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	 In studies of contingency assessment a participant is asked 
to judge the relationship between events, a cue and an out-
come. Although there are various forms of the task, a discrete 
trial format with a single cue and a single outcome often is 
used. On each trial, a cue may, or may not, be presented, 
following which an outcome may, or may not, be presented. 
Various cues and outcomes have been used. For example, 
the cue may consist of information that clouds have or have 
not been seeded, and the outcome consists of information 
that it has or has not rained (Ward & Jenkins, 1965); the cue 
may consist of information that a putative leavening agent 

has or has not been added to bread dough, and the outcome 
consists of information that the dough has or has not risen 
(Shaklee & Mims, 1981); the cue may consist of informa-
tion that a patient has or has not a particular symptom, and 
the outcome consists of information that a patient does or 
does not have a particular disease (Smedslund, 1963). More 
generally, the stimuli presented to a participant can be sum-
marized as a 2x2 matrix (see Table 1a). On each trial the cue 
either is presented (C) or is not presented (~C), and then the 
outcome either does occur (O) or does not occur (~O). The 
letters in the cells (a, b, c, d) represent the joint frequency of 
occurrence of the four cue-outcome combinations in a block 
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In most studies of contingency assessment participants judge the magnitude of the relationship between cues and outcomes. 
This judgment is a conflated measure of the participant’s sensitivity to the cue-outcome relationship, and his or her response 
bias. A psychophysical model (signal detection theory, SDT) can be used to dissect the independent contributions of sensi-
tivity and bias to contingency judgment. Results of an experiment concerning cue-interaction (blocking) illustrate the util-
ity of applying SDT to understanding contingency assessment. Most accounts of such assessment are associative (derived 
primarily from Pavlovian conditioning experiments with non-human animals).  A psychophysical analysis of contingency 
assessment is not an alternative to such associative accounts. The SDT analysis supplements (not replaces) learning prin-
ciples with psychophysical principles. 
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Table 1a.  The 2x2 matrix for the cue and outcome presenta-
tions in the contingency assessment task. The letters in the 
cells represent the joint frequency of occurrence of the four 
cue-outcome combinations in a block of trials.

O ~O

  C a b

~C c d



SDT and Contingency Assessment	 117

	 Although there are various ways of summarizing the ex-
perimenter-programmed relationship between the cue and 
the outcome (see Allan, 1980), one that has been particularly 
useful is ∆P:

each other, others were investigating new phenomena in the 
area of nonhuman animal learning. Challenges to the preva-
lent view that pairing was sufficient to establish an associa-
tion between events arose from many quarters. Leon Kamin 
reported intriguing cue-interaction effects: blocking and 
overshadowing (Kamin, 1968, 1969a, 1969b). Both were 
demonstrations that a simple pairing analysis of classical 
conditioning was apparently inadequate. That is, learning 
about the relationship between a target conditional stimulus 
(CS) and an unconditional stimulus (US) depended not only 
upon pairings of the target CS and the US, but also on the 
associative history and salience of other CSs that were pre-
sented in compound with the target CS. Allan Wagner and 
colleagues reported another phenomenon, cue validity, that 
made essentially the same point – there are conditions un-
der which CSs and USs are paired, but apparently little is 
learned about the relationship between them (Wagner, Lo-
gan, Haberlandt, & Price, 1968). Perhaps most famously, 
Robert Rescorla published an influential paper suggesting 
that the contingency (or correlation) between events, rather 
than contiguity (or pairing), was the crucial factor in estab-
lishing associations (Rescorla, 1967). That is, learning about 
the relationship between a CS and a US depends not only on 
trials involving CS-US pairings, but also on presentations of 
the US during the intertrial interval (when no CS is present-
ed). Rescorla collaborated with Wagner in the development 
of a model that integrated and made sense of these (and oth-
er) then-recent findings about Pavlovian conditioning – the 
Rescorla-Wagner model (Rescorla & Wagner, 1972, Wagner 
& Rescorla, 1972). 

Figure 1. Number of papers concerned with contingency 
assessment published each year. Papers were selected by 
searching the PsycINFO® database for studies that used 
human participants and contained phrases in the title or ab-
stract such as: causal (or contingency) learning, correlation 
(or covariation or causality or contingency) jud(e)gment, 
contingency assessment, cue interaction, forward blocking, 
backward blocking, and power PC.  The exact search query 
is described in Endnote 1.The strength of the relationship between the cue and the out-

come is denoted by the magnitude of ∆P. If the outcome al-
ways occurred when the cue was presented, and never in the 
absence of the cue, ∆P = 1. If ∆P = 0, the outcome is equally 
likely in the presence and absence of the cue.

	 In general, early contingency assessment researchers as-
sumed that people extract rules from the sequence of cue and 
outcome presentations; that is, participants are innate statis-
ticians, computing and comparing the conditional probabili-
ties of the outcome in the presence, and in the absence, of the 
cue (e.g., Peterson & Beach, 1967). Some of the early studies 
of contingency assessment were designed to ascertain which 
statistical information in the 2x2 matrix was used to arrive 
at the participant’s contingency judgment (e.g., which cells 
were most important, see Arkes & Harkness, 1983). Others 
were designed to ascertain how participants of different ages 
(e.g., Shaklee & Mims, 1981), or with different psychologi-
cal disorders (e.g., Alloy & Abramson, 1979), differed on the 
contingency assessment task. In general, the topic of contin-
gency assessment was rather esoteric and atheoretical until 
the mid 1980s. Research concerning the topic then grew ex-
ponentially (see Figure 1)(1). We suggest that it was in the 
mid 1980s that experimental psychologists in general, and 
those interested in basic associative processes in particular, 
were attracted to the study of contingency assessment. 

The Growth of Contingency Assessment Research

	 The reason for the rapid growth of research on contingen-
cy assessment is of considerable historical interest. Coinci-
dently, at the time that some researchers were investigating 
how humans decide that cues and outcomes are related to 

(1)∆P= P(O|C)-P(O|~C)= a
a + b

c
c + d

Table 1b.  The 2x2 matrix for the CS and US presentations in 
Pavlovian conditioning. The letters in the cells represent the 
joint frequency of occurrence of the four CS-US combina-
tions in a block of trials.
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	 The Rescorla-Wagner model has been very influential in 
understanding basic associative processes (studied primar-
ily in nonhuman animals). Furthermore, it inspired the de-
velopment of other models of Pavlovian conditioning that 
permitted simulation of results of various conditioning ma-
nipulations (e.g., Pearce & Hall, 1980). In addition, “the Re-
scorla-Wagner model has been the primary export of tradi-
tional learning theory to other areas of psychology” (Miller, 
Barnet, & Grahame, 1995, p. 363); That is, the model has 
had substantial impact in a variety of disciplines (see Siegel 
& Allan, 1996). One of these disciplines is contingency as-
sessment

	 Although early researchers of contingency assessment 
noted similarities between contingency assessment and Pav-
lovian conditioning (e.g., Alloy & Abramson, 1979), the 
Rescorla-Wagner model (and the Pearce-Hall model) was 
applied to contingency assessment by Dickinson, Shanks, 
and Evenden (1984). According to this associative analysis, 
the way we judge whether or not cloud seeding and rain are 
associated is the same way that a rat judges whether or not 
a tone and a shock are associated. Consider the situation in 
which a shock (the US) sometimes is presented in the pres-
ence of the tone (the CS), and sometimes in its absence. We 
can construct a contingency matrix for these CS and US 
presentations (see Table 1b).  Such a CS-US contingency 
matrix is like the contingency matrix for cue and outcome 
presentations in a contingency assessment task (compare 
Table 1b with Table 1a). Dickinson et al. suggested that if 
contingency assessment was like Pavlovian conditioning, 
then the most influential models of such conditioning could 
be useful in understanding contingency assessment. 

