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Abstract
The purpose of this monograph is to examine the relationship between a par-

ticular artificial neural network, the perceptron, and the Rescorla-Wagner model of 
learning.  It is shown that in spite of the fact that there is a formal equivalence be-
tween the two, they can make different predictions about the outcomes of a num-
ber of classical conditioning experiments.  It is argued that this is due to algo-
rithmic differences between the two, differences which are separate from their 
computational equivalence. 
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Chapter 1: Learning in Networks 
and Animals

 
 

1.1 An Empirical Puzzle
1.2 A Formal Surprise
1.3 Cognitive Science and Associative Learning 
1.4 The Synthetic Approach 
1.5 Purposes and Intended Readership 
1.6 What Is This Book Not About?
1.7 What Is This Book About?

 
The purpose of this book is to explore the relationship between a particular artificial neural 

network, the perceptron, and a particular theory of animal learning, the Rescorla-Wagner model.  
This chapter introduces the need for this exploration.  First, it provides an example empirical ob-
servation that demonstrates that perceptrons do not always behave in the way that the Rescorla-
Wagner model of animal learning predicts, even though the two are presumed to be formally 
equivalent.  Second, in examining formal treatments of the relationship between network and 
animal learning, it is revealed that extant proofs do not provide what is usually thought to be the 
case.  These two observations motivate a detailed empirical and formal comparison of perceptron 
learning to animal learning.  The main goal of this chapter is to provide the plan for how this com-
parison proceeds, and to highlight general themes that are important to it. 
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Chapter 2 The Perceptron 10 

1.1 An Empirical Puzzle 
1.1.1 Identical, But Different 
 
There is considerable interest in the rela-

tionship between models of animal learning 
and models of learning in artificial neural 
networks.  For instance, one can easily find 
many simulations of associative learning 
experiments conducted with neural networks 
(e.g., Delamater, Sosa & Katz, 1999; Car-
penter, 2001; Enquist & Ghirlanda, 2005). 
French, 1999; Grossberg,1980; Kehoe, 
1988; Kruschke, 1992, 1996a, 1996b, 2001; 
Mirman, & Spivey, 2001; Nickerson et al,  
2006; Pearce, 2002; Rizzuto & Kahana, 
2001; Roitblat & von Fersen, 1992; Schma-
juk & Blair, 1993; Schmajuk & DiCarlo, 
1992;  Schmajuk, Lam & Gray, 1996; 
Schmajuk, Lamoureux & Holland, 1998; 
Shanks, 1995; Sutton & Barto, 1998; 
Yaremchuk, Willson, Spetch, & Dawson, 
2005).   

 
How are such simulations justified?  At a 

very general level, artificial neural networks 
implement very general theories of associa-
tion (e.g., Bechtel, 1985; Shanks, 1995), and 
thus appear to be able to inform theories of 
associative learning that have been devel-
oped in other domains, such as comparative 
psychology.  At a more technical level, it can 
be shown that the rule used to train a par-
ticular type of network, called a perceptron, 
is formally equivalent to a foundational the-
ory of animal learning, the Rescorla-Wagner 
model (Sutton & Barto, 1981).  “That the 
Rescorla-Wagner equation was developed 
to account for animal learning behavior, 
whereas the nearly identical Widrow-Hoff 
rule was formulated to approximate the solu-
tions of sets of linear equations, suggests 
that these rules describe some ingredient 
essential for adaptive behavior” (Sutton & 
Barto, 1981, p. 165).  In short, formal analy-
ses indicate that some theories of animal 
learning are identical to particular theories of 
neural network learning. 

 
The formal equivalence between percep-

tron learning and the Rescorla-Wagner 
model has become a textbook staple (e.g., 
Gluck & Myers, 2001; Pearce, 1997).  How-
ever, if one takes the trouble to use a per-
ceptron to simulate standard paradigms in 

classical conditioning, then one can discover 
a number of instances in which the artificial 
neural network generates different predic-
tions than does the Rescorla-Wagner model 
(e.g., Dawson & Spetch, 2005).  That is, 
while the two are identical at a formal level, 
they can be different still be different at an-
other level of analysis.  

 
1.1.2 Networks and Learning 
 
The surprising dissociation between net-

work learning and animal learning provided 
the motivation for this book.  The purpose of 
this book is to provide a careful examination 
of how learning in perceptrons can be re-
lated to simple kinds of associative learning 
that have long been studied in animals. 

 
Some of this exploration is empirical in 

nature.  That is, a number of different classi-
cal conditioning paradigms are simulated 
using perceptrons, sometimes manipulating 
some of the basic characteristics of the neu-
ral networks (in particular, by changing the 
activation function that the output units of 
these networks use to convert an incoming 
signal into an observable response).  These 
simulations are intended to explore what 
kinds of classical conditioning phenomena 
that have been observed in the animal litera-
ture can be modeled by these simple net-
works, as well as to determine what phe-
nomena may not be captured by them.  Fur-
thermore, these simulations are aimed at 
uncovering discrepancies between the per-
formance of the networks and the predic-
tions of the Rescorla-Wagner model. 

 
Some of this exploration is formal in na-

ture.  If the two different traditions of model-
ing make different predictions, then is it pos-
sible that claims about their formal equiva-
lence are mistaken?  If this is not the case, 
then how is it possible those two systems 
can be identical from one perspective, but at 
the same time be different from an alterna-
tive point of view? 
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Chapter 1 Learning in Networks and Animals 11 

1.2 A Formal Surprise
1.2.1 Perceptron Nonlinearity 
 
  A perceptron is a simple artificial neural 

network that responds to presented stimuli 
(Rosenblatt, 1962).  For example, two input 
units can represent the presence or absence 
of two conditioned stimuli.  A single output 
unit can represent the system’s response to 
these stimuli.  The network is trained to re-
spond correctly by providing it feedback 
about its responses to different stimuli.  
Training modifies the weights that connect 
input units to the output unit, which are 
analogous to associative strengths. 

 
Importantly, perceptrons have an intrinsic 

nonlinearity built into their output units.  This 
nonlinearity defines how input signals are 
converted into output responses. 

 
When a perceptron is presented a stimu-

lus, its first task is to compute a signal called 
the net input.  The net input is a linear com-
bination of stimulus values (i.e., whether 
some conditioned stimulus is present or not) 
with the current associative strengths of the 
stimuli.  We will see later that net input is 
identical to the overall association term (ΣV) 
in the Rescorla-Wagner model. 

 
After net input is computed, a percep-

tron’s second task is to convert it into a re-
sponse value.  This is typically accom-
plished using a nonlinear equation called an 
activation function.  Two of the earliest net-
works, the perceptron (Rosenblatt, 1962) 
and ADALINE (Widrow, 1962; Widrow & 
Hoff, 1960) used the Heaviside equation as 
an activation function.  That is, the output 
unit generated one number (e.g., 0) to indi-
cate that it was off, and a second number 
(e.g., 1) to indicate that it was on.  No other 
response values are produced.  A more 
modern variant of these machines, which we 
will call an integration device, approximates 
the Heaviside equation with a sigmoid-
shaped function produced by the logistic 
equation (Rumelhart, Hinton, & Williams, 
1986).  Another uses a bell-shaped activa-
tion function defined by the Gaussian equa-
tion (Dawson & Schopflocher, 1992). 

 
Each of networks from the preceding 

paragraph is an example “perceptron”.  One 

of the characteristics of this class is that it 
has no intermediate processing units (“hid-
den units”) that stand between the input and 
output units.  A second characteristic is that 
the output unit’s activation function is 
nonlinear. 

 
1.2.2 A Linear Proof 
 
The generic rule for training a percep-

tron, the delta rule, is an example of a least 
mean squares (LMS) method of reducing 
error. A typical statement of how such a rule 
relates to animal learning is the “LMS rule is 
essentially identical to the Rescorla-Wagner 
model” (Gluck & Bower, 1988, p. 230).  
Similarly, Quinlan (1991, p. 56) notes “that a 
special case of the delta rule is formally 
equivalent to the Rescorla-Wagner rule.”  
Sutton and Barto (1981, p. 155) point out 
that the Widrow-Hoff rule is “essentially 
identical” to the Rescorla-Wagner model, but 
later make the stronger claim that “these two 
models are, in fact, identical (p. 156). 

 
These quotes qualify the relationship be-

tween the two models (“essentially identi-
cal”, “special case”) because proofs of the 
equivalence between the two assume that 
the networks are linear (Gluck & Bower, 
1988; Gluck & Myers, 2001; Sutton & Barto, 
1981).  That is, the response of an output 
unit is assumed to be its net input, rather 
than a nonlinear transformation of the net 
input.  In other words, the proofs do not 
show a formal relationship between percep-
trons proper and the Rescorla-Wagner 
model. 

 
1.2.3 A Nonlinear Proof 
 
That perceptrons have not been proven 

to be identical to the Rescorla-Wagner 
model might explain the surprising result 
from Section 1.1.  However, later in this 
book this possibility is removed.  This is be-
cause a proof of the formal equivalence be-
tween nonlinear perceptrons and the Res-
corla-Wagner model is provided.  A key 
element of the proof – relating net input to 
response – is important, though, in explain-
ing the dissociation between network and 
animal learning. 
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Chapter 1 Learning in Networks and Animals 12 

1.3 Cognitive Science and Associative Learning 
1.3.1 Cognition vs. Association 
 
It has been argued that one of the char-

acteristics of cognitive science is its adop-
tion of the tri-level hypothesis (Dawson, 
1998).  According to this hypothesis, three 
different questions have to be answered to 
explain an agent’s information processing 
(Marr, 1982; Pylyshyn, 1984).  At the com-
putational level, one answers the question 
“what information processing problem is be-
ing solved?”  At the algorithmic level, one 
answers the question “what processing 
steps are employed to solve the problem?”  
At the implementational level, one answers 
the question “what mechanisms are respon-
sible for carrying out the information proc-
essing steps?” 

 
One of the interesting features of the 

cognitive revolution that began in psychol-
ogy in the 1950s is its strong bias against 
associationism.  This began with cognitive 
psychology’s birth as a reaction to behavior-
ism (Chomsky, 1959), and continued with 
more general claims that associationist 
models were not powerful enough to provide 
accounts of such phenomena as language 
(Bever, Fodor, & Garrett, 1968). 

 
One of the consequences of the artificial 

neural network resurgence that occurred in 
the 1980s (McClelland & Rumelhart, 1986; 
Rumelhart & McClelland, 1986) was a re-
surgence of interest in relating human cogni-
tion to association (Bechtel, 1985).  Not sur-
prisingly, this led to many of the old cogni-
tive criticisms of associationism being re-
stated as criticisms of the new connection-
ism (Fodor & Pylyshyn, 1988; Lachter & 
Bever, 1988; Pinker & Prince, 1988). 

 
However, many would argue that these 

new models have an important place within 
cognitive science.  The tri-level hypothesis 
can easily be applied to artificial neural net-
work models, substantially blurring the dif-
ferences between them and symbol-based 
cognitive theories (Dawson, 1998; Dawson, 
Medler, & Berkeley, 1997; Dawson, Medler, 
McCaughan, Willson, & Carbonaro, 2000).  
Similarly, it has been argued that the tri-level 

hypothesis can be usefully applied to asso-
ciative learning in general (Shanks, 1995). 

 
1.3.2 Levels and Equivalence 
 
When applied, the tri-level hypothesis re-

veals issues that are crucial to the relation-
ship between network and animal learning.  
In particular, there is a one-to-many rela-
tionship from one level to another (Fodor, 
1975).  That is, any one information proc-
essing problem described at the computa-
tional level can be solved by more than one 
different procedure described at the algo-
rithmic level.  In short, different algorithms 
can solve the same problem. 

 
One consequence of this is that two sys-

tems might be equivalent at one level, but 
differ at another, when the tri-level hypothe-
sis is applied to them.  For instance, two 
systems might be equivalent in the sense 
that they are saving the same problem.  
However, measures of their responses 
might lead to different results if the two are 
using different algorithms to solve this prob-
lem. 

 
One of the themes of this book is that the 

apparent paradox that network learning is 
formally equivalent to animal learning but 
produces different empirical predictions can 
be unraveled by paying attention to different 
levels of analysis.  This point is often ne-
glected when neural networks are used to 
study associative learning.  We will see that 
researchers will argue against using a par-
ticular type of network because it is formally 
equivalent to the Rescorla-Wagner model, 
and therefore must inherit its limitations 
(Pearce, 1997).  In their assessment of the 
relationship between network and animal 
learning, Sutton and Barto (1981, p. 156) 
noted that “the limitations of linear learning 
rules are not as devastating as once 
thought.”  We will see that this is so is be-
cause network algorithms might actually 
repair some failures of animal models that 
are formulated at the computational level.  
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1.4 The Synthetic Approach 
1.4.1 The Analytic Approach 
 
  Most models in cognitive science and in 

experimental psychology are derived by 
analyzing existing behavioral measurements 
(Dawson, 2004). The result, which is usually 
either a model of data or a mathematical 
model, is designed to summarize these 
measurements, and is almost always evalu-
ated in terms of its goodness of fit to extant 
data. 

 
This approach to modeling has been 

called the analytic approach (e.g., Braiten-
berg, 1984; Pfeifer & Scheier, 1999).  This is 
because when it is employed models 
emerge from the analysis of existing data.  
In the analytic approach, data precede mod-
els. 

 
1.4.2 A Synthetic Alternative 
 
The analytic approach has been enor-

mously successful, and is deserving of its 
methodological dominance.  However, it is 
not the only approach available to research-
ers. 

 
An alternative methodology has been 

called the synthetic approach.  In general, 
practitioners of the synthetic approach make 
assumptions about basic properties of sys-
tems or agents.  These primitive capacities 
are then built into working systems – models 
that might be computer simulations or robots 
– whose behavior is then observed.  What 
kinds of behaviors emerge from the working 
system, and what kinds of behaviors don’t 
emerge?  Furthermore, do any behaviors 
arise that are more complicated than what 
one might predict from knowledge of the 
components that were used to create the 
system?  In short, in the synthetic approach, 
model construction precedes behavioral 
analysis. 

 
The synthetic approach has emerged 

from the study of behavior-based robotics 
(e.g. Brazeal, 2002; Brooks, 1999; Webb & 
Consi, 2001), from whence has become 
enormously influential.  Most developments 
that have occurred in the general field of 
embodied cognitive science (e.g., Agre, 
1997; Clark, 1997; Varela, Thompson & 

Rosch, 1991; Wilson, 2004) can be traced 
back to the synthetic approach in robotics, 
which in turn has its roots in pioneering work 
in cybernetics (e.g., Ashby, 1960; Grey Wal-
ter, 1963; Wiener, 1948).  Braitenberg 
(1984) has argued that the synthetic ap-
proach is likely to produce simpler theories 
or models than those developed within the 
more popular analytic tradition. 

 
1.4.3 Synthetic Association 
 
Another perspective on the current 

manuscript is that it provides an example of 
the synthetic approach.  Dawson (e.g., 
2004) has argued that artificial neural net-
works provide an ideal medium for exploring 
psychological phenomena synthetically.  
Many of the chapters that follow illustrate 
this point by showing how very simple artifi-
cial neural networks, which incorporate a 
very small number of simple component 
processes, can be used to explore associa-
tive learning. 

 
One consequence of this is that the 

simulations studies that follow are intended 
to explore the kinds of responses that can 
be generated by different types of simple 
networks, as well as to explore the changes 
in responses that result when different as-
sumptions are used to build the networks 
(e.g., by changing the activation function 
used by output units to generate responses).  
There is no doubt that the relationship be-
tween model responses and behavioral data 
is important, and this relationship is evident 
throughout the manuscript.  However, from 
the synthetic perspective detailing this rela-
tionship is less important than exploring the 
responses that emerge from the family of 
networks that will be introduced. 

 
Indeed, one interesting consequence of 

this synthetic approach is that it generates 
results that are important not because they 
raise questions about empirical results, but 
rather because they raise questions about 
the similarities between one type of model 
(artificial neural networks) and another (the 
model of associative learning proposed by 
Rescorla and Wagner, 1972). 
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1.5 Purposes and Intended Readership 

1.5.1 Purposes 
 
In providing a study of the relationship 

between perceptron learning and the Res-
corla-Wagner model, this monograph has 
several purposes. 

 
First, it provides an introduction to a par-

ticular artificial neural network with a long 
history, the perceptron (Rosenblatt, 1962).  
It also provides an introduction to modern 
variants of this network created when activa-
tion functions are modified. 

 
Second, this book provides a detailed tu-

torial showing how perceptrons can be used 
to simulate a variety of standard paradigms 
in the animal learning literature.  This in-
cludes the creation of training sets, the ac-
tual training of networks, and the interpreta-
tion of the internal structure of a network at 
the end of training to inform associative 
theories of learning.  The software used to 
conduct the simulations reported below is 
available as freeware from the author’s 
website 
(http://www.bcp.psych.ualberta.ca/~mike/Sof
tware/Rosenblatt/index.html), and it is hoped 
that the reader will be motivated to use this 
software to perform their own explorations of 
associative learning. 

 
Third, this book provides a case study of 

the relevance of associative learning to 
foundational issues in cognitive science.  As 
was noted in the previous section, the tri-
level hypothesis is a fundamental property of 
cognitive science.  Unfortunately, other 
common characteristics of cognitive science 
include intense criticism of associationism 
(e.g. Bever, Fodor & Garrett, 1968) and of 
artificial neural networks (e.g. Fodor & Pyly-
shyn, 1988).  However, the tri-level hypothe-
sis can be applied to both associationism 
(Shanks, 1995) and to connectionism (Daw-
son, 1998).  One difficulty students have 
with distinguishing the computational level 
from the algorithmic level in theories of cog-
nitive science is the lack of concrete exam-
ples of this distinction, as well as of its im-
portance.  This manuscript provides a de-
tailed analysis that leans heavily upon this 

distinction, and which serves as a providing 
a needed case study. 

 
1.5.2 Intended Readership 
 
With these purposes in mind, a number 

of different types of readers will find this 
manuscript of interest. 

 
First, it is primarily intended to be read by 

senior undergraduate students and by 
graduate students who may have little tech-
nical experience with either artificial neural 
networks or with models of associative 
learning.  At the end of this monograph 
these readers will be well versed in a par-
ticular type of connectionist model and with 
its relationship to an important theory of as-
sociative learning. 

 
Second, it is hoped that readers with a 

strong background in one of the main topics 
of the book, but not the other, will also bene-
fit.  In spite of a long history relating connec-
tionism to associative learning, research in 
these two domains is becoming increasingly 
specialized, and the relationship between 
them is frequently underutilized or ignored.  
Hopefully this second type of reader will re-
alize this after reading this manuscript, and 
will be inspired to conduct research that is 
more integrative in nature. 

 
Third, readers with a strong background 

in both of the main topics of this book will 
also find some technical novelties in it.  For 
example, one important issue that arises is 
the relationship between the threshold of an 
activation function in a perceptron and 
background or context in a conditioning ex-
periment.  The implications of modifying ac-
tivation functions are also central.  The for-
mal analysis relating the Rescorla-Wagner 
model to perceptrons with nonlinear activa-
tion functions is new.  Finally, this manu-
script raises important issues concerning the 
need for making explicit statements about 
how the associative strengths modified by 
the Rescorla-Wagner model should be con-
verted into behavior or responses. 
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1.6 What Is This Book Not About? 
Before beginning, it is important to alert 

the reader to topics that are not central to 
this book.  For insight into these topics, the 
reader will have to look elsewhere. 

 
1.6.1 Multi-layer Perceptrons 
 
One of the main reasons for the resur-

gence of interest in artificial neural networks 
was the discovery of rules that could be 
used to train multi-layer perceptrons.  A 
multi-layer perceptron is a network that, like 
a perceptron, has input units and output 
units.  However, in addition it has at least 
one layer of hidden units that lay between 
the input and output layers.  Hidden units 
can be viewed as devices that detect impor-
tant, nonlinear features in input stimuli, and 
they permit networks to be extremely power-
ful information processors. 

 
This book is not about multi-layer percep-

trons.  It is exclusively about simpler net-
works that are largely ignored in the modern 
connectionist literature, as well as in modern 
treatments of associative learning.  Fortu-
nately, if the reader is interested in learning 
the technical details about such networks, 
there are a number of excellent resources 
available (De Wilde, 1997; Freeman, 1994; 
Gluck & Myers, 2001; Kasabov, 1996; Pao, 
1989; Ripley, 1996; Rojas, 1996).  Indeed, a 
general treatment of how these networks 
relate to animal learning has recently ap-
peared (Enquist & Ghirlanda, 2005). 

 
Of course, one reason that this book is 

not about multi-layer networks is because it 
shows that simpler networks are far more 
interesting that one might expect.  For ex-
ample, standard limitations of perceptrons 
can be overcome by altering their activation 
functions.  As well, the responses of percep-
trons trained in animal learning paradigms 
reveal surprising information that is impor-
tant to consider when theorizing about asso-
ciative learning. 

 
1.6.2 Temporal Models 
 

Any introductory book on animal learning 
reveals that temporal factors are crucial de-
terminants of classical conditioning.  Such 
factors are not treated in this book, apart 
from the fact that when networks are trained, 
they are trained by presenting one stimulus 
at a time.  The reason that they are not 
treated is because temporal variables (e.g., 
timing of presentation of the US) are neither 
part of perceptrons nor part of the Rescorla-
Wagner model, which are the two theories of 
main interest in this book.  Fortunately, there 
exist excellent treatments of neural networks 
that explicitly incorporate such variables 
when modeling association (Schmajuk, 
1997), and theoretical treatments of the im-
portance of considering such variables (Gal-
listel, 1990; Gallistel & Gibbon, 2000). 

 
While the current book does not provide 

any models of temporal factors, it is hoped 
that some of the themes that it develops 
concerning association and behavior, and 
levels of analysis, will also be applicable to 
more ambitious models of learning. 

 
1.6.3 Rescorla-Wagner Alternatives 
 
The Rescorla-Wagner model was influ-

ential because of its simplicity, and because 
of its ability to account for a diversity of re-
sults.  However, there are many phenomena 
that it fails to explain (Miller et al., 1995).  As 
a result, there have been a number of at-
tempts to update it, or to provide alternatives 
to it (Krushke, 2001, 2003; Mackintosh, 
1975; Pearce, 2002; Pearce & Hall, 1980; 
Rescorla, 2003; Wagner, 2003). 

 
The present book focuses its treatment 

on the standard version of the Rescorla-
Wagner, and does not attempt to expand, 
elaborate, or extend this model.  However, it 
does raise the possibility that perceptrons 
can offer solutions to some of the Rescorla-
Wagner model’s problems.  In particular, it 
explores the idea that variations of the acti-
vation function used in perceptrons can be 
used as different theories about how asso-
ciative strengths are converted into re-
sponses. 
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1.7 What Is This Book About?
1.7.1 What Lies Ahead 

The purpose of this book is to explore the 
relationship between a particular artificial 
neural network, the perceptron, and a par-
ticular theory of animal learning, the Res-
corla-Wagner model.  This exploration pro-
ceeds as follows: 

 
  Chapter 2 introduces the traditional no-

tion of the perceptron.  It does so by describ-
ing how the information processing of a neu-
ron can be functionally described, and how 
such “digital neurons” can be modified by 
either the Hebb rule or the delta rule.  Chap-
ter 3 translates this introduction directly into 
the animal learning literature, by providing a 
number of examples of perceptrons being 
trained in simulations of animal learning ex-
periments. 

 
Chapter 4 provides an account of a more 

modern version of the perceptron, called the 
integration device.  The integration device 
replaces the discrete step function of the 
traditional perceptron with its continuous 
approximation, the logistic equation.  A 
number of additional simulations of animal 
learning experiments are then presented 
with this architecture.  The empirical results 
of Chapters 3 and 4 provide evidence for a 
strong relationship between network and 
animal learning. 

 
Chapter 5 examines this relationship at a 

formal level.  It introduces the Rescorla-
Wagner model, and provides a version of 
the existing linear proof of the relationship 
between it and a “special case” of the delta 
rule.  It then augments this approach by 
showing that the learning rule for a percep-
tron that uses a nonlinear activation function 
can be translated into the Rescorla-Wagner 
equation. 

 
Given the empirical and formal relation-

ships that are established in the early chap-
ters, a number of design decisions must be 
kept in mind when animal learning para-
digms are simulated.  These design deci-
sions are discussed in Chapter 6.  Three 
such decisions are explored: the relationship 

of a network’s bias to the influence of uncon-
trolled background stimuli, the empirical and 
logical need to include a null condition, and 
the ability to replace a monotonic activation 
function with a nonmonotonic activation 
function.  Importantly, these design deci-
sions affect the responses of a network 
when it is trained in a simulated experiment. 

 
Chapter 7 presents the critical empirical 

result of this book: in spite of the formal 
equivalence between the delta rule and the 
Rescorla-Wagner model, these two ap-
proaches to learning actually make different 
predictions.  This chapter presents several 
examples of perceptrons responding in ways 
that the Rescorla-Wagner model does not 
predict.   

 
Chapter 8 provides an analysis of how 

the “perceptron paradox” of Chapter 7 
emerges.  It shows that while the two ap-
proaches are equivalent at the computa-
tional level, they represent very different 
algorithms for learning.  In one, learning oc-
curs only after an agent responds.  In the 
other, associative strength can be modified 
without the agent responding at all.  The 
implications of this analysis to the study of 
associative learning are discussed in Chap-
ter 9. 

 
1.7.2. What Lay Behind 
 
This manuscript would not be possible 

without kind support from many different 
quarters.  The research reported here was 
funded by research grants from both 
NSERC and SSHRC.  Two anonymous re-
viewers, several colleagues, students, and 
former students inspired me to think about 
these issues, provided me feedback on draft 
versions of the manuscript, or offered a fo-
rum for me to try to keep my thinking less 
muddled.  These people include Leanne 
Willson, Vanessa Yaremchuk, Chris Sturdy, 
and Marcia Spetch. Finally, I would like to 
thank my wife Nancy Digdon and my chil-
dren Michele and Chris for their continual 
support. 
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Chapter 2: The Perceptron
 
 

2.1 Neuronal Inspiration
2.2 A Digital Output Unit
2.3 Activation and Response 
2.4 Association in the Perceptron
2.5 Multiple Associations
2.6 Learning in Perceptrons
2.7 Hebb Learning
2.8 Pros and Cons of Hebb Learning
2.9 The Delta Rule

 
The purpose of this chapter is to introduce the general properties of a particular artificial neural 

network, the perceptron.  We begin by considering it as a functional description of a neuron.  We 
then consider how the perceptron can be related to associative learning in general, and to classi-
cal conditioning in particular.  The chapter ends by considering two different mathematical learn-
ing rules that can be used to modify the associations in the perceptron.  The second of these, the 
delta rule, will later play a key role in relating machine learning (i.e., the perceptron) to animal 
learning. 
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2.1 Neuronal Inspiration
2.1.1 Functional Explanations 
 
Functional explanations are one of the 

most popular and effective tools adopted by 
cognitive scientists (Cummins, 1983; Fodor, 
1975).  They are used to explain the behav-
ior of a system by appealing to the function 
or role of each of the system’s components, 
and by noting how these components are 
organized.  For example, a flow chart illus-
tration of a computer algorithm is a func-
tional account of how that algorithm works. 

 
Functional explanations “abstract over” 

the physical properties of components.  
They are concerned with what a component 
does (i.e., its role or function), and are not 
concerned with what a component is made 
of.  Thus in a functional account of the circu-
latory system, the role of “pump” can be 
served by a biological muscle (the heart) or 
by a pump constructed from plastics and 
electronics (the Jarvik-7 artificial heart).  
Though these two pumps are constructed 
from dramatically different substances, they 
can be viewed as being functionally equiva-
lent, because they serve the same role. 

 
In cognitive science, cognition is as-

sumed to be information processing (Daw-
son, 1998).  There is a one-to-many rela-
tionship between a particular instance of 
information processing and the many differ-
ent physical platforms that could carry this 
information processing out (e.g., Fodor, 
1975).   As a result, functional explanations 
are preferred by cognitive scientists because 
they focus on regularities common to poten-
tially many different physical systems (Arbib, 
1964).  Functional explanations are power-
ful, abstract accounts that are simplifications 
in the sense that they hide potentially com-
plicated and messy physical details. 

 
2.1.2 Neuronal Function 
 
An example of an extremely complicated 

physical system is an individual neuron 
(Levitan & Kaczmarek, 1991).  However, a 
simple functional account of a neuron can 
be used to describe it as an information 
processor. 

 

An individual neuron receives input sig-
nals through a tree-like structure of den-
drites.  An individual dendrite can be thought 
of as a transmission line through which a 
weak electrical signal, called a graded po-
tential, travels.  The magnitude of a graded 
potential, and the distance that it travels, is 
directly related to the strength of the synap-
tic event that caused it.  In other words, the 
greater the initiating signal, the stronger is 
the graded potential. 

 
Graded potentials are usually very low 

amplitude electrical events.  As a result, a 
single graded potential is not likely to have 
much of an effect.  However, graded poten-
tials from a number of different dendrites in 
a neuron’s dendritic tree eventually can be 
summed together to produce an overall or 
“net” electrical effect at the neuron’s soma.  
So, after inputs are received, a neuron can 
be viewed as a device the computes this net 
electrical effect by adding a number of dif-
ferent graded potentials together. 

 
If the net effect of the graded potentials is 

sufficiently extreme, then the neuron will 
generate an action potential that will serve 
as an output signal to be sent to other neu-
rons.    Once this occurs, the signal does not 
reflect the size of the event that caused it to 
be initiated – the action potential is of a set, 
maximum amplitude.  This is called the all-
or-none law (e.g., Levitan & Kaczmarek, 
1991, p. 41).  The only way that a neuron 
can output information about stimulus inten-
sity is by varying the frequency of action 
potentials of constant amplitude. 

 
Functionally speaking, then, neurons re-

ceive signals via graded potentials, sum 
these signals together, and depending on 
this sum generate a response that can be 
sent to other neurons.  Artificial neural net-
works are simple devices that simulate this 
functional account of a neuron. 
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2.2 A Digital Output Unit
2.2.1 Perceptron as Neuron 
 
Frank Rosenblatt developed one of the 

most famous and historically important artifi-
cial neural networks, the perceptron 
(Rosenblatt, 1962).  In general, a perceptron 
consists of one or more input units that are 
connected to one or more output units.  The 
input units are used to encode a stimulus, 
and to then send a signal about a stimulus 
through the connections to the output units.  
The output units process the incoming signal 
and generate a response.  In short, the out-
put units represent the perceptron’s re-
sponse to the stimulus that was presented to 
it. 

 
Let us assume that input units are pas-

sive – that is, that their only role is to faith-
fully encode an environmental stimulus, and 
to pass it along to the output units.  Under 
this assumption, if a perceptron has any in-
teresting properties, then these must de-
pend on the kind of “processing” that the 
output units perform.  To understand this 
processing, we will consider the operation of 
a single output unit.  It will become apparent 
that this output unit is essentially a simple, 
functional, and formal account of a single 
neuron. 

 
2.2.2 Computing Net Input 
 
We saw earlier that whether or not a neu-

ron generated an action potential depended 
upon the net effect of many graded poten-
tials that were combined at the soma.  In a 
similar fashion, the response of a single out-
put unit depends on the net effect of many 
different signals being sent to it from any 
input units to which it is connected.  The first 
processing step for the output unit is to 
compute this net effect. 

 
A perceptron is a formal system which 

can be described in purely mathematical 
terms.  In this formalism, all of the signals 
that are being sent from the input units to an 
output unit are numbers.  As a result, the net 
effect of these signals can be determined by 
adding all of these numbers up into a single 
sum.  We will call this sum a unit’s net input. 

 
2.2.3 Converting Net Input to Activity 
 
In a neuron, the analog net effect of the 

graded potentials is converted into a digital 
response consistent with the “all or none” 
law.  That is, a net effect below a critical 
value results in the neuron not responding at 
all.  A net effect above a critical value results 
in the neuron generating an action potential.  
The magnitude of the action potential, if 
generated, is independent of the magnitude 
of the net effect that triggered it.  A net effect 
slightly higher than the critical value and a 
net effect twice as high as the critical value 
both produce an action potential of the same 
magnitude.  In short, functionally speaking a 
neuron is digital: it converts a wide range of 
analog net effects into one of two states, 
“On” or “Off”. 

 
Rosenblatt (1962) made the output unit 

of the perceptron digital in exactly this same 
way.  The second processing step carried 
out by an output unit is to convert its (ana-
log) net input into a digital on or off re-
sponse. 

 
This is accomplished using an activation 

function.  Rosenblatt (1962) assumed that 
each output unit had a critical threshold 
value, represented as θ.  The activation 
function determined an internal level of ac-
tivity for the output unit by comparing the net 
input, net, to this threshold.  If the net input 
exceeded the threshold, then the internal 
activity of the output unit was “on” (e.g., 1).  
Otherwise, the internal activity of the output 
unit was “off” (e.g., 0). 

 
More formally, Rosenblatt (1962) used 

the Heaviside step function H(net) to convert 
net input into internal activity: 

 

   (1) 
⎩
⎨
⎧

≤
>

=
θ
θ

net
net

netH
:0
:1

)(

A peer-reviewed monograph published by Comparative Cognition and Behavior Reviews on 
behalf of the Comparative Cognition Society. © Michael R. W. Dawson 2008 



Chapter 2 The Perceptron 20 

2.3 Activation and Response
2.3.1 What Is Activity? 
 
In Rosenblatt’s (1962) perceptron, the 

activation function converts an output unit’s 
net input into the unit’s internal activity.  This 
internal activity can be considered as the 
response of the output unit to the stimulus 
that was presented to the perceptron’s input 
units. 

 
Rosenblatt (1962) was not the first to 

formalize the “all or none” law of the neuron 
by employing the Heaviside step function as 
an activation function.  For example, 
McCulloch and Pitts (1943) adopted this 
strategy in their formalization of neural 
mechanisms.  The operations of what is now 
known as the McCulloch-Pitts neuron are 
equivalent to those of an output unit in a 
Rosenblatt perceptron. 

 
McCulloch and Pitts (1943) formalized 

neural processing in this fashion because 
one of their goals was to attach an interpre-
tation to the activity of their processing units.  
In particular, they conceived their artificial 
neurons as devices for computing logical 
propositions.  “Many years ago one of us … 
was led to conceive of the response of any 
neuron as factually equivalent to a proposi-
tion which proposed its adequate stimulus” 
(McCulloch & Pitts, 1943, p.21). 

 
That is, the stimuli presented to the in-

puts of a McCulloch-Pitts neuron indicated 
the values of certain variables.  The purpose 
of the neuron was to judge the relationship 
between those values.  If the neuron turned 
“On”, then this indicated that the predicate 
being computed by the neuron was “True” 
for the presented values.  If the neuron was 
“Off”, then this indicated that the predicate 
was “False”. 

 
For example, consider a McCulloch-Pitts 

neuron that receives two different incoming 
signals.  The signals indicate whether two 
variables, X and Y, are either present or ab-
sent.  Imagine that the response of the neu-
ron is as described in Table 2-1.  In this 
situation, the neuron is computing the logical 
operator AND over the two variables. 

 
 

Variable X Variable Y Response 
Absent Absent False 
Absent Present False 
Present Absent False 
Present Present True 

Table 2-1. Responses of a McCulloch-
Pitts neuron to two variables when the 

neuron is computing AND. 
 
We are not required to interpret a per-

ceptron’s output unit as being a logical de-
vice.  More generally, “perceptrons make 
decisions – determining whether or not an 
event fits a certain ‘pattern’ – by adding up 
evidence obtained from many small experi-
ments” (Minsky & Papert, 1988, p. 4).  Per-
ceptrons are particularly well-suited for as-
signing discrete responses to noisy, analog 
stimuli.  For this reason, perceptrons are 
often described as prototypical machines for 
pattern recognition or pattern classification. 

 
While it is not necessary to do so, the 

patterns that perceptrons can recognize or 
classify are often assumed to be visual or 
spatial.  The response of a perceptron is 
often interpreted as indicating whether a 
particular geometric property is true of a vis-
ual stimulus (Minsky & Papert, 1988) or as 
indicating the name of the class to which the 
visual stimulus is assigned. 

 
2.3.2 Activity and Response 
 
We can easily interpret a perceptron as a 

pattern classifier or as a logical operator if 
we assume that the activation function 
represents the perceptron’s response.  This 
in turn could signify an observable behavior, 
or an internally generated expectancy (e.g., 
probability of being reinforced).  We will also 
see in later chapters that the range of re-
sponses that a perceptron generates to a 
set of stimuli can be affected by changing 
the activation function.  That is, there are a 
number of different “flavors” of perceptron, 
with each different flavor using a different 
activation function.  The kinds of judgments 
that a perceptron makes depend crucially 
upon the properties of the particular activa-
tion function that it employs. 
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2.4 Association in the Perceptron
2.4.1 Stimulus and Response 
 
Classical conditioning, as originally con-

ceived (Pavlov, 1927), is a form of learning 
that is based on the associationist law of 
contiguity (Warren, 1921).  According to the 
law of contiguity, when two ideas (e.g., A 
and B) generally occur together then the 
occurrence of one of the ideas alone can 
then lead to the occurrence of the other. 

 
The law of contiguity was used by the 

associationists to account for the sequential 
production of thoughts.  “Ideas that are 
themselves are not at all of kin, come to be 
so united in some men’s minds that it is very 
hard to separate them, they always keep in 
company, and the one no sooner at any time 
comes into the understanding but its associ-
ate appears with it” (Locke, 1977, p. 219). 

 
One way to consider this sequential pro-

duction of thoughts is to view two associated 
ideas as standing in a stimulus-response 
relationship.  For example, at one point in 
time idea A is present for some reason.  
This idea serves as a stimulus which, via 
association, brings idea B to mind.  Idea B 
can be described as the response to the 
stimulus (i.e., to idea A). 

