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Animals can learn to repeat a response when reinforcement is contingent upon accurate repetitions or to vary when re-
inforcement is contingent upon variability.  In the first case, individual responses can readily be predicted; in the latter, 
prediction may be difficult or impossible.  Particular levels of variability or (un)predictability can be reinforced, including 
responses that approximate a random model.  Variability is an operant dimension of behavior, controlled by reinforcers, 
much like response force, frequency, location, and topography.  As with these others, contingencies of reinforcement and 
discriminative stimuli exert precise control.  Reinforced variability imparts functionality in many situations, such as when 
individuals learn new responses, attempt to solve problems, or engage in creative work. Perhaps most importantly, rein-
forced variability helps to explain the voluntary nature of all operant behaviors.
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B. F. Skinner (1938) identified orderly relationships between 
environmental events and operant responses by defining the 
responses in terms of their outcomes rather than their indi-
vidual characteristics.  For example, when a rat presses a le-
ver, contacts are closed in a microswitch, resulting in a food 
pellet, and a pigeon’s key-pecks produce grain, and so on, 
and operant analyses ignore whether the rat pressed with the 
left paw, right paw, or snout, or whether the pigeon pecked 
the key from the left side or the right.  Skinner and most 
other operant psychologists analyze behaviors at the level of 
outcome-defined generic classes that consist of families of 
responses.  The individual responses in a class may or may 
not resemble one another, but all produce the same reinforc-
ing outcome.  Research over the past 80 years ably docu-
ments many orderly relationships between such classes and 
environmental variables.

	 But behavioral analyses can proceed at different levels, 
including the individual responses that produce common 
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proximate effects and therefore comprise a class.  In some 
cases, each individual meets criteria that can be described 
in terms of physical dimensions of the response. Thus, for 
example, the movement of the rat’s paw must occur at a par-
ticular location, on top of the lever, and be in a particular 
direction, generally downward, and with a force greater than 
some minimal value, all in order to activate a microswitch.  
In many operant-conditioning experiments, microswitch 
closures (the proximal outcome) are studied as a function 
of environmental events, such as reinforcers and discrimina-
tive stimuli.  In other cases, response dimensions may differ 
widely but all have a common proximal effect, such as in 
expressing our understanding of another person (as indicat-
ed by a glance or verbal reply) when you point to the wine 
bottle or ask to pass the wine or look sadly at your empty 
wine glass.

	 An expanded view of operant behavior is obtained when 
we study the individual instances that comprise operant 
classes: how they become members of a class, what causes 
emission of one or another instance, how instances are orga-
nized, and how they are generated (e.g., Pear, 1985).  One 
way to do this is to focus on observed variability (or predict-
ability) of within-class instances.  We will show that vari-
ability is a reinforceable dimension of behavior – variability 
is itself an operant – and that environmental conditions re-
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the more general tendency to respond unpredictably across 
many different species.  One researcher writes, “Along with 
directional fleeing, protean escape behaviors are probably 
the most widespread and successful of all behavioral anti-
predator tactics, being used by virtually all mobile animals 
on land, under water, and in the air” (G. F. Miller, 1997, p. 
319).  The controlled or selected nature of protean behavior 
is indicated by the fact that when a predator is distant, the 
potential prey may simply run away – strategies differ when 
the predator is far vs. near – demonstrating stimulus con-
trol.  Driver and Humphries (1988, p. 157) write that protean 
unpredictability is “not so random as to be formless; it is a 
structured system within which predictability is reduced to a 
minimum.”  This point parallels one that will be emphasized 
throughout the present paper: Phylogenetic selection pres-
sures and ontogenetic reinforcers establish sets of functional 
responses from which instances emerge stochastically.  Or-
derliness and predictability are provided by the functional-
ity of the responses and unpredictability by their stochastic 
emission.

	 Bird song. “Variations attract” characterizes mating pref-
erences in some songbird species (Catchpole & Slater, 
1995).  Female mockingbirds prefer males who sing com-
plex songs; female sparrows display sexually more in the 
presence of variable songs than repetitive ones; and female 
great tits demonstrate sexual interest in males with the larg-
est song repertoires.  This implies that birds can discriminate 
among different levels of variability and experimental analy-
ses with pigeons confirm this conjecture (Young & Wasser-
man, 2001).  Also implied is that male song variability is 
influenced by environmental contexts.  In support, Searcy 
and Yasukawa (1990) observed that when male red-winged 
blackbirds were presented with a female dummy, song vari-
ability increased.  In some species, such as zebra finches, 
variable songs are generated by males in the absence of fe-
males but once a female is attracted, the male’s songs become 
female-directed and more stereotyped (Sakata, Hampton, 
and Brainard, 2008).  Whether males increase or decrease 
song variability when females are present or expected, bird-
song variability is an evolved characteristic, with levels con-
trolled by environmental contexts.
 

Genetic Variability
	 The above section showed that evolved phenotypic vari-
ability is related in orderly ways to environmental events; 
variability is selected and constrained.  Similar effects are 
seen at the level of genes.  Changes in DNA molecules have 
many causes including errors during replication, mutations 
caused by chemicals or radiation, jumps or transpositions of 
genetic materials early in the developing fetus and in adult 
brain (transposons), and other spontaneous changes. Lewis 
Thomas highlighted the importance of genetic variability: 

“The capacity to blunder slightly is the real marvel of DNA.  
Without this special attribute, we would still be anaerobic 
bacteria and there would be no music” (quoted in Pennisi, 
1998, p.1131).  There are additional important contributors 
to individual variations in all sexually reproducing organ-
isms: variability during gamete formation.  High levels of 
constrained variations are produced when genetic material 
in sperm and egg cells divide: there is random and indepen-
dent assortment within individual chromosomes and random 
crossings between portions of maternal and paternal chro-
mosomes.  Mutations, jumps, assortments, and crossings oc-
cur stochastically, without regard to the current needs of an 
organism.  However, the processes that permit and maintain 
genetic variability have themselves evolved under selection 
pressures.  “(T)he genome…(has an) ability to create, focus, 
tune and regulate genetic variation and thus to play a role 
in its own evolution” (Caporale, 1999, pp. 15).  A combina-
tion of variation and selection at work within the genome 
may best be described as selected (or bounded) stochasticity, 
with mutations, mixings and variations occurring stochasti-
cally and unpredictably, but within a confined milieu that has 
been selected and conserved over evolutionary time.  As will 
be seen, operant response variability is similarly selected, 
but this process is instead driven ontogenetically by experi-
ences with reinforcing feedback.
 

Operant Variability: Overview
	 Behavioral variability is often assumed to have one of 
three causes: unrelated events within the environment or 
organism, induction from such things as aversive events or 
extinction, or unexplained variance.  Not only in behavioral 
psychology but also in most sub-fields of psychology, vari-
ability is treated as a nuisance, something to be minimized 
because it obscures relationships.  There is a fourth con-
tributor, at least as important as any of the other three, and 
one that leads to a revision of our views of operant behavior 
and its voluntary nature.  To state the case simply: Variable 
responding is produced and maintained by reinforcers con-
tingent upon it.  Variability does not always decrease with 
learning, this being counter to initial theories of reinforce-
ment.  Of most importance, particular levels of variability 
are engendered by reinforcers contingent upon those levels.  
Variability is a dimension of behavior analogous to other op-
erant dimensions, such as response rate, force, and topogra-
phy.  Support for these claims will be outlined below, but we 
begin with an overview of the methods and analyses used to 
document reinforcement of variability. 
 

Operant Variability: Basic Procedures

Methods
	 In most of the experiments to be described, two alterna-

sult in behaviors that are predictably unpredictable.  (“Pre-
dictably unpredictable” may seem to be an oxymoron but 
please read on.) We begin with some definitions and then 
turn to examples of variability that have been selected across 
evolutionary time (i.e., variability that is elicited or induced 
by environmental stimuli and contexts).

	 Definitions. Variability is an attribute of a set of instances: 
In this paper, the instances include responses, response se-
quences, and other dimensions of a response (such as re-
sponse rates).  Variability often implies noise, high disper-
sion, or unpredictability but the term is also used to refer to 
a continuum, from repetitive or predictable to stochastic or 
random. Context will indicate the intended meaning.

	 The terms stochastic and random are often used inter-
changeably, but we will use random to refer to cases of 
maximum unpredictability, where alternatives are uniformly 
distributed or equiprobable and predictions of individual 
responses cannot be better than chance.  An intuitive sense 
can be gained if you imagine an urn filled with 1000 col-
ored balls, 500 red and 500 green.  The urn is well shaken 
and one ball is blindly selected.  After selection, the ball’s 
color is noted, returned to the urn, and the selection process 
repeated.  Prediction of each ball’s color will be no better 
than chance (in this case .5).  This process of selecting balls 
provides a model of a random process and the outcome rep-
resents a random sequence.

	 Stochastic will be used as the more general term to apply 
as well to unequal or biased sets, for example if the urn were 
filled with 800 red and 200 green balls (see Nickerson, 2002, 
for discussion).  Prediction accuracy could then rise to .8 (if 
one always predicted red).  However, the process and output 
are described as stochastic because conditional probabilities 
(e.g., red given red, green given green, etc.) provide no more 
information than the first-order probabilities of .8 and .2.  
Stated differently, the selection of a green ball imparts no 
information as to when the next green might be obtained.  
Another example is seen when a responder prefers one of 
two responses, such as the left versus right alternative, but 
where conditional probabilities impart no more information 
than the baseline distributions.  A third case occurs when a 
responder alternates from red to green or green to red more 
frequently than if responses were randomly generated, such 
as when switching is likely whenever a run of one of the 
colors is greater than three (i.e., three reds in a row or three 
greens), but responses are otherwise no more predictable 
than if based on first-order probabilities.  Statistical analyses 
(e.g., the U-value statistic to be described below and other 
measures of entropy) provide indices of the level of unpre-
dictability. 

Induced Variability: Three Examples

	 Variability is sometimes induced or elicited by environ-
mental events.  The inducing stimuli and forms of variation 
often differ across species but are typical within the species. 
Induced variability is not learned under the selective influ-
ences of reinforcement contingencies, but, as will be seen, 
often interacts with reinforced variability.

	 Kineses. A simple example is seen in E. coli bacteria.  
They exhibit two types of movement: straight-line swim-
ming and random tumbling (Macnab & Koshland, 1972).  
When the food gradient improves across time, a bacterium 
swims straight ahead.  When the food concentration decreas-
es, tumbling becomes more probable.  Tumbling results in 
movements in random directions with the combination of 
straight-line and random movements resulting in a kind of 
hill climbing in the direction of nutritive substances.  This 
simple example shows stimulus-controlled induction of two 
levels of variability: unpredictable responding (tumbling) 
and completely predictable straight-ahead movement.  

	 Protean behaviors.  A strange observation befuddled re-
searchers for many years.  If keys were jangled in a labora-
tory room that contained caged rats, some of them would 
run around and jump frenetically.  Why might noise pro-
duce what came to be referred to as “audiogenic seizures?” 
Chance (1957) noticed that if the chamber contained a small 
box, the rats would hide there whenever the keys jangled and 
would not run wildly.  So began research on protean behav-
ior, named after Proteus the Greek god, who could change 
his shape unpredictably so as to elude pursuers.  Driver and 
Humphries (1970) document protean behaviors engaged in 
by many different species.  Among the functions served by 
protean behaviors, survival is primary: a prey animal is more 
likely to survive if it responds unpredictably when confront-
ed by a potential predator.  For example, insects, fish, birds, 
and small mammals will move in highly erratic fashion in 
the presence of a predator.  The hare will zigzag left or right, 
or move straight ahead, mixing the three unpredictably when 
chased by a fox.  Across species, variable behaviors include 
unpredictable changes in direction, speed, form and type or 
topography of movement (Driver & Humphries, 1988).

	 There are other reasons to befuddle other animals.  One 
example is the so-called ‘crazy dance’ seen when a weasel 
attempts to capture a vole.  Having spied a vole, the weasel 
may jump about this potential meal, roll on the ground, twirl 
in a circle, do somersaults – all while moving around the 
vole – until finally it pounces on the motionless (some might 
say, astounded) vole.  Australian aborigines do similarly cra-
zy-seeming displays when hunting kangaroos.

