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A Field Evaluation of the Time-of-Detection Method to Estimate
Population Size and Density for Aural Avian Point Counts

Évaluation sur le terrain de la méthode fondée sur le temps de détection
pour estimer l’effectif et la densité des populations d’oiseaux à partir de
points d’écoute

Mathew W. Alldredge 1, Theodore R. Simons 2, Kenneth H. Pollock 3, and Krishna Pacifici 3

ABSTRACT. The time-of-detection method for aural avian point counts is a new method of estimating
abundance, allowing for uncertain probability of detection. The method has been specifically designed to
allow for variation in singing rates of birds. It involves dividing the time interval of the point count into
several subintervals and recording the detection history of the subintervals when each bird sings. The
method can be viewed as generating data equivalent to closed capture–recapture information. The method
is different from the distance and multiple-observer methods in that it is not required that all the birds sing
during the point count. As this method is new and there is some concern as to how well individual birds
can be followed, we carried out a field test of the method using simulated known populations of singing
birds, using a laptop computer to send signals to audio stations distributed around a point. The system
mimics actual aural avian point counts, but also allows us to know the size and spatial distribution of the
populations we are sampling. Fifty 8-min point counts (broken into four 2-min intervals) using eight species
of birds were simulated. Singing rate of an individual bird of a species was simulated following a Markovian
process (singing bouts followed by periods of silence), which we felt was more realistic than a truly random
process. The main emphasis of our paper is to compare results from species singing at (high and low)
homogenous rates per interval with those singing at (high and low) heterogeneous rates. Population size
was estimated accurately for the species simulated, with a high homogeneous probability of singing.
Populations of simulated species with lower but homogeneous singing probabilities were somewhat
underestimated. Populations of species simulated with heterogeneous singing probabilities were
substantially underestimated. Underestimation was caused by both the very low detection probabilities of
all distant individuals and by individuals with low singing rates also having very low detection probabilities.

RÉSUMÉ. La méthode fondée sur le temps de détection utilisée dans le contexte des points d’écoute
représente une nouvelle approche pour estimer l’abondance des oiseaux en tenant compte de la probabilité
incertaine de détection. Cette méthode a été spécialement conçue pour tenir compte du taux variable de
chant observé chez les oiseaux. Elle consiste à diviser l’intervalle de temps passé à un point d’écoute en
sous-intervalles et de noter l’historique de détection des sous-intervalles où chaque individu est détecté.
Les données obtenues par cette méthode peuvent être considérées comme étant équivalentes à celles
obtenues par la capture-recapture dans une population fermée. La méthode diffère des approches fondées
sur la distance et les observateurs multiples du fait qu’elle n’exige pas que tous les individus chantent
durant le point d’écoute. Puisque cette méthode est nouvelle et qu’il existe une incertitude quant à la capacité
de suivre les individus, nous avons effectué une évaluation sur le terrain de sa précision en utilisant des
simulations sur des populations connues d’oiseaux chanteurs à l’aide d’un ordinateur portatif qui envoyait
des signaux à des stations audio distribuées autour du point d’écoute. Ce système imite un véritable point
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d’écoute tout en permettant de connaître l’effectif et la distribution des populations échantillonnées.
Cinquante points d’écoute de 8 min (séparés en intervalles de 2 min) ont été simulés pour huit espèces
d’oiseaux. Le taux de vocalisation de chaque individu a été simulé à l’aide d’une chaîne de Markov (périodes
de chant suivies de périodes de silence), ce qui nous semblait plus réaliste qu’un processus purement
aléatoire. L’objectif principal de notre article était de comparer les résultats pour des espèces chantant à
une fréquence homogène (élevée ou faible) par intervalle avec d’autres espèces chantant à des fréquences
hétérogènes (élevées ou faibles). L’effectif de la population a été estimé précisément pour les espèces
simulées ayant une fréquence de vocalisation homogène et élevée. L’effectif des populations des espèces
simulées présentant une fréquence de vocalisation faible mais homogène a été légèrement sous-estimé.
Dans les cas des espèces chantant à des fréquences hétérogènes, les populations étaient fortement sous-
estimées. La sous-estimation était causée à la fois par la faible probabilité de détection de tous les individus
éloignés et des individus chantant à des fréquences faibles.

Key Words: Aural detections; availability process; avian point counts; detection probability; field tests;
perception process; time-of-detection method

INTRODUCTION

Bart (2005) estimated that there are at least 1000
independent programs that gather long-term data on
bird abundance in the USA and Canada, and many
are based on point counts. Point counts are widely
used to monitor spatial and temporal patterns of bird
abundance, to assess species–habitat relationships,
to evaluate the response of populations to
environmental change or management, and to
estimate species diversity. Surveys of breeding
birds rely heavily on auditory detections, which can
range from 70% of observations in suburban
landscapes to 94% of observations in closed-canopy
deciduous forest (Simons et al. 2007). Hundreds of
thousands of point counts are conducted annually
in North America across a spectrum of scales, from
short-term site-specific studies, to long-term
continental-scale surveys, such as the Breeding Bird
Survey (Sauer et al. 2005).

