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ABSTRACT. Detecting presence and inferring absence are both critical in species monitoring and management. False-negatives in any
survey methodology can have significant consequences when conservation decisions are based on incomplete results. Marsh birds are
notoriously difficult to detect, and current survey methods rely on traditional labor-intensive methods, and, more recently, passive
acoustic monitoring. We investigated the efficiency of passive acoustic monitoring as a survey tool for the cryptic and poorly understood
Eastern Black Rail (Laterallus jamaicensis jamaicensis) analyzing data from two sites collected at the Tom Yawkey Wildlife Center,
South Carolina, USA. We demonstrate two new techniques to automate the reviewing and analysis of long-duration acoustic monitoring
data. First, we used long-duration false-color spectrograms to visualize the 20 days of recording and to confirm presence of Black Rail
"kickee-doo" calls. Second, we used a machine learning model (Random Forest in regression mode) to automate the scanning of 480
consecutive hours of acoustic recording and to investigate spatial and temporal presence. Detection of the Black Rail call was confirmed
in the long-duration false-color spectrogram and the call recognizer correctly predicted Black Rail in 91% of the first 316 top-ranked
predictions at one site. From ten days of continuous acoustic recordings, Black Rail calls were detected on only four consecutive days.
Long-duration false-color spectrograms were effective for detecting Black Rail calls because their tendency to vocalize over consecutive
minutes leaves a visible trace in the spectrogram. The call recognizer performed effectively when the Black Rail call was the dominant
acoustic activity in its frequency band. We demonstrate that combining false-color spectrograms with a machine-learned recognizer
creates a more efficient monitoring tool than a stand-alone species-specific call recognizer, with particular utility for species whose
vocalization patterns and occurrence are unpredictable or unknown.

Détection du Râle noir de l'Est au moyen d'une analyse semi-automatique d'enregistrements
acoustiques de longue durée
RÉSUMÉ. La détection de la présence et l'inférence de l'absence sont toutes deux essentielles au suivi et à la gestion des espèces. Dans
toute méthodologie de suivi, les faux négatifs peuvent avoir des conséquences importantes lorsque les décisions en matière de
conservation reposent sur des résultats incomplets. Il est bien connu que les oiseaux de marais sont difficiles à détecter, et les méthodes
de suivi actuelles sont fondées sur des méthodes traditionnelles plus laborieuses et, plus récemment, sur le suivi acoustique passif. Nous
avons étudié l'efficacité du suivi acoustique passif  comme outil de suivi pour le Râle noir de l'Est (Laterallus jamaicensis jamaicensis),
espèce cryptique et mal connue, en analysant les données provenant de deux sites au Tom Yawkey Wildlife Center, en Caroline du Sud,
aux États-Unis. Nous démontrons deux nouvelles techniques pour automatiser l'examen et l'analyse des données de suivi acoustique
de longue durée. Tout d'abord, nous avons utilisé des spectrogrammes de longue durée en fausses couleurs pour visualiser les 20 jours
d'enregistrement et confirmer la présence des cris "kickee-doo" du Râle noir. Ensuite, nous avons utilisé un modèle d'apprentissage
automatique (Random Forest en mode régression) pour automatiser l'analyse de 480 heures consécutives d'enregistrement acoustique
et examiner la présence spatiale et temporelle. La détection du cri du Râle noir a été confirmée dans le spectrogramme de longue durée
en fausses couleurs et l'outil de reconnaissance du cri a correctement prédit le Râle noir dans 91 % des 316 prédictions les mieux classées
à un site. Sur dix jours d'enregistrement acoustique continu, les cris du Râle noir n'ont été détectés que quatre jours consécutifs. Les
spectrogrammes de longue durée en fausses couleurs ont été efficaces pour détecter les cris du Râle noir, car la tendance de cet oiseau
à vocaliser pendant plusieurs minutes consécutives laisse une marque visible dans le spectrogramme. L'outil de reconnaissance des cris
a été efficace lorsque le cri du Râle noir était l'activité acoustique dominante dans sa bande de fréquence. La combinaison de
spectrogrammes en fausses couleurs et d'un outil de reconnaissance à apprentissage automatique constitue une méthode de suivi plus
efficace qu'un outil autonome de reconnaissance de cris spécifiques à une espèce; cette combinaison est particulièrement utile pour les
espèces dont les modèles de vocalisation et l'occurrence sont imprévisibles ou inconnus.
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INTRODUCTION
Detecting presence and inferring absence are critical in the
monitoring and management of species. Because species vary in
detectability between sites or seasons, and are frequently present
but not detected, conventional monitoring methods may provide
misleading information about occurrence patterns, constraining
efforts to manage populations. In many study designs there is the
assumption (rarely expressed but frequently implied) that a
standardized survey protocol ensures comparability but, unless
sample completeness is estimated, comparability is unknown
(Watson 2017). As no population estimate is free from bias, some
methodologies then adjust for the detection probability (Lieury
et al. 2017). There are two approaches to maximize comparability
of samples with differing detection probabilities: (1) to
statistically adjust estimates of site occupancy using species
detection probabilities (ideally, collected contemporaneously),
and (2) to determine the minimum sampling effort required to
adequately represent the communities (de Solla et al. 2005; Pellet
and Schmidt 2005). Failure to detect a species in an occupied
habitat patch is a common sampling problem, particularly when
the population is small, the individuals are difficult to detect, or
sampling effort is inadequate (Gu and Swihart 2003).  