	 The evolutionary bases of protean responses are indicated 
by the commonality of responses within a species as well as 
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yield a U-value of 1.0, independent of number of possible 
responses or sequences. 

	 Other measures include percentages or frequencies of tri-
als in which variability contingencies are met (Page & Neu-
ringer, 1985); percentages of alternations vs. stays (Macha-
do, 1992); conditional probabilities of responses (Machado, 
1992); frequency of novel responses (Goetz & Baer, 1973; 
Schwartz, 1982); frequency of different responses in a ses-
sion (Machado, 1997; Schwartz, 1982); Markov analyses 
(Machado, 1994); and a variety of statistical tests used to 
assess the randomness of a finite sequence of outputs (Neu-
ringer, 1986).  Research employing all of these measures 
converges on the conclusion that variability can be rein-
forced.  

Operant Variability: Experimental Evidence

	 Blough (1966) performed one of the first studies to show 
that highly variable responses can be reinforced, in this 
case interresponse times (IRTs).  Blough was attempting 
to design an alternative to variable-interval and variable-
ratio reinforcement schedules as a baseline to measure ef-
fects of other variables.  He proposed that reinforcement of 
randomly occurring responses might provide a statistically 
stable and reproducible baseline.  Pigeons were rewarded 
if the time since their previous peck, that is, if the current 
IRT, had occurred least frequently over the recent past.  To 
see what this implies, imagine that responses were occur-
ring randomly with a .5 probability during each second since 
the previous response, resulting in an exponential distribu-
tion of IRTs1, much like the random emissions of an atomic 
emitter.  Each response resets the IRT timer, and therefore 
response probabilities would be .5 during the first second, 
.5 during the next second (assuming that a responses had 
not occurred during the first second), and so on.  In a set of 
1000 responses, approximately 500 would occur in the 0 to 
1-sec IRT bin, 250 in the 1-2 s IRT bin, 125 in the 2-3 s bin, 
and so on.  Blough created 16 IRT bins, adjusting their sizes 
so that a random generator would produce equal numbers 
in the counters associated with each bin.  Because, as just 
described, a random responder generates many more short 
IRTs than long ones, thereby resulting in an exponential dis-
tribution, bin size was small at the short end and large at the 
long, increasing systematically cross the IRT range.  To be 
reinforced, a pigeon’s IRT had to fall in a bin that contained 
the lowest number of prior entries, compared to all of the 
other bins, across a moving window of 150 responses.  Other 
aspects of the procedure increased the likelihood of expo-
nentially distributed IRT frequencies and also controlled 
rates of reinforcement.  The result was that the birds learned 
to approximate the exponential distribution, but with some 
biases, i.e., they responded stochastically.  Very short IRTs 
(<0.5 s) were more frequent than if responses were randomly 

generated and there was a tendency for long IRTs to follow 
long, and short to follow short, more than expected from a 
random emitter, but these might have been due to aspects 
of the particular reinforcement contingencies.  Despite these 
problems, the pigeons’ distributions of intervals approxi-
mated the exponential distribution expected from an atomic 
emitter.  This was the first clear experimental demonstration 
that highly unpredictable responding could be reinforced.  
Blough’s study also showed how biases (in this case for 
short IRTs) could affect stochastic emission, another finding 
that was supported by research in the years to follow.

	 Page and Neuringer (1985) provided additional evidence 
and important control conditions.  Variability of response se-
quences was the measure of interest.  Pigeons pecked L and 
R keys, 8 responses per trial.  In one sub-experiment, a trial 
ended with food if the sequence in that trial differed from the 
sequences in each of the previous five trials, a Lag 5 schedule.  
If the current sequence was the same as any one (or more) of 
the previous 5, then a brief timeout (chamber dark and keys 
inactive) followed.  Although this criterion could be met in 
many different ways, the birds generated stochastic sequenc-
es, e.g., as measured by the U-value statistic.  Furthermore, 
as is the case for other operant dimensions, variability was 
shown to be sensitive to schedule parameters.  As lag values 
increased from 1 to 25, variability increased.  Other stud-
ies have confirmed the control by reinforcement contingen-
cies over levels of variability in rats (Grunow & Neuringer, 
2002), pigeons (Blough, 1966; Neuringer, 1992) and people 
(Jensen, Miller, & Neuringer, 2006; Maes, 2003), and with 
responses as diverse as lever presses, eye-movement sac-
cades (Madelain, Chaprenaut, & Chauvin, 2007), vocaliza-
tions by birds (Manabe, Staddon, & Cleaveland, 1997) and 
walruses (Schusterman & Reichmuth, 2008), and instances 
of categories generated by human participants (Neuringer & 
Jensen, 2010).  

	 But a key question remained: Was the contingency be-
tween reinforcers and variability responsible for the variable 
responding?  Alternative hypotheses had to be considered.  
For example, when variability is reinforced, absence of vari-
ability results in the withholding of reinforcement.  But we 
know that low reinforcement frequencies induce variability 
(see below).  Thus, the variability observed may have been 
caused by decreased reinforcement or brief periods of extinc-
tion.  To test this possibility, Page and Neuringer compared 
two conditions.  The first was a lag 50 where a sequence was 
required to differ from each of the previous 50 sequences 
(this condition referred to as Var).  As in most other experi-
ments from our laboratory, variability was assessed continu-
ously across sessions such that a sequence at the beginning 
of one session had to differ from each of the terminal 50 
sequences in the previous session, and so on.  High levels of 
variability were generated.  In a second condition (referred 

tive responses are possible and a sequence consists of a fixed 
number of responses per trial, with the possible patterns con-
stituting the response class.  For example, if a trial consists 
of 4 responses on Left (L) and Right (R) operanda, with re-
inforcement based on sequence variations, then the operant 
class would comprise 16 instances (24), or LLLL, LLLR, 
LLRL, LLRR, and so on.  If trial length were instead 8 Ls 
and Rs in length, then the operant class would contain 256 
(28) possible instances.  The main question asked in many of 
the studies is whether high levels of sequence variations can 
be generated and maintained by reinforcers contingent upon 
the variability.  A number of different procedures have been 
employed and the most common will be described. 

	 (i) Under recency methods, reinforcement is contingent 
upon a sequence that had not occurred across a given num-
ber of previous trials (Page & Neuringer, 1985).  The lag 
procedure is a common example.  Under lag 5, the current 
sequence will be reinforced only if it had not been emitted 
during any of the previous 5 trials.  In a variation of the lag 
procedure, Machado (1989) kept track of the number of in-
tervening trials before a given sequence was repeated, de-
fining this as the “recurrence time,” and combined it with 
a percentile reinforcement contingency to generate high 
levels of variability (see also Machado, 1992).  Percentile 
reinforcement contingencies base the criterion for reinforce-
ment on the subject’s own performance over a previous set 
of responses (see Galbicka, 1994).  Another variant is the 
novel response procedure in which a response is reinforced 
upon its first observed occurrence (Pryor, Haag, & O’Reilly, 
1969) or first occurrence within a given session (Goetz & 
Baer, 1973).  Similarly, radial-arm maze procedures rein-
force only initial (within a given session) entries into arms 
of a maze (Olton & Samuelson, 1976). 

	 (ii) Frequency or threshold procedures reinforce respons-
es that have occurred with relatively low frequencies.  Den-
ney and Neuringer (1998) provide an example in which tri-
als consisted of four responses by rats on L and R levers.  A 
running tally was kept of the frequencies of each of the 16 
possible sequences.  If the relative frequency of the current 
sequence – the number of its occurrences divided by the total 
occurences of all 16 sequences – was less than a specified 
threshold value, in this case, .05, the rat was rewarded.  Re-
cently emitted sequences contributed more to the maintained 
tally than non-recent because after each reinforcement, all 
16 counters were multiplied by a weighting coefficient equal 
to 0.95.  Therefore the contributions of particular trials to 
the running tally counters decreased exponentially with suc-
cessive reinforcements.  One variant is the least-frequent 
response procedure (Blough, 1966; Schoenfeld, Harris, & 
Farmer, 1966; Shimp, 1967) that reinforces only the single 
response or sequence that is currently least frequent.  Anoth-
er variant is the frequency dependence procedure (Machado, 

1992; 1993) in which the probability of reinforcement is a 
continuous function of relative response frequency, the more 
frequent a response, the less likely it is to be reinforced. 

	 (iii) Statistical evaluation procedures compare a subject’s 
performance to that of a stochastic model.  Neuringer (1986) 
provided human participants with feedback from 10 sta-
tistical tests of randomness.  In variations of this method, 
Platt and Glimcher (1999) and Lee, Conroy, McGreevy, and 
Barraclough (2004) performed on-line statistical analyses of 
monkey choices and reinforced only those choices that were 
not predicted by the computer’s statistical analyses.  

	 Evidence from each of the methods just discussed sup-
ports the hypothesis that variability can be reinforced (Neu-
ringer, 2002).

Measures

	 Among the many measures of variability and randomness 
(Knuth, 1969), U-value is commonly employed (Machado, 
1989; Page & Neuringer, 1985; Stokes, 1995).  U-value is 
based on the distribution of relative frequencies, or probabil-
ities of a set of responses.  For a set of 16 possible responses, 
U-value is given by the following equation:

∑
i=16

n=1
Pi Pi• log2(  )
log2(   )16U =

				   [Eq. 1]

Here pi represents the probability (or relative frequency) of 
a response sequence i. U-values approach 1.0 when relative 
frequencies approach equality, as would be expected over 
the long run from a random process, and 0.0 when a single 
instance is repeated.  

  	 U-value is closely related to Shannon’s measure of infor-
mation entropy, typically denoted by the symbol H (Shan-
non, 1948), which in the above example takes the following 
form:

∑Pi Pi• log2(  )H =
				    [Eq. 2]

Unlike U-value, Shannon information has no upper limit.  
Thus, for example, in the case of L and R alternatives and 
4-response trials, if each of the 16 possible sequences is 
emitted equally often, H would equal 4; but if there were 
three possible responses, L, R, and C (for center), again with 
4-response trials, 81 different sequences would be possible, 
and equality of emission would yield an H value of 6.34.  
The advantage of using U-value instead of H is that U pro-
vides a common scale where equality of responding will 
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Figure 2. Variability, given by U-value, for each of three 
dimensions of rectangles – area, shape, and location – 
drawn by human participants on the screen of a computer.  
The x-axis indicates three separate groups: Reinforced for 
repeating rectangle areas (left set of bars), or repeating 
shapes (middle set of bars), or locations on the screen (right 
set of bars).  For each group, variations were required for the 
other two dimensions.  Error bars indicate standard errors.  
(Adapted with permission from Ross, C. & Neuringer, A. 
(2002).  Reinforcement of variations and repetitions along 
three independent response dimensions.  Behavioural 
Processes, 57, 199-209.)

0.93
0.91
0.89
0.87
0.85
0.83
0.81
0.79
0.77
0.75

Area Shape
Dimension Reinforced for Repetition

Location

U
-V

al
ue

Area
Shape
Location

quired under a second stimulus, a Yoke condition such that 
reinforcement was approximately equivalent in the two 
stimuli.  Figure 3 shows the results.  The outer points, left 
and right, show the large differences in variability when 
discriminative stimuli were present, with the squares repre-
senting responding during the Var stimulus and the circles 
showing variability during Yoke. U-values were high when 
variability was required and much lower when variability 
was simply permitted (but not required). The center points 
show levels of variability when the discriminative stimuli 
were removed.  Now, absent any cues as to when to vary or 
not, the rats intermixed high levels of variability with low, 
and did so throughout the session.  Ward, Kynaston, Bailey, 
and Odum (2008) showed similar control by vary and yoke 
stimuli in pigeons.  These studies demonstrate conclusively 
that levels of operant variability are controlled by discrimi-
native cues.