 
Pavlov’s (1927) study of classical condi-

tioning required some stimulus-response 
relationships to be present prior to the learn-
ing of new associations.  In particular, some 
stimulus (called the unconditional stimulus, 
or the UCS) would already produce a behav-
ioral response (called the unconditional re-
sponse, or the UCR).  For example, in his 
famous experiments on conditional learning 
in dogs the presence of food was a UCS 
that caused the dogs to salivate (the UCR).  
This stimulus-response relationship was 
established before Pavlov’s conditioning 
experiments began. 

 
2.4.2 UCS→UCR in the Perceptron 
 
A very simple form of the perceptron can 

be used to implement the relationship be-
tween a UCS and a UCR that was required 
by Pavlov (1927).  Let us begin with a per-
ceptron that has a single input unit and a 
single output unit.  The input unit will be 

used to represent the presence of the UCS 
– when the UCS is present, the input unit 
will be activated with the value of 1, and 
when it is absent the input unit will be acti-
vated with the value of 0.  Our desire is to 
have the output unit turn “On” when the in-
put unit is active, and to turn “Off” when the 
input unit is not active. 

 
Our first step in achieving this goal will be 

to assign a threshold value θ to be used in 
the Heaviside activation function of the out-
put unit.  Let us assume that θ = 0.5. 

 
Our second step in achieving this goal 

will be to assign a connection between the 
input unit and the output unit.  This connec-
tion is a conduit through which the input unit 
will send a signal to the output unit.  The 
connection has assigned to it a numerical 
value called its weight (w).  The weight of a 
connection is used to scale the numerical 
signal being sent through it.  Let an input 
unit at one end of the connection send the 
activation value a.  The signal that comes 
out of the connection at the other end, and 
which is delivered to the output unit, is equal 
to the product of the connection weight and 
the input activity (i.e., wa). 

 
Our third step in achieving the goal of 

getting the output unit to activate when the 
input unit activates is to assign a value to 
the connection weight.  If we let w = 1, our 
perceptron will be complete.  When a = 0, 
wa = 0 which is less than θ.  As a result, the 
activation function in the output unit will 
generate a value of 0 when the UCS is ab-
sent.  In contrast, when a = 1, wa = 1 which 
is greater than θ.  As a result, the activation 
function in the output unit will generate a 
value of 1 when the UCS is present. 
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2.5 Multiple Associations
2.5.1 Multiple Inputs and Outputs 

 
The preceding perceptron was particu-

larly simple because it had only one input 
unit and only one weighted connection.  In 
most cases, a perceptron will have more 
than one input unit, and in many cases it will 
have more than one output unit.  As a result, 
it will have multiple connections.  We need 
to generalize our formal description of the 
perceptron to take these conditions into ac-
count. 

 
Consider a perceptron that has N differ-

ent input units.  One of these input units 
could be identified as input unit i.  The acti-
vation of this input unit would be repre-
sented as the value ai.  Imagine that this 
perceptron also has M different output units.  
One of these output units could be identified 
as output unit j.  The net input for this output 
unit would be represented as the value netj, 
and the activation for this output unit would 
be represented as the value aj.  The thresh-
old for this output unit would be represented 
as the value θj. 

 
A perceptron with N different input units 

and M different output units will have N x M 
different connections, assuming that the 
network is fully connected (i.e., assuming 
that every input unit is connected once to 
every output unit).  Each of these connec-
tions might have a different weight.  We will 
represent the weight of the connection from 
input unit i to output unit j as the value wij. 

 
Each output unit j must compute its net 

input, which is the sum of the signals from 
each input unit i.  Each signal from an input 
unit is a value ai times a value wij.  The net 
input of output unit j must therefore be: 

 

∑
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In a traditional perceptron, after comput-

ing its net input, output unit j will compute its 
activation aj using the Heaviside equation.  
Formally this can be expressed as: 
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2.5.2 An Example Perceptron 
 
Previously we described a McCulloch-

Pitts neuron that computed the AND of vari-
ables X and Y.  Let us describe a function-
ally equivalent perceptron. 

 
For any input unit i, let ai be equal to 0 if 

the variable represented by the input unit is 
absent, and let ai be equal to 1 if the vari-
able is present.  Let input unit 1 represent 
the status of variable X, and let input unit 2 
represent the status of variable Y.  Assume 
that the perceptron has one output unit, unit 
j.  The threshold of this output unit, θj, has 
the value of 1.5.  There are two connections 
in this perceptron.  The first is the connec-
tion from input unit 1 to output unit j, which 
has the connection weight w1j.  Let w1j be 
equal to 1.  The second is the connection 
from input unit 2 to output unit j, which has 
the connection weight w2j.  Let w2j also be 1. 

 
The perceptron is now complete.  There 

are four possible combinations of variables 
X and Y that can be presented to it; each is 
described as a row in Table 2-2.  For each, 
the output unit will compute its net input and 
its activity according to the two equations 
above.  The results of these calculations are 
also provided in Table 2-2.   Note that the 
activity of output unit j corresponds to the 
behavior of the McCulloch-Pitts neuron de-
scribed in Table 2-1.  In other words, we 
have designed a perceptron for computing 
AND. 

  
a1 a2 netj aj
0 0 0 0 
0 1 1 0 
1 0 1 0 
1 1 2 1 

Table 2-2. Responses of a perceptron 
that ANDS two inputs. 
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2.6 Learning in Perceptrons
2.6.1 Neurons That Learn 
 
In terms of its structure, and its basic 

mechanisms of operation, Rosenblatt’s 
(1962) perceptron is functionally equivalent 
to a McCulloch-Pitts neuron.  However, 
there is a fundamental difference between 
McCulloch-Pitts neurons and perceptrons.  
In order to design a network of McCulloch-
Pitts neurons to perform a particular task, 
one had to “hand wire” or pre-set all of the 
threshold values, and all of the connection 
weights, in the entire network.  In contrast, 
perceptrons are generally not hand wired.  
Rosenblatt developed a procedure in which 
the structure of a perceptron was acquired 
through experience. Perceptrons are func-
tionally equivalent to neurons that learn. 

 
Perceptron learning involves two general 

components.  The first is a training regimen 
in which a set of training stimuli – and an 
associated set of desired responses – is 
presented to the perceptron.  The second is 
a learning procedure that uses the re-
sponses of the perceptron to modify the 
connection weights and the thresholds of the 
perceptron.  These modifications are per-
formed in such a way that over time (i.e., 
over a number of stimulus-response pair-
ings) the structure of the perceptron 
changes in such a way that a desired set of 
stimulus-response pairings is achieved. 

 
Recall that one interpretation of a con-

nection weight was that it represented the 
strength of association between a stimulus 
and a response.  Perceptrons are used to 
model associative learning in the sense that 
their connection weights (associative 
strengths) are modified via presentations of 
stimuli (experience). 

 
2.6.2 Supervised Learning 
 
 In order to teach a perceptron to perform 

a desired set of stimulus-response pairings, 
supervised learning must be employed.  Su-
pervised learning is a situation in which 
there are two agents – one that learns, and 
another that teaches.  The learning agent 
experiences its environment and adapts to 
it, using basic learning mechanisms.  The 
teaching agent – the supervisor – manipu-

lates the learning agent’s environment in 
such a way that the latter adapts to the envi-
ronment in a particular way. 

 
The supervised training of a perceptron 

is analogous to classical conditioning stud-
ied in experiments on animal learning 
(Pearce, 1997).  In these experiments, the 
animal serves the role of the learning agent, 
and brings to this role its intrinsic learning 
mechanisms.  The experimenter serves the 
role of the supervisor, and manipulates the 
animal’s environment in such a way that a 
desired pattern of learning – that is, desired 
by the experimenter – is observed. 

 
The defining characteristic of supervised 

learning is that the supervisor manipulates 
the learning agent’s environment to produce 
desired results.  For example, classical con-
ditioning can be viewed as supervised learn-
ing in the sense that the supervisor deter-
mines whether the US is presented on any 
given trial. 

 
Some researchers have argued that the 

need for supervised learning to have an ex-
ternal teacher with knowledge of desired 
outcomes makes this type of learning bio-
logically implausible (Parisi, Cecconi, & 
Nolfi, 1990).  In nature, animals do not have 
access to such teachers, and must therefore 
learn in other ways.  As a result, many pro-
posals for unsupervised learning exist in 
which systems simply acquire the statistical 
regularities in their environment (Grossberg, 
1988; Kohonen, 1977, 1984). 

 
However, if supervised learning is merely 

viewed as being analogous to an experi-
mental situation in which a learning agent’s 
environment is being manipulated, and the 
agent is responding in a natural way to 
these manipulations, then it is a perfectly 
plausible approach.  Indeed, we will attempt 
to recast the notion of supervision into the 
less controversial notion of reward or pun-
ishment.  For this reason, we will be exclu-
sively interested in examining supervised 
learning situations. 
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2.7 Hebb Learning
2.7.1 The Law of Exercise 
 
According to the associative principle of 

contiguity, if two ideas occur near one an-
other in space or in time, then the associa-
tion between these two ideas should be-
come stronger. 

 
An example of the principle of contiguity 

in the study of animal learning is the law of 
exercise (Thorndike, 1932) which “asserts 
that, other things being equal, the oftener a 
situation connects with or evokes or leads to 
or is followed by a certain response, the 
stronger becomes the tendency for it to do 
so in the future” (p. 6).  The law of exercise 
is an example of the principle of contiguity 
being applied to the association between a 
stimulus and a response. 

 
Since the work of (James, 1890), re-

searchers have investigated a neural basis 
of the law of exercise.  One famous proposal 
was provided by Hebb (1949, p. 62): “When 
an axon of cell A is near enough to excite a 
cell B and repeatedly or persistently takes 
part in firing it, some growth process or 
metabolic change takes place in one or both 
cells such that A’s efficiency, as one of the 
cells firing B, is increased.”  This idea still 
inspires a great deal of modern research.  
For instance, the December 2002 issue of 
the journal Biological Cybernetics is exclu-
sively devoted to Hebb-style learning. 

 
2.7.2 The Hebb Rule 
 
With artificial neural networks like per-

ceptrons, Hebb learning amounts to apply-
ing a multiplicative rule (Dawson, 2004, 
Chapter 9).  Given a connection between an 
input unit i and an output unit j, the change 
in connection weight wij is defined as the 
multiplication of the activities of the two 
units, as well as of a fractional learning rate 
η which regulates the speed of learning: 

 

jiij aaw ⋅⋅=Δ η  (4) 
 

The issue is how to cast this rule, called 
the Hebb rule, into the context of supervised 
learning.  One approach could be to exploit 
the required relationship in classical condi-

tioning between the US and the UR.  That is, 
one could present the US to automatically 
activate the output unit of the perceptron.  At 
the same time, one could activate an input 
unit representing the presence of a CS.  The 
Hebb rule could then be applied to modify 
the connection between the activated input 
unit and the activated output unit.  This ap-
proach is illustrated in Figure 2-1. 

 
In Figure 2-1, an output unit is connected 

to two input units that can represent the 
presence of two CSs, A and B.  In the illus-
trated case, the experimenter has presented 
CSA, and at the same time presents the US 
to activate the output unit.  According to the 
Hebb rule, the connection weight between 
the two units (wAj) would be increased.  The 
other connection weight would not be in-
creased, because CSB was not presented at 
the same time that the output unit was acti-
vated by the US. 

B

 

 

Figure 2-1.  
A perceptron that learns according to the Hebb 

rule. In this example, only wAj will change. 
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2.8 Pros and Cons of Hebb Learning
2.8.1 Hebb Rule Advantages 
 
The Hebb rule has been actively studied 

for over half a century because it offers a 
number of advantages.  First, it is consistent 
with one of the most enduring associative 
laws, the principle of contiguity.  Second, it 
is a simple and elegant law.  Third, it gener-
ates some results that are nicely consistent 
with studies of associative memory in hu-
mans and animals (Eich, 1982; Gluck & 
Bower, 1988; Hinton & Anderson, 1981; 
Murdock, 1982, 1997).  Fourth, the Hebb 
rule seems to be in agreement with bio-
chemical accounts of learning in the hippo-
campus, in particular the type of learning 
associated with NMDA receptors (Brown, 
1990; Cotman, Monaghan, & Ganong, 1988; 
Gluck & Myers, 2001; Martinez & Derrick, 
1996; Martinez & Kesner, 1998). 

 
2.8.2 Hebb Rule Disadvantages 
 
In spite of these many advantages, the 

Hebb rule is not the dominant learning rule 
studied by artificial neural network research-
ers.  This is because the Hebb rule also has 
a number of serious disadvantages. 

 
First, in its simplest state the Hebb rule is 

such that associations can grow to an unlim-
ited size.  As a result, in a system that is 
governed by the version of the Hebb rule 
that we have seen, eventually everything 
becomes associated with everything else, 
and discrimination between stimuli is impos-
sible.  One solution to this problem is to in-
clude some form of inhibition (Milner, 1957; 
Rochester, Holland, Haibt, & Duda, 1956).  
Another solution is to include additional 
mechanisms that result in connection 
weights decaying over time (Gerstner & Ki-
stler, 2002). 

 
Second, a system governed by the Hebb 

rule is easily disrupted by noise (Dawson, 
2004; Jordan, 1986).  For instance, for per-
fect learning all stimuli and responses have 
to be completed uncorrelated.  As soon as 
some correlation appears between stimuli, 
errors in responses will be observed. 

 
Third, the Hebb rule does not obey the 

sensible rule “if it ain’t broke, don’t fix it.”  

That is, even if the existing associative 
strength between an input unit and an output 
unit is sufficient for the network to respond 
correctly, the Hebb rule will unnecessarily 
change the connection weight between the 
units (Dawson, 2005).  This is one reason 
that all of the connection weights can grow 
without bound. 

 
2.8.3 Learning from Mistakes 
 
One approach to solving all of these 

problems with the Hebb rule is to create a 
variation of the rule that is sensitive to error.  
If the network does not make an error, then 
its connection weights are untouched by a 
more advanced learning rule.  If an error is 
made, then connection weights are modified 
in such a way that the error is decreased. 

 
In general, when learning from mistakes, 

the network takes an input stimulus and re-
sponds to it before any learning takes place.  
This observed response is then compared to 
a desired response, which is used to create 
an error signal.  The error is then used to 
modify the connection weights. 

 
This type of supervised learning – learn-

ing from mistakes – is almost always used to 
train perceptrons because of the limitations 
of the Hebb rule.  As a result, the type of 
simple associative learning that was illus-
trated in Figure 2-1 (see also Gluck & 
Bower, 1988, Figure 1; Pearce, 1997, Figure 
5-18) is generally not true for the perceptron.  
A more complicated relationship between 
the US and the output unit’s response is 
required to indicate how a perceptron can 
learn from its mistakes. 
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2.9 The Delta Rule
2.9.1 Defining Error 
 
One of Rosenblatt’s (1962) many contri-

butions was his statement of an “error-
corrective reinforcement system” that could 
be used to train simple neural networks (p. 
91, Definition 41).  His system was a training 
procedure that only changed the weights of 
a perceptron when it generated an incorrect 
response.  A similar rule, the Widrow-Hoff 
rule, was developed independently at 
roughly the same time (Widrow & Hoff, 
1960).  Most modern connectionist re-
searchers call this type of error correcting 
rule the delta rule (e.g., Gluck & Myers, 
2001; Quinlan, 1991; Schmajuk, 1997; 
Stone, 1986). 

 
The delta rule is a variation of Hebb 

learning that can be used to teach a percep-
tron from its mistakes.  In this rule, the dif-
ference between the observed response of a 
perceptron and the desired response is used 
to modify connection weights. 

 
For this rule, it is important to formally 

define an output unit’s error.  Let us assume 
that the actual response of output unit j is its 
activity aj.  Let us also assume that an ex-
ternal teacher has provided a target or de-
sired value for output unit j, which we can 
designate as tj.  The output unit’s error, δj, is 
the difference between the target and ob-
served values: 

 

jjj at −=δ   (5)  
 
2.9.2 Delta Learning Of Associations 
 
In the Hebb rule, the change in the asso-

ciation between an input unit and an output 
unit was defined as the triple product of a 
learning rate, the activity of the input unit, 
and the activity of the output unit.  The delta 
rule is very similar in structure.  The only 
difference between it and the Hebb rule is 
that the activity of the output unit is replaced 
with the output unit’s error: 
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The logic of this rule is that the error 
value will result in a change in weight that 
will move the net input to the output unit in 
the correct direction to generate the desired 
output (see Dawson, 2004, p. 163).  If error 
is equal to zero, then no change is required, 
and the equation above will produce a Δwij 
of 0.  If the net input is too large, the error 
will be negative, and will produce a negative 
Δwij that decreases the connection weight 
(and therefore decreases the net input the 
next time that stimulus occurs).  If the net 
input is too small, the error will be positive, 
and will produce a positive Δwij that in-
creases the connection weight (and there-
fore increases the net input the next time 
that stimulus occurs). 

 
2.9.3 Supervised Learning and US 
 
The delta rule requires us to think about 

an experimenter’s control of learning in a 
slightly more complicated way.  The US is 
not used to activate the perceptron’s output 
unit.  Instead, it is used to provide 
information to a “comparison mechanism” 
that determines what the target value for the 
output unit is.  In the simplest case, the US 
is equal to tj.  Therefore if the comparison 
mechanism receives both the US and the 
perceptron’s activation value then it can 
compute the error term  , and then use this 
error term to modify connection weights.  
This is illustrated in Figure 2-2, which is 
intended as an elaboration of Figure 2-1. 

 

 
Figure 2-2.  

A perceptron that learns according to the Delta 
rule. 
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Chapter 3: Associative Learning in 
the Perceptron: Case Studies

 
 

3.1 Studying Associative Learning in the Perceptron
3.2 Simple Association
3.3 Intensity of Conditioned Stimuli 
3.4 Intensity of Unconditioned Stimuli
3.5 Configural Representations of Compound Stimuli
3.6 Positive Patterning in the Perceptron

 
The purpose of this chapter is to empirically study the perceptron from Chapter 2 in the con-

text of associative learning.  After introducing some of the general characteristics of the simula-
tion methodology that was used, perceptrons are trained in a small number of classical para-
digms from the associative learning literature.  In each case, a phenomenon that has been ob-
served in animal learners is replicated in the computer simulation.  This provides initial empirical 
support for the claim that perceptron learning is strongly related to at least some forms of animal 
learning. 
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3.1 Studying Associative Learning in the Perceptron
3.1.1 Setting the Stage 
 
We have developed the learning rule for 

the perceptron in the context of the study of 
associative learning in animals.  For exam-
ple, we have included information about the 
CS and the US in Figures 2-1 and 2-2.  Our 
goal is to move towards a more formal 
treatment of the relationship between per-
ceptrons and traditional approaches to 
learning. 

 
Our next step towards achieving this goal 

is to take the formal machinery that has al-
ready been discussed and demonstrate it in 
action.  To be more precise, we will examine 
the results of a computer simulation that will 
be used to train perceptrons in a small num-
ber of classic animal learning paradigms.  
We will empirically demonstrate a relation-
ship between perceptrons and models of 
animal learning by observing correspon-
dences between the simulation results and 
those obtained from studies of animals. 

 
3.1.2 Technical Details 
 
All of the simulations that are described 

in the following chapters were conducted 
with a program called Rosenblatt (Dawson, 
2005).  The Rosenblatt program is available 
as freeware from: 
http://www.bcp.psych.ualberta.ca/~mike/Soft
ware/Rosenblatt/. 

 
Each simulation trains a perceptron that 

has two input units, each used to represent 
the presence or absence of a conditioned 
stimulus (CSA or CSB).  It also has one out-
put unit that is used to generate a response 
to the stimuli that are presented to the per-
ceptron. 

B

 
The output unit uses a step activation 

function to compute its activity value aj.  
First, it computes its net input, netj, which is 
the sum of the weighted signals that are be-
ing received from the input units.  Second, it 
adds its threshold θj to netj.  If the result is 
greater than 0, then the value of aj is 1.  
Otherwise the value of aj is 0.  This is the 
same as determining whether or not netj is 
greater than θj. 

 

The perceptrons are trained with Rosen-
blatt’s (1962) delta rule.  The learning rate η 
is equal to 0.5 (unless otherwise noted).  
The networks are taught with a “sweep-
wise” procedure.  In a single sweep or ep-
och, every training pattern is presented 
once.  However, within a sweep the presen-
tation order of the training patterns is ran-
dom.  Every training pattern is associated 
with a desired response for computing the 
error for modifying the connection weights 
as illustrated in Figure 2-2. 

 
The perceptron’s weights are updated af-

ter every presentation of a training pattern.  
The connection weights are changed using 
the delta rule.  The delta rule is also used to 
change the threshold of the output unit.  This 
is accomplished by assuming that θ is the 
weight of an additional connection between 
the output unit and an input unit that is al-
ways on (i.e., that always has a value of 0).  
Under this assumption, a unit’s threshold 
can easily be trained (e.g., Dawson, 2004, p. 
181). 

 
Training ends once the network has con-

verged to a solution to the presented prob-
lem.  That is, training comes to a halt when 
the network generates a “hit” to every pat-
tern.  A “hit” occurs when the perceptron 
turns on to every pattern that has a target 
response of 1, and when it turns off to every 
pattern that has a target response of 0.  In 
short, when the output unit’s error is totaled 
over every pattern presented in a sweep, 
and equals 0, then the perceptron has 
learned the desired task and training can 
stop. 

 
Before training, every connection weight 

is randomly assigned a value from the con-
tinuous range [-0.1, 0.1].  The initial value of 
the threshold is 0.  At the end of training, the 
connection weights and the threshold will 
have adopted specific values that mediate 
particular responses to particular stimuli.  It 
is often interesting to examine these values 
at the end of training (e.g., Dawson, 2004). 

A peer-reviewed monograph published by Comparative Cognition and Behavior Reviews on 
behalf of the Comparative Cognition Society. © Michael R. W. Dawson 2008 

http://www.bcp.psych.ualberta.ca/%7Emike/Software/Rosenblatt/
http://www.bcp.psych.ualberta.ca/%7Emike/Software/Rosenblatt/


Chapter 3 Associative Learning In The Perceptron: Case Studies 29 

3.2 Simple Association
3.2.1 Classical Conditioning 
 
Pavlov’s (1927) fundamental discovery 

was the conditioned reflex.  Simply stated, 
prior to conditioning a CS is highly unlikely 
to produce a particular response, while a US 
is.  However, after a series of trials in which 
the US and the CS are presented together, 
the CS will produce the response. 

 
The simulation below demonstrates this 

type of associative learning.  Separate as-
sociations involving two CSs (CSA and CSB) 
are taught to a perceptron.  Prior to training, 
neither CS will cause the output unit to re-
spond.  However, after a short period of 
training with the delta rule, either CS will 
cause the output unit to generate an activa-
tion value of 1.  In this simulation the two 
CSs are also presented simultaneously, rep-
resenting a compound conditioned stimulus 
(i.e., CS

B

AB). 
 
3.2.2 Training Set 
 
Four patterns are presented to a percep-

tron during a sweep of training.    They, 
along with their target values tj, are provided 
in Table 3-1 below.  The two columns la-
beled CSA and CSB provide the activity of 
each input unit used to represent a CS.  If a 
CS is present, the input unit has an activity 
of 1, and if it is absent it has an activity of 0.  
The goal of training is to produce a set of 
weights such that the perceptron generates 
a response identical to the t

B

j column for each 
training pattern. 

 
Pattern CSA CSB tj

1 0 0 0 
2 1 0 1 
3 0 1 1 
4 1 1 1 

Table 3-1 
 

3.2.3 Results 
 
Twenty different perceptrons, each 

started randomly according to the procedure 
described in Section 3.1.2, served as “sub-
jects”.  Each perceptron was trained with the 
delta rule, and learned to respond correctly 
to each pattern in the training set (that is, to 

generate the desired outputs (tj) provided in 
Table 3-1).  On average, this required 4.15 
sweeps of training.  The structure of a typi-
cal network after training completed is pro-
vided in Table 3-2. 

 
Unit Weight θ 
CSA 0.93 - 
CSBB 0.51 - 

Output - -0.50 
Table 3-2 

 
This table reveals how either CS on its 

own activates the output unit after training 
completed.  When CSA has a value of 1, it 
sends a signal of 0.93 to the output unit.  
When combined with θ of -0.50, the net in-
put is 0.43.  This is above 0, so the output 
unit turns on.  Similarly, when CSB is acti-
vated, it sends a signal of 0.51 to the output 
unit, which will produce a net input of 0.01.  
Again, this causes the output unit to turn on, 
because it is greater than 0.  When both 
stimuli are presented, the net input is 0.94, 
and again the output unit turns on. 

B

 
When neither CSA nor CSB is present, 

the total signal coming to the output unit is 0.  
When combined with θ of -0.50, the net in-
put is -0.50.  This is below 0, so the output 
unit generates a 0, as desired. 

B

 
The two connection weight values differ 

from one another because they started at 
different random values.  If this simulation 
was repeated many times, and the average 
value of the connection weights after training 
was computed, it would be expected that the 
two average weights would be equal to one 
another. 

 
Importantly, three of the different stimu-

lus configurations (CSA, CSB, CSB AB) produce 
very different net inputs, but cause the same 
response in the output unit.  This illustrates 
the all-or-none law: a more intense input 
(e.g., the compound stimulus) leads to a 
more intense (i.e., more positive) net input, 
but still causes a response of the identical 
magnitude as that caused by a less intense 
input (CSA or CSBB alone). 
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3.3 Intensity of Conditioned Stimuli
3.3.1 Conditioning and CS Intensity 
 
All things being equal, the intensity of a 

CS affects its ability to be classically condi-
tioned.  For example, in one study rats were 
conditioned by pairing the same magnitude 
of US with one of three different magnitudes 
of white noise CSs: low intensity (49 dB), 
medium intensity (62.5 dB) and high inten-
sity (81 dB) (Kamin & Schaub, 1963).  CS 
intensity was directly related to the rate of 
conditioning that Kamin and Schaub ob-
served. 

 
3.3.2 CS Intensity in the Perceptron 
 
The intensity of the CSs used to train a 

perceptron can be varied by activating input 
units with some value other than 1.  For in-
stance, if we wanted to model CSs that were 
10 times less intense than those used in the 
previous study, when a CS was present we 
would activate its input unit with a value of 
0.1 instead of 1.0. 

 
This simulation takes exactly this ap-

proach.  It is exactly the same as the previ-
ous simulation, with the exception that the 
CSs are 10 times less intense.  That is, 
when a CS is present, the input unit that 
represents it is activated with a value of 0.1 
instead of the value of 1 that was used in 
Table 3-1.  The resulting training set is given 
in Table 3-3; again, the point of training is to 
produce a set of weights such that the per-
ceptron generates a response identical to 
the tj column for each training pattern in the 
table. 

 
Pattern CSA CSB tj

1 0 0 0 
2 0.1 0 1 
3 0 0.1 1 
4 0.1 0.1 1 

Table 3-3 
 

20 different perceptrons were “subjects” 
in an experimental condition that used the 
Table 3-3 training set.  The number of 
sweeps required to converge in this condi-
tion was compared to the number required 
by 20 additional control subjects trained with 
the Table 3-1 training set. 

 
3.3.3 Results 

 
On average, control condition percep-

trons converged after 4.15 sweeps of train-
ing.  If stimulus intensity affects perceptron 
learning in a fashion analogous to that re-
ported by Kamin and Schaub (1963), then 
perceptrons in the experimental condition 
should take much longer to learn.  Indeed, 
this is the case.  In this condition it takes on 
average 197.75 sweeps to generate hits to 
all four training patterns.  This difference is 
statistically significant (t = -146.205, df = 38, 
p < 0.001). 

 
Even though decreasing stimulus values 

produces slower learning, the final structure 
of a perceptron trained in the experimental 
condition solves this conditioning problem in 
a very similar fashion to that observed in the 
previous simulation.  Table 3-4 provides one 
network’s values for the various network 
components at the end of training: 

 
Unit Weight θ 
CSA 5.02 - 
CSBB 5.05 - 

Output - -0.50 
Table 3-4 

 
One of the key differences between this 

network and the previous network is the size 
of the weights.  The weights in Table 3-4 are 
an order of magnitude larger than those in 
Table 3-2.  However, both networks have 
the same threshold, so this difference 
makes sense.  For the current network with 
θ = -0.50, the connection weights have to be 
an order of magnitude larger because the 
stimulus intensities are an order of magni-
tude smaller. 

 
This also accounts for the increased 

amount of stimulus presentations required 
for learning.  Because the connection 
weights need to be more extreme for the 
weaker stimuli, more learning trials are re-
quired to make the connection weights suffi-
ciently large for the network to generate all 
of the desired responses. 
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3.4 Intensity of Unconditioned Stimuli
3.4.1 The Effect of US Intensity 
 
Another factor that has been shown to af-

fect conditioning is the intensity of the US.  
For example, one experiment concerned 
conditioning eye blink responses in rat pups 
(Freeman, Spencer, Skelton, & Stanton, 
1993).  In this study, a tone CS was paired 
with a periocular shock US, and shock mag-
nitude was manipulated.  It was found that a 
3 mA shock led to faster acquisition of con-
ditioned eye blinks than did a 1 mA shock.   

 
One approach to performing this type of 

manipulation on a perceptron would be 
modifying η, the learning rate.  For instance, 
if this factor was made to be a very small 
fraction, then this might simulate a situation 
in which learning was slower because the 
US being used was less intense. 

 
Take the training set from Table 3-1.  In 

the simulation in Section 3.2, the percep-
trons learned to respond to that training set 
after approximately 4 sweeps when η was 
0.5.  Let us repeat this simulation study, but 
reduce η to a value of 0.005 – two orders of 
magnitude smaller than the original study. 

 
3.4.2 Effects of Decreasing η 
 
When this is done in one simulation, the 

perceptron learns to respond to each of the 
three training patterns, but training is much 
slower.  When 20 different perceptrons are 
trained with η = 0.5, it takes on average 4.15 
sweeps to converge.  In contrast, when η = 
0.005 it takes an average of 12.38 sweeps 
to converge.  This difference is statistically 
significant (t = -5.288, df = 38, p < 0.001). 

 
Consider one of these latter networks, 

which converged in 21 epochs.  Table 3-5 
presents its structure.  It learns the associa-
tions involving independently presented CSs 
in the same qualitative fashion as was de-
scribed for Table 3-2.  Quantitatively, 
though, the structure is markedly different.  
The reduction in the learning rate was also 
responsible for a similar reduction in the 
sizes of the two connection weights and the 
bias of the output unit. 
 

Unit Weight θ 
CSA 0.007 - 
CSBB 0.081 - 

Output - -0.005 
Table 3-5 

 
3.4.2 Effects of Increasing η 
 
Take the same training set, and train 20 

more perceptrons after increasing η to 0.9. 
 
When this is done, learning is much 

faster than the previous experiment: percep-
trons converged on average after 4.33 ep-
ochs.  However, this result is not statistically 
different from the networks trained with η = 
0.5 (t = -1.034, df = 38, p < 0.308).  The in-
crease in learning rate produced a corre-
sponding increase in the sizes of the net-
work’s connection weights, as shown in Ta-
ble 3-6.  Compare this structure to those 
presented in Tables 3-2 and 3-5, which are 
example perceptrons trained to solve the 
identical input-output problem, but were 
trained to do so with smaller η values. 
 

Unit Weight θ 
CSA 1.78 - 
CSBB 1.76 - 

Output - -0.90 
Table 3-6 

 
Increasing η to 0.9 led to essentially the 
same average convergence rate than when 
η was 0.1.  This likely reveals a floor effect 
in this study: when η was 0.5, learning was 
actually so fast that further increases in the 
learning rate were unlikely to speed learning 
up much further.  If a perceptron was trained 
on a more difficult problem, then we would 
expect finer distinctions to emerge between 
different learning rate conditions. 
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3.5 Configural Representations of Compound Stimuli
3.5.1 Compound Stimuli 
 
Pavlov (1927) reported the results of a 

number of experiments in which animals 
were conditioned to compound stimuli.  A 
compound stimulus is created when, for in-
stance, two different CSs are presented si-
multaneously.  Compound stimuli are of in-
terest because they raise questions about 
whether an agent creates a unique repre-
sentation of the compound, or instead cre-
ates separate representations of the com-
pound’s components, whose individual ef-
fects are summed in some fashion.  This 
issue is still one of hot debate (Wasserman 
& Miller, 1997).  Interestingly, perceptrons 
can be used to study learning for both of 
these approaches to representing com-
pound stimuli. 

 
3.5.2 Elemental Representations 
 
Some learning theorists have argued that 

compound stimuli are represented by acti-
vating their component elements as individ-
ual stimulus parts (Rescorla & Wagner, 
1972; Wagner, 2003).  According to this 
elemental approach, a compound stimulus 
does not have a unique representation as a 
configuration.  It is instead merely repre-
sented as the collection of its parts. 

 
Elementary representations of compound 

stimuli are straightforward in a perceptron.  
Each input unit is used to represent the 
presence or absence of a stimulus compo-
nent.  The compound stimulus is repre-
sented simply by turning the input units for 
each of its elements on (Gluck & Bower, 
1988).  This approach to representing com-
pound stimuli was demonstrated in the simu-
lations described in Sections 3.2., 3.3, and 
3.4 

 
3.5.2 Configural Representation 
 
A configural representation is used to 

represent not only the elements of a com-
pound stimulus, but also the unique proper-
ties of a stimulus that might emerge from its 
compound nature.  This can be accom-
plished, for instance, by including extra input 
units in a perceptron.  For example, a three-
input unit perceptron could use one unit to 

represent the presence of CSA, a second to 
represent the presence of CSB, and a third 
to represent the unique attributes of the 
compound created when CS

B

A and CSBB are 
presented together (i.e., CSAB).  To repre-
sent a compound stimulus with these units, 
one turns the unique configuration unit on, 
as well as the two units representing its 
component stimuli.  The unit for CSAB is only 
turned on when both of the other input units 
are also activated.  Table 3-7 presents a 
configural representation for another logical 
operator, exclusive-or (XOR). 

 
Pattern CSA CSB CSAB  tj

1 0 0 0 0 
2 1 0 0 1 
3 0 1 0 1 
4 1 1 1 0 

Table 3-7 
 
Table 3-8 presents the structure of a 

typical network trained to solve the problem 
laid out in Table 3-7.  Table 3-8 shows that 
the network’s weight assignment to the two 
elemental components of the representation 
(CSA and CSB) is very similar to the repre-
sentation of OR that we have seen in pre-
ceding sections.  That is, without the CS

B

AB 
unit, the network would turn on when either 
or both elements are present.  However, the 
configural component of the representation 
(CSAB) presents the network from incorrectly 
turning on to the compound stimulus.  This 
is because this unit has developed a strong 
inhibitor connection to the output unit which 
is sufficient to keep the output unit off when 
the compound stimulus is presented. 

 
Unit Weight θ 
CSA 0.57 - 
CSBB 0.98 - 
CSAB  -2.02 - 

Output - -0.50 
Table 3-8 

 
 

A peer-reviewed monograph published by Comparative Cognition and Behavior Reviews on 
behalf of the Comparative Cognition Society. © Michael R. W. Dawson 2008 



Chapter 3 Associative Learning In The Perceptron: Case Studies 33 

3.6 Positive Patterning In The Perceptron
3.6.1 Positive Patterning 
 
Compound stimuli are of interest be-

cause they provide a fascinating opportunity 
to explore the relationship between a whole 
and its parts.  For example, Pavlov (1927) 
was the first to report that one could train an 
animal to respond to a compound stimulus, 
and at the same time train the animal not to 
respond when the compound’s parts were 
presented separately.  “This result is ob-
tained by constant reinforcement of the 
compound stimulus, while its components, 
on the frequent occasions when they are 
applied singly, remain without reinforce-
ment” (p. 144). 

 
This paradigm is known as positive pat-

terning, and is usually represented with the 
notation [A-, B-, AB+] (Delamater, Sosa, & 
Katz, 1999). The As and Bs indicate which 
stimuli are presented, while the +s and –s 
indicate whether the animal was reinforced 
or not.  If a fourth stimulus condition is in-
cluded (-) to indicate that the animal is not 
reinforced when no CS is present, then posi-
tive patterning is logically equivalent to the 
AND logical problem that was discussed in 
Chapter 2 (Yaremchuk et al., 2005). 

 
3.6.2 Training Set 
 
Table 3-9 provides the training set that 

can be used to teach a perceptron using the 
positive patterning paradigm.  Note that this 
particular training set assumes an elemental 
representation of stimuli. 

 
Pattern CSA CSB tj

1 0 0 0 
2 1 0 0 
3 0 1 0 
4 1 1 1 

Table 3-9 
 

3.6.3 Results 
 
A study was conducted in which 20 per-

ceptrons were taught to make the responses 
illustrated in Table 3-9.  This was an easy 

problem for a perceptron to solve; on aver-
age convergence was achieved after 3.96 
epochs. 

 
The structure of one network that con-

verged after 5 epochs of training is provided 
in Table 3-10. 

 
Unit Weight θ 
CSA 0.47 - 
CSBB 0.42 - 

Output - -0.50 
Table 3-10 

 
This table reveals that either CS on its 

own is not capable of activating the output 
unit after training is completed, because net 
input is negative.  This is also true when 
both stimuli are absent.  It is only when both 
input units are turned on that they provide a 
strong enough signal to overcome the nega-
tive bias and create a positive net input.  

 
Interestingly, the structure of this network 

is almost identical to the structure of the 
network that was presented earlier in Table 
3-2.  That network was trained to compute 
logical OR, because it would turn on when 
A, B, or AB were presented.  The only nota-
ble difference between the structures of the 
two networks is the relation of the connec-
tion weights to the bias: in Table 3-2, both 
connection weights are necessarily larger 
than the absolute value of the bias, while in 
Table 3-10, both connection weights are 
necessarily smaller than the absolute value 
of the bias. 

