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Methodology

A lidar-based openness index to aid conservation planning for
grassland wildlife

Michael C. Allen’ , Thomas Almendinger2, Charles T. Barreca® and Julie L. Lockwood’
1Department of Ecology, Evolution, and Natural Resources, Rutgers, State University of New Jersey, New Brunswick, New
Jersey, >Duke Farms Foundation, Hillsborough, New Jersey

ABSTRACT. Visual openness is a key element in habitat selection for many animals of grasslands and other open habitats, especially
birds. Obstructions to visual openness in the form of human infrastructure or inopportune woody vegetation growth can lead to
habitat avoidance, and thus pose conservation challenges. Here we introduce a remotely sensed, lidar-based index of visual openness.
Like previous indices of visual openness, ours is based on the vertical angle to the horizon; however, its calculation from remotely
sensed data allows it to be easily mapped across the landscape. We illustrate its potential usage by calculating the index multiple ways
within two large fields in central New Jersey, USA, and evaluating the effects of openness on habitat use by a grassland bird, the
Grasshopper Sparrow (Ammodramus savannarum), within an occupancy modeling framework. We used the best performing model
and digitally edited openness maps to project population responses under five hypothetical management scenarios of increased
habitat openness. Occupancy modeling revealed that a version of the index calculated based on the maximum angle to the horizon
best explained Grasshopper Sparrow occupancy patterns. Models also revealed that Grasshopper Sparrows showed a negative
response to openness reductions caused by both powerlines and trees. Predictions based on the increased openness scenarios indicated
that removal of tree lines and powerlines could increase patch-level occupancy of the sparrows in the affected fields by up to 15%
and 9%, respectively. Where adequate data exist, this index has the potential to facilitate the study of openness-habitat use relationships
in a variety of open-dwelling fauna and in a variety of habitats, from tundra to marshes to grasslands. Notably, it has promising
potential for use in modeling habitat suitability and projecting potential impacts in response to anthropogenic changes in visual
openness, such as wind farms, power infrastructure, or vegetation management.

Indice d'ouverture fondé sur le LiDAR et destiné a faciliter la planification de la conservation de la
faune de prairies

RESUME. L'ouverture visuelle est un élément clé dans la sélection de I'habitat pour de nombreux animaux de prairies et autres
milieux ouverts, en particulier les oiseaux. Les obstructions de celle-ci, sous forme d'infrastructures humaines ou de croissance de la
végétation ligneuse, peuvent conduire a I'évitement de 1'habitat et poser ainsi des problémes de conservation. Dans la présente étude,
nous proposons un indice d'ouverture visuelle fondé sur la télédétection et le LIDAR. Comme d'autres indices d'ouverture visuelle,
le notre est basé sur I'angle vertical par rapport a I'horizon; cependant, son calcul a partir de données de télédétection permet de le
cartographier facilement dans le paysage. Nous illustrons son utilisation potentielle en calculant l'indice de plusieurs fagcons dans
deux grands champs du centre du New Jersey, aux Etats-Unis, et en évaluant les effets de I'ouverture sur I'utilisation de I'habitat par
un oiseau de prairies, le Bruant sauterelle (Ammodramus savannarum), dans un cadre de modélisation de la présence. Nous avons
utilisé le modele le plus performant et des cartes d'ouverture éditées numériquement pour projeter les réactions de la population sous
cinq scénarios de gestion hypothétiques d'augmentation de I'ouverture de I'habitat. La modélisation de la présence a révélé qu'une
version de l'indice calculée sur la base de 1'angle maximal par rapport a I'horizon expliquait le mieux les profils de présence du Bruant
sauterelle. Les modeles ont également révélé que les bruants réagissaient négativement aux réductions de I'ouverture causées par les
lignes électriques et les arbres. Les prévisions basées sur les scénarios d'ouverture accrue ont indiqué que 1'¢limination de rangées
d'arbres et de lignes électriques pourrait favoriser I'augmentation de la présence des bruants a 1'échelle des ilots dans les champs
étudiés de 15 % et de 9 %, respectivement. Lorsque les données adéquates existent, cet indice peut faciliter I'¢tude des relations entre
I'ouverture et 1'utilisation de I'habitat chez une variété de faune vivant en milieu ouvert et dans une diversité d'habitats, de la toundra
aux marais en passant par les prairies. Il présente notamment un potentiel prometteur pour la modélisation de la qualité de I'habitat
et la projection des impacts potentiels consécutifs aux changements anthropiques de 1'ouverture visuelle, tels que les parcs éoliens,
les infrastructures électriques ou la gestion de la végétation.
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INTRODUCTION

Animals of open habitats such as grasslands, marshes, mudflats,
tundra, and arid lands often have foraging, predator avoidance,
and courtship strategies that rely on unobstructed views, or
openness. Consequently, habitat changes that involve human
infrastructure (Pruett et al. 2009), increased tree cover (Besnard
and Secondi 2014, Fuhlendorf et al. 2017), or other visual
obstructions (Renfrew and Ribic 2002, Attum 2007) can reduce
habitat suitability (i.e., induce avoidance behaviors) and pose
conservation challenges for open-country species. Here, we
introduce a novel index of habitat openness based on remotely
sensed lidar data and demonstrate its utility for conservation
planning.

