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ABSTRACT. Two types of ecological thresholds are now being widely used to develop conservation targets: breakpoint-based thresholds
represent tipping points where system properties change dramatically, whereas classification thresholds identify groups of data points
with contrasting properties. Both breakpoint-based and classification thresholds are useful tools in evidence-based conservation.
However, it is critical that the type of threshold to be estimated corresponds with the question of interest and that appropriate statistical
procedures are used to determine its location. On the basis of their statistical properties, we recommend using piecewise regression
methods to identify breakpoint-based thresholds and discriminant analysis or classification and regression trees to identify classification
thresholds.

Détection des seuils : choix de la méthode statistique en fonction des questions écologiques et des
objectifs de planification de la conservation
RÉSUMÉ. À l'heure actuelle, deux types de seuils écologiques sont communément utilisés dans l'élaboration d'objectifs de conservation
: alors que les seuils correspondant à un point de rupture représentent le point de basculement où les propriétés du système changent
radicalement, les seuils de classification, eux, séparent les données en groupes ayant des propriétés divergentes. Tant les seuils fondés
sur le point de rupture que ceux fondés sur la classification sont des outils utiles pour la conservation issue d'observations. Toutefois,
le type de seuils que nous cherchons à estimer doit impérativement concorder avec la question qui nous préoccupe, tandis que la méthode
statistique utilisée pour déterminer la localisation précise du seuil doit être appropriée. En nous fondant sur leurs propriétés statistiques,
nous recommandons l'utilisation d'une méthode de régression par segments pour déterminer un seuil correspondant à un point de
rupture et d'une analyse discriminante ou d'un arbre de classification ou de régression pour déterminer un seuil de classification.

Key Words: breakpoint-based threshold; classification and regression tree; classification threshold; ecological thresholds; logistic
regression; occupancy threshold; piecewise regression; ROC analysis

INTRODUCTION
Just like habitat fragmentation, the concept of an ecological
threshold may act as an intellectual attractor (sensu Haila 2002).
The idea that ecological relationships may be characterized by
narrow transition zones in which system properties change
dramatically is very appealing from both an intellectual and a
practical perspective. From a conservation perspective, such
thresholds may represent danger points where the risk of species
loss increases dramatically. For example, overharvesting of cod
(Gadus morhua) is thought to have changed zooplankton
predator-prey dynamics, which in turn negatively influences cod
population dynamics (Casini et al. 2009). Hence, ecological
thresholds may offer critical insight into ecosystem functioning
or species-specific requirements. They also offer useful guidelines
when developing evidence-based conservation targets (Sutherland
et al. 2004, Svancara et al. 2005, Rondinini and Chiozza 2010,
Samhouri et al. 2010), for which birds have often been used as a
focal group (Villard and Jonsson 2009). Perhaps for these reasons,
the number of papers on this topic has increased exponentially
since 1980.  

Along with the rapid growth in interest about ecological
thresholds, the number of methods used to determine if  and where
thresholds occur has also burgeoned. For example, Harper and
Macdonald (2011) and Toms (2012) summarize 24 different
methods that have been used to identify ecological thresholds,
and many additional methods exist (Andersen et al. 2009). The
term “ecological threshold” has also been used to refer to a wide
range of properties (Muradian 2001, Briske et al. 2006).  

We focus on two broad classes of ecological thresholds that differ
in their conceptual basis and statistical properties. Breakpoint-
based thresholds are characterized by relationships between
response and explanatory variable that change at some point,
termed a breakpoint (often abrupt, although there can be a
smooth transition region around this point; Fig. 1). In contrast,
classification thresholds correspond to a value of the explanatory
variable that divides the response variable into two relatively
homogeneous groups. Classification thresholds may occur even
if  there is a gradual change in the response. For example, a
threshold may separate ecological conditions where a species is
likely to be present versus those where it is likely to be absent (Fig.
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Fig. 1. Simulated examples of different types of thresholds. Breakpoint-based ecological thresholds can be either
continuous (a – b) or discontinuous (c – d); classification thresholds are typically estimated for presence –
absence data (e – f), but can also be estimated for abundance data (g – h). In addition, all types of thresholds
may be considered to occur at a single point (left column), or may exhibit a transition zone (right column).

1). Although classification thresholds are typically applied to
presence / absence data, they can also be estimated for count or
continuous responses.  