Induced Variability of Operant Behaviors

	 Earlier in the paper, we described species-typical variabil-
ity that is induced by particular stimuli, such as a predator.  
Variability is also induced by presenting and withholding 
reinforcers. Terminology can be confusing and we use “in-
duced operant variability” to refer to effects on operant (and 

Figure 3. Response variability, given by U-value, for rats 
in a discrimination-learning task. The data are averages 
across 20 rats during three single sessions, two in which 
discriminative stimuli were present, and an intervening 
session in which discriminative cues were absent. When the 
Vary stimulus was present (squares and solid lines), only 
infrequently emitted response sequences were reinforced. 
The same frequency of reinforcement was provided 
during the Yoke stimulus (circles and dashed lines) but 
independent of whether sequences varied. The Vary and 
Yoke contingencies were continued during the “Absent” 
phase, but the discriminative cues were no longer present.  
(Adapted with permission from Denney, J. & Neuringer, A. 
(1998).  Behavioral variability is controlled by discriminative 
stimuli. Animal Learning & Behavior, 26, 154-162.)
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reinforced) responses that are independent of the contin-
gency between responses and reinforcers.  As will be seen, 
control conditions are necessary to separate induced effects 
from those due to the contingency.  Insofar as variability 
emerges even when reinforcement is not directly contingent 
upon it, a purely contingency-based account is insufficient 
to explain variability’s role in operant behavior. No less im-
portantly, induction procedures are often used to generate 
the variability from which new responses can be reinforced, 
in both therapeutic and learning contexts to be described be-
low.

	 Extinction-induced variability.  After a period of rein-
forced responding, withholding of the reinforcers (extinc-
tion) leads to increased variability.  This variability is not 
learned since it occurs upon the first extinction experience 
and it is not reinforced.  Examples of extinction-induced 
variability include variability of response location (Anto-

Figure 1. Variability of pigeon responses under Lag 50 
conditions (where reinforcers depend upon the current 
sequence differing from each of the last 50 sequences) 
and yoked variable ratio (Yoked-VR, where reinforcers 
are provided independently of sequence variability). Three 
measures of response uncertainty (or entropy) are shown: 
U1 = Responses evaluated one at a time; U2 = Responses 
evaluated in pairs; U3 = Responses evaluated in triplets.  
F = Averages over the first 5 sessions and L = averages 
over the final 5 sessions of each condition.  (Adapted with 
permission from Page, S. & Neuringer, A. (1985).  Variability 
is an operant.  Journal of Experimental Psychology: Animal 
Behavior Processes, 11, 429-452.)
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to as Yoke), each pigeon experienced exactly the same inter-
mittency of reinforcers as in Var but under a self-yoked pro-
cedure.  If, for a particular bird, the 1st, 5th, and 8th trials in 
a Var session produced reinforcers, then the 1st, 5th, and 8th 
trials would be reinforced under the yoke condition but inde-
pendently of whether sequences met the lag contingency or 
not.  Thus, under yoke, the pigeons had to continue to emit 
8 responses to complete each trial, and reinforcement was 
identical to Var, but variability was not required. The result 
was a marked decrease in sequence variability in the Yoke 
condition and an increase in sequence repetitions.  Return to 
lag 50 resulted in variability again increasing and a return to 
Yoke again caused a decrease (Figure 1).  This result, which 
has been replicated in experiments in many different labora-
tories (see Neuringer, 2002, for review), demonstrates that 
the reinforcement contingency is responsible for the high 
levels of variability, or, in other words, that variability is an 
operant dimension of behavior. 

	 Reinforcers control more than whether responses vary; 
they also define the set or class from which variations 
emerge.  The result is controlled, selected, or bounded vari-
ability.  This controlled nature of operant variability is shown 
in a number of ways.  For example, when many operanda 
are present in an experimental chamber, if reinforcement is 
based on variations among a subset, then responses are gen-
erally confined to the reinforced subset (Neuringer, Kornell, 
& Olufs, 2001).  Thus, rats learn what to vary as well as how 
much to vary.  Similarly, when 4-response sequences (across 
L and R levers) constituted a trial under lag contingencies, 
but only trials that began with RR were reinforced, the emit-
ted sequences, while varying, were generally limited to the 
reinforced set (Mook, Jeffrey, & Neuringer, 1993). 

	 Extraordinary evidence for the controlled nature of oper-
ant variability was seen when the reinforcement contingen-
cies required variability along two dimensions of a response 
while, simultaneously, repetitions along a third dimension 
(Ross & Neuringer, 2002).  Human participants were in-
structed to draw rectangles on the screen of a computer so 
as to earn points.  Those were the only instructions.  Par-
ticipants in the first of three groups were rewarded for rect-
angles whose screen locations (indicated by the centroids) 
varied as did forms (square, or rectangles that were long in 
the horizontal or vertical direction, etc.) while sizes were 
approximately the same, trial after trial.  Participants in a 
second group were reinforced for repeating location while 
varying size and form.  A third group was reinforced for re-
peating form while varying size and location.  Each group 
learned to respond appropriately – to vary and repeat, as re-
quired by the contingencies (Figure 2).  Many of the partici-
pants, while realizing that points depended on their drawing 
of rectangles, could not identify the underlying criteria.  This 
provides a striking example of the power of binary feedback 
(reinforce or not) to control variations and repetitions along 
multiple dimensions of a response, and to do so concurrently 
and independently. 

	 Discriminative stimuli provide additional evidence for the 
controlled nature of operant variability.  For example, Page 
and Neuringer reinforced pigeons for varying 5-response se-
quences under a Lag 10 contingency in the presence of blue 
keylights and for repeating a single 5-response sequence, 
LRRLL, when the key color was red.  The birds learned this 
discrimination and when the contingencies were reversed, 
so that now they had to vary in red and repeat in blue, their 
performances changed appropriately (see, also, Cohen, Neu-
ringer, and Rhodes, 1990, for similar results with rats).

	 Additionally, Denney and Neuringer (1998) showed that 
comparison with a fixed, repeated sequence was not neces-
sary to demonstrate stimulus control.  Rats were required 
to vary under one stimulus, Var, but variability was not re-
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	 Functionality of induced operant variability.  Early stud-
ies by Thorndike (1911) and Guthrie and Horton (1946) 
documented the emergence of new operants (referred to as 
instrumental responses) from a substrate of induced vari-
able behaviors.  For example, Thorndike observed that a cat 
scrambled about the cage, clawed at the wall and roof, but 
eventually a response succeeded in opening a door that pro-
vided access to food.  Across trials, the time to escape from 
the cage shortened, and the form of the response became 
increasingly predictable.  The conclusion was that learn-
ing of a response caused variability to decrease, a conclu-
sion that has been extended to suggest that reinforcement 
necessarily narrows and constrains responses (Schwartz & 
Lacey, 1982).  Among the many ways in which Skinner ex-
tended this early work was to describe the shaping of new re-
sponses.  In shaping, the criterion for reinforcement changes 
across time or responses and, as in Thorndike’s experiments, 
variability contributed importantly to the learning process.  
In each of these cases, response variability was induced – 
it occurred for reasons other than explicit reinforcement of 
the variability itself.  An obvious question is whether direct 
reinforcement of variability would, in fact, facilitate acquisi-
tion of new operant responses, a question to which we return 
later.

Interactions

	 The same reinforcers that produce response variability 
(because of the contingency between variability and rein-
forcer) may interfere with it (because of induced effects of 
the reinforcer).  As a related example, it is exceedingly dif-
ficult to reinforce ‘standing still’ in a hungry pigeon because 
the induced excitement and motivation of the food reinforc-
ers work in opposition to standing still.  There are many cas-
es of induced or evolved influences interfering with operant 
behavior, and, of course, many cases where facilitation is 
observed.  Interference and facilitation also occur with re-
spect to the variability operant.

	 Cherot, Jones, and Neuringer (1996) showed that when 
one group of rats was reinforced for repetitions and anoth-
er for variations, anticipation of reinforcement facilitated 
performance in the first case, and interfered with it in the 
second.  The first group (Rep) was reinforced for repeating 
sequences of 4 responses across two levers and the second 
group (Var) for sequence variability.  The novel aspect of 
the Cherot et al. experiment was that only every fourth cor-
rect sequence provided a food reinforcer, i.e., a Fixed Ra-
tio 4 was superimposed on the Rep and Var contingencies, 
with the first three correct sequences producing only a con-
ditioned stimulus.  As expected, animals in the Var group 
responded much more variably overall than the Rep animals, 
indicating control by the variability/repetition contingencies 
(Figure 5, bottom).  However, as each reinforcer delivery 

Figure 5. (Top)The percentage of sequences that met a 
variability-reinforcement contingency (red circles and 
solid lines represent 7 rats in the Var group) or repetition-
reinforcement contingency (blue circles and dashed lines 
represent 7 rats in the Rep group) as a function of the 
location within a fixed-ratio (FR 4) schedule where four 
correct sequences were required for each food reinforcer.  
Lines connect group means, and error bars show group 
standard deviations.  (Bottom) U values, a measure of 
sequence variability, as a function of location within the fixed 
ratio.  (Adapted with permission from Cherot, C., Jones, A., 
& Neuringer, A. (1996) Reinforced variability decreases 
with approach to reinforcers.  Journal of Experimental 
Psychology: Animal Behavior Processes, 22, 497-508.)  
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27 possible 3-response sequences when only the LKR 
sequence was reinforced (filled circles) and when extinction 
was imposed, i.e., no reinforcers were provided (open 
circles).  The bottom graph shows the ratios of these same 
probability, in other words, extinction probabilities divided 
by reinforcement probabilities, on a logarithmic y-axis.  
(Adapted with permission from Neuringer, A., Kornell, N., 
& Olufs, M. (2001).  Stability and variability in extinction.  
Journal of Experimental Psychology: Animal Behavior 
Processes, 27, 79-94.)
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nitis, 1951; Eckerman & Lanson, 1969), response force 
(Notterman & Mintz, 1965), topography (Stokes, 1995), 
and number (Mechner, 1958).  As with other examples of 
induced variability (such as protean behaviors), extinction-
induced variations are bounded and orderly: they are primar-
ily selected from the same, or similar response class as was 
established during original learning.  For example, if lever 
presses produced food pellets, a rat may vary the ways in 
which it presses when food is withheld with much of the 
behavior directed towards the lever (e.g., Stokes, 1995).  

	 This constrained nature of extinction-induced variability 
was shown by Neuringer, Kornell, and Olufs (2001). Rats 
were reinforced for a particular 3-response sequence across 
3 operanda, namely (L)eft lever ➔ response (K)ey ➔ (R)
ight lever (LKR), in that order.  After the rats had learned 
the sequence, reinforcement was withheld.  The top panel 
of Figure 4 shows the relative frequencies of each possible 
3-response sequence (proportions of occurrences) during 
the reinforcement phase (filled circles) and during extinc-
tion (open circles).  LKR was most frequent when it was 
reinforced, as expected.  During extinction, LKR contin-
ued to be the most frequently emitted sequence.  (Note that 
these graphs show relative frequencies.  Absolute rates of 
response were much lower during extinction than during the 
reinforcement phase.) Shown at the bottom of the figure are 
the ratios of response proportions during the reinforcement 
and extinction phases (that is, the ratio of the two curves in 
the upper graph).  Thus, while the same ordering of sequence 
proportions was maintained during extinction as during con-
ditioning, variability increased in extinction due to the un-
usual or highly unlikely sequences (for related findings, see 
Bouton, 1994; Pear, 1985).  Neuringer, Kornell, and Olufs 
obtained similar results from a second group of rats that 
had been reinforced for sequence variations: The ordering 
of sequence probabilities was maintained while low prob-
ability sequences became (slightly) more frequent.  Souza, 
Abreu-Rodrigues, and Baumann (2010) obtained the same 
results with human participants.  We conclude that extinc-
tion results in a “… combination of generally doing what 
worked before but occasionally doing something very differ-
ent… (This) may maximize the possibility of reinforcement 
from a previously bountiful source while providing neces-
sary variations for new learning” (Neuringer et al., 2001, p. 
79). 