Openness, or the relative lack of visual obstruction, is an
important predictive feature of habitat use for diverse taxa at a
range of spatial scales (Burger 1977, Gerard and Loisel 1995,
Renfrew et al. 2005, Attum 2007, Goodman 2009). In particular,
birds of open habitats such as temperate grasslands and emergent
marshes show preference for openness at scales from local nest
sites (Burger 1977) to territory placement (Keyel et al. 2012,
Marshall et al. 2020), with a lack of perches for predators and
nest parasites frequently suggested as the underlying drivers (van
der Vliet et al. 2008). Recent research has shown that visual
openness, as measured by the mean or maximum angle to the
horizon (e.g., the tops of nearby trees, landforms, or structures)
from a given location, can explain patterns of occurrence for
multiple species of grassland and tidal marsh birds better than
area or edge distance measures (Keyel et al. 2012, 2013, Marshall
et al. 2020). This may be on account of the fact that this metric
more closely aligns with sensory perception mechanisms in birds
than harder-to-perceive attributes such as distance or area
(Renfrew and Ribic 2002, Keyel et al. 2012).

The management implications of a behavioral preference for
openness are that human infrastructure installation (e.g., wind
farms; Pruett et al. 2009), succession (Besnard and Secondi 2014,
Fuhlendorf et al. 2017, Andersen and Steidl 2019), or even
topography (Renfrew and Ribic 2002), can limit or reduce
populations of fauna that use open habitats. Conversely,
ecological restoration activities or planning decisions that
consider openness have the potential to aid in conservation of
these species (Pruett et al. 2009, Fuhlendorf et al. 2017,
Lautenbach et al. 2020). The ability to map openness at scales
from patches to landscapes could therefore provide a powerful
conservation planning tool. Such tools, when coupled with field
studies and analysis to better understand functional responses,
would allow the exploration of predictions regarding existing
habitat suitability (Guisan et al. 2013) and population responses
to management scenarios. For example, wind energy and
associated power transmission infrastructure are rapidly
expanding globally, whereas studies have shown avoidance of
such infrastructure by imperiled grassland species (e.g., the Lesser
Prairie-Chicken, Tympanuchus pallidicinctus; Pruett et al. 2009).

Knowledge of how species’ occurrence or abundance vary with
openness reduction caused by these features, e.g., via statistical
modeling using new or existing field data, would allow
quantitative predictions of the likely effects of introducing similar
infrastructure elsewhere. Similarly, given that openness is a good
predictor of abundance in the steeply declining Saltmarsh

Avian Conservation and Ecology 17(1): 16
http://www.ace-eco.org/voll7/iss1/art16/

Sparrow (Ammospiza caudacuta; Marshall et al. 2020),
continuous maps of this measure could be used to prioritize
marshes for restoration or management, e.g., the use of fire to
remove woody vegetation (Kern and Shriver 2014). Using
currently available methods, such investigations would require
considerable field efforts in the form of manual openness
measurements, e.g., site visits and dozens of clinometer readings,
or the use of proxies such as distance to edge. Thus, a remotely
sensed version of this index would greatly improve its utility.

Here we introduce a remotely sensed openness index calculated
from a series of measured angles to the horizon and based on
publicly available lidar data. We then demonstrate its use to
evaluate the effects on within-field habitat usage (patch-level
occupancy) by a forest edge-avoiding grassland bird, the
Grasshopper  Sparrow  (Ammodramus — savannarum). We
hypothesized that local openness, as perceived by the birds, would
be adequately captured by this index, and therefore we predicted
higher occupancy with greater openness. We further demonstrate
the conservation planning potential of the tool by evaluating the
population implications of various hypothetical management
scenarios that would increase openness within the fields.

METHODS
Study area

All fieldwork was performed within two former farm fields at
Duke Farms, a 1108-ha preserve dedicated to sustainability,
conservation, and education, in Hillsborough, New Jersey, USA.
The fields, named Kaufman (77 ha) and Skeet Shoot (73 ha), were
last in active agricultural production in 2001, and have been
maintained as a grassland preserve (a mix of native and
introduced grasses and forbs, mowed once every one or two years)
since then. Kaufman is intersected by three tree lines, whereas
Skeet Shoot has no tree lines, but has two rows of high-tension
powerlines supported by five towers (~50 m tall) along its western
edge (Fig. 1). The landscape immediately surrounding the
preserve is primarily urban (> 70% residential or industrial cover
within 8 km; Almendinger et al. 2020), and grassland bird habitat
in the region consists mainly of 10-100 ha low-intensity hayfields
and fallow fields, fragmented by tree lines, woodlots, and
residential development.