	 As suggested by the data depicted in Figure 1, Dickinson 
et al’s (1984) insight had a galvanizing effect on contingency 
assessment research. Many researchers with a background 
in basic learning research with nonhuman animals broad-
ened their investigations to include the new species and the 
procedures used in the contingency assessment laboratory. 
Could a simple associative model, like the Rescorla-Wagner 
model, be useful in understanding contingency assessment? 
The answer seemed to be yes. In 1993, Allan reviewed the 
burgeoning literature and concluded: “Associative models 
in general, and the R-W [Rescorla-Wagner] model in par-
ticular, can account for much of the human contingency data  
…  Not infrequently, these models have prompted the ex-
amination of issues unlikely to have been explored outside 
the framework of associative models” (Allan, 1993, p. 446).  
Those “issues” prompted by associative accounts of contin-
gency assessment primarily involved cue-interaction effects 
(Kamin, 1968, 1969a, 1969b).  

	 Cue-interaction effects originally were delineated in stud-
ies of Pavlovian conditioning with non-human animals. The 

most influential such effect has been two-phase blocking. If 
a particular CS (e.g., a tone, generally termed a companion 
cue, CC) has been associated with a US, and the CC sub-
sequently is compounded with a second CS (e.g., a light, 
more generally termed a target cue, CT), with this CC -CT 
compound still being paired with the US, little seems to be 
learned about the CT-US relationship (despite many CT -US 
pairings). That is, prior training with one component of a 
compound appears to block the conditioning of a second 
component; CC blocks the CT-US association. As would be 
expected on the basis of an associative analysis, such two-
phase blocking has been demonstrated using traditional con-
tingency assessment procedures (see Allan, 1993; Shanks, 
2007 for reviews). For example, in an experiment by Chap-
man (1991), participants received information about ficti-
tious medical patients. Each patient exhibited symptoms, 
and the participant’s task was to predict the likelihood that 
the patient suffered from “morolis” (a fictitious disease). In 
the first phase of the experiment, participants received many 
pairings of a particular symptom (e.g., coughing) with mo-
rolis. In a second phase, this symptom was compounded 
with a second symptom (e.g., dizziness), with the syndrome 
still being paired with morolis. In this example, coughing is 
the CC and dizziness is the CT. Blocking was demonstrated; 
participants reported only a minimal relationship between 
dizziness and morolis (compared to various within-subject 
control conditions). 

	 According to the Rescorla-Wagner and similar models, 
blocking results because the participant does not associate 
CT with the US. Applying such reasoning to contingency as-
sessment, little is learned about the relationship between a 
particular target cue and outcome if this CT is presented in 
the presence of a CC that is a more reliable predictor of the 
outcome. Research inspired by the associative analysis of 
contingency assessment has progressed since Allan’s (1993) 
summary. Cue-interaction effects have repeatedly been dem-
onstrated using Kamin’s two-phase blocking procedure, as 
well as other, related cue-interaction preparations: one-phase 
blocking (e.g., Baker, Mercier, Vallee-Tourangeau, Frank, 
& Pan, 1993; Spellman, 1996a), relative cue validity (e.g., 
Wasserman, 1990), and overshadowing (e.g., Waldmann, 
2001). These and other results continued to support the Re-
scorla-Wagner interpretation. However, some investigators 
have reported findings inconsistent with the original version 
of this model, and have suggested modifications, or alterna-
tive associative models (see Allan & Tangen, 2005; Shanks, 
2007). 

	 In contrast with findings that are consistent with an asso-
ciative analysis of contingency assessment, we (e.g., Allan, 
Siegel, & Tangen, 2005; Allan, Hannah, Crump, & Siegel, 
2008) and others (e.g., Perales, Catena, Shanks, & González, 
2005) have reported results that are not readily incorporated 
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into the Rescorla-Wagner model (or any other such associa-
tive account of contingency assessment). A problem with 
such accounts can be illustrated with a hypothetical exam-
ple. Consider the contingency assessment task where the cue 
consists of information that a patient does or does not have 
a particular symptom, and the outcome consists of informa-
tion that a patient does or does not have a particular disease. 
If the consequences of not correctly diagnosing the disease 
are catastrophic for the patient (e.g., debilitating chronic ill-
ness), and the effects of erroneously concluding that an ill-
ness-free patient has the disease are minimal (e.g., needless 
administration of innocuous medication), the diagnostician 
may well be biased to conclude that the contingency is high, 
even though the actual ∆P value is small. This is an example 
of how the costs and benefits of various conclusions about 
the relationship between a cue and outcome (termed the pay-
off matrix) affect the contingency assessment, independently 
of the ∆P value. Indeed, we (Allan et al., 2008), and others 
(Perales et al., 2005), recently have demonstrated that payoff 
matrix manipulations affect contingency assessment in the 
laboratory.

	 The fact that contingency assessment is affected by vari-
ables other than the programmed relationship between cue 
and outcome (such as the payoff matrix) has led us to con-
clude that a complete analysis of such assessment should 
incorporate psychophysical principles (Allan et al., 2005, 
2008; Allan, Siegel, & Hannah, 2007). One purpose of this 
article is to suggest that psychophysics in general, and one 
psychophysical model in particular (signal detection theory, 
SDT), can profitably be applied to understanding contin-
gency assessment. Since cue-interaction effects have played 
such a central role in theorizing about the mechanisms of 
contingency assessment, we present new data demonstrating 
the utility of applying SDT to understanding cue-interaction 
effects in contingency assessment. Finally, we make the case 
that a signal detection analysis of contingency assessment is 
not an alternative to associative models. Rather, it inspires 
an analysis of learning that incorporates psychophysical as 
well as associative principles. 

Psychophysics and Contingency Assessment

	 “Psychophysics is the study of the relationship between 
physical events and our internal experience of these physi-
cal events” (Allan & Siegel, 2002, p. 419). In the contin-
gency judgment task, the presentation of a series of cues and 
outcomes with a particular statistical relationship between 
them constitute physical events. We judge the strength of 
this relationship between the cues and outcomes based on 
our internal experience of these events. It would seem that 
contingency assessment would be a topic of considerable 
interest to psychophysicists. It is not. With very few excep-

tions, research concerned with contingency assessment and 
research concerned with psychophysics have progressed 
independently, each with its own traditions and each moti-
vated by different theoretical perspectives and models. As 
discussed, most contingency assessment research has been 
motivated by the theoretical perspectives and traditions de-
rived from associative learning. Before making the case that 
psychophysical concepts should be applied to contingency 
assessment, we briefly review the basics of a psychophysical 
approach.