 
 
3.6.4 The Modern Perceptron 
 
With initial results like those that have 

been presented in this chapter, we will now 
move to the study of a more modern version 
of the perceptron, called the integration de-
vice.  The next chapter introduces this net-
work, describes how it can be trained, and 
presents a number of results that relate it to 
the study of animal learning. 
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Chapter 4: Modernizing the Percep-
tron: The Integration Device

 

4.1 A Continuous Approximation of the Heaviside Equation
4.2 Training an Integration Device
4.3 Acquisition Curves for the Integration Device 
4.4 On Two Responses 
4.5 The Hyperbolic Integration Device 
4.6 Approach or Avoid 
4.7 Conditioned Inhibition in the Integration device
4.8 Summation in the Integration Device 
4.9 Simulating Renewal 
4.10 Superconditioning in an Integration Device 
4.11 Positive Patterning in the Integration Device 
4.12 Associating to Compounds and their Components 
4.13 Overshadowing in the Integration Device 
4.14 Recovery from Overshadowing 
4.15 Blocking and the Integration Device 
4.16 Success from Failure 
4.17 From the Empirical to the Formal 
 
The purpose of this chapter is to present a modern version of the perceptron.  This is called the 
integration device, and is identical to the perceptron that was discussed in Chapters 2 and 3 with 
the exception that it uses a continuous, nonlinear activation function.  This new activation function 
is an approximation of the discontinuous function that is described by the Heaviside equation.  
The chapter then turns to showing that this modern version of the perceptron is also closely re-
lated to associative learning in animals.  Simulation results are provided that show how a number 
of standard animal learning phenomena can be replicated in an integration device.  The results 
point to the need to determine the formal relationship between network learning and animal learn-
ing. 
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4.1 A Continuous Approximation of the Heaviside Equation
4.1.1 From Discrete To Continuous 
 
The perceptrons that we have been ex-

ploring have been trained with Rosenblatt’s 
(1962) version of the delta rule, and have 
used a particular discrete activation function, 
the Heaviside equation.  The purpose of this 
chapter is to introduce a modern variation of 
this architecture.  It differs from the percep-
tron that we have been discussing in two 
major respects.  First, it uses a continuous 
activation function that approximates the 
Heaviside equation.  Second, it uses a con-
tinuous variation of the delta rule, a gradient 
descent rule. 

 
The main purpose of introducing this 

variant of the perceptron is to be in a posi-
tion to later explore the relationship between 
it and two other modern developments in the 
study of networks.  The first is the multilayer 
perceptron (Rumelhart et al., 1986), which 
has at least one layer of intermediate proc-
essing units between its input and output 
units.  The discovery of learning rules for 
multilayer perceptrons depended heavily 
upon incorporating a continuous activation 
function into the processing units.   

 
The second modern development to 

which this variant of the perceptron will be 
related is the use of alternative continuous 
activation functions, such as the Gaussian 
(Dawson & Schopflocher, 1992), in the 
processing units.  We will see that the capa-
bilities of a perceptron, as well as the rela-
tionship between the perceptron and models 
of animal learning, depend heavily upon the 
nature of the activation function that is cho-
sen. 

 
While the perceptron described in this 

chapter differs from the one that was pre-
sented in the previous two chapters, the two 
types of networks are highly related.  In par-
ticular, both types of perceptrons can be 
trained with the delta rule.  As well, the 
simulation results reported previously can 
easily be replicated in the integration device 
that we will now introduce. 

 
4.1.2 The Logistic Activation Function 
 

The main feature of the Heaviside equa-
tion is that it provides a step function that 
converts net input into internal activity.  In it, 
if internal activity is below a threshold, then 
activity is equal to 0.  If internal activity 
meets or exceeds a threshold, then activity 
is equal to 1.  This function is discontinuous, 
because there is a “break” in it when its 
value goes from 0 to 1. 

 
Modern artificial neural network re-

searchers have replaced the Heaviside 
equation with a continuous function that ap-
proximates its key features.  One popular 
example is the logistic equation that was 
adopted by Rumelhart, Hinton, and Williams 
(1986), defined below for some output unit j:  

))((1
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jjnetjj e
netfa θ+−+

==  (7) 

As is illustrated in Figure 4-1, the logistic 
function does not break into two parts. In-
stead, it converts net input into a sigmoid-
shaped, continuous function that serves the 
same role as the Heaviside equation.  Low 
net inputs are converted into near-zero acti-
vation, while high net inputs are converted 
into near-one activation.  If net input is ex-
actly equal to θ then the logistic equation 
returns a value of 0.5.  Adopting standard 
terminology (Ballard, 1986), we will call a 
perceptron that uses the logistic activation 
function in its output units an integration de-
vice. 

 

 
 Figure 4-1. The logistic equation produces a 

sigmoid-shaped activation function. 
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4.2 Training an Integration Device
4.2.1 The Delta Rule 
 
If one were to insert the logistic activation 

function into the output unit of a perceptron, 
then the perceptron will generate continuous 
responses to stimuli.  It will not merely turn 
on or off.  Given its continuous responses in 
the range between 0 and 1, how would one 
proceed to train it to perform a task of inter-
est?  One approach would be to use the 
delta rule. 

 
When the delta rule was applied to a 

perceptron that used the Heaviside activa-
tion function, output unit error – the differ-
ence between the desired activity and the 
observed activity – could only adopt one of 
three different values.  If the perceptron 
turned on when it was supposed to turn off, 
then error would be equal to -1.  If the per-
ceptron made the correct response, then 
error would be equal to 0.  If the perceptron 
turned off when it was supposed to turn on, 
then error would be equal to +1. 

 
When the Heaviside equation is replaced 

with the logistic equation, then the absolute 
value of error will adopt some continuous 
value between 1 and 0.  That is, it will never 
be equal to one of three different values as 
described above.  However, because the 
logistic equation only reaches values of 1 or 
0 when net input reaches positive or nega-
tive infinity, error will never be exactly equal 
to1 (or -1) or 0.  This is because in our com-
puter simulations of learning, net input will 
never achieve infinite magnitude. 

 
Because of this, we have to develop an 

operational definition of successful perform-
ance.  That is, we have to define some activ-
ity value for the output unit that is “high 
enough” to describe the output unit as being 
“on”.  Similarly, we have to define activity 
that is “low enough” to describe the output 
unit as being “off”.   

 
Once the needed operational definitions 

are in place, we can again train a network 
until it has converged to a solution to the 
presented problem.  That is, training comes 
to a halt when the network generates a “hit” 
to every pattern. 

 

In the simulations that follow, a “hit” oc-
curs when the integration device turns on – 
generates activity of 0.9 or higher -- to every 
pattern that has a target response of 1.  A 
“hit” also occurs when the integration device 
turns off – generates activity of 0.1 or lower -
- to every pattern that has a target response 
of 0.  With this definition of convergence, the 
delta rule could easily be used to train an 
integration device. 

 
4.2.2 The Gradient Descent Rule 
 
While the delta rule could be used to 

train an integration device, this usually does 
not occur.  This is because with a continu-
ous activation function, if one multiplies error 
(defined as computed for the delta rule) by 
the first derivative of the activation function, 
then more efficient learning will result (e.g., 
Dawson, 2004).  The first derivative of the 
logistic activation function, f’(netj), is defined 
as: 

 
)1()(' jjj aanetf −⋅=   (8) 

 
The gradient descent rule for changing a 

weight in an integration device is defined by 
multiplying this first derivative into the delta 
rule equation: 
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Recall that in this equation, Δwij is the 

desired change in the weight from input unit 
i to output unit j, η is the learning rate, ai is 
the activity of the input unit, aj is the activity 
of the output unit, and tj is the desired activ-
ity of the output unit. 

 
The gradient descent learning rule can 

be viewed as a continuous version of the 
delta rule.  That is, it is exactly the same as 
the delta rule, but has the additional property 
that it uses information about the continuous 
activation function to scale the delta rule’s 
error term.  When applied to an integration 
device, the gradient descent rule will lead to 
very similar results as when the delta rule is 
used to train a perceptron.  This will be 
demonstrated in the following sections. 
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4.3 Acquisition Curves for the Integration Device 
4.3.1 General Method 
 
The simulations described in the follow-

ing pages were once again conducted with 
the Rosenblatt program (Dawson, 2005), 
available as freeware from: 
http://www.bcp.psych.ualberta.ca/~mike/Soft
ware/Rosenblatt/.  The perceptrons trained 
in all of the examples that follow in Chapter 
4 used the logistic activation function in the 
output unit. 

 
The integration devices were trained with 

the gradient descent rule with η equal to 0.5.  
Connection weights were initialized to a ran-
dom value in the range from -0.1 to 0.1, and 
θ was initialized to a value of 0.  Every train-
ing pattern was presented once per sweep 
in a random order.  The integration device’s 
weights, and the bias value of the logistic 
equation, were updated after every presen-
tation of a training pattern (e.g., Dawson, 
2004, p. 181). 

 
4.3.2 Association and Extinction 
 
The first simulation trains an association 

to CSA in one phase of learning, and then 
extinguishes it in a second training phase.  
Thus, this network consisted of a single in-
put unit and a single output unit.  In this ex-
periment, there was only one pattern pre-
sented to the integration device during either 
training phase.  The training set (input val-
ues along with their target values tj, as well 
as trial type in terms of animal learning ex-
periments) is provided in Table 4-1 below: 

 
Phase Trial 

Type 
Input tj

1 A+ 1 1 
2 A- 1 0 

Table 4-1 
 
4.3.2 Results 
 
“The first job of any theory of Pavlovian 

learning is to account for acquisition curves 
as a function of the number of training trials” 
(Miller et al., 1995).  When a continuous ac-
tivation function is combined with a gradient 
descent learning rule, it would be expected 
that the network’s acquisition curve and ex-

tinction curve would have a plausible ap-
pearance. 

 
To test this hypothesis, the activation of 

the output unit was recorded for every 
Phase 1 learning trial and every Phase 2 
extinction trial.  The results of a typical net-
work are presented in Figure 4-2 below.  For 
this particular network, 71 learning trials 
were required to learn to respond to CSA, 
and 89 Phase 2 trials were required to ex-
tinguish this response.  As is evident in the 
figure, responding to CSA increases during 
Phase 1, and the rate of change in respond-
ing decelerates.  During Phase 2, respond-
ing to CSA decreases, and the rate of 
change in responding decelerates.  These 
effects are consistent with predictions from 
the Rescorla-Wagner model.  For example, 
if one sets λ to 1 and α to 0.613 at trial 0, 
and then sets λ to 0 and α to 0.070 at trial 
72, the Rescorla-Wagner model produces a 
curve that has a correlation of 0.99 with the 
one in Figure 4-2. 

 

 
Table 4-2 below shows the structure of a 
typical network at the end of each training 
phase.  Note that the first phase of training 
resulted in positive (excitatory) network 
structure, while the second phase of training 
resulted in negative (inhibitory) structure.  

 
Phase Unit Weight θ 

CSA 1.07 - 1 
Output - 1.13 

CSA -1.13 - 2 
Output - -1.07 

Table 4-2 

Figure 4-2. Acquisition curves from an example 
integration device. 
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4.4 On Two Responses 
4.4.1 Go or No Go 
 
In many learning experiments, animals 

are trained to either respond or not to re-
spond.  For example, consider the go-no go 
paradigm used in a recent study of discrimi-
nation learning in birds (Lee, Charrier, 
Bloomfield, Weisman, & Sturdy, 2006). 

 
In this study, when birds were on a “re-

quest perch” in front of a feeder they were 
presented tones of various frequencies.  
Birds were trained to response to tones from 
one particular range of frequencies, and to 
not respond to tones from a different fre-
quency range. In the go-no go paradigm a 
bird responds by leaving its perch, flying 
over to a food dispenser to receive a reward.  
A bird demonstrates that it has learned not 
to respond to a stimulus by remaining on its 
perch.  Lee et al. (2006) were able to use 
this paradigm that two different types of 
chickadees, as well as zebra finches, could 
learn to discriminate different frequencies of 
tones. 

 
An integration device that uses the logis-

tic equation as an activation function is well-
suited to model experiments in which the 
network learns either to respond or not.  
This is because responding can be repre-
sented by activity that has a value near one, 
while not responding can be represented by 
activity that has a value near zero. 
 

4.4.2 Approach or Avoid 
 
However, there are experiments that in-

volve learning behaviors that are not neatly 
described as go-no go.  For instance, an 
animal might approach when one stimulus is 
presented, and to avoid or withdraw when a 
different stimulus occurs.  In such an ex-
periment it is not the case that the animal 
responds or not.  Instead, the animal learns 
to either respond or to make the opposite 
response. 

 
For example, Hearst and Franklin (1977) 

conducted an experiment with pigeons in 
which an illuminated blank field served as a 
signal that grain would be delivered, while a 
black vertical line on a white field signaled 
that grain would not be delivered.  Hearst 

and Franklin monitored the location of the 
pigeons.  They found at the end of training 
that when the signal for food was presented, 
the pigeons moved towards the signal, but 
when the signal for no food was presented, 
the birds moved away from the signal. 

 
How would an integration device be used 

to simulate an experiment in which an ani-
mal learns either to approach or to avoid?  
One possibility would be to use the logistic 
equation, and to interpret a near zero activity 
as representing avoidance.  The problem 
with this approach is that it couldn't be used 
to simulate a situation in which an animal 
might approach, avoid, or fail to respond at 
all. 

 
A second approach would be to use two 

different output units.  High activity in one 
unit could represent approaching, high activ-
ity in the other unit could represent avoid-
ance, and low activity in both units could 
represent failure to respond at all.  The prob-
lem with this approach is that it doesn't truly 
reflect the dialectic nature of some re-
sponses.  In particular, an animal cannot 
simultaneously move towards a target and 
away from it.  These responses are linked in 
the sense that they are mutually exclusive.  
However, this logical link disappears from a 
perceptron that uses two output units.  This 
is because these output units use com-
pletely separate connections.  As a result, it 
is logically possible for the perceptron to turn 
both of its output units on at the same time, 
indicating the impossible -- that is, simulta-
neous approach and avoidance. 

 
A third approach would be to use in inte-

gration device that can signal approach, 
avoidance, and failure to respond with a sin-
gle output unit.  In particular, one could do 
this by using a sigmoid-shaped activation 
function the generated values that ranged 
from -1 to 1.  Activity of 1 could represent 
approach.  Activity of -1 could represent 
avoidance.  Activity of 0 could represent a 
failure to respond.  In Section 4.5, an alter-
native integration device which delivers this 
kind of responding is introduced. 
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4.5 The Hyperbolic Integration Device 
4.5.1 The Hyperbolic Tangent 
 
Duch and Jankowski (1999) have noted 

that the logistic activation function that we 
have used to characterize the integration 
device can be replaced with a hyperbolic 
tangent activation function.  Like the logistic, 
the hyperbolic tangent is sigmoid shaped, 
continuous, and has a simple derivative.  
The key difference between it and the logis-
tic is that the hyperbolic tangent, illustrated 
in Figure 4-3, ranges between -1 and +1 
instead of between 0 and 1.  Therefore this 
function can be used to define an integration 
device whose output unit is required to gen-
erate negative or positive responses to dif-
ferent stimuli. 

 

 
 
Equation 10 defines the hyperbolic tan-

gent as it is used to define the activation 
function of an integration device: 
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4.5.2 Hyperbolic Learning Rule 
 
In Section 4.4.2 we saw that a gradient 

descent learning rule could be used when 
the activation function was continuous.  In a 
gradient descent technique, more efficient 
learning is sought by multiplying an output 
unit’s error by the first derivative of its activa-
tion function.  The first derivative of the hy-

perbolic tangent activation function, 
tanh’(netj), is defined as: 
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In this equation, the bias (θ) is the net input 
value that would produce an activation of 0.  
That is, while the “threshold” of the logistic 
equation produces 0.5 activation, the 
“threshold” of the hyperbolic tangent pro-
duces 0.0 activation. 
 

The gradient descent rule for changing a 
weight in an integration device that uses the 
hyperbolic tangent is given in Equation 12: 
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In this equation, Δwij is the desired 

change in the weight from input unit i to out-
put unit j, η is the learning rate, ai is the ac-
tivity of the input unit, aj is the activity of the 
output unit, and tj is the desired activity of 
the output unit.  Note that this equation is 
identical to Equation 9, with the exception 
that a different derivative is used, and aj is 
computed by using the hyperbolic tangent 
equation that was provided in Equation 10. 

Figure 4-3. The hyperbolic tangent. 

 
In the next section, we will see how this 

new learning rule for this variant of the inte-
gration device can be used to train a net-
work to approach or to avoid, depending 
upon the signals that are provided. 
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4.6 Approach or Avoid 
4.6.1 Inhibition and Excitation 
 
We saw earlier that Hearst and Franklin 

(1977) conducted an experiment in which 
animals learned to approach when pre-
sented one stimulus, and to retreat when 
presented another.  The simulation below 
demonstrates this type of associative learn-
ing in an integration device that employs the 
hyperbolic tangent, and demonstrates its 
ability to produce three different responses 
to three different stimuli.  The point of train-
ing is to generate a positive response when 
CSA is presented, a neutral or zero response 
when CSB is presented, and a negative re-
sponse when CS

B

C is presented. 
 
4.6.2 Training Set 
 
Three patterns are presented to a per-

ceptron during a sweep of training.    They, 
along with their target values tj, are provided 
in Table 4-3 below.  The key difference be-
tween this table and those that we have 
seen previously is that the value of tj for Pat-
tern 3 is -1.  An integration device that em-
ploys the logistic function is not capable of 
generating this response, and so would be 
unable to learn the training set given in Ta-
ble 4-3.  However, this response is com-
pletely compatible with the hyperbolic tan-
gent. 

 
Pattern CSA CSB CSc tj

1 1 0 0 1 
2 0 1 0 0 
3 0 0 1 -1

Table 4-3 
 

4.6.3 Results 
 
25 different integration devices, each 

started randomly according to the procedure 
described in Section 4.3.1, served as “sub-
jects”.  A key change in methodology in this 
simulation was that the perceptrons used 
the hyperbolic tangent (Equation 10) as the 
activation function, and were trained with the 
gradient descent rule for this function (Equa-
tion 12).  Each integration device learned to 
respond correctly to each pattern in the 
training set (that is, to generate the desired 
outputs (tj) provided in Table 4-3).  On aver-

age, this required 27.3 sweeps of training.  
The structure of a typical network after train-
ing completed is provided in Table 4-4. 

 
Unit Weight θ 
CSA 1.44 - 
CSBB -0.04 - 
CSC -1.53 - 

Output - 0.05 
Table 4-4 

 
Table 4-4 reveals how each CS on its 

own activates the output unit after training 
completed.  When CSA has a value of 1, it 
sends a signal of 1.44, producing a net input 
of 1.49 when combined with θ of 0.05.  This 
is a net input that is positive enough to turn 
the output unit on.  Similarly, when CSB is 
activated, it in combination with θ produces 
a net input of 0.01.  This is close enough to 
0 to cause the output unit to generate zero 
activity.  Finally, when CS

B

C is activated, it in 
combination with θ produces a net input of -
1.48.  This is negative enough to cause the 
output unit to generate activation of -1. 

 
There are two additional types of obser-

vations to make from Table 4-4.  First, the 
three connection weights reflect the func-
tional role of each stimulus.  That is the exci-
tatory stimulus (CSA) is associated with a 
positive (excitatory) weight.  The neutral 
stimulus (CSB) is associated with a near 
zero (neutral) weight.  The inhibitory stimu-
lus (CS

B

A) is associated with a negative (in-
hibitory) weight.  

 
Second, the bias of the hyperbolic tan-

gent is near zero.  It will be argued later in 
this manuscript (Section 6.2) the bias of an 
activation function can be considered to rep-
resent the associative strength of the back-
ground context of an experiment.  Experi-
mental results have indicated that the asso-
ciation involving the context should not be 
inhibitory (e.g., Bouton & King, 1983).  The 
network above illustrates the ability to pro-
duce an inhibitory response in which the 
bias is not inhibitory (negative).  Later this 
will become an issue because in some simu-
lations that use the logistic activation func-
tion the performance of the network requires 
an inhibitory bias. 
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4.7 Conditioned Inhibition in the Integration Device
4.7.1 Conditioned Inhibition 
 
One important phenomenon studied by 

Pavlov (1927) was conditioned inhibition.  In 
conditioned inhibition, an agent learns that 
some CSA signals either the absence of re-
ward or the presence of some aversive con-
ditions. 

 
One approach to measuring conditioned 

inhibition is testing “retardation of acquisi-
tion” test (e.g., Hammond, 1968; Rescorla, 
1969).  This involves two groups of subjects, 
experimental and control.  The control group 
learns an excitatory response to CSA.  The 
experimental group is involved in two 
phases of training.  First, it learns an inhibi-
tory response to CSA.  Then it undergoes 
the same training that the control group re-
ceived.  If CSA has become a conditioned 
inhibitor for the experimental group, then it 
should take longer for this group to learn an 
excitatory response to this stimulus than 
was the case for the control group. 

  
4.7.2 Method 
 
Can conditioned inhibition be observed in 

an integration device?  To answer this ques-
tion, the retardation of acquisition paradigm 
was adopted in a simulation experiment.  
Table 4-5 provides the training sets used in 
the two phases for the experimental group; 
the control group only was trained on the 
Phase 2 pattern.  

 
Phase Pattern CSA tj

1 1 1 -1
2 1 1 1 

Table 4-5 
 
In this simulation, 25 different integration 

devices served as “subjects” in each condi-
tion.  All of these networks used the hyper-
bolic tangent as an activation function, and 
were initialized and trained according to the 
general procedures described earlier.  In the 
experimental condition, integration devices 
were first trained to convergence on the 
Phase 1 patterns.  Then, they were trained – 
without reinitializing weights – to conver-
gence on the Phase 2 patterns.  The control 
group networks were simply trained to gen-
erate hits to the Phase 2 training patterns.  

The dependent measure of interest was the 
number of sweeps required to converge to 
the Phase 2 patterns for both groups of inte-
gration devices. 

 
4.7.3 Results 

 
If conditioned inhibition was produced 

during the first phase of learning, then learn-
ing the Phase 2 response should take sig-
nificantly more epochs for the experimental 
condition than for the control condition.  This 
was indeed the main result of this study.  On 
average, control perceptrons generated a 
“hit” in Phase 2 after 32.6 sweeps of train-
ing, while experimental condition percep-
trons required an average of 41.3 sweeps to 
achieve this level of performance.  This re-
sult was statistically significant (t = 48.52, df 
= 48, p < 0.0001). 

 
How is this result produced?  When train-

ing of a typical control network is finished, 
the weight between the output unit and the 
input unit that represents the presence of 
CSA is 1.47, and the output unit’s bias (θ) is 
0.01. On average, such a configuration is 
achieved after 32.6 sweeps, when the con-
nection weight starts in the range between 
0.10 and -0.10.  In contrast, after Phase 1 
training a typical experimental network has a 
connection weight of -1.46 and θ of -0.02.  
Because this connection weight is so nega-
tive, additional training is required to convert 
it to a positive value that is required to end 
Phase 2 training. 
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4.8 Summation in the Integration Device 
4.8.1 The Summation Test 

 
An alternative method to measuring con-

ditioned inhibition is summation (e.g., Res-
corla, 1969, 1971; Solomon et al., 1974).).  
In the summation technique, a stimulus was 
first trained to become a conditioned inhibi-
tor.  Then it was paired with a second stimu-
lus that was known to be an excitor.  If the 
response to the pair of stimuli was less than 
the response when the excitor was pre-
sented alone then this indicated that the 
training had succeeded in converting the 
initial stimulus into a conditioned inhibitor. 

 
The simulation below provides a variation 

of this approach.  First, a network was 
trained on the same training set that was 
used in Section 4.6, and was presented in 
Table 4-3.  That is, an integration device that 
used the hyperbolic tangent learned to gen-
erate a response of 1 to CSA (excitor), a re-
sponse of 0 to CSB (neutral stimulus), and a 
response of -1 to CS

B

C (inhibitor).  Because 
each of these stimuli was associated with its 
own input unit and its own connection weight 
in the network, and because each stimulus 
was always presented in isolation, these 
three different types of associations (excita-
tory, neutral, and inhibitory) were repre-
sented and developed independently. 

 
After this training, the network’s response 

to two combined stimuli (CSA + CSB, and 
CS

B

A + CSC) was measured without any addi-
tional training occurring. If CSC had become 
a conditioned inhibitor, then through summa-
tion the network’s response when it was 
paired with CSA should be much less than 
when CSA was paired with the neutral stimu-
lus CSBB. 

 
4.8.2 Results 
 
25 integration devices served as “sub-

jects” in this study.  As was the case in Sec-
tion 4.6, they all converged to correct re-
sponses to the training set; on average this 
occurred after 27.3 sweeps of training.  After 
this training a typical network generated a 
response of 0.90 to CSA, a response of 0.0 
to CSB, and a response of -0.90 to CSB C. 

 

The summation test for conditioned inhi-
bition was conducted by presenting pairs of 
stimuli to the networks after training was 
complete.  When CSA was presented in con-
junction with the neutral stimulus CSB, the 
average network response was 0.90.  In 
contrast, when CS

B

A was presented in con-
junction with CSC, the average network re-
sponse declined dramatically 0.00.  This 
difference in responding was statistically 
significant (t = 199.76, df = 48, p < 0.0001). 
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4.9 Simulating Renewal 
4.9.1 Renewal 
 
One phenomenon of considerable inter-

est is renewal (Bouton & Bolles, 1979).  In 
the renewal paradigm, conditioning to a 
stimulus is conducted within one context.  
Then, this conditioning is extinguished – but 
in a different context.  After this extinction, 
the effectiveness of the stimulus is tested in 
the original context.  When renewal is ob-
served, the extinguished stimulus recovers 
some of its effectiveness in the original con-
text. 

 
If one operationalizes context using the 

presence or absence of additional stimuli, 
then it is possible to study renewal in the 
integration device:  In Phase 1 of training, an 
integration device is trained to respond 
when CSA and CSB are both presented (i.e., 
AB+ conditioning).  In Phase 1 CS

B

A is the 
stimulus that is targeted by conditioning, and 
CSBB provides a context.  In Phase 2, condi-
tioning to CSA is extinguished, but in a dif-
ferent context: extinction occurs when a new 
stimulus, CSC, is present (i.e., AC- condi-
tioning).  The response of the integration 
device to A in the original context (CSA and 
CSB) is then examined.  If renewal is ob-
served, then the response to this stimulation 
will be greater than the response in the ex-
tinction context (CS

B

A and CSC), even though 
CSA has been involved in extinction trials.   

 
Renewal was tested by employing the 

paradigm described in the preceding para-
graph, using the training patterns provided in 
Table 4-6.  During Phase 1, only one pattern 
was presented, and the integration device 
was trained to convergence.  During Phase 
2, the connection weights produced by 
Phase 1 training were maintained, and the 
integration device was trained to conver-
gence (in this case, extinction) again.  At the 
end of Phase 2, the responses of the inte-
gration device were recorded to three differ-
ent stimuli (AB, AC, and A).  This permitted 
the response of the network in the original 
context, in the extinction context, and in a 
novel context (in which neither CSB nor CSB C 
were present) to be recorded 

 
 
 

Phase Type CSA CSB CSc tj
1 AB+ 1 1 0 1
2 AC- 1 0 1 0

AC 1 0 1 - 
A 1 0 0 - 

Posttest

AB 1 1 0 - 
Table 4-6 

 
4.9.2 Results 
 
The results demonstrated renewal in the 

integration device.  When CSA was pre-
sented in the extinction context (AC), the 
average response of a perceptron was 0.10.  
However, when CSA was presented in the 
original context (AB), the average response 
was much higher (0.44).  When CSA was 
presented in the novel context (A), the aver-
age response was between that observed in 
the other two conditions (0.27).  A one-way 
ANOVA indicated that the effect context on 
recall was statistically significant (F = 
9085.6, df = 2, 72, p < 0.0001).  Post hoc 
comparisons between the three means re-
vealed that each was significantly different 
from the other at p < 0.0001. 

 
This demonstration of renewal is a spe-

cial case of conditioned inhibition.  In the 
extinction phase, part of the reduction in the 
network’s response was due to a decrease 
in the association to CSA, but part was due 
to CSC becoming a conditioned inhibitor.  
When CSA was presented in the original 
context, this conditioned inhibitor was not 
present, and the integration device gener-
ated a stronger-than-expected response to 
CSA. 

 
That renewal in the network depends on 

a context becoming inhibitory could be ar-
gued by some to be a failure, because ex-
perimental results are incompatible with this 
possibility (e.g., Bouton & King, 1983).  
However, it has recently been argued that 
inhibitory associations involving contexts are 
crucial to explaining many results, and are 
not easily detected experimentally because 
of attentional factors (Schmajuk, Larrauri, & 
Labar, 2007).  The issue of inhibition and 
context is revisited later in the manuscript. 
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4.10 Superconditioning in an Integration Device
4.10.1 Superconditioning 

 
Previously, we have seen that percep-

trons can demonstrate blocking and condi-
tioned inhibition.   Therefore we should ex-
pect that another phenomenon can be pro-
duced in the perceptron: superconditioning.  
This is because superconditioning can be 
viewed as the “mirror image” of blocking, 
and is dependent upon conditioned inhibition 
(Williams & McDevitt, 2002). 

 
Recall from Section 3.8 that blocking oc-

curs when a previously learned excitatory 
association involving a CS disrupts the abil-
ity to create a new association involving a 
different CS.  In comparison, supercondition-
ing occurs when a previous learned condi-
tioned inhibitor enhances the creation of a 
new association involving a new CS. 

 
To produce superconditioning, two 

phases of classical conditioning are used.  
The first phase involves CSA and CSB, and 
is designed to make CS

B

BB a conditioned in-
hibitor.  The second phase involves reinforc-
ing a third stimulus, CSC.  In a control condi-
tion, CSC is paired with a fourth stimulus, 
CSD, which has not been involved in any 
previous training.  In an experimental condi-
tion, CSC is paired with the conditioned in-
hibitor CSB.  If superconditioning occurs, 
then the association produced for CS

B

C in the 
experimental condition should be enhanced 
relative to the association produced for the 
same stimulus in the control condition. 

 
4.10.2 Method 
 
Table 4-7 provides a training set involv-

ing four CSs that was used to study super-
conditioning in an integration device.  The 
learning rate and the starting values for con-
nection weights and the output unit’s bias 
were the same as those used in the previ-
ous simulations in this chapter.  A network 
was first trained in Phase 1 to produce con-
ditioned inhibition to CSB.  Then the network 
was trained in Phase 2 using either the con-
trol or the experimental training patterns.  
During this second phase, the connection 
weights were examined after every 5 
sweeps of training until the network con-

verged.  If superconditioning occurred, then 
it should be evident in an examination of the 
changing connection weights. 

 
Phase CSA CSB CSc CSD tj

1 0 0 0 1Phase 1 
1 1 0 0 0

Phase 2 
Control 

0 0 1 1 1

Phase 2 
Experimental 

0 1 1 0 1

Table 4-7 
 

4.10.3 Results 
 
This study indicated that supercondition-

ing can be produced in an integration de-
vice.  In the control condition, CSC and CSD 
both typically developed moderately positive 
weights at a moderate rate.  In the experi-
mental condition, the connection weight for 
CSC usually grew to more than twice than 
what was observed in a control network, at a 
more extreme rate. 

 
This is illustrated in Figure 4-4. The solid 

bars illustrate the changing weight of the 
connection between CSC and the output unit 
for one network during Phase 2 in the con-
trol condition.  The other bars illustrate the 
same connection weight for a different net-
work during Phase 2 training in the experi-
mental condition.  Clearly when CSC is 
paired with the conditioned inhibitor, it de-
velops a much stronger positive connection 
weight, and does so far more rapidly, than 
when CSC is paired with CSD.  This result 
was easily replicated in a number of different 
networks.   

 

B

Figure 4-4. Weight changes for CSC over time 
for a control and for an experimental network. 
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4.11 Positive Patterning in the Integration Device  
4.11.1 Positive Patterning 
 
In Section 3.6 we described a traditional 

perceptron that was trained to respond to a 
compound stimulus, but was also trained not 
to respond to the components of this stimu-
lus when the components were presented 
separately.  The purpose of Section 4.7 is to 
examine the responses of an integration 
device when taught in this positive pattern-
ing paradigm. 

 
In this simulation, three different patterns 

were presented to the perceptron to simu-
late a typical positive patterning experiment.  
These stimuli defined the learning conditions 
A-, B-, and AB+.  The relationships between 
these trial types, the input patterns, and the 
associated responses of the perceptron, are 
provided below in Table 4-8. 

 
Trial 
Type 

CSA CSB tj

A- 1 0 0 
B- 0 1 0 

AB+ 1 1 1 
Table 4-8 

 
4.11.2 Results 
 
25 different integration device “subjects” 

were trained to convergence on the three 
different patterns provided in Table 4-8.  On 
average, a network converged after 964 
sweeps.  An example network, which con-
verged in 967 sweeps, generated 0.08 to the 
first two patterns, and 0.9 to the third at the 
end of training.  The structure of this network 
is provided in Table 4-9. 

 
Unit Weight θ 
CSA 4.59 - 
CSBB 4.59 - 

Output - -6.98 
Table 4-9 

 
This pattern of connectivity solves the 

positive patterning problem as follows:  
When only one of the CSs is present, the 
net input that is passed onto the logistic ac-
tivation function is negative.  This is because 
an input unit signal of 4.59 is combined with 
the strongly negative bias of -6.98 to pro-

duce a net input of -2.39.  This net input is 
low enough for the logistic function to return 
a near zero activity.  However, if both of the 
CSs are present, the two positive input unit 
signals compensate for the negative bias 
and produce an overall net input of 2.2.  This 
value is high enough to be converted into 
high activity by the logistic equation. 

 
It is important to note that the integration 

device converged to a positive patterning 
solution much slower than did the percep-
tron described in Section 3.6.  The reason 
for this is that for a continuous activation 
function, the output unit’s error is also con-
tinuous.  In contrast, the error for a percep-
tron that uses a Heaviside activation func-
tion is digital: it will be equal to -1, +1, or 0. 
With a much more restricted possibility for 
error, a device’s search for a configuration 
that will reduce error is highly constrained, 
and learning is more efficient. 

 
The difference in learning speeds for the 

two types of perceptrons, however, is not 
particularly meaningful.  Many different ma-
nipulations can be used to change learning 
speeds for one type of network that is learn-
ing the same type of problem.  For instance, 
the number of sweeps to converge to a solu-
tion is highly dependent upon the learning 
rate.  At best, the number of sweeps re-
quired for a network to converge is a casual 
measure of problem difficulty. 
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4.12 Associating To Compounds and Their Components 
4.12.1 Stimulus Generalization 
 
One central phenomenon in the animal 

learning literature is stimulus generalization 
(Rescorla, 1976).  Stimulus generalization 
occurs when one stimulus generates a re-
sponse because it shares some of the prop-
erties of another stimulus, where this second 
stimulus is capable of causing a response to 
occur. 

 
The Rescorla-Wagner model is one ex-

tremely influential theory of animal learning, 
and it is described in detail in the next chap-
ter.  For now, suffice it to say that it was not 
explicitly designed to account for stimulus 
generalization effects.  However, it does 
permit one to operationalize stimulus similar-
ity in terms of the number of shared compo-
nents.  That is, the stimulus AC is similar to 
the stimulus AB in the sense that both share 
a single component (A). 

 
When this perspective on stimulus simi-

larity is adopted, the Rescorla-Wagner 
model can make some interesting and coun-
terintuitive predictions (Rescorla, 1976).  
Consider an animal that is trained to re-
spond to a compound stimulus (i.e., AB+).  
According to the Rescorla-Wagner model, 
this training would increase the associative 
strengths to both CSA and CSB.  However, 
when training on the compound proceeds 
long enough, the two associative strengths 
would achieve maximum levels, and further 
training on the compound would not affect 
them. 

B

 
However, once the learner has achieved 

maximum learning to the compound, the 
Rescorla-Wagner model predicts that the 
strengths of the individual associations can 
still be increased by a different type of train-
ing.  In particular, if one continues to train 
using only one of the components of the 
compound stimulus, then the associative 
strength for that component will increase.  
That is, if one trains AB+ to asymptote, and 
then continues to train AB+, then the asso-
ciation for CSA will not grow.  However, if 
one trains AB+ to asymptote, and then con-
tinues to train on a different stimulus that 
contains A as a component, then the asso-
ciation for CSA will grow. 

 
The purpose of the current simulation 

study was to determine whether this coun-
terintuitive effect could be produced in an 
integration device.  All perceptrons were 
trained to convergence on a single pattern, 
AB+ (see Table 4-10).  In the control condi-
tion, training on AB+ continued.  In the ex-
perimental condition, when training contin-
ued a different pattern (AC+, see Table 4-
10) was used.  25 perceptrons served as 
“subjects” in each condition.  If the integra-
tion device responds in accordance with the 
Rescorla-Wagner model, then the weight of 
CSA should increase in the experimental 
condition, but not in the control condition 

 
Trial 
Type 

CSA CSB CSC tj

AB+ 1 1 0 1 
AC+ 1 0 1 1 

Table 4-10 
 

4.12.2 Results 
 
Figure 4-5 presents the average weight 

of CSA in the different phases of the experi-
ment.  These results are consistent with the 
Rescorla-Wagner model’s prediction: this 
weight does not change significantly in the 
control condition, but does grow – on aver-
age by 32.4% -- when the network receives 
continued training on a new stimulus that 
contains A as one of its components. 