Openness indices

We obtained nine tiles (21 km?) of lidar data collected in 2018
from the State of New Jersey’s Geographic Information Network
website (https://njgin.nj.gov/njgin/edata/elevation/), encompassing
Duke Farms and surrounding areas. Data were in point cloud
format, with a sampling density of 5.4 points/m? We used the
lidR package (R Core Team 2020, Roussel et al. 2020) to create
two raster maps, a digital terrain model (DTM) and a digital
surface model (DSM), from the classified lidar data at 1 m
resolution. DTMs map the “bare earth” topography of the
landscape, free from buildings or vegetation. DSMs map the
highest-elevation lidar return, and therefore represent a three-
dimensional model of the upper surfaces of vegetation and other
features in the landscape (see Fig. 1). We wished to compute the
openness index from approximately eye level to match previous
work (Keyel et al. 2012). We therefore created a modified DTM
by adding 1.61 m (eye level for author MCA) to each cell and then
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created a final modified DSM for use in the openness analysis as
follows: for each cell, we took the maximum value of
corresponding cells in the two input raster maps, the modified
DTM and the DSM. This had the effect that all cells with low
vegetation (below eye height) in the final raster would be
“hovering” at 1.61 m above the ground surface, and all horizon
angles would be calculated from this uniform height. Before
completing this final step, we first modified the DSM by replacing
selected cells with zeros to digitally erase a tree line that was
present during lidar data collection but was physically removed
in April 2018 before bird sampling began. This had the effect of
replacing those cells values with the 1.61 m base height. Finally,
we used the same digital erasure technique to produce a second
version of the final modified DSM without the high-tension
powerlines present on the western edge of Skeet Shoot field.
Although we used a base height of 1.61 m, the method can
accommodate any base height equal or greater to the tallest
herbaceous vegetation in a field.

We used the free program GRASS GIS (r.horizon function;
GRASS Development Team 2020) to calculate and map openness
based on the two final modified DSM versions, i.e., with and

Fig. 1. Survey points within the study fields Kaufman (left) and
Skeet Shoot (right) at Duke Farms, Hillsborough, New Jersey,
USA. The base map is a digital surface model showing the
surface contours of fields, trees, and other features (visualized
with “hill shading”). Colors represent the openness index with
darker colors representing a higher maximum angle to the
horizon (each cell represents a mean of all openness
measurements within 40 m). The powerlines can be seen
emerging from the northwest and southwest corners of Skeet
Shoot field, and their effect on openness is visible as the darker
colors along the western edge of the field. Tree lines in
Kaufman field: SW — southwest tree line (shaped like an
upside-down L); SE — southeast tree line; N — northern tree line.
The inset map shows the project location within New Jersey.
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without powerlines. The r.horizon function computes raster maps
from a DSM with each 1 m? output cell representing the height
in degrees to the highest point on the horizon for a given compass
direction. We created 72 such maps, one for each 5-degree compass
bearing interval, and used them to compute two versions of the
openness index for comparison: the mean or maximum of the 72
horizon angle values for each cell; these are termed “mean-angle”
and “maximum-angle” openness, respectively. Following Keyel et
al. (2012), we then subtracted all values from 90 so that the final
index increased with increasing levels of openness, ranging from
0 (completely closed in) to 90 or greater (completely open). To
better match the spatial scale of our bird surveys, we then applied
a circular moving average filter to the openness maps so that each
cell value in the final maps represented an average of all openness
values within a 40 m radius, rather than a single point. Data and
code to reproduce these analyses, from raw lidar data through
final raster maps, are available via Open Science Framework
(http://doi.org/10.17605/0SF.I0/VG5HU).

Bird surveys

We created an 80 m x 80 m grid of survey points within each field,
retaining 238 points that covered nearly all grassland areas (Fig.
1) and that could be surveyed given available resources. Each point
was visited four times in 2018, once each during the periods 1-20
May, 21 May-10 June, 11-30 June, and 1-20 July. During each
visit, one of three observers stood at the point for five minutes,
counting and recording the distance (calibrated using a laser
rangefinder) of all grassland bird individuals detected within 125
m of the point. The observer would then travel to the next point
and repeat, performing surveys at~30 points per morning between
5:30 AM and 10:00 AM EDT. Survey effort at the points was
divided among the three observers in a spatially dispersed manner
to minimize bias. During each sample period, every other point
in the two fields was surveyed by the primary observer (MCA),
whereas the remainder of the points were surveyed by one of the
two secondary observers (TA or CB). The order of point visits
was alternated during each visit. For occupancy analyses, all
individuals observed > 40 m from the survey point were discarded,
thus preventing overlapping count circles among neighboring
points. We did not conduct surveys when wind speeds exceeded
three on the Beaufort scale (~5 m/s) or when precipitation was
falling.

Occupancy analyses

We fit single season occupancy models in the R package umarked
(function occu; Fiske and Chandler 2011) to evaluate how the
probability of occupancy within habitat patches (40-m-radius
plots) varied with the two versions of the openness index as
calculated with and without powerlines. For these models, the
detection and non-detection data collected during repeat visits to
the survey points served as the response data with which to jointly
evaluate detection probability (p), and true patch occupancy rates
(), i.e., the estimated true proportion of occupied patches after
correction for imperfect detection (Kéry and Royle 2015). We
evaluated models in an information theoretic framework based
on Akaike Information Criterion for small sample sizes (AICc)
and Akaike model weights (w); models within 2 AICc units were
regarded as having similar performance (Burnham and Anderson
2002).
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Table 1. Model selection results and model parameter estimates for models of Grasshopper Sparrow (Ammodramus savannarum)
occupancy within small (40-m-radius) plots in two fields at Duke Farms, Hillsborough, New Jersey, USA.