Separating Sensitivity and Response Bias

	 As indicated above, the participant’s response about the 
relationship between the cue and the outcome, while par-
tially determined by the participant’s sensitivity to the actual 
contingency, often is influenced by other variables that bias 
the participant towards judging a particular contingency as 
either stronger or weaker than the actual ∆P value.  The pay-
off matrix is one example of such a biasing effect. It is as if 
the participant asks himself or herself two questions before 
offering an estimate of the cue-outcome relationship: “What 
do I perceive to be the magnitude of the relationship?”, and, 
given that perception, “how should I respond?”.  The partic-
ipant’s final judgment of the contingency is determined both 
by the participant’s sensitivity to the physical contingency 
and by biasing variables. The traditional contingency task 
confounds these two sources of information. The partici-
pant’s unitary judgment of the cue-outcome relationship is 
comprised of a combination of the participant’s sensitivity 
to the contingency and the participant’s response bias.

	 Psychophysical methodology and models provide the 
tools for isolating the effects of sensitivity and bias. For ex-
ample, consider the method of constant stimuli, a psycho-
physical procedure initially used to evaluate the participant’s 
ability to discriminate among stimuli varying along a dimen-
sion (e.g., tones differing in intensity). On each trial, one 
of the tones is randomly selected and presented to the par-
ticipant, who is required to make a binary judgment – is the 
tone “loud” or “soft?” Each tone is presented many times. 
At the end of the experiment, the probability of one of the 
responses, for example “loud,” P(R1), is determined for each 
intensity. The function relating P(R1) to the physical inten-
sity values is referred to as a psychometric function and is 
shown schematically in Figure 2. Usually the empirical psy-
chometric function is ogival in shape and can be described 
by two parameters: the slope and the point-of-subjective 
equality, PSE. PSE is defined as the value on the x-axis at 
which  P(R1) = .5. 

	 One account of the psychometric function is provided by 
SDT (Green & Swets, 1966). On the basis of SDT, there 
are two separable factors that contribute to the participant’s 
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terman, & Bizo, 1997). The slope of the cumulative normal 
function is 1/σ and provides an estimate of the participant’s 
sensitivity to discriminating among the physical values. The 
PSE provides an estimate of the value of the criterion. 

	 According to SDT, the participant’s response is determined 
by the independent actions of sensitivity and criterion. Fac-
tors that influence the participant’s willingness to say “loud” 
should affect the placement of that participant’s criterion but 
leave the slope of the psychometric function unaffected. For 
example, consider the case of a man who does not want to 
admit that he is losing his hearing. He would adopt a low 
criterion value resulting in many “loud” responses. The man 
would say “loud” to many loud tones, a strategy that might 
deceive the casual observer into thinking that the man’s 
hearing was intact, as he seemed to detect many actual loud 
tones. That is, he had many hits. The careful observer, how-
ever, would note that the man also said “loud” to many soft 
tones as well—he had many false alarms. Given his poor 
hearing, there would be little change in P(R1) with changes 
in the objective intensity of the tone. As a result, the slope of 
the psychometric function would be shallow (weak sensitiv-
ity). When that individual acquires a hearing aid, the slope 
would be steeper, indicating increased sensitivity as he can 
now better discriminate among the various tone intensities. 

	 Originally SDT was developed to understand how organ-
isms respond to auditory signals. Subsequently, it has been 
found to be applicable to many areas in addition to this lim-
ited domain. For example, SDT has been applied to medical 

Figure 2. An ogival psychometric function.  The probability 
of one of two responses  (e.g., the probability of categorizing 
a tone as “loud” rather than “soft”) is  P(R1). The physical 
intensity of the stimulus (e.g., intensity of the tone) is X.  The 
PSE (point of subjective equality) [the value of X at which 
P(R1) = .5] is 60.

response that the tone was loud or soft. One factor is the 
participant’s sensitivity to detecting the signal. The second 
is the participant’s response bias, or criterion.
 

Signal Detection Theory and Contingency Assessment

	 The SDT model is presented schematically in Figure 3. 
Repeated presentations of a constant stimulus value do not 
result in a constant internal value. Rather, the resulting inter-
nal value is variable. The x-axis in Figure 3 is a random vari-
able X representing these internal values (e.g., loudness). 
The left y-axis shows values of the probability density, f(X), 
for the distributions generated by each physical value. Fig-
ure 3 illustrates the basic version of SDT which assumes that 
the distribution of internal values generated by a constant 
physical value is normal, with a mean equal to the physical 
value and a standard deviation, σ, that is constant across all 
values. The participant’s task is to place the internal value 
experienced on each trial into one of two categories, R1 or 
R2. The participant does so by setting a decision criterion 
value. If the internal value is larger than this criterion value, 
the response is R1 and if the internal value is less than this 
criterion value, the response is R2. The area to the right of 
the criterion under each distribution represents the probabil-
ity that the internal value was larger than the criterion. Thus, 
the value of  P(R1) generated by a particular stimulus value 
provides an estimate of the proportion of the area under the 
distribution to the right of the criterion. The dashed func-
tion in Figure 3 that plots  P(R1) on the right y-axis is the 
psychometric function. When the underlying distributions 
are normal and have a constant variance, the psychometric 
function is the cumulative normal function (see Killeen, Fet-
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Figure 3. Schematic of the signal detection theory model. 
Probability density, f(X), is on the left y-axis; probability of 
a strong response, P(RS), is on the right y-axis. The dashed 
line is the psychometric function (From The psychophysics 
of contingency assessment, by L. G. Allan, S. D., Hannah, M. 
J. C. Crump, and S. Siegel, 2008, Journal of Experimental 
Psychology: General, 137, p. 230. Copyright 2008 by the 
American Psychological Association. Reprinted with per-
mission).
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diagnoses (reviewed by Swets, 1996), clinical psychological 
assessment (reviewed by McFall & Treat, 1999), responding 
by depressed people (reviewed by Allan et al, 2007), and the 
placebo effect (reviewed by Allan & Siegel, 2002). In all 
these cases, a participant’s judgment is determined both by 
the participant’s sensitivity to the stimuli and by the partici-
pant’s decision criterion. 

	 We have suggested that the contingency assessment task 
can be recast as a signal detection task (Allan et al., 2005, 
2007, 2008). The participant is exposed to a sequence of cue 
and outcome presentations, and, at the end of the presen-
tations, must evaluate the strength of the contingency. The 
participant in a contingency assessment task, like the partici-
pant in a standard signal detection experiment, is required 
to make a judgment under conditions of uncertainty. There 
will be uncertainty because of “noise” caused by (for ex-
ample) vagaries in the participant’s memory of the events in 
the series, and shifts in attention during the cue and outcome 
presentations. The participant’s evaluation of the strength of 
the contingency might be biased by a number of variables 
(for example, the payoff matrix). 

Challenges to applying SDT to contingency assessment  

	 Although the contingency task can conceptually be recast 
as a signal detection task, actually applying psychophysical 
procedures to the contingency task presents several chal-
lenges. In the typical implementation of the contingency as-
sessment task the participant does not make a categorical 
response, but rather indicates the strength of the contingent 
relationship on an analogue scale. The rating response has 
been interpreted as an index of the participant’s perception 
of the contingency. However, as discussed, this rating mea-
sure conflates the participant’s sensitivity to the contingency 
and the participant’s response bias, or criterion. To distin-
guish these two putatively independent variables a categori-
cal response is needed. For example, the task should be one 
in which the participant makes a binary response: the cue-
outcome relationship either is “strong” or “weak.”