	 Variability induced by distance from reinforcement.  Re-
sponding becomes increasingly repetitive and predictable as 
a reinforcer is approached in time, space or effort.  This was 
shown for sequence variability (Cherot, Jones, & Neuring-
er, 1996), lever-press duration variability (Gharib, Gade, & 
Roberts, 2004), and movement variability (Akins, Domjan, 
& Gutierrez, 1994; see also Craig, 1918). 

	 Variability induced by reinforcement frequencies.  In gen-
eral, response variability is high when reinforcers are infre-
quent, and lower when reinforcers are frequent (see Lee, 
Sturmey, & Fields, 2007, for a review).  One interpretation is 
that low expectation (or anticipation) of reinforcers induces 
variability (Gharib et al., 2004), a description that can also 
be applied to the just-noted distance-inducing effects. 
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and timeouts had opposite effects: pre-reinforcement de-
lays increased variability and post-reinforcement timeouts 
decreased it (see, however, Odum, Ward, Barnes, & Burke, 
2006).  Figure 7 suggests a reason why.  Delays remove the 

opportunity to respond in the interval leading up to the re-
inforcer, when repetitions are most likely to be induced (as 
shown by Cherot et al., 1996).  Post-reinforcement timeouts 
do the opposite by removing the opportunity for respond-
ing early during the next period, when induced variability is 
high.  Thus knowledge of the subtle interactions between the 
inducing and strengthening effects of reinforcement helps to 
explain response variability.  There may be important lessons 
here for application: when variability is desirable, as when 
shaping a new response, or reinforcing creativity or problem 
solving, then imposition of pauses, rest periods or timeouts 
following reinforcers may increase helpful variations.  On 
the other hand, pauses should not precede reinforcers that 
are contingent upon variability or upon successive approxi-
mations to the desired response.  In brief, both contingent 
and induced effects of reinforcers must be considered when 
attempting to influence levels of response variability during 
the shaping process. 

Cognitive Variability  

	 Operant response classes have much in common with 
cognitive categories (Murphy, 2002).  Categories contain 
multiple instances, and these instances often demonstrate a 
hierarchical ordering, from high to low probability (Rosch, 
1978).  Apples are a more likely response to “name a fruit” 
than kumquats.  However, the ordering of within-category 
instances – or in operant terms, the probabilities of response 
– differ, both within individuals at different times or under 
different circumstances, and across similar individuals at 
the same time in identical circumstances (Barsalou, 1987).  
Furthermore, distributions of within-category probabilities 
change with environmental demands, much as is the case for 
within-class operant variability.  To state this differently, un-
der some circumstances, normally low probability responses 
may be emitted with high probability and vice-versa.  This 
was shown when college students were asked to generate 
instances of a verbal category that were highly likely to be 
given by other individuals (e.g., when asked simply to name 
a fruit), unlikely to be given, and levels in between.  Partici-
pants could readily generate low-to-high probability instanc-
es of both common categories (e.g., animals and fruits) and 
ad-hoc categories (e.g.,things to eat on a diet, something to 
do during a lecture, and things that might fall on one’s head) 
(Neuringer & Jensen, 2010).  More than any other operant 
domain, language demonstrates an ability of users to vary 
the predictability of instances.  Linguistic variability, while 
extraordinary in its range, may be established and controlled 
in the same ways as other types of operant variability. 

	 Graded structure is characteristic of operant response 
classes as well, even when variability is reinforced.  Rein-
forcement may flatten the within-class probability distribu-
tions, but as seen in many studies (Hunziker, Saldana, & 

Figure 7.  Depiction of how elicited, or induced, variability, 
along the y-axis, changes with interreinforcement time, along 
the x-axis, when reinforcers are delayed (blackouts precede 
reinforcers) (top) and when blackouts follow reinforcers 
(bottom).  The shaded portions indicate blackout periods 
when responses were not possible, and the open portions 
indicate the periods where responses could be emitted.  
(Adapted with permission from Wagner, K. & Neuringer, A. 
(2006) Operant variability when reinforcement is delayed.  
Learning & Behavior, 34, 111-123.)
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Figure 6.  Average U values for four groups of rats (10 
each) that differ in terms of the levels of variability required 
for reinforcement: 0.037 = very high variability required; 
0.37 = very low variability required; and the other two 
groups, 0.055 and 0.074 = intermediate levels required.  
The x-axis shows 3 phases: CRF = reinforcement every 
time variability contingency met; VI 1 = reinforcement for 
meeting respective variability contingencies no more than 
once per minute, on average; VI 5 = reinforcement no more 
than once every 5 min.  (Adapted with permission from 
Grunow, A. & Neuringer, A. (2002).  Learning to vary and 
varying to learn.  Psychonomic Bulletin & Review, 9, 250-
258.)
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was approached (i.e., as the last of 4 successful sequences 
was neared) levels of variability decreased for both Var and 
Rep groups.  Recall the expectancy-of-reinforcement effects 
described above.  In this case as well, variability decreased 
as reinforcers were approached, thereby facilitating correct 
responding in the Rep group but interfering with it in the Var 
(Figure 5, top).  Similar interactions between contingency 
and induction may help to explain other findings, including 
those related to creative behaviors.  For example, the com-
monly reported detrimental effects of anticipated rewards on 
creative activities may in part be due to the proximity effects 
just described (Amabile, 1983; Neuringer, 2003).  But over-
all levels of variability – and perhaps the creativity of the 
activity as well – are higher when reinforced than when not.  
Thus, rather than concluding that reinforcement is generally 
detrimental to creativity, it will be more helpful to identify 
reinforcing and inducing effects.

	 Grunow and Neuringer (2002) showed that the magnitude 
and direction of induced variability depend upon levels of 
reinforced variability.  Four groups of rats were reinforced 
for different levels of variability, from high to relatively low, 
across three operanda, two levers and a key.  The leftmost 
points in Figure 6 (CRF or continuous reinforcement) show 
that the variability contingencies exerted strong control: The 
group reinforced for high variability responded most vari-
ably, the group reinforced for low variability responded with 
low levels, and so on for the intermediate groups.  Overall 
frequencies of reinforcement were then systematically low-
ered by superimposing a Variable Interval (VI) schedule-of-
reinforcement requirement atop the variability contingency.  
Thus, in one phase, reinforcers (for varying) were available 
only on the average of once per minute (VI 1 min), and in an-
other phase, once every 5 min (VI 5 min).  Only after the VI 
interval elapsed would meeting the variability contingency 
be reinforced, with all other trials leading to brief timeouts.  
As outlined above, we know that lowering reinforcement 
rate often increases response variability.  Grunow and Neu-
ringer asked whether the same would be found across the dif-
ferent levels of operantly reinforced variability.  The results 
showed that the size and direction of the induction effects 
depended on the variability contingencies.  When low vari-
ability was reinforced, decreases in reinforcement resulted 
in increased variation, consistent with most previous reports.  
However, when high variability was reinforced, lowering of 
reinforcements had the opposite effect: response variability 
decreased as reinforcements became increasingly rare.  The 
intermediate groups showed intermediate effects.  This is an-
other case in which response variability depends on a combi-
nation of variability-contingent (or reinforced) and induced 
(rate of reinforcement) influences.  Such interactions may 
help to explain additional observations from outside of the 
lab.  Many workers engage in repetitive behaviors, e.g., fac-

tory workers, mail carriers, and fare collectors; but variable 
behaviors are the norm for others, e.g., inventors, fashion 
designers, and artists.  Lowering pay or withholding positive 
feedback may affect behaviors differently in these two cases.

	 Delays of reinforcement (periods imposed between re-
sponses and reinforcers) also induce changes in responding 
that depend upon reinforced levels of variation.  Wagner and 
Neuringer (2006) reinforced different groups of rats for low, 
medium, and high response-sequence variability with a trial 
consisting of three responses across four active operanda – 
two levers and two keys.  The authors asked two questions: 
do levels of reinforced variability influence the effects of re-
inforcement delays; and do delays prior to reinforcers have 
different effects on variability than the same periods follow-
ing reinforcers (post-reinforcement timeouts).  The main 
results were that both levels of reinforced variability and 
the location of the delays/timeouts influenced the induced 
effects.  Delays increased variability when low variability 
was reinforced and decreased it when reinforcers depend-
ed upon high variability.  At low variability levels, delays 
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	 As part of the Grunow and Neuringer (2002) experiment, 
described above, levels of reinforced variability were shown 
also to contribute to the facilitative effects: the higher the 
variability, the more likely that a difficult-to-learn target se-
quence was acquired.  However, human participants, playing 
a computer game analogous to these rat experiments, did not 
learn target sequences faster when variability was reinforced 
(Bizo & Doolan, 2008; Maes and van der Goot, 2006).  The 
human control groups (who were reinforced only for emit-
ting the target and not for variable sequences) were the only 
ones to learn. Neuringer (2009) discusses possible reason for 
this species difference, but as yet there is no clear explana-
tion.  We note, however, that the motivations of a deprived 
animal working for needed food, and doing so over the 
course of one hundred or more sessions, differs appreciably 
from that of a human participant spending a brief time at a 
computer in a psychology experiment.  

	 Problem solving. Arnesen (2000; see also Neuringer, 2004) 
studied whether rewarding rats for variable interactions with 
objects would facilitate their ability to explore a novel space 
and discover food hidden within and under novel objects.  
Rats in a Variability group were reinforced with food pel-
lets for varying object interactions, such as touching a soup 
can, pushing it, climbing on it, poking nose in it, etc., with 
the overall goal being to reinforce variable responses to the 
object.  A new object was provided for each of 10 sessions 
with variable responses reinforced throughout.  A Yoke con-
trol group experienced the same objects for the same time 
periods but food pellets were given without regard to the 
rats’ interactions with the objects.  A second control group 
was simply handled.  Following these experiences, each rat 
was placed alone in a 6 ft by 8 ft room, on the floor of which 
were 30 objects (e.g., a toy truck, metal plumbing pipes, a 
hair brush, a doll's chest-of-drawers), chosen arbitrarily but 
as different as possible from those used during the training 
phase.  Hidden within or under each object was a food pellet 
and the hungry rats were permitted to explore freely for 20 
min.  The Variability group discovered and consumed signif-
icantly more pellets than either of the control groups, which 
did not differ from one another.  The Variability rats also ex-
plored more (and seemingly more boldly) than the controls, 
many of whom showed signs of fear such as hovering along 
the wall of the room and freezing should they accidentally 
cause an object to move or produce a noise.  Thus, learning 
to interact variably with objects facilitated exploration and 
discovery of reinforcers in a novel, foraging-type environ-
ment.  The advantages incurred by variations are discussed 
in the human problem-solving literature, such as brainstorm-
ing, but there have been few tests of direct reinforcement-of-
variability procedures for problem solving more generally. 

	 Autism and depression.  Low levels of variability are char-
acteristic of some pathologies.  A question of applied interest 

is whether direct reinforcement of variability can influence 
those levels.  Miller and Neuringer (2000) reinforced five 
individuals diagnosed with autism.  Such individuals often 
demonstrate stereotypic, highly repetitive behaviors.  These 
five, plus nine control participants (children and adults), 
were reinforced independently of response variability dur-
ing a baseline phase (Prob) of a simple computer-game pro-
cedure.  This was followed by a Var phase in which sequence 
variations were required for reinforcement and then a return 
to Prob.  The participants with autism behaved less vari-
ably than the normal controls throughout the experiment but 
when directly reinforced, variability increased in both those 
with autism and the controls (Figure 9).  The important point 
is that response variability increased in individuals with au-
tism, an outcome often difficult to obtain.