Model’ K Delta AlCc Occupancy: Occupancy: Occupancy: Odds ratio
AICS weight Intercept (SE) ' field slope (SE) 1 covariate (95% CI) #
slope (SE) #
p(obs) P(max w. wires) 6 0.00 0.26 -6.64 (1.42) 2.25(0.47) 0.096 (0.023) 1.10 (1.05-1.15)
p(obs + date) P(max w. wires) 7 0.50 0.20 -6.66 (1.42) 2.26 (0.47) 0.096 (0.023) 1.10 (1.05-1.15)
p(obs + time) P(max w. wires) 7 1.20 0.14 -6.63 (1.41) 2.24 (0.47) 0.096 (0.023) 1.10 (1.05-1.15)
p(obs + date + time) P(max w. wires) 8 1.48 0.12 -6.65 (1.41) 2.26 (0.47) 0.096 (0.023) 1.10 (1.05-1.15)
p(obs) P(max wo. wires) 6 2.27 0.08 -8.29 (1.88) 1.89 (0.42) 0.123 (0.031) 1.13 (1.06-1.20)
p(obs + date) P(max wo. wires) 7 2.75 0.07 -8.31 (1.88) 1.90 (0.42) 0.124 (0.031) 1.13 (1.06-1.20)
p(obs + time) P(max wo. wires) 7 3.46 0.05 -8.28 (1.88) 1.88 (0.42) 0.123 (0.031) 1.13 (1.06-1.20)
p(obs + date + time) P(max wo. wires) 8 3.72 0.04 -8.31 (1.88) 1.89 (0.42) 0.124 (0.031) 1.13 (1.07-1.20)
p(obs) Y(mean w. wires) 6 6.03 0.01 -14.29 (3.89) 2.28 (0.45) 0.202 (0.059) 1.22 (1.09-1.37)
p(obs + date) P(mean w. wires) 7 6.63 0.01 -14.24 (3.88) 2.28 (0.45) 0.201 (0.059) 1.22 (1.09-1.37)
p(obs + time) P(mean w. wires) 7 7.22 0.01 -14.27 (3.89) 2.27(0.45) 0.202 (0.059) 1.22 (1.09-1.37)
p(obs + date + time) P(mean w. wires) 8 7.60 0.01 -14.20 (3.87) 2.28 (0.45) 0.200 (0.059) 1.22 (1.09-1.37)
p(obs) Y(mean wo. wires) 6 12.51 0.00 -18.93 (6.27) 1.99 (0.41) 0.272 (0.095) 1.31 (1.09-1.58)
p(obs + date) P(mean wo. wires) 7 13.13 0.00 -18.67 (6.21) 2.00 (0.41) 0.268 (0.094) 1.31 (1.09-1.57)
p(obs + time) P(mean wo. wires) 7 13.69 0.00 -18.96 (6.27) 1.98 (0.41) 0.272 (0.094) 1.31 (1.09-1.58)
p(obs + date + time) P(mean wo. wires) 8 14.12 0.00 -18.90 (6.25) 1.99 (0.41) 0.271 (0.094) 1.31 (1.09-1.58)

Covariates for detection probability (p) and occupancy (P) sub-models are shown in parentheses. For p, obs — observer; date — ordinal date; time — time of
day. For y, covariates can be interpreted as follows: max — the version of the openness index computed based on the maximum angle to the horizon;

mean — the version of the openness index computed based on the mean angle to the horizon; w. wires — openness calculated based on a digital surface
model that included the powerlines in Skeet Shoot field; wo. wires — openness calculated based on a digital surface model from which the powerlines were

gigitally erased from Skeet Shoot field.
“Number of model parameters.

SAkaike’s Information Criterion adjusted for small sample sizes; difference from the minimum AICc value (742.89).

Ilntercf:pt from the occupancy () sub-model.

ﬂSlope coefficient for field in the occupancy () sub-model: Skeet Shoot (1) or Kaufman (0).
#Slope coefficient and odds ratio are for the occupancy () sub-model covariate shown in the Model column.

First, we evaluated 18 candidate detection probability models.
These contained no covariates for the occupancy sub-model, but
included models representing all possible combinations of
observer, and linear and quadratic effects of ordinal date and time
of day, as covariates for detection probability, as well as a null
model with no covariates for p. We retained the top four models
(AAICc < 2) as base models on which to add the four occupancy
sub-model covariates of interest individually to form the final
model set. These four occupancy sub-models included the
covariates mean-angle and maximum-angle openness, as
calculated both with and without powerlines present. Thus, the
final model set contained 16 models, or all pairwise combinations
of four detection sub-models and four occupancy sub-models (see
Table 1 for a list of the models). A binary variable indicating Skeet
(1) or Kaufman (0) field was also included in each occupancy sub-
model to allow for differences in occupancy levels by field. When
evaluating the final model set, we reasoned that (1) if models
containing a particular openness covariate consistently perform
better based on AICc, it provides evidence that it better correlates
with possible cues for openness in the birds; and (2) if models
with openness computed with powerlines present consistently
perform better than those without, it provides evidence that
powerlines are affecting the sparrows’ perception of openness.

Finally, for comparison to these angle-to-horizon measures, we
separately evaluated a model containing the distance in meters to
the nearest forest edge, a commonly used proxy for visual
openness in the grassland bird literature (Fletcher and Koford
2003, Keyel et al. 2012, 2013). This variable was measured in a

geographic information system based on aerial photography. The
model structure included the top-performing detection sub-
model from the final model set, coupled with an occupancy sub-
model including site plus the distance-to-edge covariate.