The sampling effort required to detect some species can be
unacceptably high where it requires long hours of labor-intensive
field work. There is an additional risk of habitat disturbance when
employing methods such as call-playback, or dogs to promote
flushing or nest searching (Bibby et al. 1992, Peterson et al. 2015).
To reduce the human-induced impacts on species behavior and
to extend data collection capabilities through time and space,
researchers are increasingly using passive acoustic monitoring.
The method is suitable for a wide range of species and habitats:
marine species (Parmentier et al. 2018, Sousa-Lima et al. 2013),
mammals (Collier et al. 2010), freshwater ecosystems (Linke et
al. 2018), invertebrates (Fischer et al. 1997), bats (Estrada-Villegas
et al. 2010), anurans (Crouch and Paton 2002), and more recently,
marsh birds (Sidie-Slettedahl et al. 2015, Drake et al. 2016, Bobay
et al. 2018, Schroeder and McRae 2019, Znidersic et al. 2020).  

The Eastern Black Rail (Laterallus jamaicensis jamaicensis) is the
smallest, most secretive, and least understood marsh bird
breeding in North America (Davidson 1992, Legare and
Eddleman 2001). It is listed in six US states as endangered and is
a federally listed threatened species (Endangered Species Act -
Section 4(d) Rule, 2020) (U.S. Fish and Wildlife Service 2020).
Salt marshes are their primary habitat, but they are also found in
impoundments, freshwater wetlands, coastal prairies, and
grasslands. Targeted surveys for this species typically consist of
point count surveys including intermittent conspecific call-
playback conducted by one or more trained human observers
(hereafter call-playback surveys, Conway et al. 2004). Little
information is documented about their natural vocalization
strategies without the bias of a human observer and call-playback
to elicit a response. However, call-playback can induce movement
and therefore disturbance, which in turn can lead to false-
negatives and reduced precision in species-habitat modeling.
Observed diel timing of vocalization activity varies across the
species range and includes reports of primarily nocturnal
vocalizations in Maryland (Weske 1969) and reports of early
morning and late evening vocalizations in Arizona (Conway et

al. 2004) and Florida (Eddleman et al. 2020). In addition to the
apparent variability in the diel timing, the inconsistencies in vocal
responsiveness to call-playback among different stages of the
breeding cycle (Legare et al. 1999) contributes to low detection
probabilities (Conway et al. 2004), making call-playback surveys
difficult and costly. Recent efforts have therefore implemented
passive acoustic monitoring for detecting Black Rail (Bobay et
al. 2018).  

While acoustic monitoring has significant advantages over call-
playback survey approaches, the acquired acoustic recordings
(sometimes many Gigabytes and even Terabytes), require expert
review by aural and/or computational means. This poses a new
set of data management and analysis challenges. Skills that were
associated with computer science are now required by ecologists
to obtain and then interpret results.  

Call recognizers have been developed to automate species
detection in acoustic datasets and are available in multiple open
source and proprietary software such as RavenPro (Charif  et al.
2008), WEKA (Frank et al. 2016), and Kaleidoscope (Wildlife
Acoustics 2017). The preparation of an automated recognizer is
especially useful where an ecologist must scan many days of data
to determine the presence/absence of a species. However, building
a recognizer takes both time and skill, and their success is often
confounded by a high rate of false-positive and false-negative
detections (Bobay et al. 2018, Priyadarshani et al. 2018). Long-
duration false-color (LDFC) spectrograms offer a novel way to
interpret soundscapes obtained from very long acoustic
recordings (Towsey et al. 2014). As a visual tool, they are useful
to identify broad taxonomic groups, such as frogs, bats, or birds,
as well as individual species (Towsey et al. 2018b, Znidersic et al.
2020).  

Here, we combine the LDFC spectrogram technique with a call
recognizer to detect the Black Rail "kickee-doo" call (Robbins et
al. 1983) in long-duration acoustic recordings. We demonstrate
how Eastern Black Rail (hereafter referred to as Black Rail) calls
are discernible in LDFC spectrograms, and we supplement this
approach with an automated call recognizer. In addition, we
compare the effectiveness of our approach with previous methods
to monitor the subspecies across its range in the USA, allowing
for independent validation of both survey effort and sampling
efficiency. Finally, we discuss how the sampling duration and
distance between acoustic monitoring points are critical for
species detection.

