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Metacognition in animals: how do we know that they know?
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Research on animal metacognition has typically used choice discriminations whose difficulty can be varied.  Animals are 
given some opportunity to escape the discrimination task by emitting a so-called uncertain response.  The usual claim is that 
an animal possesses metacognition if (a) the probability of picking the uncertain response increases with task difficulty, and 
(b) animals are more accurate on “free-choice” trials —i.e., trials where the uncertain response was available but was not 
chosen—than on “forced-choice” trials, where the uncertain response is unavailable.  We describe a simple behavioral eco-
nomic model (BEM), based on familiar learning principles, and thus lacking any metacognition construct, which is able to 
meet both criteria in most of these tasks.  We conclude that rather than designing ever more complex experiments to identify 
“metacognition,” a necessarily ill-defined concept, knowledge might better be advanced not by further refining behavioral 
criteria for the concept, but by the development and testing of theoretical models for the clever behavior that many animals 
show in these experiments. 
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 Can you recall what you did yesterday around 2 PM?  
Probably yes.  Can you recall what you did 10 years ago 
around 2 PM?  Probably no. You did not actually need to re-
trieve any information to answer these questions: you knew 
immediately that the first question could be answered but not 
the second. This is an example of what has come to be called 
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metacognition: the ability to judge one’s chances of success 
or failure at a cognitive task before actually carrying it out.  
More abstractly, metacognition is the ability to perceive 
one’s own mental states and cognitive processes (Metcalfe 
& Kober, 2005; Metcalfe, in press).  Some (e.g. Nelson & 
Narens, 1990), consider metacognition to be a higher level 
of cognitive functioning, monitoring and regulating lower-
level cognitive processes via self-awareness and conscious-
ness (Nelson, 1996). 

 Metacognition is a concept that arose from contemplation 
of our own subjective, phenomenal experience but can it be 
found in other species?  Because the verbal methods used 
to investigate metacognition in humans cannot be used with 
animals, researchers have come up with behavioral criteria 
for metacognition.  Smith, Shields & Washburn (20083, for 
example (see also Sutton & Shetlleworth, 2008), claim that 
given a discrimination task whose difficulty can be con-
trolled by the experimenter, the animal is considered to show 



Metacognition in Animals 30

metacognition if, (a) it is more likely to avoid the task (i.e., 
of emitting a so-called “uncertain” response) on trials where 
the discrimination is difficult; and (b) is more accurate on tri-
als where the “uncertain” response is available and the dis-
crimination task can be avoided (i.e., when allowed to choose 
between the uncertain response and the discrimination task) 
than on “forced-choice” trials (i.e., where the uncertain re-
sponse is not available).  Using these criteria, researchers 
have concluded that rhesus monkeys (e.g. Hampton, 2001; 
Shields, Smith, & Washburn, 1997; Smith, Shields, Allen-
doerfer, & Washburn, 1998; Beran, Redford, & Washburn, 
2006; Washburn, Smith, & Shields, 2006), dolphins (Smith 
et al., 1995), rats (Foote & Crystal, 2007) but not, apparently, 
pigeons (Sutton & Shettleworth, 2008; Sole, Shettleworth, 

& Bennett, 2003 but see Inman & Shettleworth, 1999) have 
metacognition (see a review in Smith, el al., 2003).  But are 
these two criteria indeed sufficient to conclude that an ani-
mal possesses metacognition, i.e., to rule out simpler expla-
nations, based on familiar learning principles?
  

A behavioral economic model (BEM) of choice

 We begin by presenting briefly a simple discrimination 
model based on some basic learning principles. This mod-
el, nicknamed BEM (for Behavioral Economic Model), is 
shown in Figure 1.  It just assumes that when confronted 
with a stimulus, the subject emits the behavior which is as-
sociated with the higher payoff.  The only other assumption 
is that perception of the stimulus is noisy.