 

 
 Figure 4-5.  Stimulus generalization in an inte-

gration device. 
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4.13 Overshadowing in the Integration Device 
4.13.1 All Components Are Not Equal 
 
Pavlov (1927) reported the results of ex-

periments with compound stimuli in which 
the intensities of the stimulus components 
were manipulated.  For example, in one 
study an animal was conditioned to respond 
to a pair of tones that were of equal inten-
sity.  After conditioning, the individual tones 
were presented, and were found to elicit the 
same conditioned response as did the com-
pound stimulus.  Different results were ob-
tained when the compound stimulus was 
comprised of tones of unequal intensities.  
The higher intensity tone elicited the same 
response as the compound CS.  However, 
“the effect of the tone of weaker intensity 
when tested singly was now very small or 
absent altogether” (p. 145). 

 
This latter phenomenon is known as 

overshadowing.  Overshadowing occurs 
when a stronger stimulus overshadows or 
even prevents learning about a weaker 
stimulus that is present at the same time.  It 
is an example of how the ability of a stimulus 
to elicit behavior does not depend on the 
stimulus itself, but also upon the context in 
which the stimulus is presented.  

 
One can attempt to explore overshadow-

ing in an integration device by manipulating 
the intensity of the input unit representation 
of CSs.  Table 4-11 presents a training set in 
which CSA is ten times less intense than 
CSB when both are presented simultane-
ously to serve as a compound stimulus: 

B

 
Type CSA CSB tj
AB+ 0.1 1 1 

Table 4-11 
 
4.13.2 Results 
 
The training set in Table 4-11 was used 

to train 25 different perceptrons as subjects.  
On average, convergence was achieved 
after 71 epochs.  After this training, the av-
erage response to the individual presenta-
tion of CSB was 0.90, while the average re-
sponse to the individual presentation of CS

B

A 
was 0.75.  While this difference was small, it 
was statistically significant (t = 133.75, df 
=48, p < 0.0001).  This difference in re-

sponding indicates that the more intense 
CSBB overshadowed the less intense CSA. 

 
Stronger evidence for overshadowing 

comes from an examination of the connec-
tion weights of an integration device trained 
on this compound stimulus.  Table 4-12 pre-
sents the connection weights of a typical 
network after it has converged.  Note that 
the weight associated with CSB is an order 
of magnitude larger than the weight associ-
ated with CS

B

A. 
 
Unit Weight θ 
CSA 0.19 - 
CSBB 1.07 - 

Output - 1.11 
Table 4-12 

 
Compare this situation to one in which a 

network is trained on CSA alone (with an 
intensity of 0.1; the activity of CSB is 0).  
With this training pattern, the response of 
the integration device to CS

B

A alone will be 
0.9 (this produces a “hit” to stop training).  
The weights of a typical network are pre-
sented in Table 4-13.  In this case, the 
weight associated with CSA is an order of 
magnitude greater than the weight associ-
ated with CSBB. 

 
Unit Weight θ 
CSA 0.13 - 
CSBB -0.05 - 

Output - 2.19 
Table 4-13 

 
 
One question to answer is why the over-

shadowing effect seems so much larger 
when connection weights are considered 
than when output unit responses are con-
sidered.  Later in this book we will argue that 
simulated experiments of the type that we 
have been considering require an additional 
stimulus, called a null stimulus.  We will see 
that when the null stimulus is added to the 
overshadowing paradigm, much more dra-
matic evidence of overshadowing is 
achieved. 
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4.14 Recovery from Overshadowing 
4.14.1 The Comparator Hypothesis 

 
An important alternative to the Rescorla-

Wagner model is Miller and Matzel’s (1988) 
comparator hypothesis. which can be de-
scribed as a variant of contingency theory 
(e.g. Rescorla, 1968, 1969; see also Cheng 
& Holyoak, 1995).  According to comparator 
theory, two sources of information compete 
for control of a response.  One is the CS.  
The other is a “comparator stimulus” -- back-
ground stimuli or discrete cues that were 
present when the CS was trained.  Only if 
the CS is a better predictor of the US than 
the comparator stimulus is the CR is exhib-
ited. 

 
In general, empirical support for the 

comparator hypothesis is obtained by per-
forming post-training manipulations to the 
associative strength of the comparator 
stimulus.  If this strength is decreased, then 
the model predicts that excitatory respond-
ing to the CS should consequently increase. 

 
Consider an overshadowing experiment 

in which AB+ training occurs, but CSA is 
weak (e.g., activity = 1) compared to CSB 
(e.g., activity = 10).  The comparator hy-
pothesis predicts that if CS

B

BB is extinguished, 
then CSA should recover from overshadow-
ing, because the extinction of CSB reduces 
its ability to compete against CS

B

A.  Several 
experiments have demonstrated such re-
covery from overshadowing (Kaufman & 
Bolles, 1981; Matzel, Schachtman & Miller, 
1985; Matzel, Shuster & Miller, 1987). 

 
The Rescorla-Wagner model cannot ex-

plain recovery from overshadowing when 
the overshadowing CSB is extinguished.  
This is because the model explains over-
shadowing by appealing to the fact that CS

B

BB 
prevents the overshadowed CSA from de-
veloping an association that is sufficiently 
excitatory.  Extinguishing CSB will have no 
effect on the associative strength of CS

B

A. 
 
4.14.2 A Model Variation 
 
The integration devices that we have 

been describing will also fail to generate 
recovery from overshadowing, for the same 
reasons that face the Rescorla-Wagner 

model.  However, a minor change to input 
coding avoids this limitation.  The learning 
rules that we have been using require a non-
zero input unit activity in order for a connec-
tion weight to change.  When an absent CS 
is coded with a 0, its association will not be 
altered.  However, if an absent CS was 
coded with a -1 instead of a 0 (see also 
Dickinson & Burke, 1996), then the weight of 
CSA can change when CSB is extinguished, 
and recovery from overshadowing is possi-
ble.  This coding change is equivalent to 
saying that the nonpresentation of a CS is 
as informative as its presentation, a fact 
which has been established in some ex-
perimental studies (e.g., Van Hamme & 
Wasserman, 1994). 

B

 
Consider the training set in Table 4-14.  

In Phase 1, AB+ training produces over-
shadowing.  In Phase 2, B- training extin-
guishes the overshadowing CS. 

 
Phase Type CSA CSB tj

1 AB+ 1 10 1 
2 B- -1 10 0 

Table 4-14 
 
For a typical network, Phase 1 learning is 

completed after 6 sweeps, and overshadow-
ing has occurred.  One example network 
generated a response of 0.43 to CSA and 
0.92 to CSB after this training.  Phase 2 
training extinguished CS

B

BB; the network now 
generated a response of 0.10 to this stimu-
lus.  However, this extinction resulted in a 
mild recovery in the response to CSA , which 
produced output activity of 0.54 to this 
stimulus now (instead of 0.23). 

 
The Rescorla-Wagner model can be 

modified to produce this kind of effect (see 
also Van Hamme & Wasserman, 1994).  For 
example, in Section 5.4.2 a unified Res-
corla-Wagner equation is presented.  The 
assumption in this equation is that an absent 
CS is encoded with a 0 (see Equation 23 
below in Section 5.4).  However, if this as-
sumption is changed, and an absent CS is 
represented by a non-zero value such as -1, 
then this equation should be capable of 
generating recovery from overshadowing 
due to the extinction of the overshadowing 
stimulus. 
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4.15 Blocking and the Integration Device 
4.15.1 The Blocking Paradigm 
 
Overshadowing is an illustration that dif-

ferent CSs compete with one another to gain 
access to the mechanisms that modify as-
sociative strength.  Another example of this 
is a phenomenon called blocking (Kamin, 
1968, 1969). 

 
Blocking is demonstrated as follows:  For 

an experimental group of animals, CSA is 
conditioned to elicit a response.  Then, CSA 
and CSB are presented as a compound 
stimulus to the animals that have already 
learned the association from CS

B

A.  A control 
group of animals is only trained using the 
compound stimulus.  At the end of training, 
both groups of animals are tested by meas-
uring the response to CSBB.  With this para-
digm, the experimental group shows less of 
a response to CSB than does the control 
group.  It is as if the pre-training with CS

B

A 
blocked the later learning that could have 
occurred with CSBB. 

 
An integration device can be trained in 

the blocking paradigm by creating two dif-
ferent training sets, each consisting of a sin-
gle pattern.  In the first phase of the experi-
mental condition, only one input unit (CSA) is 
trained to produce a response in the output 
unit.  After this network converges, its con-
nection weights are preserved, and it is 
trained on a compound stimulus (CSA and 
CSB) until convergence is achieved again.  
In the control condition, a network is only 
trained to converge on the Phase 2 pattern.  
The two training patterns are presented in 
Table 4-15. 

B

 
Phase Type CSA CSB tj

1 A+ 1 0 1 
2 AB+ 1 1 1 

Table 4-15 
 
4.15.2 Results 
 
The standard test of blocking is to com-

pare the network’s response to CSB in the 
control condition to the response to the 
same stimulus in the experimental condition.  
When this is done, a small blocking effect is 
observed.  On average, the control networks 
generate a response of 0.81 to CS

B

BB.  In con-

trast, experimental networks generate a re-
sponse of 0.76 to CSB.  Though this differ-
ence in mean responding is small, it is sta-
tistically significant (t = 24.72, df =48, p < 
0.0001). 

B

 
A more dramatic measure of blocking is 

achieved when the structure of the networks 
are examined.  Table 4-16 presents the final 
structure of a typical control and a typical 
experimental network.  Note the difference 
in the weights for CSB in the two networks.  
In general, the blocking paradigm produces 
extremely small connection weights for the 
blocked stimulus in comparison to control 
networks. 

B

  
Condition Unit Weight θ 

CSA 0.68 - 
CSBB 0.77 - 

 
Control 

Output - 0.75 
CSA 1.13 - 
CSBB -0.03 - 

 
Experimental

Output - 1.11 
Table 4-16 

 
Again, one question to answer is why the 

blocking effect seems so much larger when 
connection weights are considered than 
when output unit responses are considered.  
We will see that when a null stimulus is 
added to the blocking paradigm, much more 
dramatic evidence of blocking is achieved.  
In the current study, the absence of the null 
stimulus produces a weaker effect.  None-
theless, both the responses and the connec-
tions of the trained integration devices are 
consistent with the claim that this type of 
artificial neural network can demonstrate 
blocking. 
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4.16 Success from Failure 
4.16.1 Rescorla-Wagner Limitations 
 
Rescorla and Wagner’s (1972) learning 

model has been enormously influential and 
successful.  However, there are a large 
number of phenomena that it fails to capture 
(e.g., Miller, Barnet & Grahame, 1995).  The 
simulation results that have been presented 
to this point have illustrated that simple arti-
ficial neural networks can generate many of 
the successes captured by the Rescorla-
Wagner formalism.  If these two approaches 
are strongly related, then the networks 
should exhibit these failures. 

 
4.16.2 Network Limitations 
 
Indeed, there are a number of associa-

tive learning phenomena that the networks 
that have been described cannot produce.  
These failures are shared by the Rescorla-
Wagner model, and therefore count as suc-
cesses in the task of exploring commonal-
ities between the two approaches. 

 
For example, network weights are only 

changed when the learning rule is applied.  
It is impossible to alter the weights without 
training the network.  As a result, the per-
ceptrons cannot account for such effects as 
spontaneous recovery from extinction (e.g., 
Pavlov, 1927), where the behavior of an 
agent changes in the absence of additional 
training.  For similar reasons the networks 
cannot account for spontaneous recovery 
from overshadowing (e.g., Kraemer, Larivier, 
& Spear, 1988). 

 
Other failures result because network 

training has specific and invariable effects 
on connection weights.  For example, the 
network produces overshadowing (Section 
4.14) because the salient stimulus disrupts 
the establishment of the weaker stimulus’ 
connection weight.  The Rescorla-Wagner 
model has a similar account of overshadow-
ing.  As a result, neither type of model can 
explain why in some cases large numbers of 
trials in which both the weak and strong 
stimuli are reinforced as a compound result 
in the elimination of overshadowing (e.g., 
Bellingham & Gillette, 1981).  As well, nei-
ther approach can explain potentiation (e.g., 
Clarke, Westbrook & Irwin, 1979), which is a 

phenomenon in there is enhanced respond-
ing to a weak CS that is paired with a more 
salient CS.  Both the network model and the 
Rescorla-Wagner model predict overshad-
owing instead of potentiation in this type of 
paradigm. 

 
Other shared failures can be demon-

strated with simulations.  For example, Hall, 
Mackintosh, Goodall and Dal Martello (1977) 
trained a weak CS to be a strong predictor 
of a US.  Later, additional training was per-
formed where the weak CS was also paired 
with a stronger CS.  As training proceeded, 
the weak CS lost control of behavior.  This is 
not predicted by the Rescorla-Wagner, 
which instead predicts that the established 
association involving the weak CS should 
overshadow the more salient CS during later 
training.  An integration device makes the 
same (failed) prediction.  In one simulation, 
a weak CSA (0.1 activation) was consistently 
reinforced, and at the end of training had 
adopted a very strong positive connection 
weight (43.97).  Subsequently CSA was 
paired (and reinforced) with a much more 
salient CSB (1.0 activation).  The prior learn-
ing involving CS

B

A blocked learning involving 
CSBB which only developed a connection 
weight of 0.02. 

 
This is far from an exhaustive list of re-

sults for which the networks generate results 
that are not in agreement with those ob-
tained from animal experiments.  Other ex-
amples will appear in later chapters.  That 
perceptrons have such limitations should be 
of no surprise, because limits to their com-
putational power (e.g., Minsky & Papert, 
1969) have been used to argue for their lim-
its in simulating associative learning (e.g., 
Pearce, 1997).  There are two points of im-
portance to note concerning network fail-
ures.  First, the failures listed in this section 
are shared with the Rescorla-Wagner 
model, providing further evidence of the re-
lationship between the two that will be de-
tailed in the next chapter.  Second, in Chap-
ter 7 we will see some divergences in fail-
ures – Rescorla-Wagner failures turned to 
network successes, and vice versa – that 
will raise important questions about how the 
two should be equated. 
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4.17 From the Empirical to the Formal 
4.17.1 The Perceptron in Review 
 
In the past three chapters, we have in-

troduced the properties of some simple arti-
ficial neural networks.  One way to describe 
these systems is as a functional model of 
the information processing carried out by a 
neuron that is receiving signals from others.   

 
A second description of these networks 

is as an account of how associations involv-
ing conditioned stimuli change during classi-
cal conditioning.  From this second perspec-
tive, the input units represent the presence 
or absence of conditioned stimuli, and the 
connection weights in the network represent 
the strengths of the associations that are 
modified as a result of conditioning. 

 
If this second account is plausible, then 

one should be able to use a learning rule to 
train perceptrons to respond appropriately to 
patterns that represent the conditions of 
paradigms from the animal learning litera-
ture.  Chapters 3 and 4 have presented a 
number of empirical results that have sup-
ported this hypothesis.  In particular, the 
following aspects of conditioning have been 
demonstrated in the perceptron: 

 
• Classical conditioning of individual 

stimuli 
• Plausible acquisition and extinction 

curves 
• The effect of CS intensity on the 

rate of conditioning 
• The effect of US intensity on the 

rate of conditioning 
• Associations to compound stimuli 
• The discrimination of compound 

stimuli from their components 
• Overshadowing 
• Blocking 
• Conditioned inhibition ( both in 

terms of retardation of acquisition 
and in terms of summation) 

• Renewal, or context-dependent ex-
tinction 

• Superconditioning 
 

In addition, it was noted in Section 4.16 
that the networks share a number of limita-
tions with the Rescorla-Wagner model.  That 

is, there are a number of conditioning phe-
nomena that are not captured by either type 
of model. 

 
4.17.2 Comparing Learning Theories 
 
These results suggest that there is a 

great deal of commonality between the view 
of learning that comes from the study of 
classical conditioning, and the view of learn-
ing that comes from the study of percep-
trons.  In the next two chapters we will be 
exploring the relationship between these two 
approaches. 

 
Fortunately, in addition to empirical stud-

ies of learning in machines and animals, 
there has been a great deal of formal analy-
sis in these two domains.  This provides us 
with an opportunity to perform a computa-
tional analysis of the two types of learning.  
In particular, we can examine the equations 
that govern perceptron learning, and the 
equations that have been proposed to ac-
count for animal learning, and determine the 
extent to which they are related. 

 
This is the goal of Chapter 5.  It will 

briefly review the mathematics of a particu-
larly influential theory of learning, the Res-
corla-Wagner model (Rescorla & Wagner, 
1972).  It will then present proofs that show 
that this model can be translated into the 
mathematics of the delta rule that has been 
used to train the networks described in 
Chapters 3 and 4. 

 
Interestingly, the formal equivalence that 

will be proven in Chapter 5 will lead us to a 
paradox that will be introduced in  
Chapter 7.  The empirical results of Chap-
ters 3 and 4, and the proofs to be given in 
Chapter 5, would lead us to believe that any 
phenomenon that is predicted by the Res-
corla-Wagner model should also be evident 
in the training of a perceptron.  Chapter 7 
will present several interesting results that 
show that this expectation is false!  We will 
then have to resolve this paradox by revisit-
ing the relationships between the two views 
of learning. 
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Chapter 5: From Animal Learning to 
the Delta Rule

 

5.1 Association from Expectation
5.2 Associations from Multiple Predictors
5.3 Formalizing Learning and Extinction 
5.4 A Unified Rescorla-Wagner Equation 
5.5 A Picture of Similarity 
5.6 Formal Equivalence with Linearity 
5.7 Nonlinear Activation and Overall Association 
5.8 Formal Equivalence with Nonlinearity 
5.9 The Implications of Equivalence 
 

The previous chapters have related network learning to animal learning by examining the per-
formance of perceptrons (old and modern) in a number of associative learning experiments.  This 
chapter explores a more formal relationship between these two approaches to learning formally.  
The chapter begins by introducing an influential model of animal learning, the Rescorla-Wagner 
model.  It then reviews older results that proved that the delta rule and the Rescorla-Wagner 
equation are identical if one assumes that a perceptron’s activity is the same as its net input.  Fi-
nally, the chapter elaborates these earlier results to show the relationship between the two learn-
ing rules holds when the perceptron employs a nonlinear activation function. 
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5.1 Association from Expectation
Phenomena like overshadowing and 

blocking indicated that simple relationships 
between concepts, such as mere contiguity, 
could not account for the strength of the as-
sociation between them.  Associations ap-
pear to be determined largely by the predic-
tive information provided by stimuli (e.g., 
Egger & Miller, 1963).  For example, in the 
blocking paradigm CSB does not provide any 
prediction of the occurrence of the US be-
yond the prediction that is already provided 
by CS

B

A.  As a result, no associations involv-
ing CSBB are established. 

 
One general account of such learning 

explicitly assumes that the CS is a source of 
information that provides expectations about 
the occurrence of the US (Rescorla & Wag-
ner, 1972).  If the expectations are correct, 
then no learning occurs.  However, if there is 
surprise – if the expectations are not correct 
– then associations are modified in such a 
way to improve the predictive power of the 
CS when it is next encountered. 

 
Rescorla and Wagner (1972) provided an 

extremely influential formalization of this 
notion.  To begin, let us assume that we are 
dealing with a single CS and a single US.  
The strength of the association between 
these two stimuli at any time t is symbolized 
as V(t).  Rescorla and Wagner were con-
cerned with specifying how this associative 
strength changed over time, which can be 
represented as ΔV(t). 

 
Rescorla and Wagner (1972) assumed 

that the repeated pairing of a US and a CS 
would result in a gradual increase in the as-
sociation between them, up to a maximal 
value (λ) that was determined by the magni-
tude of the US.  They also included a pa-
rameter (α) that represented the salience of 
the CS, which is also known to affect condi-
tioning (Pearce, 1997).  A second parameter 
(β) was also included as a learning rate, and 
was associated with the US, under the as-
sumption that different USs would lead to 
different rates of learning.  Both α and β 
were assumed to be constants that could 
range in value from 0 to 1. 

 

Rescorla and Wagner (1972) proposed 
that the amount of change in an association 
at any given time was a function of the dif-
ference between the current associative 
strength (V(t)) and the maximum possible 
associative strength (λ).  Informally, this dif-
ference reflected the predictive power of the 
CS.  If this difference was large, then the 
predictive power of the CS was poor, and 
the strength of the association required 
modification.  If this difference was small, 
then the predictive power of the CS was ex-
cellent, and little modification of the associa-
tion was required. 

 
Formally, Rescorla and Wagner (1972) 

defined the change in associative strength 
that was required at any time t as: 

 
( ))()( tt VV −=Δ λαβ   (13) 

 
With the change in associative strength 

defined, Rescorla and Wagner could write 
an iterative equation that defined how the 
associative strength between the US and 
the CS changed over a sequence of pair-
ings: 

 

)()()1( ttt VVV Δ+=+    (14) 
 
This simple equation leads to some in-

teresting predictions.  For example, the 
amount of change in an association is a 
function of the difference between λ and V(t).  
At the start of learning (when there is as-
sumed to be no association between the US 
and the CS), this value will be large, and will 
result in large changes in associative 
strength.  However, every time the associa-
tion is modified, the result will be to de-
crease the difference between λ and V(t).  As 
a result, this equation for learning predicts 
that the amount of learning that occurs will 
slow down as V(t) grows.  Indeed, if one plots 
V(t) as a function of t, the result is a decreas-
ing exponential function that levels off to the 
maximum value of λ.  This is in nice agree-
ment with observations of animal learning 
(e.g., Pearce, 1997, p. 28). 
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5.2 Associations from Multiple Predictors
5.2.1 The Rescorla-Wagner Model 
 
One of the motivations for the Rescorla-

Wagner model was to develop a mathemati-
cal model of learning that was capable of 
handling such phenomena as blocking.  This 
requires that the model from Section 5.1 be 
extended to handle a situation in which more 
than one CS is present. 

 
To do this, Rescorla and Wagner (1972) 

proposed that the overall associative 
strength that was being compared to λ was 
actually the sum of individual associative 
strengths.   Each of these individual 
strengths was the association between the 
US and a different CS. 

 
For example, consider a situation in 

which three different conditioned stimuli, 
CSA, CSB, and CSB C, were present.  The as-
sociation between each of these stimuli and 
the US can be represented as VA, VBB, and 
VC respectively.  The overall associative 
strength (ΣV) for this example can then be 
defined as: 
 

CBA VVVV ++=Σ    (15) 
 
After defining ΣV, Rescorla and Wagner 

(1972) were in a position to use it to define 
the change in individual associative 
strengths that would occur at some time t 
during learning.  This provides the extension 
of the learning equations that were seen in 
section 5.1.  For instance, the change in 
associative strength for CSA at time t would 
be: 

 
( ))()( tAtA VV Σ−=Δ λβα   (16) 

 
Note that this equation is sensitive to the 

fact that each CS might have a different sa-
lience; αA is the salience for CSA alone.  
Similar equations would be used to calculate 
the change in associative strengths for the 
other conditioned stimuli that were present, 
with each equation using a different salience 
constant. 

 
5.2.2 Model Implications 
 

The Rescorla-Wagner model provided an 
account of the varieties of associative learn-
ing that were introduced in Chapter 3.  In 
particular, it made excellent predictions 
about learning situations that involved com-
pound stimuli (for an introduction, see 
Pearce, 1997).  In particular, it provided an 
explanation of blocking, as well as an ac-
count of overshadowing.  Miller, Barnet, and 
Grahame (1995) have reviewed 18 different 
successes of the model. 

 
This is not to say that the model is not 

without its problems.  There have been 23 
specific failures of the model that have been 
documented (Miller et al., 1995).  These fail-
ures have led to the development of newer 
models (see Pearce, 1997, for an introduc-
tion to some of these).  While some of these 
models have abandoned the general as-
sumptions of the Rescorla-Wagner model 
(e.g., Gibbon, 1977; Miller & Matzel, 1988), 
others retain its general, but add variations 
that address some of its assumptions that 
are deemed to be problematic.   

 
However, these newer models also have 

their own shortcomings, and are also more 
complicated than the original Rescorla-
Wagner formulation.  “For the time being, 
researchers would be well advised to con-
tinue using aspects of the Rescorla-Wagner 
model, along with those of other contempo-
rary models, to help them design certain 
classes of experiments” (Miller et al., 1995, 
p. 381).  The Rescorla-Wagner model is 
enduring and has been extremely influential. 

 
As noted, the Rescorla-Wagner model 

provides an account of blocking and over-
shadowing.  We saw in Chapter 3 that per-
ceptrons can produce these phenomena as 
well.  Furthermore, the Rescorla-Wagner 
equation is structurally very similar to the 
delta rule equation that was presented in 
Section 2.9.  Are these parallels coinciden-
tal, or is there a deeper formal relationship 
between the delta rule and the Rescorla-
Wagner model? 
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5.3 Formalizing Learning and Extinction
5.3.1 Changing λ 
 
One of the purposes of the Rescorla-

Wagner model is to formally describe how 
the repeated pairing of a CS with a US will 
alter the strength of the association between 
them.  As we saw earlier, this can be formal-
ized with the following iterative equation: 

 

( ))()(

)()()1(

tt

ttt

VV

VVV

−+=

Δ+=+

λαβ
  (17) 

 
However, another purpose of the Res-

corla-Wagner model is to formally describe 
how an existing association between the CS 
and US will weaken when the CS is pre-
sented in the absence of the US.  This type 
of “learning” is called extinction. 

 
How can the Rescorla-Wagner model be 

extended to handle extinction?  The answer 
to this question is to change the value of λ 
on trials for which the animal is not rein-
forced (that is, on trials in which the US is 
not presented).  Recall that λ “refers to the 
magnitude of the US, and a value of 0 is 
appropriate to indicate its absence” (Pearce, 
1997, p. 58).  In other words, we can use the 
equation given above to model extinction, 
provided we assign λ the value of 0. 

 
Figure 5-1 illustrates the power of this 

one equation to model learning and extinc-
tion.  It illustrates 100 trials of learning in-

volving a single CS with the salience (α) of 
0.35.  (It is assumed that β = 1.)  The initial 
association between the CS and the US was 
equal to 0.  For the first 50 trials that make 
up the graph, the association was increased 
by using the Rescorla-Wagner model with λ 
equal 100.  You will note that the value of V 
rapidly increases to this value after about 25 
trials, and remains at λ until trial 50. 

 
At trial 50, extinction begins by setting λ 

to a value of 0 in the Rescorla-Wagner 
model.  You will note that the associative 
strength rapidly decreases to this value, and 
remains there until trial 100, at which time 
the simulated learning experiment ends. 

 
5.3.2 Implications for the Perceptron 
 
The importance of this demonstration is 

to highlight the fact that the values used in 
the Rescorla-Wagner model change as a 
function of experimental context.  That is, λ 
has one value when an agent is being rein-
forced, and a different value when the agent 
is not being reinforced.  This fact is all that is 
needed to translate the kind of learning de-
scribed by the Rescorla-Wagner model into 
the kind of learning that is involved when a 
perceptron is trained. 

 

Figure 5-1. 
Learning and extinction according to the 

Rescorla-Wagner model.  See text for 
details 
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5.4 A Unified Rescorla-Wagner Equation 
5.4.1 Three Learning Equations 
 
In terms of use, there are three different 

versions of the Rescorla-Wagner equation 
that are used by researchers when they are 
modeling associative learning.  These differ-
ent versions of the equation depend upon 
the context of a particular experimental trial.  
That is, they depend on whether some US is 
present or absent, and upon whether a CS 
is present or absent. 

 
The situation that leads to the first equa-

tion is the one in which both the US and 
some CSA are present during a trial.  In this 
case, the change in association for CSA is 
modeled as follows: 

 
( ))()( tAtA VV Σ−=Δ λβα   (18) 

 
The situation that leads to the second 

equation occurs when CSA is present during 
a trial, but the US is not.  We saw in Section 
5.3 that the equation for this situation in-
volves replacing λ with 0 as in the equation 
below: 

 
( ))()( 0 tAtA VV Σ−=Δ βα   (19) 

 
The third situation is one in which CSA is 

not presented at all.  In this case, whether 
the US is present or not, the Rescorla-
Wagner model assumes that the absence of 
CSA means that its association will not 
change.  Mathematically, this means that 
when CSA is not present that: 
 

0)( =Δ tAV     (20) 
 

5.4.2 One Rescorla-Wagner Equation 
 
The three different equations presented 

above are special, context-specific, cases of 
the general Rescorla-Wagner model.  When 
relating our model to the network learning 
rules, it will be to our advantage to use a 
single expression that captures these three 
cases.  This is because all of the perceptron 
learning that we have been examining is 
defined by a single expression. 
 

To develop such an equation, let us de-
fine two variables.  Let the variable US be 
equal to 1 when the unconditioned stimulus 
is present, and let it be equal to 0 when the 
unconditioned stimulus is absent.  Similarly, 
let CSA be equal to 1 when conditioned 
stimulus A is present, and be equal to 0 
when this stimulus is absent.  These two 
variables can now be used to write the Res-
corla-Wagner model for learning involving 
CSA: 

 
( ) AtAtA CSVUSV ⋅Σ−⋅=Δ )()( λβα  (21) 

 
This equation will generate the three 

special case equations from Section 5.4.1.  
For instance, when the US and CSA  are 
both present, it produces the following: 
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Similarly, when the US is absent and 

CSA is present, the equation produces the 
following: 
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Finally, when the US is present and CSA 

is absent, the equation produces the follow-
ing: 

 
( )
( )

0

01 )(
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 (24) 

 
Of course, the equation will also produce 

a 0 change in the association if both the US 
and the CS are absent.  Later, we will de-
termine whether this unified equation can be 
translated into a learning rule for a percep-
tron.
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5.5 A Picture of Similarity
A perceptron, trained with the delta rule, 

provides one account of associative learn-
ing.  It is capable of modeling overshadow-
ing and blocking, which both provided chal-
lenges to earlier theories of association.  
The main feature of this model is that asso-
ciation changes as a function of a difference 
between two elements: the desired re-
sponse of an output unit and the observe 
response of the output unit when a stimulus 
is presented. 

 
The Rescorla-Wagner model provides 

another account of associative learning, and 
is also capable of handling overshadowing 
and blocking.  The main feature of this 
model is that association changes as a func-
tion of a difference between to elements: the 
maximum possible associative strength, and 
the current associative strength. 

 
Given these similarities, it is natural to 

think that there might be a very powerful 
relationship between the two approaches to 
learning.  Indeed, formal equivalence be-
tween the two models was first noted in the 
early 1980s (Sutton & Barto, 1981).  That is, 
delta rule learning and Rescorla-Wagner 
learning are identical – under a very particu-
lar assumption about a network’s activation 
function. 

 
One approach to establishing the formal 

equivalence is based on the making the 
value of λ depend on whether or not a learn-
ing trial involves reinforcement.  This permits 
us to create a new version of the perceptron 
learning diagram that was presented earlier 
as Figure 2-2.  In particular, we can re-label 
that figure to bring its elements in line with 
Rescorla-Wagner model. 

 
This is accomplished in Figure 5-2.  Fig-

ure 5-2(A) is the same as Figure 2-2.  Figure 
5-2(B) presents the same figure, labeled in 
accordance with the Rescorla-Wagner 
model.  There are two main differences that 
arise because of the re-labeling.   

 
First, the connection weights in the per-

ceptron are now shown to represent the 
strength of associations between the CSs 
and the US.  Second, the value of the US is 
altered to move the delta rule into the Res-
corla-Wagner formalization.  In the delta 
rule, when the US is present it is given a 
value of 1 before being presented to the 
“Compare” operation; when the US is absent 
it is given a value of 0.  In the re-labeling, 
when the US is absent it is given a value of 
0, but when it is present it is now given the 
value of λ.  The point of Figure 5-2(B) is this: 
if this perceptron is trained with the delta 
rule, but using the values that are indicated 
in the diagram, then the delta rule learning 
will be equivalent to Rescorla-Wagner learn-
ing. 

 
Interestingly, this diagram is slightly mis-

leading.  To formally translate the one model 
into the other, we must make some assump-
tions concerning the activation function that 
is in the output unit.  However, the reworking 
of the equations will lead to the same con-
clusion that the figure below alludes to: the 
delta rule and Rescorla-Wagner learning are 
formally equivalent. 

 
 
 

 Figure 5-2.  See text for explanation. Both figures illustrate a trial in which US and CSA are present. 
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5.6 Formal Equivalence with Linearity
5.6.1 Activation Is Not Association 

 
Why does Figure 5-2 only provide a hint 

of the equivalence between the Rescorla-
Wagner model and the delta rule?  The an-
swer to this question can be found by exam-
ining the “Compare” box in the figure.  As we 
have seen, the Rescorla-Wagner model 
works by comparing the maximum possible 
associative strength with the current asso-
ciative strength.  The re-labeling of Figure 5-
2B incorporates the maximum possible as-
sociative strength into the delta rule by set-
ting the value of US to either 0 or λ.  How-
ever, it does not incorporate the current as-
sociative strength into the delta rule.  As is 
shown in the “Compare” box, the maximum 
associative strength is compared to the acti-
vation of the output unit, not to the current 
associative strength. 

  
5.6.2 A Linear Solution 
 
In order to formally equate the two mod-

els of learning, we must find a way to trans-
late the activity of an output unit (aj) into the 
current total associations involving the CSs 
that are being presented to the learner (ΣV).  
Recall that in Figure 5-2B the current asso-
ciation of each CS to the US is represented 
as a connection weight.  The total associa-
tion in the system must be a sum involving 
these weights.  One component of a percep-
tron in which such a sum can be found is the 
net input, which was discussed in Section 
2.2.2.  The net input is then converted into 
the perceptron’s activity using the activation 
function.  To equate the two learning mod-
els, a relationship between net input and 
total association must be specified, and 
must then be preserved in some way by the 
activation function so that output unit activity 
in the “Compare” box reflects total associa-
tion. 

 
In the traditional account of a perceptron, 

the net input is the weighted sum of the in-
put unit activities.  The activity of each input 
unit i, where the activity is expressed as ai, 
is weighted by the strength of the connection 
between the input unit and the output unit j 
(wij).  Thus, the net input for output unit j can 
be expressed as: 

 

 

∑=
i

ijij wanet   (25) 

 
Gluck (Gluck & Bower, 1988; Gluck & 

Myers, 2001) noted that if the input units of a 
perceptron indicate the presence of a CS, 
and the connection weights represent the 
set of CS-US associations, then the net in-
put equation given above will also compute 
overall associative strength.  Recall from 
Section 5.2.1 that for a three CS example, 
overall associative strength was defined as: 

 

CBA VVVV ++=Σ   (26) 
 
To generalize this equation, let ai be 1 if 

CSi is present, and let it be 0 if CSi is ab-
sent.  Let Vi be the associative strength be-
tween CSi and the US.  Overall associative 
strength now becomes: 

 

∑=Σ
i

iiVaV    (27) 

 
However, Vi in the above equation is 

identical to wij, which means that ΣV is iden-
tical to net input: 

 

j
i

iji
i

ii netwaVaV ===Σ ∑∑  (28) 

 
In order to include ΣV (or net input) di-

rectly into the “Compare” box of Figure 4-2B, 
a linear assumption about the activation 
function of the output unit is made (Gluck & 
Bower, 1988; Gluck & Myers, 2001).  That 
is, it is assumed that the activation function 
is the identity function, which means that 
output unit activity is identical to net input: 

 

∑ ==
i

jijij netwaa   (29) 

With this assumption about the activation 
function, the calculation of error in the delta 
rule is identical to the calculation of the “as-
sociative difference” in the Rescorla-Wagner 
rule.  This is one example of a proof that the 
two learning rules are identical. 
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5.7 Nonlinear Activation and Overall Association
5.7.1 Nonlinear Activity 

 
The preceding proof of the identity be-

tween the delta rule and the Rescorla-
Wagner model required a linear relationship 
between an output unit’s net input and its 
activity.  Unfortunately, this requirement 
converts the perceptron into a much weaker 
type of artificial neural network, a distributed 
associative memory (e.g., Dawson, 2004, 
Chapter 9).  Much of what makes a percep-
tron interesting depends on a nonlinear rela-
tionship between net input and activation. 

 
As we saw earlier, early research on per-

ceptrons used the Heaviside equation to 
enforce this nonlinear relationship: 
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This equation converts net input into either 
the value 1 or 0.   
 

However, we have also seen that more 
modern treatments of the perceptron use 
other nonlinear equations which convert net 
input into a continuous range between 0 and 
1.  In particular, an integration device is a 
traditional perceptron in which the activation 
function of the output unit is the logistic func-
tion instead of the Heaviside equation. 

    
Another nonlinear activation function that 

can be used in the perceptron is the Gaus-
sian (e.g., Dawson, 2004; Yaremchuk, Will-
son, Spetch & Dawson, 2005).  A Gaussian 
that ranges between 0 and 1, and which has 
a standard deviation of 1, is defined by the 
following equation:  

))(( 2

)( jjnet
jj enetGa μπ −−==  

 (31) 
The Gaussian has a bell shape, asymptotes 
to 0 in both directions, and reaches a maxi-
mum value of 1 when the net input is equal 
to the mean of the Gaussian μj as is shown 
in Figure 5-4. 

 
 
 
 

Figure 5-3.  The Gaussian equation produces a 
bell-shaped activation function. 

5.7.2 Nonlinear  Association 
 
We need to find a method by which an 

output unit’s nonlinear activity can be con-
verted into a measure of associative 
strength.  All of the activation functions men-
tioned above range between 0 and 1, and 
that all are based on net input – which we 
have shown to be equal to overall associa-
tion (ΣV).  Therefore one plausible approach 
would be to use output unit activity to define 
overall association as a current proportion of 
the maximum possible association λ.   

 
That is, when the connection weights 

adopt values that reflect that the maximum 
possible association has been achieved, 
activation would reach 1, and overall activa-
tion would be λ times 1.  When no associa-
tion is encoded in connection weights, acti-
vation would be 0, and overall association 
would be λ times 0.  In short, let us propose 
that for a perceptron that uses some nonlin-
ear activation function f(netj), overall asso-
ciation can be formalized as: 

 
)( jnetfV ⋅=Σ λ    (32)
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5.8 Formal Equivalence with Nonlinearity
In section 5.6.2, we defined overall asso-

ciation in terms of the nonlinear activity that 
is typically found in the output unit of a per-
ceptron.  We are now in position to demon-
strate the equivalence between delta rule 
learning in this type of perceptron and Res-
corla-Wagner learning. 

