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Pattern Structure and Rule Induction in Sequential Learning

Stephen B. Fountain
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When presented with structured sequences to learn, do nonhuman animals abstract and learn relational information—do 
they induce and learn rules?  This paper provides an overview of the current evidence that bears on this question from our 
recent behavioral and psychobiological research on rat sequential learning. Evidence is presented that rats are sensitive to 
hierarchical structure in response sequences, that phrasing can bias rats’ perception of pattern structure, that rats induce 
pattern structures from nonadjacent items in “interleaved” patterns, and that rule learning processes are active concurrently 
with other learning processes. The paper also describes work on the psychobiology of sequential learning that shows that 
multiple concurrent cognitive processes can be dissociated by MK-801, an NMDA receptor antagonist, and by other drug 
and lesion manipulations. Taken together, the results indicate that rats use rule learning processes concurrently with associa-
tive learning processes in a wide variety of sequential learning problems.
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	 Sequential learning involves learning to organize sequenc-
es of behavior or to anticipate events that occur in a consis-
tent sequential order. Despite a century of research directed 
toward characterizing how acquired sequential behavior is 
organized, many questions remain unanswered regarding 
the nature of the mechanisms responsible for sequential in 
animal behavior. Perhaps the question that has proven most 
difficult to answer has been whether or not relational struc-
tures that are present in a sequence to be learned influence 
how and what animals learn. That is to say, when presented 
with structured sequences, do nonhuman animals encode a 
memorial representation of their experience that “the infor-
mation given” (Bruner, 1957)?  Do they ultimately abstract 
and learn relational information—do they induce and learn 
rules?  In this paper, I hope to provide an overview of the 
current evidence that bears on this question from our recent 
behavioral and psychobiological research on rat sequential 
learning. First, I will describe some behavioral studies from 

the 1970s and 1980s that seemed to show that rats indeed 
learn rules from patterns composed of sequences of food 
quantities, and then I will describe our recent research with 
a computational model that questioned the necessity of that 
conclusion. Next I will describe more recent operant re-
search from our laboratory consistent with the idea that rats 
are sensitive to the structure of patterns that are hierarchi-
cally organized or composed of two interleaved subpatterns. 
Finally, I will present data from drug and lesion studies that 
suggest that sequential learning in rats is mediated by multi-
ple concurrent psychological and brain systems, at least one 
of which appears to be related to rule induction.

Rule Induction in Reward Magnitude 
Serial Pattern Learning

	 In the 1970s and 1980s, several studies by Stewart Hulse 
and colleagues were taken as strong evidence that rats can 
abstract formal structure from the patterned sequences of 
events (“serial patterns”) they learn to anticipate. Hulse and 
Dorsky (1977; 1979) created serial patterns from a stimulus 
“alphabet” (Jones, 1974) of various quantities of food (cf. 
Hulse, 1973) presented to rats in a series of trials in run-
ways. The patterns they created varied in formal structure. A 
strongly monotonic sequence of 14-7-3-1-0 food pellets was 
formally simple in structure, requiring a single “less than” 
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rule to describe the relationships of all successive pairs of 
quantities. A weakly monotonic 14-5-5-1-0 pattern and a 
nonmonotonic 14-1-3-7-0 pattern were progressively more 
complex, requiring combinations of “less than,” “greater 
than,” and “equal” rules to adequately describe the patterns. 
Rats learned to track the formally simple monotonic pat-
tern most rapidly and to the most proficient level of tracking 
performance of the three patterns, followed by the weakly 
monotonic and the nonmonotonic patterns. Hulse and Dor-
sky ruled out a variety of pattern-learning strategies the rats 
might have adopted to learn these patterns in favor of the 
hypothesis that rats are sensitive to pattern structure and 
learned the rules that described the structure (see Hulse and 
Dorsky, 1977). The implication was that rats did not have 
to rely on chaining or remote associations alone to master 
sequences. 

	 Two additional studies were used as evidence that the rules 
rats learned from serial-patterns were, in fact, abstract. In one 
study (Hulse & Dorsky, 1979), rats demonstrated the ability 
to generalize a rule from one set of patterns to a different 
pattern. In a second study, Fountain and Hulse (1981) evalu-
ated rats’ ability to extrapolate patterns of varied structural 
complexity. Rats were better able to predict a new 0-pellet 
element added to a structurally simpler 14-7-3-1 pattern than 
0 pellets added to a structurally complex 14-3-7-1 pattern. 
The authors reasoned that the monotonic pattern produced 
better anticipation of “0” than the nonmonotonic pattern be-
cause the monotonically decreasing 14-7-3-1 sequence was 
described by a single “less than” rule that would lead natu-
rally to anticipation of “0” after “1”.

	 Capaldi and colleagues (e.g., Capaldi & Molina, 1979) 
and Haggbloom and colleagues (e.g., Haggbloom, 1985) 
challenged the theory that rats learned rules by report-
ing evidence that stimulus associations and generalization 
played important roles in pattern learning. Simply put, this 
view supposed that food quantities earlier in a sequence 
serve as cues for the later food quantities. According to this 
view, acquisition depends in part on discriminability and 
salience of pattern elements, but learning and performance 
are also determined by generalization between food quan-
tity signals. Evidence supporting this interitem association 
or “item memory” view came from various runway stud-
ies. First, Capaldi and Molina (1979) demonstrated that a 
structurally complex sequence constructed from highly dis-
criminable elements (1-29-0) produced better pattern track-
ing relative to a structurally simple sequence constructed of 
less discriminable elements (20-10-0). Second, in response 
to Hulse and Dorsky’s (1977) rule generalization studies, 
Haggbloom (1985) demonstrated that pattern tracking was 
disrupted upon transfer only when associative information 
was removed, but was unaffected by manipulations that vio-
lated rule or serial position information. Finally, Haggbloom 

and Brooks (1985) showed that discriminability of pattern 
elements, not pattern structure, was the best predictor of pat-
tern extrapolation. In subsequent studies, both camps pro-
vided additional evidence that rat sequential behavior could 
be described in terms of rule learning theory or item memory 
theory, but the debate was never adequately resolved.

	 One of the problems in the serial-pattern learning litera-
ture that complicated the rule learning versus item memory 
debate was that item memory theory with generalization 
could not make strong predictions concerning patterns that 
contained more than a few elements. For example, Capaldi, 
Verry, and Davidson (1980) stated that the “generalized re-
ward-signal capacity” received by “1” in sequences such as 
14-7-3-1-0 or 14-5-5-1-0 was “completely indeterminate” 
(p. 583). In other words, even though “1” signaled nonre-
ward (“0”) by way of direct association, item memory theory 
predicts that cue generalization should cause “1” to acquire 
the ability to signal reward through generalization from oth-
er similar items in series. It was thought that the amount of 
generalization was crucial in that it determined how much 
“1” would signal reward versus nonreward. However, the 
amount of reward-signal capacity “1” received through gen-
eralization was indeterminate presumably because Capaldi 
et al. could not explicitly describe the requisite generaliza-
tion functions for food reward quantities. For that reason, 
Capaldi et al. (1980) were unable to make strong predictions 
regarding learning for 5-element series that would have al-
lowed them to claim that item memory theory could describe 
the available behavioral data. Instead, at the time they were 
forced to adopt the weaker position that the item memory 
interpretation “cannot be excluded” (Capaldi, Verry, & Da-
vidson, 1980).