 A full description of BEM is presented in Jozefowiez, 
Staddon, and Cerutti (in press).  We now illustrate how it 
works in a simple discrimination task, where response R1 is 
reinforced after stimulus S1 while response R2 is reinforced 
after stimulus S2.  We will denote by I1 and I2 the intensity 
of respectively stimuli S1 and S2 and we will assume that 
both responses are reinforced with the same amount, A, of 
reinforcer. 

 How could the animal solve this task?  If it had a noiseless 
perception of the objective intensity of the stimuli, it would 
learn that the payoff for emitting R1 when the stimulus in-
tensity is I1 is A units of reinforcer while it is 0 when the 
stimulus intensity is I2. It would learn that the payoff func-
tion for R2 is exactly the reverse.  It would then be able to 
derive from this knowledge of the payoff functions an opti-
mal policy: basically, since R1 has a higher payoff then R2 
when the stimulus intensity is I1 and vice versa when the 
stimulus intensity is I2, emit R1 when the stimulus inten-
sity is I1, R2 otherwise.  This is basically BEM except that 
we add the additional assumption that animals’ perception 
of stimulus intensity is not noiseless, but on the contrary, 
noisy.

 Stimulus S1 has an objective intensity of I1, but because 
of noise in the sensory system, its subjective intensity is a 
random variable following a Gaussian distribution with 
mean ln I1 and constant standard deviation σ, respecting the 
Weber-Fechner law. The model was developed initially to 
account for experiments on interval timing, hence its empha-
sis on Weber’s law. Yet, it is not fundamental to our account 
of experiments on animal metacognition, at least as far as 
qualitative predictions are concerned: other random distribu-
tions could also be used.  

 Suppose that a stimulus is presented to the subject. If the 
stimulus is S1, it should emit R1. If it is S2, it should emit 
R2. But, the subject has no way of knowing for sure what 

Figure 1.  BEM at a glance: (a) based on its perception of 
the stimulus, the animal emits the behavior which leads to the 
higher payoff; (b) but its perception is noisy, following the 
Weber- Fechner law.  At objective time t, the representation 
of the test stimulus (e.g., a duration) is a random variable 
drawn from a Gaussian distribution with a mean equal to ln 
t and a constant standard deviation. From The Behavioral 
Economics of Choice and Interval Timing, by J. Jozefowiez, 
J.E.R. Staddon, and D.T.Cerutti, in press, Psychological Re-
view. Reprinted with permission.
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stimulus has actually been presented: it has access only to 
its subjective perception of the stimulus intensity, which we 
denote by x. The expected payoff for emitting R1 when the 
subjective intensity of the stimulus is x, Q1(x), is therefore 
    

where P(S1|x) is the probability that stimulus S1 has been 
presented given that the subjective intensity of the stimulus 
is x, which is given by Bayes’ theorem

     

P(S1), the probability that stimulus S1 is presented on a trial, 
is a variable under the control of the experimenter.  P(x) = 
P(S1) P(x|S1) + P(S2) P(x|S2) while, in this case F(x,ln Ii, σ) 
(F(x,m,d) being the density function for a Gaussian distribu-
tion with mean m and standard deviation d) can be substitut-
ed for P(x|Si) in equation (2) (see Jozefowiez et al., in press, 
for a more rigorous treatment). The equation for Q2(x), the 
payoff for emitting R2 when the perceived stimulus intensity 
is x, can be deduced from the above equations.

 The top panel of Figure 2 shows the payoff functions for 
both responses R1 and R2. BEM assumes that the subject 
follows a simple maximization response rule based on these 
functions: emit R1 if the payoff for that response is higher 
then the payoff for R2, otherwise emit R2. This policy maps 
subjective stimulus intensity on to response probabilities.  
To predict behavior, we need a policy that maps objective 
stimulus intensity on to response probabilities — which 
means taking into account the random nature of the relation 
between objective and subjective stimulus intensity.  Sup-
pose a stimulus S with intensity I is shown to the subject.  It 
could be S1, S2 or a new stimulus the subject has never en-
countered before.  The subjective intensity of that stimulus 
will be a random variable with mean ln I and standard devia-
tion σ. Let p2(x) be the probability of emitting response R2 
when the subjective stimulus intensity is equal to x. Then 
P2(I), the probability of emitting response R2 when the ob-
jective stimulus intensity is I is equal to

The bottom panel of Figure 2 shows what P2(I) looks like 
in this example.