METHODS

Study Area
All recordings were obtained at the Yawkey Wildlife Center, in
Georgetown, South Carolina. The Centre includes three coastal
islands (North and South Islands, and most of Cat Island) at the
mouth of Winyah Bay (33° 14′ 56.89′′ N, 79° 15′ 54.12′′ W). It
encompasses over 9712 hectares of natural marsh, managed
wetlands, forest openings, ocean beach, longleaf pine forest, and
maritime forest. Yawkey Wildlife Center is managed by the South
Carolina Department of Natural Resources as a wildlife preserve,
research area, and waterfowl refuge and has restricted access to
the public.
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Fig. 1. Long-duration false-color (LDFC) spectrogram for Site A (top) and Site B (bottom) from 23 April 2016. X-axis is 24 hours
(midnight to midnight), y-axis 0–11,000 Hz. The yellow rectangle on the top spectrogram shows the concentrated vocalization
period (20:55–22:30 hr) of Black Rail calls at Site A. The same calls are not visible in the spectrogram from Site B.

Data collection
Two SongMeter-3 (SM3) acoustic sensors (Wildlife Acoustics,
2017) were deployed from 20 April to 30 April 2016, programmed
to record "continuously" (24×1-hour WAVE files per day) in
stereo at a sampling rate of 22.05 kHz. The sensors were powered
by four D-cell batteries. They were affixed to a metal stake with
cable ties and positioned ~80 cm above the ground. The acoustic
sensors were deployed at established call-playback survey points
which were sited on the edge of an impounded marsh, at locations
separated by 490 m. These two sites will henceforth be referred to
as Site A and Site B.

Data visualization using long-duration false-
color (LDFC) spectrograms
We used the open-access software package Ecoacoustics Analysis
Programs (Towsey et al. 2018a) to calculate spectral acoustic
indices at one-minute resolution and to produce long-duration,
false-color (LDFC) spectrograms (Towsey et al. 2014). Each
spectrogram condenses 24 hours of recording (midnight to
midnight) into a single image, making it possible to see the entire
acoustic landscape in a single view. To calculate spectral indices,
we converted each one-minute segment of audio to an amplitude
spectrogram by calculating a Fast Fourier Transform (with
Hamming window) for each non-overlapping frame (width = 512
samples). Each spectrum of 256 amplitude values (bin width
= ~43.1 Hz) was smoothed using a moving average filter (width
= 3) after which, the Fourier coefficients (A) were converted to
decibels using dB = 20×log10(A). In addition to the amplitude
and decibel spectrograms, we prepared a third noise-reduced
spectrogram by subtracting the modal decibel value of each
frequency bin from every value in the bin (after Towsey 2017).  

Three acoustic indices were calculated for each frequency bin of
each one-minute recording segment. Each index can be viewed as
a mathematical function summarizing some aspect of the
distribution of acoustic energy in the frequency bin from which
it is derived (Towsey et al. 2014). We calculated the Acoustic
Complexity Index (ACI; Pieretti et al. 2011), the Temporal
Entropy Index (ENT; Sueur et al. 2008), and the Event Count
Index (EVN; Towsey 2017). These three indices were combined
by assigning ACI, ENT and EVN to the red, green, and blue
channels respectively, to produce a single 24-hour LDFC
spectrogram (Fig. 1). In this spectrogram, high values of the ACI
index (red color) in a frequency bin indicate rapid changes in
acoustic intensity from one timeframe to the next, over one
minute; high values of the ENT index (green color) indicate a
concentration of acoustic energy in just a few timeframes over
one minute; and high values of the EVN index (blue color)
indicate a large number of separate acoustic events over one
minute. Different sound sources contribute differentially to the
three indices and hence the great variation in color.

Preparing a regression recognizer using
acoustic indices
The same three spectral acoustic indices (ACI, ENT, EVN) can
also be understood as acoustic features that can be used for
machine learning purposes. Typically, a machine learning
approach is used to predict individual calls or call syllables and
the acoustic features will be derived at millisecond scale. However,
our indices are calculated at one-minute resolution, and the Black
Rail may call several times in one minute. Consequently, rather
than training a binary recognizer to predict presence/absence of
a call, we trained a Random Forest recognizer (RF) on a
regression task, that is, to predict the number of Black Rail calls
in a one-minute segment of recording.  
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Fig. 2. (a) A 3-hour sample (01:00 to 03:00 hr) from the 24-hour long-duration false-color (LDFC)
spectrogram of Site A, 21 April 2016. (b) A 7-second portion of standard grey-scale spectrogram
extracted from the same period. The vertical axis (0–8 kHz) is the same for both spectrograms. The grey-
scale spectrogram illustrates three ‘kickee-doo’ calls of the Black Rail. These can be identified in the long-
duration false-color (LDFC) spectrogram within the yellow rectangle. The horizontal axis (x-axis) in the
left spectrogram spans three hours; in the right spectrogram, seven seconds.

