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Greenhouse gases, naturally present at low concentrations in the lower at-
mosphere, keep the Earth’s mean surface temperature at around 15°C.
Without this trapping of heat (“radiative forcing”) the mean air tempera-

ture would be –18°C and the Earth would freeze. The mechanism of the green-
house effect is illustrated in Fig. 1. The atmospheric concentrations of greenhouse
gases have been increasing since the early industrial revolution, owing principally to
humankind’s rapidly increasing combustion of fossil fuels along with increases in
deforestation, irrigated agriculture, animal husbandry and cement manufacture.
Table 1 shows the most important anthropogenic greenhouse gases and the annual
change in their concentrations.1

In 1997 and 1998 global temperatures reached their highest levels since record-
keeping began last century; 9 of the 11 hottest years in the 20th century occurred
within the last 10 years (Fig. 2).2 The global mean surface temperature has increased
by 0.4°C in the past 25 years, and climate scientists are becoming increasingly confi-
dent that the anticipated process of global warming has begun. Three studies indi-
cating disproportionate mid-atmospheric warming,3 disproportionate night-time
and winter warming,4 and increased variability5 — consistent with projections — all
led the Intergovernmental Panel on Climate Change, a major international scientific
collaboration established in 1988 by the World Meteorological Organization and
the United Nations Environment Program, to conclude that there has been a “dis-
cernible” human influence on the climate system.1,6 More recent studies continue to
find a dominance of greenhouse gases over solar and other influences.7

The Intergovernmental Panel on Climate Change has comprehensively re-
viewed the science of climate change and its potential impacts.1,3 It foresees an in-
crease of 1.0ºC–3.5ºC in the global mean temperature by the year 2100, with con-
siderable regional variations. This assessment is derived from projections made by
computer-based global climate models1 that combine, through simultaneous equa-
tions within a 3-dimensional global grid, the atmospheric and oceanic processes
that occur in response to increased greenhouse gases and the resulting rise in radia-
tive forcing in the lower atmosphere.

Although the current generation of global climate models cannot forecast the
precise spatial and temporal pattern of changes in climate means and variability
with global warming,1 extreme weather events such as drought, floods and storms
may become more frequent and intense in the future. Indeed, with warming
ocean surfaces1 and the fact that each increase of 1°C in temperature enables the
atmosphere to hold 6% more water vapour, the resulting intensification of the
hydrological cycle corresponds to evidence in the United States and other nations
of an increase in heavy rain events and prolonged droughts in 20th century.5

There is evidence that El Niño events have increased in magnitude since the
mid-1970s,8 and climate change may alter the frequency and magnitude of the El
Niño Southern Oscillation (ENSO) cycle.9 Greater variability from norms may
also indicate systemic instability of the climate regime,10 increasing the potential
for abrupt climate change.11

Signals of climate change

Global warming is projected to increase both ambient temperatures and rainfall at
high latitudes and high elevations.The migration of plants to higher altitudes has
been documented on numerous peaks in the European Alps, Alaska, the Sierra
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Nevada (United States) and New Zealand.12 These botanical
trends, indicative of warming, have accompanied other phys-
ical changes such as the retreat of montane glaciers in Ar-
gentina, Peru, Alaska, Iceland, Norway, the Swiss Alps,
Kenya, the Himalayas, Indonesia and New Zealand.13 Since
1970 the lowest level at which freezing occurs has ascended
about 150 m higher in mountains in tropical latitudes (from
30 N to 30 S latitude), which is equivalent to 1°C warming.14

Meanwhile, there have been reports that both insects
and insect-borne diseases (including malaria and dengue
fever) have been experienced at increasingly higher alti-
tudes in Africa, Asia and Latin America.15–17 Highland
malaria is also reportedly increasing in Papua New Guinea
and parts of sub-Saharan Africa.18,19 A number of factors
may be implicated, including deforestation, population
movements and breakdown in public health, and it is not
yet possible to attribute these increases to climatic change.
However, a climatic influence is plausible, and the emerg-
ing pattern is compatible with the botanical and physical
evidence of warming at high altitudes.20

Health impacts

A change in world climate would have wide-ranging,
mostly adverse, consequences for human health.21,22 Most of
the anticipated health impacts would entail increased rates
of illnesses and death from familiar causes (Table 2). How-
ever, the assessment of future health outcomes refers to 
climatic-environmental conditions not previously encoun-
tered. Such conditions, particularly in conjunction with
other global environmental changes now occurring (e.g.,
deforestation) may also increase the likelihood of unfamil-
iar health outcomes, including the emergence of “new” in-
fectious disease agents.23 The 1997/98 El Niño event
brought surprises: Indonesia and Brazil experienced wide-
spread respiratory illness due to haze from uncontrolled
burning of tropical forests.24 With Hurricane Mitch in
Central America, in November 1998, deforested areas ex-
perienced increased flooding and landslides, the aftermath
spawning “clusters” of water-, insect- and rodent-borne
diseases (cholera, malaria, dengue fever and leptospirosis).25
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Fig. 1: Mechanism of the greenhouse effect. Adapted from reference 2.
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Table 1: Greenhouse gases influenced by human activities