Even though they are conceptually quite distinct, these two types
of thresholds are often treated interchangeably in the literature
(Guénette and Villard 2004, King et al. 2007, Cuffney et al. 2011,
Daily et al. 2012, Baker and King 2013). This can sometimes result
in inappropriate statistical methods being used to estimate a
particular type of ecological threshold. For example, in a series
of simulations, Ficetola and Denoël (2009) tested whether logistic
regression could identify a breakpoint-based threshold even
though standard logistic regression can only be used to identify
classification thresholds. Similarly, Baker and King (2010)
implied that their approach could identify breakpoint-based
thresholds, and was therefore tested for its ability to do so by
Cuffney and Qian (2013), although it actually identifies a
community-level analogue of a classification threshold. The two

types of thresholds will tend to differ in location because they
must be identified using different statistical methods. Such
confusion and application of invalid statistical methods could
easily lead to poor outcomes, e.g., if  used for conservation
planning. Because ecological thresholds are more commonly
being used for this purpose, it is timely to review the differences
between breakpoint-based and classification thresholds and
outline statistical methods that are appropriate for estimating
each.

BREAKPOINT-BASED THRESHOLDS VERSUS
CLASSIFICATION THRESHOLDS
In statistical terms, the usual definition of an ecological threshold
is that of a breakpoint-based threshold: the relationship between
the response and explanatory variables is not linear, but changes
at some point, the threshold (Muradian 2001). This change is
often assumed to be a change in slope, so the relationship is
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continuous and piecewise linear (Toms and Lesperance 2003; Fig.
1a – b). However, the change can also be discontinuous, such as
a step function (Fig. 1c – d), and the relationships on either side
of the threshold need not be restricted to linear forms. In addition,
the threshold need not change at a single point, but could instead
occur over a (relatively) narrow transition zone (Fig. 1b and d).
This transition zone might reflect measurement error or
variability in the phenomenon being measured, or could be an
inherent property of the threshold relationship. Distinguishing
between these alternatives may be impossible in most situations,
but identifying the width of the transition zone is likely more
important for conservation or management purposes than
determining the reason why an ecological threshold has a zonal
transition.  

In contrast, a classification threshold does not necessarily involve
a nonlinear relationship between the response and explanatory
variables, but instead splits the response variable into two groups.
The classification threshold is then defined as the value of the
explanatory variable corresponding to the optimal division
between these groups. In its most common usage with binary
responses, the two groups correspond to portions in an ecological
gradient where the species is likely to be present versus those where
it is likely to be absent (Figure 1e – f). For count data, we might
instead identify a threshold in abundance that splits the data into
groups where the species is common versus uncommon or absent
(Figure 1g – h).  

Ficetola and Denoël (2009) proposed the term “abrupt” threshold
for a breakpoint-based threshold. We avoid this terminology
because it can be confusing when there is a smooth transition
around the breakpoint. Similarly, they use the term “smooth”
threshold to refer to a classification threshold, but this suffers
from similar problems because transition zones are not always
present. The term classification threshold is also applicable to
different types of response variables (e.g., presence / absence,
continuous and count data) and commonly used in the statistical
literature.  

Both breakpoint-based thresholds and classification thresholds
can be insightful for management and conservation purposes.
Breakpoint-based thresholds represent “tipping points,” i.e., a
value along a gradient where the focal ecosystem property changes
dramatically. For example, when nutrient levels exceed critical
thresholds, freshwater lakes and coral reef ecosystems enter
eutrophied conditions (Knowlton 1992, Scheffer et al. 1993,
2001). Classification thresholds, in contrast, identify values of the
explanatory variable corresponding to different groups of the
response. For example, Betts and Villard (2009) determined the
amount of mature forest at the scale of landscapes that was
associated with the presence or absence of several songbird
species.  

It is critically important to decide which type of threshold
corresponds to a particular question of conservation concern so
that the correct statistical methods can be used to estimate its
location. Breakpoint-based thresholds apply in cases where a
change in the relationship between the response and explanatory
variable is of concern: For example, does the relationship between
distance from the habitat edge and density of desert riparian birds
change at some distance (Brand et al. 2006)? Classification
thresholds apply in cases where you want to partition the response

variable based on the explanatory variable: For example, does the
occurrence of Bobolinks (Dolichonyx oryzivorus) within a
landscape depend on habitat openness (Keyel et al. 2012)?  

Although the two types of thresholds may happen to coincide,
they more commonly will not (e.g., Betts and Villard 2009,
Ficetola and Denoël 2009) because they are measuring different
properties. For example, consider the relationship between the
abundance of a species, e.g., a woodpecker, and the amount of a
resource, e.g., dead wood, a critical foraging substrate. A
breakpoint-based threshold would be expected if  woodpecker
territory size was related to the amount of available dead wood;
then woodpecker density would decline linearly with the density
of dead wood available, until dead wood was so rare that the
territory size needed to maintain an individual woodpecker or
breeding pair exceeded a size where movement costs are lower
than energetic gains (Rolstad 1991, Bütler et al. 2004a, Warren et
al. 2005). In contrast, a classification threshold would help
managers identify ranges of dead wood amounts corresponding
to a high frequency of occurrence of the focal woodpecker species
(e.g., Bütler et al. 2004b, Roberge et al. 2008, Müller et al. 2009,
Müller and Bütler 2010).