Building and testing the regression call recognizer involved five
steps:  

1. Labelling recording segments: Two complete days of
recording from Site A (21 April 2016 and 23 April 2016)
were labeled at one-minute resolution (1,440 minutes for
each day), each minute annotated with the number of Black
Rail calls in that minute. To determine the actual number of
calls per minute, one of us (E. Znidersic, whose area of
expertise is marsh birds) used a combined approach of
visually examining standard grey-scale spectrograms and
aurally reviewing the audio recordings to count the calls.
The 1,440 minutes of 21 April 2016 included 270 minutes
containing one or more Black Rail calls. The remaining
minutes contained zero calls. The 1,440 minutes of 23 April
2016 included 248 minutes containing one or more calls.
Black Rail calls occurred during day and night of both days.
The 21 April recording was used for training purposes and
the 23 April recording for testing. 

2. Preparing datasets: Selecting a training set required careful
consideration. A single Black Rail call has a duration of less
than one second, but the acoustic features were extracted at
one-minute resolution. There were many minutes when
other bird species were calling in the same frequency band
as the Black Rail and the inclusion of these minutes for
training purposes would have confounded the recognizer.
We therefore selected for training purposes, only those
minutes in the 21 April 2016 recordings where Black Rail
calls were the dominant acoustic component in its frequency
band. The resulting training set consisted of 1,301 instances
(an instance is a one-minute segment of recording),
including 1,170 (90%) instances containing zero calls and
131 (10%) instances containing up to 18 calls. 

3. Training the recognizer: The annotated data were used to
train a Random Forest recognizer for the regression task of
predicting the number of Black Rail calls in each minute of

recording. We implemented three recognizers using the open
source WEKA Machine Learning software (Frank et al.
2016): Multilayer Perceptron, SMOreg (a regression
implementation of a support vector machine), and Random
Forest, all with default parameters. The support vector
machine and Random Forest performed equally well and
better than the Perceptron. However, the support vector
machine in regression mode took approximately ten times
longer to train, thus we present results only for Random
Forest. 

4. Optimising the feature set: We used 10-fold cross-validation
performance to optimize the feature set. The dominant
components of the Black Rail call lie between 1000-3000 Hz
(Fig. 2) which includes 46 frequency bins. However,
including additional frequency bins on either side improved
performance and the final feature set consisted of 159
features, 53 from each of the ACI, ENT, and EVN indices. 

5. Determining performance on the test set: We assessed
performance on a previously unseen test set by applying the
trained recognizer to the 1,440 one-minute instances
recorded on 23 April 2016. 1192 instances contained zero
calls and 248 instances contained from 1 up to a maximum
of 31 calls. In addition, the recognizer was applied to all
recordings from Site A and Site B from 20 April 2016 to 30
April 2016.

RESULTS

Identification of Black Rail calls in
spectrograms
We collected approximately 480 hours of continuous acoustic
recording from the two sites (A and B) with two acoustic sensors
running simultaneously on the Yawkey Wildlife Center from 20
April to 30 April 2016. It was not possible to review such a large
amount of data using grey-scale spectrograms at the standard
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Fig. 3. Prediction of Black Rail calls by the Random Forest (RF) recognizer, trained on positive “clean” instances only. Black line =
actual counts; Red line = predicted counts. X-axis is one day from midnight to midnight and the Y-axis is the number of Black Rail
calls per minute. Note that the “clean” positives occur after 19:50 hr, and the recognizer failed to predict Black Rail calls when it was
windy or when other birds were vocalizing.

30-60 second timescale. Instead we searched all 20 LDFC
spectrograms looking for potential Black Rail "kickee-doo" traces
in the 1.5-3.0 kHz frequency band. These were then checked
against standard grey-scale spectrograms of the same one-minute
instances (both aurally and visually) (Fig. 2b) and with practice
it was possible to recognize "kickee-doo" calls in LDFC
spectrograms. They appear as a green line just below 3.0 kHz and
the pink/mauve color around the 1.5 kHz frequency (Fig. 2a). In
general, however, it should be noted that the appearance of bird
calls in a false-color spectrogram (that is, their color and
saturation) will vary depending on the number of calls per minute,
their amplitude, and of course the variability of the call.