Variable CO2 CH4 N2O CFC-11 HCFC-22 CF4

Pre-industrial concentration 280 ppmv   700 ppbv 275 ppbv 0 0 0

Concentration in 1994 358 ppmv 1720 ppbv 312 ppbv‡ 268 pptv‡ 110 pptv 72 pptv‡
Annual rate of increase
  in concentration*

1.5 ppmv
(0.4%)

10 ppbv
(0.6%)

0.8 ppbv
(0.25%)

0 pptv
(0%)

5 pptv
(5%)

1.2 pptv
(2%)

Atmospheric lifetime,† yr 50–200§ 12¶ 120 50 12 50 000

Note: CO2 = carbon dioxide, CH4 = methane, N2O = nitrous oxide, CFC-11 = chlorofluorocarbon-11, HCFC-22 = hydrochlorofluorocarbon-22, CF4 = car-
bon tetrafluoride, ppmv = parts per million per volume, ppbv = parts per billion per volume, pptv = parts per trillion per volume.
*The rates for CO2, CH4 and N2O are based on data for the decade beginning 1984; the rates for the other gases are based on data for recent years (1990s).
†Average time spent by a gas in the atmosphere after it has been emitted.
‡Estimated from 1992/93 data.
§No single lifetime for CO2 can be defined because of the different rates of uptake by different sink processes. Sinks are systems such as forests and oceans
that can take up greenhouse gases.
¶Adjusted to take into account the indirect effect of methane on its own lifetime. CFCs also deplete ozone in the stratosphere and are now controlled by
the Montreal Protocol. HCFCs have been temporarily permitted as substitutes for CFCs but are also potent greenhouse gases.
Adapted from Houghton JT et al.1



The potential health impacts of global warming can be
broadly classified as direct or indirect (Table 2). The former
category refers to the direct impact of extremes in local
weather conditions. Epidemiological studies and public
health data have identified how thermal stresses (including
heat waves) and weather disasters can result in serious ill-
ness, injuries and death. Estimating the consequences of in-
direct effects poses more of a challenge because those im-
pacts typically result from changes in complex processes.
They include alterations in the transmission of vector-borne
infectious diseases, alterations in water quality and quantity,
and changes in the productivity of agroecosystems,26 with
the potential for displacement of vulnerable populations as a
result of local declines in food supply or sea level rise.2,6

The range of likely health impacts can be assessed, in
part, by studying the consequences of local climatic vari-
ability, including short-term trends. One useful, although
limited, analogue of future climatic change is the ENSO
cycle, which affects temperature, precipitation and extreme
events (e.g., storms) in many parts of the world. The
ENSO cycle influences, often strongly, the incidence of
various infectious diseases in many parts of the world:
malaria in northeastern Pakistan, Sri Lanka, Colombia and
Venezuela, Murray Valley encephalitis and epidemic poly-
arthritis (Ross River virus) in Australia and dengue fever in
the South Pacific.27–32 Historical analyses showed that the
risk of a malaria epidemic increased 5-fold in the semi-arid
Punjab during the year following an El Niño and 4-fold in
southwestern Sri Lanka during the El Niño year. El Niño
events are also strongly associated with the numbers of
people affected globally by natural disasters, particularly
droughts, that cause major harm to human health.33 A re-
cent review has documented a range of health impacts that
may be affected by the ENSO cycle.34

Thermal extremes provide a clearly relevant form of cli-
matic variation for study, as global warming is projected to
increase the frequency of heat waves and decrease the fre-
quency of winter cold spells. Modelling based on previous
studies of mortality associated with heat waves in specified
urban populations in the United States has indicated that
the rate of deaths related to heat waves might increase sub-
stantially by the year 2050, particularly if little acclimatiza-
tion to warmer weather occurs.35 A study of 10 Canadian
cities suggested that, in the case of Montreal for example,
heat-related deaths would increase from 70 per annum to
240–1140 in an “average” summer in 2050 without ac-
climatization.36 The investigators suggested that some ac-
climatization of populations might occur in Montreal and
Toronto but probably not in Ottawa. Because the conver-
sion of nitrogen oxide to ground-level ozone (smog) is tem-
perature-dependent, a projected 5-fold increase in the
number of hot days with temperatures above 30°C could
lead to increases in the number of days with concentrations
of ground-level ozone considered to be a risk to health for
sensitive individuals.37 The association between mortality
and temperature is J-shaped in many countries. The rela-
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Fig. 2: Changes in global surface air temperatures from 1860
to July 1999. Annual means (bars) and trends (line) relative to
that at the end of the last century. Reprinted with permission
from the Hadley Centre for Climate Prediction and Research,
UK Meteorological Office.2
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Table 2: Mediating processes and direct and indirect poten-
tial effects on health of changes in temperature and weather