Figure 9.  U values based on the 16 possible sequences 
for each of three groups of human participants.  During 
the Prob phases, reinforcers were provided independently 
of sequence variability.  During the Var phase, reinforcers 
depended upon variability.  The Experimental group 
consisted of 5 individuals who had been diagnosed with 
autism and were in a residential treatment program.  The 
Adult control participants were 5 college students.  Four 
children, ages 4 to 9, made up the Child control group. 
(Adapted with permission from Miller, N. & Neuringer, A. 
(2000).  Reinforcing variability in adolescents with autism.  
Journal of Applied Behavior Analysis, 33, 151-165.)
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	 Ronald Lee and co-workers extended this work by rein-
forcing individuals with autism for varying appropriate ver-
bal responses to questions (Lee, McComas, & Jawor, 2002; 

Figure 8.  The y-axes show the rates at which a target 
sequence was emitted when the target was RLLRL (top) 
and LLRRL (bottom).  Group averages are shown for three 
groups of rats (10 rats each): Var group was reinforced on 
the average of once per min for variable sequences plus 
reinforced whenever the target sequence was emitted; Any 
group was reinforced on the average of once per min for 
any sequence plus whenever the target was emitted; Con 
group was reinforced only whenever the target was emitted.  
Session blocks are shown on the x-axis with each point an 
average across 5 sessions.  (Adapted with permission from 
Neuringer, A., Deiss, C., & Olson, G. (2000) Reinforced 
variability and operant learning.  Journal of Experimental 
Psychology: Animal Behavior Processes, 26, 98-111.)
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Neuringer, 1996; Jensen & Neuringer, 2009; Neuringer et 
al., 2001; Pesek-Cotton, Johnson, & Newland, 2011), dif-
ferences in probabilities often remain.  Contributing to the 
within-class hierarchies are types of operanda, distances 
among operanda, distances to the reinforcer dispenser, etc.  
In short, both operant responses and category instances ap-
pear to be probabilistically generated, with the probabilities 
organized and influenced by environmental variables includ-
ing, importantly, feedback from reinforcers.

Functionality of Operant Variability

	 Conditioning of difficult-to-learn responses. Skinner 
(1981) suggested that operant behaviors are selected by 
reinforcers from a substrate of varying behaviors in a way 
analogous to the evolutionary process of variation and se-
lection.  Others have supported the parallel (Baum, 1994; 
Catania, 1995; Hull, Langman, & Glenn, 2001; Staddon & 
Simmelhag, 1971).  As discussed above, selective pressures 
maintain variability-generation in the genome with conse-
quent selection of instances leading to evolved changes.  A 
question is whether direct reinforcement of variability (se-
lection of variability) would contribute to acquisition of op-
erant responses (selection of instances). 

	 Neuringer, Deiss, and Olson (2000, Exp 2) reinforced 
three groups of rats for a difficult-to-learn 5-response tar-
get sequence, RLLRL.  A Control group was reinforced only 
for the target, with all other 5-response sequences leading 
to brief timeouts.  A Var group was reinforced for varying 
5-response sequences as well as being reinforced for RLL-
RL whenever it occurred.  Var reinforcers were limited to 
no more than one per min (VI 1 min).  A yoke group, re-
ferred to as Any, received the same VI 1 min reinforcers as 
the Var group, but they were given following completion of 
any sequence and these animals were not required to vary.  
As in the other two conditions, Any animals were always 
reinforced for the target sequence. The main result was that 
only the Var group learned the target sequence (Figure 8).  
The added VI reinforcers enabled both Var and Any rats to 
respond throughout the experiment whereas the absence of 
these reinforcers caused responding to extinguish in most 
members of the Control group. But only the Var group main-
tained high levels of variability until the target sequence was 
learned.  The experiment was replicated with a different tar-
get sequence, LLRRL, and again, only the Var group learned, 
this shown in the bottom of Figure 8 (see also Neuringer, 
1993).  It was hypothesized that reinforcement of variability 
provided the requisite baseline for contact to be made be-
tween the target sequence and reinforcers.  Since shaping of 
new responses always depends upon such contact, the con-
current reinforcement of variability may facilitate shaping 
whenever baseline variability is low.  
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that irreducible uncertainty underlies physical phenomena 
was profoundly disruptive and ran contrary to the assump-
tions of many, but also initiated the revolutionary work that 
laid the foundation for modern theoretical physics, including 
quantum mechanics (Lindley, 2001).   

	 The conflict between a clockwork universe and one in 
which there exists fundamental uncertainty is by no means 
merely historical.  It underlies a clash between frequentist 
and Bayesian statistical approaches today (Bland & Altman, 
1998).  In most of the sub-disciplines within psychology, re-
searchers are implicit adherents of the determinist position; 
and mainstream psychology in the 20th century has relied 
heavily on frequentist analyses, such as analysis of variance 
(ANOVA).  Frequentist statistical analyses assume that sets 
of measurements provide approximations of a single true 
value.  Put another way, those who rely on ANOVAs and 
related statistical procedures implicitly assume that variance 
is caused by errors in measurement, and that a sufficiently 
large number of measurements will permit the true value to 
be identified.  Bayesian approaches, by contrast, treat the 
world as inherently probabilistic, and assume that measured 
variations in values characterize true distributions.  How-
ever, the assumption that events are inherently probabilistic, 
while widely accepted in contemporary physics, is unaccept-
able to most psychologists, and this has contributed to the 
view that response variability is merely error to be reduced 
and factored out (see, also, Bayarri & Berger, 2004). 

	 With respect to operant variability, there is support for 
both deterministic and indeterministic processes playing a 
role, often in conjunction with one another.  In some cases, 
generation of highly variable responses relies chiefly on 
memory for past events.  In others, the evidence is consis-
tent with a primarily stochastic process.  We will consider 
evidence for both positions. 

Memory-Based Operant Variability

	 Memory-based theories of operant variability posit that 
individual events – stimuli, reinforcers, and previous re-
sponses – can be identified that enable exact predictions of 
future responses, even when they appear to be stochastically 
or randomly generated 

	 Radial arm maze experiments.  Responses of a rat in a 
radial-arm maze are partly based on the rat’s memory for 
its previous experiences during a session (Olton, Collison, 
& Werz, 1977; Olton & Samuelson, 1976).  The rat is free 
to explore a maze that consists of 8 (or more) arms radiating 
from a central platform with a pellet of food located at the 
end of each arm.  Once eaten, the pellets are not replaced.  
Thus, it is advantageous for the rat to avoid previously vis-
ited arms.  Rats are quite good at the task and (after some 

experience) make few repetition errors, although they often 
visit the remaining arms in unpredictable order.  We see in 
these experiments memory (for visited arms) combined with 
possibly stochastic selection among the remaining arms.  Ad-
ditional evidence for the involvement of memory in this task 
is seen in the rat’s errors when timeout periods are imposed 
between arm entries. For example, if the rat is removed from 
the maze after half of the pellets had been consumed, lon-
ger intervals prior to returning to the maze result in a larger 
number of reentry errors (Beatty & Shavalia, 1980).  Thus, 
radial arm maze performance combines memory-based non-
repetitions with stochastic-like choices among as-yet unen-
tered arms.  Consistent with this conclusion are findings that 
alcohol administration increases number of repeated arm 
entries, presumably because memory is degraded (Deven-
port, Merriman, & Devenport, 1983).  The increase in er-
rors yields sequences that more closely resemble stochas-
tic choices, i.e., moves the rats from memory-based choice 
allocations to stochastic allocation (McElroy & Neuringer, 
1990).  

	 Lag schedules.  As indicated above, under Lag 50 sched-
ules, where the current response sequence must differ from 
each of the previous 50 sequences, pigeons respond in a sto-
chastic-like manner (Page & Neuringer, 1985).  Consistent 
with this claim is that both pigeons and stochastic simula-
tions generate more repetition errors than would be obtained 
from a purely memory-based strategy, e.g., cycling repeated-
ly across 50 different sequences.  However, memory-based 
strategies are often observed under Lag 1 or 2 schedules, with 
the animals in fact cycling through 2 or 3 sequences.  The 
result of such cycling is reinforcement for every sequence, 
which is a better return rate than would result from stochastic 
choices.  Machado (1993) showed that cycling occurs only 
when the memory demands are within the subject’s capac-
ity.  Using a frequency-dependent variability contingency, 
Machado found that when the contingencies differentially 
reinforced the least frequent individual response (given the 
possibility of L or R), the pigeons responded LRLRLR…, 
the optimal solution.  When the contingencies reinforced the 
least frequent of pairs of responses (LL, LR, RL, or RR), the 
birds again developed memory-based patterns, e.g., repeat-
ing RRLLRRLL.  However, when triads were the unit, the 
birds apparently could not develop the optimal fixed pattern 
of RRRLRLLL… but, instead, reverted to "random-like be-
havior" (Machado, 1993, p.103).  

	 Similar results were obtained from song birds when vari-
able songs were reinforced (Manabe et al., 1997).  Under 
Lag 1, the birds tended to generate two songs, using a win-
stay, lose-switch strategy; under Lag 2, they generated three 
songs.  But when the Lag was increased to 3, multiple strate-
gies emerged, some of which were highly stochastic.  Thus, 
a memory-based strategy was employed when possible, but 
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Figure 10.  U values as a function of reinforcement con-
tingencies in a computer game.  During Prob, reinforcers 
were delivered independently of variability levels.  During 
Var, reinforcers depended on variability in the same game.  
Seventy-five undergraduate students were divided into mod-
erately depressed (36 participants) and not depressed (39 
participants) based on a self-evaluation scale.  Error bars 
indicate standard errors.  (Adapted with permission from 
Hopkinson, J., & Neuringer, A. (2003).  Modifying behav-
ioral variability in moderately depressed students.  Behav-
ior Modification, 27, 251-264.)

Lee & Sturmey, 2006).  The efficacy of direct reinforce-
ment was also shown by Newman, Reinecke, and Meinberg 
(2000): two of three young children diagnosed with autism 
learned to self-administer reinforcers contingent upon their 
own increasingly varied responses.  Thus, although not ex-
tensive, the experimental evidence indicates that the abnor-
mally low levels of variability characteristic of individuals 
with autism may be influenced by contingencies of rein-
forcement directed at variability.  Because operant behaviors 
generally manifest some level of within-class variability, and 
because the variability is normally consequence-controlled, 
an important step in helping to change autistic behaviors in 
the direction of normalcy may be explicitly to reinforce for 
varying levels of variability, levels that range from unpre-
dictable to repetitive.  

	 In an experiment similar to the work with autism, Hop-
kinson and Neuringer (2003) asked whether low behavioral 
variability associated with depression (Channon & Baker, 
1996; Horne, Evans, & Orne, 1982) could be increased by 
direct reinforcement.  Based on their scores from the Cen-
ter for Epidemiological Studies Depression Scale (Radloff, 

1991), college students were divided into mildly depressed 
and not depressed groups.  Each participant then played a 
computer game in which sequences of responses were first 
reinforced independently of variability (Prob), followed by 
direct reinforcement of variable sequences (Var).  Figure 
10 shows that, under Prob, the depressed students’ vari-
ability (average U value) was significantly lower than the 
non-depressed.  When variability was explicitly reinforced, 
however, levels of variability increased in both groups to the 
same high levels.  This result, if general, is important since it 
indicates that variability can be explicitly reinforced in those 
manifesting mild depression (see also Beck, 1976). 

	 Many other cases demonstrate functionality of variability, 
both induced and reinforced.  In competitive situations, such 
as war or some games, unpredictability is a way to thwart an 
opponent and attain a goal.  Variability increases attention 
and counteracts habituation.  And variations in variability/
predictability are found throughout the arts.

Determinism and Stochasticity

	 It is impossible to prove that a given output, no matter 
how long the series or observation period, is generated by a 
stochastic process.  Any finite2 stochastic-seeming sequence 
could be the result of a deterministic process.  For example, 
computer-based random number generators use non-linear 
deterministic algorithms to generate random numbers.  Out-
puts may appear to be unpredictable and, indeed, pass many 
tests of randomness, but if one knows the algorithm, each 
instance can be predicted.  Computer algorithms periodi-
cally reseed themselves using the system clock to keep their 
predictability from becoming a security liability.  As will be 
seen, human participants can learn to generate stochastic-
like but completely predictable outputs, in ways similar to 
that of a computer.

	 However, it is equally the case that determinism can’t be 
proved: Variability is always observed at some level of anal-
ysis, and proving a thesis to be universally true is impossible 
by empirical means.  These points may be obvious, but need 
be stated because many individuals, scientists as well as oth-
ers, take firm positions: In simplified terms, some argue that 
the universe is determined while others insist that the uni-
verse contains indeterminate events.  