In fixed radius point transects, where all the birds
are detected,

(1)

 
where D denotes density, N is the number of birds
in the sampled area, and n is the number of birds
detected. Note that w is the radius of the circle
around the point, and the area surveyed is, therefore,
a = kπw2 if there are k points surveyed. Of course
this is totally unrealistic in practice, as it will

virtually never be possible to detect all birds within
the sampled area. When not all the animals are
detected, the result generalizes to:

(2)

 
where p is the probability of an animal being
detected in the circle and has to be estimated in some
manner.

There are several approaches to the estimation of p,
the probability of detection, in the literature, and
they all make different assumptions about the
detection process. Distance sampling (Buckland et
al. 2001) requires that: points are chosen randomly,
detection is certain at the point, detection is a
decreasing function of distance, and that there is no
movement before detection. A second method, the
multiple independent observer approach, requires
that several observers detect birds simultaneously
on the same sample area and map their locations.
Estimation then is based on a closed capture–
recapture modeling approach for the detection
histories; Alldredge et al. (2006) decribes the
assumptions in detail. Key issues are no matching
errors and no movement before detection. Nichols
et al. (2000) suggested a dependent double-observer
variation of this method. Another method is the
repeated count method (Royle and Nichols 2003,
Kery et al. 2005). The focus of our paper is a new
approach, the time-of-detection method of
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Farnsworth et al. (2002) and Alldredge et al.
(2007a).

The overall probability of detection of an individual
animal is made up of an availability process (the
probability of an animal being available for
detection), and a detection process (the probability
of an animal being detected, given that the animal
is available for detection) (see, e.g., Marsh and
Sinclair 1989, Pollock et al. 2004). Here, we focus
on aural point counts, and symbolically, we
represent this detection process by the following
equation: p = pa pd , where p is the overall probability
of detecting a bird that is present in the sampled
circle during the sampling period, pa is the
probability that such a bird is available for detection
(this is the probability that the bird sang if the
detections are aural), and pd is the conditional
probability of detection given that the bird sang. For
the distance and multiple observer methods, pa is
assumed to be 1 (or in other words we condition our
inference on the birds that have sung).

The time-of-detection method, by contrast,
estimates the overall detection probability and
allows for birds to be unavailable because they do
not sing. Farnsworth et al. (2002) were the first to
realize that there is information on detection
probability available from the times when birds are
detected in a point count. They developed a
“removal” method using only the time interval when
individual birds are first detected. The approach is
related to the removal method for trapped animals
(Zippin 1958, Seber 1982, Williams et al. 2002).
Later Alldredge et al. (2007a) suggested a more
efficient approach that applies a k sample closed
capture–recapture model to the detection histories.
With this approach, that is based on tracking
individual birds accurately over the whole point
count, the time intervals in which a particular bird
was detected and the time intervals in which that
same bird was not detected are recorded for the set
of k time intervals. For example, if there were k = 4
time periods then a detection history of {1101}
would indicate that a bird was detected in periods
1, 2, and 4, but not in period 3. Capture–recapture
approaches are much better than removal methods
at modeling heterogeneity of detection probabilities.
Alldredge et al. (2007a) implemented this capture–
recapture approach using field data to illustrate the
method’s strengths and weaknesses. In the rest of
the article, we will be considering this approach
when we refer to the time-of-detection method.

Following Alldredge et al. (2007a), the basic model
assumptions of the time-of-detection method are as
follows:

1. There is no change in the population of birds
within the detection radius during the point
count (i.e., the population is closed and birds
do not move in or out);
 

2. There is no double counting of individuals (i.
e., the observer keeps track of individual birds
without error);
 

3. Observers accurately assign birds to within
or beyond the radius used for a fixed-radius
circle if one is used;
 

4. All individual birds of a species have a
constant per minute probability of being
detected in each interval.
 

 These assumptions are not trivial because there may
be movement in or out of the area, which violates
assumption 1. Movement of individuals within the
area during the count may cause violations of
assumption 2, and difficulty in assigning distances
to birds located aurally (Alldredge et al. 2007c) may
cause violations of assumption 3. In addition, we
know very little about the variability of singing rates
in individual birds (assumption 4), but it appears to
be influenced by a variety of factors (Gibbs and
Wenny 1993).

Extensions to allow trap response and heterogeneity
of capture probabilities in closed capture–recapture
models can be advantageously adapted to this
setting. If the probability of detection changes after
the first detection (analogous to trap response in a
capture–recapture setting), then assumption 4 can
be weakened. “Trap response” models may be
useful, and in this application, recapture
probabilities are likely to be greater than first-
capture probabilities. An observer may anticipate
that an individual bird may call again, and thus it
would be more likely to be detected if it does call
(Alldredge et al. 2007a). If the probability of
detection varies among individual birds, then
heterogeneity models may also be useful, and
Alldredge et al. (2007a) used heterogeneity in both
their examples. Heterogeneity is likely because of
variation in singing rates among individuals
(Brewster 2007), as well as distance from the
observer (Buckland et al. 2001) and many other
factors. Much has been written about heterogeneity
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models in the capture–recapture literature
(Burnham and Overton 1978, Otis et al.1978,
Pollock et al. 1990, Williams et al. 2002). Link
(2003) has noted problems with identifiability when
these models are used. Modeling heterogeneity in
detection probability using covariates can reduce
issues associated with identifiability (Huggins
1989,1991, Alho 1990). One covariate of particular
importance is distance from the observer to the bird.