Performance of the call recognizer on the
test-day recordings
We compared the predicted versus actual calls per minute on the
test recording from 23 April 2016 at Site A (Fig. 3). The closest
correlation between actual and predicted calls occurred between
1950 hours and 2300 hours where Black Rail calls were the
dominant acoustic activity in its bandwidth. By comparison, the
recognizer performed poorly during an interval of windy
conditions from 0050 hours to 0540 hours and when other birds
were chorusing (from 1750 hours to 1950 hours). This result was
not unexpected because we trained the Random Forest recognizer
only on positive ("clean") instances where the Black Rail call was
dominant in its frequency band.  

The actual calling rate of Black Rail was higher during periods
of wind or when other species were calling - up to 31 calls per
minute as at 0530 and 1925 hours (Fig. 3). When there was little
other acoustic activity in the Black Rail frequency band, the
maximum number of calls per minute reduced to a maximum of
14 (2100 hour) (Fig.3).  

When used operationally, the predictions of a recognizer are
typically ordered from highest prediction score to lowest, and they
are verified in order until the level of false-positive predictions
becomes unacceptably high. We show the results of this approach
in Table 1, where the predictions are grouped into ranked blocks
of 25, with the number of false-positive predictions per block of
25 shown in the right-most column. A false-positive in this context
is a one-minute instance that is predicted to contain at least one
Black Rail call but contains zero calls. There were eight false-
positive predictions in the first 100 ranked predictions (precision 
= 92%, where precision is defined as TP/(TP+FP)) and a total of
25 in the first 150 predictions (precision = 83%). The graph of
predicted call counts over 24 hours (Fig. 3) indicates that
predictions at or below a threshold of three calls per minute are
unreliable and that this is a suitable cut-off  point. This threshold
was reached at the 120th ranked prediction (Table 1), at which
point there were accumulated 14 false-positive errors. The first
120 predictions also included two correct predictions in the early
morning "windy" part of the day. The confounding species in the
bird chorus was primarily Chuck-will’s-widow (Antrostomus
carolinensis), whose call lies in the 1.2-2.5 kHz frequency band).  

To determine the recall (defined as TP/(TP+FN)) of the
regression recognizer, we defined a false-negative as occurring
when the regression score for a one-minute instance was 3.0 or
below and the minute contained one or more calls. As noted above,
we considered three calls per minute as a threshold below which
the recognizer would not be expected to perform accurately. Of
the 248 minutes containing at least one Black Rail call, 106 were
correctly predicted. Thirty-four of the false-negative predictions
were obtained from minutes containing three or fewer actual calls
(Table 2). The remaining false-negative predictions could be
accounted for by the presence of additional acoustic sources in
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the 1-3 kHz band, for example wind, other bird species, and
anthropogenic noise (Table 2).

Table 1. Random Forest (RF) recognizer results from the test day
23 April 2016, Site A. Predicted call counts were ranked from
highest to lowest and compared with actual counts. The number
of false-positive predictions are shown in blocks of 25 for the top
150 ranked predictions. A false-positive in this context is a one-
minute instance that is predicted to contain at least one Black Rail
call but contains zero calls.
 
Prediction Rank Prediction scores Number of false-

positive predictions

1-25 9.03-7.09 0
26-50 7.08-5.81 2
51-75 5.74-4.66 1
76-100 4.53-3.89 5
101-125 3.87-2.79 8
126-150 2.77-2.28 9

Table 2. The number of true-positive and false-negative
predictions for Black Rail calls on the test day, 23 April 2016, Site
A. A false-negative in this context is a one-minute instance that
receives a prediction score of <3.00 but contains at least one Black
Rail call. Most of the false-negative predictions are due to other
acoustic activity in the 1.0–3.0 kHz band.
 
Prediction
status

Other acoustic activity in the 1-3
kHz.

Number of
minutes

True-positive Insignificant 106
False-negative Actual Black Rail call rate ≤ 3 calls

per minute
34

False-negative Wind noise 64
False-negative Calls of other bird species 38
False-negative Anthropogenic noise 3
False-negative Lower portion of cicada-chorus 3

Total 248

Recognizer performance over all recordings
We calculated Black Rail prediction scores for every minute of all
recordings from 20-30 April 2016 at both Sites A and B (a total
of approximately 480 recording hours). We verified the
predictions (ranked by prediction score) down to a minimum
prediction of 4.0 calls per minute. Sites A and B were ranked and
verified separately for comparison. For Site A, this resulted in 316
predictions to verify (scores ranging from 13.45 to 4.01) and for
Site B, 84 predictions (scores ranging from 7.35 to 4.01). There
were no false-positives in the top 84 Site A predictions (precision
= 100%) whereas all 84 Site B predictions were false-positives.
The top 316 predictions for Site A yielded 287 true-positive and
29 false-positive predictions (precision = 91%) (Table 3). Detected
Black Rail calls were confined to four consecutive days at Site A
(21-24 April 2016) from the 10-day deployment (Table 4). There
were no true-positive calls detected at Site B. False-positives at
both Sites A and B were due to the confounding calls of Chuck-
will’s-widow, Common Gallinule (Gallinula galeata), and Red-
winged Blackbird (Agelaius phoeniceus). Although no actual
Black Rail calls were detected at Site B, we confirmed that there