 
Consider a variable US, which is equal to 

1 on trials in which an animal is reinforced, 
and which is equal to 0 on trials in which an 
animal is not reinforced.  Similarly, consider 
the variable CSi which is equal to 1 when 
stimulus i is present, and which is equal to 0 
when it is not.  With these two variables we 
can define, for some time t, the change in 
the association between CSi and the US 
with the following version of the Rescorla-
Wagner model: 
 

( ) ititi CSVUSV ⋅Σ−⋅=Δ )()( λβα  (33)
   

In Section 5.6.2 we provided a definition 
of overall association for a perceptron that 
uses a nonlinear activation function.  We 
also noted in our discussion of Figure 4-2B 
that the value of CSi is represented in a per-
ceptron by the activation of input unit i (that 
is, by ai).  If we replace ΣV in the above 
equation with this definition, we obtain the 
following equation: 
 

( ) itjiti anetfUSV ⋅⋅−⋅=Δ )()( )(λλβα
 (34) 
 

Not that in this equation, λ is on both 
sides of the subtraction.  So, this equation 
can be simplified by moving λ outside of the 
parentheses.  As well, the value f(netj) is 
identical to the activity of the output unit, aj.  
This permits the expression above to be 
rewritten as: 
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Finally, we can note that αi, β, and λ in 
the above equation are constants.  We could 
replace the product of these three constants 
with another constant, η, without losing any 

generality.  The result is the expression be-
low: 
 ( ) itjti aaUSV ⋅−⋅=Δ

)()( η   (36) 

 
The above equation represents a transla-

tion of the Rescorla-Wagner model into a 
situation in which the learning agent is a 
perceptron with a nonlinear activation func-
tion.  There are two key points to note about 
it.  First, this equation involves the direct 
comparison between US and aj.  This is ex-
actly the difference that is required in the 
“Compare” box in Figure 4-2B.  Second, the 
equation above is identical to the equation 
for the delta rule that was provided in Sec-
tion 2.9.2, and which is given once again 
below: 
 

ijj

ijij

aat
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  (37) 

 
Note that the identity of the Rescorla-

Wagner model and the delta rule depends 
on our recognizing the relationships be-
tween learning values and perceptron com-
ponents that was established in Figure 4-2B.  
In particular, a change in an association is 
identical to a change in a connection weight, 
and the desired value for the output unit, tj, 
is identical to the US variable that we in-
cluded in the Rescorla-Wagner equations on 
the current page.  
 

In summary, we saw in Section 5.5 that if 
the delta rule is used to train a perceptron 
with a linear activation function, then the 
delta rule in this case is equivalent to the 
Rescorla-Wagner model.  In this section, we 
have generalized this statement by proving 
that the delta rule is equivalent to Rescorla-
Wagner learning when the perceptron has a 
nonlinear activation function that ranges be-
tween 0 and 1.  This proof depends upon 
the assumption that the activation value of a 
perceptron’s output unit can be interpreted 
as representing the proportion of the maxi-
mum association that is currently encoded in 
the connection weights. 
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5.9 The Implications of Equivalence
A perceptron trained with the delta rule, 

and an associative system trained with the 
Rescorla-Wagner equation, have been 
shown earlier to both be capable of provid-
ing accounts of complex phenomena such 
as overshadowing and blocking.  In this 
chapter, we have seen that the similarities 
between the two should not be surprising – 
by labeling a perceptron’s components in a 
particular way, the delta rule for training it 
can be directly translated into the Rescorla-
Wagner rule. 

 
Establishing such a relationship between 

animal learning and perceptron learning is 
important, because we have an excellent 
formal understanding of what perceptrons 
can learn, and cannot learn, to do (Minsky & 
Papert, 1988).  As a result, it may be possi-
ble to translate this knowledge from the do-
main of machine learning into the domain of 
animal learning. 

 
For example, a variation of a perceptron 

was proposed for solving a number of inter-
esting categorization problems (Gluck, 
1991).  However, Pearce (1997, p. 132) cri-
tiqued this model, noting “because it is for-
mally equivalent to the Rescorla-Wagner 
model, it makes the same erroneous predic-
tions as that model”.  In other words, prob-
lems that can be learned by a perceptron 
should also be explainable by the Rescorla-
Wagner model.  Problems that cannot be 
learned by a perceptron should also pose 
problems for the Rescorla-Wagner rule. 

 
The problem with this perspective is that 

all that has been established is the equiva-
lence between the two learning rules.  It is 
important not to read too many additional 
similarities into the relationship between 
perceptrons and animal learners. 

 
In particular, the Rescorla-Wagner model 

only provides an account of how associa-
tions change over time.  It is completely 
mute with respect to how associations are 
converted into observable responses.  To 
place this observation into connectionist 
terms, the Rescorla-Wagner model de-
scribes how associations can be modified to 
produce net input.  The model does not de-

scribe how net input is converted into activa-
tion, because that isn’t part of learning. 

 
In contrast, perceptrons describe how ex-

isting connection weights are translated into 
observable responses.  This was the reason 
that we had to devote effort in Sections 5.6 
and 5.7 to define the relationship between 
overall association and activation. 

 
We will see that this becomes an issue 

when we consider the role of the activation 
function in the next chapter.  For example, 
we will explore claims that certain learning 
paradigms cannot possibly be accounted for 
by a perceptron trained with the delta rule.  
We will see that this is the case for one per-
ceptron that uses one nonlinear activation 
function.  However, if the activation function 
is replaced with another, we will see that the 
perceptron can model the learning.  The 
problematic issue, of course, is that both 
perceptrons are being trained with the same 
learning rule (i.e., the general rule described 
in Section 5.7).  Clearly there are differences 
between network and animal learning that 
are not captured by the formal equivalence 
of the learning rule. 

 
In a similar vein, if one uses the equiva-

lence between learning rules to claim that 
perceptrons are equivalent to Rescorla-
Wagner models of animal learning, then one 
would expect that a phenomena that can be 
explained by the Rescorla-Wagner model 
would also be modeled by a perceptron.  We 
will see that this is not necessarily true.  The 
correspondence between the two learning 
theories is strongly influenced by the activa-
tion function that is part of the perceptron’s 
output unit, and by the fact that in a percep-
tron learning requires that such activation 
must be produced. 
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6.1 Design Decisions
6.2 Context and Bias
6.3 Negative Contingency as an Example 
6.4 Bias, Context, and Inhibition 
6.5 Defining the Null Condition
6.6 Overshadowing with a Null Condition
6.7 Blocking with a Null Condition
6.8 What Problems Can Perceptrons Solve?
6.9 What Problems Are Beyond Perceptrons?
6.10 Negative Patterning and XOR 
6.11 The Value Unit 
6.12 A Learning Rule for a Value Unit 
6.13 Implications for Animal Learning

 
This chapter examines some design decisions that must be made when artificial neural net-

works are used to simulate animal learning experiments.  These design decisions have an impact 
upon the relationship between machine learning and animal learning models.  Three such deci-
sions are explored: the relationship of a network’s bias to the influence of uncontrolled back-
ground stimuli, the empirical and logical need to include a null condition in which a network is 
trained to turn off when no CSs are presented, and the ability to replace a monotonic activation 
function with a nonmonotonic activation function.  Considering these issues highlights subtle rela-
tionships between the perceptron and classical conditioning.  However, at the end of the chapter 
we will also see that this consideration introduces a puzzling issue: the responses of a perceptron 
is not necessarily identical to those predicted by the Rescorla-Wagner model. 
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6.1 Design Decisions 
6.1.1 The Journey Thus Far 
 
At this point, we have identified two gen-

eral points of contact between a particular 
version of network learning (the delta rule) 
and a particular model of animal learning 
(the Rescorla-Wagner model).  The first has 
been empirical: we have shown that percep-
trons can produce many results that are 
analogous to those found in the animal 
learning literature.  The second has been 
formal: we have shown that one can trans-
late the Rescorla-Wagner equation into the 
delta rule for the perceptron, even when that 
rule is applied to a perceptron with a nonlin-
ear activation function. 

 
These two points of contact illustrate a 

comfortable relationship between the two 
different approaches to learning.  This type 
of relationship has existed ever since Sutton 
and Barto (1981) first described the similari-
ties between the two types of learning rules.  
“The perceptron is essentially the same as 
the Rescorla-Wagner model:  it compares its 
own response (expectation) with the correct 
one (US) and modifies the weights in order 
to make them agree” (p. 156). 

 
Our purpose is to provide a more careful 

examination of the relationship between 
these two views of learning.  Soon we will be 
in a position to consider some thought-
provoking examples that challenge it.  How-
ever, before we can do this, some subtler 
points of contact between network learning 
and animal learning must be considered.  
These considerations are provided in the 
current chapter. 

 
6.1.2 Design Decisions to Consider 
 
When we simulate an animal learning 

experiment by training a perceptron, the 
perceptron can be viewed as a particular 
operationalization of a theory (e.g., a theory 
of animal learning like the Rescorla-Wagner 
model).  One property of a working com-
puter simulation is that it leaves no room for 
vagueness: to make the simulation work, the 
theory must be rigorously specified 
(Lewandowsky, 1993).  One aspect of this 
rigorous specification is the making of de-
sign decisions.  A design decision occurs 

when a researcher translates a component 
of a theory into a working part of a simula-
tion.  Design decisions are critical because, 
in many instances, there is more than one 
way to translate the theory into a working 
model. 

 
For example, one design decision that is 

important to the studies of learning in this 
book concerns the activation function to in-
sert into the output unit of the perceptron.  
We have already established two different 
candidate activation functions: the Heaviside 
equation in a standard perceptron, and the 
logistic equation in an integration device.  
Later in Chapter 6 we will consider the impli-
cations of choosing a third activation func-
tion, the Gaussian. 

 
A second design decision that is impor-

tant to simulations that are related to the 
Rescorla-Wagner model concerns how the 
effects of context are to be modeled.  One of 
the assumptions of the Rescorla-Wagner 
model is that there exists a context, not un-
der direct experimental control, that is pre-
sent on every learning trial and which can be 
conditioned as if it were another CS.  When 
training an integration device, this type of 
context can be modeled “for free” – that is, 
without specifying additional input units.  
This issue will also be discussed in this 
chapter. 

 
A third design decision that has an im-

pact on simulations of conditioning concerns 
situations in which neither the US nor any 
CSs are presented.  What should happen to 
the perceptron in this situation?  Should a 
“null condition” be included when a percep-
tron is trained, or not?  These questions are 
important, and will also be answered in this 
chapter. 

 
 
 

A peer-reviewed monograph published by Comparative Cognition and Behavior Reviews on 
behalf of the Comparative Cognition Society. © Michael R. W. Dawson 2008 



Chapter 6 Context, Bias, and the Null Condition 64 

6.2 Context and Bias 
6.2.1 The Need for Context 
 
Classical conditioning does not occur in a 

vacuum.  For instance, the Rescorla-
Wagner model makes explicit the assump-
tion that conditioning is context-dependent.  
“The changes in associative strength of a 
stimulus as a result of a trial can be well-
predicted from the composite strength re-
sulting from all stimuli present on that trial” 
(Rescorla & Wagner, 1972, p. 73).  In Chap-
ter 4, we saw several examples that sup-
ported this claim.  For example, the ease 
with which some CSB can be conditioned 
depends upon whether or not it is presented 
with some other CS

B

A that is a conditioned 
inhibitor (e.g. Section 4.4).   

 
6.2.2 Background Stimuli 
 
In any simulations in which context was 

presumed to be explicitly present (e.g., Sec-
tions 4.4., 4.6, 4.8), context was under direct 
experimental control.  The context for one 
CS was determined by presenting other CSs 
that were represented by their own input 
units.  This is analogous to a paradigm in 
which an experimenter controls or manipu-
lates particular aspects of a context for an 
animal’s learning (e.g., control of lights, 
odor, texture, etc). 

 
Rescorla and Wagner (1972) recognized 

the importance of another kind of context: an 
array of background stimuli that were always 
present, and not under the experimenter’s 
control.  “The CS occurs against a back-
ground of uncontrolled stimuli.  To speak of 
shocks occurring in the absence of the CS is 
to say that they occur in the presence of 
situational stimuli arising from the experi-
mental environment.  Although these stimuli 
are not explicitly manipulated by the experi-
menter, they nevertheless can be expected 
to influence the animal” (p. 88). 

 
Rescorla and Wagner (1972) showed 

how their model could easily accommodate 
this background of uncontrolled stimuli.  
First, they assumed that this background 
was in essence a CS that was present on 
every trial.  Second, they assumed that this 
CS could be treated as if it was any other 
CS – that is, it had an associative strength 

that changed as a function of the Rescorla-
Wagner equation. 

 
6.2.3 Bias as Background 
 
This view of context is not universally ac-

cepted, but is an important component of the 
Rescorla-Wagner model.  It is therefore criti-
cal to determine how the notion of a back-
ground of uncontrolled stimuli can be real-
ized in an integration device. 

 
In all of the simulations that have been 

presented in this book, a learning rule has 
not only been used to modify connection 
weights, but has also been used to modify 
the bias (θ) of the activation function.  As 
was noted earlier in Section 3.1.2, bias is 
modified by assuming that θ is the weight of 
a connection between the output unit and an 
“extra input unit” that always has an activa-
tion of 1.  The assumed existence of this 
extra input unit permits θ to be treated ex-
actly like any other weight in the network. 

 
This treatment of bias by the learning 

rule also permits it to be directly related to 
the Rescorla-Wagner formulation.  The “ex-
tra input unit” that is always on represents a 
background CS that it always present.  
When θ is manipulated by the learning rule, 
this is equivalent to the associative strength 
of the background CS being modified in ac-
cordance with the Rescorla-Wagner equa-
tion.  Thus all the simulations reported thus 
far in which θ has been modified have in-
cluded a tacit assumption that there exists a 
contextual CS that has an associative 
strength that contributes to overall condition-
ing.  This CS is always in addition to any 
controlled CSs that are explicitly manipu-
lated as part of the context of a conditioning 
experiment.  Bias is the associative strength 
of this background stimulus.  This back-
ground stimulus is a conditioned excitor 
when θ is positive, and which is a condi-
tioned inhibitor when θ is negative. 
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6.3 Negative Contingency As An Example
6.3.1 Negative Contingency 
 
In Chapter 4, we observed the perform-

ance of networks trained in a particular 
paradigm (Pavlov, 1927) that was designed 
to convert one of the CSs into a conditioned 
inhibitor.  An alternative approach for doing 
this is called the negative contingency para-
digm (e.g., Rescorla, 1969).  In its simplest 
form, the negative contingency paradigm is 
designed to convert some CSA into a condi-
tioned inhibitor.  This is accomplished by 
employing two different training trials.  When 
the US is presented, CSA is absent.  When 
CSA is present, the US is not.  CSA becomes 
a conditioned inhibitor because it is recog-
nized as a signal that the US will not occur.  
Importantly, this paradigm assumes that the 
experimental context serves as a condi-
tioned excitor that signals the presence of 
the US.  The purpose of this section is to 
demonstrate this in an integration device. 

 
6.3.2 Retardation of Acquisition Test 
 
All networks were trained on two patterns 

in a pretraining (negative contingency, see 
Table 6-1) phase until the networks con-
verged.  Without reinitializing weights, con-
trol networks were then trained to respond to 
CSB (i.e., B+ conditioning).  In contrast, ex-
perimental networks were then trained to 
respond to a compound of CS

B

A and CSBB 
(i.e., AB+ conditioning).  If CSA is a condi-
tioned inhibitor, then experimental networks 
should require more training than control 
networks.  

 
Phase Trial 

Type 
CSA CSB tj

+ 0 0 1 Pretrain 
A- 1 0 0 

Control B+ 0 1 1 
Experimental AB+ 1 1 1 

Table 6-1 
 
This is exactly what was found.  25 dif-

ferent networks served as “subjects” in each 
condition.  Control networks converged on 
average after 3.40 sweeps, while experi-
mental networks converged on average after 
60.96 sweeps.  This difference was statisti-
cally significant (t = -87.615, df = 48, p < 

0.0001), and indicates that CSA served as a 
conditioned inhibitor. 

 
6.3.3 Effect on Bias 
 
How does the negative contingency 

paradigm affect contextual conditioning?  
Table 6-2 provides the connection weights 
from the two input units, and the bias of the 
logistic activation function in the output unit, 
for a typical network prior to any training 
taking place.  Note that the two connection 
weights have very small values, and that the 
bias is equal to zero.  This structure is the 
result of initializing the network using the 
standard practices that were described ear-
lier. 

 
Training Unit Weight θ 

CSA 0.01 - 
CSBB 0.02 - 

Before 
Phase 1 
Learning Output - 0.00 

CSA -4.63 - 
CSBB 0.02 - 

After 
Phase1 
Learning Output - 2.20 

Table 6-2 
 
Table 6-2 also provides the structure of 

the same network after negative contin-
gency training (i.e., after pretraining with the 
Table 6-1 patterns).  It reveals three impor-
tant points.  First, CSA has developed a 
strong negative weight.  This is exactly as 
we would expect if this stimulus has become 
a conditioned inhibitor.  Second, the weight 
for CSB has not changed.  This too is ex-
pected, because this stimulus was absent 
during pretraining.  Third, the bias has ob-
tained a strong positive value. 

B

 
This last result is because the integration 

device was trained to turn on when neither 
CS was present.  How is this to be 
achieved?  The bias must be big enough to 
produce logistic activity of 0.9 or higher 
when no other CSs are present.  Section 6.2 
proposed that bias reflects the strength of 
the experimental context’s association.  The 
positive bias in Table 6-2 reveals that the 
context has become a conditioned excitor, 
which is a plausible consequence of the 
negative contingency paradigm. 
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6.4 Bias, Context, and Inhibition 
6.4.1 Context and Excitation 

 
In Section 6.2 it was argued that bias of 

could represent the associations involving 
background context.  In many (but not all) of 
the simulations reported in this manuscript, 
the bias in an output unit at the end of train-
ing is negative.  The natural interpretation of 
this is that training has resulted in the back-
ground context becoming inhibitory. 

 
However, many experiments have dem-

onstrated that the result of training is to pro-
duce contexts that are excitatory, not inhibi-
tory (e.g., Balsam, 1985; Bouton & King, 
1983; Chang, Stout & Miller, 2004; Gra-
hame, Barnet & Miller, 1992).  This would 
appear to pose a problem for the network 
models that we have been considering. 

 
6.4.2 Empirical Possibility of Inhibition 
 
One response to this is that other studies 

have produce results that contradict those 
cited above (e.g., Durlach & Rescorla, 1983; 
Marlin, 1982; Stout & Miller, 2004), suggest-
ing that it is premature to claim that excita-
tory contexts are obligatory. 

 
Further to this, Schmajuk, Larrauri, and 

LaBar (2007) tested a neural network model 
of classical conditioning that incorporated 
attentional processes (Schmajuk, Lam, & 
Gray, 1996).  As part of their study, Schma-
juk, Larrauri and LaBar used this model to 
simulate an experiment whose results had 
previously been used to argue for inhibitory 
context (Bouton & King, 1983).  Their simu-
lation replicated the experimental results by 
acquiring inhibitory associations involving 
the context.  However, it also revealed that 
reduced attention to the context would make 
it difficult to observe the inhibitory influence 
of context on animal behavior.   

 
6.4.3 Formal Issues 
 
Some formal considerations also enter 

into the deliberation of context and inhibition.  
First, the notion of whether bias is positive or 
negative depends completely upon input 
encoding.  For example, consider a network 
that uses the Heaviside activation function, 
and codes the absence of conditioned stim-

uli with 0s, and their presence with 1s.  At 
the end of Pavlov’s (1927) conditioned inhi-
bition training (A+, AX-), the network will 
have a bias of -2.36, and will assign a 
weight of 4.56 to CSA and a weight of -4.80 
to CSX.   

 
Now, imagine encoding the absence of 

conditioned stimuli with 5s, and their pres-
ence with 6s.  A logically equivalent network 
– one that generates exactly the same re-
sponses to the same stimuli (with different 
input codes) – has exactly the same weights 
as the previous network, but now has a bias 
of 1.64.  In other words, it is not necessary 
to have negative biases, because one can 
translate one network into an equivalent one 
that has a different sign of bias.  The transla-
tion is accomplished by varying the input 
code, which, of course, is arbitrary. 

 
This highlights a disconnect between 

empirical and simulation studies, at least 
with respect to inhibition.  On the one hand, 
theories like the comparator hypothesis as-
sume all associations are excitatory, and 
have impressively handled a great deal of 
empirical results (e.g., Miller & Matzel, 
1988). 

 
On the other hand, inhibition is central to 

simulation studies of associative learning.  
For instance, simulations revealed that 
Hebb’s (1949) theory of the creation of cell 
assemblies – a theory central to the forma-
tion of associations in the comparator hy-
pothesis (e.g., Savastano et al., 2003, p. 
392) – required inhibition in order to function 
properly (Milner, 1957; Rochester et al., 
1956). 

 
Clearly one contribution of the simula-

tions discussed in this manuscript is to raise 
the issue of context and inhibition.  Should a 
model be rejected if it requires inhibitory 
context?  Is it possible that empirical studies 
will have difficulty identifying such inhibitory 
effects?  Importantly, such questions are 
raised as a result of attempting to simulate 
associative learning, and attempting to care-
fully relate properties of networks (such as 
bias) to associative learning concepts. 
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6.5 Defining the Null Condition
6.5.1 The Need for Nothing 

 
In the preceding section, one of the train-

ing patterns simulated the situation in which 
the US was presented, but the CS was not.  
We could designate this condition with the 
symbol +, because the learning system is 
being reinforced in the absence of condi-
tioned stimuli.  In this section, we consider 
the need for an alternative situation, which 
we will call the null condition, and which we 
will represent with the symbol -.  In the null 
condition, the learning system is not pre-
sented any stimuli (US or CS).  That is, the 
system is not reinforced when no CSs are 
present. 

 
 One reason that we might be interested 

in including the null condition in our training 
of artificial neural networks is because it is 
an important component of animal learning 
experiments.  During such an experiment, 
USs are not continually present.  A US will 
be presented for a brief period of time, and 
then there will be an interval of time during 
which the US is absent.  The time between 
US presentations is called the intertrial inter-
val (ITI) or the cycle duration (Kirkpatrick, 
2002).  It is important because variations in 
the ITI can affect conditioning.  For example, 
increasing the duration of the ITI produces 
increases in the degree of conditioned taste 
aversion (Domjan, 1980). 

 
A second reason for including the null 

condition is that it is tacitly assumed to exist 
in the Rescorla-Wagner model.  Recall that 
the central assumption of this model is that a 
CS is a predictor of a US’s occurrence.  
When conditioning produces a strong posi-
tive association for a CS, this means that the 
presence of the CS is an excellent predictor 
that the US is going to occur.  However, this 
must also mean that when this CS is not 
present, then its absence is an excellent 
predictor that the US is not going to occur.  
This latter interpretation is identical to as-
suming that the null condition must exist. 

 
Alternatively, we can say that theories of 

learning are tacitly discriminative.  When the 
association to CSA is modified by A+ condi-
tioning, there is a tacit assumption that this 

association is intended to discriminate A+ 
situations from – situations. 

 
A third reason for including a null condi-

tion is that the role of the CSs may be to 
signal to presence of the US, and that the 
role of context – that is, background stimuli – 
is to signal the absence of the US.  In short, 
in many cases context should become a 
conditioned inhibitor.  To achieve this, we 
need to include a condition in which no con-
trolled CSs are present, and in which the US 
is also absent. 

 
A fourth reason for including a null condi-

tion will be illustrated in the following pages.  
In many cases, when the null condition is 
included in a simulation, the results of the 
simulation are more interesting, accurate, or 
compelling.  For example, we will see that 
the null condition facilitates overshadowing 
and blocking in the integration device. 

 
A fifth reason for including a null condi-

tion is that it is required for computational 
claims about associative learning to be cor-
rect (Yaremchuk, Willson, Spetch & Daw-
son, 2005).  It is often argued that one para-
digm in animal learning, called negative pat-
terning, is identical to one type of machine 
learning problem, XOR.  However, this iden-
tity requires that negative patterning in-
cludes the null condition.  Simulations of 
negative patterning must include the null 
condition to maintain the logical relationship 
between animal learning and network learn-
ing.  Importantly, some simulations of nega-
tive patterning do not include the null condi-
tion (e.g., Delamater, Sosa & Koch, 1999), 
and are therefore studying a problem that is 
much simpler than XOR. 

 
6.5.2 The Null Condition 
 
The null condition in a network simula-

tion, then, is simply a pattern in which all 
input units have activities of 0, and the out-
put unit is trained to turn “off”.  Let us now 
see how the inclusion of this pattern can 
affect some of the results that were originally 
reported in Chapter 4. 
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6.6 Overshadowing With A Null Condition 
6.6.1 An Alternative Training Set 
 
Overshadowing in the integration device 

was examined earlier in Section 4.9.  In that 
study, CSA was ten times less intense than 
CSB.  Simulation results revealed a statisti-
cally significant overshadowing effect.  That 
is, after AB+ training, the connection weight 
from CS

B

A was substantially smaller than the 
connection weight from CSBB.  Furthermore, 
when CSA was presented alone to the 
trained network, it produced a statistically 
smaller response than was the case when 
CSB was presented to the network. B

 
However, one concern with that earlier 

study was that the magnitude of the effect 
that was observed was not particularly com-
pelling.  The response that the network gen-
erated to CSB was 0.90, while the response 
to CS

B

A was 0.75.  
 
One problem with that earlier simulation 

was that it did not include the null condition.  
To correct this situation, the simulation was 
carried out with a training set that included 
two stimuli: the null condition (i.e., trial type -
), and the compound of the two stimuli 
(AB+).  The training set used in this version 
of the overshadowing study is presented in 
Table 6-3: 

 
Type CSA CSB tj

- 0 0 0 
AB+ 0.1 1 1 

Table 6-3 
 
6.6.2 Results 
 
The training set in Table 6-3 was used to 

train 25 different perceptrons as subjects.  
After this training, the average response to 
the individual presentation of CSB was 0.90, 
while the average response to the individual 
presentation of CS

 
The inclusion of the null condition does 

not dramatically alter the relationship be-
tween the weights from the two input units.  
Table 6-4 provides the structure of a typical 
network from this study.  It can be seen that 
the weight associated with CSA is an order 
of magnitude smaller than the weight asso-
ciated with CSB, which is consistent with the 
fact that there is an order of magnitude dif-
ference in the intensities of the two stimuli. 

B

 
Unit Weight θ 
CSA 0.40 - 
CSBB 4.60 - 

Output - -2.20 
Table 6-4 

 
Why does the null condition enhance the 

overshadowing effect?  Consider the re-
sponses of the integration device in terms of 
stimulus generalization.  If we describe the 
input stimuli as vectors, then the network 
has learned to respond to [0.1, 1] and has 
learned to not to respond to [0, 0].  When 
the network is tested, it is presented a stimu-
lus that it has not seen before – in vector 
terms, the stimulus [0.1, 0].  One advantage 
of artificial neural networks is that they gen-
erate similar responses to similar stimuli 
(McClelland, Rumelhart, & Hinton, 1986).  If 
we measure the similarity of one vector to 
another by taking the Euclidean distance 
between them, then the stimulus [0.1, 0] is 
far closer to the original stimulus [0, 0] (dis-
tance = 0.01) than to the other original 
stimulus [0.1, 1] (distance = 1.0).  Thus a 
weak response to this stimulus – consistent 
with overshadowing, and with the similar 
previous stimulus – is not surprising. 

 
A complementary explanation is to note 

that the null condition has caused the con-
text to be a strong conditioned inhibitor.  As 
a result, when a weak CS is presented, the 
network will generate a much weaker re-
sponse than when a strong CS is presented, 
because a weak CS will not be able to over-
come the negative bias. 

B

A was 0.10.  This differ-
ence was statistically significant (t = 
2064.689, df =48, p < 0.0001).  Furthermore, 
this difference is far more dramatic than the 
one that was observed in Section 4.9, and 
provides much more compelling evidence 
for overshadowing in the integration device.  
Clearly the inclusion of the null condition can 
have a powerful influence on the simulation 
results. 
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6.7 Blocking With A Null Condition
6.7.1 An Alternative Training Set 
 
In Section 4.10, blocking in the integra-

tion device was studied.  As was the case 
with overshadowing, a statistically significant 
blocking effect was found.  However, the 
magnitude of the effect was not compelling.  
In this section, we repeat the blocking ex-
periment, but add the null condition to the 
training sets. 

  
The new training sets are provided in 

Table 6-5.  25 experimental networks were 
trained to convergence on the Phase 1 pat-
terns (which required on average 421.2 
sweeps).  The networks were then given 
continued training on the Phase 2 patterns 
(convergence being achieved after only a 
single sweep).  25 control networks were 
trained on Phase 2 only; on average these 
networks converged after 281.0 sweeps. 

 
Phase Type CSA CSB tj

- 0 0 0 1 
A+ 1 0 1 
- 0 0 0 2 

AB+ 1 1 1 
Table 6-5 

 
6.7.2 Results 
 
Does prior training on CSA block later 

training on CSB? The standard test of block-
ing is to compare control responses to CS

B

BB 
to experimental responses to the same 
stimulus.  In this study a substantial blocking 
effect occurs.  On average, the control net-
works generate a response of 0.55 to CSB.  
In contrast, experimental networks generate 
an average response of 0.10 to CS

B

BB – func-
tionally equivalent to “off”.  This difference is 
statistically significant (t = 160.974, df =48, p 
< 0.0001). 

 
There are two major observations to 

make about these results in comparison to 
those that were reported earlier in Section 
4.10.  First, there is a much higher degree of 
blocking observed in this study.  Second, the 
response of control networks to CSB is much 
weaker in this study than the previous one 
(earlier, the control networks generated a 
response of 0.81 to this stimulus).  Both of 

these effects are due to the effect of the null 
condition on the output unit’s bias.  This is 
revealed by studying the structure of the 
networks trained in this experiment. 

 
Table 6-6 provides the structure of a 

typical experimental network after Phase 1 
and after Phase 2 of training.  From this, it 
can be seen that the first phase of training 
converted CSA into a conditioned excitor 
(note the positive weight) and the context 
into a conditioned inhibitor (note the nega-
tive bias).  CSB was not involved in Phase 1 
training, and therefore had a near zero 
weight.  Note, though, that the network at 
the end of Phase 2 is nearly identical to the 
Phase 1 network.  CS

B

BB is blocked in the 
sense that its weight was unaltered by fur-
ther training. 

 
Phase Unit Weight θ 

CSA 4.63 - 
CSBB 0.09 - 

 
Phase 1 

Output - -2.20 
CSA 4.64 - 
CSBB 0.09 - 

 
Phase 2 

Output - -2.20 
Table 6-6 

 
In comparison, Table 6-7 provides the 

structure of a typical network trained in the 
control condition (i.e., on Phase 2 only).  
Because there was no prior training on CSA, 
there is no blocking, as revealed by the fact 
that both input units develop strong positive 
weights.  That is, both CSs become condi-
tioned excitors.  Again, the null condition 
causes the context to become a conditioned 
inhibitor, as indicated by the strong negative 
bias.  However, this is different than the 
networks described in Section 4.10, which 
developed positive biases.  Because the 
bias is a strong negative in this study, the 
network only generates a moderate re-
sponse when either CSA or CSB are pre-
sented alone 

B

 
Unit Weight θ 
CSA 2.44 - 
CSBB 2.37 - 

Output - -2.20 
Table 6-7 

B

 

A peer-reviewed monograph published by Comparative Cognition and Behavior Reviews on 
behalf of the Comparative Cognition Society. © Michael R. W. Dawson 2008 



Chapter 6 Context, Bias, and the Null Condition 70 

6.8 What Problems Can Perceptrons Solve?
6.8.1 Computational Analysis 
 
The preceding two sections have dem-

onstrated some empirical benefits to includ-
ing the null condition as a training pattern in 
the network simulations.  We now turn to a 
more abstract discussion of what the null 
condition purchases. 

 
Earlier, we worked through the formal re-

lationship between the delta rule and the 
Rescorla-Wagner model.  One advantage of 
establishing this type of relationship is that 
knowledge that has been obtained in one 
domain, network learning, can now be car-
ried into a different domain, animal learning.  
Researchers have conducted extensive 
analyses of perceptrons, and have a very 
rigorous understanding of what kinds of 
problems this type of network can solve 
(Minsky & Papert, 1988).  Presumably there 
are many benefits to applying the results of 
such computational analyses to models of 
animal learning. 

 
6.8.2 Linearly Separable Problems 
 
What kinds of problems can perceptrons 

solve?  One way to answer this question is 
to represent a to-be-learned problem in a 
pattern space.  A pattern space is a spatial 
representation of all of the patterns that are 
to be presented to a network.  Each pattern 
is represented as a point in this space.  
Each input unit in the network defines a di-
mension of the space.  The coordinates of 
the point are determined by the activity that 
each input unit uses to represent the pat-
tern. 

 
Consider the logical operator AND that 

was discussed in Section 2.3.  The training 
set required to teach AND to a perceptron is 
provided in Table 6-8. 

 
Pattern X Y tj

1 0 0 0 
2 1 0 0 
3 0 1 0 
4 1 1 1 

Table 6-8 
 

The pattern space for this problem re-
quires that four different points be plotted in 
a two-dimensional space.  The coordinates 
of each point are the X and Y values in Ta-
ble 6-8.  Figure 6-1 illustrates this space. 

 

 

There are two additional properties that 
are illustrated in Figure 6-1.  First, each 
point is colored to indicate whether the net-
work should turn on or off to the pattern.  
The three of the points that require an “off” 
response are white.  The fourth point, to 
which the network must turn on, is grey. 

Figure 6-1.  
Carving a pattern space to solve the AND prob-

lem. 

 
Second, there is a line in the figure sepa-

rating the grey point from the white points.  
When a single straight cut can be made in a 
pattern space to separate classes of pat-
terns, then the problem represented by the 
pattern space is linearly separable.  If a 
problem is linearly separable, then a percep-
tron can solve it. 

 
One way to think of a linearly separable 

problem is as follows: if a problem is linearly 
separable, then there exists a single thresh-
old such that the net input for each pattern in 
one class will be greater than the threshold, 
and the net input for each pattern in the 
other class will be less than the threshold.  
The output unit of a perceptron or an inte-
gration device provides this threshold.  That 
is, each output unit of such a network makes 
a single straight cut in a pattern space.
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6.9 What Problems Are Beyond A Perceptron?
6.9.1 Carving and Complexity 
 
A linearly separable problem is the sim-

plest kind of classification problem that a 
network can face.  Problems that are more 
complex require a more complicated carving 
of the pattern space into different decision 
regions (Lippmann, 1989).  Problems that 
require more than one straight cut through a 
pattern space are linearly nonseparable.  
Such problems cannot be solved by a per-
ceptron or an integration device. 

 
6.9.2 An Example Problem 
 
One example of a small problem that is 

linearly nonseparable is another logical op-
erator, XOR (for exclusive or).  This opera-
tor, like AND, is defined over two input vari-
ables.  If both variables are false, or if both 
variables are true, then XOR is false.  XOR 
is only true if one input variable is true while 
the other input variable is false.  If we were 
to attempt to train a perceptron on the XOR 
problem, then we would use the training set 
that is presented in Table 6-9: 

 
Pattern X Y tj

1 0 0 0 
2 1 0 1 
3 0 1 1 
4 1 1 0 

Table 6-9 
 
However, no matter how long we trained 

a perceptron or an integration device on the 
four patterns in Table 6-9, the network would 
never converge by generating a hit to every 
pattern.  Instead, in the best situation, the 
network would generate a hit to three of the 
patterns, but would produce an incorrect 
response to the fourth.  This is due to the 
linear nonseparability of XOR, which cannot 
be represented in the structure of a standard 
perceptron. 

 
The pattern space for XOR is very similar 

to the one for AND that was illustrated in 
Section 6.7.  The four patterns that are plot-
ted in this space are identical to the four that 
were plotted in Figure 6-1.  The difference 
between the two pattern spaces is the de-

sired response to each pattern.  Figure 6-2 
provides the pattern space for XOR. 

 

 

Note that in this pattern space the two 
middle points are drawn in grey because 
they require the perceptron to respond to 
them.  To separate these two patterns from 
the other two white points, to which the per-
ceptron should fail to respond, two straight 
cuts are required, as is illustrated in Figure 
6-2.  A single cut will fail to segregate all of 
the grey points from all of the white points.  
This is the reason that XOR is said to be 
linearly nonseparable. 

Figure 6-2.  
Carving a pattern space to solve the XOR prob-

lem. 

 
Why is a traditional perceptron or an in-

tegration device unable to represent a solu-
tion to XOR?  The reason is that a single 
threshold is not sufficient to use net input to 
separate all patterns of one type from all 
patterns of the other type.  Instead, two 
thresholds (θ1 and θ2) are required.  If the 
net input is lower than θ1, then the network 
should turn off to the pattern.  If the net input 
is higher than θ2, then the network should 
also turn off to the pattern.  If the net input is 
between θ1 and θ2, then the network should 
turn on to the pattern.  Because the output 
unit of a standard perceptron or of an inte-
gration device only provides one threshold 
instead of two, these networks cannot rep-
resent a solution to this type of problem. 
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6.10 Negative Patterning and XOR
6.10.1 Negative Patterning 
 
In negative patterning, a system is 

trained to respond when a component is 
presented alone (e.g., to respond to either 
CSA or to CSB), and is trained to not respond 
to CS

B

A and CSBB when they are presented 
together as a compound stimulus. 