	 SDT traditionally uses psychophysical procedures that 
demand extensive within-subject measures of performance. 
A second challenge in evaluating a SDT analysis of contin-
gency assessment is the development of such procedures for 
presenting a participant with a sequence of cues and out-
comes. The discrete-trial contingency task is poorly suited 
for a SDT approach. Many cue-outcome presentations must 
be presented to the participant in order to ensure that suf-
ficient information is provided about the actual contingency. 
Depending on the nature of the visuals used to represent 
cues and outcomes, a series of trials can take many min-
utes. For example, with presentation times of 3 sec for both 
the cue and 3 sec for the outcome and a 2 sec inter-pair in-

terval, a block of 40 pairings takes over 5 min. Thus, few 
ratings can be obtained from a participant during a typical 
session, greatly limiting the experimenter’s ability to make 
within-participant comparisons. Fortunately, a new version 
of the contingency task, the streamed-trial procedure, is es-
pecially suited to examining contingency assessment with 
psychophysical procedures (Crump, Hannah, Allan, & Hord, 
2007). 

The streamed-trial procedure. 

	 With the streamed-trial procedure, it takes seconds, rather 
than minutes, to define a contingency value. By the rapid 
sequential presentation of cue-outcome pairs, an entire 
block of trials is telescoped into a single streamed-trial. The 
streamed trial used by Crump et al. (2007) is depicted sche-
matically in Figure 4. The cue and the outcome were colored 
geometric forms. The cue was a blue square and the outcome 
was a red circle. Each 100-ms presentation consisted of one 
of four cue-outcome combinations, and presentations were 
separated by a black screen of 100-ms duration. A stream 
of these cue-outcome combinations defined the contingency 
value(2).

Psychophysics and the Streamed Trial Procedure

	 Allan et al. (2008) reported the results of a series of ex-
periments that used the streamed-trial procedure, in conjunc-
tion with the method of constant stimuli, to generate psy-
chometric functions under a variety of conditions. Streams 
with different ∆P values were presented and, at the end of 
each stream, the participant had to categorized the relation-
ship as “strong” (RS) or “weak” (RW). The streamed-trial 
procedure yielded orderly psychometric functions that were 
well described by the normal ogive. Allan et al. also showed 
that several manipulations that have been shown to be bias 
effects in the psychophysical literature, the payoff matrix 
being one, had similar biasing effects in the streamed-trial 
contingency task. Moreover, as in the psychophysical litera-
ture, these manipulations had little effect on the participant’s 
sensitivity to the contingencies. 

Cue Interaction and Contingency Assessment

	 As discussed earlier, contingency assessment research 
was reinvigorated in the mid-1980s by suggestions that sim-
ple associative models could be applied to the contingency 
assessment situation. A great strength of such associative 
models is that they can explain cue interaction effects, such 
as blocking, seen with simple conditioning preparations. In 
a short time these cue-interaction effects were reported by 
contingency assessment researchers.  That is, participants 
minimize the contingency between a target cue (CT) and out-
come if the CT is presented in compound with a companion 
cue (CC) that is highly predictive of the outcome.  These 
findings seemed to establish the utility of an associative in-
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Figure 4. On the left is a schematic illustrating the structure of a streamed trial in Crump et al. (2007). On the right are the 
four possible cue-outcome combinations in a streamed trial. Squares are cues and were presented in blue. Circles are out-
comes and were presented in red (From The psychophysics of contingency assessment, by L. G. Allan, S. D., Hannah, M. J. 
C. Crump, and S. Siegel, 2008, Journal of Experimental Psychology: General, 137, p. 228. Copyright 2008 by the American 
Psychological Association. Reprinted with permission).

terpretation of contingency assessment. On the basis of most 
associative theories, blocking indicates that the participant 
learns little about a blocked CT; thus, the blocking seen in 
contingency assessment typically has been attributed to the 
participant learning little about the CT-outcome relationship 
(e.g., Allan & Tangen, 2005). Inasmuch as we are proposing 
that contingency assessment can be best understood from the 
perspective of SDT, it behooves us to demonstrate why an 
analysis of cue interaction effects in contingency assessment 
that incorporates SDT is better than one that does not. That 
is, perhaps the simultaneous presence of a CC that is highly 
predictive of the outcome does not attenuate learning about 
CT, but rather alters the participant’s criterion for respond-
ing.

	 We have already reported that cue interaction effects can 
be demonstrated with the streamed trial procedure. Hannah, 
Crump, Allan, and Siegel (2009) adapted the streamed-trial 
procedure for both the one-phase blocking paradigm and 
the two-phase blocking paradigm. They showed that the 
streamed-trial procedure produced conventional cue interac-
tion effects with both paradigms. In the Hannah et al. experi-

ments, as in most other cue-interaction experiments, the par-
ticipants’ judgments of contingency were measured with the 
typical rating response. However, the rating response used by 
Hannah et al. (and almost everyone else) does not separate 
the individual contributions of the participant’s sensitivity to 
the cue-outcome relationship, and his or her response bias. 
We previously suggested that the streamed-trial procedure is 
especially suited to examining the potentially separable con-
tributions of sensitivity and bias to cue interaction effects, 
and we actually described the design of an experiment that 
would accomplish this goal, using the streamed-trial version 
of the one-phase blocking paradigm (Allan et al., 2008). No-
body accepted our challenge to use this procedure to evalu-
ate a signal detection analysis of cue interaction, so we did 
the study and report the results here.

One-Phase Blocking Experiment

	 In the one-phase blocking paradigm, two cues, CT and CC, 
are paired with a common outcome across trials. The two 
cues result in four possible cue combinations: both the target 
and the companion cues may be present (CT CC), both the 
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target and the companion cues may be absent (~CT ~CC), 
the target cue may be present and the companion cue absent 
(CT ~CC), or the target cue may be absent and the companion 
cue present (~CT CC). For each cue combination, the out-
come either occurs (O) or does not occur (~O), resulting in 
eight possible cue-outcome combinations, as is depicted in 
Table 2. Of primary interest is the effect of companion cue 
contingency on the participant’s assessment of the target cue 
contingency. The usual finding is that ratings of CT depend 
on the contingency between CC and the outcome (e.g., Baker 
et al., 1993; Hannah et al., 2009; Spellman, 1996; Tangen & 
Allan, 2003, 2004). Hannah et al., for example, showed that 
for a fixed contingency of 0.5 between CT and the outcome, 
ratings of CT were lower when the contingency between CC 
and the outcome was perfect (∆P = 1.0) than when there was 
no contingency between CC and the outcome (∆P = 0.0). 
Thus, the simultaneous presence of a CC that was highly pre-
dictive of the outcome blocked the apprehension of the CT-
outcome contingency.  The present experiment was designed 
to evaluate the separable contributions of contingency sensi-
tivity and response bias to such cue interaction.

restricted to a maximum of two sessions per day with at least 
an hour break between sessions.  