	 One approach to determining whether complex behavior 
can be described by a few simple assumptions is to use a 
mathematical model to simulate the behavior. To help us de-
termine whether pairwise association and generalization of 
cues might account for rat reward magnitude serial pattern 
learning, we recently sought to use a computational model 
to conduct simulation studies. In considering how to begin 
to model serial pattern learning processes, a variety of differ-
ent computational approaches were considered from simple 
stochastic models, to connectionist models, to production 
system approaches. Each of these varieties of computational 
models has been applied to sequential learning and memo-
ry problems at one time or another. For example, “random 
walk” models have been advanced by Roitblat and, recently, 
Neath and Capaldi (1996), connectionist models have been 
advanced by Roitblat (Roitblat, 2002), and a forerunner of 
production system models was pioneered on serial-pattern 
learning problems studied in humans by Simon, Newell, and 
their associates (Newell & Simon, 1961; Simon & Kotovsky, 
1963). The principal concern was that the model should as-
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sociate specific items in “memory” and produce generaliza-
tion phenomena. A connectionist analog was chosen because 
it has these properties, and stochastic models and produc-
tion systems were rejected because they are not easily stated 
in terms consistent with basic principles of discrimination 
learning. Several varieties of connectionist and related mod-
els have the desired properties and, thus, also bear at least 
superficial resemblance to Capaldi’s item association and 
cue generalization ideas. In particular, the TODAM model 
developed by Bennett Murdock (Murdock, 1982; 1983) and 
the CHARM model developed by Janet Metcalfe (Metcalfe 
Eich, 1982; Metcalfe, 1990) have these properties. These 
models have the added advantage that both Murdock’s and 
Metcalfe’s models have also been used successfully to simu-
late a broad array of human associative learning and memory 
phenomena  (Metcalfe, 1990; 1993; Murdock, 1983; 1992), 
including some rote sequential learning phenomena (Mur-
dock, 1983; 1992; 1995).

	 We conducted simulation studies with a computational 
model of sequential learning we called the Sequential Pair-
wise Associative Memory (SPAM) model (Wallace & Foun-
tain, 2002; 2003). SPAM includes all of the essentials of the 
TODAM model described by Murdock (1982; Murdock, 
1983) and Metcalfe (Metcalfe Eich, 1982; Metcalfe, 1990) 
and  subsequently used by Metcalfe (1990) as the model 
known as CHARM in her simulations of eyewitness misin-
formation effects and “blending” of memories that depend 
on stimulus association and generalization. The model is de-
scribed in great detail by Murdock (1982; 1983; 1985) and 
Metcalfe (Metcalfe Eich, 1982; 1990) and also in our studies 
(Wallace & Fountain, 2002; 2003). SPAM is also one pos-
sible instantiation of the item memory view because encod-
ing is based on pairwise associations of items in memory and 
because generalization occurs between similar cue items. 

	 When successive pairs of items are associated in SPAM, 
the result of the association process is added to a common 
trace. Because the trace is a composite of all prior associa-
tions, retrieval can result in generalization when the same or 
similar cue items were earlier associated with two or more 
different items. This is the basis of generalization in SPAM. 
For example, items are represented by vectors in SPAM. 
Items such as “14 pellets”, “7 pellets”, “3 pellets”, “1 pellet”, 
and “0 pellets” are represented by vectors. Since these items 
represent quantities of food that presumably vary systemati-
cally in similarity to each other, we used vectors that varied 
systematically in similarity to represent them (as Metcalfe 
(1990) did in her studies of “blended memories” in eyewit-
ness testimony). Under these conditions, if the composite 
trace contains information about the association of “1” and 
“0” only, cueing the composite trace with “1” retrieves “0.”  
On the other hand, if the composite trace contains the as-
sociations “3” with “7” and “1” with “0”, cueing the trace 

with “1” retrieves both “0” (retrieved directly by “1”) and, 
to a lesser degree, “7” (cued by generalization of “1” to “3,” 
since “1” and “3” are similar). This generalization would re-
sult in an “anticipation” of a quantity greater than “0.”  This 
effect is reminiscent of generalization typically observed in 
discrimination learning and it is also reminiscent of Capal-
di’s idea of cue generalization, where the capacity to signal 
reward or nonreward can generalize from one cue to other 
similar cues. Because SPAM is an associative model that 
has characteristics of simple associative systems, namely, 
pairwise associations and generalization, it was used to test 
whether an instance of this type of mechanism could account 
for the phenomena that various investigators have reported 
in their studies of rat reward magnitude pattern learning.

	 Figure 1 provides a schematic of the general steps in-
volved in an iteration of the computational model. Each it-
eration represents 1) a rat’s encoding of the sequence and 2) 
its response to the final element of the sequence having been 
cued by the next-to-last element. For example, a simulation 
of performance for a 20-10-0 sequence would include three 
associations, hereafter called “convolutions.” The first con-
volution would be Start-8, where “Start” is an independent 
item vector representing distinctive cues signaling the first 
trial of the sequence and Item Vector 8 represents 20 pel-
lets of food. Later convolutions would be 8-6 and 6-0. The 
convolution process is labeled “(1)” in Figure 1. The item 
that was convolved with 0, namely, 6, was later used to cue 
the composite memory trace, labeled “(2)” in Figure 1, to re-
cover a retrieved item, labeled “(3)”, through the process of 
“correlation.”  The retrieved item was then compared to each 
item in the lexicon. The lexicon was “dimensional”, that is, 
the lexicon contained all the items of the stimulus dimension 
representing food quantity. The comparison process gener-
ated dot product values that reflected the degree of similarity 
between the retrieved item and each individual item in the 
lexicon, as indicated by “(4)” in Figure 1. The lexical item 
with the highest dot product value was chosen as the item 
best predicted by the cue for that iteration, shown as “(5)” in 
Figure 1. In order to obtain a good representation of the cen-
tral tendency of the program’s performance, 1000 iterations 
were performed for each sequence simulation. Proportion 
responding to an item in the lexicon was used to calculate 
anticipated item scores that are considered analogous to run-
ning speeds elicited by the cue associated with the final item 
of the sequence. A smaller anticipated item represents slower 
running, and runway latency should be directly proportional 
to this score. For a detailed mathematical description of con-
volution, correlation, and the calculation of anticipated item 
scores, see Wallace and Fountain (2002; 2003).