Mediating process Health outcome

Direct effects
Exposure to thermal extremes Changed rates of illness and

death related to heat and cold

Changed frequency or intensity
of other extreme weather events

Deaths, injuries, psychological
disorders; damage to public
health infrastructure

Indirect effects
Disturbances of ecological systems:
Effect on range and activity of
vectors and infective parasites

Changes in geographical ranges
and incidence of vector-borne
disease

Changed local ecology of water-
borne and food-borne infective
agents

Changed incidence of diarrheal
and other infectious diseases

Changed food productivity
(especially crops) through changes
in climate and associated pests
and diseases

Malnutrition and hunger, and
consequent impairment of child
growth and development

Sea level rise with population
displacement and damage to
infrastructure

Increased risk of infectious
disease, psychological disorders

Biological impact of air pollution
changes (including pollens and
spores)

Asthma and allergies; other
acute and chronic respiratory
disorders and deaths

Social, economic, and
demographic dislocation through
effects on economy, infrastructure,
and resource supply

Wide range of public health
consequences: mental health
and nutritional impairment,
infectious diseases, civil strife

*Reprinted from McMichael and Haines,22 with permission from BMJ Publishing Group.



tion between increased mortality and low temperatures is
more complex than that with high temperatures, thus the
degree to which cold-related deaths in temperate countries
may decline with global warming is unresolved. Excess
winter mortality is higher in some countries with temperate
climates (e.g., the United Kingdom) than in those with very
cold winters, probably because of fuel poverty and inade-
quate housing and winter clothing.38,39 Although much of
the winter excess in mortality is due to increases in cardio-
vascular events, some may be due to viral infections arising
from increased crowding during winter.40

In addition, disproportionate warming at high latitudes,
at high altitudes, during winter and at night time could
produce disproportionate impacts. Canada, for example,
could experience a greater relative increase in heat waves
and conditions conducive to outbreaks of vector-borne in-
fectious diseases than nations at lower latitudes. In Canada,
malaria disappeared at the end of the 19th century, al-
though in 1998 cases of locally transmitted malaria were
reported in Toronto.24 However, although increased tem-
peratures may result in conditions suitable for the reintro-
duction of malaria, the existence of effective public health
programs will be the main determinant of the existence and
extent of such infections. Many of the encephalitides in
North America, including St. Louis and La Crosse enceph-
alitis and western, eastern and Venezuelan equine encepha-
lomyelitis, are transmitted by mosquitoes. Although the
mosquito lifespan tends to diminish if temperatures rise ex-
cessively, viral maturation rates increase with temperature,
within the viable ranges of the mosquitoes and pathogens.
It has been suggested that, as a result of climate change,
there could be a northward shift in western equine and St.
Louis encephalitis, with the disappearance of the former in
southern endemic regions.41

Modelling the effects of climate change

Complex, integrated mathematical models are used to
estimate the likely effects of climate change on vector-
borne diseases. These highly aggregated models are in the
early stages of development and do not take into account
local environmental and ecological circumstances.42 Never-
theless, they are useful for forecasting the broad direction
and potential magnitude of future change.

Such models project substantial increases in the trans-
mission of malaria and dengue fever worldwide and a de-
crease in the transmissibility of schistosomiasis because of
excessive warming of water and some regional drying.43–45

Conditions conducive to malaria transmission, for example,
are expected to increase from a doubling of atmospheric
carbon dioxide. The majority of computer projections indi-
cate some increase in malaria transmissibility in response to
standard scenarios of climate change. The actual changes in
the incidence of malaria and dengue fever would, of course,
depend on many factors, including future patterns of social
development, land use and urban growth, and the effective-

ness of preventive measures such as vector control and vac-
cination.