 
Negative patterning can easily be ob-

served in studies of animal learning (Wag-
ner, 2003).  However, it cannot be explained 
by the Rescorla-Wagner model that was 
presented in Chapter 5 (Pearce, 1997).  This 
is because in negative patterning, VA and VB 
must both be positive to generate strong 
responses to A and B.  Therefore when AB 
is presented, the total associative strength 
VA + VB must be even larger.  Thus, the 
model predicts stronger responding to the 
compound – which is exactly the opposite of 
what is required. 

B

 
6.10.2 Patterning and the Null Condi-

tion 
 
Many researchers have argued that XOR 

is equivalent to negative patterning.  This 
means that negative patterning is a linearly 
nonseparable problem that cannot be solved 
by a perceptron (Roitblat & von Fersen, 
1992).  Given that perceptron learning is 
identical to Rescorla-Wagner model, there 
should be no surprise in the latter’s inability 
to deal with negative patterning, or with any 
other linearly nonseparable problem. 

 

 

 

However, there is an important require-
ment in this argument (Yaremchuk et al., 
2005).  Consider a simple negative pattern-
ing paradigm; it would usually be described 
as A+, B+, and AB- (Delamater et al., 1999).  
The pattern space for these conditions is 
provided in Figure 6-3, and reveals a linearly 
separable problem that can easily be solved 
by a perceptron! 

 
For this problem to be truly linearly non-

separable, the null condition must be in-
cluded.  Negative patterning must be de-
fined as A+. B+, -, and AB-.  The pattern 
space for this definition is provided in Figure 
6-4. 

 
That the definition of negative patterning 

must include the null condition might seem 
like nitpicking.  However, it reveals a crucial 
design decision in simulation studies of 
negative patterning.  If the null condition is 
not included, then negative patterning is not 
being simulated – that is, if it is assumed 
that negative patterning is identical to XOR.  
Delamater, Sosa and Katz (1999) simulated 
negative patterning but did not include the 
null condition.  As a result, their networks 
were possibly learning a task that had a dif-
ferent logical structure than the one learned 
by their animal subjects. This might account 
for the discrepancies that they observed 
between their simulation and experimental 
data (Yaremchuk et al, 2005).  

 
 
 

 

 

Figure 6-3.  
The pattern space for the standard definition of 

negative patterning.  It is linearly separable. 

Figure 6-4.  
Negative patterning with the null condition.  It 

is linearly nonseparable. 
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6.11 The Value Unit
6.11.1 Nonmonotonic Activation 
 
The fact that XOR and negative pattern-

ing are linearly nonseparable, and cannot be 
learned by an integration device, does not 
necessarily mean that such problems cannot 
be dealt with by perceptrons.  The reason 
that an integration device cannot solve a 
problem like XOR is because its activation is 
monotonic: one can never decrease activity 
by increasing the net input that is passed 
into the activation function.  As was dis-
cussed in Section 6.8.2, this means that the 
logistic equation behaves as if it has only 
one threshold, when two are required to 
solve XOR. 

 
The typical solution to this problem is to 

model associative learning with more com-
plicated artificial neural networks, networks 
that include at least one layer of processors 
between the input units and the output units.  
Such units are often called hidden units, and 
networks that include them are called multi-
layer perceptrons.  “Application of this kind 
of model both solves knotty problems in 
animal learning and suggests a structure for 
the kinds of representations animals form 
during learning” (Roitblat & von Fersen, 
1992, p. 678).  Broad overviews of multilayer 
networks applied to animal learning are 
available (Enquist & Ghirlanda, 2005). 

 
Importantly, this is not the only solution to 

this problem.  Rather than adding hidden 
units to the architecture, one can deal with 
many linearly nonseparable problems in 
animal learning by adopting a different acti-
vation function in the output unit.  In particu-
lar, the activation function can be non-
monotonic.  This type of activation behaves 
as if it has two thresholds.  Low activity is 
generated for net inputs that are lower than 
θ1. High activity is produced for net inputs 
that are between θ1 and θ2. Low activity re-
sults when net inputs are θ2.  This relation-
ship between net input and activity is non-
monotonic because increases in net input do 
not always produce increases in activity. 

 
6.11.2 The Value Unit 
 
 

 

One candidate nonmonotonic activation 
function is the Gaussian, which is illustrated 
in Figure 6-5, and which was briefly intro-
duced in Section 5.7.  The equation for the 
illustrated Gaussian is: 

))(( 2

)( jjnet
jj enetGa μπ −−==  (38) 

This particular equation has a mean that 
is represented by the symbol μ, and a stan-
dard deviation equal to 1.  This equation 
asymptotes to an activation of 0 when net 
input reaches positive or negative infinity.  
When the net input is equal to  μ, the equa-
tion generates a maximum value of 1.  As 
can be seen from Figure 6-5, this activation 
function is highly tuned – it only generates 
high activity to a narrow range of net input 
values.  For this reason, an output unit that 
uses this activation function is called a value 
unit, using the terminology of Ballard (1986). 

 
One way to view this activation function 

is as one that makes two parallel straight 
cuts through a pattern space.  Because of 
this, a perceptron that uses this activation 
function can solve XOR or negative pattern-
ing without requiring additional hidden units. 

 

 

 

Figure 6-5.  
The Gaussian activation function of a value 

unit. 
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6.12 A Learning Rule for a Value Unit 
6.12.1 Error Minimization 
 
The gradient descent rule that is used to 

train an integration device minimizes the 
total error (E) generated by a network to a 
set of training patterns (e.g., Dawson, 2004).  
In particular, the error that is minimized is 
the sum of squared differences between 
desired and observed activities, taken over 
the total number of output units, and over 
the total number of training patterns.  In the 
equation below, there are m total patterns, n 
total output units, tpj is the desired activity of 
output unit j to pattern p, and apj is the actual 
activity of this unit to this pattern. 

 
2

,1 ,1
)(∑ ∑

= =

−=
mp nj

pjpj atE   (39) 

 
Dawson and Schopflocher (1992) found 

that to train a value unit an elaborated error 
term had to be minimized.  This term in-
cluded the equation above, but added to it 
an additional error component that meas-
ured the difference between the net input of 
an output unit to a pattern (netpj) and the 
current mean of the unit’s activation function 
(μj) for patterns that were supposed to acti-
vate the output unit.  The elaborated error 
term is: 

 

2
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 (40) 

 
6.12.2 Gradient Descent 
 
Armed with their definition of error, Daw-

son and Schopflocher were able to derive a 
gradient descent rule that could be used to 
train a value unit.  Because this was a gra-
dient descent rule, it included the derivative 
of the Gaussian, G’(netpj): 

 

))(( 2

)(2

)()(2)('
μππ

π
−−⋅⋅−=

⋅⋅−=
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pj
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enet
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 (41) 

 
They defined a learning rule error term 

for the first part of their error equation as δpj, 
and discovered that it was identical to the 

gradient descent term for the integration 
device, with the exception that a different 
derivative was used: 

 
)(')( pjpjpjpj netGat ⋅−=δ   (42) 

 
Dawson and Schopflocher (1992) also 

defined an error term (εpj)that was related to 
the second component of their error equa-
tion: 

 
)( pjpjpjpj nett με −⋅=   (43) 

 
The complete learning rule for modifying 

a weight using both of these error terms 
could then be expressed in a format that 
makes apparent its close relationship to the 
delta rule and to the gradient descent rule 
for an integration device.  In the equation 
below, η is the learning rate: 

 

pjpjpjij aw ⋅−⋅=Δ )( εδη   (44) 
 
As was the case for the integration device, 
this equation can be used to modify μj by 
treating it as the weight from an input unit 
that is always on.  
 

6.12.3 An Example Network 
 
A value unit network can be trained, us-

ing this learning rule, to solve XOR without 
the need for hidden units.  Table 6-10 pre-
sents the structure of an example network 
that solved this problem after 50 sweeps 
with a learning rate of 0.10.  Note that this 
network solves the problem because the 
only time that the net input coming from the 
input units is equal to μ is when only one of 
the input units is on.  If both are on, or if both 
are off, the net input is sufficiently far from μ 
to turn the output unit off. 

 
Unit Weight μ 

X -0.87 - 
Y -0.87 - 

Output - -0.86 
Table 6-10 

A peer-reviewed monograph published by Comparative Cognition and Behavior Reviews on 
behalf of the Comparative Cognition Society. © Michael R. W. Dawson 2008 



Chapter 6 Context, Bias, and the Null Condition 75 

6.13 Implications for Animal Learning 
6.13.1 Design Decisions 
 
This chapter has examined three differ-

ent design decisions that are part of using 
artificial neural networks to simulate aspects 
of animal learning.  First, it argued that the 
bias term in a perceptron provided a means 
to model associations to uncontrolled back-
ground stimuli.  Second, it argued provided 
empirical and logical arguments that a null 
condition, in which the perceptron was 
trained to turn off when no input units were 
activated, should be included in these sorts 
of simulations.  Third, it demonstrated that 
one could easily change the capabilities of a 
perceptron – and deal with linearly nonsepa-
rable problems such as negative patterning 
– by replacing a monotonic activation func-
tion (e.g., the logistic equation) with a non-
monotonic activation function (e.g., the 
Gaussian equation). 

 
With respect to this latter design deci-

sion, it is important to recognize that the 
learning rules that have been proposed for 
the three architectural variants (perceptron, 
integration device, and value unit) are all 
structurally identical.  First, all three learning 
rules are error correcting.  Second, all three 
learning rules define a change in weight in 
terms of the product of three different val-
ues: a learning rate, a measure of output 
unit error, and an input unit’s activity.  The 
only difference between the three rules is 
that output unit error is defined with slightly 
different equations. 

 
The structural similarity of the three rules 

carries over to the proven relationship be-
tween each of them and the Rescorla-
Wager model.  In Section 5.8, we proved 
that one could translate delta rule learning 
into the Rescorla-Wagner equation.  Fur-
thermore, we proved this when it was as-
sumed that the activation function for the 
device being trained was nonlinear.  Finally, 
this proof of the equivalence between the 
two approaches did not depend upon the 
precise nature of the nonlinear activation 
function.  What this means is that any of the 
three versions of the perceptron that we 
have explored thus far in this book have a 
formal equivalence to the Rescorla-Wagner 
model.  The source of this equivalence is the 

fact that they are trained with a variant of the 
delta rule. 

 
6.13.2 A Problem Emerges 
 
This established formal equivalence be-

tween our three architectures and the Res-
corla-Wagner model raises a surprising 
problem: if all of these systems are equiva-
lent, then how is it possible for some of them 
to be able to solve a different set of prob-
lems than the others?  That is, if integration 
devices, value units, and Rescorla-Wagner 
learning are functionally equivalent, then 
how is it possible for two of these systems to 
be incapable of solving negative patterning, 
while the third can?  It would appear that 
systems that are formally equivalent at one 
level can respond differently at another. 

 
It could, of course, be argued that this 

problem only arises because of the special 
properties of the value unit.  However, we 
will see in the next chapter that this argu-
ment is false.  This is because we will see 
that there are several learning paradigms for 
which the Rescorla-Wagner model makes 
different predictions than does the integra-
tion device.  In other words, the problem 
doesn’t arise because of the specific proper-
ties of one artificial neural network.  Rather, 
the assumed equivalence between these 
networks and Rescorla-Wagner is not com-
pletely accurate.  We now turn to examining 
this problem both empirically and theoreti-
cally. 
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Previous chapters have provided empirical and formal results that have demonstrated the 

equivalence of the delta rule and the Rescorla-Wagner model.  However, without a great deal of 
effort one can raise serious questions about this relationship.  In particular, it is fairly easy to gen-
erate results in which an integration device responds in a fashion that is contrary to the predic-
tions of the Rescorla-Wagner model.  The purpose of this chapter is to provide the reader with 
several such results, and to raise deeper questions about the relationship between the models of 
network and animal learning that have been discussed to this point. 
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7.1 Old Connectionism and the New Associationism
7.1.1 Two Connectionist Eras 
 
It is common to divide connectionism into 

two historical eras, Old Connectionism and 
New Connectionism (Medler, 1998).  New 
Connectionism concerns the study of adap-
tive, multilayered networks, and arose in the 
mid-1980s (Rumelhart & McClelland, 1986). 

 
The networks that we have been study-

ing in this book all properly belong to the 
earlier era of Old Connectionism, which 
lasted until the late 1960s.  The adaptive 
networks of Old Connectionism were not 
multilayered – they only included input units 
and output units, and had no intermediate 
processors.  This is because researchers 
were unable to determine how multilayer 
networks could be trained.  Bernard Widrow, 
one of the leading figures of Old Connec-
tionism, recalled “we stopped doing neural 
nets because we’d hit a brick wall trying to 
adapt multilayer nets” (Anderson & 
Rosenfeld, 1998). 

 
We have seen that the limitations of the 

standard perceptron and of the integration 
device rest with the fact that such networks 
can only solve linearly separable problems 
(Minsky & Papert, 1988).  This problem is 
directly related to the absence of intermedi-
ate processors.  However, it is easy to es-
tablish that animals and humans can learn 
to solve linearly separable problems 
(Shanks, 1995). 

 
For this reason, most modern studies of 

artificial neural networks examine the prop-
erties of systems that have one or more lay-
ers of hidden units.  Such networks are far 
more powerful than the perceptron, and be-
came extremely popular after researchers 
discovered learning rules that could be used 
to train them (Rumelhart et al., 1986).  “For 
example, we know that connectionist net-
works have the in principle power of a uni-
versal Turing machine, but we also know 
that perceptron-like single layer networks 
are limited in their computational power.  
Thus, we should focus current research on 
multilayer networks” (Medler, 1998, p. 40). 

 
 

7.1.2 New Associationism 
 
The limitations of Old Connectionist net-

works have not been lost on researchers 
who are interested in associative learning 
(Quinlan, 1991; Shanks, 1995).  This is par-
ticularly true given the formal links that we 
have seen between the delta rule and the 
Rescorla-Wagner model.  For the most part, 
modern attempts to relate artificial neural 
networks to associative learning do so using 
multilayer networks (Enquist & Ghirlanda, 
2005; Schmajuk, 1997). One might view 
such research as representing a modern 
revitalization of associationism (Bechtel, 
1985; Bechtel & Abrahamsen, 1991). 

 
It is almost certainly the case that many 

of the regularities in associative learning will 
only be captured by employing multilayer 
networks trained with modern learning rules.  
However, it is also the case that the dis-
missal of simpler networks and their rela-
tionship to associative learning is premature.  
One reason for this is that many of these 
phenomena may only require the kind of 
explanation that can be couched in terms of 
Old Connectionism.  A second reason is that 
we have already seen that modern varia-
tions of the perceptron, such as the value 
unit, are capable of solving some linearly 
nonseparable problems. 

 
A third reason for continuing to explore 

the relationship between Old Connectionism 
and associative learning is that it is far more 
complicated than one would imagine.  In 
particular, in spite of the empirical and for-
mal results that have been presented thus 
far in this book, it is relatively easy to dem-
onstrate that Old Connectionist networks 
can generate results that are contrary to the 
predictions of the Rescorla-Wagner model.  
The fact that an integration device can gen-
erate such discrepancies, in light of the for-
mal results of Chapter 5, provides the para-
dox of the perceptron.  The purpose of this 
chapter is to provide several demonstrations 
of this paradox.  An account of the paradox, 
and of its implications for theories of asso-
ciative learning, follows in Chapters 8 and 9. 
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7.2 Facilitated Reacquisition
7.2.1 The Savings Phenomenon 
 
Consider a paradigm in which an asso-

ciation is learned, then extinguished, and 
finally learned again.  A common finding in 
the literature is that the reestablishment of 
the association occurs faster than does the 
original conditioning (Napier, Macrae, & 
Kehoe, 1992).  This effect is called facili-
tated reacquisition.  This is a form of sav-
ings, in the sense that there must be some 
of the original learning saved after extinction 
in order to facilitate relearning. 

 
Miller, Barnet, and Grahame (1995) have 

pointed out that one of the failures of the 
Rescorla-Wagner model is that it cannot 
account for facilitated reacquisition.  This is 
because the Rescorla-Wagner model as-
sumes that extinction is the process by 
which an associative strength becomes 0. 

 
7.2.2 Method and Results 
 
A simulation was conducted to determine 

whether facilitated reacquisition could be 
observed in an integration device.  25 differ-
ent networks were run as subjects in a study 
in which independent associations involving 
CSA and CSB were established in Phase 1, 
extinguished in Phase 2, and reestablished 
in Phase 3.  The simulation settings for this 
study, as well as the remaining ones de-
scribed in this chapter, were identical to 
those used in the Chapter 4 simulations.  
The training sets for the current study are 
provided in Table 7-1: 

B

 
Phase Trial 

Type 
CSA CSBB tj

- 0 0 0
A+ 1 0 1

 
1 

B+ 0 1 1
- 0 0 0

A- 1 0 0
 

2 
B- 0 1 0
- 0 0 0

A+ 1 0 1
 

3 
B+ 0 1 1

Table 7-1 
 
The results of this experiment demon-

strated strong facilitated reacquisition.  On 

average, networks learned the associations 
to the CSs after 695.9 sweeps during Phase 
1.  After extinction, networks reacquired 
these associations after only 62.6 sweeps.  
This difference was statistically significant (t 
= 3005.415, df =48, p < 0.0001). 

 
Table 7-2 provides the structure of a 

typical network after the three different 
phases of learning.  An examination of this 
table explains why facilitated reacquisition is 
observed in an integration device.  The ef-
fect of the first phase of training is to turn 
each CS into a strong conditioned excitor, 
and background context into a strong condi-
tioned inhibitor (to turn the integration device 
when it is subjected to the null condition).  
Interestingly, the effect of the second phase 
of training is to slightly reduce the associa-
tions for the two CSs, and to convert back-
ground context into an extremely powerful 
conditioned inhibitor – powerful enough to 
overwhelm the excitatory signal coming from 
either CS.  Because the weights for the two 
CSs remain highly positive, much less train-
ing is required to make the integration de-
vice respond in the desired fashion during 
the third phase of training. 

 
Phase Unit Weight θ 

CSA 4.92 - 
CSBB 4.92 - 

 
1 

Output - -2.20 
CSA 3.28 - 
CSBB 3.29 - 

 
2 

Output - -5.50 
CSA 4.78 - 
CSBB 4.78 - 

 
3 

Output - -2.57 
Table 7-2 

 
The key result of this simulation is that 

facilitated reacquisition is easily demon-
strated in this particular model of network 
learning. 
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7.3 Retarded Reacquisition
7.3.1 An Alternative Effect 
  
Extinguishing conditioning to a CS can 

lead to a situation in which reacquisition is 
facilitated.  However, in some instances the 
reverse is true. 

 
In one example study, rats underwent 

fear conditioning by having a tone (CS) 
paired with a shock (US) (Bouton, 1986).  
This conditioning was then extinguished.  
When animals were subjected to a moderate 
amount of extinction (16 or 24 trials), reac-
quisition of the fear conditioning proceeded 
at the same rate as control animals.  How-
ever, when animals experienced a pro-
longed period of extinction (72 trials), reac-
quisition of the fear conditioning proceeded 
significantly slower than was the case for 
control animals.  The Rescorla-Wagner 
model does not predict this result for exactly 
the same reasons that the model does not 
predict facilitated reacquisition (Miller, Bar-
net & Grahame, 1995, p. 371). 

 
7.3.2 Method and Results 
 
Interestingly, a minor change in the 

methodology that was used in the previous 
simulation produces retarded reacquisition.  
As was noted in Section 7.2, a great deal of 
the facilitated reacquisition effect was due to 
changes in network bias.  It was previously 
shown that a network’s bias is strongly af-
fected by the null condition (compare Sec-
tion 4.10.2 to Section 6.6.2).  The current 
simulation removed the null condition (Table 
7-3), and then repeated the design de-
scribed in Section 7.2. 

 
Phase Trial 

Type 
CSA CSBB tj

A+ 1 0 11 
B+ 0 1 1
A- 1 0 02 
B- 0 1 0
A+ 1 0 13 
B+ 0 1 1
Table 7-3 

 
The exclusion of the null condition in this 

simulation produced a much different effect 
than the one observed in Section 7.2.  On 

average, networks converged on Phase 1 
training after 48.12 sweeps.  After extinction, 
Phase 3 reacquisition of the conditioning to 
the two CSs was longer, requiring an aver-
age of 59.72 sweeps.  This difference was 
statistically significant (t = 71.756, df =48, p 
< 0.0001). 

 
7.3.3 Explanation and Implications 
 
Why is reacquisition retarded in this 

simulation?  Table 7-4 provides the structure 
of a typical network after each training 
phase.  After Phase 1, both CSs and back-
ground context have all become conditioned 
excitors.  This differs from the previous 
simulation, in which background context be-
came a conditioned inhibitor.  After Phase 2, 
all three have become conditioned inhibitors.  
Again, this differs from the preceding simula-
tion, in which CSA and CSB remained as 
conditioned excitors.  Phase 3 training con-
verts all three back into conditioned excitors.  
Because all three network components must 
be changed from having negative to positive 
values after Phase 2, learning takes longer 
in Phase 3 than does the initial Phase 2 
learning. 

B

 
Phase Unit Weight θ 

CSA 0.77 - 
CSBB 0.77 - 

 
1 

Output - 1.43 
CSA -0.69 - 
CSBB -0.70 - 

 
2 

Output - -1.51 
CSA 0.77 - 
CSBB 0.77 - 

 
3 

Output - 1.43 
Table 7-4 

 
The simulation methodology is quite dif-

ferent from that used by Bouton (1986).  As 
a result, different explanations of the effect 
are provided by the two different ap-
proaches.  Bouton makes an argument that 
CSs retain excitatory associations, but when 
these are very weak, retarded reacquisition 
results.  The simulation explains retarded 
reacquisition by noting that the effect of ex-
tinction is to convert the CSs into condi-
tioned inhibitors. 
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7.4 Extinction of a Conditioned Inhibitor 
7.4.1 Undesired Extinction 
 
In the Rescorla-Wagner model there is 

symmetry between excitation and inhibition.  
This is because “conditioned excitation and 
inhibition reflect positive and negative val-
ues, respectively, of a common variable rep-
resenting associative strength” (Miller, Bar-
net, & Grahame, 1995, p. 371).  In Section 
4.3, it was shown that extinction of a condi-
tioned excitor in an integration device 
causes its associative strength to move in a 
negative direction, which is consistent with 
the Rescorla-Wagner model.  The symmetry 
of the Rescorla-Wagner model predicts, 
then, that extinction of a conditioned inhibitor 
should cause its associative strength to 
move in a positive direction. 

 
Unfortunately, this prediction is not borne 

out in the animal literature (e.g., Zimmer-
Hart & Rescorla, 1974).  Miller, Barnet and 
Grahame (1995) cite several studies that 
indicate that if a conditioned inhibitor is pre-
sented alone (i.e., without the US), its asso-
ciative strength is either unchanged, or 
moves in a negative direction.  “These ob-
servations are among the more problematic 
for the Rescorla-Wagner model” (p. 371). 

 
7.4.2 Method and Results 
 
A simulation study was conducted to de-

termine how a conditioned inhibitor re-
sponded to extinction in an integration de-
vice.  Two phases of training were con-
ducted to first make CSA a conditioned exci-
tor and CSB a conditioned inhibitor, and to 
then extinguish this training (see Table 7-5).  
The question of interest is the effect of this 
extinction on the weight from CS

B

BB. 
 

Phase Trial 
Type 

CSA CSBB tj

- 0 0 0
A+ 1 0 1

 
1 

AB- 1 1 0
- 0 0 0

A- 1 0 0
 

2 
B- 0 1 0

Table 7-5 
 
 

Table 7-6 provides the structure of a 
network averaged over 25 different integra-
tion devices that were used as subjects in 
this study.  It can be seen that the first 
phase of training resulted a strong excitatory 
weight for CSA, a strong inhibitory weight for 
CSB, and a moderately negative bias.  The 
extinction phase of training decreased the 
weight for CS

B

A (t = 23.963, df =48, p < 
0.0001), made the bias much more negative 
(t = 23.963, df =48, p < 0.0001), made the 
weight for CSBB marginally more negative.  
This last effect was very slight in absolute 
terms, but was statistically significant (t = 
18.141, df =48, p < 0.0001) because this 
weight always was made more negative af-
ter the second phase of training. 

 
Phase Unit Weight θ 

CSA 4.47 - 
CSBB -4.80 - 

 
1 

Output - -2.45 
CSA 2.37 - 
CSBB -4.81 - 

 
2 

Output - -4.58 
Table 7-6 

 
These results are consistent with the 

Rescorla-Wagner model as far as the condi-
tioned excitor is concerned: it becomes less 
excitatory after extinction.  However, they 
are inconsistent with this model, and are 
consistent with the animal learning results, 
as far as the conditioned inhibitor is con-
cerned: the weight for CSB does not move in 
a positive direction as the Rescorla-Wagner 
model predicts. 

B

 
Unlike the simulations discussed in Sec-

tions 7.2 and 7.3, this result is not depend-
ent upon the presence of the null condition.  
If the simulation is carried out with the null 
condition removed from both training sets, it 
is still the case that the second phase of 
training does not change the weight for CSB 
in a positive direction. 

B
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7.5 Conditioned Inhibition and Nonreinforced Novel Cues 
7.5.1 Conditioned Inhibition 
 
Pavlov (1927) demonstrated that condi-

tioned inhibition can be produced by rein-
forcing CSA, but not reinforcing the com-
pound stimulus CSAB.  “In this way the com-
bination is gradually rendered ineffective, so 
that the conditioned stimulus when applied 
in combination with the additional stimulus 
loses its positive effect, although when ap-
plied singly and with constant reinforcement 
it retains its full powers (Pavlov, 1927, p. 
68).  The agent is inhibited by CSB, because 
it has learned that it is a signal that rein-
forcement is not forthcoming. 

B

 
This paradigm can easily be used to pro-

duce conditioned inhibition in an integration 
device that employs the logistic activation 
function.  At the end of such training (requir-
ing in the order of 550 sweeps), a typical 
network would have a bias of -2.36, a weight 
of 4.56 for CSA, and a weight of -4.80 for 
CSB. B

 
7.5.2 Adding a Novel Cue 
 
After using the procedure above to turn 

CSB into a conditioned inhibitor, one could 
then proceed to introduce a third, novel 
stimulus (CS

B

C).  This novel stimulus could 
be repeatedly paired with the conditioned 
inhibitor CSBB, with the pair never being rein-
forced.  This training would proceed without 
reinitializing the weights, so that the previ-
ous effects of learning were preserved in the 
network when the novel stimulus was intro-
duced. 

 
Miller, Barnet and Grahame (1995) have 

noted that the Rescorla-Wagner model pre-
dicts that this pairing should convert CSC 
into a conditioned excitor.  This is because 
of the model’s presumed symmetry between 
excitation and inhibition, which was dis-
cussed in Section 7.4.  In other words, this 
second phase of learning is simply a mirror 
image of the kind of learning that was used 
to make CSB a conditioned inhibitor, and 
therefore should produce the opposite re-
sult. 

B

 
However, this prediction counts as a fail-

ure of the model.  Baker (1974), for in-

stance, conducted a carefully controlled ex-
periment that failed to provide any evidence 
that the second phase of training caused the 
novel stimulus to become excitatory. 

 
In contrast to the prediction of the Res-

corla-Wagner model, the second phase of 
network training involving CSB and CSB C 
does not turn the latter into an excitor.  This 
is because in this training, when these two 
stimuli are presented together, the desired 
response is to have the output unit turn off.  
Importantly, this desired response is pro-
duced almost immediately because of the 
strong inhibitory weight that has already 
been produced to CSBB.  As a result, the net-
work converges quickly, and has had little 
opportunity to modify the weight for CSC, 
which typically starts as a small random 
number according to the methods that have 
been used throughout this manuscript.  For 
example, the integration device described in 
Section 4.5.1 converged after 1 sweep of 
additional training, and produced a final 
weight of 0.05 for CSC. 

 
As was the case in Section 7.4, the rea-

son that the network makes a different pre-
diction than does the Rescorla-Wagner rule 
is because network learning is driven by the 
output unit’s response, and not by underly-
ing associative strengths.  Output unit re-
sponses do not preserve the symmetry be-
tween excitation and inhibition that are cen-
tral to the dynamics of the Rescorla-Wagner 
rule, and this breaking of symmetry permits 
the network to predict results that are more 
consistent with existing results from the ex-
perimental literature. 
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7.6 Latent Inhibition
7.6.1 The CS-Preexposure Effect 

 
In latent inhibition (Lubow & Moore, 

1959), or the CS-preexposure effect, a CS is 
presented in the absence of the US.  This 
preexposure produces slower conditioning 
to the CS than in a control condition in which 
the preexposure does not occur.  The stan-
dard account of latent inhibition is in terms of 
modulations of attentional resources de-
voted to the CS (Lubow, 2005). 

 
Latent inhibition is a phenomenon that is 

not predicted by the Rescorla-Wagner 
model (Miller, Barnet, & Grahame, 1995, p. 
373).  This is because the initial association 
for the CS is 0, and therefore should not 
change when the λ for nonreinforced trials is 
also equal to 0. 

 
7.6.2 Method 
 
Can latent inhibition be produced in an 

integration device?  Two training sets were 
developed to answer this question, and are 
presented in Table 7-7.  The first included 
the null condition and the presentation of 
CSA without reinforcement.  The second in-
cluded the null condition and the presenta-
tion of CSA with reinforcement.  Control net-
works were only trained with the second set 
of patterns; experimental networks were 
trained on the first, and then received con-
tinued training on the second without alter-
ing the weights produced by the first phase 
of training. 

 
Phase Trial 

Type 
CSA tj

- 0 0 Preexposure 
A- 1 0 
- 0 0 Learning 

A+ 1 1 
Table 7-7 

 
7.6.3 Results 
 
On average, 25 different networks in the 

control condition learned to respond to CSA 
after 421.0 sweeps.  When experimental 
networks were preexposed to CSA without 
reinforcement, they learned to respond to 
CSA in Phase 2 after 428.4 sweeps.  While 

this difference was small, it was extremely 
reliable: no experimental network learned 
the association as quickly as the slowest 
control network.  As a result, this effect was 
statistically significant (t = 23.115, df =48, p 
< 0.0001).  In other words, while the Res-
corla-Wagner model does not produce latent 
inhibition, the integration device does. 

 
7.6.4 Explaining the Effect 
 
How is latent inhibition produced in the 

integration device?  Table 7-8 presents the 
structure of a typical network produced from 
preexposure to CSA, as well as the structure 
of a typical network that has learned to re-
spond to CSA.  It can be seen that the main 
effect of preexposure is to turn the context 
into a strong conditioned inhibitor (as evi-
denced by the negative bias), and to turn 
CSA into a milder conditioned inhibitor (as 
evidence by its less extreme negative 
weight).  In order to learn to respond to CSA, 
the weight from its input unit must be much 
larger and positive, as is also seen in the 
table.  The fact that CSA is turned into a mild 
conditioned inhibitor by Phase 2 learning 
means that more learning is required to con-
vert this negative weight into a stronger one.  
Without preexposure, the weight from CSA 
would be randomly started in the range from 
-0.1 to 0.1, and therefore less learning would 
be required to turn the stimulus into a condi-
tioned excitor. 

 
Type of 

 Network 
Weight  

from CSA

θ 

Preexposure -0.77 -2.20
 Conditioned to CSA 4.63 -2.20

Table 7-8 
 
  There are many theories about latent 

inhibition, as well as a complex set of em-
pirical findings that any single theory has 
difficulty capturing completely (e.g., Schma-
juk, Lam, & Gray, 1996).  The network re-
sults contribute to this mix by suggesting 
that in some instances latent inhibition might 
be due to the fact that preexposure causes 
the CS to become a conditioned inhibitor. 
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7.7 Superblocking
7.7.1 A Strange Prediction 
 
For the most part, we have been examin-

ing the performance of the perceptrons em-
pirically, by examining the results of com-
puter simulations.  Some researchers have 
argued that if one can use simulations to 
make a point about a theory, then one 
should be able to make the same point theo-
retically (Kukla, 1989).  This section at-
tempts to do so by arguing that an integra-
tion device will not make a particularly coun-
terintuitive prediction that is made by the 
Rescorla-Wagner model. 

 
Consider a system that has received 

conditioning such that CSA and CSB have 
been presented independently along with 
the US.  As a result, both of these CSs have 
become conditioned excitors.  Now imagine 
that they are both presented at the same 
time along with a new stimulus, CS

B

C; let this 
compound of three CSs be reinforced.  What 
will happen to the association for CSC? 

 
Miller, Barnet, and Grahame (1995) ar-

gued that the Rescorla-Wagner model pre-
dicts that this situation will produce super-
blocking of CSC.  That is, the model does 
not just predict that the previous training 
involving the other two CSs will block the 
conversion of CSC into a conditioned excitor.  
Instead, the Rescorla-Wagner model actu-
ally predicts superconditioning: when the 
compound stimulus is presented, CSC will 
become a conditioned inhibitor!  They list 
this counterintuitive prediction as a failure of 
the Rescorla-Wagner model because there 
is scarce evidence in the animal literature for 
such a superblocking effect. 

 
7.7.2 A Thought Experiment 
 
Let us conduct a thought experiment to 

determine whether superblocking will occur 
in an integration device.  The subject in this 
thought experiment will be a network that 
has one output unit and three input units.  
The three input units are used to represent 
the presence or absence of three different 
conditioned stimuli: CSA, CSB, and CSB C. 

 
Imagine that in Phase 1 of training, this 

network conditioned as follows: -, A+, and 

B+.  When this training is completed, the 
network will turn on when either CSA or CSB 
is presented alone, and will turn off to the 
null condition.  This means that the bias will 
be negative enough to produce low activity 
(0.10) when no CSs are present.  Further-
more, connection weights for CS

B

A and CSBB 
must both be sufficiently high to produce a 
net input that will overcome the bias, and 
produce output unit activation that is at least 
0.90.  Finally, because CSC was not pre-
sented, the weight from CSC will not have 
been trained, and thus will be whatever 
small random value that the weight was ini-
tialized to before Phase 1 training began. 

 
This network now undergoes Phase 2 

training, during which it is given different 
conditioning: - and ABC+.  What will hap-
pen?  Previous training has already caused 
the network to turn off to the null condition, 
so when the null condition is presented in 
Phase 2 it will still turn off – no additional 
training is required to generate a hit.  Fur-
thermore, previous training has produced a 
network that will turn on to CSA or CSB 
alone.  So, when they are presented to-
gether in Phase 2 (the presence of CS

B

C will 
be irrelevant), the net input will be even 
higher than was the case in Phase 1.  As a 
result, the network will turn on to the com-
pound stimulus without any additional train-
ing. 

 
In short, the network will generate hits to 

both Phase 2 patterns without any additional 
training.  Because of this, the learning rule 
will not alter the connection weights.  They 
will remain identical to the weights that were 
produced in Phase 1.   

 
This clearly can be interpreted as a situa-

tion in which prior learning on CSA and CSB 
blocks later learning involving CS

B

C.  How-
ever, it also shows that superblocking will 
not occur in the network.   The fact that 
Phase 2 will not cause any further changes 
in connection weights indicates that CSC will 
not become a conditioned inhibitor.  The 
thought experiment has revealed another 
discrepancy between the integration device 
and the Rescorla-Wagner model. 
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7.8 The Overexpectation Effect
7.8.1 Overexpectation 
 
To this point in the chapter, we have ex-

amined five different examples in which the 
responses of an integration device diverge 
from the predictions of the Rescorla-Wagner 
model.  For four of these results, the re-
sponses of the integration device might be 
seen as an improvement, because network 
performance corrects what Miller, Barnet, 
and Grahame (1995) list as a failure of the 
Rescorla-Wagner model.  This is not the 
intended interpretation.  To emphasize this 
point, let us turn to a discrepancy in which 
integration devices fail to produce one of the 
many successes of the animal learning the-
ory. 

 
One of the most theoretically important 

effects in associative learning is the overex-
pectation effect. The effect is produced 
when CSA and CSB have been independ-
ently paired with a US. Then, the two CSs 
are presented as a compound and are 
paired with the US.  Overexpectation is de-
fined as occurring when there is reduced 
responding (relative to a control) to CS

B

A and 
CSBB as individual stimuli following the train-
ing on the compound stimulus. 

 
This result is counterintuitive because 

CSA and CSB have apparently lost associa-
tive strength despite continued reinforce-
ment during the compound training.  Never-
theless, overexpectation effects have been 
found in studies on Pavlovian fear condition-
ing in rats (Blaisdell, Denniston, & Miller, 
2001; Kremer, 1978; Rescorla, 1970), appe-
titive conditioning in rats (Lattal & Nakajima, 
1998; Rescorla, 1999) and autoshaping with 
pigeons (Khallad & Moore, 1996).  Further-
more, overexpectation is predicted from the 
Rescorla-Wagner model, and counts as one 
of its most notable successes (Miller, Barnet 
& Grahame, 1995). 

B

 
The Rescorla-Wagner model predicts 

overexpectation because the result of condi-
tioning to the two individual CSs is that the 
associative strength for each will be near λ.  
Therefore, at the start of training to the com-
pound stimulus, the ΣV term in the model 
will be near 2λ, because each CS will be 
contributing λ to this term.  One conse-

quence of this is that the expression (λ - ΣV) 
in the Rescorla-Wagner model will take on a 
negative value.  As a result, the associative 
strengths for each individual CS will be de-
creased when training to the compound be-
gins.  Later, when the CSs are presented 
individually, weaker responses are expected 
because of these decreased associative 
strengths. 

 
7.8.2 A Network Failure 
 
An argument identical in structure to the 

one presented in Section 7.6.2 concludes 
that an integration device will not produce 
the overexpectation effect (Dawson & 
Spetch, 2005).  Dawson and Spetch imag-
ined a network that, in Phase 1 of training, 
learned to respond to CSA or CSB (the com-
pound CS

B

AB was not presented), and 
learned not to respond in their absence. 
Such a network is very similar to the one 
described in Section 7.6 after Phase 1 train-
ing.  Not surprisingly, the individual connec-
tion weights from both CSA and CSBB to the 
output unit must each be substantially larger 
than the bias.  This is because the presence 
of only one of these CSs must produce a 
signal that is sufficiently strong to turn the 
output unit on.  