was no correlation between the scores for Sites A and B by plotting
the predictions for Sites A and B when ranked by the Site A
prediction score (Fig. 4). The LDFC spectrograms for the two
sites on the test day (23 April 2016) are shown in Figure 1. A
concentration of actual Black Rail calls is shown enclosed in the
yellow rectangle in the top LDFC spectrogram for Site A. A
corresponding trace does not occur at the same time in the LDFC
spectrogram for Site B.

Table 3. Random Forest (RF) recognizer results from the 21–30
April 2016 for Site A (316 instances) and Site B (84 instances).
Predicted call counts were ranked from highest to lowest and
compared with actual counts for the top predictions at each site
above the call prediction threshold of 4.0.
 
Prediction
Rank

Site A.
Prediction

scores

Site A.
False-

positives

Site B.
Prediction

scores

Site B.
False -

positives

1-25 13.45-8.63 0 7.35-5.24 25
26-50 8.59-7.52 0 5.23-4.63 25
51-75 7.51-7.05 0 4.63-4.22 25
76-84 7.04-6.89 0 4.2-4.01 9
84-100 6.85-6.54 2 n/a n/a
100-125 6.52-6.08 1 n/a n/a
125-150 6.04-5.66 2 n/a n/a
150-175 5.63-5.29 3 n/a n/a
175-200 5.28-4.93 1 n/a n/a
200-225 4.92-4.76 1 n/a n/a
225-250 4.75-4.58 7 n/a n/a
250-275 4.58-4.30 4 n/a n/a
275-300 4.30-4.14 4 n/a n/a
300-316 4.13-4.01 4 n/a n/a

Table 4. The number of Black Rail predictions, true-positive calls
and false-positive calls by day (20 April 2016 to 30 April 2016) at
Site A.
 
Date Predicted

positive calls
True-positives False-positives

20 April 2016 0 0 0
21 April 2016 94 94 0
22 April 2016 26 26 0
23 April 2016 94 87 7
24 April 2016 84 80 4
25 April 2016 7 0 7
26 April 2016 3 0 3
27 April 2016 1 0 1
28 April 2016 1 0 1
29 April 2016 2 0 2
30 April 2016 4 0 4

DISCUSSION
Marsh birds are an ideal group to investigate monitoring and
survey effort, both from the point of view of methodology and
conservation. Despite growing concern about range-wide declines
in this group, current monitoring protocols are reliant on labor-
intensive potentially biased call-playback surveys, and, more
recently, passive acoustic monitoring. From a methodology
viewpoint, the utility of monitoring techniques is best discussed
in terms of effectiveness and efficiency. Efficiency, in turn, involves
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trade-offs between costs and benefits. The increasing popularity
of passive acoustic monitoring is due to its efficiency — greatly
increased effort (actual recorded time saved to SD cards) at greatly
reduced cost (time spent by trained staff  in the field). Increased
effort is a desirable feature when monitoring a cryptic species such
as the Black Rail, which has an irregular calling behavior (Legare
et al. 1999). Conway et al. (2004) demonstrated that an effort of
up to 15 call-playback survey replicates would be required to
attain a 90% detection probability of California Black Rail
(Laterallus jamaicensis coturniculus). The requirement for such
high survey effort is usually associated with greatly increased time
in the field (Thomas and Marques 2012) and increased risk of
incorrectly inferring "absence".

Fig. 4. The Black Rail prediction scores for Site A (gray) and
Site B (red) when ranked by the first 83 Site A prediction
scores. Site B predictions indicate no correlation for the same
minute. Black Rail calls were not detected by the recognizer on
the dataset collected from Site B.

Recognizer performance
The increased efficiency of passive acoustic monitoring comes at
a cost, namely the increased requirement for data storage and
automated analysis, both of which require computational skills
that are not always part of an ecologist's training. Consequently,
cost/benefit decisions around data analysis can become an
important component of monitoring decisions. As an example, a
machine-learned recognizer, trained to detect Black Rail calls,
yielded only 91 true positives from 11,872 predictions for a
precision of 0.77% (Bobay et al. 2018). In this case, cost saving in
the field was offset by the cost of processing a large volume of
recognizer output. As these authors note, the inability to achieve
accurate analysis of acoustic data can deter ecologists from
applying passive acoustic monitoring.  