A behavioral account of animal metacognition

 BEM is obviously a very general model, which can be ap-
plied to many experimental situations. Indeed, we initially 
developed it to account for data showing an interaction be-
tween interval timing and reinforcement (Jozefowiez et al., 
in press). It assumes nothing beyond basic discrimination 
processes. Since it uses a strictly deterministic response rule, 
there is no room for uncertainty in the model: A stimulus is 
always categorized as belonging to one category or the other.  
The question of interest here is whether it can account for 
data on animal metacognition (see Staddon, Jozefowiez, & 
Cerutti, 2007, for an earlier treatment). 

 The first type of task used to demonstrate metacognition 
in animals is categorization. Categorization tasks use stimuli 
varying along a stimulus continuum: all stimuli below a crit-
ical value are associated with one response, all stimuli above 
that value are associated with the other response.  The task 
is obviously harder with stimuli close to the critical value.  

Figure 2.  Simulation of a discrimination task by BEM.  Re-
sponse 1 is reinforced after stimulus S1 (intensity = 20); re-
sponse 2 after stimulus S2 (intensity = 60). Top panel: Pay-
off function for each response as a function of the subjective 
stimulus intensity. Bottom panel: Probability of emitting re-
sponse 2 as a function of the objective stimulus intensity for 
various values of standard deviation (sigma) d. From The 
Behavioral Economics of Choice and Interval Timing, by J. 
Jozefowiez, J.E.R. Staddon, and D.T.Cerutti, in press, Psy-
chological Review. Reprinted with permission.

(3)
+∞

-∞
P2(I) = p2(x)P(x|I)dx

(1)Q1(x) = P(S1|x)P1A 

(2)P(S1|x) = P(S1)P(x |S1)
P(x)
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Indeed, in dolphins (with tones Smith et al., 1995), rhesus 
monkeys (with both stimuli differing in terms of pixel den-
sity, Shields et al., 1997), or number of elements (Washburn 
et al., 2006), rats (with stimuli differing in terms of their 
duration, Foote & Crystal, 2007) and pigeons (with stimuli 
differing in terms of pixel density, Sole et al., 2003), the 
probability of picking the uncertain response increases the 
closer the stimulus is to the critical value. With pigeons the 
sole exception, all species so far tested are more accurate 
in their categorization on free-choice trials then on forced-
choice ones. 

 Can BEM account for these results?  We applied it to the 
task used by Foote and Crystal (2007) since the amounts 

of reinforcer for each response, including the uncertain re-
sponse, are clearly identified in that study.  Foote and Crystal 
(2007) showed rats duration stimuli, evenly spaced (on a log 
scale) between 2 and 8 s. If the stimulus duration was less 
than 4 s, one response (R1) was reinforced while if more then 
4 s another response (R2) was. On some trials (free-choice 
trials), the animals had the opportunity of picking a third 
response (the uncertain response) which was reinforced no 
matter the stimulus duration, but with only half the amount 
of reinforcer that the animal could obtain in case of an ac-
curate categorization response.  On the other hand, it would 
get zero reward in case of a wrong categorization.

 The top panel of Figure 3 shows the payoff functions for 
R1, R2 and R3. As you can see, the payoff functions for R1 
and R2 are always above the ones for R3.  Hence, according 
to the model, the animals should never pick the uncertain re-
sponse.  But this is because we have assumed that the objec-
tive amount of reinforcer an animal receives and the subjec-
tive amount it experiences are the same. This is not a valid 
assumption as it does not take into account the well-estab-
lished fact of risk sensitivity: when given the choice between 
an alternative delivering a fixed amount of reinforcer (say, 
2 units) and one delivering a variable amount (say, either 1 
unit or 3) which, on average, is equal to the amount deliv-
ered by the fixed alternative, many animals prefer the fixed 
alternative (Bateson & Kacelnik, 1995; Kacelnik & Bate-
son, 1996; Roche, Timberlake, & McCloud, 1997; Staddon 
& Innis, 1966).  This is risk-aversion. The reverse pattern is 
called risk-proneness1. 