DETECTING BREAKPOINT-BASED
THRESHOLDS
The simplest method consists of visually estimating the location
of the threshold from plotted data, perhaps using a smoother or
generalized additive model to clarify the trends in noisy data.
Visual estimation can be surprisingly accurate, especially when
the threshold is pronounced (Ficetola and Denoël 2009), but this
is not always the case (Swift and Hannon 2010). Other tests
compare response values along a gradient of values of the
explanatory variable (Qian et al. 2003, Zeileis et al. 2003,
Andersen et al. 2009, Harper and Macdonald 2011), typically
indicating a range of probable values rather than estimating the
location of the threshold directly. Because these methods cannot
estimate precision in the threshold location, their usefulness for
practical applications is limited.  

Therefore, we believe that models that directly incorporate a
parameter specifying the location of the threshold are preferable,
if  the model assumptions can be met. In the case of a continuous
threshold, i.e., a threshold where the two regression segments join
at a point, piecewise regression (Toms and Lesperance 2003) has
been proven to be the most efficient method of statistical inference
(Chen et al. 2011). The simplest form of the piecewise linear model
joins two straight lines at the threshold, whereas other forms
incorporate a smooth zonal transition around the threshold and
may be easier to fit if  there is limited data near the threshold or
if  the estimated threshold converges on one of the observed data
points (Toms and Lesperance 2003, Toms 2012). Piecewise
regression can also be used if  the threshold is discontinuous, i.e.,
follows a step function, by first transforming the data using the
cumulative sum (Muggeo and Adelfio 2011). Of great practical
importance, it is possible to construct confidence intervals for the
estimated threshold in this model (Toms and Lesperance 2003).  

Piecewise regression models are fitted using software to fit
nonlinear models, or using other specialized software such as the
segmented package for R (Muggeo 2008a). Fitting a series of
models with thresholds fixed at points in a plausible range of
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values and then using AIC or other methods to choose the best
fitting model, although common, should be avoided because this
approach does not produce a confidence interval for the
threshold location and inflates the Type I error rate (Benedetti
et al. 2009). Instead, statistical tests can be used to determine if
a piecewise regression model fits significantly better than a linear
model (Liu and Qian 2009). Model estimates will not converge
if  a threshold does not exist, and so errors of nonconvergence
are likely meaningful if  the initial parameter estimates are good.
In truth, the fact that a piecewise regression model will not
estimate a threshold if  none exists is a strength of this method.  

The piecewise regression model can also be extended to binary
and count data with generalized linear models, producing what
may be termed piecewise logistic, also called segmented logistic,
or piecewise Poisson models. For example, Zuckerberg and
Porter (2010) used piecewise logistic models to look for
thresholds in occurrence, colonization, extinction, and
persistence of 25 forest bird species over a 20-year period.
Bayesian versions of piecewise regressions have also been
developed (Beckage et al. 2007), as have models that incorporate
thresholds into time-series models (Muggeo 2008b). It is also
possible to construct piecewise nonlinear models, or models that
include more than one threshold. If  multiple thresholds are
suspected, an algorithm developed by Muggeo and Adelfio
(2011) may be useful in determining the number and location of
multiple thresholds.

DETECTING CLASSIFICATION THRESHOLDS
Classification thresholds have been most commonly estimated
for binary data, where they are sometimes called occurrence
thresholds (Guénette and Villard 2004, 2005). In this context, a
logistic regression model is typically fit to the data. The data are
then split into two groups (points where the species is likely to
be present, versus points where it is likely to be absent) using a
specified or estimated probability of occurrence. The fitted
logistic regression function is then used to find the value of the
explanatory variable corresponding to this probability of
occurrence, the classification threshold. Some studies have used
an arbitrary probability of occurrence, such as 50% (e.g., Bisson
and Stutchbury 2000, Reunanen et al. 2002). Alternatively, a
value that is optimal in some sense can be derived from the
receiver operating characteristic (ROC) curve, i.e., the value that
minimizes the sum of false positives and false negatives
(Guénette and Villard 2004, 2005). Classification thresholds
identified using ROC analysis are remarkably stable as false
negatives and false positives are randomly added to a perfect
binary response, even though the associated logistic regression
curve quickly loses its “S” shape (Villard 2009). Choosing the
probability of occurrence to be equal to the observed proportion
of occurrences (Cramer 1999) is a simpler approach that appears
to be at least as effective (Liu et al. 2005). However, the sensitivity
of this method to the rate of false negatives and false positives
has not been determined.  

