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ABSTRACT. The effects of predicted declines and potential loss of individual populations on species-level genetic diversity is unclear.
A number of taxa, including the Canada Warbler (Cardellina canadensis), share wide-ranging geographic distributions in North
American boreal forests with trailing-edge populations extending into the southern Appalachian Mountains. Trailing-edge populations
in the southern portion of a species’ ranges often harbor high levels of genetic diversity and unique genetic variants, and may be at
risk of extinction from climate change. Climate change and other anthropogenic factors are causing declines in the Canada Warbler’s
southern trailing-edge populations, and with no genetic studies to date, the effect on species-level genetic diversity is uncertain. Species-
specific microsatellite markers for the Canada Warbler were developed and validated using samples from three populations, including
a southern trailing-edge population, to investigate their utility for intraspecific population studies. Eight of the microsatellite markers
were informative for assessing genetic diversity and preliminary analysis suggests that they have potential for characterizing intraspecific
neutral genetic diversity and structure among Canada Warbler populations.

La Paruline du Canada (Cardellina canadensis) : nouveaux marqueurs moléculaires et analyse
préliminaire de la diversité et de la structure génétique
RÉSUMÉ. Les effets des baisses prédites et des pertes potentielles de certaines populations sur la diversité génétique à l'échelle de
l'espèce sont incertains. Un grand nombre de taxons, dont la Paruline du Canada (Cardellina canadensis), partagent des répartitions
géographiques très vastes dans les forêts boréales nord-américaines avec certaines populations s'étendant à la marge de l'aire de
répartition jusque dans le sud des Appalaches. Ces populations situées à la limite sud de l'aire d'une espèce présentent souvent un degré
élevé de diversité génétique et des variations génétiques uniques, et pourraient être à risque d'extinction à cause des changements
climatiques. Les changements climatiques et d'autres facteurs d'origine humaine sont responsables de baisses dans les populations
situées à la limite sud chez la Paruline du Canada, et en l'absence d'études génétiques jusqu'à présent, l'effet de la diversité génétique à
l'échelle de l'espèce est incertain. Des marqueurs microsatellites spécifiques à la Paruline du Canada ont été élaborés et validés au moyen
d'échantillons provenant de trois populations, y compris une population située à la limite sud, afin d'examiner leur utilité pour des
études populationnelles intraspécifiques. Huit des marqueurs microsatellites se sont avérés instructifs pour évaluer la diversité génétique,
et une analyse préliminaire indique qu'ils ont du potentiel pour caractériser la diversité et la structure génétique neutre intraspécifique
parmi les populations de Paruline du Canada.
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INTRODUCTION
In North America, the ranges of many species are shifting toward
higher latitudes and upward in elevation in response to recent
climate change (Parmesan 2006, Zuckerberg et al. 2009, Ralston
and Kirchman 2013, Mason et al. 2015). Populations unable to
respond to rapid environmental changes through range shifts or
adaptation will be at risk of extinction, which may cause an overall
loss of genetic diversity species-wide (Hughes et al. 1997, Davis
and Shaw 2001, Dawson et al. 2011, Frankham 2005, McInerny
et al. 2009, Pauls et al. 2013). Furthermore, loss of genetic
diversity will likely be underestimated if  cryptic diversity and
intraspecific genetic variation are not considered (Pauls et al.

2013). Populations at the leading-edge of a range expansion may
have relatively low levels of genetic diversity due to founder effects
(Cobben et al. 2011, Arenas et al. 2012). Differences in genetic
diversity between central and peripheral populations may be
slight (Eckert et al. 2008), and in some cases, regional genetic
diversity of trailing-edge populations can be high, especially when
these populations exist near glacial refugia that were relatively
stable during Pleistocene climate oscillations (Tzedakis et al. 2002,
Vucetich and Waite 2003, Hewitt 2004, Eckert et al. 2008).
Furthermore, decreased gene flow among peripheral populations
can lead to pronounced genetic structure (Bohonak 1999), and
trailing-edge populations may harbor unique alleles not found in
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other regions of the range (Petit et al. 2003, Hewitt 2004, Provan
and Maggs 2012). The possibility that some trailing-edge
populations were diverging from populations at higher latitudes
prior to recent environmental change (Hewitt 1996, Hampe and
Petit 2005, Parisod and Joost 2010) has led to calls for their
recognition as distinct ecological and evolutionary units
(Crandall et al. 2000, Fraser and Bernatchez 2001).  