 The usual way to explain risk aversion is to assume that the 
subjective reward function, which maps objective amount 
of reward collected on to subjective amount experienced, is 
negatively accelerated, following the principle of diminish-
ing marginal value.  To incorporate this in BEM, we need, in 
equation (1), to substitute A, the objective amount of reward 
collected with Ac , the subjective amount of reward experi-
enced. c is a free-parameter representing risk-sensitivity: if 
c = 1, the animal is risk-neutral; if c < 1, the animal is risk-
averse; if c > 1, the animal is risk-prone. 

 The bottom panel of Figure 3 shows the payoff functions 
for the three responses once risk sensitivity is taken into ac-
count.  As can be seen, there are now some subjective stim-
ulus intensity values for which the payoff function for the 
“uncertain” (certain-outcome) response exceeds the (uncer-
tain) choice.

 Figure 4 shows a quantitative fit of the model to the data 
of Foote and Crystal (2007). To obtain those fits, we first 
adjusted σ so as to predict accuracy on the forced-choice tri-
als as well as possible by minimizing square error between 
the model and the data. The predictions of the model in the 

Figure 3.  Payoff functions in a simulation of Foote and 
Crystal (2007).  Top panel: the subjective reward magnitude 
is equal to the objective reward magnitude.  Bottom panel: 
the subjective reward magnitude is a power function of the 
objective reward magnitude with exponent, c, smaller than 1 
to account for risk aversion. From The Behavioral Econom-
ics of Choice and Interval Timing, by J. Jozefowiez, J.E.R. 
Staddon, and D.T.Cerutti, in press, Psychological Review. 
Reprinted with permission.
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force-choice trials are not affected by the risk-sensitivity pa-
rameter c (below).  Then, we adjusted c so as to predict as 
well as possible (minimization of the square error between 
the data and the model’s prediction) the proportion of tests 
declined by the rats—that is to say, the proportion of free-
choice trials where the rats chose the uncertain response.  
The fit to “tests declined” is adequate (although BEM un-

derestimates the proportion of trials where the rats should 
decline the test for the stimuli at the ends of the stimulus 
range).  But, the model in this case predicts that accuracy 
should have been higher for all stimulus durations when the 
weakly reinforced sure-thing response was available, while 
this was observed only for the most difficult test in the Foote 
and Crystal (2007)’s data.  BEM shows this limitation in 
some of the simulations we ran but not with the parameters 
necessary to best fit Foote and Crystal’s (2007) data.

 But this is irrelevant to our main point.  Beyond the quan-
titative fit, it is important to note that BEM, which lacks any 
metacognitive ability—only basic discrimination process-
es—satisfies the two generally accepted criteria for meta-
cognition: that the probability of picking the uncertain re-
sponse increases with the difficulty of the task (Figure 4, top 
panel); and that the subject is more accurate on free-choice 
trials then on forced-choice trials (Figure 4, bottom panel).   
(Indeed, paradoxically, the model shows rather better “meta-
cognition” than the rats, since it is less accurate on all forced 
trials, not just those in the middle of the range.)

 This account of animal metacognition experiments is simi-
lar to the one recently proposed by Smith, Beran, Couchman, 
and Coutinho (2008).  Those authors proposed that animals 
map subjective stimulus intensity on to response strength.  
For a stimulus of intensity I1, the response strength for the 
response reinforced in presence of that stimulus is maximum 
at the point on the subjective stimulus intensity continuum 
corresponding to I1 and follows an exponentially decaying 
(as opposed to Gaussian) generalization gradient to the left 
and right of that value.  On the other hand, since the uncer-
tain response is reinforced no matter what the stimulus in-
tensity, its response strength is assumed to be constant across 
the stimulus continuum. When a given stimulus is presented, 
the response with the higher response strength is emitted. 