In this context, the logistic regression model described above
effectively acts as a logistic discriminant function that uses the
explanatory variable to classify the points into two groups, rather
than a regression model per se, and other methods of
discriminant analysis could also be used for this purpose. One

flexible alternative are classification and regression trees (De’ath
and Fabricius 2000, Müller and Bütler 2010), which can be used
with binary, count, or continuous data. Newer variants of these
trees, such as random forests and bagged or boosted trees,
typically have reduced bias and variation compared to simple
classification and regression trees (Bauer and Kohavi 1999,
Prasad et al. 2006, Cutler et al. 2007, Elith et al. 2008), although
simple trees should produce similar results in the case of a single
explanatory variable. A similar approach has been developed for
analyzing community composition data, which combines
multivariate regression trees and indicator species analysis
(Baker and King 2010).

DISCUSSION
Conservation planners and land managers regularly ask
ecologists to provide concrete advice to help them develop
meaningful strategies to protect biodiversity. Both breakpoint-
based and classification thresholds are useful tools in evidence-
based conservation (Sutherland et al. 2004, Svancara et al. 2005,
Rondinini and Chiozza 2010). Thresholds in response variables
may be expected when the ecological gradient reflects the amount
of a critical ecological resource, e.g., the amount of live or dead
wood for a woodpecker or the area of suitable habitat within a
certain landscape context (Jansson and Angelstam 1999, Betts
et al. 2007), or the negative impacts of anthropogenic changes,
e.g., the abundance of Sprague’s Pipit (Anthus spragueii) is
reduced near roads or crops (Koper et al. 2009). Taken in
isolation, individual variables may help predict species response,
or perhaps species richness for a specific guild, but do not cover
all the critical resources required for this or these species. In
addition, they do not necessarily take into account the complex
relationships underlying species responses to habitat amount.
For example, the amount of suitable habitat in the landscape
may increase the probability of occupancy of a given species at
a given location (e.g., Venier and Fahrig 1996), but this
relationship can be complicated by the parallel response of a
variety of other sympatric species acting as predators, parasites,
or competitors (Evans 2004). Hence, in most ecological systems,
a noisy relationship will be the rule rather than the exception. If
so, abrupt shifts in the rate of change along an ecological gradient
can be difficult to detect, even if  suitable methods are used.  

However, there are many examples where ecological thresholds
have been successfully identified. Unfortunately, the wide range
of methods available and numerous definitions of ecological
thresholds have led to confusion in some instances. Estimated
thresholds can be misleading and potentially dangerous when
used to define management objectives if  arbitrary, subjective, or
statistically inappropriate methods are used (Guénette and
Villard 2004, Lindenmayer et al. 2005, Betts and Villard 2009,
Ficetola and Denoël 2009). For instance, as we have shown, the
distinction between breakpoint-based and classification
thresholds must be clearly understood when deciding which to
estimate, and appropriate methods must be used to identify each
type of threshold.  

Once a threshold is identified, developing conservation targets
requires consideration of additional factors. First, thresholds
are, by definition, values where the response, e.g., species
abundance or occupancy, rapidly changes into a less desirable
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state. However, ecological degradation can occur before the
threshold is reached, and a single threshold value may not be
valid across all landscapes (Lindenmayer and Luck 2005,
Johnson 2013, van der Hoek et al. 2013). Therefore, conservation
targets should include a safe buffer away from these critical
values (Bennett and Radford 2009). Second, we rarely manage
for one species in isolation, and different species are likely to
respond at different threshold values. Therefore, conservation
targets should ideally be based on the responses of multiple
species (Guénette and Villard 2005, Lindenmayer and Luck
2005, Betts and Villard 2009, Müller and Bütler 2010,
Zuckerberg and Porter 2010, Johnson 2013), with due
consideration of potential interactions, e.g., predation or
competition, among species whenever possible. When managing
for suites of species, it may also be useful to look for thresholds
in community composition (e.g., Toms and Lesperance 2003,
Radford et al. 2005, Baker and King 2010, Müller and Bütler
2010), which are indicative of substantial change in multiple
species. Third, the location of ecological thresholds may depend
on the time scale examined, e.g., the threshold for long-term
persistence in a given habitat may be greater than the threshold
for short-term occurrence (Zuckerberg and Porter 2010, van der
Hoek et al. 2013).  

Throughout the world, ecosystems are rapidly being altered
through the intensification of anthropogenic land use
(Lindenmayer et al. 2012). Managing individual species and
ecosystems in the face of such change is challenging, and the
wise planning of land use requires broad ecological knowledge
informed by specific conservation targets. Empirical thresholds
represent an interesting avenue to influence the planning process
through the identification of critical levels of required resources
and ecological pressures (Angelstam et al. 2004, Villard and
Jonsson 2009, Samhouri et al. 2010, Johnson 2013). However,
such empirical targets are only useful if  appropriate statistical
methods are used and the nature of the threshold, i.e.,
breakpoint-based versus classification threshold, is clearly
understood.

Responses to this article can be read online at: 
http://www.ace-eco.org/issues/responses.php/715
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