The Canada Warbler (Cardellina canadensis) is a Neotropical-
Nearctic migratory species of conservation concern that,
according to the North American Breeding Bird Survey (BBS),
has been declining at a rate of 2.3% per year since 1966 (Sauer et
al. 2014). Although BBS data are not sufficient for reliably
estimating historic trends of peripheral Canada Warbler
populations in the northern boreal or southern Appalachian
Mountain regions, species distribution models predict widespread
population declines near the southern edge of the breeding range
(Matthews et al. 2004, Sauer et al. 2014). Population declines and
model projections have prompted organizations such as the North
American Bird Conservation Initiative, Partners in Flight, and
the Northeast Endangered Species and Wildlife Diversity
Technical Committee to designate Canada Warblers as high
priority for research and conservation (Reitsma et al. 2010,
Stralberg et al. 2015, 2017). In Canada, this species is listed as
Threatened under the Species at Risk Act (S.C. 2002, c.29;
Environment Canada 2016). The National Audubon Society has
classified Canada Warbler as one of 188 North American bird
species that is expected to lose more than 50% of its geographic
range by 2080 because of climate change (Langham et al. 2015).  

The breeding range of the Canada Warbler extends across the
southern boreal region of Canada into the northeastern United
States, including the Great Lakes region and Appalachian
Mountains into northeastern Georgia (Reitsma et al. 2010).
Southern Appalachian populations are patchily distributed and
restricted to habitats above 1000 m elevation (COSEWIC 2008,
Reitsma et al. 2010). Canada Warblers utilize various habitats
throughout their range, but are most common in moist, mixed
coniferous-deciduous forests (Reitsma et al. 2010, Haché et al.
2014, Ball et al. 2016). As ground nesters, they are dependent on
complex forest structure, especially dense understory vegetation
(Hallworth et al. 2008, Goodnow and Reitsma 2011, Becker et al.
2012). Adult Canada Warblers display high breeding site fidelity
(Hallworth et al. 2008), which has been documented as a
contributor to limited gene flow and strong population structure
in other songbird species (Temple et al. 2006, Coulon et al. 2008,
Walsh et al. 2012). The extent of natal dispersal is largely
unknown, although it can be as short as 500 m in North Carolina
and New Hampshire (RBC and LRR, unpublished data).  

No population studies examining genetic diversity and structure
have been conducted for the Canada Warbler and no molecular
markers for the species have been reported. Development of
neutral molecular markers for the species will facilitate studies
examining genetic diversity and connectivity across the Canada
Warbler’s range. It is unclear how the loss of peripheral
populations might impact species-level genetic diversity,
therefore, characterizing genetic diversity and distribution for the
species is needed to inform conservation and management
strategies. To address this need, we developed novel species-
specific microsatellite markers for Canada Warbler and
conducted a preliminary analysis to evaluate their utility for

intraspecies population studies. We compared a leading- and a
trailing-edge breeding population to a population located within
the central portion of the species’ breeding range. We hypothesized
that southern populations would have high levels of genetic
diversity because they occur near glacial refugia in the southern
Appalachian Mountains and that the three populations would be
genetically distinct because of geographic distances between them.

METHODS

Sample collection
Rectrices were collected from Canada Warblers breeding in three
study areas: the United States Department of Agriculture (USDA)
Coweeta Hydrologic Laboratory in Otto North Carolina, U.S. (NC,
n = 72), Canaan, New Hampshire, U.S. (NH, n = 57), and Fort
Liard in the Northwest Territories, Canada (NWT, n = 40) during
the 2014 and 2015 breeding seasons (Fig. 1). Pairwise geographic
distances between Coweeta NC-Canaan NH, Coweeta NC-Fort
Liard NWT, and Canaan NH-Fort Liard NWT are 1371 km, 3997
km, and 3856 km, respectively. Individuals were caught by mist net
and were banded with United States Geological Survey (USGS)
aluminum bands. At the NC site, approximately 100 μL of blood
was collected from the brachial vein and stored on Flinders
Technology Associates (FTATM) cards or in lysis buffer. Samples
placed on FTATM cards were allowed to dry and stored at -20 °C.
Samples in lysis buffer were stored at room temperature. Two
rectrices were obtained from each individual and placed in small
envelopes, which were stored at room temperature or -20 °C.
Samples collected in NH and Canada were subsequently
transferred to 95% ethanol for preservation and transport.

