbers of commission errors in some images, it
was necessary to perform a quick manual review and correction
of results, so our solution may be best described as semiautomated
or supervised. Although most of the errors were conspicuously
clustered and could therefore be rapidly identified and eliminated
at coarse zoom levels, bright goose-sized rocks were more
problematic because they tended to be scattered throughout
images and could not be efficiently removed. This resulted in
greater overestimates of bird numbers notably in images from the
Cory Bay colony (Table 1), which has a particularly rocky
landscape. Images from other colonies that produced significant
overestimates similarly contained scattered rather than clustered
commission errors. An alternative approach to reviewing results
in situations like this might be to successively zoom to and verify
each object classified as a goose using the classification layer’s
attribute table. Depending on the commission error rate, this is
likely to still be faster than manually counting geese, especially
because geese are more challenging and time-consuming to
identify visually in landscapes cluttered with confounding small
bright objects.  

There was also a variety of sources of omission errors, leading to
net underestimates of bird numbers in certain images (Table 1)
but no overall bias. Some geese were omitted in the segmentation
process, typically particularly dark and poorly contrasting birds,
oftentimes blue geese, and occasionally birds with shadows cast
over them. Further omissions resulted from the object
classification process. Flying geese were often omitted because
their size and shape tended to fall outside the ranges defined in

the rule sets. Oversegmented geese were omitted if  neither of their
constituent objects met the spatial attribute criteria (but were
included if  at least one object met all criteria; if  both objects met
the criteria, they were automatically merged into a single feature).
In other cases, automatic merging of adjacent goose objects led
to two side-by-side birds being merged into one. Occasionally,
very close-together geese were segmented as a single object and
subsequently omitted in the classification process on account of
being too large. Finally, geese with extreme values for various
object attributes were susceptible to omission, including extreme
shapes and sizes, birds in very dark/low-exposure or very bright/
high-exposure portions of imagery, and blue geese that were
insufficiently bright or contrasting.  

Our approach was achievable using 4- and 5-cm resolution
imagery, which yielded Snow Goose objects of ~20–60 pixels in
size. We found that 3-cm resolution imagery was too detailed to
achieve consistent segmentation of geese using the parameters we
tested. Nevertheless, more detailed imagery could be valuable for
manual confirmation of species identification, especially in
situations where multiple species may be present. Excessively
high-resolution imagery could potentially be resampled or
subjected to more aggressive smoothing filters to make it more
amenable to automated processing. Imagery with a 6-cm
resolution, on the other hand, was too coarse to reliably
distinguish geese from other bright objects, notably rocks, when
applying our standard classification rule set to multiple images
from different colonies. This result was not surprising because
even manual identification of geese at this resolution is noticeably
more challenging than at finer resolutions, at which their
distinctive bright white “cores” become much more visually
striking. Among all the imagery of Snow Goose colonies collected
from 2009 to 2014, only 17% (by file size) was at a resolution of
5 cm or finer, with 40% at 6 cm and 43% at coarser resolutions
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(much of it 10 cm or larger). In landscapes with no confounding
features such as boulders or patches of snow, it is possible to
manually count white objects in these coarser images and assume
that most of them are geese, although blue geese generally cannot
be distinguished. Although it may be possible to achieve effective
automated detection of geese in coarser imagery, classification
parameters would likely need to be adjusted for each colony
depending on background and lighting conditions, which is less
efficient than batch-processing all imagery with a standard set of
parameters. Collecting finer resolution imagery by flying closer
to the ground results in less area coverage for the same flying time;
for the same camera and lens, the strip width of 5-cm imagery is
17% narrower compared to 6 cm, and 50% narrower compared
to 10 cm. However, the ability to perform wholesale automated
processing of images makes it worthwhile to potentially sacrifice
area coverage in favor of higher spatial resolution. Because
traditional manual counts are only performed in a subset of
images, much of the imaged area goes unanalyzed to begin with,
so a reduction in total area coverage would not necessarily
decrease the statistical confidence of extrapolated colony
population estimates if  it becomes possible to analyze all collected
images.  