Birds with detection probabilities near 0 may be of
special importance in time-of-detection applications.
Alldredge (2004) and Brewster (2007) emphasize
that avian singing rates may vary widely among
individuals of the same species due to pairing status
and other factors related to nesting phenology.
Brewster (2007) estimated singing rates by
following individual Ovenbirds (Seiurus aurocapillus)
and Black-throated Blue Warblers (Dendroica
caerulescens) for long periods. Some individuals
had very low singing rates, which made them almost
impossible to detect.

Our field evaluation uses the methods developed by
Simons et al. (2007) consisting of an experimental
system for simulating avian point count conditions
when birds are detected aurally. The system uses a
laptop computer to control a set of audio stations
(amplified MP3 players) placed at known locations
around a census point. The system can realistically
simulate a known population of songbirds under a
range of factors that affect aural detection
probabilities. Earlier field tests using this system
focused on factors influencing detection probability
(Alldredge et al. 2007b), and measurement error in
detection distance (Alldredge et al. 2007c).

The objective of this paper is to report on a field
evaluation of the time-of-detection method for
estimating aural detection probabilities and
population sizes using our experimental system. We
focus on comparing species with homogeneous
singing rates vs. those with varying degrees and
types of heterogeneous singing rates. After a
detailed description of our research methods and
results, we focus on the implications and importance
of our work to field ornithologists designing point-
count studies and suggest possibilities for future
research.

METHODS

Field Methods

A bird song simulation system (Simons et al. 2007)
was used to simulate point counts in a field setting
in order to evaluate the time-of-detection point-
count method. Thirty-five players were uniformly
distributed with respect to area surrounding a single
point in a mixed pine–hardwood forest at Howell
Woods Environmental Science Center in the
Piedmont Region of North Carolina. The forest has
a dense understory that limits visibility to 30 m or
less in almost all directions. All players were set 1
m above ground because, at the same site, previous
experiments showed little effect of player height on
detection probability (Alldredge et al. 2007b,
Alldredge et al. 2007c),;therefore, for simplicity, we
chose to eliminate this variable from our
experiments although it may be important in other
forested habitats. Players were set at radial distances
between 0 and 120 m, again based on the results of
earlier experiments. For simplicity, single examples
of each species’ song were used for all our field tests
including this one. Typical songs from Walton and
Lawson (1999) were converted from the audio CD
to 128 KPS, 44, 100 HZ, MP3 Format. Songs for
all species were played at a volume of
approximately 90 dB at a distance of 1 m.

Fifty point counts, each of 8 min duration were
simulated over 2 days in early March 2006.
Therefore, the conditions were those of no leaves
on the deciduous trees on the plot. This time of year
was chosen to minimize interference from resident
bird calls. The same individual point was used for
all counts, but the play lists of songs varied as
described below. Each count was broken into four
time intervals each of 2 min duration, and four
experienced observers recorded birds using multi-
colored pens to distinguish intervals of detection.
Detection of a previously recorded bird in
subsequent intervals was recorded by circling the
previous detection in the appropriate color of the
interval. To simplify their task of individually
tracking each bird detected, observers were not
required to estimate distance to the sound source of
each bird, but they were asked to map birds to their
approximate location.

There were a total of 18 singing birds per point
count, and these included two individuals of eight
species of primary interest (Acadian Flycatcher
(ACFL, Empidonax virescens), Black and White
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Warbler (BAWW, Mniotilta varia), Black-throated
Blue Warbler (BTBW, Dendroica caerulescens),
Black-throated Green Warbler (BTNW, D. virens),
Hooded Warbler (HOWA, Wilsonia citrina),
Scarlet Tanager (SCTA, Piranga olivacea),
Ovenbird (OVEN, Seiurus aurocapilla), and
Yellow-throated Warbler (YTWA, D. dominica)).
Four additional species were used to diversify the
species list. None of the simulated species were
found locally at the study area during the time of
our experiments. For each of the eight primary
species, there were exactly two individuals on each
count, for a total of 100 individual singing birds on
the 50 counts. We maintained a minimum 45°
separation between the two individuals of the same
species to minimize matching errors when recording
observer results. For each individual, all calls came
from only one speaker. That is, once assigned to
play from a particular speaker, then all subsequent
calls of that individual came from the same speaker
so that “movement” of particular birds was not
allowed.

A crucial point (described in detail below) is that
true population sizes for some species were greater
than 100 birds, because not all birds in the simulated
population actually sang during the count, and hence
were unavailable during the 8-min count. All birds
had a positive probability of singing in each interval,
although for some individuals of some species these
probabilities were small.

Previous studies have focused on how various
factors affect detection probabilities on auditory
point counts (Simons et al. 2007, Alldredge et al.
2007b, c). Our main focus in this field test was to
examine the singing process and potential biases
that may exist with the time-of-detection method.
The singing rate of individual birds was simulated
following a Markovian process. We felt that singing
bouts followed by periods of silence were more
realistic than a truly random process (Collins 2004).
The process is represented by two parameters; the
probability that a bird does not sing in interval i,
given that it did not sing in interval i-1 (γ’), and the
probability that a bird does not sing in interval i,
given that it did sing in interval i-1 (γ’’).