	 The determinism versus indeterminism debate has roots 
in early Greek times – Democritus versus Epicurus – and 
continues to this day in philosophy (Kane, 2002).  In sci-
ence, the issue was intensely argued in late 19th- and early 
20th-century physics, with Ludwig Boltzmann being the 
first to definitively undermine the prevailing paradigm of the 
clockwork universe.  In Boltzmann's view, atomic particles 
could be understood as inherently probabilistic.  The insight 
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Figure 12.  Frequency distributions for one participant on three statistical evaluations of response randomness.  The left 
column shows performances during baseline conditions when responses produced no feedback.  The right column shows 
performances after extended reinforcement for approximating random outputs.  The solid line shows the participant’s 
performance and the dotted line shows comparable data generated by a computer-based random number generator.  
(Adapted with permission from Neuringer, A. (1986).  Can people behave “randomly?”: The role of feedback.  Journal of 
Experimental Psychology: General, 115, 62-75.)
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Figure 11.  Generation of chaotic-like sequences by one 
human participant.  The top panel shows the values of 
individual responses (y-axis) across consecutive responses 
(x-axis).  The bottom panel shows the values of response n 
(y-axis) as a function of the values of response n-1 (x-axis).  
These panels show that highly “noisy” responding (top) was 
generated by a highly orderly deterministic process (bottom).  
(Adapted with permission from Neuringer, A. & Voss, C. 
(1993).  Approximating chaotic behavior.  Psychological 
Science, 4, 113-119.)
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when the memory demands became too high, stochastic al-
location emerged.  Reinforcement of vocal variations has 
been extended to other species including walruses (Schus-
terman & Reichmuth, 2008) and people (Lee et al., 2002).

	 Chaotic responding.  Chaos theory describes phenomena 
that appear to be random and unpredictable on their surface 
but are in fact generated by non-linear, deterministic pro-
cesses.  Chaotic behavioral strategies can result in highly 
variable outputs but do so in a manner in which each out-
put is precisely controlled by prior events (Hoyert, 1992; 
Mosekilde, Larsen, & Sterman, 1991; Townsend, 1992).  
Neuringer and Voss (1993) showed that human participants 
could learn to generate chaotic-like sequences:  individual 
responses appeared to be unpredictable, but were based on 
(and predictable from) the logistic difference function: 

• • (1- Rn-1)Rn = t Rn-1 			   [Eq. 3]

Here, Rn refers to the nth iteration in a series, each R is a 
value between 0.0 and 1.0, and t is a constant between 1.0 
and 4.0.  As t approaches 4.0, outputs appear increasingly 
to be unpredictable despite being strictly determined.  The 
participants were shown the difference between each of 
their responses and that of the iterated logistic-difference 
equation with t=4.0.  With training, they learned to generate 
highly variable responses (top panel in Figure 11), but when 
responses in the current trial (n) were plotted as a function of 
responses in the just-prior trial (n-1), the data were closely fit 
by a parabolic function (bottom panel).  Because each itera-
tion of the equation is completely determined by the prior 
output (given the one multiplicative constant), it is reason-
able to assume that responses were based on memory for the 
previous response, with the participants having learned (or 
memorized) a long series of “if the previous response was 
value A, then the current response must be value B” pairs 
(Metzger, 1994; Ward & West, 1994).  Neuringer and Voss 
(described in Neuringer, 2002) provided evidence for this 
hypothesis.  Introducing delays or otherwise interfering with 
ongoing responding resulted in degrading of the target cha-
otic sequence.  Thus very high levels of surface variability 
can be memory based, but as discussed next, experimental 
results are also consistent with stochastic generating pro-
cesses in which responses do not depend upon memory for 
prior responses or stimuli.

Stochastic Variability

	 A number of studies report that responses approximate 
those expected from a stochastic process.  For example, in 
one, human participants learned to satisfy 10 statistical tests 
of randomness (Neuringer, 1986) and, in a self experiment 
performed by the senior author, 30 statistical tests of ran-

domness were satisfied (Roberts & Neuringer, 1998).  These 
results differed, however, from many previous studies in 
which participants failed to produce equiprobable, random-
like responses (Brugger, 1997; Wagenaar, 1972).
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response, then, it was reasoned, these interpolated pauses 
should degrade accuracy.   

	 The results from the Rep group were as expected: as paus-
es increased from 0 to 6 s, percentages of correct sequences 
were relatively unaffected but beyond 6 s, probability of a 
correct LLRR sequence indeed fell sharply.  The rats ap-
peared able to remember their past responses for up to 6 sec, 
but not beyond that.  The Var group's results were quite dif-
ferent: as pauses increased between 0- and 6-s, the rats were 
increasingly likely to satisfy the variability contingencies, 
and with pauses greater than 6 s, percent correct remained at 
a high asymptotic level.  Thus, the Var group's results were 
opposite to the Rep group's and opposite to that predicted 
from a memory-based strategy.  Similar results – showing 
that operant variability increases or is maintained as re-
sponding is slowed – have been reported by Morris (1987) 
with pigeons and Baddeley (1966) and others with random 
response generation by human subjects.   

	 Memory for prior responses may not have controlled the 
Var group's performance but why did variability increase? 
Each of three answers is consistent with a stochastic-gen-
erator interpretation.  Weiss (1964; 1965) hypothesized that 
voluntary random generation requires current responses to 
be independent of previous ones and memory for, or con-
trol by, prior responses would interfere with such indepen-
dence.  A second possibility is that at short IRTs, animals 
tend to repeat responses, or respond twice quickly on the 
same operandum.  Blough (1966) found this in pigeons and 
excluded such double pecks from his analyses because the 
double pecks appeared not to be under the control of the re-
inforcement schedule.  Morris (1987) also found a tendency 
for birds to repeat in the absence of brief timeouts to separate 
responses.  A third hypothesis is that there were two con-
tributors to the observed variability.  One was a reinforce-
ment-controlled stochastic-generation process; the other was 
pause-induced (or elicited) variability.  The induced effect 
– slowed responding generates high variability – is a general 
phenomenon, supported in many other cases.  According to 
this interpretation, operant variability in the Var group was 
governed by a stochastic process, operant repetition in the 
Rep group by a memory-based process, and pauses elicited 
variability under both contingencies.  The result was that Rep 
performance was interfered with while Var was facilitated.  
Each of these hypotheses is consistent with a conclusion that 
memory for (or discriminative control by) prior responses 
does not contribute to, and possibly interferes with, variable 
responding when an organism is reinforced for variability, 
and this, in turn, is consistent with a stochastic-generator hy-
pothesis.   

	 Also cosistent are the effects of alcohol on rats’ repetitions 
(Rep component of a multiple schedule in which LLRR is 

reinforced) versus variations (Var component containing lag 
contingencies) (Cohen et al., 1990).  With rats responding 
under the multiple schedule, injections of ethanol degrad-
ed Rep performance but did not affect performance in Var.  
Similar results were obtained from pigeons when d-amphet-
amine was administered as well as ethanol (Ward, Bailey, 
& Odum, 2006; see also Abreu-Rodrigues et al., 2004).  We 
conclude that Rep and Var performances were controlled by 
different underlying processes, primarily memory-based in 
Rep and primarily stochastic in Var.  When repetitions are 
reinforced, responses appear to be more sensitive to disrup-
tion – by drugs as well as other stimulus and contingency 
influences – than when variability is reinforced (Doughty & 
Lattal, 2001).   

	 Other methods have been employed to test the stochas-
tic-generator hypothesis.  For example, Page & Neuringer 
(1985) systematically manipulated number of responses per 
trial while maintaining a constant lag 3 contingency.  In sep-
arate phases of the experiment with pigeons, trials consisted 
of 4, 6, or 8 responses.  If previous responses served as cues 
(e.g., for what not to do), then it was hypothesized that per-
formance should be degraded as number of responses per 
trial increased: 8 responses per trial require subjects to re-
member more than 4 responses.  The stochastic hypothesis 
predicts the opposite, as demonstrated by the following ex-
ample.  Assume that the lag value was 1, i.e., a sequence was 
required simply not to repeat the previous trial’s sequence.  If 
each trial were 2 responses in length and stochastically gen-
erated, then the probability that a given trial would repeat the 
previous one is .25.  (There are 4 possible sequences in the 
first trial – RR, RL, LR, and LL.  Thus, the second trial has 
a 1 in 4 chance of matching the first.)  If a trial consists of 4 
responses, the probability of a repetition by chance is .0625, 
or 1 in 16.  Thus, if subjects used a stochastic (coin-toss-
like) process to generate Ls and Rs, performances should 
improve with increasing responses per trial – reinforcements 
would be more frequent because repetitions were less fre-
quent by chance.  The results from the pigeons were exactly 
as predicted by the stochastic hypothesis: The probability of 
satisfying the variability contingency increased as responses 
per trial increased and the pigeons were reinforced increas-
ingly.  It appeared that 8-response trials were easier for pi-
geons than 4.  (For a similar perceptual effect, see Wasser-
man, Young, & Cook, 2004.) A follow-up study by Jensen, 
Miller, and Neuringer (2006) confirmed and expanded these 
results with pigeons and people.   

	 To this point, we’ve provided evidence that variability is 
an operant – it can be reinforced – and that a stochastic gener-
ating process may be responsible.  Without explicit training, 
the process is often biased, e.g., in terms of response prefer-
ences and patterns.  With training, responses can approxi-
mate a random model.  We will now extend the discussion 

	 Procedural details indicate why the results (and conclu-
sions) differed.  In Neuringer (1986), students generated se-
quences of 1's and 2's on a computer keyboard, with each set 
of 100 responses constituting one trial.  The students were 
instructed to respond as randomly as possible, as if they 
were tossing a coin and calling heads or tails.  A baseline 
phase lasted for 60 such trials for a total of 6000 responses.  
The only feedback following each trial (set of 100 respons-
es) was to indicate that the trial had been completed.  As in 
all previous studies in this area, the participants’ responses 
differed significantly from a stochastic model.  During the 
training phase that followed, the participants received feed-
back at the end of each trial, enabling them to compare their 
performances to a stochastic model, first according to one 
statistical test, then another, until following each trial, feed-
back was provided from 10 different statistics.  The distribu-
tions of the 10 statistics, which differed from the stochastic 
model at the beginning of training, came to approximate the 
model at the end (Figure 12).  That is, according to 10 tests, 
the participants learned to approximate a random model.

	 The Neuringer (1986) study differed from previous ones 
in a number of ways.  It was the first to explicitly reinforce 
equiprobable, random-like responding in human partici-
pants; in previous cases, feedback was not provided.  Partici-
pants in the Neuringer study generated tens of thousands of 
responses, whereas previous experiments often asked for as 
few as 100 responses. The feedback and extensive training 
enabled Neuringer’s participants to learn to avoid the biases 
(e.g., short runs) found in previous research. In all studies 
of human random generation, participants indeed vary their 
responses but practice and reinforcing feedback may be nec-
essary to approximate unbiased, equiprobable, random out-
puts. 

	 Let’s look critically at the evidence just described.  When 
trying to decide whether a particular response stream had 
been stochastically generated, the best a researcher can do 
is to estimate the probability that a stochastic process was 
involved.  For example, if the first 100 selections were green 
from a well-mixed urn containing 500 red and 500 green 
balls, it would be unlikely but not impossible, that the balls 
were selected randomly.  Any sub-sequence of any length is 
possible, and every particular sequence is exactly as likely 
as any other of equal length (see Lopes, 1982).  These con-
siderations indicate the impossibility of proving that a par-
ticular finite sequence deviates from random: The observed 
sequence may have been selected from an infinite random 
series (see Chaitin, 1975).  However, the probability of 
approximating 100 green balls in a row is extremely low; 
whereas approximating a 50-50 spit between green and red 
balls is much more likely – there are many more sequences 
that yield a 50-50 split than 100-0. Thus, one can specify the 
likelihood that a given output matches the characteristics of 

a stochastic model whose outputs are of the same length3.  A 
second problem is that seemingly stochastic outputs may be 
generated by non-stochastic processes, such as iterations of 
the logistic difference equation or the digits of π.  Thus, be-
havioral outputs can be highly variable and at the same time 
predictable and consistent with a determinist model.  