Overall, our results suggest the potential for considerable time
savings when analyzing large volumes of data compared to
manual counting, which requires thorough systematic viewing of
images at high zoom levels, even those containing few or no geese.
In our sample of test images, the time required for manual review
of automated results was only ~5% of that required to manually
count all geese. The actual time savings in a broader survey would
depend on the proportion of images with different conditions and
densities of birds. Even if  the ratio were closer to 10%, use of the
semiautomated procedure could reduce the typical person-time
required to analyze a comprehensive aerial photographic survey
of Arctic Snow Goose colonies, including thousands of individual
photos, from several months to several days. Other such
semiautomated solutions to detect birds or their nests in aerial
imagery have similarly proven to be less time-consuming than
fully manual analysis (McNeill et al. 2011, Andrew and Shephard
2017). Analysis of time savings also needs to consider initial
development time: the time required to review available imagery,
select training images, manually identify subjects, establish
segmentation parameters, compile and analyze subject attribute
data, and create classification rule sets. This process could take
from a few days to several weeks depending on the dataset. There
is also significant computer processing time required, although
when executed in a batch mode, it can run in the background
without consuming person-time. Ultimately, a method like ours
will be most beneficial where large volumes of imagery and/or
repeated monitoring of subjects over time are involved, such that
the savings exceed the set-up time.  

Our approach to establishing automated analysis parameters with
OBIA software could be used for other surveys to detect birds or
other wildlife species. With OBIA becoming increasingly
accessible through a variety of off-the-shelf  packages including
industry-standard geospatial analysis software suites, the
approach could potentially be used by anyone possessing at least
basic skills in image analysis and GIS, and executed on midrange
desktop computers that now possess sufficiently powerful
hardware to execute OBIA operations at reasonable speed. The

technique will work best with species that contrast markedly from
the background in at least some spectral bands, whether brighter
or darker. More weakly contrasting subjects could also be
detected, but would require lower segmentation levels, resulting
in greater numbers of image objects that must subsequently be
filtered out at the classification stage. Subjects with relatively
consistent size and shape (which is usually the case for birds on
the ground or water surface) are also easier to classify, whereas
birds in flight or other species with more variable sizes and shapes/
postures may be more challenging. A key advantage of our
approach is that it enables identification of all object attributes
for which target subjects present a well-defined distribution, thus
increasing the potential to achieve good detection accuracy. In
some cases, it may be possible to reduce commission error rates
to the point where manual review of automated analysis results
is not necessary, while in other cases, like ours, varying degrees of
manual postanalysis effort may be required. Although animal
contrast in thermal-infrared imagery has proven useful for
automated detection of mammals (Conn et al. 2014, Chrétien et
al. 2015, 2016, Seymour et al. 2017), the very coarse pixel
resolution of thermal cameras compared to RGB cameras
generally renders them ineffective for aerial detection of
comparatively smaller birds (Chabot and Francis 2016). It should
be noted that any aerial image-based survey will only allow
detection of subjects that are visible from overhead and miss
subjects that are, for example, concealed under canopy or diving
underwater.  

Further refinements to our approach could enable it to be
extended to more challenging situations and/or increase its
accuracy. It may be useful to try more advanced functions for
building classification rule sets, such as assigning varying weights
to different attributes, allowing tolerances for anomalous values
for certain attributes, or creating multiple rules for a subject class
that operate on an either/or basis. Multiple subject classes could
be created for multispecies or polymorphic species detection,
provided subjects of interest can be adequately captured using a
common set of segmentation parameters. Alternatively, an image
set could be batch-processed more than once with varying
segmentation parameters to capture different subjects. Even if
species cannot be reliably differentiated through automated
classification, it may still be valuable to detect them in terms of
a single or a few general classes, then manually review results one
subject at a time to identify them to the species level. Groom et
al. (2013) reported that this type of semiautomated solution was
more efficient than fully manual analysis for surveying multiple
species of birds at sea that were sparsely distributed across large
numbers of images. Other OBIA software may also be better
suited to overcome some of the challenges we encountered by
offering different segmentation options, object attributes, and/or
workflow possibilities. Options include other commercial
packages such as eCognition (Trimble), ERDAS IMAGINE
(Hexagon Geospatial, Madison, AL, USA), and Geomatica
(PCI, Markham, ON, Canada); freeware packages such as Orfeo
ToolBox (CNES, Paris, France) and InterIMAGE (Laboratório
de Visão Computacional, Rio de Janeiro, Brazil); or third-party
plugins for GIS software such as Feature Analyst (Textron
Systems, Providence, RI, USA). Ultimately, in an operational
context, an analyst must consider the time required to refine
automated detection performance in relation to time savings in
postanalysis review of images.  
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Finally, a potential variation on our approach would be to
substitute the development of a classification rule set via manual
examination of subject attributes with the use of a machine-
learning classification algorithm (Ma et al. 2017). In this case, the
manually identified target objects, i.e., birds, from the segmented
training images would serve as the input training data for the
algorithm. Selection and parameterization of attributes that
distinguish target objects would then be determined by the
algorithm. Although some wildlife detection studies have
previously employed machine learning (Torney et al. 2016,
Andrew and Shephard 2017, Longmore et al. 2017), a concern
we had in our case was the presumed challenge of a machine-
learning classifier to anticipate subject brightness variation
beyond that of the training set, which we considered crucial to
coping with the highly variable illumination and exposure levels
throughout our image set. Nevertheless, it should be noted that
advances in machine learning are proceeding at a rapid pace, with
particular promise shown by flourishing “deep learning”
algorithms (Ball et al. 2017), including some early work on wildlife
detection in remotely sensed imagery (Maire et al. 2015,
Maussang et al. 2015, Marburg and Bigham 2016).