 The Smith et al. (2008) model parallels BEM.  They both 
lead to a very similar conceptualization of the problem but 
BEM derives it from a basic optimization analysis of operant 
behavior while several assumptions in the Smith et al. (2008) 
model are more specific to the metacognition paradigm.  For 
instance, while BEM uses risk sensitivity to explain why 
the payoff function of the uncertain response is sometimes 
below the payoff functions of the two other responses, no 
such reason is given as for why the response strength of the 
uncertain response is below the response strength of the two 
other responses in the Smith et al. (2008)’s model.  BEM is 
also much easier to use as it does not require the extensive 
simulation work Smith et al. (2008) had to run in order to 
get predictions from their model.  But, overall, the general 
philosophy behind the two models is the same. 

 BEM is also able to account for data showing that animals 

Figure 4.  Top panel: Probability of declining a test (that 
is to say, of selecting the uncertain response) as a function 
of the index of stimulus difficulty used by Foote and Crys-
tal (2007).  (Since this index represents the distance to the 
boundary between the stimulus classes, stimuli on the fringe 
of the stimulus range, hence easier to discriminate, have a 
higher index of stimulus difficulty.)  The points are data from 
Foote and Crystal (2007) while the line is the prediction 
from BEM.  Bottom panel: accuracy in the forced choice (2 
responses available) and free-choice (3 responses available) 
trials as a function of the index of stimulus difficulty.  The 
points are the data from Foote and Crytal (2007), the lines 
are the predictions from BEM. d = 0.38, c = 0.46. From The 
Behavioral Economics of Choice and Interval Timing, by J. 
Jozefowiez, J.E.R. Staddon, and D.T.Cerutti, in press, Psy-
chological Review. Reprinted with permission. 



Metacognition in Animals 34

with a retention interval shorter then the one for which they 
have been trained.  

 We simulated a simple DMTS task with BEM: response 
R1 is reinforced after stimulus S1 while response R2 is rein-
forced after stimulus S2; the uncertain response is reinforced 
after both stimuli but with only half the amount of reinforcer 
that could be obtained by emitting R1 or R2; the retention 

are able to generalize the use of the uncertain response to 
new tasks (e.g., Washburn et al., 2006).  As long as the task 
requires a discrimination along the same stimulus dimension 
as the one used in the task where the uncertain response was 
initially trained, the subject should still be able to compare 
the payoff for the uncertain response to the payoff for the 
responses in the new task.  Depending on the amount of gen-
eralization between stimulus dimensions, the model would 
also be able to account for generalization of the use of the 
uncertain response to tasks employing a stimulus dimension 
different from the one used initially to train the uncertain 
response. 

 Metacognition has also been investigated in animals us-
ing a delayed-matching-to-sample (DMTS) procedure.  In 
this procedure, the animal is shown a sample stimulus. After 
a subsequent retention interval during which the sample is 
absent, the animal is asked to choose between two responses 
R1 or R2. Which is reinforced depends on the identity of the 
sample. An “uncertain” response is available on some choice 
trials, on others a retention choice is forced. 

 The longer the retention interval, the less accurate the ani-
mal becomes, presumably because of the decay of the short-
term memory (STM) trace of the sample stimulus.  In such 
a task, the probability of picking the uncertain response in-
creases with the retention interval in both rhesus monkeys 
(Hampton, 2001) and pigeons (Inman & Shettleworth, 1999; 
Sutton & Shettleworth, 2008).  But, as in other studies, pi-
geons’ accuracy is no better on free-choice trials as com-
pared to forced-choice ones. 