Six of the eight species of interest were simulated
under this Markovian process, and the true
population size was manipulated so that the number
of birds actually played during the experiment for
each species was 100. The first three species
considered (HOWA, BTNW, and YTWA) were all

simulated with a constant or homogeneous
probability of singing at least once in an interval.
Their probabilities of singing in at least one of the
four 2-min intervals were 1.0, 0.8, and 0.6,
respectively (Table 1). Total simulated populations
of these three species were 100, 125, and 167,
respectively. Singing rates during intervals in which
these birds sang were six to nine songs per minute
based on Robbins et al. (1983). The fourth species,
BAWW, had an overall homogeneous probability
of singing at least once in the total count of 0.8, but
singing rates varied within the intervals in which
the birds sang. Half of the simulated BAWW sang
two songs per minute and the other half sang eight
songs per minute. The total population of simulated
BAWW was 125. The fifth and sixth species ACFL
and SCTA, were simulated with heterogeneous
probability of singing at least once in an interval.
The overall populations of ACFL and SCTA were
133 birds. Fifty individuals were simulated with a
probability of 1.0 of singing during the count, and
83 individuals were simulated with a probability of
0.6 of singing during the count. Singing rates for
intervals in which a bird sang were six to nine songs
per minute for these two species.

The probability of singing per interval for the two
other species of interest, BTBW and OVEN, was
based on empirical field data, where singing patterns
of individual birds were recorded over 10- to 30-
min intervals (Brewster 2007). Eight-minute long
segments of these data were randomly selected to
create simulated populations of birds (Table 1). The
total potential population of BTBW was 133 birds,
and the total potential population of OVEN was 127.
Singing rates in intervals where birds sang were six
to nine songs per minute. We emphasize that for
each of the eight species, 100 birds actually sang
during the 8-min count.

Statistical Methods

We calculated double-counting errors, errors from
calls being assigned to the wrong time interval, and
errors due to species being misidentified.

For each individual bird detected, a detection history
over the four intervals was constructed using the
standard capture–recapture format used by program
MARK (White and Burnham 1999). For example,
if a bird was only detected in the first interval, the
detection history was {1000}, whereas if a bird was
detected in intervals 1, 2, and 4 but not 3, its
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Table 1. Experimental conditions for each of the eight species of interest. The first four species were
homogeneous in population structure, in that all birds had the same probability of calling in each interval,
whereas the next four species were heterogeneous. All species except the BAWW had a high singing rate
per interval. Total and Singing Population sizes are presented as the probability of singing during the 8-
min count. The last two columns summarize the Markovian nature of the singing process and are explained
in detail in the text.

Species Homogeneous
population

Singing rate,
if sings

Total population Singing
population

Probability sings
in 8- min count

γ' γ''

HOWA Yes High 100 100 1.0 0.3 0.1

BTNW Yes High 125 100 0.8 0.83 0.45

YTWA Yes High 167 100 0.6 0.9 0.5

BAWW Yes Low/ High 125 100 0.8 0.83 0.45

ACFL No High 50
83

100 1.0
0.6

0.3
0.9

0.1
0.5

SCTA No High 50
83

100 1.0
0.6

0.3
0.9

0.1
0.5

BTBW No High 133 100 empirical na na

OVEN No High 127 100 empirical na na

detection history would be {1101}. Analyses were
on a species-by-species basis for each observer and
followed the methods outlined by Alldredge et al.
(2007a).

We used the “Huggins Closed Captures” estimation
method (Huggins 1989, 1991) as implemented in
program MARK (White and Burnham 1999).
Models included constant detection probability for
all individuals (M0), time effects on detection
probability (Mt), and differences in detection
probability due to previous detection (Mb).
Unobservable heterogeneity (Mh) models were also
fitted. We used the two-point mixture models
(Pledger 2000). This is a very simple way of
introducing heterogeneity where there is a
proportion of the animals with one capture
probability and the remainder of the animals in the
population have another capture probability. (For
example, 40% of the animals might have a capture
probability of 0.3, and the remaining 60% of the

animals might have a capture probability of 0.8).
Akaike's information criterion (AIC)c model
selection, corrected for small sample size, was used
to determine the most likely model given the data
(Burnham and Anderson 2002). Maximum
likelihood estimates were then computed for
selected models.

We carried out additional analyses for ACFL and
SCTA where we modeled heterogeneity in detection
probabilities as an observable group effect (Mg) in
combination with other time or behavioral effects.
However, this analysis would not be possible with
actual point-count data because these groups are not
observable in wild birds.
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RESULTS

Double Counting and Interval Recording
Errors

Double counting, counting a single bird as more
than one bird, was a significant source of error
among the four experienced observers. This error is
produced when observers are unable to accurately
localize the source of a song. Double-counting rates
ranged from 0.9% to 3.4% (SE = 0.6%) of total
observations among observers. Double counting
occurred in a variety of forms. In most cases, single
birds were recorded as two birds throughout the
count interval. This created two or more capture
histories that clearly indicated a single individual
tracked as two birds throughout the count.
Occasionally, observers mapped a bird in one
location at the beginning of the count, then mapped
the same bird in a new location and continued to
track it at the new location for the remainder of the
count. These cases produced two or more capture
histories of the form xx00 for the original bird and
00xx for the double count, where x could be either
a one or a zero.