 
Dawson and Spetch (2005) proposed 

that in Phase 2 of training the network is 
presented CSA and CSB together as a com-
pound stimulus.  As was argued in Section 
7.6.2, this will result in an even stronger sig-
nal being sent to the output unit, which will 
cause it to (correctly) turn on. Because this 
response is correct – and because the net-
work will correctly fail to respond to the null 
condition – the network’s weights and bias 
will not be modified at all during Phase 2. 
Therefore the perceptron’s response to the 
individual stimuli will not decrease, and the 
overexpectation effect will not be produced.   

B

 
Dawson and Spetch (2005) reported a 

simulation that supported this prediction.  
Thus overexpectation is a discrepancy be-
tween machine learning and animal learning 
that counts as a failure of the integration 
device. 
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7.9 Overexpectation in a Value Unit 
7.9.1 Changing the Network 
 
An integration device will not generate 

the overexpectation effect because its acti-
vation function is monotonic.  Once the con-
nection weights have been adjusted to pro-
duce a net input that will turn the output unit 
on, any change that produces an increase in 
net input will still turn the output unit on.  If 
this is the correct response, then weights will 
not be changed. 

 
In Chapter 6, it was noted that choosing 

the activation function is a design decision 
faced by a neural network researcher.  One 
could replace the logistic activation function 
with the Gaussian.  Because the Gaussian 
is nonmonotonic, it is possible that a value 
unit may exhibit the overexpectation effect. 

 
7.9.2 A Network Success 
 
Dawson and Spetch (2005) confirmed 

this possibility.  They found that when the 
compound stimulus was presented to a 
value unit that had already learned to re-
spond to CSA and CSB presented sepa-
rately, the value unit incorrectly turned off.  
This error caused the learning rule to modify 
the connection weights.  At the end of a 
small amount of training, the value unit re-
sponded correctly to the compound stimulus 
(and also responded correctly to the null 
condition). 

B

 
Importantly, this small amount of addi-

tional training also produced the overexpec-
tation effect.  A value unit generated activi-
ties of less than 0.50 to either CSA or CSB 
when they were presented independently.  
Recall that this was after Phase 1 training 
had caused the network to turn on to either 
of these stimuli. 

 
7.9.3 Implications of this Result 
 
Dawson and Spetch’s (2005) demonstra-

tion that a value unit will produce the over-
expectation effect should not be taken as 
suggesting that this type of network provides 
a better model of conditioning because of a 
better fit to empirical predictions of the Res-
corla-Wagner model.  It merely shows that 
altering a design decision can produce radi-

cally different responses in a perceptron.  
One version of the perceptron produces re-
sponses that are consistent with a model of 
animal learning, while a different version of 
the same type of network produces results 
that are not. 

 
This sort of result could motivate a re-

search program in which one systematically 
modified the properties of a neural network 
in an attempt to find the architecture that 
provided an optimal fit to animal data, or the 
highest degree of concordance with an ani-
mal learning model, or both.  Such a re-
search program would almost certainly pro-
duce an interesting set of results. 

 
For instance, it would likely uncover a set 

of interactions between network types and 
problem types (e.g., Dawson, 2005, Chap. 
14).  That is, one version of the perceptron 
will handle some problems nicely, but will 
have difficulties with others.  Changing the 
perceptron might help with these difficulties, 
but reveal a different set of troubles for the 
new network.  For instance, the integration 
device has problems with overexpectation.  
Changing the integration device to a value 
unit solves this problem, but will raise oth-
ers.  For instance, a value unit might mis-
takenly predict superblocking. 

 
Network type by problem type interac-

tions might lead researchers to consider 
principles methods for deciding what type of 
perceptron is most appropriate for modeling 
associative learning.  However, researchers 
would benefit more from first considering a 
more general question.  Given the formal 
equivalence between these networks and 
the Rescorla-Wagner model, how is it possi-
ble for perceptrons to generate results that 
differ from Rescorla-Wagner predictions?  
This is the paradox of the perceptron – how 
does formal equivalence lead to empirical 
discrepancy? 

 
In addition to the formal relationships be-

tween these two approaches to learning, 
there must also be fundamental differences 
between them.  What are these differences, 
and how might they impact theories of learn-
ing?  The purpose of Chapter 8 is to exam-
ine such questions. 
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8.1 A Multitude of Models
8.2 Rescorla-Wagner as a Mathematical Model 
8.3 The Perceptron: Simulation, not Mathematical Model
8.4 What Did Rescorla and Wagner Model? 
8.5 Tacit Theories of Responding
8.6 The Impact of Responding while Learning
8.7 The Impact of Responding while Forgetting
8.8 Paradox Lost

 
The previous chapter demonstrated that in spite of the formal equivalence that was estab-

lished in Chapter 5, a number of cases exist where a particular perceptron – the integration de-
vice – generates different results than does the Rescorla-Wagner model.  Why does this percep-
tron paradox exist?  The current chapter argues that the perceptron paradox arises because the 
Rescorla-Wagner model and the perceptron are qualitatively different types of models.  It ex-
plores the notion of different types of models in psychology and cognitive science, and how these 
differences lead to the paradox.  The paradox is resolved in the realization that the perceptron, as 
a computer simulation, must respond before its connection weights are updated.  In contrast, the 
Rescorla-Wagner equation defines how associations can be altered without first requiring re-
sponses.  It is argued that while the two might be equivalent at the computational level of analy-
sis, they are not at the algorithmic level, where the effects of responding (or not) are critical. 
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8.1 A Multitude of Models
Modern psychology has made modeling 

one of its major methodologies.  However, it 
has been argued that not all of the models 
that it uses are of the same type (Dawson, 
2004).  This argument plays a central role in 
understanding the perceptron paradox that 
was detailed in Chapter 7.  For this reason, 
let us briefly consider the major classes of 
psychological models. 

 
8.1.1 Models for Data 
 
The type of model that is most used in 

psychology is a model for data.  “Models for 
data summarize a set of observations in the 
behavioral or biological sciences so that we 
may communicate with our colleagues and 
the public” (Lunneborg, 1994).  In other 
words, all of the statistical tools that are em-
ployed by experimental psychologists are 
models of data.  As such, they fit pre-
existing observations or measurements, 
they are usually linear, they are ordinarily 
evaluated by considering their goodness of 
fit to the existing observations, they can de-
scribe behavior but do not behave in their 
own right, and they are not designed to sur-
prise us (Dawson, 2004).  Neither the Res-
corla-Wagner model nor the perceptron are 
models for data, and therefore this type of 
model will not concern us for the rest of this 
chapter. 

 
8.1.2 Mathematical Models 
 
The Rescorla-Wagner model is a proto-

typical example of a mathematical model in 
psychology.  "From the first efforts toward 
psychological measurement, investigators 
have had in mind the goal of making pro-
gress toward generality in psychological 
theory by developing quantities analogous to 
mass, charge, and the like in physics and 
showing that laws and principals formulated 
in terms of these derive quantities would 
have greater generality than those formu-
lated in terms of observables" (Estes, 1975).  
In other words, mathematical models have a 
much more ambitious goal than do models 
of data: mathematical models are intended 
to provide a quantitative expression of psy-
chological laws that not only describe the 
primary data from which they were derived, 
but can also be used to generate new ex-

periments that can often confirm a mathe-
matical model’s surprising prediction. 

 
  One reason for the lasting influence of 

the Rescorla-Wagner model was its ability to 
generate a number of surprising predictions, 
many of which were confirmed by new ex-
periments that were themselves inspired by 
the model (Miller et al., 1995).  For example, 
the model was originally derived to provide 
an account of the blocking phenomenon 
(Kamin, 1968, 1969).  However, its validity 
was established when it predicted a number 
of counterintuitive situations to “unblock” 
stimuli, and had these predictions experi-
mentally confirmed (Walkenbach & Haddad, 
1980). 

 
8.1.3 Computer Simulations 
 
  The various perceptrons that have been 

explored in this book are examples of com-
puter simulations.  At the most basic level, a 
computer simulation in psychology is an ef-
fective procedure for actually generating 
behavior of interest.  “Since cognitive scien-
tists aim to understand the human mind, 
they, too, must construct a working model” 
(Johnson-Laird, 1983).  We will see that a 
crucial characteristic of this type of model is 
that it doesn’t just describe a response, but it 
actually produces it (Dawson, 2004). 

 
Computer simulations share many of the 

characteristics of mathematical models, but 
have been sited as causing the decline of 
mathematical psychology.  "Learning to live 
with computers is perhaps the single most 
difficult and critical task facing mathematical 
psychology as a discipline" (Estes, 1975, p. 
267).  This is because computers have 
"made it relatively easy to simulate quite 
complex interactive systems.  For many, it is 
clearly simpler and more agreeable to pro-
gram then it is to study processes mathe-
matically" (Luce, 1997).  The tension be-
tween mathematical models and computer 
simulations is at the heart of the perceptron 
paradox, and must be considered in more 
detail in this chapter. 
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8.2 Rescorla-Wagner as a Mathematical Model 
Mathematical models, like other models 

used in psychology, can be characterized in 
terms of five different major features (Daw-
son, 2004).  As the Rescorla-Wagner model 
is a prototypical mathematical model, we 
can consider it in terms of these five key 
characteristics. 

 
8.2.1 Nonlinearity 
 
Iteration is a mathematical technique that 

can be described as repetition with a pur-
pose (Kovach, 1964).  A process is iterative 
when the result that it produces at time t is 
used as an input for processing at time t+1.  
The Rescorla-Wagner model is iterative in 
exactly this sense.  At time t, the model 
(e.g., Equation 18 in Section 5.4) is used to 
calculate a change in associative strength 
(e.g., ΔVa(t)).  This change is then applied, 
resulting in a new value for overall associa-
tive strength (ΣV).  This new value for ΣV is 
then used in the next iteration of the equa-
tion to calculate a new output value (e.g., 
ΔVa(t+1)). 

 
The equation for the Rescorla-Wagner 

model appears to be linear, because it is 
only composed of simple multiplication and 
subtraction.  However, when this equation is 
used iteratively, its results are highly nonlin-
ear.  For instance, the model predicts that 
acquisition curves will not be straight lines, 
but will instead be exponentially decreasing 
curves. 

 
8.2.2 Surprise  
 
“What we hope for primarily from models 

is that they will bring out relationships be-
tween experiments or sets of data that we 
would not otherwise have perceived” (Estes, 
1975, p. 271).  Linear models, such as mod-
els of data, are rarely capable of doing this.  
To say that a model is linear is to say that 
one can predict the behavior of the entire 
system from knowing its components (Luce, 
1999). Surprises emerge when linearity is 
replaced by nonlinearity, because then 
knowledge of the individual components is 
not sufficient for understanding the whole 
system (Dawson, 2004).  The intrinsic 
nonlinearity of the Rescorla-Wagner model 

is crucial for its ability to generate surprising 
– and accurate -- predictions.   

 
8.2.3 Goodness of Fit  
 
Mathematical models need to be evalu-

ated by considering their ability to fit empiri-
cal observations.  “Does not one simply 
construct a model, apply it to data, and ac-
cept or reject on the basis of goodness of 
fit?  Well, that is indeed a standard proce-
dure – perhaps the standard procedure” (Es-
tes, 1975, p. 267).  Of course, much of the 
success of the Rescorla-Wagner model 
rests with its ability to explain experimental 
results (Miller et al., 1995; Walkenbach & 
Haddad, 1980).  Furthermore, to the extent 
that the model is challenged, the challenges 
begin by citing experimental results that the 
Rescorla-Wagner model does not fit well 
(Schmajuk & Larrauri, 2006). 

 
8.2.4 Existing Data Required 
 
In addition to being evaluated by examin-

ing a fit to observations, mathematical mod-
els usually originate from existing data.  The 
Rescorla-Wagner model is no exception.  It 
was inspired by considering existing experi-
mental results – “the accumulation of a sali-
ent pattern of data, separate portions of 
which may be adequately handled by sepa-
rate existing theories, but which appears to 
invite a more integrated theoretical account” 
(Rescorla & Wagner, 1972, p. 64). 

 
8.2.5 Behavior 
 
Dawson (2004) has argued that mathe-

matical models describe behavior, but do 
not behave themselves.  This is certainly 
true of modern theories of associative learn-
ing such as the Rescorla-Wagner model.  
“Consistent with the misguided name learn-
ing theory and inconsistent with the actual 
goal of explaining acquired behavior, most 
modern associative theories in the animal 
tradition emphasize the learning process 
(i.e., acquisition) per se and are virtually si-
lent concerning the transformation of ac-
quired information into behavior” (Miller, 
2006, p. 82). 
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8.3 The Perceptron: Simulation, Not Mathematical Model 
The various perceptrons that we have 

encountered are computer simulations, and 
not mathematical models (Dawson, 2004).  
Let us consider perceptrons in the context of 
the five features that were introduced in 
Section 8.2. 

 
8.3.1 Nonlinearity 
 
Perceptrons are nonlinear because of the 

activation function in the output unit – 
whether it is the Heaviside equation (percep-
tron), logistic equation (integration device), 
or Gaussian equation (value unit).  The 
nonlinear activation function in a perceptron 
permits it to mediate stimulus-response rela-
tionships that cannot be modeled by simpler 
networks (e.g., Dawson, 2004), such as dis-
tributed associative memories. 

 
8.3.2 Surprise 
 
The nonlinear relationship between 

stimulus and response in a perceptron is 
clearly a source of surprise, both in terms of 
the responses that such networks can pro-
duce, and in terms of the internal structures 
that mediate these responses.  “It’s surpris-
ing how much computing can be done with a 
uniform network of simple interconnected 
elements” (Fodor & Pylyshyn, 1988).  Hope-
fully the reader of the current manuscript 
has found surprises at least in the discrep-
ancies between perceptrons and the Res-
corla-Wagner model, and perhaps in the 
breadth of associative learning phenomena 
that these simple networks are capable of 
producing. 

 
8.3.3 Goodness of Fit 
 
Mathematical models are accepted or re-

jected on the basis of goodness of fit.  
Evaluating a computer simulation is more 
complicated.  Many computer simulations 
are developed to solve problems, and not to 
fit data.  “To me, the most troubling [trend] is 
some lack of concern about how complex 
computer models are to be evaluated em-
pirically” (Luce, 1999, p. 733).  Consider a 
perceptron trained in the overexpectation 
paradigm (Section 7.7).  On the one hand, it 
does not produce the effect.  On the other 
hand, it correctly makes all of the stimulus-

response contingencies that it has been 
presented.  Is this a poor or a good fit?  
Computer simulations “have no specifiable 
mathematical form and for which we are 
generally unable to formulate, let alone 
solve, the problem of testing goodness of fit” 
(Estes, 1975, p. 267). 

 
8.3.4 Existing Data Required 
 
In order to train a perceptron, one does 

not need to first conduct experiments to col-
lect learning data (e.g., acquisition curves, 
response rates) to which the model will be 
fit.  All that one needs is a set of stimulus-
response pairings that will be used to guide 
the perceptron’s responses during super-
vised learning.  Dawson (2004) claims that 
artificial neural networks provide a medium 
in which one can conduct synthetic psychol-
ogy, in which models are constructed prior 
to the collection of any empirical data. 

 
8.3.5 Behavior 

 
Dawson (2004) has argued that com-

puter simulations are artifacts that not only 
describe behavior, but also produce it.  This 
distinction is evident in early research on 
perceptrons.  For example, “knobby 
ADALINE” was a physically realized percep-
tron that accepted inputs via electric 
switches that were set, and generated a 
physical response that categorized input 
patterns (Widrow, 1962).  This machine 
didn’t just learn – it learned to perform! 

 
That this also distinguishes the percep-

tron from the Rescorla-Wagner model may 
be less evident, because both have been 
described as mathematical entities that 
change the values of different variables over 
time.  However, in the perceptron output unit 
activity represents a response or a behavior 
(although we will see later that the meaning 
of this response or behavior is open to inter-
pretation).  In contrast, the Rescorla-Wagner 
equation does not contain any behavioral 
variables.  Indeed, it defines how associa-
tions can be changed without requiring any 
response at all.  This issue is discussed in 
detail in the next section. 
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8.4 What Did Rescorla and Wagner Model? 
8.4.1 What Does The Model Describe? 
 
What is the Rescorla-Wagner model a 

model of?  In general, it has been described 
as a formal model of learning (Pearce, 
1997), and as a model of Pavlovian condi-
tioning (Walkenbach & Haddad, 1980).  
More specifically, the model “describes the 
learning curves for strength of association” 
(Rescorla & Wagner, 1972, p. 75). 

 
The specifics of what the model de-

scribes can be ascertained by examining the 
equation that defines it (e.g., Equation 18, 
Section 5.4).  At any given time, the equa-
tion defines the change in a particular value 
– the associative strength of a CS.  When 
applied, this changes a particular CS’s as-
sociative strength, as well as the value of 
overall associative strength.  One can keep 
track of these different values, and plot them 
as a function of time.  This is why Rescorla 
and Wagner describe their model as a 
model of learning curves. 

 
In order to generate data of this type, one 

needs only specify the starting state of the 
system (i.e., a starting strength for each in-
dividual association) and the values for each 
of a small number of constants.  Then the 
equation can be applied iteratively, comput-
ing the values of interest (i.e., associative 
strengths). 

 
Clearly a particular instance of this proc-

ess is designed to be meaningful.  In par-
ticular, constants will be assigned to indicate 
whether stimuli are salient or not, and 
whether associations are being increased or 
extinguished.  Furthermore, a researcher 
who uses the model is likely to attribute an 
interpretation to what each US and CS value 
represents (e.g., shocks, lights, etc.). 

 
However, the assignment of such mean-

ing is not required for the model to function.  
The model is a mathematical entity that ma-
nipulates a small set of variables according 
to the Rescorla-Wagner equation.  The 
equation doesn’t learn – it simply describes 
how certain variables change their values 
over time. 

 

At the end of a particular use of the Res-
corla-Wagner model, what can one say?  
The model will indicate the values of certain 
variables (e.g., the current strengths of a 
number of different associations).  If these 
values are plotted over time, then the model 
provides information about their dynamics 
(e.g., Rescorla & Wagner, 1972, Figure 7).  
For example, it provides their direction and 
rate of change.  Of course, this kind of quan-
titative information is crucial to evaluating 
the model. 

 
8.4.2 What Doesn’t It Describe? 
 
Importantly, the Rescorla-Wagner model 

is not a model of behavior (Miller, 2006).  It 
describes how associative strengths change 
over time.  It does not describe anything 
else.  At the end of using the model, one has 
the values of various associations.  Pre-
sumably, these values – either alone or in 
combination – are important determinants of 
animal responses.  However, the Rescorla-
Wagner model does not provide any indica-
tion at all about how the numbers that it 
crunches are converted into responses.  
This is typical of mathematical models 
(Dawson, 2004). 

 
Rescorla and Wagner (1972) are per-

fectly frank about the fact that theirs is not a 
model of response.  “Independent assump-
tions will necessarily have to be made about 
the mapping of associative strengths into 
responding in any particular situation” (p. 
75).  Later (p. 77), they make this same 
point much more explicitly:  “we need to pro-
vide some mapping of V values into behav-
ior.  We are not prepared to make detailed 
assumptions in this instance.  In fact, we 
would assume that any such mapping would 
necessarily be peculiar to each experimental 
situation, and depend upon a large number 
of ‘performance’ variables.” 

 
We will see that a crucial difference be-

tween the Rescorla-Wagner model and the 
perceptron is that the former does not re-
quire responses to be elicited in order for 
associations to be modified. 
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8.5 Tacit Theories of Responding 
8.5.1 Monotonic Theory of Response 

 
Clearly Rescorla and Wagner (1972) 

wanted to compare their model to animal 
behavior. To do so, they needed to define 
the relationship between associative 
strength and response.  They assumed that 
if one arranged a set of stimuli in order of 
their associative strength, and if one ordered 
the same stimuli in terms of the response 
magnitude that each stimulus produced, 
then the two orderings would be the same.  
They also assumed that if the associative 
strength of a stimulus was negative, then it 
would produce a response of zero magni-
tude. 

 
This theory merely states that there is a 

monotonic relationship between association 
and response (Miller, 2006).  Rescorla and 
Wagner assumed that increases in associa-
tive strength would not result in decreases in 
response magnitude.  Such a relationship is 
not very precise, because it is consistent 
with several different functions that relate 
associative strength to behavior, such as 
either a linear or a sigmoid relationship be-
tween ΣV and response magnitude.  Precise 
behavioral predictions would require a more 
definite theory (i.e., the specification of a 
particular output function). 

 
Why is it, then, that such a theory does 

not accompany the Rescorla-Wagner 
model?  It is because all of the learning in 
the model – all of the modifications of asso-
ciative strength – occurs in the absence of 
response.  That is, the Rescorla-Wagner 
equation specifies how associative changes 
can occur without the need for associations 
to be converted into observable responses.  
In order for Equation 18 of section 5.4 to 
work, one only needs information about as-
sociative strengths.  At no time during learn-
ing do these strengths need to be converted 
into responses by specifying some addi-
tional output function. 

 
8.5.2 Learning without Responding 
 
An example of learning without respond-

ing is provided in the literature on probabilis-
tic category learning (Gluck & Bower, 1988).  
In their modeling work, Gluck and Bower 

used an instance of the delta rule to train the 
weights of a perceptron-like network.  (Their 
network was a perceptron with a linear acti-
vation function, because network output was 
equal to the output unit’s net input.)  The 
overall association (net input) reflected the 
degree to which different configurations of 
symptoms were associated with a particular 
disease.  It was only after learning was 
completed that Gluck and Bower used the 
logistic function to translate net input into a 
judgment about the likelihood that a particu-
lar disease was associated with a particular 
configuration of symptoms.  The logistic 
function was never used to generate such 
responses during training. 

 
8.5.3 Tacit Theories of Responding 
 
Some knowledge is tacit: we can know 

more than we can tell (Polanyi, 1966).  The 
Rescorla-Wagner model presents an inter-
esting variant of this theme, where if there is 
no need for a response theory, then there is 
no need to specify it.  It describes how as-
sociations can be modified without the need 
for explicitly stating a theory of behavior.  
The theory of responding can be tacitly as-
sumed until the point in time when there is a 
need to convert associations into responses.  
Interestingly, evaluations of the Rescorla-
Wagner do not go beyond such a tacit as-
sumption about behavior (Miller et al., 1995; 
Walkenbach & Haddad, 1980).  Research-
ers can evaluate the Rescorla-Wagner 
model by agreeing that associations will 
eventually lead to responses, without actu-
ally stating how this is done.  In the Res-
corla-Wagner model, learning comes first, 
and responding comes later -- maybe. 

 
This is the key difference between the 

Rescorla-Wagner model and the perceptron.  
In the perceptrons presented in earlier chap-
ters, associations are only modified after 
they have produced a response.  The per-
ceptron paradox arises because, in the per-
ceptron, response theories are not tacit.  In 
the perceptron, there is no learning without 
responding.  

 

A peer-reviewed monograph published by Comparative Cognition and Behavior Reviews on 
behalf of the Comparative Cognition Society. © Michael R. W. Dawson 2008 



Chapter 8 Models, Simulations, and Behavior 92 

8.6 The Impact of Responding While Learning
It might seem that the difference between 

“responding after learning” and “responding 
while learning” involves purely semantic de-
tails.  However, this is not the case.  It is this 
difference that is responsible for the empiri-
cal discrepancies between the Rescorla-
Wagner model and the integration device 
that were reported in Chapter 7.  To see why 
this is so, let us consider one phenomenon 
that was discussed in that chapter, the over-
expectation effect. 

 
8.6.1 Overexpectation 
 
Recall from Section 7.7 that the overex-

pectation effect is produced with a simple 
two-phase methodology.  In Phase 1, an 
agent learns to respond maximally to CSA 
and CSB by having each stimulus independ-
ently paired with a US. In Phase 2, CS

B

A and 
CSBB are presented simultaneously as a 
compound stimulus that is paired with the 
US.  Overexpectation is the counterintuitive 
effect in which this second phase of training 
reduces responses to CSA and CSB when 
they are presented later as individual stimuli 
(Blaisdell et al., 2001; Khallad & Moore, 
1996; Kremer, 1978; Lattal & Nakajima, 
1998; Rescorla, 1970, 1999). 

B

 
8.6.2 Learning without Responding 
 
Because the Rescorla-Wagner model 

can modify associations without requiring 
them to be translated into responses, it pro-
vides accounts for the overexpectation ef-
fect.  Let us assume that the maximum as-
sociative strength in the Rescorla-Wagner 
equation (λ) is equal to 1.  In the first phase 
of the overexpectation paradigm, CSA and 
CSB are presented separately.  At the end of 
Phase 1, the associative strengths for both 
CS

B

A and CSBB will have achieved a value of 1 
(i.e., a value equal to λ). 

 
In the second phase of the overexpecta-

tion paradigm, CSA and CSB are presented 
simultaneously.  When this phase begins, 
the associative strength for each stimulus is 
equal to 1.  Therefore, the overall associa-
tive strength for the compound stimulus is 
equal to 2.  However, this is larger than the 
value of λ, which is still equal to 1 in Phase 
2 of the paradigm.  As a result, the term (λ - 

ΣV) in the Resorla-Wagner equation will be 
equal to -1 in this example.  Because this 
value is negative, the associative strengths 
for both CS

B

A and CSBB will decrease.  This 
decrease produces the overexpectation ef-
fect. 

 
Note several characteristics of this ac-

count.  First, the associative changes that 
have been described have not required re-
sponses.  Second, this does not preclude 
the possibility of converting the existing as-
sociative strengths into responses at any 
point in the paradigm.  Third, as was noted 
earlier, if the associations were converted 
into responses, then this would likely be ac-
complished by assuming a monotonic rela-
tionship between ΣV and response intensity. 

 
8.6.3 Learning with Responding 
 
Importantly, if a monotonic relationship 

exists between ΣV and response intensity, 
and if associative changes are contingent 
upon responses, then the overexpectation 
effect is not produced.  This is why this ef-
fect is not observed when the integration 
device is trained (Dawson & Spetch, 2005). 

 
Assume that after Phase 1, both connec-

tion weights from CSA and CSB are equal to 
1, and that a net input of 1 is sufficient to 
turn the output unit of an integration device 
on.  In Phase 2, both input units are acti-
vated, which produces a net input equal to 
2.  However, now associative changes are 
contingent upon the correctness of the be-
havior.  The monotonic relationship between 
net input and the output unit’s response dic-
tates that if a net input of 1 turns the unit on, 
then so too will a net input of 2.  Therefore 
the integration device will correctly respond 
to the compound stimulus.  As a result, con-
nection weights will not be modified, and the 
response of the integration device to the 
component stimuli will not change.  In short, 
because learning in the integration device is 
contingent on responding, the overexpecta-
tion effect is not produced.  That the effect is 
produced by the Rescorla-Wagner equation 
is because it defines learning that does not 
depend upon responding. 

B
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8.7 The Impact of Responding while Forgetting
8.7.1 Facilitated Reacquisition 
 
Recall from Section 7.2 a paradigm in 

which an association is learned, then extin-
guished, and finally learned again.  Facili-
tated reacquisition occurs when the second 
learning of the association is accomplished 
faster than was the original conditioning 
(Napier et al., 1992).  In the memory litera-
ture, this sort of phenomenon is frequently 
called savings (Roediger, 1990). 

 
8.7.2 Forgetting without Responding 
 
We saw previously in Chapter 7 that one 

of the failures of the Rescorla-Wagner 
model was its inability to predict facilitated 
reacquisition (Miller et al., 1995).  The rea-
son for this failure is the model’s modifica-
tion of associations in the absence of re-
sponses. 

 
In the Rescorla-Wagner model, the as-

sociative strengths for any CS would be 
equal to 0 prior to learning, indicating a 
complete absence of knowledge.  When 
associations are formed in the Phase 1 of a 
facilitated acquisition study, they would 
eventually reach a maximum value of λ.  
Phase 2 of the study, extinction, is designed 
to make the system forget whatever asso-
ciations were formed in Phase 1.  However, 
for the Rescorla-Wagner model extinguish-
ing the associations is identical to driving 
their values back down to 0.  As this was 
their state at the start of the study, Phase 3 
– reacquisition – should require the same 
number trials as did Phase 1.  As a result, 
savings are not predicted. 

 
8.7.3 Forgetting with Responding 
 
In contrast, we saw in Section 7.2 that an 

integration device will produce facilitated 
reacquisition.  The reason for this is be-
cause for this system, both learning and for-
getting are contingent on network re-
sponses. 

 
In Phase 1 of a study, the weights of a 

perceptron are usually initialized to be small, 
random numbers.  The purpose of learning 
is not to increase connection weights up to a 
value of λ, but is instead to make these 

weights large enough to produce net inputs 
that cause the output unit to turn on.  In 
Phase 2, the purpose of extinction is not to 
make the weights equal to zero.  Rather, it is 
to decrease to the weights to the point that 
the output unit has “forgotten” the Phase 1 
learning – that is, the output unit fails to re-
spond to the stimuli.  Importantly, the output 
unit will fail to respond when the connection 
weights are sufficiently small.  However, 
they may still be dramatically different from 
the weight values that the network began 
with in Phase 1.  As a result, the network 
demonstrates savings. 

 
In short, the integration device produces 

savings because it defines extinction as 
“failure to respond”; the Rescorla-Wagner 
model does not produce savings because it 
defines extinction as “zero strength associa-
tions”. 

 
8.7.4 The Implications of Savings 
 
One important aside to make at this point 

is that the demonstration of savings in a 
neural network is an important response to a 
common criticism of simulation approaches 
to animal learning. 

 
Catastrophic forgetting occurs when the 

learning of new patterns suddenly and com-
pletely removes knowledge due to previous 
learning, and is a concern for neural network 
modelers (French, 1999; Robins, 1995).  
Furthermore, the fact that networks might 
exhibit catastrophic forgetting has been 
used to argue that networks may not be ap-
propriate for the study of animal learning 
(Pearce, 1997). 

 
The existence of catastrophic forgetting 

depends upon how it is measured.  If one 
measures the degree of forgetting in net-
works by examining how many trials are 
required to reestablish previous learning, 
then catastrophic forgetting in networks is 
not as severe a problem as some would be-
lieve (Hetherington & Seidenberg, 1989).  
Indeed, if catastrophic forgetting is charac-
teristic of networks, then we would not ex-
pect integration devices to predict facilitated 
reacquisition.  
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8.8 Paradox Lost
8.8.1 Computational Equivalence 
 
The computational level of analysis is a 

level at which one answers the question 
“what information processing problem is a 
system solving?,” and then proceeds to an-
swer this question by performing some for-
mal or mathematical analysis (Dawson, 
1998; Marr, 1982; Pylyshyn, 1984).  It is at 
this level of analysis that there is strong rela-
tionship between artificial neural networks 
and the Rescorla-Wagner equation. 

 
It has long been known that distributed 

associative memories, which can be viewed 
as being perceptrons with linear activation 
functions, are formally equivalent to the 
Rescorla-Wagner model.  This is because 
one can take the delta rule for training such 
a network and translate it into an equation 
that is identical to that of Rescorla and 
Wagner (Gluck & Bower, 1988; Gluck & 
Myers, 2001; Sutton & Barto, 1981). 

 
In Chapter 5, we were able to extend this 

analysis into true perceptrons – that is, net-
works that employ nonlinear activation func-
tions.  Again, a learning rule for such a net-
work was translated into the Rescorla-
Wagner equation. 

 
The ability to translate a rule from one 

domain (network learning) into another 
(animal learning) provides a proof that the 
particular rules are statements of the same 
information processing problem.  What is 
this problem?  Perhaps the best informal 
statement of it is provided by Rescorla and 
Wagner (1972, p. 75): “Certain expectations 
are built up about the events following a 
stimulus complex; expectations initiated by 
that complex and its component stimuli are 
then only modified when consequent events 
disagree with the composite expectation.”  

 
8.8.2 Algorithmic Nonequivalence 
  
At the algorithmic level of analysis, one 

determines what specific processing steps 
are used to solve an information processing 
problem of interest.  While the computational 
level of analysis demands the use of formal 
methods, the algorithmic level is much more 

concrete, demanding empirical and behav-
ioral research practices (Dawson, 1998).  
Importantly, for any single computational 
problem, there exist an infinite number of 
different algorithms for the problem’s solu-
tion (Johnson-Laird, 1983). 

 
The formal equivalence of the delta rule 

and the Rescorla-Wagner model at the 
computational level hides crucial algorithmic 
differences between these two approaches.  
That is, while both are equivalent at an ab-
stract level – both modify weights when “ex-
pectations” are false – the specific algo-
rithms for modifying weights are fundamen-
tally different.  The “perceptron paradox” is 
due to these algorithmic differences, which 
exist in spite of the fact that the two ap-
proaches are computationally equivalent. 

 
The fundamental algorithmic difference 

between the two concerns whether a re-
sponse is required before associations are 
modified.  The Rescorla-Wagner model as-
sumes that learning mechanisms have im-
mediate access to associative variables (λ, 
ΣV), and can therefore directly modify asso-
ciations.  In contrast, the delta rule and its 
variants assume that before associations 
are modified, they must first be converted 
into responses.  The “expectation” that 
drives subsequent associative changes is 
the correctness of these responses.  There-
fore the delta rule does not have immediate 
access to associations – it modifies them 
indirectly, after they have been “filtered” into 
output unit responses. 

 
In many cases, this algorithmic difference 

is not consequential.  We have seen many 
examples of the agreement between ma-
chine learning and animal learning.  How-
ever, in some situations this algorithmic dif-
ference is crucial, and actually leads to a 
disagreement between network models and 
animal learning models.  Several examples 
of such disagreements were presented in 
Chapter 7.  The implications of the computa-
tional and algorithmic relationships between 
the two approaches are the topic of the next 
and final chapter of this book. 
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The purpose of this final chapter is to consider the implications of the formal and empirical re-

sults that have been presented in previous chapters.  First, it points out the crucial fact that two 
systems that are equivalent at the computational level need not be equivalent at the algorithmic 
level.  For this reason, formal analyses and computer simulations are both required for the study 
of associative learning.  The chapter then proceeds to examine a number of specific issues that 
emerge from this.  Some of these are related to computational issues, while others are related to 
algorithmic topics that emerge when one converts a formal theory into a working computer pro-
gram. 
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9.1 Levels of Analysis and of Equivalence
9.1.1 Levels of Analysis 
 
In cognitive science, researchers fre-

quently structure their research programs 
around different levels of analysis (Dawson, 
1998; Fodor, 1975; Marr, 1982; Pylyshyn, 
1984).  Computational analyses provide 
formal accounts of what information proc-
essing problems are being solved by agents.  
Algorithmic analyses provide empirical evi-
dence concerning the specific processing 
steps that are required to solve these prob-
lems.  Implementational analyses investi-
gate the mechanisms, usually biological, 
that implement these different processing 
steps. 

 
The view that an account of information 

processing requires all three different levels 
of analysis is called the tri-level hypothesis.  
It has been argued that the tri-level hypothe-
sis can be usefully applied to the study of 
associative learning (Shanks, 1995). 

 
9.1.2 Levels of Equivalence 
 
One of the consequences of the tri-level 

hypothesis is that two different systems can 
be equivalent at one level of analysis, but 
can be different at another.  For example, 
two systems are considered weakly equiva-
lent if they are solving the same information 
processing problem (computationally 
equivalent), but are doing so by employing 
completely different algorithms (Pylyshyn, 
1984). 

 
One consequence of weak equivalence 

is that even though the two systems are 
solving the same problem, the fact that they 
are doing so using different algorithms im-
plies that there will be observable differ-
ences in their behavior.  Computational 
equivalence does not guarantee behavioral 
equivalence. 

 
Consider, for example, a chess-playing 

computer program and a human chess 
player.  If we limit our inquiry to the domain 
of chess, these two systems are computa-
tionally equivalent.  That is, they are both 
systems that adhere to the rules of chess, 
and that share the same goal of beating 
their opponent.  However, they have marked 

differences from one another at the other 
levels of analysis. 

 
For instance, the chess playing program 

Deep Thought (Hsu, Anantharaman, Camp-
bell, & Nowatzyk, 1990).  It was constructed 
from customized hardware and specialized 
search algorithms that enabled it to evaluate 
750,000 different chess positions per sec-
ond, permitting it to search far into a game 
tree that describes the possible moves from 
current positions.  In contrast, advanced 
human players do not appear to play by 
searching a game tree, but instead rely on 
pattern recognition to choose their next 
move (Simon & Schaeffer, 1992).  Such 
dramatic differences at the algorithmic level 
will lead to a host of observable differences 
in play, ranging from which move is chosen 
next, to how long it takes a move to be 
played from a particular board position. 

 
9.1.3 Simulation Required 
 
The moral of the above example is that 

the claim that the delta rule and the Res-
corla-Wagner model are computationally 
equivalent (Sutton & Barto, 1981) does not 
guarantee that both will generate the same 
responses. 

 
As a result, one still needs to observe the 

responses of machine learners to identify 
similarities and differences between them 
and animal learners – regardless of their 
formal relatedness.  If one uses computer 
simulations to study models of associative 
learning, then one can discover surprising 
new phenomena that go beyond our formal 
understanding.  For instance, there are sev-
eral demonstrations in Chapter 7 that when 
an integration device is trained, it can gen-
erate results that count as correcting failures 
of the Rescorla-Wagner model (Miller et al., 
1995).  To generate these results, one has 
to ignore computational equivalence, and 
explore the computer simulation’s perform-
ance in a variety of situations. 
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9.2 Artificial Neural Networks and the Implementational Level 
9.2.1 Applying the Three Levels 
 
As was noted in the preceding section, it 

has been argued that the tri-level hypothesis 
can, and should, be applied to the study of 
associative learning (Shanks, 1995). “Asso-
ciative learning can best be understood by 
considering three questions.  What does the 
system do?  How, in broad informational 
terms, does it do it?  And how is this 
achieved at the mechanistic level?” (p. 104). 