 Although BEM is principally a model of discrimination, 
it can be extended to DMTS by borrowing from White and 
Wixted (1999) the idea that forgetting in STM is more a 
discrimination problem then a memory one.  According to 
this view, the value of a stimulus is represented in STM by 
a Gaussian distribution whose standard deviation increases 
with the time since the stimulus presentation ( σ = d0 + kD, 
where d0 is the standard deviation of the Gaussian distribu-
tion for a retention interval of 0, D is the retention interval 
and k is a free parameter).  As retention interval increases, 
the distribution widens, making it more difficult for the ani-
mal to correctly assign a choice response to the presented 
stimulus.  Hence, in this view, the difference between the 
categorization tasks discussed previously (where the animal 
is asked to make a choice when the sample is still present in 
the environment) and the DMTS (where the animal is asked 
to make a choice when the sample is no longer present in the 
environment) is purely in the eye of the beholder: the un-
derlying processes are exactly the same. White and Wixted 
(1999) have shown that this approach can account for such 
forgetting phenomena as the power forgetting function and 
the fact that animals actually perform worse if they are tested 

Figure 5.  Top panel: Simulation of a delayed matching-to-
sample task by BEM.  Response 1 is reinforced after stimu-
lus S1 while response 2 is reinforced after stimulus S2.  The 
uncertain response is reinforced after both stimuli but with 
only half the amount of reinforcer that could be obtained by 
emitting response 1 or 2. The graph shows the probability on 
forced-choice trials (the uncertain response is not available) 
of picking response 1 after stimulus S1 has been presented as 
a function of the retention interval as well as the probability 
of pickings the uncertain response on free-choice trials, also 
as a function of the retention interval. Bottom panel: Gauss-
ian distribution of the subjective stimulus intensity for two 
retention intervals. The probability of emitting the uncertain 
response corresponds to the area under the curve between 
the two horizontal lines.   
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interval during training is 0 s. 

 The results of the simulations are shown in Figure 5, which 
plots the probability of picking R1 on forced-choice trials 
after S1 has been presented as a function of the retention 
interval and the probability of picking the uncertain response 
after S1 has been presented, also as a function of the reten-
tion interval. As can be seen, the forgetting curve for R1 is 
the familiar power function that has been shown experimen-
tally in many studies (Staddon, 2001) but the predictions of 
the model about the probability of picking the uncertain re-
sponse are at odds with the data: instead of increasing with 
the retention interval, as in the data by Hampton (2001), the 
probability function is non-monotonic, first increasing, then 
decreasing with the retention interval. 

 The reasons for this are shown in the bottom panel of 
Figure 5. The payoff functions divide the subjective stimu-
lus intensity into 3 areas. The uncertain response is emitted 
when the subjective stimulus intensity falls in the center area 
(between the two vertical lines shown in Figure 5) where the 
payoff for the uncertain response is higher than the payoff for 
either response R1 or R2.  When the stimulus is shown, its 
subjective value is drawn randomly from a Gaussian distri-
bution whose standard deviation increases with the retention 
interval. The probability of emitting the uncertain response 
corresponds to the area of that Gaussian function falling into 
the uncertain response decision area. The bottom panel of 
Figure 5 shows the Gaussian distribution for 2 retention in-
tervals. Because when the standard deviation is increased, the 
peak of the distribution decreases, the area under the curve 
in the uncertain-response decision area is obviously smaller 
for the longer retention interval then for the shorter one. The 
model does not fare any better if it is given explicit training 
with all the retention intervals (actually, since in some cases, 
when the retention intervals are spread far apart, the payoff 
function becomes non-monotonic, the problem gets worse).

 This failure is partly due to the fact that we allowed the 
model to make its decision based only on the subjective 
stimulus intensity, so that the criteria (vertical lines) are the 
same for all delays. But it is likely that animals in a DMTS 
also use other kinds of information, notably, given the ubiq-
uity of interval timing in appetitive learning procedures 
(e.g., Wynne & Staddon, 1988), the duration of the retention 
interval itself. Indeed, the fact that, in a DMTS task, pigeons 
(Sutton & Shettleworth, 2008) increase their probability of 
picking the uncertain response without increasing their ac-
curacy is usually explained by the fact that their behavior 
is under the control of the duration of the retention interval 
since taking the test after a long retention interval is usually 
correlated with a low payoff (the same pattern is observed in 
one of Hampton, 2001’s monkeys). 