	 In a series of simulation studies (Wallace & Fountain, 
2002), we used SPAM to test whether simple associative 
processes, namely, pairwise association and generaliza-
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Figure 1.   Flow diagram for one iteration of the SPAM model for the sequence 20-10-0 (coded as vector 8-vector 6-vector 
0) with “6” as a cue for the anticipated item. The schematic depicts the following steps:  (1) association by convolution, 
(2) storage in a composite memory trace, (3) retrieval by correlation of a cue item with the composite memory trace, (4) 
determining dot products (similarity) of the retrieved item vector and each individual lexicon item vector, and (5) recogni-
tion by selecting the lexicon item with the highest similarity to the retrieved item. Note. From “What is learned in sequential 
learning? An associative model of reward magnitude serial-pattern learning,” by D. G. Wallace and S. B. Fountain, 2002, 
Journal of Experimental Psychology: Animal Behavior Processes, 28, 43-63. Copyright 2002 by the American Psychologi-
cal Association. Reprinted with permission.
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tion, could account for some of the fundamental behavioral 
evidence described by Hulse, Capaldi, and colleagues. In 
two simulation studies (Wallace & Fountain, 2002), SPAM 
predicted that a short pattern with highly discriminable ele-
ments would be learned better than one with less discrim-
inable elements even though the former was monotonic, that 
is, formally simple, and the latter was nonmonotonic, that 
is, formally more complex (Capaldi & Molina, 1979). This 
prediction from the model might be expected given the simi-
larities of SPAM and item memory theory, but SPAM also 
predicted that a long, strongly monotonic pattern of food 
quantities should be tracked better than a long nonmonoton-
ic pattern, as observed by Hulse and Dorsky (1977). In two 
other simulation studies (Wallace & Fountain, 2002), SPAM 
also successfully simulated behavioral “rule generalization,” 
“extrapolation,” and associative transfer data (cf. Fountain 
& Hulse, 1981; Haggbloom, 1985; Haggbloom & Brooks, 
1985; Hulse & Dorsky, 1979). 

	 The critical point of this discussion is that over a broad 
range of parameter values (Wallace & Fountain, 2002; 2003) 
SPAM simulations demonstrated the power of simple associa-
tive principles of pairwise association and stimulus general-
ization, account for rats’ performance in patterns of different 
length and item arrangements (Wallace & Fountain, 2002; 
2003), “rule generalization”(Wallace & Fountain, 2002), and 
pattern “extrapolation” (Wallace & Fountain, 2002). SPAM 
is nearly the simplest possible formulation of this associative 
memory model because it does not store information about 
remote associations between sequential events, the effects of 
extraneous cues like phrasing, or about the passage of time 
or serial position. This is not to say that these factors play no 
role in serial-pattern learning; our SPAM simulations simply 
tested whether a model without these features could be suf-
ficient to describe what may be considered the critical phe-
nomena for the rule learning versus item memory debate in 
the reward magnitude serial pattern learning literature (Wal-
lace & Fountain, 2002). It should be noted that we also con-
cluded that SPAM is likely not unique; it is likely a member 
of a class of formally equivalent or similar associative mod-
els that share common features—association and generaliza-
tion—that should produce common behavioral outcomes in 
sequential learning paradigms (Wallace & Fountain, 2002). 
Prior unpublished work in our lab restating SPAM with an 
error-correcting rather than a Hebbian learning rule supports 
this contention (Wallace, Lewis, Fountain, & Block, 1999). 
The important conclusion is that there exists at least one sub-
symbolic mechanism—SPAM—that can explain sequential 
behavior of a type previously thought to require rule induc-
tion processes (Gallistel, 1995; Hulse, 1978; Lashley, 1951; 
Roitblat & von Fersen, 1992).

	 Although rats may in fact use rule induction processes to 
learn serial patterns, SPAM simulations indicate that this 

is not a necessary conclusion from the classical behavioral 
studies on reward magnitude sequential learning. SPAM’s 
success also argues that computational models can play a 
role in animal cognition research. In this case, SPAM dem-
onstrated that complex behavior can sometimes result from 
the aggregate effects of simple behavioral processes acting 
in complex settings, and that computational modeling may 
be required to demonstrate that simpler processes are viable 
alternatives to more complex processes as explanations. 
Computational modeling provides one means of maintain-
ing our vigilance regarding the ever-present dangers of the 
argument from design (Blumberg & Wasserman, 1995) in 
animal cognition theorizing (cf. Church, 1997; 2001). Argu-
ment from design in this context would suggest that putative 
rule learning phenomena such as sensitivity to pattern struc-
ture, rule generalization, and pattern extrapolation are too 
complex to be described by simpler processes. Instead, so 
the argument from design goes, these behavioral phenomena 
by their very complexity imply a higher-order symbolic pro-
cess, presumably a rule learning process capable of inducing 
and encoding a memorial representation of abstract relation-
al rules that describe pattern structure. SPAM provides an 
existence proof for a purely associative item memory mech-
anism that can account for these reward magnitude pattern 
learning phenomena without resort to such processes. Stron-
ger evidence for rule learning in rats is necessary to sub-
stantiate such strong claims. In the following discussion, I 
will describe evidence for rule induction in rats from another 
paradigm we developed to overcome some methodological 
limitations of the reward magnitude serial pattern learning 
paradigm.

Hierarchical Structure, Phrasing Effects, 
and Rule Induction in Response Sequence Learning 

	 We have conducted a number of studies to examine the 
extent to which pattern structure influences how rats learn to 
produce long and elaborate patterns of responses. In behav-
ioral studies, drug injection studies, and brain lesion stud-
ies in our lab, rats learn to perform complex serial patterns 
that involve pressing levers in a circular array in the proper 
sequential order. Rats are trained in an octagonal operant 
chamber equipped with a retractable lever mounted on each 
wall designated 1-8 in a clockwise fashion (see Figure 2). In 
the typical procedure, all levers are presented at the begin-
ning of each trial and the rat can press any of the 8 levers. If 
the correct lever is chosen, the rat receives brain-stimulation 
reward (BSR) via implanted hypothalamic electrodes. If an 
incorrect lever is chosen, all levers except the correct lever 
withdrawn from the box and the rat must make a correct 
choice to receive BSR before continuing to the next trial. 
The latter procedure has been used with much success to 
analyze sequential behavior in extremely long serial patterns 
(up to 60 elements in length) and in probe pattern procedures 
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that involve up to 175 complete patterns each daily session. 
For more details on the method, see Fountain, Rowan, et al. 
(2006). 

	 Two common patterns we have required rats to learn in 
this paradigm are a structurally “perfect” pattern versus a 
pattern virtually identical to the first but containing a single 
element at the end of the pattern that violates the otherwise 
simple structure:

Perfect pattern:
123-234-345-456-567-678-781-812- (…repeat pattern) 

Violation pattern:
123-234-345-456-567-678-781-81- (…repeat pattern) 

where digits indicate the clockwise position of the cor-
rect response on successive trials and dashes indicate brief 
pauses that serve as “phrasing cues.”  It should be noted 

that these 24-element response patterns can be character-
ized as composed of eight 3-element “chunks” that share 
a common base “rule” within chunks, namely, “+1” or 
“move-one-clockwise.”  This rule is consistent except after 
phrasing cues at “chunk boundaries”—where rats encoun-
ter transitions between phrases (chunks) of the pattern—and 
on the last element of the violation pattern (the underlined 
element “8”). The first element of each new chunk is thus 
termed a “chunk boundary element” that is a transition be-
tween phrases (chunks) of the pattern. The last element of 
the violation pattern is an “exception-to-the-rule” because 
applying the expected within-chunk “+1” rule at that point 
should produce a response at position “2” in the array, not 
the required “8” response. We call this a “violation element” 
because it blatantly violates the base within-chunk rule that 
consistently predicts a correct response in the third position 
of every other chunk of the pattern. Perhaps not surprisingly, 

Figure 2.  Layout of retractable levers in a circular array in an octagonal operant chamber. Digits indicate the position of 
levers in the array. Rats were reinforced with pulses of brain-stimulation reward (BSR) for choosing the levers in the correct 
sequential order on successive trials.
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evidence from our lab indicates that rats learn associations 
so that phrasing cues become discriminative stimuli that cue 
responses after the phrasing cue (Fountain, Benson, & Wal-
lace, 2000; Stempowski, Carman, & Fountain, 1999; Wal-
lace, Rowan, & Fountain, in press) and rats also learn to use 
combinations of multiple pattern elements leading up to a 
violation element to anticipate it and respond properly on the 
violation trial (Fountain, 2006). In what follows, I will focus 
on evidence that rats also abstract pattern structure from re-
sponse sequences they learn to perform.