Addressing spatial autocorrelation

Although the 80-m distance between our points allowed full
coverage of the fields, it also may have been close enough to result
in spatial autocorrelation. High levels of spatial autocorrelation,
if present in model residuals, can result in misleadingly small
confidence intervals around point estimates such as slopes or
model predictions. We tested for spatial autocorrelation in the
residuals of the top-performing occupancy model using the
correlog function within the ncf package in R (Bjornstad 2020).
Findingevidence for spatial autocorrelation at 8§0-m point spacing
(Moran’sI>0.1), we then refit the top model as a restricted spatial
regression (RSR) occupancy model using the R package ubms
(Kellner 2021; see Appendix 1 for further details). These models
incorporate a spatial random effect based on a defined threshold
distance and constrain this effect to allow unbiased inference on
spatially autocorrelated covariates (Johnson et al. 2013). We
evaluated 100 m and 150 m thresholds, corresponding to spatial
groups including the nearest four or eight neighboring points,
respectively (i.e., “rook” or “queen” adjacency). We then
evaluated residuals from each model for spatial autocorrelation
as above. We retained the RSR occupancy model with a 150 m
threshold distance for use in prediction given that we found no
evidence of spatial autocorrelation (see Appendix 1). This allowed
us to predict the effects of various openness scenarios, with
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Table 2. Summary statistics for two methods of calculating angle-to-horizon openness indices at 238 survey points within two fields at
Duke Farms, Hillsborough, New Jersey, USA (Kaufman and Skeet Shoot, see Fig. 1).

Kaufman

Skeet Shoot

Openness Metric Management Scenario’

Mean Openness

% change from Mean Openness (range) % change from

(range) “No Action” “No Action”
Maximum-Angle No action 58.1(36.2-66.6) - 55.6 (12.9-66.1) -
Openness
SW tree line removed 58.6 (36.2-66.6) 0.9 55.6 (12.9-66.1) -
SE tree line removed 58.6 (36.2-66.6) 0.9 55.6 (12.9-66.1) -
N tree line removed 59.0 (36.4-66.6) 1.5 55.6 (12.9-66.1) -
All tree lines removed 60.1 (44.6-66.6) 34 55.6 (12.9-66.1) -
Powerlines removed 58.1(36.2-66.6) - 59.0 (28.5-66.5) 6.1
Mean-Angle Openness No action 65.8 (53.6-70.9) - 63.7 (35.7-67.5) -
SW tree line removed 66.0 (53.6-70.9) 0.3 63.8 (35.8-67.5) -
SE tree line removed 66.0 (53.6-70.9) 0.3 63.8 (35.8-67.5) -
N tree line removed 66.2 (57.4-70.9) 0.6 63.7 (35.7-67.5) -
All tree lines removed 66.5 (60.4-70.9) 1.1 63.8 (35.8-67.5) -
Powerlines removed 65.8 (53.6-70.9) - 65.4 (51.6-67.6) 2.7

"The mean and range of openness values is shown for each of six management scenarios, as represented by surface elevation maps that were digitally edited

to remove tree lines (Kaufman only) or powerlines (Skeet Shoot only).

associated uncertainty, while accounting for spatial non-
independence among points.

Management scenarios

To evaluate the potential effects of five hypothetical management
scenarios on Grasshopper Sparrow populations, we edited the
final DSM raster to reflect each scenario and generated openness
surfaces as described above. The scenarios included the removal
of each of three tree lines within Kaufman field (scenarios 1-3),
the removal of all three tree lines within Kaufman (scenario 4),
and removal of the powerlines from Skeet Shoot (scenario 5; see
Fig. 1). To evaluate the implications of each scenario, we
generated predictions of occupancy probability for each 40-m-
radius survey plot using the RSR occupancy model (Appendix 1)
and the corresponding digitally edited openness map for covariate
values. With this information, we estimated the total number of
occupied plots within each field as the sum of predicted
occupancy probabilities at each point (Kéry and Royle 2015), as
well as the percent change in number of occupied plots in each
scenario relative to the “no action” scenario.

RESULTS

Openness values across both fields averaged 64.8 (range: 35.7—
70.9) at the 238 survey points using the mean-angle method and
56.9 using the maximum-angle method (range: 12.9-66.6). Mean
openness was roughly similar in both fields, whereas Skeet Shoot
had a wider range of values (Table 2). Digitally removing the
powerlines increased average openness within Skeet Shoot field,
the only field with powerlines, by 2.7-6.1%, whereas removing
tree lines increased openness of Kaufman field, the only field with
tree lines, by 1.1-3.4% (Table 2). Grasshopper Sparrows were
detected at least once in 25 of 119 plots in Kaufman field,
compared with 68 of 119 plots in Skeet Shoot.