Fig. 1. Distribution map of the breeding and migratory range for
Canada Warblers (Cardellina canadensis). Sample collection sites
are indicated on map with lettered circles: (A) Coweeta, North
Carolina, USA; (B) Canaan, New Hampshire, USA; (C) Fort
Liard, Northwest Territories, Canada. (Map from The Birds of
North America https://birdsna.org; used with permission)
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Table 1. Characterization of microsatellite markers developed for Canada Warblers (Cardellina canadensis) tested on samples from a
single population in Coweta, North Carolina. N, number of individuals genotyped at each locus; k, number of alleles at each locus;
HO, observed heterozygosity; HE, expected heterozygosity; and PHW, probability that genotype proportions conform to Hardy-Weinberg
Proportions. GenBank accession numbers are listed for each microsatellite locus sequence.
 
Locus Primer Sequence Motif N k Size range (bp) H

O
H

E
P

HW
GenBank

CAWA05 F: aGGTCCCTCTCAGATGTGTCC (ATATC)11 71 9 232-272 0.732 0.768 0.6571 KY924652
R: bAGCCCTCTGATGTCTTCTCG

CAWA11 F: aATAAACTCCGTGGCTGCTG (AACAT)16 70 10 152-202 0.714 0.867 < 0.0001 KY924653
R: bCCTCTCTGCCACCTTTCC

CAWA13 F: aCCTCAAGAGCCAGAAAGC (ATGCC)17 72 14 389-454 0.917 0.898 0.7964 KY924654
R: bGGCCTAGAGACAGCTGTTG

CAWA20 F: aACCCTGTACCTTTCTCCCG (AGAT)14 71 8 375-403 0.803 0.813 0.8833 KY924655
R: bAGCTGTTACTTTGGCGAGTG

CAWA25 F: aACTTGCTTGTCACCTTGC (ATCC)17 71 11 112-196 0.648 0.835 < 0.0001 KY924656
R: bACCCTAAAGCACTCTCGAGC

†CAWA28 F: aGGAACACATGCTCTGCCTC (AAAG)25 71 32 264-484 0.915 0.956 < 0.0001 KY924657
R: bAAACGTCCTGCTTTCTGTCG

CAWA29 F: cGGACCTCTGAGCAATCTGG (AAATAG)11 70 23 435-546 0.871 0.935 0.2310 KY924658
R: bCTTTCCACAGCCCGTTGTAC

CAWA30 F: cGGTTTCACACACATCCCTCC (AAAGAG)25 69 29 285-450 0.942 0.945 0.9843 KY924659
R: bGGATGGACAGAGGGATGGAC

CAWA33 F: cTCTTTCTGCCCTCCTCTGG (AAGAG)11 72 12 214-274 0.875 0.855 0.8055 KY924660
R: bAAGATGGAACCAGGCCTCAG

†CAWA37 F: cGCTCCCATCTCTGCCATAG (AGATG)15 72 19 290-456 0.75 0.913 < 0.0001 KY924661
R: bCCTTCAATGTCACCTGTGCC

aCAG Tag (CAGTCGGGCGTCATCA)
bGTTT Tag (GTTT)
cM13 Tag (GGAAACAGCTATGACCAT)
†Markers that were removed prior to analyses because of high null allele frequencies.

DNA extraction and analysis
Total genomic DNA was isolated from individual samples of
either 10 μL of blood or single feathers using the DNEasy Blood
and Tissue® kit (Qiagen). Feather samples were macerated prior
to digestion. Individual DNA samples were genotyped using the
10 locus-specific primer pairs. Amplification reaction conditions,
thermal cycling parameters, fragment analyses, and allele scoring
were conducted as previously described in Tumas et al. (2017).

Primer development
Novel microsatellite markers were developed for population
genetic studies of Canada Warbler. Genomic DNA was isolated
from a blood sample, obtained from a Canada Warbler captured
in NC, using a DNEasy Blood and Tissue® kit (Qiagen). Total
genomic DNA was used for library preparation using the Kapa
Biosystems® KAPA LTP Library Preparation Kit for Illumina®
platforms. Paired-end sequences were analyzed using the
Illumina® NextSeq sequencing system. Paired reads were
assembled using Geneious 8.1.6 (Kearse et al. 2012) and sequences
over 150 bp in length were extracted and queried for microsatellite
loci using MSATCOMMANDER (Faircloth 2008). Of the 3300
microsatellites identified, 1100 included unique sequences
surrounding the repeats with sufficient length for primer design.
Forty-eight primers pairs were selected using repeat length, motif,
number of repeating units and primer pair penalty. Primers were
tagged as noted (Table 1). A M13, CAG, or GTTT tag was added
to the 5' terminus of locus-specific primers and amplification
reactions carried out as described in Tumas et al. (2017). The 48
primer pairs were screened for amplification consistency and
polymorphism in 30 Canada Warblers captured at the NC study