	 We tested whether pattern structure would determine the 
ease or difficulty of pattern learning by developing patterns 
with hierarchical structure, then reordering chunks of the 
pattern to produce “linear” structure, that is, a sequence of 
unrelated chunks, as shown in Figure 3. The results showed 
that pattern complexity predicted pattern learning difficulty 
(Fountain & Rowan, 1995a). The Hierarchical pattern was 
easier to learn than the less structured Linear pattern. In ad-

dition, for rats in the Hierarchical group, the difficulty of 
learning to respond appropriately on any trial was a func-
tion of the hierarchical level of the rule required to predict 
the item. As shown in Figure 4, Hierarchical rats produced 
significantly more errors on the first trial of Chunks 1 and 6 
(red circles in Figure 4) than on all other trials. These trials 
corresponded to the highest-order rule transitions in the pat-
tern structure (i.e., third-order rule transitions). Fewer errors 
were observed on the first trial of other chunks (blue circles), 
trials corresponding to second-order rule transitions. The 
fewest errors occurred within chunks (green circles) where 
trials corresponded to first-order rule transitions. Thus, in 
the completely hierarchical pattern, the difficulty of learn-
ing to respond appropriately on any trial was a function of 
the hierarchical level of the rule required to predict the item. 
Linear rats did not show the 3-level hierarchical pattern of 
errors observed for Hierarchical rats. Linear rats responded 
as though elements within most chunks were predictable, but 
that chunks were somewhat haphazardly arranged (Fountain 

Figure 3.    The structures of the 3-level hierarchical and the linear patterns rats learned in the octagonal operant chamber. 
The Hierarchical pattern is described by a formally simple completely nested rule structure: elements within 3-element 
chunks are related by first-order rules, chunks within the first and second halves of the pattern, respectively, are related to 
each other by second-order rules, and the first half of the pattern is related to the second half of the pattern by a third-order 
“mirror” rule. The incompletely nested Linear pattern was generated by exchanging two 3-element chunks of the Hierar-
chical pattern (underlined and in red). In this structure, elements within any chunk are related by a rule, but chunks are not 
related to each other systematically.
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& Rowan, 1995a). 

	 Rats found learning a completely nested hierarchical pat-
tern easier than learning a less organized pattern even when 
pairwise associations and pattern length were conserved 
across patterns. In another study from the same series (Foun-
tain & Rowan, 1995a), a 3-level hierarchy was easier to learn 
than a 4-level hierarchy when pattern length was conserved 
across patterns. As a rule, then, pattern complexity was a 

Figure 4.  Rats’ mean percentage of pattern tracking errors 
for hierarchical and linear patterns (top and bottom panels, 
respectively) as a function of the 30 items of the patterns. 
Mean percentage of errors are shown for the first week of 
training. Note that in the hierarchical pattern data, errors 
were most frequent at the highest-level 3rd-order rule transi-
tions at the beginning of each half of the pattern (red circles), 
next most frequent at the 2nd-order rule transitions at the 
beginning of other chunks (blue circles), and least frequent 
at 1st-order rule transitions within chunks (green circles), 
as predicted by rule learning theory. Note. From “Coding of 
hierarchical versus linear pattern structure in rats and hu-
mans,” by S. B. Fountain and J. D. Rowan, 1995, Journal of 
Experimental Psychology: Animal Behavior Processes, 21, 
p. 187-202. Copyright 1995 by American Psychological As-
sociation. Adapted with permission.

Figure 5.  Rats’ group mean element-by-element percent er-
ror rates collapsed across both weeks of the experiment for 
Runs and Trills groups (top and bottom panels, respective-
ly). Both graphs show error rates for overextension errors 
consistent with a runs (R) or trills (T) interpretation of the 
structurally ambiguous pattern, rates of responses identified 
as anticipation and perseveration errors, and the rates of 
other errors that could not be classified into these catego-
ries. Note. From “Encoding structural ambiguity in rat se-
rial pattern learning: The role of phrasing,” by S. B. Foun-
tain, J. D. Rowan, and H. M. Carman, 2007, International 
Journal of Comparative Psychology, 20, 25-34. Copyright 
2007 by International Society for Comparative Psychology. 
Adapted with permission.



Pattern Structure and Rule	 74

better predictor of acquisition difficulty in these studies than 
was pattern length. These acquisition results are evidence 
that pattern structure can be an important determinant of pat-
tern difficulty for rats learning response sequences. 

	 In another octagonal chamber study, we examined the ef-
fects of phrasing a structurally ambiguous pattern as either 
a series of “runs” or “trills” (Fountain, Rowan, & Carman, 
2007). A 1234345656787812 pattern phrased as runs (1234-
3456-5678-7812…) was easier to learn than when it was 
phrased as trills (1212-3434-5656-7878), a result that resem-
bles a similar “run bias” reported in the human sequential 
learning literature and in earlier studies of rats’ response to 
“run” versus “trill” structures (Fountain & Rowan, 1995b). 
Whereas rats learning the runs-phrased pattern showed rapid 
learning and little tendency to make trills errors, rats learn-
ing the trills-phrased version of the pattern produced inflat-
ed rates of both trills and runs errors, as shown in Figure 5 
(Fountain et al., 2007). The results show that rats represented 

the runs- and trills-phrased versions of the pattern different-
ly. These results add to the evidence that, in addition to serv-
ing as discriminative cues, phrasing cues can bias pattern 
perception in rat serial pattern learning resulting in memorial 
representations characterized by multiple interpretations of 
the same pattern. 

Rule Induction in Interleaved Pattern Learning

	 Humans have the ability to chunk together information 
from nonadjacent serial positions in sequential patterns. 
For example, human subjects can extrapolate the pattern, 
AMBNCODPE_, to find the missing element, “Q,” by sort-
ing pattern elements into two component interleaved sub-
patterns: ABCDE and MNOP_. We have conducted several 
experiments to investigate rats’ ability to reorganize pattern 
elements from nonadjacent serial positions into chunks not 
presented by the experimenter (Fountain & Annau, 1984; 
Fountain & Benson, Jr., 2006; Fountain, Rowan, & Benson, 
Jr., 1999). Generally, the question of interest is whether rats 

Figure 6.  Group mean element-by-element errors for the interleaved structured-repeating (ST-R) and unstructured-re-
peating (UNST-R) patterns averaged across Week 3 of training. Note. From “Rule learning in rats: Serial tracking in inter-
leaved patterns,” by S. B. Fountain, J. D. Rowan, and D. M. Benson, Jr., 1999, Animal Cognition, 2, p. 41-54. Copyright 
1999 by Springer-Verlag. Adapted with permission.
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learn interleaved subpatterns at different rates as a function 
of subpattern complexity and whether rats’ errors reflect the 
influence of pattern structure versus item associations. 