The top-performing occupancy model contained an observer
covariate in the detection sub-model, and the maximum-angle
openness covariate (i.e., computed based on the maximum angle
to the horizon) in the occupancy sub-model (Table 1). Occupancy

models that contained maximum-angle openness as a covariate
performed substantially better than those based on mean-angle
openness (sum of model weights = 0.96 vs. 0.04, respectively;
Table 1). Parameter estimates for the relationship between
occupancy and maximum-angle openness were very similar
among the top four models, which were all within 2 AAICc (all
= 0.096, 95% CI = 0.05, 0.14; Table 1). Among the maximum-
angle openness models, those based on openness maps containing
powerlines (i.e., the top four models in Table 1) performed
substantially better than those without powerlines (sum of model
weights = 0.76 vs. 0.24, respectively, when only the eight
maximum-angle openness models are considered). Occupancy
was also positively related to minimum distance to forest edge (B
= 0.0137, 95% CI = 0.0058, 0.0217), but the model performed
poorly when compared with maximum-angle openness models
(AAICc = 3.3, model weight = 0.05 when ranked with the model
set in Table 1).

Refitting the top-performing model using restricted spatial
regression yielded a slightly steeper slope for the openness—
occupancy relationship (f = 0.134) with a wider 95% CI (0.070,
0.212; Table 3, Fig. 2). This slope indicates that the odds a habitat
patch is occupied increases by 14% for each unit increase in the
maximum-angle openness index (odds ratio = 1.14, 95% CI: 1.07,
1.24), and doubles with every 5 unit increase (i.e., using the
equation fold increase = e/B* ™)) Detection probability based
on this model ranged from 25% (95% CI = 14%, 40%) to 33%
(24%, 44%) depending on the observer (Table 3).

The three management scenarios involving digital removal of the
southwestern, southeastern, and northern tree lines within
Kaufman field resulted in predicted increases in patch occupancy
of 5.0% (95% CI = 2.9%, 7.1%), 3.9% (2.5%, 5.3%), and 6.0%
(4.1%, 7.3%), respectively (Fig. 3). When all tree lines were
removed, there was a predicted increase of 15.1% (9.6%, 20.4%).
When the powerlines within Skeet Shoot field were digitally
removed, there was a predicted increase of 9.0% (95% CI = 4.6%,
11.0%).
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Table 3. Parameter estimates and associated uncertainty for a restricted spatial regression (RSR) model (threshold = 150 m; see Appendix
1) describing Grasshopper Sparrow (Ammodramus savannarum) detection and occupancy probability at Duke Farms, Hillsborough,

New Jersey, USA.

Parameter ' Estimate (logit scale) 95% Credible Intervals
Occupancy sub-model Intercept -9.997 -15.145, -6.008
Site 4.384 2.479,7.323
Max-angle Openness 0.134 0.070, 0.212
RSR [tau] 0.017 0.003, 0.053
Detection sub-model Intercept -1.113 -1.789, -0.441
Observer2 0.403 -0.310, 1.118
Observer3 0.409 -0.386, 1.215

" Site was a binary variable representing Kaufman (0) and Skeet Shoot (1) fields; max-angle openness is the lidar-based openness index based on maximum
angle to the horizon; RSR [tau] is a precision term for the spatial random effect with smaller values representing greater variability.

Fig. 2. Probability of Grasshopper Sparrow (Ammodramus
savannarum) patch occupancy (40-m circular plots) versus the
maximum-angle openness index in two fields (K — Kaufman;

S — Skeet Shoot) at Duke Farms, Hillsborough, New Jersey,
USA. Detection and non-detection data by survey point are
shown at the top and bottom plot margins, respectively.
Predicted occupancy (lines) and 95% credible intervals
(shading) are based on the fixed effects from a restricted spatial
regression occupancy model described in the Methods and in
Appendix 1.
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Visual openness can be a powerful predictor of the behavior and
ecology of fauna that use open habitats (Renfrew et al. 2005,
Attum 2007, Marshall et al. 2020). As a result, accurate and low-
cost measurements of this attribute have great potential to inform
management and conservation decisions. Our work introduces an
index based on a remotely sensed angle to the horizon, permitting
the mapping and quantification of openness across potentially
large spatial scales, yet also at a fine enough spatial resolution to
adequately predict patch-level occupancy patterns. With this
approach, we extend the potential of similar indices (Keyel et al.
2012, 2013, Marshall et al. 2020) that would require labor-
intensive fieldwork, including travel and many manual clinometer

Fig. 3. Predicted percent change in patch occupancy of
Grasshopper Sparrows (Ammodramus savannarum) under five
openness management scenarios within two fields (K —
Kaufman; S — Skeet Shoot) at Duke Farms, Hillsborough, New
Jersey, USA. Tree lines only occurred in Kaufman, while
powerlines only occurred in Skeet Shoot (see Fig. 1 for tree and
powerline locations). Thicker and thinner portions of the error
bars represent 80% and 95% credible intervals, respectively,
based on a restricted spatial regression occupancy model
described in the Methods and in Appendix 1.
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readings, to achieve similar results. We compared two versions of
our index (mean-angle and maximum-angle) by evaluating their
predictive performance for the within-field distribution of a
grassland bird, the Grasshopper Sparrow. We then demonstrated
how such models can be coupled with digitally edited openness
maps to predict responses to plausible management scenarios.