	 Figure 5 shows the streamed-trial procedure, as adapted by 
Hannah et al. (2009) for the one-phase blocking paradigm. 
Cues were blue squares and blue triangles and the outcome 
was a red circle. The eight possible cue-outcome pairs are 
depicted in Figure 5. A cue-outcome pair was presented for 
100 ms, and cue-outcome frames were separated by a black 
100-ms frame. The location of each shape, when it was pres-
ent, was constant across all frames: the red circle was cen-
tered above the blue shapes, the blue square was on the left, 
and the blue triangle was on the right. The geometric forms 
were presented on a grey background (8.8 cm in height and 
7.0 cm in width). The blue square measured 2.1 cm in height 
and width; the blue triangle measured 2.7 cm at its base and 
extended 2.3 cm in height; the red circle measured 2.5 cm in 
diameter. 

Procedure 

	 The participants were told that their task was to categorize 
the strength of association between a blue shape (cue) and a 
red circle (outcome) as weak or strong. Streams were com-
posed so that one blue shape, CT, had (on different streams) 
a contingency of either 0.2, 0.4, 0.6, or 0.8 with the circle, 
while its CC had either a contingency of 1.0 (companion1 
stream) or 0.0 (companion0 stream) with the circle. O ~O

CTCC a b

CT~CC c d

~CTCC e f

~CT~CC g h

Table 2.  The 4x2 matrix for cue and outcome presentations 
in the one-phase blocking paradigm. The letters in the cells 
represent the joint frequency of occurrence of the eight cue-
outcome combinations.

Method

Participants, stimuli and apparatus 

	 As discussed elsewhere (e.g., Wickins, 2002, p. 78), sig-
nal-detection measures are best obtained by collecting many 
observations from a small number of participants (rather 
than a few observations from a large number of participants). 
Moreover, participants in signal-detection experiments often 
are experienced with the task requirements (in the present 
case, categorizing a contingent relationship presented in a 
streamed trial either as “strong” or “weak”).  There were 
six participants in this experiment (by first and last initial: 
XG, MC, AS, AB, SA, & CH), all members of the McMaster 
University community, who were paid $10.00 per session. 
Four had prior experience with the streamed trial procedure. 
A session was completed in about 45 min. Participants were 

CC ∆P = 0 CT ∆P

0.2 0.4 0.6 0.8

O ~O O ~O O ~O O ~O

CT CC 8 6 9 5 10 4 10 2

CT~CC 4 2 5 1 6 0 8 0

~CTCC 2 4 1 5 0 6 0 8

~CT~CC 6 8   5 9   4 10   2 10

CC

 

∆P = 1 CT ∆P

0.2 0.4 0.6 0.8

O ~O O ~O O ~O O ~O

CT CC 12 0 14 0 16 0 18 0

CT~CC 0 8 0 6 0 4 0 2

~CTCC 8 0 6 0 4 0 2 0

~CT~CC 0 12 0 14 0 16 0 18

Table 3.  The eight contingency matrices in the experiment.
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Figure 5. On the left is a schematic illustrating the structure of a streamed trial for the one-phase blocking paradigm. On 
the right are the eight possible cue-outcome combinations in a streamed trial. Squares and triangles are cues and were pre-
sented in blue. Circles are outcomes and were presented in red (From The psychophysics of contingency assessment, by L. 
G. Allan, S. D., Hannah, M. J. C. Crump, and S. Siegel, 2008, Journal of Experimental Psychology: General, 137, p. 242. 
Copyright 2008 by the American Psychological Association. Reprinted with permission).

	 The two values of CC contingency (0.0, and 1.0) were 
crossed with the four values of CT contingency (0.2, 0.4, 
0.6, 0.8), resulting in eight 4 x 2 contingency matrices which 
are available in Table 3. Each streamed trial consisted of a 
sequential display of randomly ordered presentations of the 
eight cue-outcome combinations defined by one of the con-
tingency matrices. The duration of a streamed trial was ap-
proximately 8 seconds. 

	 An experimental session consisted of five blocks of 48 
streamed-trials. Each of the eight contingency matrices oc-
curred six times in a block in a randomly determined order. 
At the end of each stream, the participant was required to 
make a binary response about the relationship between one 
of the cues and the outcome by clicking one of two buttons 
(“weak” or “strong”) on the computer monitor. The par-
ticipant was informed which cue-outcome relation to judge 
by a small picture appearing on the screen at the end of the 
stream showing one of the two cues and the outcome. For 
each of the eight contingency matrices, CT was probed at the 

end of half the streams and CC was probed on the remaining 
streams. Each participant completed 15 sessions. 

Results and Discussion

	 P(RS) to the probed cue was determined for each of the 
eight contingency matrices. P(RS) on CT-probed streams 
is shown in Figure 6 for each of the six participants. P(RS) 
is plotted as a function of target ∆P separately for the two 
CC contingencies. P(RS) is higher for companion0 streams 
than for companion1 streams, indicating that the response 
to a fixed value of ∆P depends on the CC contingency. Psy-
chometric functions were fit to each participant’s data using 
ProFit(3), and the parameter values for each participant are 
available in Table 4A. Also available in Table 4A is the pro-
portion of the variability in P(RS) accounted for by the fits, 
R2. For every participant, the PSE was smaller for compan-
ion0 streams than for companion1 streams. That is, the value 
of ∆P at which P(RS) = .5 was less when the companion ∆P 
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= 0.0 (mean PSE = .29) than when the companion ∆P = 1.0 
(mean PSE = .79). Except for participant AS, the values of 
σ did not differ much for the two streams, and the direction 
of the difference varied among the participants – for some 
participants (AS, AB, and SA) σ (the reciprocal of the slope) 
was larger for companion0 streams, for some (XG, CH) it 
was smaller, and for one participant (MC) it was the same. 
Table 4B presents the parameter values for psychometric 
functions that were constrained to have the same value of 
σ, and these functions are shown in Figure 6. A comparison 
of the R2 values in Tables 4A and 4B indicates that, except 
for participant AS, the same-slope constraint made little dif-
ference to the goodness-of-fit. Overall, the data are well de-

scribed by psychometric functions that have the same slope 
and differ only in PSE(4). 

	 As discussed earlier, the slope of the psychometric func-
tion provides an estimate of the participant’s sensitivity to 
discriminating among the ∆P values, and the PSE provides 
an estimate of the criterion. The same-sloped functions in 
Figure 6 suggest that the ability to discriminate among the 
CT contingencies is not affected by CC contingency.  Rather 
the effect of CC is on the PSE – the placement of the criteri-
on. The location of the criterion regarding the strength of the 
CT contingency depends on the value of the CC contingency 
in the stream. When CC is a good predictor of the outcome 

Figure 6. P(RS) to CT as a function of target ∆P for each companion ∆P. The symbols are the data, and the lines are the best 
fitting same-slope Gaussian functions. The filled symbols are the data on companion0 streams and the unfilled symbols are 
the data on companion1 streams.
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(∆P = 1.0), the participant was likely to indicate that the re-
lationship between the CT and the outcome was weak. In 
contrast, when CC was a poor predictor of the outcome (∆P 
= 0.0), the participant was likely to indicate that the relation-
ship between CT and the outcome was strong. The results of 
this experiment suggest that this cue-interaction effect re-
sides in the decision process. 