Responses to this article can be read online at: 
http://www.ace-eco.org/issues/responses.php/1205
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Appendix 1. Attributes Used to Classify Lesser Snow Geese (Chen caerulescens caerulescens). 
 
Table A1.1. List of spatial, spectral and texture attributes used to classify Snow Geese in aerial 
imagery of Canadian Arctic breeding colonies. Each spectral and texture attribute is calculated 
for each of the image’s spectral bands (in this case, red, green and blue). Attribute descriptions 
are from ENVI 5.3 (Exelis Visual Information Solutions, Boulder, CO, USA) help files. 
 

Attribute Description 

Spatial attributes  
Area Total area of the object, minus the area of the holes. 
Length The combined length of all boundaries of the object, including the boundaries of the holes. 
Compactness A shape measure that indicates the compactness of the object. A circle is the most 

compact shape with a value of 1 / pi. 
Compactness = Sqrt (4 * Area / pi) / outer contour length 

Convexity A measure of object convexity. The convexity value for a convex object with no holes is 
1.0, while the value for a concave object is less than 1.0. 
Convexity = length of convex hull / Length 

Solidity A shape measure that compares the area of the object to the area of a convex hull 
surrounding the object. The solidity value for a convex object with no holes is 1.0, and 
the value for a concave object is less than 1.0. 
Solidity = Area / area of convex hull 

Roundness A shape measure that compares the area of the object to the square of the maximum 
diameter of the object. The "maximum diameter" is the length of the major axis of an 
oriented bounding box enclosing the object. The roundness value for a circle is 1, and 
the value for a square is 4 / pi. 
Roundness = 4 * (Area) / (pi * Major_Length2) 

Form Factor A shape measure that compares the area of the object to the square of the total perimeter. 
The form factor value of a circle is 1, and the value of a square is pi / 4. 
Form_Factor = 4 * pi * (Area) / (total perimeter)2 

Elongation A shape measure that indicates the ratio of the major axis of the object to the minor axis of 
the object. The major and minor axes are derived from an oriented bounding box 
containing the object. The elongation value for a square is 1.0, and the value for a 
rectangle is greater than 1.0. 
Elongation = Major_Length / Minor_Length 

Rectangular Fit A shape measure that indicates how well the shape is described by a rectangle. This 
attribute compares the area of the object to the area of the oriented bounding box 
enclosing the object. The rectangular fit value for a rectangle is 1.0, and the value for a 
non-rectangular shape is less than 1.0. 
Rectangular_Fit = Area / (Major_Length * Minor_Length) 

Major Length The length of the major axis of an oriented bounding box enclosing the object. 
Minor Length The length of the minor axis of an oriented bounding box enclosing the object.  

Spectral attributes  
Spectral Mean Mean value of the pixels comprising the object in band x. 
Spectral Max Maximum value of the pixels comprising the object in band x. 
Spectral Min Minimum value of the pixels comprising the object in band x. 
Spectral STD Standard deviation value of the pixels comprising the object in band x. 

Texture attributes  
Texture Range Average data range of the pixels comprising the region inside the texture kernel in band x. 
Texture Mean Average value of the pixels comprising the region inside the texture kernel in band x. 
Texture Variance Average variance of the pixels comprising the region inside the texture kernel in band x. 
Texture Entropy Average entropy value of the pixels comprising the region inside the kernel in band x. 