site. Loci were not tested for sex linkage and all loci that produced
inconsistent amplification or null alleles were excluded. Ten
primer pairs amplified consistently in these samples and were
subsequently used to genotype samples from the three
populations (Table 1).

Genetic diversity
Allelic data were scored using GeneMapper® 5.0 (Applied
Biosystems) and formatted for analysis using GMCONVERT
(Faircloth 2006). CERVUS 3.0 (Kalinowski et al. 2007) was used
to calculate mean number of alleles per locus (k), observed
heterozygosity (HO), expected heterozygosity (HE), and
deviations from Hardy-Weinberg Proportions (PHW). Linkage
disequilibrium (LD) was calculated using GENEPOP (Raymond
and Rousset 1995; Table 1). Arlequin (Excoffier et al. 2005) was
used to calculate HO, HE, and k for each study area. Number of
private alleles was calculated in R using the poppr package
(Kamvar et al. 2014, R Core Team 2016). Allelic richness (AR)
with rarefaction to the minimum population sample size (n) was
calculated in R using the divBasic function in the “diveRsity”
package (Keenan et al. 2013, R Core Team 2016). Significant
differences in observed heterozygosity and allelic richness were
tested between pairs of the three populations using a two sample
t-test across locus values for each metric in R.

Population differentiation
Estimates of pairwise FST values were calculated using Arlequin
(Excoffier et al. 2005). STRUCTURE 2.2 (Pritchard et al. 2000)
was used to estimate the number of genetically distinct clusters.
Both the admixture and the no admixture model were
implemented in STRUCTURE (250,000 burnin, 250,000
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additional MCMC iterations) with correlated allele frequencies,
using sampling locations as a prior (locprior) as well as without
sampling locations as a prior, and otherwise default settings. We
ran 20 iterations for each hypothesized number of genetic clusters
(K) ranging from 1 to 6. The optimal K was evaluated using two
methods, the Evanno method (Evanno et al. 2005) and the ln-
likelihood method as described in Rosenberg et al. (2001) using
the average probability per value of K. STRUCTURE
HARVESTER (Earl and vonHoldt 2012) was used to evaluate
the optimal K according to the method described in Evanno et
al. (2005).

RESULTS

Primer development
Forty-eight primers pairs were tested for amplification using 30
Canada Warbler samples from the NC study site. Ten primer pairs
consistently amplified the respective locus. Two markers
(CAWA28 and CAWA37) of the 10 microsatellite markers
validated in this study produced high null allele frequencies that
could not be resolved with subsequent regenotyping. These two
loci were excluded from subsequent analyses (Table 1).

Genetic diversity
The number of alleles per locus for the 169 genotyped individuals
ranged from 8 to 32. Overall, populations had an average observed
heterozygosity (HO) of 0.80, and an average allelic diversity (k)
of 17.5 (Table 2). Observed heterozygosity was similar for the
three populations (NC = 0.80, NH = 0.80, NWT = 0.78). Allelic
richness was highest in the NH population (13.6), intermediate
in the NC population (12.8), and lowest in the NWT population
(11.6). Observed heterozygosity and allelic richness were not
significantly different between any pair of populations based on
a two sample t-test (p > 0.05). The total number of private alleles
was 27, with 16 alleles in the NH population, 10 identified in the
NC population, and one in the NWT population.

Table 2. Number of individuals genotyped (N), observed
heterozygosity (HO), expected heterozygosity (HE), mean number
of alleles per locus (k), and private alleles.
 