Overall, 2.0%–4.1% (SE = 0.43%) of observations
were recorded in the wrong time interval among the
four observers. This occurred when two or more
individuals of the same species sang during a count,
and observers attributed a song to the wrong
individual. Misidentification errors were rare,
ranging from 0.1% to 0.6% (SE = 0.09%) of total
observations among the four experienced observers.

Species with Simulated Homogeneous
Probabilities of Singing

Model Mh was selected for all four HOWA data sets,
which were simulated with a homogeneous singing
probability with all birds singing in at least one
interval. The AICc importance weights were high
(Table 2) for heterogeneity models, indicating that
some unobservable source of heterogeneity was
affecting the detection probabilities for this species.
Estimates of HOWA population size were accurate
and precise for all four observers.

The other two species with homogeneous singing
probabilities (0.8 and 0.6, respectively) and constant
singing rates for singing birds were BTNW and
YTWA. Model M0 was selected or was a
competitive model (∆AICc < 1.0) for BTNW and

YTWA (Table 2). Population size estimates for
BTNW for the four observers (95, 97, 87, and 98)
were substantial underestimates of the simulated
population of 125 birds. Model Mb was selected as
the top YTWA model for three of the four observers.
Models accounting for heterogeneity in detection
probabilities had little support for these data. Model
Mb gave reasonably accurate estimates of YTWA
for two of the observers and overestimates for the
other, but standard errors were very large. Model
M0 was a competitive model (∆AICc ≤ 0.46) for
these three data sets, and although it gave precise
estimates, it substantially underestimated the actual
population size of 167 birds (Observer 1, population
estimate 111, SE = 9.35; Observer 3, population
estimate 121, SE = 12.92; Observer 4, population
estimate 102, SE = 8.91). M0 was chosen as the top
model for Observer 2, where the population estimate
is 123 with SE = 12.13.

Species with Simulated Variable Song
Production

Although BAWW was simulated with heterogeneity
in detection probability due to differences in singing
rates, we found very little support for heterogeneity
models. Model M0 was selected for all four data sets
(importance weights ≤ 0.24). The population size
of 125 was underestimated by all four observers
with estimates of 106, 118, 103, and 95 birds.

Species with Empirical Heterogeneous
Probabilities of Singing

Heterogeneity models Mh, Mth or Mbh were selected
for all BTBW and OVEN data sets, which were
simulated based on song data recorded from
breeding birds in the field. The variable importance
weights for heterogeneity were 1 for BTBW and
≥0.88 for OVEN, indicating that models accounting
for individual variation in detection probabilities
were strongly supported by the data. An increase in
detection probabilities (model Mbh) following initial
detection was also supported by the data from
observers 1 and 4. Models incorporating differences
in detection probability associated with time
intervals were supported for BTBW and OVEN, but
they were only selected as the best model for
observer 4 and the BTBW. This was expected
because no data sets were simulated with variability
in detection probability associated with time. True
population sizes (133 for BTBW and 127 for
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Table 2. Top models chosen using AICc and estimated population sizes and standard errors for four
experienced observers. Singing rates of the first four species were homogeneous (all birds had the same
probability of calling in each interval). The next four species were heterogeneous. ACFL and SCTA are
presented first when groups are modeled with unidentifiable heterogeneity (h) and second when modeled
with identifiable heterogeneity (g). All species except the BAWW had a high homogeneous singing rate
per interval.

Observer 1 Observer 2 Observer 3 Observer 4

Species N Model Est SE Model Est SE Model Est SE Model Est SE

HOWA 100 Mh 99 0.41 Mh 102 1.69 Mh 99 1.37 Mh 101 1.62

BTNW 125 M0 95 4.91 M0 97 5.29 M0 87 4.61 M0 98 5.56

YTWA 167 Mb 162 63.94 M0 123 12.13 Mb 224 163.59 Mb 161 76.54

BAWW 125 M0 106 14.79 M0 118 14.74 M0 103 14.4 M0 95 11.04

BTBW 133 Mh 93 5.3 Mh 89 2.49 Mh 95 4.58 Mth 100 5.54

OVEN 127 Mbh 89 1.36 Mh 84 1.26 Mh 99 5.29 Mbh 87 0.46

ACFL 133 Mh 96 4.62 Mh 87 4.60 Mh 91 6.12 Mh 89 4.75

SCTA 133 Mh 108 5.33 Mh 105 5.54 Mh 106 5.81 Mh 108 5.84

ACFL 133 Mg 103 8.04 Mgb 126 29.03 Mgb 98 10.77 Mg 93 5.47

SCTA 133 Mg 116 9.13 Mgb 104 10.57 Mg 114 10.18 Mg 121 12.04

OVEN) were substantially underestimated. Observers
never estimated populations greater than the 100
birds that actually sang in at least one interval. Some
individuals of these two species had very low
detection probabilities.

Species with Two-Group Heterogeneous
Singing Probabilities

Finite mixture heterogeneity models (Pledger 2000)
performed best for the ACFL and SCTA. The ACFL
population estimates were substantially negatively
biased, with estimates of 96, 87, 91, and 89
individuals. The SCTA population estimates were
similar with estimates of 108, 105, 106, and 108
individuals.