Generally, more acoustic data is collected than can be listened to
or visually reviewed, so the standard approach is to train a
recognizer to detect vocalizations of the target species. Besides
the possible software costs and time required to learn the software,
there are additional significant time costs in assembling labeled
datasets and verifying recognizer performance. These latter costs
should not be underestimated and the old adage, "rubbish in -
rubbish out", is worth keeping in mind.  

The ability to visualize our 20 days of recording in 20 LDFC
spectrograms was an important contribution to the success of this
monitoring exercise. The alternative would have been to review
28,800 standard scale spectrograms of one-minute duration.
Interpreting LDFC spectrograms requires the ecologist to have a

broad appreciation of the soundscape variability and the
vocalizing species contributing to the recording. Only when major
features in an LDFC spectrogram and their variability are
understood, should attention be turned to the less obvious
features that may reveal a rare or cryptic species such as Black
Rail.  

It is worth noting that a major difficulty in problem-solving with
call-recognition software (such as Song-Scope, Kaleidoscope,
RavenPro, and MonitoR) can be determining whether bad results
are due to incorrect use of the software or whether the acoustic
feature set used by the recognizer is inappropriate for the call of
interest. An advantage of using LDFC spectrograms in
conjunction with machine-learning is that, if  one can visualize
the call of interest in an LDFC spectrogram, then the underlying
acoustic indices offer a useful set of acoustic features that can be
used for machine-learning purposes.  

Before training the recognizer for this study, we made an
important decision involving a cost-benefit trade-off, namely, to
train the recognizer on a regression task (predict the number of
calls per minute) rather than the usual binary classification task
(predict presence/absence of a single call). Three difficult
questions must be answered when preparing a dataset for the
binary classification task: 1. how to determine the boundaries
when cutting out individual calls, 2. how to decide which calls to
select for training, and 3. what acoustic features to extract to
optimize classification accuracy. For the regression task in this
study, these difficulties are reduced: 1. it is easier to count calls
per minute over consecutive non-overlapping minutes, 2. all calls
are counted, and 3. the feature set was the same as that used to
construct the LDFC spectrograms. Indeed, our ability to visualize
Black Rail calls in the LDFC spectrograms informed us that
spectral indices would make suitable features for the regression
task. The cost associated with extracting features at one-minute
resolution was the increased probability that other acoustic events
would confound recognition of Black Rail calls, leading to a
higher number of false-negative predictions.  

Of the 248 test-day minutes containing at least one Black Rail
call, 142 were not detected by the recognizer, an implied false-
negative rate of 57%. An analysis of these 142 minutes revealed
that 108 were due to the confounding presence of other acoustic
sources and 34 were due to the actual call rate being below 3 calls
per minute where recognizer performance was unreliable. A
weakness of working at one-minute resolution is that our method
only detects Black Rail calls in those minutes where they are
dominant in their frequency band. However, when this condition
was satisfied, the false-negative rate was 14% (34/248, the fraction
of calling minutes below 4 calls per minute).  

A question arises concerning lack of detection of Black Rail calls
at Site B and whether a call recognizer trained on recordings from
Site A would be reliable when analyzing recordings from Site B.
As a rule-of-thumb, the training, validation, and test sets that
determine the performance of a machine-learned model should
be representative of the intended operational environment. Sites
A and B were 490 meters apart and acoustically isolated. However,
they were within the same impounded marsh and had the same
vegetation composition and structure. Therefore, we are confident
that sites A and B were sufficiently similar both acoustically and
biologically, that Black Rail would have been detected during the
10-day deployment if  it had been present.  
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We conclude that the recognizer prediction error rates are within
acceptable bounds subject to two important conditions: 1. the
target bird species is the dominant sound source in its frequency
band in some of its calling minutes; and 2. the field recordings
have sufficient spatial and temporal cover to detect target calls if
they occur. This brings us to the issue of spatial cover and survey
point placement.

Survey point placement
Incorrectly inferring absence is a critical issue with all monitoring
methods (Kéry 2002). Such errors can have serious management
consequences, especially for threatened species (Robinson et al.
2018) such as the Black Rail. Although acoustic monitoring
satisfies some efficiency criteria, budget constraints will demand
consideration of additional effectiveness/efficiency trade-offs
(Joseph et al. 2006), particularly those concerning spatial and
temporal placement of recorders in the field.  

Sample point spacing (for either passive acoustic monitoring or
call-playback surveys) is critical to detection probability and
therefore, should not be compromised to increase large scale
spatial coverage. Although marginally outside the guidelines for
call-playback surveys of marsh birds (Conway 2011), in our study,
the two acoustic sensors were 490 m apart which resulted in
significant variation in detection of Black Rail between the two
sites. If  detection was based purely at Site B, instead of Site A,
there is a high probability that Black Rail would not have been
detected either from a call-playback survey or by reviewing
acoustic recordings. Therefore, the closer the sampling points, the
lower the risk of incorrectly inferring absence. (Conway 2011,
Schroeder and McRae 2019).