Popula
tion

N H
O

H
E

k A
R

Private
Alleles

NC 72 0.80 0.86 14.5 12.8 10
NH 57 0.80 0.87 15.1 13.6 16
NWT 40 0.78 0.87 12.3 11.6 1
Overall 169 0.80 0.87 17.5 NA 27

Population differentiation
Pairwise estimates of FST indicated that the NC population was
significantly different from NH and NWT (FST = 0.008, p < 0.0001
for both comparisons), but the NH and NWT populations were
not significantly different (FST = -0.002, p = 0.883). The two
methods used to identify the optimal K from the STRUCTURE
analyses differed in their results. The Evanno method indicated
K = 2, which was consistent with STUCTURE bar plots
generated from the locprior runs that indicated a NC cluster and
a NH/NWT cluster (Fig. 2). However, structure was not apparent

in the bar plot for K = 2 for the model runs that did not include
sampling locations as a prior. The ln-likelihood method suggested
all samples belonged to a single cluster, irrespective of whether
sampling location was included as a prior.

Fig. 2. STRUCTURE output using the Evanno method
(Evanno et al. 2005) and STRUCTURE HARVESTER (Earl
and vonHoldt 2012) with (A) sampling locations as a prior and
(B) without sampling locations as a prior. Sample sites are
indicated on the X axis. NC: Coweeta, North Carolina, USA;
NH: Canaan, New Hampshire, USA; NWT: Fort Liard,
Northwest Territories, Canada.

DISCUSSION
An understanding of genetic diversity and structure is essential
for the development of science-based conservation and
management strategies for species threatened by habitat loss and
climate change. Studies suggest that although neutral genetic
diversity may not be correlated with adaptive genetic diversity,
neutral genetic variation is an important consideration in
conservation (Bonin et al. 2007, Moritz 1994) and molecular
markers are effective tools for investigating gene flow, migration,
and dispersal among populations (Holderegger et al. 2006).  

Consistent with our hypotheses, we found evidence of possible
population structure, with the southern trailing-edge population
(North Carolina) being genetically distinct from the central (New
Hampshire) and leading-edge (Northwest Territories) populations.
In contrast to our predictions, the central and leading-edge
populations did not differ from one another in spite of the large
geographic distance between them. The Northwest Territories
population did, however, have fewer unique alleles, consistent
with a more recently established population.  

Subtle genetic structure was present among the sampled Canada
Warbler populations. Pairwise FST estimates indicated low but
significant differentiation between NC and the two other
populations (FST = 0.008, p < 0.0001 for both comparisons). The
Evanno method interpretation of STRUCTURE analyses using
sampling locations as a prior (locprior) also supported the
presence of two gene pools (K = 2), with individuals sampled in
North Carolina assigned to one cluster, and individuals from
NWT and NH assigned to a second cluster (Fig. 2). Without using

http://www.ace-eco.org/vol13/iss1/art8/
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sampling location as a prior (nolocprior), the Evanno method
interpretation of STRUCTURE analysis did not support K = 2.
Analyses using the ln-likelihood method indicated the presence
of a single gene pool.  

This study suggests the possibility that the southern trailing-edge
population of Canada Warblers may be genetically distinct from
central and leading-edge populations and harbor unique genetic
diversity. Although more comprehensive sample coverage and
analyses are needed, these observations raise the possibility that
extirpation of populations in the southern range margin could
have negative genetic consequences for the species overall.
Climate-based distribution modeling predicts range shifts for 15
boreal bird species under two carbon emissions scenarios (Ralston
and Kirchman 2013) and other models predict poleward and
upslope shifts with declines or extirpation of high elevation bird
populations (Rodenhouse et al. 2007, Virkkala et al. 2008).
Trailing-edge populations of Canada Warblers already occur at
the highest elevations in much of the southern Appalachians, so
shifts in elevation are not possible. Species can persist in new
conditions brought on by climate change through adaptation
(Hoffmann and Sgrò 2011) or shifting their range (Chen et al.
2011). However, if  the environment is changing more rapidly than
the species can respond with adaption or range shifts, this may
lead to extirpation (Davis and Shaw 2001, Dawson et al. 2011,
Stralberg et al. 2015). This may also be the case for much of the
biodiversity found in the southern Appalachian Mountains,
which represents the low latitude range limit of numerous taxa
(Stein et al. 2000).  

Trailing-edge populations of Canada Warblers may be genetically
distinct from populations at higher latitudes in the central and
leading-edge of the species’ range, and harbor unique genetic
diversity. However, more comprehensive sampling throughout the
breeding range is needed to gain a more complete understanding
of the spatial distribution of genetic diversity. Future studies
should also attempt to understand the extent to which divergence
of southern Appalachian populations is adaptive or the result of
drift (Weeks et al. 2016).

Responses to this article can be read online at: 
http://www.ace-eco.org/issues/responses.php/1176
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