Estimates improved when we repeated these
analyses to include two groups with different
probabilities of singing in at least one interval. It is
not surprising that the group effect (individuals
matched to high or low availability) was very
important for both ACFL and SCTA. The AICc 
importance weights of 1 for the group effect indicate
that all models included this effect (Table 2). The
selected models for observer 2 for both species, and
observer 3 for ACFL also included a behavioral
effect, indicating that the probability of subsequent
detection of an individual increased after first
detection. The total populations for these two
species were 133. ACFL population estimates were
substantially negatively biased (population size
estimates 103, 98, and 93, respectively) although
less so than when the group effect was not used. The
exception was observer 2 ( population size estimate
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126). Populations were slightly underestimated for
SCTA (population size estimates 116, 104, 114, and
121), although less so than when the group effect
was not used.

Portions of the ACFL and SCTA populations were
simulated with an availability of 1, and we found
that the population size estimate for ACFL was 46,
SE = 0.47 and the population size estimate for SCTA
was 51, SE = 0.43, where the true population size
was 50. These estimates have small SEs and means
close to the truth so that they are accurate and
precise, similar to the results we obtained for
HOWA described earlier.

DISCUSSION

We believe that this is a unique and important field
test of the performance of the time-of-detection
method of estimating population size on aural point
counts. Knowing the true number of birds of each
species singing allowed us to directly assess the
performance of the method. We were able to
compare the true population density parameter with
its corresponding estimate under different
experimental conditions. In contrast, many field
tests reported in the literature only compare
different population estimates with no knowledge
of the true population parameters.

We consider our test as a “quasi-experiment ” rather
than a true experiment because of important
practical limitations. We used one single point in
one habitat under leaf-off conditions, therefore
eliminating the effects of spatial or temporal
variation (environmental variation in topography,
background noise, foliage, etc.). We were unable to
choose our observers randomly and did not model
observer effects in our analyses. We used one
example of each species song in the interests of
simplicity and control. We also were unable to allow
for individual birds to move during the count.
However, we were able to control for other
important factors including song orientation, song
height, and song volume, and we were able to
randomize the order in which species called within
different fixed-distance bands.

Our system does not allow us to evaluate the effect
of mixed-cue detections where, e.g., a bird is first
detected by a sound cue and then sighted and
localized from a mix of sound and visual cues. This
is an important issue that we leave to other

researchers to study. However, we believe that our
results are very important and relevant to many field
ornithologists because such a high percentage of
birds are detected aurally in forested habitats
(Simons et al. 2007). An important strength of our
study was that we could assess in detail the effects
of variable detection probability caused by
variability in the singing rates of individual birds.
We found that the method estimated population size
accurately for species simulated with high
homogeneous singing rates. Populations of species
with lower but homogeneous singing rates were
somewhat underestimated, but in general, the
method performed fairly well. When probabilities
of singing were heterogeneous among individuals
of the same species, the method often substantially
underestimated populations. Heterogeneity is
known to cause underestimation in capture–
recapture models, even in models allowing
heterogeneity in capture probabilities. Otis et al.
(1978) carried out detailed simulation studies and
showed the problem occurs whenever animals have
detection probabilities close to zero. If
heterogeneity exists, but detection probabilities are
not near zero, heterogeneity models perform
reasonably well.

We believe the problem of aural sampling of avian
species with very low singing rates, and hence low
overall detection probabilities, is a very difficult
one. Our evaluation showed serious negative bias
when using the time-of-detection method, but
unfortunately, two other methods of estimating
detection probability using distance and multiple-
observer sampling will perform even worse than the
time-of-detection methods because they assume
that all birds sing during the count interval. A
possible solution that should be investigated further
involves the use of the repeated counts method
(Kery et al. 2005). However, the repeated counts
method is costly and may have its own limitations,
and so we do not discuss it further in this paper.

We attempted to make this evaluation as realistic as
possible by including species with very
heterogeneous singing rates and a variety of song
characteristics, including non-random singing bouts
based on empirical field data. In fact, our evaluation
may have included more situations with lower
singing rates than would be expected. Nevertheless,
in other respects, our field evaluation was somewhat
oversimplified compared with real point counts
where more individuals and species are present,
where the individuals of each species may be closer
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than a 45° angle of separation, where observers
attempt to estimate the distance to singing birds, and
where birds constantly move and change their
orientation with respect to observers. In addition,
the species we simulate (HOWA, SCTA, ACFL,
OVEN) had very distinct and conspicuous calls, and
our observers were very familiar with the simulated
songs because of their participation in previous
experiments. Thus, in most cases, levels of accuracy
and precision reported from these experiments are
probably higher than those expected in actual field
studies where only aural detections are used.

The time-of-detection method is quite demanding
on observers in that they have to keep track of
individual birds to obtain an accurate detection
history. In our study, the observers had to track 18
total individual birds and focus on getting detection
history data for 16 birds (two individuals of each of
the eight species). Unfortunately, we were unable
to evaluate this component of the method, and in
future work, we would like to vary the number of
birds at a point and see how that changes the quality
of the data collected by the observers.