 
However, Shanks’ (1995) application of 

the tri-level hypothesis provides an awkward 
link between associative learning and artifi-
cial neural networks.  Shanks argues that 
contingency theory provides a computational 
account of associative learning.  He then 
notes that the memorization of instances 
provides an algorithmic or representational 
account of associative learning.  Finally, 
Shanks claims that artificial neural networks 
provide an implementational account of as-
sociative learning. 
 

9.2.2 Re-evaluating the Application 
 
There is no doubt that the tri-level hy-

pothesis has a role to play in the study of 
associative learning.  However, Shanks’ 
(1995) particular account of its application 
seems flawed.  In particular, it is much more 
likely that artificial neural networks have im-
portant contributions to make at the compu-
tational and algorithmic levels, and probably 
have much less to contribute to an imple-
mentational account of this type of learning. 

 
To make a case, let us begin with a con-

sideration of the implementational contribu-
tions that researchers believe can be made 
by perceptrons, which we have shown 
throughout this book to have a strong link to 
studies of classical conditioning.  To what 
extent do researchers believe that this link is 
implementational in nature? 

 
It is certainly true that early develop-

ments in artificial neural networks were 
driven by implementational goals.  As was 
noted in Chapter 2, the McCulloch-Pitts neu-
ron was developed in an attempt provide a 
logical account of brain activity (McCulloch & 
Pitts, 1943).  The same is true of the percep-

tron.  Rosenblatt (p. 3) viewed perceptrons 
as being “brain models”: “By ‘brain model’ 
we shall mean any theoretical system which 
attempts to explain the psychological func-
tioning of a brain in terms of known laws of 
physics and mathematics, and known facts 
of neuroanatomy and physiology” (Rosen-
blatt, 1962). 

 
However, by the end of his seminal work 

on perceptrons, Rosenblatt (1962) was cau-
tious in his interpretation of the relation of 
his models to the brain.  While he was at-
tempting to build “brain models”, he realized 
their limitations.  “At present, any treatment 
of the compatibility of perceptron theory with 
biological memory mechanisms must remain 
entirely speculative” (p. 570). 

 
Many modern treatments of the relation 

between models of the type that we have 
discussed and the brain have converted this 
caution into criticism.  It is possible to gen-
erate long lists of properties that are true of 
artificial neural networks but are not true of 
the brain (Crick & Asanuma, 1986; Smolen-
sky, 1988). Artificial networks have been 
ridiculed as being “stick and ball” models of 
the brain (Douglas & Martin, 1991).  In short, 
many would argue that implementational 
contributions will be the smallest to be made 
by artificial neural networks. 

 
Nonetheless, these networks can make 

contributions.  Interestingly, these seem to 
be at the other two levels that are part of the 
tri-level hypothesis.  This book has provided 
many examples of the computational rela-
tionship between animal learning and ma-
chine learning.  This book has also provided 
many examples of the algorithmic relation-
ship between the two.  To the extent that the 
various perceptrons that have been encoun-
tered in this book have provided interesting 
insights into associative learning or classical 
conditioning, these insights have been at the 
two levels that Shanks (1995) suggests do 
not involve artificial neural networks.  
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9.3 Perceptrons and Theories of Everything
9.3.1 Theory on a T-shirt 
 
Modern physicists have a dream of pro-

ducing a “theory of everything”; an elegant 
mathematical statement from which the na-
ture of the physical world follows.  “My ambi-
tion is to live to see all of physics reduced to 
a formula so elegant and simple that it will fit 
easily on the front of a T-shirt” (Lederman, 
1993, p. 21). 

 
Quantitative approaches to psychology 

have long been inspired by physics, as 
(Köhler, 1947) noted in his famous critique 
of behaviorism.  “Since the enormous feat of 
jumping from the world of direct, but con-
fused, experience into a world of clear and 
hard reality already has been achieved by 
the physicist, it would seem wise for the 
psychologist to take advantage of this great 
event in the history of science, and to begin 
the study of psychology on the same solid 
basis” (p. 5).  Modern mathematical psy-
chologists are certainly hopeful of the dis-
covery of psychological laws that are as 
valid as the laws of physics (Estes, 1975).  
However, few would be expecting to find a 
psychological theory of everything to put on 
a T-shirt. 

 
However, that isn’t to say that mathe-

matical psychologists do not have a prefer-
ence for simple but powerful quantitative 
statements.  Modern mathematical psy-
chologists evaluate their theories by seeking 
a trade-off between simplicity and power: a 
simple theory that provides good fit to data, 
and which generalizes to new data, is to be 
preferred (Pitt, Myung, & Zhang, 2002).  
One of the appeals of the Rescorla-Wagner 
model is that it possesses such properties 
(Blaisdell, 2003). 

 
9.3.2 The Poor Perceptron 
 
Such considerations lead to an obvious 

problem with perceptron models of associa-
tive learning.  Perceptrons have been sub-
jected to an intensive computational analysis 
(Minsky & Papert, 1988).  After endorsing 
the computational role of perceptrons in 
Section 9.2, this analysis becomes fair 
game.  And what it reveals is that there are 
many input-output mappings that cannot be 

represented by a perceptron.  In short, per-
ceptrons provide simple and elegant theo-
ries.  However, there are good reasons to be 
concerned about their limited power. 

 
We have already seen that perceptrons 

can only represent solutions to problems 
that are linearly separable.  For models of 
associative learning, this restriction is se-
verely limiting (Quinlan, 1991).  As a result, 
when most modern researchers explore arti-
ficial neural networks as models of associa-
tive learning, they do so by studying multi-
layer networks (Enquist & Ghirlanda, 2005).  
Such networks have extraordinary computa-
tional power (Siegelmann, 1999), and in 
principle should be capable of modeling any 
stimulus-response regularity (McClelland et 
al., 1986). 

 
9.3.3 A Quilt of Small Theories 
 
The above-mentioned limitations of per-

ceptrons, however, are only a concern if one 
is seeking a single theory of associative 
learning that is analogous to a “theory of 
everything”.  There are some who believe 
that psychology is not well-suited to this 
theoretical goal.  “In physics, we’re used to 
explanations in terms of perhaps a dozen 
basic principles.  For psychology, our expla-
nations will have to combine hundreds of 
smaller theories” (Minsky, 1985). 

 
Shanks (1995, p. 127) notes “people 

have no difficulty learning nonlinearly-
separable classifications which the delta rule 
model we have been considering would be 
unable to master”.  However, such a critique 
should only be used to abandon perceptrons 
in the search of a single unifying theory. We 
have seen that different types of perceptrons 
capture different sets of empirical regulari-
ties.   Perceptrons (including variations that 
use different activation functions) could pro-
vide a set of smaller theories – contributing 
one or more theoretical squares to psychol-
ogy’s quilt.  That is, while perceptrons are 
clearly not powerful enough to be theories of 
everything, they are powerful enough to 
serve as theories of a potentially large part 
of associative learning.  Their computational 
limits do not necessarily translate into their 
demise.  
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9.4 Guilt by Association 
9.4.1 Another Computational Problem 
 
Computational considerations lead to 

another problem with viewing perceptrons 
as interesting models for the study of asso-
ciative learning.  The computational equiva-
lence between a learning rule for percep-
trons and the Rescorla-Wagner model 
means that perceptrons should inherit all of 
the advantages that the Rescorla-Wagner 
model enjoys.  However, it also means that 
perceptrons should inherit the disadvan-
tages of the Rescorla-Wagner formulations, 
of which there are many (Miller et al., 1995).  
If these problems are serious enough, then 
this might be grounds to abandon percep-
tron models -- guilt by association. 

 
This is certainly the perspective taken by 

some learning researchers.  For example, 
one perceptron-like model has been pro-
posed to account for associative learning 
involving configural cues (Gluck, 1991), but 
has been critiqued because of its formal 
equivalence to the Rescorla-Wagner model: 
“Because it is formally equivalent to the 
Rescorla-Wagner model, it makes the same 
erroneous predictions” (Pearce, 1997, p. 
132).  Similarly, Schmajuk has proposed 
neural network models of associative learn-
ing that are related to the perceptrons de-
scribed earlier, but far more ambitious be-
cause they attempt to incorporate temporal 
variables that are known to affect condition-
ing (Schmajuk, 1997).  This research has 
also been critiqued because it is viewed as 
having the same problems as the Rescorla-
Wagner model (Blaisdell, 2003). 

 
9.4.2 The Learning-Performance Dis-

tinction 
 
The problem with assuming that the for-

mal equivalence between two learning rules 
means that both rules will have the same 
limitations is the failure to recognize that 
such computational equivalence does not 
imply equivalence at other levels of analysis.  
Indeed, if two systems are computationally 
equivalent, but are not algorithmically 
equivalent, then they can generate different 
behaviors.  The critiques cited above fail to 
take this into consideration. 

 

 That this is a problem was revealed in 
the empirical results that were presented in 
Chapter 7.  In that chapter, we considered 
several phenomena that are documented as 
failures of the Rescorla-Wagner model (fa-
cilitated reacquisition, retarded reacquisition, 
extinction of a conditioned inhibitor, and la-
tent inhibition).  However, we also demon-
strated that these phenomena can be pro-
duced in an integration device.  In other 
words, the formal equivalence between 
learning in these two theories (see Chapter 
5) did not prevent the integration device 
from providing an account of how some of 
the Rescorla-Wagner failures might be over-
come. 

 
The results in Chapter 7 provide suffi-

cient evidence on their own to indicate that it 
is not wise to 1) consider two theories only 
at the computational level, and 2) dismiss a 
new theory on the basis of this comparison 
without 3) extending this consideration to 
other levels of analysis.  By changing the 
algorithm that brings a particular computa-
tional regularity to life, one can produce be-
haviors, or account for results, that are not 
necessarily the sole domain of the computa-
tional regularity. 

 
To my mind, this is one of the intriguing 

aspects of one of the challenges to modern 
associative theories (Miller, 2006).  It has 
been argued that most of these theories only 
provide an account of how associative 
strengths are modified (learning), and do not 
provide an account of how they are con-
verted into responses (performance).  What 
might be an advantage of incorporating per-
formance into a theory of learning?  The 
perceptrons that we have been considering 
provide one example of including both learn-
ing and performance, and have demon-
strated that one of its unanticipated benefits 
is the ability to make predictions which can-
not be made by the theory of learning alone.  
In short, before we abandon them because 
of computational equivalence, we might 
want to explore their algorithmic level advan-
tages! 
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9.5 The Paralyzed Perceptron 
9.5.1 Paralyzed Learning 
 
One issue that is related to the learning-

performance distinction, and which has a 
long history in the study of associative learn-
ing, is whether an agent must produce an 
overt response in order for learning to occur.  
Harlow and Stagner (1933) called theories in 
which such a response was mandatory pe-
ripheral, and theories in which such a re-
sponse was not necessary intra-cerebral.  
They conducted a number of experiments in 
which cats and dogs were conditioned when 
under the influence of curare.  Curare is a 
drug that paralyzes the striped musculature, 
preventing responses from being made, but 
does not affect spinal cord or midbrain re-
ceptors and reflex centers.  Harlow and 
Stagner were unable to demonstrate learn-
ing when animals were under the influence 
of this drug, and took this as evidence in 
favor of peripheral theories of learning.  
“Conditioned reflexes are only possible if a 
response is made, and do not result merely 
from stimuli presented simultaneously” (p. 
293). 

 
Subsequent studies (e.g., Girden, 1940; 

Solomon & Turner, 1962) have challenged 
some of the conclusions drawn by Harlow 
and Stagner (1933).  For example, Solomon 
and Turner demonstrated what when dogs 
were under the influence of curare they 
could learn to discriminate tones that were 
signals of subsequent shocks from tones 
that were never associated with shocks.  In 
short, it has been demonstrated that asso-
ciations can be formed in the absence of 
responses. 

 
9.5.2 What Is A Response? 
 
  It has been argued in previous sections 

that the key difference between perceptron 
learning and the Rescorla-Wagner model is 
the fact that the former requires a response, 
while the latter does not.  However, if it is 
possible to form associations in the absence 
of responding, then this might indicate a 
situation in which the Rescorla-Wagner for-
malism is more robust than the simple neu-
ral networks that we have been surveying. 

 

There are two points to make about this 
issue.  First, it would be a mistake to equate 
the activity of an output unit with the per-
formance of some observable behavior.  
While it is certainly plausible to relate behav-
ior to activity, it is not necessary.  For in-
stance, one could instead interpret output 
unit activity as a judgment about the likeli-
hood of reinforcement occurring – activity as 
expectation -- when a particular stimulus is 
encountered.  An example of this interpreta-
tion of activity is provided by Gluck and 
Bower (1988).  If one were to adopt this in-
terpretation of output unit activity, then the 
neural network would constitute an intra-
cerebral theory. 

 
The second point is that when a neural 

network is being used to simulate a particu-
lar animal experiment, then the simulator 
has a responsibility to state the intended 
interpretation of output unit activity.  It could 
represent expectation, or it could represent 
observable behavior (e.g., activity = rate of 
performing some response).  If this latter 
interpretation is intended, then perceptrons 
would not be an appropriate model for learn-
ing under the influence of curare.  If activity 
is behavior, and behavior is required for 
learning, then paralyzed perceptrons would 
be unable to form associations. 
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9.6 Perceptrons and Input Representations
9.6.1 Elements vs. Configurations 
 
What sorts of computational issues might 

we explore with artificial neural networks? 
One important issue concerns how animals 
process compound stimuli.  One approach 
to this issue is elemental (Rescorla, 1973, 
1988, 2003; Rescorla & Wagner, 1972; 
Wagner, 2003): animals independently 
process the elemental components that de-
fine a compound stimulus.   

 
A second approach to this issue is con-

figural (Pearce, 1987, 1994, 1997, 2002; 
Pearce & Bouton, 2001; Wasserman & 
Miller, 1997): compound stimuli are proc-
essed holistically: while a compound stimu-
lus is related to its components, there is ad-
ditional information that is represented that 
reflects the notion that a compound stimulus 
is not merely the sum of its elements. 

 
9.6.2 Network Representations 
 
Elemental and configural approaches 

have led to different stimulus representa-
tions in artificial neural networks.  A typical 
elemental representation would have a sin-
gle input unit representing the presence or 
absence of each element of a compound 
stimulus, and no other input units (e.g., 
Pearce, 1997, p. 131).  For example, a sim-
ple network would use two units that could 
represent the presence of CSA and CSB.  In 
an elemental representation, if both of these 
units are on, then the compound stimulus 
CS

B

AB is present. 
 
In contrast, a typical configural represen-

tation includes additional units that are 
turned on only when a compound stimulus is 
presented (e.g., Pearce, 1997, p. 132).  For 
example, three units would be required to 
represent compound stimulus CSAB: one for 
element CSA, another for element CSB, and 
a third to represent unique configural proper-
ties (CS

B

AB) only when the compound is pre-
sent. 

  
9.6.3 Distributed Representations 
 
In accepting that perceptrons can inform 

studies of associative learning, it becomes 
apparent that other forms of input represen-

tations are possible.  Elemental and con-
figural representations are local, in the 
sense that each input unit represents the 
presence or absence of a complete CS.  
However, this is not necessary.  For exam-
ple, one could use a distributed representa-
tion in which a single CS is described as a 
configuration of features.  The entire set of 
features defines a particular CS. 

 
For instance, Wagner’s SOP theory (e.g. 

Mazur & Wagner, 1982; Vogel, Brandon & 
Wagner, 2003; Wagner, 1981) is designed 
to model the changes in concept activity, 
and associations between concepts, over 
time.  It represents stimuli as a distributed 
population of elements that can be in differ-
ent states of activity at any given time; the 
activity of a stimulus is a function of pooling 
the activities of its component elements. 

 
One example of a distributed connection-

ist representation has been used in a recent 
study of discriminant learning in chickadees 
(Nickerson, Bloomfield, Dawson, & Sturdy, 
2006).  The chickadee call consists of differ-
ent note types (A, B, C, and D).  In a previ-
ous study (Charrier, Lee, Bloomfield, & 
Sturdy, 2005), birds were trained to respond 
to one note type (e.g., A+) and to not re-
spond to another (e.g., B-).  Nickerson et al. 
replicated this study using perceptrons.  
Each stimulus note was represented as a 
set of 9 feature values that were used to 
activate 9 input units of a perceptron.  The 
perceptron was trained to respond to some 
notes, and not to others.  Results indicated 
an extremely strong relationship between 
perceptron responses and the previously 
observed behavior in the birds. 

 
Of interest in this study is that the repre-

sentational form is not clearly elemental or 
configural.  It is elemental, in the sense that 
each feature is a component of a note, but it 
is also configural, in the sense that each 
stimulus is defined by an entire configuration 
of features.  At the very least, this suggests 
that perceptrons can provide a medium in 
which a wide variety of input representations 
can easily be informed, and the results of 
these simulations should contribute to the 
elemental/configural debate. 
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9.7 Perceptrons and Theories of Performance
9.7.1 Exploring Performance 
 
The main reason that perceptrons gen-

erate predictions that differ from those of the 
Rescorla-Wagner model is that perceptrons 
focus on learning and performance, instead 
of emphasizing learning alone.  This means 
that perceptrons can also be used to explore 
a variety of theories of performance. 

 
This is because one can change a per-

ceptron’s “theory of performance” by chang-
ing its activation function.  The role of the 
activation function is to convert internal as-
sociations (represented as net inputs) into 
observable responses.  If the activation 
function is changed, then the mapping from 
stimulus to response changes as well. 

 
This is not a trivial point to make, be-

cause the response changes that result from 
altering the activation function may be dra-
matic. 

 
For example, we have seen that a stan-

dard critique against the use of perceptrons 
to model associative learning is their inability 
to handle linearly separable problems like 
XOR (Pearce, 1997; Quinlan, 1991; Shanks, 
1995).  However, small problems like XOR 
can indeed be solved by a perceptron if it 
uses the appropriate activation function 
(Dawson, 2005, Chapter 14).  For example, 
the integration device that employs the logis-
tic equation cannot cope with XOR.  How-
ever, if the logistic is replaced with the 
Gaussian equation to convert the device into 
a value unit, then XOR is easily handled. 

 
This is not to say that value units are uni-

formly more powerful than integration de-
vices.  One of the costs of changing activa-
tion functions is a network type by problem 
type interaction (Dawson, 2005, Chapter 
14).  That is, a particular activation function 
is excellent for some problems, but has diffi-
culty with others.  Integration devices fail on 
XOR, but have no trouble with OR.  The re-
verse is true for value units. 

 
However, irrespective of the issue of 

power, the logical capabilities of a device 
depend enormously upon the activation 
function, independent of the learning rule.  

The activation function is also a crucial 
component for governing the responses of a 
system.  We saw in Chapter 7 that an inte-
gration device will not produce the overex-
pectation effect.  However, this effect is 
characteristic of a value unit. 

 
9.7.2 Activation Implications 
 
Previous chapters have illustrated that 

many of the presumed failures of the Res-
corla-Wagner model might be dealt with by 
supplementing it with a specific performance 
theory. Three such theories have been pre-
sented in this book, in the form of three dif-
ferent activation functions for perceptrons: 
the Heaviside equation, the logistic equa-
tion, and the Gaussian equation.  It is impor-
tant to realize that these three represent the 
small tip of a very large iceberg of theories 
that is crying out for further study. 

 
In a recent survey of artificial neural net-

works, it was determined that at least 640 
different activation functions have appeared 
in the literature (Duch & Jankowski, 1999).  
This diversity represents a wealth of alterna-
tive theories of performance that could, and 
probably should, be studied in the context of 
associative learning. 

 
In addition, different activation functions 

are often accompanied by different learning 
rules and updated learning algorithms. What 
is the formal relationship between these 
learning rules and the Rescorla-Wagner 
model?  Might these different activation 
functions and learning rules be more related 
to other models that have emerged in an 
attempt to deal with some of the problems 
that the Rescorla-Wagner model has en-
countered (Mackintosh, 1975; Pearce & 
Hall, 1980)?  Miller (2006) has called for 
renewed emphasis on reconciling the dis-
tinction between learning and performance.  
The variety of possible perceptron architec-
tures provides a fruitful domain for this issue 
to be investigated. 
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9.8 Beyond the Perceptron 
9.8.1 Perceptron Limitations 
 
Hopefully the many simulation results 

that have been presented in this book have 
shown that a very simple type of artificial 
neural network is capable of performing a 
surprisingly large number of associative 
learning tasks.  Nonetheless, the simple 
structure of these networks limits their capa-
bilities.  It is fruitful to ask the question “How 
much can one do with a perceptron?”, and 
one goal of this book has been to attempt to 
provide an answer to this question.  How-
ever, it would be foolish not to acknowledge 
that perceptrons must fail to model all of the 
results in the extensive literature on classical 
conditioning. 

 
As was noted in Sections 1.6 and 4.16, 

the models that we have discussed are not 
capable of dealing with important temporal 
issues that govern conditioning.  It is not 
clear how to use these networks to capture 
results from second-order conditioning.  
Many results that appear to occur in the ab-
sence of explicit learning, such as sponta-
neous recovery from overshadowing, cannot 
be handled by perceptrons. 

 
9.8.2 Multilayer Networks 
 
However, it is possible to develop neural 

network models to deal with all of these diffi-
culties.  In principle, neural networks with 
the appropriate properties are capable of 
modeling any computable function, and 
therefore are as powerful as any type of 
model available to cognitive science (see 
Dawson, 1998 for a detailed discussion of 
this issue).  Several such models exist in the 
associative learning literature. 

 
For example, Gibbon (1977) proposed 

scalar timing theory as a quantitative model 
of how animals estimate interval durations, 
count how many events have occurred, and 
estimate the rate at which events occur.  
Church and Broadbent (1990) have pro-
posed a neural network version of scalar 
timing theory.  The network consists of a set 
of oscillators of different timing cycles.  Each 
oscillator has associated with it another 
processor that receives an oscillator’s sig-
nal, and determines the oscillator’s phase.  

Distributed working and reference memories 
are implemented as sets of connection 
weights.  By pooling the signals of different 
oscillators running at different frequencies, 
accurate temporal judgments can be medi-
ated.   

 
Similarly, a variety of associative learning 

paradigms have been successfully modeled 
by networks developed by Schmajuk and his 
colleagues (e.g., Schmajuk, 1997; Schmajuk 
& Blair, 1993; Schmajuk, & DiCarlo, 1992; 
Schmajuk, Lam, & Gray, 1996; Schmajuk, 
Lamoureux, & Holland, 1998).  Consider for 
a moment one of the earliest of these net-
works, Schmajuk and DiCarlo’s S-D net-
work.  This consists of a set of input units 
that represent the presence of various CSs.  
These input units have direct connections to 
units that represent CS-US associations, 
which can mediate conditioned responses.  
However, they also have direction connec-
tions to a set of intermediate or hidden units 
that are capable of representing configural 
relations among various CSs, and which in 
turn provide signals for the CS-US associa-
tion processors.  The model is highly tempo-
ral in nature, because CS representations 
are time-based, and network computations 
are all instances of computing changes 
(e.g., in activity or in associations) as a func-
tion of changes in time. 

 
Finally, a number of studies have simu-

lated associative learning experiments by 
training multilayer perceptrons in a fashion 
very similar to the simulations that have 
been described in this paper (e.g., Delama-
ter, Sosa & Katz, 1999; Nickerson et al., 
2006; Yaremchuk et al., 2005).  These net-
works – as well as those cited above in this 
section – differ from the perceptrons that we 
have discussed in virtue of having hidden 
units.  These hidden units permit nonlinear 
relationships among input units to be cap-
tured (for a discussion see Dawson, 2004), 
which in turn permit them to solve problems 
whose solutions are impossible to represent 
in a perceptron that does not have hidden 
units (compare Rumelhart & McClelland, 
1986 to Minsky & Papert, 1969). 
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9.9 Formalism, Empiricism, and Multilayer Models 
9.9.1 A Simple Lesson 
 
Given the existence of the more powerful 

networks that were briefly discussed in Sec-
tion 9.8, one might question the worth of this 
book’s exploration of the properties of much 
simpler systems.  What is to be learned from 
algorithmic and formal analyses of models 
that are so dated? 

 
One lesson that our examination has 

provided is that a complete understanding of 
a model, and of its relationship to other theo-
ries, requires us to answer both algorithmic 
and computational questions.  If one focuses 
on only one type of question, fundamentally 
important regularities will be lost. 

 
9.9.2 Multilayer Implications 
 
This simple lesson is important to keep in 

mind when studying associative learning 
with models that are more powerful than the 
perceptron.  In psychological modeling, 
there is a strong tendency to view every 
model as a model of data, and to evaluate it 
in terms of its fit to empirical data (e.g., 
Dawson, 2004).  When a model fails to cap-
ture regularities, the urge is to quickly patch 
it or replace it with a model that will perform 
better (Dawson & Shamanski, 1994).  How-
ever, such an algorithmic emphasis ignores 
crucial, and interesting, formal questions 
that must also be faced. 

 
For instance, Weisman et al. (1999) 

tested the ability of Church and Broadbent’s 
(1990) connectionist model of timing, and 
found that it was unable to generate judg-
ments of the type “a signal is longer than a 
duration of x, but shorter than a duration of 
y”.  Clearly if the model is to fit such data 
then it must be changed.  But how should it 
be changed?  One fruitful direction to take 
would be to conduct a formal analysis of the 
network in an attempt to understand why 
such judgments were beyond it.  At first 
glance, this inability seems analogous to a 
standard perceptron’s inability to perform 
negative patterning (see Section 6.10).  Is it 
possible that the layers of units in Church 
and Broadbent’s model are not capturing 
configural relationships amongst inputs, and 

are therefore limiting its computational 
power? 

 
As another example, in Section 6.4 it was 

pointed out that from an algorithmic per-
spective having negative biases in a percep-
tron may not be desirable.  However, if bias 
is restricted (e.g. if it is forced to remain 
positive during training, or is fixed during 
training), then this further restricts what 
problems that a perceptron can solve.  This 
is because this restricts the position of the 
“cut” in pattern space made by the output 
unit (e.g. Section 6.8.2).  Other models, 
such as Miller and Matzel’s (1988) compara-
tor process do not propose inhibitory asso-
ciations.  While formalization of the com-
parator hypothesis has not yet been com-
pleted (e.g. Savastano et al., 2003), it is im-
portant to determine whether the absence of 
inhibition in it restricts the kinds of problems 
that it can solve, as it would in a perceptron. 

 
Finally, Shanks (1995) has argued that 

contingency theory (e.g., Cheng & Holyoak, 
1995) provides a complete computational 
theory of associative learning.  He reviews 
formal evidence that establishes that the 
Rescorla-Wagner model of learning is for-
mally equivalent to contingency theory, and 
goes on to argue that artificial neural net-
works simply provide an implementational or 
biological account of how such theories are 
physically realized.  However, it is well 
known that multilayer networks are far more 
powerful than perceptrons (e.g. Rumelhart & 
McClelland, 1986).  If multilayer networks 
are ultimately required to completely de-
scribe the results of learning experiments, 
and if they are more powerful than either 
perceptrons or the Rescorla-Wagner model, 
then it must also be the case that they pro-
vide a formalism for associative learning that 
is more powerful than contingency theory.  
What is this formalism?  In what ways does 
it represent advances over contingency the-
ory?  What are the implications of this for 
accounts of associative learning?  These 
important questions can only be answered 
by following the simple lesson offered by the 
perceptron: by combining formal and algo-
rithmic research methods. 
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9.10 From Informal to Formal, and on to Workable
9.10.1 Formal Advantages 
 
 “Theory in a field as immature as psy-

chology cannot be expected to amount to 
much -- and it doesn’t” (Royce, 1970). What 
can be done to improve psychological theo-
ries?  One possibility is to translate an in-
formal verbal theory into a formal mathe-
matical expression  

 
There are several reasons that the proc-

ess of formalization is useful (Lewandowsky, 
1993).  First, it adds precision in specifying 
theoretical terms.  An informal theory can be 
full of references to terms with vague defini-
tions like “memory" or "attention".  Many 
academic debates emerge because different 
researchers use the same terms in different 
ways.  In a formal model, conceptual terms 
have to be carefully operationalized in order 
for the model to work. 

 
A second advantage of formalization is 

that the language in which a theory is ex-
pressed determines the kinds of ways in 
which the theory can be tested or explored.  
For instance, after a verbal theory has been 
formalized mathematically, one can use 
mathematical operations to investigate its 
implications (Coombs, Dawes, & Tversky, 
1970; Lunneborg, 1994; Wickens, 1982). In 
other words, formalization not only results in 
a more precise specification of the concepts 
in the theory, but also results in a more pre-
cise set of tools for studying these concepts. 

 
A third advantage of formalization is that 

it can reveal hidden assumptions in an in-
formal theory which themselves need to be 
fleshed out in greater detail in order for the 
theory to be complete.  For example, many 
theories in cognitive psychology are ex-
pressed as flowcharts of black boxes.  Ide-
ally, each black box in such a flowchart is 
supposed to be a primitive operation that 
needs no further explanation (Cummins, 
1983; Dawson, 1998).   A formal statement 
of a theory, coupled with a formal analysis of 
its concepts, can reveal that some of these 
alleged primitives are themselves very com-
plicated processes that require further analy-
sis and explanation. 

 

9.10.2 From the Formal to the Worka-
ble 

 
Interestingly, the mere formalization of a 

theory may only be a first step in rigorously 
understanding it.  The previous advantages 
of formalization become amplified by con-
verting a formal theory into a working com-
puter simulation.  "Even deceptively simple 
models can benefit from the rigor of simula-
tions" (Lewandowsky, 1993, p. 236). 

 
The reason for this is that the act of for-

malization establishes rigor at the computa-
tional level of analysis, but not at others.  
Converting a formal model into a computer 
simulation brings the algorithmic level into 
play.  The advantages of precision, new 
methods of testing, and revealing hidden 
assumptions are not only found at the com-
putational level, but at the algorithmic level 
as well. 

 
We have already encountered specific 

examples of this with respect to the relation-
ships between perceptrons and models of 
animal learning.  At the computational level, 
some researchers might dismiss percep-
trons because of their formal relationship to 
the Rescorla-Wagner model, and the pre-
sumed inheritance of Rescorla-Wagner 
problems (Blaisdell, 2003; Pearce, 1997).  
However, Chapter 7 revealed that if one 
goes to the trouble to take a working percep-
tron and train it in a number of animal learn-
ing paradigms, it actually generates results 
that diverge from Rescorla-Wagner model 
predictions.  Clearly the act of simulating the 
perceptron generated knowledge that was 
not evident with only a computational or 
formal understanding of the models. 

 
Further to this, once such discrepancies 

are uncovered through the act of computer 
simulation, it is imperative to take a closer 
look at the models to understand why they 
occur.  The relevance of a theory of per-
formance to the predictions made by the 
Rescorla-Wagner model is completely ob-
scured without converting formal accounts 
into simulations, observing performance, 
and explaining this (algorithmic) data. 
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9.11 Models and Metaphors
9.11.1 Metaphor and Understanding 
 
Cognitive scientists have long been in-

terested in the role that metaphor plays in 
our understanding of the world (Ortony, 
1979).  A metaphor is generally considered 
to have two different subjects, the topic and 
the vehicle.  The topic is a subject that we 
wish to learn more about, while the vehicle 
is a subject (or possibly an entire system of 
ideas) with which we are very familiar.  A 
metaphor works by projecting our knowl-
edge of the vehicle onto the topic, with the 
result that we come to have a new under-
standing of it.  This notion of “projecting” is 
often assumed to be an interaction, in the 
sense that the fit of the vehicle to the topic 
depends upon using the characteristics of 
the topic to emphasize particular aspects of 
the vehicle that are going to be projected 
(Black, 1979). 

 
The advantages of simulation that were 

described in Section 9.7 would be true even 
if one merely created perceptron simula-
tions, and never attempted to relate these 
simulations to the domain of animal learning.  
It is important to realize that the simulations 
that have been presented in this book have 
attempted to bridge two different research 
domains, machine learning and animal 
learning.  As a result, they offer additional 
advantages, because – as is the case in 
metaphor – they offer the possibility of see-
ing one domain in a new light that the other 
domain provides. 

 
9.11.2 The Null Condition 
 
Metaphoric understanding emerges 

when we, via computer simulation, project 
the animal learning domain onto the ma-
chine learning.  For example, one issue that 
was raised in Chapter 6 was the role of the 
null condition.  Recall that the null condition 
is a network training pattern in which no 
stimuli are presented, and the network is 
trained to not respond. 

 
The need for the null condition becomes 

an issue when computer simulation forces 
us to consider the precise nature of the 
training set for a network, because this train-
ing set is a model of an experimental para-

digm.  How should the network be treated 
when no CSs are present? 

 
One approach is to say that the network 

should not be treated at all, which means 
that the null condition should not be included 
in the training set.  Some researchers have 
adopted this view (Delamater et al., 1999), 
and it may be perfectly appropriate.  How-
ever, one implication of this is that the logi-
cal nature of the training sets is affected.  In 
particular, with no null condition, negative 
patterning is not linearly nonseparable, as it 
is not logically equivalent to XOR. 

 
An alternative approach is to say that 

when animals are not reinforced in the ab-
sence of stimuli, they are learning something 
(i.e., learning not to respond to a particular 
stimulus configuration).  According to this 
view, the null condition should be included.  
Of course, this has a logical impact on the 
training set. 

  
More importantly, the inclusion of the null 

condition leads to additional metaphoric un-
derstanding of the network.  When the null 
condition is included, we saw enhanced ef-
fects in paradigms like overshadowing.  How 
did these enhanced effects emerge?  When 
interpreting network structure, it was appar-
ent that the key role of the null condition was 
to alter the threshold or bias of the percep-
tron’s output unit. 

 
From this observation, we were then led 

to a completely novel interpretation of the 
role of the threshold or bias in a perceptron.  
That is, we saw that one could view the 
value of the bias as being the strength of the 
association to background stimuli.  This is a 
completely new perspective on the percep-
tron, and it arises because of the need to 
precisely map conditions of an animal learn-
ing experiment into a working computer 
simulation.  Thus, the computer simulation 
approach that has been explored in this 
book has provided novel metaphoric insight 
as well. 
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9.12 The Synthetic Approach
9.12.1 Analysis and Synthesis 
 
The vast majority of research in psychol-

ogy and cognitive science follows an ana-
lytic methodology (Braitenberg, 1984; Daw-
son, 2004).  In general, it proceeds by taking 
an intact system, making observations of its 
behavior in a variety of stimulus situations, 
and inferring its internal rules or mecha-
nisms on the basis of these observations.  
Models of behavior are produced after the 
behavior has first been observed. 

 
The analytic approach has been enor-

mously successful.  However, it is important 
to realize that alternative approaches are 
also available, and that these approaches 
can also provide important insights into the 
systems that we study. 

 
For example, one alternative research 

strategy is to make some assumptions about 
primitive capacities, and then to build these 
capacities into working systems or models 
without first analyzing intact agents.  Model 
construction can precede empirical analysis. 
This approach is fundamental to research in 
behavior-based robotics (e.g. Brazeal, 2002; 
Brooks, 1999; Webb & Consi, 2001). “Only 
about 1 in 20 [students] ‘gets it’ -- that is, the 
idea of thinking about psychological prob-
lems by inventing mechanisms for them and 
then trying to see what they can and cannot 
do” (Minsky, 1995, personal communica-
tion).   
 

Braitenberg (1984) has called this alter-
native approach synthetic psychology, and 
has argued that it should be adopted be-
cause theories that are derived via analysis 
are inevitably more complicated than is nec-
essary.  This has also been called the 
frame-of-reference problem (Pfeifer & 
Scheier, 1999).  A consequence of the 
frame-of-reference problem is that because 
of nonlinear interactions (such as feedback 
between components, and between a sys-
tem and its environment), relatively simple 
systems can surprise us, and generate far 
more complicated behavior than we might 
expect.  The further appeal of the synthetic 
approach comes from the belief that if we 
have constructed this simple system, we 
should be in a very good position to propose 

a simpler explanation of its complicated be-
havior.  In particular, we should be in a bet-
ter position than would be the case if we 
started with the behavior, and attempted to 
analyze it in order to understand the work-
ings an agent’s internal mechanisms. 

  
Many of the simulation results presented 

earlier illustrate the synthetic approach in 
action.  First, one creates some “building 
blocks” from which a neural network is con-
structed: particular processing units, the 
connection weights, and a learning rule.  
Second, one trains the network to perform 
some task.  The point of this training is not 
to fit particular data, but is rather to observe 
the responses of the network.  Can it learn 
the task?  If so, what are the properties of 
this learning?  The hope in this exploration is 
to discover some surprising or counterintui-
tive regularities. 

 
We saw in Chapter 7 that the integration 

device could easily generate surprising re-
sults.  In general, these surprises were of 
the same sort: the network generated data 
that was contrary to the predictions of the 
Rescorla-Wagner model.  This was in spite 
of the fact that the learning rule for the net-
works was formally equivalent to the Res-
corla-Wagner equation. 

 
The main implication of these surprises 

was a reevaluation of the relationship be-
tween network learning and animal learning.  
In general, we were reminded of the fact that 
computational equivalence does not equate 
to algorithmic equivalence.  More specifi-
cally, we saw that a more careful considera-
tion of the learning-performance distinction, 
with an emphasis on how associations may 
be converted into responses, has important 
consequences regarding putative successes 
and failures of the Rescorla-Wagner model.  
To the extent that the reader has found this 
to be surprising or interesting, it is important 
to realize that these issues only emerged 
after using the synthetic approach to study 
Pavlovian conditioning. 
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