	 One experiment  (Fountain et al., 1999) sought to deter-
mine whether rats would show signs of being sensitive to the 
organization of nonadjacent items from interleaved subpat-
terns when one subpattern was a composed of a simple, re-
peating element and the second subpattern was either highly 
structured or not. For rats in the Structured (ST) subpattern 
condition, a 123 234 345 456 567 subpattern was interleaved 
with a Repeating (R) subpattern, 888 888 888 888 888, re-
sulting in the ST-R pattern that rats were required to learn:

182838-283848-384858-485868-586878…

For rats in the Unstructured (UNST) subpattern condition, 
a 153 236 345 426 547 subpattern was interleaved with the 
same R subpattern to create the UNST-R pattern in the same 
manner. 

	 Acquisition of the interleaved structured pattern (i.e., ST-
R) was significantly faster than for the interleaved unstruc-
tured pattern (i.e., UNST-R). The unstructured pattern was 
generated by exchanging only two pairs of elements in the 
structured pattern, as described above. In so doing, however, 
all pair-wise associations in the interleaved patterns were 
maintained because all of the relocated items were preceded 
by “8” trials. Nevertheless, Figure 6 shows that the effects 
of disrupting pattern structure were apparent throughout the 
pattern. This was so even in the third (middle) chunk that 
was not altered in producing the unstructured pattern; rats 
found this chunk, 384858, harder to learn in the context of 
the UNST-R pattern than in the ST-R pattern. 

	 In another experiment (Fountain & Benson, Jr., 2006), 
we examined the influence of pattern structure on learning 
interleaved patterns containing violation elements. In one 
group, the first interleaved subpattern was a formally simple 
sequence, whereas in two other groups the first subpattern 
was formally more complex, containing 2 or 4 violation ele-
ments, respectively. One group learned an interleaved S-S 
serial pattern: 1526374851627384. This interleaved pattern 
is based on two formally simple (S) subpatterns, 12345678 
and 56781234. Both subpatterns are considered formally 
simple because they can be described by a single rule, name-
ly, a “+1” rule that indicates that on successive trials the rat 
must choose the lever to the right of the last correct lever. In 
fact, the subpatterns are structurally the same, only differing 
in terms of where the pattern begins in the array (Lever 1 vs. 
Lever 5 as starting lever). This interleaved pattern was called 
“S-S”, to signify that it was composed of two subpatterns 
of simple structure. A second group learned an interleaved 
2V-S serial pattern: 1526473851627384. This interleaved 

2V-S pattern was composed of two subpatterns, one with 2 
violation (2V) elements and the other with simple structure: 
12435678 and 56781234. Note that the 2V subpattern con-
tains two “violation” elements that break the +1 rule that de-
scribes the elements constituting the rest of this subpattern. 
The 2V subpattern was created by exchanging the “4” and 
“3” elements of the first subpattern of the S-S pattern. The 
second subpattern of 2V-S is identical to the second subpat-
tern of the S-S pattern. A third group learned an interleaved 
4V-S serial pattern: 1526473861527384. This interleaved 
4V-S pattern was composed of two subpatterns, one with 4 
violation (4V) elements and the other with simple structure: 
12436578 and 56781234. The 4V subpattern was created by 
exchanging the “3” and “4” elements and the “5” and “6” el-
ements of the first subpattern of the S-S pattern. The second 
subpattern of 4V-S is identical to the second subpattern of 
the S-S and 2V-S patterns.

	 The results showed that rats were sensitive to the relation-
ships between elements of interleaved patterns even though 
the elements were not adjacent in series. Rats chunked pat-
terns into component subpatterns, learned the “+1” rule re-
lating nonadjacent elements of simple (S) subpatterns, and 
treated violation elements as structural imperfections. Evi-
dence to support these claims for chunking and rule learn-
ing comes from 1) comparisons of pattern and subpattern 
acquisition rates and 2) intrusion error analyses, particularly 
for violation elements. Acquisition results showed that the 
interleaved serial pattern, S-S, composed of two subpatterns 
of simple structure, was learned faster than interleaved se-
rial patterns containing violation elements, as predicted by 
pattern structure. Further, in each interleaved pattern, sub-
patterns were acquired at different rates. Even though the 
two S subpatterns in the interleaved serial pattern S-S were 
essentially identical, rats nonetheless chunked elements with 
respect to constituent subpattern, learning the first S subpat-
tern faster than the second S subpattern. Similarly, with ref-
erence to the 2V-S and 4V-S interleaved patterns, the first 
subpatterns, which contained violation elements, were ac-
quired faster than the second subpatterns, S in both cases. 
When first subpatterns are considered, the formally simple 
S subpattern was easier to learn than formally complex 2V 
and 4V subpatterns that contained violations, as predicted by 
rule learning theory. Taken together, these results strongly 
support the notion that rats were chunking patterns into their 
constituent subpatterns and that subpattern structure was a 
determinant of subpattern difficulty. 

	 Evidence for chunking and rule learning also came from 
results of the intrusion error analysis. Figure 7 shows rats’ 
group mean element-by-element percent error rates col-
lapsed across all days of the experiment. The top and bottom 
panels parse the data by first and second subpatterns of the 
interleaved patterns, respectively. In violation patterns (top 
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Figure 7.  Rats’ group mean element-by-element percent error rates collapsed across all 5 weeks of the experiment for the 
S-S, 2V-S, and 4V-S interleaved patterns. The top panel shows error profiles for the first subpattern of each interleaved 
pattern and the bottom panel shows error profiles for the second subpattern. Red circles indicate unusually high rates of 
errors attributable to rule learning. Blue circles indicate unusually high or low rates of errors attributed to multiple item 
associations. Error bars: ± SEM. Note. From “Chunking, rule learning, and multiple item memory in rat interleaved serial 
pattern learning,” by S. B. Fountain and D. M. Benson, Jr., 2006, Learning and Motivation, 37, p. 95-112. Copyright 2006 
by Elsevier. Adapted with permission.
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panel), the highest-frequency errors on violation elements 
were responses consistent with the +1 rule describing simple 
subpattern structure (indicated by red circles in Figure 7 for 
trials where this was true). Such responses fit well with pre-
dictions of rule learning theory, but are not easily explained 
by common associative mechanisms of discrimination learn-
ing.

	 If we ignore subpattern structure and treat the patterns as 
an undifferentiated series of events, we find strong evidence 
that sequential adjacent-element associations and remote as-
sociations controlled rats’ sequential choices. Several of the 
easiest and most difficult elements for rats to learn could be 
accounted for by multiple adjacent-item associations (indi-
cated by blue circles in Figure 7 for trials where this was 
true). When multiple cues consistently signaled the same 
correct outcome, the target elements were among the easiest 
to learn. In contrast, when multiple cues signaled different 
outcomes at different points in the sequence, creating a diffi-
cult “branching” problem (Restle & Brown, 1970a; 1970b), 
the target elements were among the most difficult to learn 
due to generalization of errors across instances where the 
same cues predicted different outcomes. This associative 
view, however, cannot account for the foregoing phenom-
ena implicating chunking and rule learning. Instead, the re-
sults taken together fit better with the idea that rats used rule 
learning and associative learning concurrently. 