	 There may be experimental ways, however, to assess 
whether variable behavior is generated by a stochastic or a 
deterministic process, and these involve interfering events.  
We will focus on comparing a stochastic-generation hypoth-
esis with the most likely deterministic process, one that in-
volves memory.  A memory-based response, by definition, 
depends upon control by prior events, either stimuli or re-
sponses, and if an interfering event is interposed between the 
controlling event and the behavior in question, then memory 
might be degraded and the outcome suffer.  On the other 
hand, stochastically generated outcomes do not depend upon 
(nor can they be predicted with knowledge of) prior stimuli 
or responses and thus interfering events should not affect 
stochastic outputs.  In short, if an interfering event degrades 
operantly reinforced variations, then that provides evidence 
consistent with a memory and against a stochastic genera-
tion process.  Absence of memory interference provides evi-
dence consistent with stochastic generation.  In cases where 
interference produces a partial reduction in operant varia-
tion, it is reasonable to assume that both play a role.  

	 In the Neuringer and Voss experiment described above 
(Neuringer, 2002), interposed timeout periods between re-
sponses interfered with chaotic-type outputs, thereby impli-
cating memory. In another phase of the same experiment, 
however, participants received statistical feedback, as in the 
Neuringer (1986) study, leading to stochastic-like respond-
ing.  Now when the timeouts were interposed, there were lit-
tle or no detrimental effects, supporting the stochastic claim.  
Thus, participants responded chaotically in one part of the 
experiment and stochastically in another – memory depen-
dent in the former and independent of memory in the latter.  
The operative contingencies controlled which strategy was 
employed.

	 As with human stochastic generation, memory interfer-
ence leaves operant variability intact in rats. For example, 
Neuringer (1991) reinforced two groups of rats for L and 
R lever presses, four responses per trial.  One group (Var) 
was trained under a lag 5 contingency, and the other (Rep) 
for repeating a single sequence, LLRR.  It was assumed that 
accurate Rep performance depends upon working memory.  
After performances had stabilized, timeouts were inserted 
between each response, from 0.5 s to 20 s in different phases 
of the experiment.  During these forced pauses, the cham-
ber was dark and responses were not counted.  If the ani-
mals used the previous response(s) as cues for the current 
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	 For example, when reinforcers are uncertain – in terms 
of their location, availability, magnitude, or quality – indi-
vidual choices are often unpredictable.  A commonly studied 
procedure is the concurrent VI schedule.  Under concurrent 
VI’s, reinforcers are independently programmed for two (or 
sometimes more) options, and subjects choose freely among 
them.  In a VI 1 min : VI 3 min procedure, for example, 
reinforcers are made available unpredictably on one operan-
dum once per min on average, and on the other once every 3 
min on average.  The two programming schedules are inde-
pendent (i.e., reinforcer availability on one operandum has 
no influence on the other).  Also, once a reinforcer becomes 
available (has set up), it remains available until the next re-
sponse to that operandum – as when a letter is delivered to a 
mailbox and remains available until retrieved.  

	 When VI values are systematically varied across phases 
of an experiment, overall ratios of left-to-right choices are 
found to be functionally related to ratios of left-to-right ob-
tained reinforcers, a relationship commonly described as a 
power function and referred to as the generalized matching 
law (Baum, 1974):

CX 
CY 

= kX 
kY 

RX 
RY 

•
S

				    [Eq. 4]

Here, CX refers to observed choices of alternative X, and RX 
corresponds to delivered reinforcers (CY and RY correspond 
to alternative Y, accordingly).  The parameter kX refers to 
bias for X, such as due to side preferences.  The s parameter 
refers to the sensitivity of choice ratios to reinforcement ra-
tios.  When s = 1.0, choice ratios exactly match (or equal) 
reinforcement ratios, as was originally described by Herrn-
stein (1961).  In some cases, however, s < 1.0 and choice 
ratios are not as extreme as the ratio of reinforcers; in other 
cases, s > 1.0 and choice ratios are more extreme than rein-
forcers (see below for further discussion).   

	 The generalized matching law describes molar (i.e.,overall) 
distributions of choices as a function of obtained reinforcers 
(Davison & McCarthy, 1988) and is found to hold in many 
cases of uncertain reinforcements.  Molar choices are mea-
sured, for example, by the total number of responses on L 
and R operanda during a session.  These totals appear to be 
generated by stochastic processes: Choice sequences indi-
cate stochasticity (Glimcher, 2003, 2005; Jensen & Neuring-
er, 2008; Nevin, 1969; see also Silberberg, Hamilton, Ziriax, 
& Casey, 1978, for an alternative view).  Thus, individual 
choices cannot be predicted with substantially greater ac-
curacy than provided by knowledge of their molar distribu-
tions.  Some biases are observed, (e.g., subjects switch more 
frequently than predicted from first-order response prob-

Figure 13.  The upper graph shows logs of response ratios 
(left key/center key; center key/right key; right key/left key) 
with individual points representing individual pigeons (6 
subjects in the experiment) during individual phases (where 
ratios of reinforcers were varied).  The line shows the least-
squares, best fitting function.  The lower graph compares 
the pigeons’ distributions of response dyads (LL, LC, LR, 
CL…), or Information, to those expected from a stochastic 
generator.  To the extent that the data conform to a straight 
line with slope = 1.0, the pigeons’ performances were similar 
to the stochastic model.  (Adapted with permission from 
Jensen, G. & Neuringer, A. (2008).  Choice as a function of 
reinforcer “hold”: From probability learning to concurrent 
reinforcement.  Journal of Experimental Psychology: 
Animal Behavior Processes, 34, 437-460.)
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to three related areas: operant responses generally, choices, 
and voluntary behaviors.  In each of these, we suggest that 
reinforced variability plays a central, indeed, defining role.  
Operant behavior is only briefly considered since much of 
the preceding discussion has been about the stochastic na-
ture of operant classes.  

The Stochastic Operant

	 Many attempts have been made to distinguish between 
emitted and elicited responses, e.g., between operants and 
Pavlovian responses.  These attempts span identifying dif-
ferent physiological systems to different behavioral contin-
gencies.  We cannot resolve the issue but suggest one impor-
tant attribute of all operant behaviors, namely independent 
control of variability by contingencies of reinforcement.  
Without some degree of selective control over variability, 
manifest or potential, a behavior is not an operant.  Skinner 
defined the operant by relationships in a 3-term contingency: 
In the presence of a discriminative stimulus, if a response 
produces a reinforcer, and the response is affected, e.g., in-
creases in frequency, then the response is an operant.  We re-
vise that view in two ways.  First, we define the response in 
terms of its dimensions rather than proximal outcomes, with 
reinforcement contingencies affecting one or more dimen-
sions, such as topography, location, rate, force, frequency, or 
the like.  Second, we suggest that, for all operant responses, 
variability/predictability along at least one of these dimen-
sions must be sensitive to reinforcement contingencies.  
Stated simply, variability is a reinforceable dimension of 
emitted behaviors.

	 All behaviors vary to some degree, of course, and, as in-
dicated above, levels of variability/predictability change as 
a function of eliciting environmental events and response 
magnitudes.  Thus, neither variability alone nor changing 
levels of variability indicate operant response.  Necessary 
is independent contingency-of-reinforcement control, i.e., 
independent of elicited or induced effects and independent 
of average values.  Paeye & Madelain (2011) provide an ex-
cellent example.  The variability of saccadic eye movements 
was thought to be due exclusively to neural noise until these 
researchers showed that the variability is independently con-
trolled by consequences.  In human participants, reinforc-
ing feedback increased or decreased saccade variability, 
depending upon the contingency, while average amplitude 
was unchanged.  In a yoked condition, the variability was 
unaffected by the same reinforcers.  Thus, saccade variabil-
ity was shown to be an operant.

	 The degree to which reinforcers control variability differs 
across species, individuals, response types, motivational and 
drug states, and so on.  Sizes of operant classes differ, number 
of classes that can be demonstrated by a given organism or 

by a species differ, within-class probability distributions dif-
fer, e.g., whether the probabilities of each possible response 
are equal, normally distributed, skewed, and so on.  And, 
most importantly, these variables differ in their sensitivity to 
control by contingencies of reinforcement.  That is to say, we 
hypothesize a continuum of operant control over behavioral 
variability.  Variability is more-or-less operant in nature, and 
this will characterize species differences (variability is more 
operant in humans than in drosophila), differences across re-
sponse domains (verbal variability is more operant than sac-
cade) and differences resulting from intra-organism states, 
such as age, drugs, and psychopathologies.  For example, 
whether variability is reinforced or not, SHR rats, a pro-
posed model of human Attention Deficit Hyperactivity Dis-
order (ADHD), vary their response sequences more than do 
control WKY rats (Mook et al., 1993). The SHRs, however, 
are less able to alter their levels of variability, e.g., when rep-
etitions of a single sequence are reinforced.  Some animals 
cannot vary their levels (or degrees) of variability as well as 
other animals.  This might parallel the tendency of individu-
als with ADHD to vary without regard to the contextual de-
mands, highlighting that variability per se does not indicate 
adaptive operant behavior.  Selective, bounded, functionally 
changing and reinforced variability is the sign of an operant.  
At the other end of the continuum and as described above, 
individuals with autism also have great difficulty in modify-
ing levels of behavioral variability, but in this case, they are 
constrained to the repetition end.  Thus, operants can be clas-
sified in terms of the potential range of reinforced variations 
and the ease with which different levels can be generated.  
Stated differently, the operant nature of a response is closely 
related to operant variability. The most skilled operants are 
characterized by highest levels of feedback-controlled vari-
ability, with responses readily moving from predictable, re-
petitive habits to novel, unpredictable, creations.  

Stochastic Choice  

	 Behavioral evidence.  De Villiers and Herrnstein (1976) 
conceptualized all operant responses as choices, e.g., be-
tween activating an operandum and doing anything else.  We 
take that point, and suggest that just as operant variability 
is an essential part of all operant behavior, the same holds 
for all choices.  Choices are sometimes repetitive and highly 
predictable.  A person who likes chocolate ice cream will 
choose it with high probability.  A rat that is reinforced only 
for choices of the left arm of a T-maze will quickly learn 
to choose that arm predictably.  However, given a change 
in contingencies, choices can change, both in terms of what 
they are and their predictability.  Thus, as with operant re-
sponses generally, choices can sometimes be predicted but 
reinforcement contingencies and other factors can modify 
that predictability.  
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ently indeterminate process” (p. 48).  To take this one step 
further, changes in post-synaptic neuron membrane poten-
tials are:

…a product of interactions at the atomic level, many 
of which are governed by quantum physics and thus 
are truly indeterminate events.  Because of the tiny 
scale at which these processes operate, interactions 
between action potential and transmitter release as 
well as interactions between transmitter molecules 
and postsynaptic receptors … seem likely to be fun-
damentally indeterminate. (p. 49)

But it is within-class indeterminism, since the possibility of 
synaptic vesicular release and post-synaptic activation de-
pends upon an action potential having occurred in the pre-
synaptic nerves, thus activating a class of indeterminate 
events.  We see here a combination of causal determination 
and indetermination at the level of the single nerve in a way 
that parallels the determinate influences on operant classes 
and the indeterminate generation of within-class instances, 
and, similarly, determinate and indeterminate influences on 
DNA and gamete formation.

Voluntary Behavior

	 Operant variability is equally important when attempting 
to characterize volition.  A major issue in philosophical dis-
cussions of volition is how to combine the functional, goal-
directed, intentional, or rational aspects of voluntary actions 
with their apparent independence from environmental deter-
mination.  The first of these implies that a knowledgeable 
observer should be able to predict behavior, the second that 
voluntary behavior is unpredictable.  These discussions have 
been ongoing for thousands of years and continue to present 
times (Kane, 2002).  We suggest that voluntary behavior is 
functional (or intended to be so) and sometimes highly pre-
dictable, other times unpredictable, with predictability gov-
erned by the same relationships with consequences as for all 
operants.  That is, we hypothesize that a critical character-
istic of the voluntary act is ability to vary levels of predict-
ability under the feedback influence of consequences (see, 
also, Brembs, 2011). 