This paper has focused on the use of the time-of-
detection method for aural detections because of the
nature of our song simulation system and because
such a high proportion of avian detections in
forested systems are aural. We believe that the time-
of-detection method has value for this situation. We
are less certain of the value of the method for visual
detections and believe this question requires further
research. Humans process auditory and visual
information differently. We believe that an
observer’s field of view limits the proportion of a
plot that can be sampled visually in each time
interval, whereas hearing provides a much better
snapshot of the whole plot and is, therefore, better
suited to this method. An important related question
concerns the analysis of data comprised of
detections from different types of cues (aural only,
visual only, and a mix of aural and visual). For
example, visual detections may include both males
and females of some species, whereas auditory
detections are presumed to indicate breeding males
in most surveys. We are concerned about mixing
visual and auditory observations because the
detection processes are so different for different
types of cues. We believe this is still an open
question that should be examined in future research.

When using the time-of-detection method, we
recommend the capture–recapture version (Alldredge

et al. 2007a ), which uses the full detection history
rather than the removal version (Farnsworth et al.
2002), which just uses the time of first detection. At
least four time intervals of equal length with 8–10
min total time might be reasonable, but we did not
study this question in these experiments. A key
assumption of the method is that observers localize
and track individual birds without error. Therefore,
the longer the count interval, and the greater the rate
of bird movement, the greater the likelihood that
this assumption is violated. We believe the method
has promise when localization errors can be kept to
a minimum, e.g., for species such as Whip-poor-
wills (Caprimulgus vociferous) with large
territories, high singing rates, and low movement
rates. We encourage other researchers to try the
method on a variety of species so that our knowledge
of when it is most useful can be increased. The
quality of the data will also be influenced by the
number of species and individuals being tracked.
Therefore, we suggest that researchers consider
applying the method to a few key species in habitats
where many individuals of many species are
present.

Finally, we believe that research on combined
methods, such as combined multiple-observer and
time-of-detection methods (Pollock et al.,
submitted ) could prove quite useful. This approach
can provide estimates of both components of the
detection process (the probability of singing and the
probability of detection, given that the bird sings).
Repeated-count methods could also be combined
with methods such as distance, multiple observers,
and time-of-detection methods. These combined
approaches, although more complex and expensive
to implement could provide very useful insights into
the overall detection process.

Responses to this article can be read online at:
http://www.ace-eco.org/vol2/iss2/art13/responses/

Acknowledgments:

We are very grateful to the many volunteers who
assisted with this research: Jerome Brewster, Adam
Efird, Mark Johns, Ryan Myers, Shiloh Schulte, and
Clyde Sorenson. Electrical engineering students at
NCSU: John Marsh, Marc Williams, Michael Foster,
and Wendy Moore provided valuable technical
assistance. Funding for this research was provided

http://www.ace-eco.org/vol2/iss2/art13/
http://www.ace-eco.org/vol2/iss2/art13/responses/


Avian Conservation and Ecology - Écologie et conservation des oiseaux 2(2): 13
http://www.ace-eco.org/vol2/iss2/art13/

by the USGS Status and Trends Program, the US
Forest Service, the US National Park Service, and
the North Carolina Wildlife Resources Commission.
We also thank Dr. Barbara Brunhuber for
substantial editorial assistance. 

LITERATURE CITED

Alho, J. M. 1990. Logistic regression in capture–
recapture models. Biometrics 46:623–635.

Alldredge, M. W. 2004. Avian point-count surveys:
estimating components of the detection process.
Dissertation, North Carolina State University,
Raleigh, North Carolina, USA.

Alldredge, M. W., K. H. Pollock, and T. R.
Simons. 2006. Estimating detection probabilities
from multiple observer point counts. The Auk 
123:1172–1182.

Alldredge, M. W., K. H. Pollock, T. R. Simons, J.
A. Collazo, and S. A. Shriner. 2007a. Time of
detection method for estimating abundance from
point count surveys. The Auk 124:653–664.

Alldredge, M. W., T. R. Simons, and K. H.
Pollock. 2007b. Factors affecting aural detections
of songbirds. Ecological Applications 17:948–955.

Alldredge, M. W., T. R. Simons, and K. H.
Pollock. 2007c. An experimental evaluation of
distance measurement error in avian point count
surveys.  Journal of Wildlife Management (in press).

Bart, J. 2005. Monitoring the abundance of bird
populations. The Auk 122:15–25.

Brewster, J. P. 2007. Spatial and temporal variation
in the singing rates of two forest songbirds, the
ovenbird and the Black-throated Blue Warbler:
implications for aural counts of songbirds. Thesis,
Department of Zoology, North Carolina State
University, Raleigh, North Carolina, USA.

Buckland, S. T., D. R. Anderson, K. P. Burnham,
J. L. Laake, D. L Borchers, and L.Thomas. 2001.
Introduction to distance sampling. Oxford
University Press, Oxford, UK.

Burnham, K. P., and D. R. Anderson. 2002. Model

selection and inference: a practical information
theoretic approach. Springer-Verlag, New York,
New York, USA.

Burnham, K. P., and W. S Overton. 1978.
Estimation of the size of a closed population when
capture probabilities vary among animals.
Biometrika 65:625–633.