	 Rats appeared to learn about the formally simple rules 
that described the underlying interleaved structures of the 
sequences and governed long strings of elements. They also 
used associative memory of multiple items as compound 
cues to anticipate specific pattern elements where those cues 
were particularly distinctive. Thus, the behavioral evidence 
suggests that rats used chunking, rule learning, and interitem 
association learning concurrently to master these complex 
patterns.

SPAM and Response Sequence Learning

	 A natural question is whether SPAM simulations can ac-
count for the foregoing results that support the view that rat 
serial pattern learning of highly structured response sequenc-
es is mediated at least in part by rule induction processes. Al-
though rats can learn the serial patterns described above to a 
high level of performance (no more than 10% errors on any 
element of the pattern), recent unpublished simulation stud-
ies indicate that SPAM failed to do so despite attempts to 
code sequences as series of distinct lever spatial locations or 
as a series of left and right turns (Kundey, Rowan, & Foun-
tain, 2007). The insurmountable problem appears to be the 
highly branching nature of the serial patterns. Because SPAM 
depends on pairwise associations and cannot use compound 
or configural cues to disambiguate branching sequences, 

generalization is complete across instances where the same 
cue signals different outcomes resulting in high error rates 
that cannot be reduced by further “training” in SPAM. For 
SPAM to have any chance of simulating rats’ performance 
for even simple branching sequences, the model will need 
to be modified to encode compound or configural cues, but 
it is not at all clear that such a model would then be capable 
of simulating reward magnitude serial pattern learning or 
that it would produce results that simulate the foregoing data 
with structured response sequence learning in the octagonal 
chamber paradigm. Work to add compound or configural cue 
encoding to SPAM is currently underway.

Rule Induction and Neural Systems

	 Our recent research has tended to support the view de-
scribed above that serial pattern learning depends on mul-
tiple concurrent learning and memory systems. Behavioral 
neuroscience and neurotoxicology research first reported in 
the 1980s has also produced evidence consistent with this 
idea. Specifically, early evidence indicated that more than 
one memory system was involved in rat serial pattern learn-
ing, at least one of which depended on the hippocampus. For 
example, Olton, Shapiro, and Hulse (1984) showed that fim-
bria-fornix lesions that effectively isolated the hippocampus 
produced impairments of rats’ memory for forced-choice 
probe elements of serial patterns that violated a simple 
“less than” rule learned before surgery. Similarly, Fountain, 
Schenk, and Annau (1985) showed that hippocampal lesions 
caused by the toxic organometal, trimethyltin, impaired 
learning for formally complex nonmonotonic serial patterns 
of BSR quantities, but not for formally simple monotonic 
patterns of BSR quantities. Impairments in rat serial pattern 
learning have also been observed following carbon monox-
ide exposure (Fountain, Raffaele, & Annau, 1986), which 
also differentially affects hippocampus. The foregoing re-
sults by Olton et al. and Fountain et al. fit with the putative 
importance of hippocampus in working, spatial, episodic, 
and declarative memory, and they suggest that further stud-
ies employing drugs and brain lesions targeting hippocam-
pus might reveal relationships between cognitive processes 
involved in serial pattern learning and specific brain learning 
and memory systems. 

	 In a recent series of studies examining the effects of drugs 
and brain lesions on sequential learning, we looked for con-
verging psychobiological evidence supporting a distinction 
between item memory and rule induction processes in rat 
sequential learning. Fountain and Rowan (2000) examined 
the effects of the drug MK-801 on sequential learning. MK-
801 is a systemically administered drug that blocks a spe-
cific type of glutamate receptor, namely, the NMDA recep-
tor, which plays a critical role in hippocampal learning.  In 
blocking NMDA receptors, MK-801 also blocks a type of 
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neuronal plasticity, known as long-term potentiation, in the 
hippocampus, basal ganglia, and other brain structures. It is 
thought that MK-801 should impair any hippocampal-de-
pendent learning. Rats were trained on one of two patterns, 
one which was structurally “perfect” and a second, virtually 
identical to the first, but containing a single violation ele-
ment as the last element of the pattern. The Perfect and Vio-
lation patterns were:

Perfect Pattern:	 123-234-345-456-567-678-781-812
Violation Pattern:	123-234-345-456-567-678-781-818

As before, the digits indicate the correct order of lever choic-
es for successive trials and dashes indicate pauses that served 
as phrasing cues. The last “8” item of the Violation pattern 
(underlined) was the violation element. Rats from one group 
for each pattern condition were injected with 0.0625 mg/kg 
MK-801 daily before training. MK-801 had little effect on 
learning to respond to rule-based items within chunks, but it 
did impair responding on the first trial of chunks and, most 
dramatically, for the violation element (Fountain & Rowan, 
2000). Although rats showed no signs of learning to respond 
to the violation element, throughout the 7-day experiment 
they produced rule-based errors on the violation trial by 
responding “2” instead of “8” at the end of the sequence 
(Fountain & Rowan, 2000). Similar results are shown in 
Figure 8 from a recent unpublished master’s thesis (Smith, 

2004) replication of Fountain & Rowan (2000) in an analog 
task with a different response and reinforcer. An octagonal 
chamber was fitted with nosepoke receptacles and water so-
lenoids so that rats nosepoked for water reinforcement rather 
than lever pressing for BSR. Trials were signaled by recep-
tacle lights rather lever insertion with otherwise parallel pat-
tern training procedures. The results replicated Fountain & 
Rowan (2000) and provide additional evidence that MK-801 
impairs NMDA-receptor-dependent processes involved in 
learning about chunk boundary elements and violations of 
pattern structure while sparing the rule induction processes 
necessary to induce pattern structure and extrapolate the se-
quence on the violation trial. Another study from Smith’s 
master’s thesis (2004) showed that radiofrequency lesions of 
dorsal that produce spatial deficits had no effects on acquisi-
tion of within-chunk elements or the violation element and 
caused only transient retardation of acquisition for chunk 
boundaries. 

	 In a later study reported in Fountain and Rowan (2000), we 
examined the role of NMDA-receptor-dependent processes 
when new serial pattern information added to old. Rats were 
first trained to a high criterion on a pattern consisting of the 
first 7 chunks of the Perfect pattern above: 123-234-345-
456-567-678-781. After rats learned the pattern, they were 
transferred to one of two new patterns that contained all ele-
ments of the first pattern and an additional chunk of three 

Figure 8.  Results of a replication of Fountain and Rowan (2000). Rats’ acquisition curves for rule-governed within-chunk 
elements, cued chunk boundary elements, and the violation element (left-to-right panels, respectively) over 49 days of 
training after receiving systemic injections of either 0.0625 mg/kg MK-801 or control injections daily 30 min before train-
ing. MK-801 profoundly retarded learning (observed here as increased errors) on elements characterized as transitions 
between phrases of the pattern and an “exception-to-the-rule,” namely, chunk-boundary elements (Element 1 of each 3-
element chunk) and the violation element (the last element of the pattern), respectively. MK-801 also produced a small and 
persistent effect on asymptotic levels of learning rule-governed within-chunk elements. Error bars: ± SEM.
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additional elements. The three added elements were either 
structurally consistent with the first pattern (viz., 812), mak-
ing it a structurally Perfect pattern, or they contained a vio-
lation of the pattern structure learned in training (viz., 818), 
thus creating a Violation pattern. On the day of transfer, half 
the rats were injected with MK-801 to determine the effects 
of NMDA-receptor-dependent processes on rats’ ability to 
integrate structurally consistent or inconsistent new infor-
mation with an already learned pattern. 