	 Contemporary theories of associative learning (starting 
with the Rescorla-Wagner model) were developed primar-
ily to explain cue-interaction effects, such as blocking. On 
the basis of most of these models, cue interaction occurs be-
cause the participant does not learn much about CT when CC 
is a good predictor of the outcome. In applying associative 
theories to contingency assessment, such reasoning led re-
searchers to conclude that participants are insensitive to the 
CT-outcome relationship when CT is presented in compound 
with a CC that is in a highly contingent relationship with the 
outcome (e.g., Allan & Tangen, 2005).   In contrast, the pres-
ent results suggest that the participant knows as much about 
the CT-outcome relationship when CC is a good predictor of 
the outcome as when CC is a poor predictor of the outcome. 

Cue interaction occurs because of the participant’s place-
ment of his or her response criterion, rather than because of 
the participant’s ability to learn about the CT-outcome rela-
tionship.

	 These results (and others that we have previously report-
ed, Allan et al., 2005, 2008) indicate that contingency as-
sessment cannot really be understood merely by asking the 
participant to rate the perceived magnitude of a contingency. 
How does the participant’s sensitivity to the contingency and 
the participant’s response bias (where he or she places the 
response criterion) combine to yield such an omnibus judg-
ment? Signal detection theory provides the theoretical basis 
and methodology to dissect the separable contributions of 
sensitivity and bias to contingency assessment.  

Associative Learning and Signal Detection Theory

	 As summarized earlier, researchers experienced in study-
ing basic associative processes in non-human animals be-
came interested in studying contingency assessment by hu-
mans about 25 years ago. These researchers demonstrated 
that many phenomena seen in the animal learning labora-
tory (especially cue competition effects) were also seen in 
human contingency assessment. Incorporation of models of 
associative learning reinvigorated and enriched the study of 
contingency assessment. Contingency assessment research-
ers owe a debt to these learning researchers. We would like 
to repay the debt. SDT, which enhances our understanding 
of contingency assessment, also enhances our understand-
ing of associative learning. That is, associative theories in 
general, and associative accounts of contingency assessment 
in particular, would benefit from incorporating concepts of 
SDT(5).  

	 A basic assumption of most theories of learning is that 
changes in conditional responding are manifestations of the 
strength of the CS-US association. We suggest otherwise. A 
subject’s performance in a Pavlovian conditioning experi-
ment is a conflated measure of its sensitivity to the CS-US 
relationship and its criterion for displaying an overt CR, just 
as a participant’s judgment of the relationship between the 
cue and outcome is a conflated measure of the participant’s 
sensitivity to the programmed contingency and the partici-
pant’s response criterion.

	 The sensitivity-criterion distinction in SDT is reminiscent 
of the long standing learning-performance distinction in the 
learning literature. As recently discussed by Miller (2006), 
most learning theories do not explain observed behavior. 
Rather, they explain how an intervening variable changes 
with practice. 

“Learning is an intervening variable; all we ever see is 
a change in behavior as a consequence of prior experi-

σ PSE R2

Part icipa nt
CC ∆P = 0 CC ∆P = 1 CC ∆P = 0 CC ∆P = 1

XG .47 .55 -.02 1.1 3 .99 30

MC .31 .31 .38 .93 .99 92

AS .74 .41 -.11 .24 .99 69

AB .48 .43 .18 .48 .99 12

SA .36 .28 .55 .82 .99 77

CH .58 .66 .77 1.1 3 .99 59

Mean .49 .44 .29 .79 .99 56

σ PSE R2

Part icipa nt
CC ∆P = 0 CC ∆P = 1

XG .49 -.04 1.0 8 .99 27

MC .31 .38 .92 .99 92

AS .50 .04 .20 .98 87

AB .45 .19 .48 .99 07

SA .34 .54 .84 .99 56

CH .60 .78 1.0 9 .99 56

Mean .45 .32 .77 .99 38

Table 4A.  s, PSE, and R2 values for each participant.

Table 4B.  s, PSE, and R2 values for each participant with 
the same-slope constraint.
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ence. Consistent with the misguided name learning the-
ory and inconsistent with the actual goal of explaining 
acquired behavior, most modern associative theories in 
the animal tradition emphasize the learning (i.e., acqui-
sition) process per se and are virtually silent concerning 
the transformation of acquired information into behav-
ior. For example, Rescorla and Wagner (1972) simply 
say that responding is monotonically related to associa-
tive strength” (Miller, 2006, p. 82). 

	 Although the Rescorla-Wagner (and similar) models do not 
have rules concerning the function relating covert associa-
tive strength into overt performance (other than a monotonic 
transformation), they have been successful in accounting 
for many findings because they use a competitive learning 
algorithm. However, results indicating that performance is 
determined both by sensitivity to the conditions of learning, 
and by response bias, suggest that a noncompetitive learning 
algorithm may be more suited to describe the changes that 
occur in associative learning.  

Competitive and Noncompetitive Learning Algorithms

	 On the basis of a competitive learning algorithm, the more 
learned about one cue the less learned about a simultane-
ously presented cue. Consider the example of blocking: the 
more learned about CC, the less learned about CT. In the Re-
scorla-Wagner model, the predictive strength of a cue will 
change each time it is presented according to the competitive 
algorithm 

(i.e., the companion1 stream), participants shift their re-
sponse criterion for reporting the relationship between CT 
and the outcome in one direction, and in presence of a CC 
that is not highly predictive of the outcome (i.e., the com-
panion0 stream), participants shift their response criterion in 
the other direction.

	 Since our psychophysical procedures reveal that there 
is no competitive learning about simultaneously-presented 
companion and target cues, we suggest that that the acquisi-
tion of associative strength is best understood with a non-
competitive learning algorithm. Thus, we agree with Miller 
and colleagues (e.g., Miller & Matzel, 1988; Stout & Miller, 
2007) in the formulation of the learning process in their com-
parator hypothesis. The comparator hypothesis, too, invokes 
a noncompetitive learning algorithm as the acquisition pro-
cess, and places cue interaction in the decision process. 

	 One noncompetitive learning algorithm is the Bush-Mo-
steller rule (Bush & Mosteller, 1955). Both Miller and col-
leagues (e.g., Miller & Matzel, 1988; Stout & Miller, 2007) 
and we (Allan et al., 2008) have suggested that the acqui-
sition process is best understood with the Bush-Mosteller 
rule.(6) This rule specifies that the predictive strength of a 
cue will change on each trial that it is presented according to 
the standard linear operator equation

(2)∆V= αβ(λ-�V),

where ∆V is the change in predictive strength of the present-
ed cue, α and β are learning rate parameters that represent 
the associability of the cue and of the outcome respectively, 
l represents the maximum amount of predictive strength 
supported by the outcome (λ >0 for a presented outcome, 
and l = 0 for an omitted outcome), and ∑V is the composite 
predictive strength of all presented cues. That is, when both 
cues are presented (CTCC), 

(3)�V= VCT + VCC,

where VCT is the predictive strength of the target cue and 
VCC is the predictive strength of the companion cue. When 
CC is in a highly contingent relationship with the outcome, 
VCC will be high, the increments in predictive strength of 
CT (∆VT) will be small, and the companion cue “wins” the 
competition with the target cue. 

	 In contrast, our results suggest that there in no “competi-
tion” between learning about CC and CT in a cue-interac-
tion experiment. Rather, participants learn about both. In the 
presence of a CC that is highly predictive of the outcome 

(4)∆V= αβ( λ - V).