Collins, S. 2004. Vocal fighting and flirting: the
functions of birdsong. Pages 69–72 in P. Marler and
H Slabbekoorn, editors. Nature's music: the science
of birdsong. Elsevier Academic Press, San Diego,
California, USA.

Farnsworth, G., K. H Pollock, J. D Nichols, T. R
Simons, J. E. Hines, and J. R. Sauer. 2002. A
removal model for estimating the detection
probability during point counts divided into time
intervals. The Auk 119:414–425.

Gibbs, J. P., and D. G. Wenny. 1993. Song output
as a population estimator: effect of male pairing
status. Journal of Field Ornithology  64:316–322.

Huggins, R. M. 1989. On the statistical analysis of
capture experiments. Biometrika 76:133–140.

Huggins, R. M. 1991.Some practical aspects of a
conditional likelihood approach to capture
experiments. Biometrics 47:725–732.

Kery, M., J. A. Royle, and H. Schmid. 2005.
Modeling avian abundance from replicated counts
using binomial mixture models. Ecological
Applications 15:1450–1461.

Link, W. A. 2003. Nonidentifiability of population
size from capture–recapture data with heterogeneous
detection probabilities. Biometrics 59:1123–1130.

Marsh, H., and D. F. Sinclair.1989 Correcting for
visibility bias in strip transect aerial surveys of
aquatic fauna. Journal of Wildlife Management 
53:1017–1024.

Nichols, J. D., J. E. Hines, J. R., Sauer, F. W.
Fallon, J. E. Fallon, and P. J. Heglund. 2000. A
double observer approach for estimating detection
probability and abundance from point counts. The
Auk 117:393–408.

Otis, D. L., K. P. Burnham, G. C. White, and D.
L. Anderson. 1978. Statistical inference from

http://www.ace-eco.org/vol2/iss2/art13/


Avian Conservation and Ecology - Écologie et conservation des oiseaux 2(2): 13
http://www.ace-eco.org/vol2/iss2/art13/

capture data on closed animal populations. Wildlife
Monographs 62. The Wildlife Society, Bethesda,
Maryland, USA.

Pledger, S. 2000. Unified maximum likelihood
estimates for closed capture–recapture models
using mixtures. Biometrics 56:434–442.

Pollock, K. H., M. W. Alldredge, and T. R.
Simons. Submitted. Separation of availability and
perception processes for aural detection in avian
point counts: a combined multiple observer and
time-of-detection approach. Avian Conservation
and Ecology - Écologie et conservation des oiseaux.

Pollock, K. H., H. Marsh, L. L. Bailey, G. L.
Farnsworth, T. R. Simons, and M. W. Alldredge. 
2004. Separating components of detection
probability in abundance estimation: an overview
with diverse examples. Pages 43–58 in W. L
Thompson, editor. Sampling rare and elusive
species: concepts, designs and techniques for
estimating population parameters. Island Press,
Washington D.C., USA.

Pollock, K. H., J. D. Nichols, C. Brownie, and J.
E. Hines. 1990. Statistical inference for capture–
recapture experiments. Wildlife Monographs 
107:1–97.

Robbins, C. S., B. Brun, and H. S. Zin. 1983. Birds
of North America: a guide to field identification. 
Golden Press, New York, New York, USA.

Royle, J. A., and J. D. Nichols. 2003. Estimating
abundance from repeated presence–absence data or
point counts. Ecology 84:777–790.

Sauer, J. R., J. E. Hines, and J. Fallon. 2005. The
North American breeding bird survey, results and
analysis 1966–2004. Version 2005.2, US
Geological Survey, Patuxent Wildlife Research
Center, Laurel, Maryland, USA. (online) URL: htt
p://www.mbr-pwrc.usgs.gov/bbs/bbs.html.

Seber, G. A. F. 1982. The estimation of animal
abundance and related parameters. Second edition,
Charles W. Griffin, London, UK.

Simons, T. R., M. W. Alldredge, K. H. Pollock,
and J. M. Wettroth. 2007. Experimental analysis
of the auditory detection process on avian point
counts. The Auk 124:986–999.

Walton, R. K., and R. W. Lawson. 1999. Birding
by ear: eastern/central. Petersen Field Guides
(Audio CD). Houghton Mifflin, Boston, Massachusetts,
USA.

White, G. C., and K. P. Burnham.1999. Program
MARK: survival estimation from populations of
marked animals. Bird Study 46:S120–S139.

Williams, B. K., J. D. Nichols, and M. J. Conroy. 
2002. Analysis and management of animal
populations: modeling, estimation, and decision
making. Academic Press, San Diego, California,
USA.

Zippin, C. 1958. The removal method of population
estimation. Journal of Wildlife Management 22:82–
90.

http://www.ace-eco.org/vol2/iss2/art13/
http://www.mbr-pwrc.usgs.gov/bbs/bbs.html
http://www.mbr-pwrc.usgs.gov/bbs/bbs.html

	Title
	Abstract
	Introduction
	Methods
	Field methods
	Statistical methods

	Results
	Double counting and interval recording errors
	Species with simulated homogeneous probabilities of singing
	Species with simulated variable song production
	Species with empirical heterogeneous probabilities of singing
	Species with two-group heterogeneous singing probabilities

	Discussion
	Responses to this article
	Acknowledgments
	Literature cited
	Table1
	Table2