	 As shown in the top panel of Figure 9, when a structurally 
consistent chunk was added in the Perfect pattern transfer, 
the effects of MK-801 were very similar to the effects of the 
drug on acquisition (Fountain & Rowan, 2000). That is, the 
drug produced a selective decrease in the animals’ accuracy 
on the first elements of each chunk of the original pattern, 
but produced virtually no change in accuracy on the remain-
ing two elements of the 3-element chunks. The most inter-
esting result occurred when a structurally inconsistent chunk 
was added in the Violation pattern transfer. As shown in the 

Figure 9.  Rats’ mean percentage of pattern tracking errors for the perfect (top panel) and violation (bottom panel) pat-
terns as a function of the 24 items of the patterns on the day of transfer when the eighth 3-element chunk was added to the 
previously learned 7-chunk pattern. On the day of transfer, rats were injected with either saline or MK-801, an NMDA re-
ceptor antagonist. Note. From “Differential impairments of rat serial-pattern learning and retention induced by MK-801, 
an NMDA receptor antagonist,” by S. B. Fountain and J. D. Rowan, 2000, Psychobiology, 28, p. 32-44. Copyright 2000 
by Psychonomic Society. Adapted with permission.
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bottom panel of Figure 9, although saline control rats had 
difficulty responding to the new chunk, producing high error 
rates on the chunk boundary element and violation element 
of the added chunk, there was little effect on the rest of the 
pattern. In contrast, MK-801 dramatically disrupted perfor-
mance for elements both in the new chunk to be learned and 
throughout the rest of the pattern (Fountain & Rowan, 2000). 
When this effect is compared to the effects of MK-801 in the 
Perfect pattern transfer, the effect can only be accounted for 
by the addition of the terminal violation element.

	 One interpretation of these latter results is that adding 
new information to a pattern representation is possible un-
der MK-801, but only if the information is consistent with 
pattern structure that has already been encoded. In fact, this 
initial evidence indicates that for rats with impairment of 
NMDA-receptor-dependent processes, new information 
that is structurally inconsistent can disrupt previously well-
learned response patterns. This suggests that, in intact ani-
mals, non-NMDA-receptor-dependent systems mediate rule 
induction whereas NMDA-receptor-dependent processes 
may play a role in the successful integration of new rule-
inconsistent sequential information with already encoded in-
formation about pattern structure. Under MK-801, rats were 
able to add a rule-consistent chunk to their already learned 
pattern with relatively little difficulty, but not a rule-incon-
sistent chunk. 

	 Muscarinic acetylcholine systems have been implicated in 
cognitive dysfunction in aging and Alzheimer’s disease and 
play a role in cortical, hippocampal, and subcortical brain 
functions (Altavista, Bentivoglio, Crociani, Rossi, & Alba-
nese, 1988; Bartus, Dean, III, Beer, & Lippa, 1982; Ikonen, 
McMahan, Gallagher, Eichenbaum, & Tanila, 2002; Mad-
dux, Kerfoot, Chatterjee, & Holland, 2007; Sarter, 2007). In 
a series of studies from a recently-defended master’s thesis, 
Chenoweth (2007) examined the effects of atropine, a mus-
carinic cholinergic antagonist, on serial pattern learning in 
the same paradigm as that used to study effects of MK-801.  
She showed that atropine produces effects in acquisition and 
retention similar to those produced by MK-801. For now, we 
do not understand the biological basis for the correspondence 
between the effects atropine, a cholingergic antagonist, and 
MK-801, a glutamatergic NMDA receptor antagonist, but 
studies to elucidate this relationship are ongoing.

	 The picture that is emerging from our psychobiological re-
search is complex, but evidence strongly suggests that with-
in-chunk elements, chunk-boundary elements, and violation 
elements are likely to be differentially sensitive to manipula-
tions of different neurotransmitter and neuroanatomical sys-
tems. The results to date fit well with the view that sequential 
learning depends on multiple concurrent processes and with 
the thesis of this paper, namely, that rats use rule induction 

processes in addition to and concurrent with putative asso-
ciative processes in sequential learning (cf., Fountain, 2006; 
Fountain & Benson, Jr., 2006; Fountain & Rowan, 2000; 
Fountain et al., 2007; Wallace et al., in press).

Pattern Structure, Compound Associations, 
and Relative Rate of Acquisition

	 One potential objection to the foregoing interpretation of 
our results is the idea that the drug and lesion effects we 
observed might be simply a function of task difficulty. That 
is, perhaps drugs and lesions differentially impaired learning 
for chunk-boundary and violation elements because these 
elements are significantly more difficult to learn than with-
in-chunk elements. One retort to this objection is that the 
observed drug and lesion effects appear to be permanent and 
profound, not simply graded as a function of task difficulty. 
Another response is that they demonstrate both the absence 
of the process involved in using cues to anticipate future se-
quential events and the sparing of rule induction processes. 
However, a particular interesting new result from our lab 
to be discussed next suggests that drug- and lesion-induced 
deficits are not related to greater task difficulty at all.

	 Muller (2006), in an effort to examine the role of pattern 
structure in determining acquisition rate, conducted a 3-group 
study as part of her dissertation in my lab. She examined the 
acquisition of within-chunk elements, chunk-boundary ele-
ments, and a single violation element in three patterns with 
analogous 2-level hierarchical structure but with chunks of 
different length:

3-element chunks:	 123-234-345-456-567-678-781-818
4-element chunks:	 1234-3456-5678-7818
5-element chunks:	 12345-45678-78121

	 During the first few days of training, rats worked through a 
program of increasing numbers of patterns until they reached 
the target of 50 patterns per day. Rats were then trained on 
50 patterns per day until they completed acquisition train-
ing. In the left panel of Figure 10, acquisition data are plot-
ted as they traditionally are in both human and animal serial 
learning papers as group mean day-by-day scores. In this 
case, data were pooled across groups because there were no 
significant differences between groups. Pattern hierarchical 
structure was a better predictor of pattern difficulty over-
all and for specific element types than was pattern length, 
chunk length, the number of chunks, or the number of chunk 
boundaries. The results fit well with those reported earlier by 
Fountain and Rowan (1995a) showing the importance of hi-
erarchical structure as a determinant of sequential learning.