In the Bush-Mosteller Equation 4, the predictive strength of 
a presented cue is changed by the predictive strength of only 
that cue, whereas in the Rescorla-Wagner Equation 2 it is 
changed by the predictive strength of all presented cues. In 
Appendix A, we derive the asymptotic predictive strength of 
CT and CC in the one-phase blocking paradigm. The asymp-
totic predictive strength of the target cue is:

(5)VCT=  P(O|CT),

and the asymptotic predictive strength of the companion cue 
is:

(6)VCC=  P(O|CC),

	 Each streamed-trial in the one-phase blocking paradigm 
results in two values of associative strength, VCT and VCC. 
In current conceptualizations of associative learning rules, 
for fixed stimulus values there is no variability in the value 
of V. Within the SDT framework, V would be embedded in 
a noisy background. Thus, for fixed stimulus values, there 
would be variability in V. 
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Blocking and SDT: Decisions, Decisions!

	 Figure 7 presents the SDT representation for the one-phase 
blocking paradigm. The x-axis in Figure 7 is V = P(O|C). 
The six distributions are generated by the six ∆P values used 
in the experiment. The two outer distributions (dashed lines) 
are the distributions for VCC generated by the two values of 
the companion cue, and the four other distributions (filled 
lines) are the distributions for VCT generated by the four 
values of the target cue. The mean of each distribution is 
P(O|C). At the end of each stream, the participant has two in-
ternal values, VCT and VCC, and the response is determined 
by a comparison of the probed internal value to the crite-
rion. 

in a decrease in P(RS) for the target. If the companion con-
tingency is low (companion0 streams), VCC would tend to be 
small, and the criterion would be pulled to the left (indicated 
by C0 in Figure 8a) resulting in an increase in P(RS) for the 
target. Now consider streams on which the participant is 
asked about the relationship between the companion cue and 
the outcome, i.e., CC-probed streams (Figure 8b). On these 
streams, the location of the criterion would be influenced by 
VCT. Streams with the larger ∆P values (.6 and .8) would 
tend to produce large VCT values, resulting in the criterion 
being pulled to the right. Streams with the smaller ∆P (.2 and 
.4) values would tend to produce small VCT values, resulting 
in the criterion being pulled to the left. 

Figure 8a. Schematic of the signal detection theory model 
on CT-probed streams (i.e., the participant is asked the judge 
the relationship between the target cue and the outcome). 
The location of the criterion is to the right on companion1.0 
streams (a programmed contingency of 1 between the com-
panion cue and the outcome) and is to the left on compan-
ion0.0 streams (a programmed contingency of 0 between the 
companion cue and the outcome).

Figure 8b. Schematic of the signal detection theory mod-
el on CC-probed streams (i.e., the participant is asked the 
judge the relationship between the companion cue and the 
outcome). There are four locations for the criterion, moving 
from left to right as ∆P of the companion cue increases from 
.2 to .8.
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Figure 7. Schematic of the signal detection theory model 
for the one-phase blocking paradigm. The x-axis is V (the 
strength of the association between the cue and outcome, 
which is equal to the probability of the outcome in the pres-
ence of the cue). The six distributions are generated by the 
six ∆P values used in the experiment. The two outer distribu-
tions (dashed lines) represent the distributions for VCC (the 
strength of the association between the companion cue and 
the outcome) generated by the two ∆P values for the com-
panion cue. The other four distributions (filled lines) repre-
sent the distributions for VCT (strength of the association 
between the target cue and the outcome) generated by the 
four ∆P values of the target cue.

	 Our data suggest that the location of the criterion is influ-
enced by the value of V generated by the non-probed cue. 
If the participant is queried about CT, the criterion is pulled 
towards VCC, and if the participant is queried about CC, the 
criterion is pulled towards VCT. Consider first streams on 
which the participant is asked about the relationship between 
the target cue and the outcome, i.e., CT-probed streams (Fig-
ure 8a). If the companion contingency is high (companion1 
streams), VCC would tend to be large and the criterion would 
be pulled to the right (indicated by C1 in Figure 8a) resulting 
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	 The criterion-setting proposal outlined above provides a 
qualitative description of the data shown in Figures 6. More-
over, it is consistent with criterion-setting accounts in the lit-
erature for data generated in other tasks. For example, Treis-
man (1984) argued that “a criterion is defined not only for a 
particular judgment, but also for particular conditions under 
which this judgment may be made. … Thus, the decision cri-
terion may have different values for different sets of circum-
stances.” (pp. 132-133). Treisman discusses the application 
of his criterion-setting model (Treisman & Williams, 1984) 
to diverse phenomena in the literature such as the effect of 

nontemporal variables on judgments of temporal intervals. It 
is well established that the marker of a temporal interval usu-
ally influences the participant’s judgment (see Allan, 1979 
for a review) – e.g., high frequency tones are judged lon-
ger than low frequency tones, loud tones are judged longer 
than soft tones, large visual markers are judged longer than 
small visual markers. Treisman argues that the nontemporal 
attribute of the temporal marker biases the location of the 
criterion for the temporal judgment. Similarly, we suggest 
that the value of the non-probed cue biases the location of 
the criterion for the probed cue.

Figure 9. P(RS) to CC as a function of companion ∆P for each target ∆P (i.e., the probability of the participant judging the 
contingency between the companion cue and the outcome as “strong,” rather than “weak,” as a function of the programmed 
contingency between the target cue and the outcome).
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Further Research

	 The criterion-setting proposal for one-phase blocking can 
be evaluated by further research. We describe two such areas 
of research: the effect of target cue contingency on the as-
sessment of the companion cue, and attenuation of blocking 
by manipulation of the payoff matrix.

Effect of target cue contingency on the 
assessment of the companion cue. 

	 In our one-phase blocking experiment we noted the effect 
of CC contingency on the assessed relationship between CT 
and the outcome (Figure 6). In addition, we evaluated the ef-
fect of CT contingency on the assessed relationship between 
CC and the outcome. P(RS) on CC-probed streams is shown 
in Figure 9 for each of the six participants. P(RS) is plotted 
as a function of companion ∆P for each of the four CT con-
tingencies. P(RS) is low when the companion contingency is 
0.0 and is high when the companion contingency is 1.0. The 
psychometric functions are similar for the four target ∆P val-
ues. CT contingency had little effect on either the slope or the 
PSE of these functions. Thus while companion cue contin-
gency influences performance on CT-probed streams (Figure 
6), target cue contingency does not influence performance 
on CC-probed streams (Figure 9). This asymmetry has previ-
ously been reported (Tangen & Allan, 2004; Hannah et al., 
2009).

	 We suggest that the absence of an effect of CT contingency 
on CC judgments is due to the minimal overlap of the two CC 
distributions (Figure 8b). If this is the case, then changing 
the CC contingencies, say to .2 and .8, would increase the 
overlap of the underlying distributions and should result in 
an effect of CT contingency on CC  judgments. 

Payoffs and the cue interaction effect. 

	 Other future research follows from the finding reported 
in Allan et al. (2008) that the payoff schedule influences 
the placement of the criterion in the single-cue task. They 
showed that monetary reward for a particular response (RS 
or RW) affected the location of the criterion. The location of 
the criterion in the one-phase blocking paradigm should also 
be influenced by manipulations of the payoff schedule. For 
example, a payoff schedule that reinforces participants for 
maintaining a single criterion on CT-probed streams that is 
independent of the value of CC should abolish the cue-inter-
action effect.