Vocalization strategies
We also found that Black Rail called during only four consecutive
days of the ten-day recording. This may be attributed to the
variation of specific vocalization strategies (such as the "kickee-
doo" call) or movement within territories during the breeding
period (Conway et al. 2004). If  our recording duration had been
reduced to just a few days on the assumption that, if  a Black Rail
was present, it would call at some time during the day, our result
would have been a false-negative.  

Long-duration recordings offer the possibility of noting
unexpected behavioral observations. For example, assumed
vocalization patterns may only be dependent upon environmental
conditions (wind and rain) or vocalizations of other species within
frequency bands. In the case of Black Rail, the calling rate
increased when the conditions were windy or there were
competing species in the frequency band (maximum call rate of
31 per minute). This compares to a maximum calling rate of 14
calls per minute during the quiet time.

Conclusion and prospect
Our study has demonstrated that the high sampling effort required
to detect Black Rail, or to more confidently infer its absence, can
be achieved efficiently using long-duration recordings from
passive acoustic monitoring. Although this was a comparatively
small study consisting of just two sites, we have demonstrated that
our method of combining two semi-automated analytical tools
(LDFC spectrograms and the regression call-recognizer) was able
to process a large-dataset (far more audio than could be listened

to or scanned with standard scale spectrograms) and to detect
Black Rail calls. The technical difficulty in implementing our
method is only moderate. The software used to calculate acoustic
indices and prepare LDFC spectrograms is a command-line tool
but does not require any coding. WEKA is a well-known machine-
learning toolkit with extensive documentation. As an alternative,
R or Python could be used to do the machine learning step.
However, it will always remain the case that a trade-off  exists
between the time it takes to perform a task manually and the time
it takes to prepare the automation of the task.  

This approach has been applied to other marsh bird species
(Znidersic et al. 2020; Towsey et al. 2018b) and can be applied to
other taxa where the primary mode of detection is auditory, and
it is cost and time effective to apply a semi-automated analytical
approach. Consideration still must be given to the species of
interest, what is the best monitoring method for detection and the
availability of time and budget. In addition, there is the ethical
consideration. As ecologists, we must reduce our impacts on the
environment and species by working smarter with the use of
technology. As we know so little about the effects of call-playback
and bird call apps on species and communities (Johnson and
Maness 2018, Watson et al. 2018), the application of passive, low
impact monitoring methods should lead future investigations.  

Our results imply that improvements can be made to both on-
ground monitoring (passive acoustic monitoring and call-
playback surveys) of Black Rail and the subsequent analysis of
acoustic data. Passive acoustic monitoring has the capability to
collect large-scale temporal and spatial data, therefore increasing
detection probability of this secretive species. The vocalization
behavior of the Black Rail is not consistent, seemingly affected
by weather (wind and rain) and the vocalization of other species
in the same frequency band. Therefore, a standard monitoring
protocol would need to be approached with some flexibility
including timing and duration of passive acoustic monitoring,
and the acoustic recorder placement. We see the potential for
future work to include multiple agencies combining datasets to
further refine the training of Black Rail recognizers using this
method. This would result in a more scalable and transferable
approach to detecting and monitoring Black Rail, therefore
informing better decision making about where and when to
monitor.  

We recommend individual site assessment taking into
consideration spatial placement of passive acoustic recorders
according to potential sound attenuation influences (Yip et al.
2017). Also, vocalization intensity may be associated with
breeding stage (Legare et al. 1999). Therefore, frequency of
survey, whether passive acoustic monitoring or call-playback
survey, should be increased during the breeding season.  

Large datasets generated by long-duration passive acoustic
monitoring require semi-automated analytical techniques such as
call recognition. Solid data management protocols are also
required to ensure data are available for further and future analysis
as analytical tools improve.  

The machine learning approach which we have described offers
a middle path between simple but brittle, hand-crafted templates
and the great complexity of convolution neural networks that
require very large-training sets for deep-learning (Priyadarshani

http://www.ace-eco.org/vol16/iss1/art9/


Avian Conservation and Ecology 16(1): 9
http://www.ace-eco.org/vol16/iss1/art9/

2018). These are simply not available for a rare, cryptic species.
Therefore, we recommend long-duration false-color spectrograms
and a call recognizer to analyze Black Rail datasets, applying both
visual and machine learning features. Although both tools have
their limitations, these are compensated by high monitoring effort
and relative ease in preparing a call recognizer.

Responses to this article can be read online at: 
https://www.ace-eco.org/issues/responses.php/1773
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