The distinctive ecological attributes of open habitats have led to
evolutionary specialization in animals in the form of anti-
predator and courtship behaviors (Gerard and Loisel 1995, Muir
and Colwell 2010), morphology and physiology (Goodman 2009),
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and habitat selection at a range of spatial scales (Burger 1977, van
der Vliet et al. 2008). A preference for visually open locations, or,
conversely, the avoidance of visual obstructions, has been
documented in diverse vertebrate taxa and is thought to be
adaptive in each case on account of the association of such visual
obstructions with perches or other cover for predators (Attum
2007, Goodman 2009, Keyel et al. 2012). In birds, various
measures of visual openness have been shown to correlate with
territory placement, though not with reproductive success, in
numerous species in North America and Europe (Fletcher and
Koford 2003, van der Vliet et al. 2008, Keyel et al. 2013, Marshall
etal. 2020). However, correlation is not necessarily causation, and
other mechanisms besides active avoidance of visual obstructions
have been suggested as potentially confounding (or synergistic)
drivers of local distribution in these grassland species. These
drivers may include differing vegetation characteristics (Renfrew
et al. 2005), avoidance of roads and other non-grassland ecotones
(e.g., croplands; Fletcher and Koford 2003, Renfrew et al. 2005),
locations of active predator territories (van der Vliet et al. 2008),
or longer-term processes such as lower survival or reproduction
in less-open areas.

Our results revealed an association between visual openness and
Grasshopper Sparrow occupancy, but, like other studies, our
findings are correlational. Confidently establishing causation,
and indeed disentangling the effects of multiple correlated
predictors, may ultimately require a controlled, experimental
approach. Thus, the occupancy—openness relationship we
observed, and especially the predicted changes under various
management scenarios, may be better viewed as testable
hypotheses than as ecological certainty. However, in smaller scale
management situations such as our study site (Duke Farms) or
similar wildlife refuges, this is likely to be the best source of
evidence available. At such scales, this information can form the
start of the cycle of adaptive management: planning, performing
management actions, measuring impacts, adjusting the plan, and
repeating (Moir and Block 2001). Given the relative ease with
which our openness index can be calculated, we envision it
facilitating an expansion of such evidence-generating processes
for a variety of open-dwelling species and ecosystems, in varied
forms ranging from controlled experiments to broader-scale
observational studies to smaller-scale adaptive management
efforts.

Although we evaluated our lidar-based openness index for a single
species at a high-resolution spatial scale, it is illuminating to
consider its potential broader utility in other contexts. One
potential conservation issue to which it may be applied is the rapid
expansion of wind energy on grassland birds in the Great Plains
in North America and in other visually open biomes globally.
Wind turbines and associated infrastructure have been shown to
displace, i.e.,, reduce abundance or occurrence, at least eight
grassland bird species, extending to distances of 100 m and
beyond (Pruett et al. 2009, Shaffer and Buhl 2016). Displacement
has thus far been evaluated using distance-based metrics.
However, indices based on angle to the horizon (e.g., Keyel et al.
2012; this study) may be more appropriate because they are
sensitive to the height of visual obstructions. For example, two
turbines of different heights, both at 100 m away, would have
differing effects on angle-based openness measures, but not on
distance-based measures. Modeling the relationship between
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openness and abundance or occupancy via field studies at wind
farms with various turbine heights could allow predictive
modeling of the potential effects on grassland birds where wind
turbines are being considered for erection. Thus, a mapped
openness index, edited to reflect proposed scenarios, can
contribute to ongoing efforts to optimally site wind turbines to
avoid biodiversity and conservation conflicts or to offset such
effects (Fargione et al. 2012, Shaffer et al. 2019).

Our index could also prove useful for assessing the impacts of
other, more common, visual obstructions within grasslands,
including woody vegetation and built infrastructure such as the
powerlines evaluated in our study. Disruption of fire and grazing
patterns, and the subsequent encroachment of small trees and
shrubs, has become a key conservation issue for birds and other
inhabitants of North American grassland ecosystems, from the
Northern Great Plains (e.g., cedar; Fuhlendorf et al. 2017,
Symstad and Leis 2017) to the semiarid grasslands of the
southwest (e.g., mesquite; Andersen and Steidl 2019). Smaller,
cultural grasslands of Europe and in eastern North America, such
as our study fields, are also subject to grassland bird population
limitation by reduced openness, including by tree lines (O’Leary
and Nyberg 2000, Besnard and Secondi 2014) and ecological
succession (Lautenbach et al. 2020). Powerlines and other human-
built visual obstructions can similarly result in population
reductions in grassland birds due to habitat avoidance (van der
Vliet et al. 2008, Pruett et al. 2009), and knowledge of their
potential impacts can therefore inform siting decisions. Our case
study illustrates the potential of mapping and modeling openness
to provide quantitative information in support of restoration and
development decisions on a local scale. For example, increasing
visual openness by removing the three internal tree lines within
Kaufman field was predicted to increase the area occupied by
Grasshopper Sparrows by 15%. Similarly, an increase of 9% was
predicted from the removal of powerlines within Skeet Shoot
field. Such increases are not guaranteed on account of the lack
of certainty regarding causality, but they represent clear testable
hypotheses with great power to inform adaptive management
efforts.