	 Using a psychophysical procedure, Neuringer, Jensen, 
and Piff (2007) tested this conjecture.  Human participants 
judged that virtual actors (dots moving on the screen of a 
computer) represented voluntary human behavior when 
the actors’ choices (i) matched obtained relative frequen-
cies of reinforcement and (ii) did so by stochastic genera-
tion of those choices.  Here are some details.  The partici-
pants observed 6 different actors (on 6 different computer 
screens) as each made thousands of choices (represented by 
movements of the dots).  Each of the actors chose repeat-
edly among three options in what was said to be a gambling 

game.  Reinforcers were programmed by concurrent rein-
forcement schedules (reinforcement shown by color changes 
on the screen).  The actors’ choices and the reinforcers were 
programmed by, and under control of, the computer.  Par-
ticipants, who were told nothing about the contingencies, 
played no active role and only observed.  Across different 
phases of the observation period, frequencies of reinforce-
ment for the three choice options were systematically ma-
nipulated.  The actors’ choices were generated by iteration 
of the generalized matching power function (Eq. 4) extended 
to a three-alternative situation4.  But the actors differed in 
terms of their choice strategies (as given by their s param-
eters).  Some actors chose approximately equally among the 
three alternatives – manifesting maximum unpredictability 
– no matter the distributions of reinforcers (low s value).  
Some chose predominantly the highest payoff (high s value), 
despite the fact that additional reinforcers could be obtained 
from the two other alternatives.  And one actor matched re-
sponse probabilities to obtained reinforcers (s=1.0), thereby 
varying both distributions of responses and levels of predict-
ability.   

	 Following the observation periods, the participants judged 
how well the actors’ choices represented voluntary choices 
made by a real human player.  Figure 14 shows estimates 
by the participants (in two experiments) of how well the ac-

Figure 14.  Ratings of how well individual actors represented 
voluntary human choices (left axis) and, in a separate 
experiment, the probabilities of identifying an actor as a 
“voluntarily choosing human player.” The x-axis shows 
different actors, from low s values, indicating an actor who 
responded maximally unpredictably under all conditions, 
to high s values, indicating an actor who repeated choices 
predictably much of the time.  An s value of 1.0 indicated a 
stochastically matching actor whose levels of predictability 
changed with the distributions of reinforcers.  (Adapted with 
permission from Neuringer, A., Jensen, G., & Piff, P. (2007).  
Stochastic matching and the voluntary nature of choice.  
Journal of the Experimental Analysis of Behavior, 88, 1-28.)
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abilities), but these may be related to the particular contin-
gencies and physical aspects of the testing environment (see 
below).   

	 Stochastic matching was documented when pigeons chose 
among three concurrently available sources of uncertain re-
inforcements (Jensen & Neuringer, 2008).  Figure 13 top 
shows matching of response proportions to obtained rein-
forcer proportions.  The bottom of the figure shows the ex-
tent to which choice uncertainty or variability matched that 
expected from a stochastic source.  (The stochastic model, 
shown on the x-axis, predicted relative frequencies of pairs 
of the pigeons’ responses, shown on the y-axis, based on 
first-order relative frequencies.)  That is, the pigeons’ choic-
es were consistent with the stochastic model – selection of 
colored balls from an urn – described earlier in this paper.  In 
different phases of the experiment, reinforcement frequen-
cies differed (the relative numbers of each color differed), 
but responses were stochastically generated throughout (se-
lection was blind).  Thus, while overall choice proportions 
could readily be predicted, individual choices could not.  

	 Although often unpredictable, choices become predictable 
when cues for reward are available.  These cues may be ex-
ternal stimuli, such as a change in key color indicating avail-
ability and location of a reward, or intrinsic to the schedule 
of reinforcement.  As an example of the latter, under concur-
rent VI schedules, reinforcers are generally more likely for 
alternations than for long runs of responses, and therefore 
switching between operanda is generally higher than would 
be predicted by a stochastic model (see Jensen & Neuring-
er, 2008).  Changeover delays (i.e., withholding reinforcer 
availability for periods of time following each switch) are 
imposed to overcome the high levels of alternation.  Simi-
larly, in competitive situations, where two individuals com-
pete for rewards, contextually stochastic response strategies 
are most effective (Nash, 1951) except when one can predict 
the opponent’s choices, at which point predictable strategies 
become functional (Dorris & Glimcher, 2004; Lee et al., 
2004; Lee, McGreevy, & Barraclough, 2005).  Thus, when 
reinforcer availability is uncertain, choices are emitted sto-
chastically but when an organism can discriminate that a re-
inforcer is more probable for one of the alternatives, choices 
are governed by that fact.  A combination of stochastic and 
deterministic strategies best describes choices.  As with op-
erant responses generally, choices are governed by function-
ality, that is, by the contingencies between the choices and 
reinforcers.  And again as with operant responses, stochastic 
distributions (and therefore predictability of responses) are 
highly sensitive, and change rapidly, to changes in reinforcer 
demands (Gallistel, Mark, King, & Latham, 2001).  

	 Physiological evidence.  Doris and Glimcher (2004) re-
corded from single cells in rhesus monkey lateral intrapa-

rietal cortex (LIP).  These cells receive information from 
retinal receptive fields and are involved in the control of sac-
cades to those areas.  In the experiment, the monkeys were 
rewarded for looking left or right, the saccades constituting 
the behavioral choices.  Amounts and probabilities of re-
inforcement for each of the responses were systematically 
varied across phases of the experiment.  In one phase, only 
one response option was provided at any given time.  Firing 
rates of the LIP neurons tracked reinforcer values, e.g., if left 
looks were reinforced more frequently than right, the LIP 
neuron associated with left saccades fired more rapidly than 
those associated with right.  More generally, the LIP neurons 
responded to the relative values of anticipated reinforcers 
contingent upon the saccade movements.  

	 In a second phase, the monkeys played a competitive 
game, with the computer serving as the opponent. Pro-
grammed probabilities and amounts of reinforcement were 
again systematically varied for looking left versus right but 
in this case the monkey could freely choose to look left or 
right.  Furthermore, because the contingencies were those of 
a competitive game, the monkey was rewarded only if the 
computer did not correctly predict its choices: The monkey 
had to outwit the computer.  Left/right choice proportions 
were found to be related to reinforcers by the generalized 
matching function (Eq. 4) and, at the same time, individu-
al responses were highly unpredictable (although not ran-
dom) – as necessary to fool the computer (see also Louie & 
Glimcher, 2010).  These saccade responses constituted the 
behavioral side of the choices.  What about the physiological 
results? The left and right LIP firing rates were found to be 
approximately equal.  This is a wow result because it sup-
ports both the Nash equilibrium theory applied to concurrent 
choices and an explanation of why stochastic choices in fact 
match reinforcer distributions: they do so in order to equal-
ize subjective values of left and right choices, as indicated 
by single cells in the cortex.  Stated differently, the matching 
of choices to reinforcement frequencies provided an equilib-
rium point where values for each of the choices were equal, 
these values being represented by relative LIP firing rates.  
(See also Barraclough, Conroy, and Lee, 2004, for related 
findings.)

	 Glimcher (2005) outlined evidence showing stochastic-
ity throughout the central nervous system.  He writes that 
whereas the average firing rates by neurons in the visual cor-
tex were precisely controlled by visual stimuli, “…the exact 
pattern of firing that gave rise to this average rate seemed 
to be almost completely unpredictable.  The time at which 
a spike occurred could be described as a fully stochastic 
process …” (p. 46).  Glimcher went on to suggest that the 
source of this randomness is release of neurotransmitters by 
synaptic vesicles.  “Vesicular release seems to be an appar-
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tors represented volitional choices.  The s=1.0 actor, whose 
choice distributions most closely matched the reinforcer dis-
tributions, was rated as most similar to a person who was 
making voluntary choices.

	 A series of control experiments evaluated alternative ex-
planations.  For example, rates of reinforcement were over-
all slightly higher (across different phases) for the s = 1.0 
matcher than for any of the other actors and one control 
showed that overall reinforcement rates were not responsi-
ble for the volitional judgments.  The most important control 
procedure tested whether matching of responses to reinforc-
ers alone implied volition or whether variations in levels 
of predictability were important.  Stated differently, were 
the volitional judgments governed by changes in response 
distributions or response predictability or both?  To answer 
this questions, a different set of participants compared two 
actors, both of whom exactly matched choice proportions 
to reinforcer proportions; however, one actor matched by 
stochastically allocating its choices whereas the other al-
located its choices in an easily predictable fashion.  The 
stochastic matcher responded as follow: if reinforcers were 
programmed for the three choice alternatives in a ratio of 
5:3:2, the stochastic matcher responded to the left alternative 
with a .5 probability, the center a .3 probability and the right 
with a .2 probability.  When reinforcers were equal across 
the three choices – .33 : .33 : .33 – predicting the next choice 
was exceedingly difficult but when reinforcers were pre-
dominantly obtained from one of the alternatives – .9 : .05 : 
.05 – predictions could easily be made.  Thus, although the 
stochastic matcher indeed responded stochastically through-
out the experiment, its choices were more-or-less predict-
able, depending upon the reinforcement distributions.  By 
contrast, the patterned matcher also matched exactly, but did 
so in a patterned and therefore readily predictable manner 
throughout.  For example, it would respond LLLLLCCCRR, 
cycling through the same 5:3:2 strings of responses, when 
the reinforcers were programmed with those same ratios.  
The patterned matcher similarly repeated patterns for all 
reinforcement distributions.  When reinforcers were equal 
– .33 : .33 : .33 – the patterned matcher responded LCRL-
CRLCR…  Because both actors matched, they were rein-
forced equally. The results were clear.  Participants judged 
the stochastic matcher to represent a voluntary human player 
significantly better than the patterned one, showing that both 
functionality (matching, in this case) and stochasticity were 
jointly necessary for the highest ratings of volition.  Thus, 
a combination of functional choice distributions (matching) 
and choice variability (more or less predictability) provided 
the discriminative cues to indicate voluntary behavior.   

	 Experiments on operant variability show that levels, or 
degrees, of behavioral (un)predictability are guided by en-
vironmental consequences.  We propose that the same is 

true for voluntary actions.  Voluntary behaviors are some-
times readily predictable, sometimes less predictable, and 
sometimes quite unpredictable.  In all cases, reasons for the 
general response can be identified (given sufficient knowl-
edge) – but the precise behaviors may still remain unpredict-
able.  For example, under some circumstances, the response 
to “What are you doing tonight?” can readily be predicted 
for a given acquaintance.  Even when the situation warrants 
unpredictable responding, some veridical predictions can be 
made: that the response will be verbal, that it will contain 
particular parts of speech, and so on.  The functionality of 
variability implies a degree of predictability in the resulting 
behaviors that is related to the activated class. That is, the 
class can often be predicted based on knowledge of the or-
ganism and environmental conditions.  But the within-class 
instance may be difficult or impossible to predict, especially 
when large response classes are activated. 

	 Unpredictability, real or potential, is emphasized in many 
discussions of volition.  Indeed, the size of the activated 
set can be exceedingly large – and functionally so – for if 
someone were attempting to prove that she is a free agent, 
the set of possibilities might consist of all responses in her 
repertoire (see Scriven, 1965).  But we return to the fact that 
voluntary behaviors can be predictable as well as not.  The 
most important characteristic is functionality of variability, 
or ability to change levels of predictability in response to en-
vironmental demands.  Equally this is an identifying charac-
teristic of operant behavior and of choice, where responses 
are functional and stochastically emitted.  Thus, with Skin-
ner, we combine ‘voluntary’ and ‘operant’ in a single phrase, 
but research now indicates why that is appropriate.  Oper-
ant responses are voluntary precisely because they combine 
functionality with levels of predictability.
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