The growth of algae in surface waters, estuaries and
coastal waters is sensitive to temperature.46,47 About 40 of the
5000 species of marine phytoplankton (algae) can produce
biotoxins, which may reach human consumers through
shellfish. Warmer sea temperatures can encourage a shift in
species composition of algae toward the more toxic dinofla-
gellates.48 Upsurges of toxic phytoplankton blooms in Asia
are strongly correlated with the ENSO cycle.49

It is also apparent that algal blooms potentiate the trans-
mission of cholera. Electron microscopy has shown that al-
gae and the zooplankton that feed upon them provide a
natural refuge for Vibrio cholerae, where, under normal con-
ditions, the bacteria exist in a nonculturable, dormant state.
An increase in sea surface temperature, along with high nu-
trient levels (eutrophication) that stimulate algal growth
and deplete oxygen, can activate the blooms and vibrios.
Sea surface temperature in the Bay of Bengal is correlated
with algal blooms and outbreaks of cholera in Bangladesh.50

Climate variability and change may thus influence the in-
troduction of cholera into coastal populations. V. cholerae
occur in the Gulf of Mexico and along the east coast of
North America.

Heavy rainfall may cause outbreaks of cryptosporidio-
sis,51 which causes severe diarrhea in children and can cause
death in immunocompromised individuals.

Rodent populations are also influenced by climate
anomalies. Prolonged droughts deplete rodent predators
(owls, snakes and coyotes), whereas rains provide new food
supplies. These dynamics apparently contributed to the
1993 outbreak of hantavirus pulmonary syndrome in the
southwestern United States52,53 and may have contributed to
recent outbreaks of that disease in Argentina, Bolivia,
Chile, Canada and Paraguay.54–56

Lyme disease is also important in North America. Large
deer populations (with few predators) and warm winters
allowing overwintering of tick populations at higher lati-
tudes37,57 could increase the range of the disease.

Climate change could also affect food production, with
declines concentrated in low-latitude regions, where food
insecurity often already exists,26,58 including Africa, the Mid-
dle East and India. There is a range of estimates of the risk
of hunger reflecting different assumptions about future
population growth, international trade and adaptive agri-
cultural technology. Such estimates, however, do not in-
clude the likely additional influence of extreme weather
events58 or of increases in agricultural pests and pathogens.61

Accelerated rise in sea level would have a variety of
health impacts. The Intergovernmental Panel on Climate
Change has forecasted a rise of about 40 cm by 2100.1 With
unmitigated emissions of greenhouse gases by 2080, the
number of people flooded annually would increase from
13 million to 94 million: 60% in South Asia and 20% in
Southeast Asia.2 Populations on low-lying islands such as
the Maldives, the Marshall Islands, Kiribati and Tonga, and
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in the deltaic regions of parts of Africa and the United
States, would also be vulnerable to accelerated rises in sea
level and associated increases in storm surges. Salination of
coastal farmlands and of freshwater aquifers would cause
economic disruption, population displacement and addi-
tional adverse health consequences. In Canada, much of the
coast of Prince Edward Island is highly erodable, and
shorefront buildings may be threatened along the Gulf of
St. Lawrence. Rises in sea level and increased storm surges
along the tundra coast of Alaska and Canada are likely to
cause erosion and flooding.60 The Arctic and the Antarctic
are, in general, likely to be particularly vulnerable to cli-
mate change, resulting, for example, in substantial loss of
sea ice and changes in species composition, with implica-
tions for indigenous communities following traditional
lifestyles. In addition, loss of ice cover will alter the Earth’s
albedo (reflectivity), thus increasing heat absorption and
contributing to climate change.

Conclusion

Industrialized nations produce most of the world’s
greenhouse gas emissions. Even if these nations achieve the
limited reductions agreed to at the 1997 Kyoto Climate
Change Convention, global carbon dioxide emissions are
likely to increase substantially, with increasing contribu-
tions from countries such as China, India and other devel-
oping nations.61 Developing countries, in order to protect
their own development prospects, will therefore need sub-
stantial incentives to cut emissions, including the transfer
of nonpolluting renewable energy and energy-efficient
technologies. Reducing fossil fuel combustion will also
have substantial direct health benefits, such as preventing
many thousands of air-pollution–induced deaths annually
worldwide from both indoor and outdoor sources.62,63

Some degree of global warming now seems certain. Thus,
adaptations to climate change will be required, such as hous-
ing designs that enhance summer-time cooling, the “green-
ing” of inner cities, the strengthening of coastal buffers and
improved control of vector-borne and water-borne diseases.
Health-indicator monitoring and disease surveillance should
be integrated into the 3 nascent global observing systems for
world climate, oceans and terrestrial systems.64 Multidisci-
plinary research into the identification, understanding and
modelling of health impacts needs support, as do intergov-
ernmental and interagency collaborations to develop health
early warning systems that can facilitate timely, environmen-
tally friendly public health interventions.25,34

Recognizing the wide-ranging potential consequences of
climate change for our health and well-being can greatly
strengthen the international rationale for reducing green-
house gas emissions. Although there is much that is un-
avoidably complex and uncertain about these large-scale
risks to human population health, the case for health profes-
sionals urging a health-protecting, precautionary approach
that will have multiple health benefits remains clear.65
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