Concluding Comments

	 When asked to judge whether a tone is loud or soft, people 

respond both on the basis of their ability to detect the loud-
ness, and on other factors that bias them to characterize the 
tone as either loud or soft (Green & Swets, 1966). When 
asked to judge whether a drug is effective or ineffective, 
people respond both on the basis of their ability to detect 
their symptomatic relief, and on other factors that bias them 
to characterize the treatment as either effective or ineffective 
(Allan & Siegel, 2002). Similarly, in the contingency assess-
ment task described here, participants judge whether a cue-
outcome relationship is strong or weak, and they respond on 
the basis of their ability to detect the strength of the contin-
gency, and on other factors that bias them to characterize the 
relationship as strong or weak. 

	 A particular psychophysical model, SDT, may usefully be 
applied to contingency assessment. This approach provides 
a framework for separating effects on performance resulting 
from changes in sensitivity to the contingency between the 
cue and the outcome from effects due the participant’s bias 
for making a particular response. We previously demonstrat-
ed that several manipulations that affect contingency assess-
ment do so by acting on the response criterion (Allan et al., 
2005; Allan et al., 2008). Additionally, we demonstrate here 
that that another manipulation, cue interaction, similarly af-
fects the decision process – not the sensitivity to relationship 
between the blocked cue and the outcome. 

	 About 25 years ago, researchers experienced in studying 
basic associative processes in non-human animals became 
interested in studying contingency assessment by humans. 
These researchers demonstrated that many phenomena seen 
in the animal learning laboratory (especially cue competi-
tion effects) were also seen in human contingency assess-
ment, and associative models were applied to understanding 
contingency assessment. We argue that these models, wheth-
er applied to understanding learning by non-human animals 
or contingency assessment by humans, should be modified 
to incorporate a response criterion process. Signal detection 
theory provides such a process.
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Footnotes

1	 The data depicted in Figure 1 were obtained by searching 
the PsycINFO database with the following query: 
(PO=human and (AB=(cue interaction or forward blocking 
or backward blocking) or TI=(cue interaction or forward 
blocking or backward blocking))) or(PO=human and 
(AB=(contingency assessment* or assessing contingenc* 
or assessment* of contingenc*) or TI=(contingency 
assessment* or assessing contingenc* or assessment* of 
contingenc*))) or(PO=human and (AB=(causal learning 
or contingency learning) or TI=(causal learning or 
contingency learning))) or(PO=human and (AB=(concept 
of correlation) or TI=(concept of correlation))) 
or(PO=human and (AB=(correlation judgment* or 
correlation judgement* or judgment* of correlation* or 
judgement* of correlation*) or TI=(correlation judgment* 
or correlation judgement* or judgment* of correlation* 
or judgement* of correlation*))) or(PO=human and 
(AB=(contingency judgment* or contingency judgement* 
or judgment* of contingenc* or judgement* of 
contingenc* or judging contingenc*) or TI=(contingency 
judgment* or contingency judgement* or judgment* of 
contingenc* or judgement* of contingenc* or judging 
contingenc*))) or(PO=human and (AB=(covariation 
judgment* or covariation judgement* or judgment* of 
covariation* or judgement* of covariation* or judging 
contingenc*) or TI=(covariation judgment* or covariation 
judgement* or judgment* of covariation* or judgement* 
of covariation* or judging covariation*))) or(PO=human 
and (AB=(causality judgment* or causality judgement* 
or judgment* of causality or judgement* of causality or 
judging causality) or TI=(causality judgment* or causality 
judgement* or judgment* of causality or judgement* 
of causality or judging causality))) or(PO=human and 
(AB=power PC) or (TI=power PC))

2	 The streamed trial procedure is a compromise. In permits 
the application of psychophysical methodology to 
contingency assessment, but does so by implementing 
a contingency assessment task that may seem to lack 
ecological validity (the very rapid exposure to many cue 
and outcome presentations in a short period of time). 
However, the procedure does incorporate a categorical 
judgment, rather than an analogue contingency rating 
scale. Elsewhere we have argued that the use of such 
categorical judgments is similar to the actual contingency 
assessment challenges faced by people (Allan et al., 2008). 
When we have experienced a series of cues and outcomes, 
we typically do not judge the statistical relationship 



SDT and Contingency Assessment	 133

O ~O

CTCC a

∆VT = αTβ[1 - VT]

∆VC = αCβ[1 - VC]

b

∆VT = αTβ[0 - VT]

∆VC = αCβ[0 - VC]

CT~CC c

∆VT = αTβ[1 - VT]

∆VC = 0

d

∆VT = αTβ[0 - VT]

∆VC = 0

~CTCC e

∆VT = 0

∆VC = αCβ[1 - VC]

f

∆VT = 0

∆VC = αCβ[1 - VC]

~CT~CC g

∆VT = 0

∆VC = 0

h

∆VT = 0

∆VC = 0

between the events – rather, we make a categorical, and 
typically a binary, decision. Does cloud seeding produce 
rain, or is it a waste of money?  Does this substance cause 
the dough to rise, or is it an ineffective leavening agent? 
Does this symptom mean that the patient has a disease, 
or is the symptom noninformative?  The same is true of 
the contingency assessment task faced by the non-human 
animal. For example, when an odor associated with a 
potential predator is detected, the question for the animal 
is not “what is the magnitude of the relationship between 
the odor and the presence of a predator?”  Rather, the 
question is, should the animal stay or flee? 

3	 http://www.quansoft.com/

4	 Four of the participants (XG, MC, AS, and AB) had 
participated in the single-cue experiments in Allan et al. 
(2008), and two (SA and CH) had not. The pattern of 
performance was not influenced by experience.

5	 Integrations of an associative acquisition process into 
a SDT framework have appeared periodically in the 
literature, but apparently have not been influential (Boneau 
& Cole, 1967; Boynton, Smith, Stubbs, 1997; Mason, 
Idrobo, Early, Abibi, Zheng, Harrison, & Carney, 2003; 
Schmajuk, 1987).

6	 While our SDT account and the comparator hypothesis 
are similar in that they both place cue interaction in the 
decision process, the quantitative relationship between the 
two views has yet to be formulated.

Appendix A

	 In the one-phase blocking task there are eight types of tri-
als corresponding to the eight cells of the 4 x 2 matrix. The 
Bush-Mosteller equations are shown below for each cell of 
the matrix. The b values for outcome and no outcome have 
been equated, l = 1 on outcome present trials and  l = 0 on 
outcome absent trials. As in Table2, the frequencies of the 
cue-outcome combinations are represented by the letters a, 
b, …
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(1)
  
mean ∆VT = aαTβ[1− VT ] + cαTβ[1− VT ] + bαTβ[0 − VT ] + dαTβ[0 − VT ]

a + b + c + d

Equation 1 simplifies to

At asymptote mean ΔVT = 0

(2)

(3)

Equation 3 simplifies to

At asymptote mean ΔVC = 0

(4)

mean ∆VT= αTβ
a+c-VT(a+b+c+d)

a+b+c+d