 



Appendix 2. Sample orthomosaic from an aerial survey of the Egg River Lesser Snow Goose (Chen caerulescens caerulescens)
breeding colony on Banks Island in the Canadian Arctic, 22 June 2009. Note that the spatial resolution of the image has been
resampled from 4 cm to 20 cm to reduce file size.
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Appendix 3. Sample orthophoto from an aerial survey of the Cape Dominion and Bowman Bay Lesser Snow Goose (Chen
caerulescens caerulescens) breeding colonies on Baffin Island in the Canadian Arctic, 25 June 2011. Note that the spatial resolution
of the image has been resampled from 5 cm to 10 cm to reduce file size.
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Appendix 4. Sample orthophoto from an aerial survey of the Cape Dominion and Bowman Bay Lesser Snow Goose (Chen
caerulescens caerulescens) breeding colonies on Baffin Island in the Canadian Arctic, 25 June 2011. Note that the spatial resolution
of the image has been resampled from 5 cm to 10 cm to reduce file size.

http://www.ace-eco.org/vol13/iss1/art15/
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Appendix 5. Sample orthophoto from an aerial survey of the Cape Dominion and Bowman Bay Lesser Snow Goose (Chen
caerulescens caerulescens) breeding colonies on Baffin Island in the Canadian Arctic, 25 June 2011. Note that the spatial resolution
of the image has been resampled from 5 cm to 10 cm to reduce file size.
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Appendix 6. Sample orthophoto from an aerial survey of the Cape Dominion and Bowman Bay Lesser Snow Goose (Chen
caerulescens caerulescens) breeding colonies on Baffin Island in the Canadian Arctic, 25 June 2011. Note that the spatial resolution
of the image has been resampled from 5 cm to 10 cm to reduce file size.
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Appendix 7. Sample orthomosaic from an aerial survey of the Cory Bay Lesser Snow Goose (Chen caerulescens caerulescens)
breeding colony on Baffin Island in the Canadian Arctic, 19 June 2011. Note that the spatial resolution of the image has been
resampled from 5 cm to 25 cm to reduce file size.
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Appendix 8. Sample orthomosaic from an aerial survey of the Taverner Bay Lesser Snow Goose (Chen caerulescens caerulescens)
breeding colony on Baffin Island in the Canadian Arctic, 26 June 2011. Note that the spatial resolution of the image has been
resampled from 5 cm to 15 cm to reduce file size.
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Appendix 9. Sample orthomosaic from an aerial survey of the Egg River Lesser Snow Goose (Chen caerulescens caerulescens)
breeding colony on Banks Island in the Canadian Arctic, 22 June 2013. Note that the spatial resolution of the image has been
resampled from 5 cm to 25 cm to reduce file size.
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Appendix 10. Code for Batch-processing Images. 
 
Fig. A10.1. Example IDL (Exelis Visual Information Solutions, Boulder, CO, USA) code to 
batch-process multiple aerial image files for automated detection of Lesser Snow Geese (Chen 
caerulescens caerulescens). The script instructs ENVI (Exelis) to sequentially open all TIFF-
format raster image files in a specified directory, including in subdirectories. For each file, ENVI 
is instructed to ignore pixels with a data value of 0, and query the file’s metadata to retrieve the 
image’s filename, spatial dimensions and list of spectral bands. A low-pass filter is then applied 
to the image, and the resulting smoothed image is saved to a specified output directory with the 
identifier “smoothraster” appended to the end of the original filename. The smoothed image is 
then passed along to the ‘Rule-Based Feature Extraction’ procedure, which is instructed to 
process the image’s full spatial extent and all spectral bands. The established image segmentation 
parameters are then applied (note that IDL identifies spectral bands 1, 2 and 3 as 0, 1 and 2, 
respectively) and classification of the resulting image objects is executed in accordance with the 
specified rule set file. Finally, a segmentation raster file as well as a polygon vector file (with the 
identifier “classifiedsnowgeese” appended to the end of the original filename) delineating all 
classified geese are saved to the output directory. Since the segmentation raster is four times the 
file size of the original image and its only purpose is to serve as the input for classification 
following segmentation, to save disk space it was not assigned a unique filename for each 
processed image file. This way, the segmentation raster generated by each successive image 
simply overwrites the file generated by the previous image. 
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