Expanding predictive modeling of species occurrence or
abundance to larger spatial extents is also possible by using
mapped openness as a covariate in regional-scale species
distribution models (Guisan et al. 2013). The extent to which
openness measures based on digital surface elevation data can
improve existing species distribution models for grassland birds
(e.g., Thogmartin et al. 2006) is an open research question that
will determine its utility for large-scale conservation planning
efforts such as gap analyses. Scaling up our technique of digitally
editing openness maps may also prove useful. For Grasshopper
Sparrows, we used this digital editing technique to reflect
hypothetical management scenarios and to predict their effects
on occupancy at the field level. Coupling similarly edited openness
maps at a much larger spatial scale with species distribution
models could be used to predict the outcomes of landscape-level
initiatives to increase openness. For example, such efforts could
aid planning of landscape-scale prescribed fire initiatives in
prairie (Fuhlendorf et al. 2017, Andersen and Steidl 2019) or
emergent tidal marsh ecosystems (Kern and Shriver 2014,
Marshall et al. 2020, Skipwith 2020) where a lack of openness has
been shown to negatively correlate with bird populations.
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Data availability may pose the greatest potential barrier to the
widespread adoption of our lidar-based openness index in the
near term, specifically, spatial gaps in coverage and lack of
consistency in spatial resolution. However, in the United States,
spatial coverage of lidar point cloud data has increased rapidly
in recent decades and it is now available for a majority of eastern
and midwestern states, including much of the prairie, as well as
complete coverage of coastal areas (http://www.nationalmap.gov,
http://www.coast.noaa.gov/inventory). Although these data were
primarily collected for other purposes, including elevation
mapping and disaster planning, they have found diverse ecological
applications in both open and forested habitats (Davies and Asner
2014, Correll et al. 2019). The increasing spatial coverage of lidar
data in North America may someday approach that of some
European countries, such as Switzerland, that already have
nationwide lidar data available at a uniform spatial resolution
(Wiiest et al. 2020).

The temporal resolution of surface elevation data is an equally
important consideration contributing to its usefulness in the
measurement and mapping of openness. In our case study, lidar
data were available from the exact year of our field effort (2018),
but even still, our digital surface model required minor editing
(the removal of one tree line) to match on-the-ground conditions.
In our case, only one additional lidar data set was available, from
2008, and it produced a roughly similar digital surface model to
that produced from the 2018 data with only minimal editing (M.
C. Allen, unpublished data). Ultimately, the validity of using
temporally mismatched lidar and field data to model openness
effects will depend on the degree of change in the intervening
period, which could be assessed by inspecting aerial photography
or conducting field visits. It is also possible to address temporal
gaps by collecting custom lidar or photogrammetric surface
elevation data withunmanned aircraft systems (Correlletal. 2019,
Iglhautetal. 2019, Bankertetal. 2021). Finally, contemporaneous
surface elevation and field population data likely already exist in
many locations and could be retrospectively analyzed to study
population responses to openness. Notably, the Konza Prairie
Long Term Ecological Research site, as part of the National
Ecological Observatory Network (NEON), performs regular
grassland bird population monitoring and has at least four
consecutive years of lidar data available (http://www.neonscience.
org/data). With more applications for lidar and other forms of
surface elevation data being developed every year (ecological and
otherwise; Davies and Asner 2014, Iglhaut et al. 2019), the
temporal resolution of data collection seems likely to increase in
parallel with ongoing increases in spatial extent.

Our index, and the demonstration of its potential uses, fits within
the broader category of ecological scenario evaluation and
prediction, a key step in the process of assessing alternative
courses of action in support of biodiversity and ecosystem targets
(Guisan et al. 2013, Nicholson et al. 2019). Lidar and
photogrammetric surface elevation data are already being used
to support distribution modeling of plant species (Wiiest et al.
2020) and for modeling relationships between animal habitat use
and forest structure (Davies and Asner 2014, Iglhaut et al. 2019).
Extending this to grassland fauna with respect to well-studied
behavioral preferences for openness introduces new research
possibilities. For example, the index could also easily be applied
to other open habitats, such as savannah, tundra, mudflat, open
ocean, or arid lands, where the role of openness in animal habitat
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selection and conservation has been less fully explored than in
temperate grasslands or marshes (Keyel et al. 2013, Marshall et
al. 2020). Although challenges associated with data availability
will impede its use in some locations, we expect this limitation to
diminish over time. Ultimately, a remotely sensed tool that allows
ready measurement of openness at a variety of spatial scales
represents an advance that permits the asking of new questions
for fauna of open habitats, ranging from the behavior of
individuals to the ecology and conservation of populations.
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APPENDIX 1. Plot of spatial autocorrelation (Moran’s I) in residuals of the top-performing occupancy model (Table 1). The model
was fit using the R package ubms (Kellner 2021) with no spatial component (top graph); with restricted spatial regression (RSR;
Johnson et al. 2013) and a 100 m threshold (middle graph); and with RSR and a 150 m threshold (bottom graph). Covariates for the
occupancy sub-model included site and maximum-angle openness, while covariates for the detection sub-model included only
observer. Models were run with 3 chains of 7500 warmup and sampling iterations each. Model convergence was assessed based on
the Gelman-Rubin statistic (Rhat < 1.1). Points in the figures show Moran’s I calculated for model residuals among points within
100 m distance bins. Numbers below the points show the sample sizes of point pairs. All distance bins of the 150-m-threshold model
had Moran’s I values of < 0.1 with P > 0.05. The top two graphs show evidence of spatial autocorrelation among points, including a
pattern of high (> 0.1) Moran’s I values among nearby points, and decreasing values with increasing lag distances.
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