	 In addition, viewed from this perspective, the data support 
the common claim that pattern structural changes, like transi-
tions between phrases at chunk boundaries, and “exceptions-
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to-the-rule,” like violation elements, are harder to learn than 
structurally simpler rule-based information (Fountain, 1990; 
Fountain & Rowan, 1995a; 1995b; Jones, 1974; Kotovsky 
& Simon, 1973; Restle & Brown, 1970a). One consistent 
observation in both human and animal sequential learning 
is that the kinds of errors subjects make on chunk-bound-
ary and violation elements are frequently consistent with 
overextensions of the pattern’s inherent base structure, such 
as when rats frequently make a “4” response on a chunk-
boundary trial after a 1-2-3 chunk or make a rule-consistent 
“2” response rather than the violation “8” response at the 
end of the 3-element-chunks pattern in this experiment (cf. 
Fountain & Rowan, 1995a; 1995b). This suggests that the 
base rules of a pattern are learned faster than chunk-bound-
ary and violation elements. However, it should be noted that 
the data supporting the claim that transitions between phras-
es (chunk boundaries) and “exceptions-to-the-rule” (viola-
tion elements) are more difficult to learn than rule-governed 
within-chunk responses are confounded by the fact that 
chunk boundaries and violation elements are by definition 
less frequent than rule-governed within-chunk elements. As 
it turns out, the most frequent rules actually determine the 
interpretation of the structure that is perceived and encoded, 
so it is no surprise that transitions between phrases of a pat-
tern and “exceptions-to-the-rule” are less frequent events in 
any sequence perceived as having a pattern structure. 

	 However, it is possible to plot the data in the left panel of 
Figure 10 not in terms of daily mean errors, but as a function 
of the number of times rats encountered each type of pattern 
element (viz., within-chunk vs. chunk-boundary vs. viola-
tion elements). In the right panel of Figure 10, the data from 
the left panel are as a function of blocks of 50 instances of 
each element type, thus equating for experience with each 
type. Data presented in this way suggest that within-chunk 
elements were the most difficult to learn. Transitions be-
tween phrases of the pattern and an “exception-to-the-rule,” 
namely, chunk-boundaries and violation elements, respec-
tively, were learned at a faster rate than within-chunk ele-
ments with no significant differences between chunk-bound-
ary and violation elements. One might argue that such an 
analysis is difficult to interpret because of the large differ-
ences in the relative timing and spacing of the events being 
pooled for analysis, but this idea would likely lead one to ex-
pect the slowest learning in widely spaced chunk-boundary 
and violation elements, not faster learning relative to closely 
spaced within-chunk elements as we observed. Muller’s re-
sult does not refute the idea that rats and humans are sensi-
tive to and learn about pattern structure, but it does suggest 
that learning pattern rules may be more difficult compared 
to discrimination learning than previously thought. This out-
come also bears on interpreting our preliminary drug and 
lesion studies mentioned above, some of which show larger 

Figure 10.  Rats’ acquisition curves (plotted as decreasing errors over days) for rule-governed within-chunk elements, 
cued chunk boundary elements, and the violation element over 30 days of training. Left panel: Data plotted traditionally 
as daily means for each element type. Data presented in this way suggest that within-chunk elements were the easiest to 
learn, the violation element were the most difficult, and chunk boundaries were intermediate in difficulty. Right panel: The 
same data plotted as a function of blocks of 50 instances of each element type, thus equating for experience with each type. 
Data presented in this way suggest that within-chunk elements were the most difficult to learn and that transitions between 
phrases of the pattern and an “exception-to-the-rule,” namely, chunk-boundary and violation elements, respectively, were 
learned at a faster rate than within-chunk elements with no significant differences between chunk-boundary and violation 
elements. Error bars: ± SEM.
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deficits for chunk-boundary and violation elements than for 
within-chunk elements. From the traditional perspective, this 
outcome might suggest a drug or lesion effect that depends 
on task difficulty, but this latter conclusion would not neces-
sarily be supported by data from the right panel of Figure 10 
that indicate that within-chunk elements are actually learned 
slower, not faster, than other element types. 

	 It has often been stated that pattern abstraction leads to 
more efficient mnemonic representations. Some have used 
this idea to justify why animals might have developed ab-
stract cognitive processes or why animals might employ 
them under appropriate circumstances. The results of this 
study suggest that whereas pattern structure is an important 
determinant of pattern learning, it does not necessarily follow 
that pattern perception and encoding is easier or faster than 
S-R learning, pairwise association, compound or configural 
cue learning, encoding occasion setters, encoding “multiple 
item memory,” or other forms of associative learning.

Pattern Structure, Rule Induction, 
and the Organization of Behavior

	 What role do pattern structure and rule induction play in 
the organization of behavior?  The foregoing discussion res-
onates with research from behavioral neuroscience and relat-
ed fields that has found evidence for more than one process 
and more than one brain area mediating human and nonhu-
man sequential learning. Nissen’s broadly influential work 
on brain correlates of human learning in her serial reaction 
time (SRT) task has supported the idea that serial learning 
is subserved by at least two dissociable learning systems 
(Knopman & Nissen, 1991; Knopman & Nissen, 1987; Nis-
sen, Knopman, & Schacter, 1987). Work from Graybiel’s lab 
indicates that the basal ganglia are critical for both cogni-
tive and motor aspects of sequential learning (e.g., Canales 
& Graybiel, 2000; Fujii & Graybiel, 2003; Graybiel, 1997; 
1998; 2000; Jog, Kubota, Connolly, Hillegaart, & Graybiel, 
1999; Saka, Goodrich, Harlan, Madras, & Graybiel, 2004) 
and likely also play a role in schizophrenia, Tourette’s syn-
drome, and obsessive-compulsive disorder (e.g., Graybiel, 
1997; Graybiel & Canales, 2001; Graybiel & Rauch, 2000; 
Holt et al., 1999; Saka & Graybiel, 2003). Lesions of hippo-
campus and medial caudoputamen in rats produce a double 
dissociation of processes in sequential learning (DeCoteau 
& Kesner, 2000), and hippocampal lesions have also been 
shown to cause deficits in rats’ ability to disambiguate se-
rial patterns (Agster, Fortin, & Eichenbaum, 2002). Willing-
ham’s recent model of human sequential learning and per-
formance posits dissociable perceptual-motor, strategic, and 
dynamic processes involving dorsolateral frontal cortex, pre-
motor cortex, basal ganglia and other subcortical structures, 
and spinal systems, respectively (Bischoff-Grethe, Goedert, 
Willingham, & Grafton, 2004; Willingham, 1998; 1999). 

Growing evidence indicates that sequential learning recruits 
multiple dissociable cognitive and neural systems concur-
rently, yet the behavioral and neural processes that subserve 
it have not been definitively identified and properly charac-
terized. For example, the SRT task, which has many similar-
ities to our method, has become widely adopted in cognitive 
neuroscience, behavioral neuroscience, and clinical research 
for imaging, animal drug and lesion studies, and for study-
ing cognitive deficits in patient populations. Whether or not 
rule learning, chunking, and other “patterning” effects (cf. 
Koch & Hoffmann, 2000) can be observed in this paradigm 
at all is currently a matter of debate. The research reported 
in this paper supports claims that rats routinely respond to 
pattern structure and rule induction processes in a wide va-
riety of sequential learning problems. This suggests that rule 
induction may play a more central role in response sequence 
learning than is generally recognized.
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