 Hence, a more realistic model would have the payoff func-
tion mapping both subjective stimulus intensity and subjec-
tive time since the sample offset onto reward expectation 
instead of simply subjective stimulus intensity on reward 
expectation. Also, to stay coherent, subjective time should 
be a random variable following Weber’s law. This later con-
straint makes the model a little bit more computationally in-
tensive on the simulation side and so, in this paper, we used 
instead a simpler version which assumes that the animal has 
a noiseless linear representation of time. Although the rep-
resentation of time is definitely noisy and, in our opinion 
logarithmic, this simple model is sufficient to make our point 
here. We will postpone the exploration of the more complete 
model (which should allow predictions about the effect of 
the spacing of the retention intervals) to a future paper.

 Figure 6 illustrates how the model works with this addi-
tional assumption according to which the decision of the ani-
mal is controlled not only by the subjective stimulus inten-
sity but also by the retention interval durations. Because it is 
able to discriminate between retention intervals, the animal 
is able to have different payoff functions for each retention 
interval. As Figure 6 shows, because the payoff function for 
the uncertain response is constant across subjective stimulus 
intensity and subjective time, the region of subjective stimu-
lus intensity for which the uncertain response has a higher 
payoff than the two responses increases with the retention 
interval. As the top panel of Figure 7 shows, this leads to an 
increased choice of the uncertain response as retention inter-
val increases. Moreover, the lower panel of Figure 7 shows 
that the model is more accurate on free-choice trials then 

Figure 6.  Payoff function in a delayed matching-to-sam-
ple if the subject is allowed to make its decision based on 
both subjective stimulus intensity and subjective time. In this 
case, the payoff functions for responses R1 and R2 are not 
the same after a 10-s retention interval then after a 60-s re-
tention interval while the payoff function for the uncertain 
response remains identical.   
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on forced-choice ones. Once again, despite its lack of any 
construct for metacognition, the predictions of BEM satisfy 
both the conventional behavioral criteria for metacognition.

 One could object that this explanation cannot account for 
Hampton (2001)’s data because the monkeys received only 
100 trials with several retention intervals, not enough to al-
low them to learn new criteria for each of the various reten-
tion intervals.  But both monkeys had received previously 
extensive training with two retention intervals. Even if 100 
trials was not enough for them to directly learn new criteria, 
simple generalization could explain how the monkeys would 
have been able, based on this training, to extrapolate new 
criterion at new retention intervals. Moreover, the fact that 

100 trials is not enough for the monkeys to learn new criteria 
is not clear. Indeed, one of the monkey showed no improve-
ment in its accuracy in free-choice trials, indicating that its 
behavior was only under the control of the duration of the re-
tention interval. This proves that temporal learning, eventu-
ally boosted up by generalization, proceeded fast enough for 
our explanation of Hampton (2001)’s data to be plausible2. 

 Finally, note that the view that choice is based on several 
stimulus dimensions allows us to explain why some animals 
(like pigeons) do not meet the criteria for metacognition.  
Criteria for metacognition will be met only if the behavior 
is at least partially under the control of a stimulus dimen-
sion correlated with the subject’s chance of success on the 
task (as it is the case of the subjective stimulus dimension 
in BEM). If that dimension is overshadowed by other more 
salient ones (as the temporal dimension certainly is for pi-
geons), the criteria for metacognition will not be met. This 
seems more satisfying than saying that those animals do not 
“have metacognition” which fails to account for the choice 
pattern observed.  After all, if the animals did not have meta-
cognition, they should never pick the uncertain response or 
pick it with a low probability that would remain constant no 
matter the difficulty of the task, not increase their probabil-
ity of picking the uncertain response as the difficulty of the 
task is increased.  Nor does “metacognition” account for the 
fact that, as one monkey in Hampton (2001)’s study showed, 
some animals meet the criteria in one task but then suddenly 
fail to meet them in another.

Conclusion

 We have described a simple behavioral model of choice 
(BEM) and showed that it is able to account for data sup-
posed to demonstrate animal metacognition in categoriza-
tion tasks and delayed matching-to-sample. If BEM, a model 
lacking any such construct, predicts that the probability of 
picking the uncertain response increases with the difficulty of 
the task, and that the subject is more accurate on free-choice 
trials than on forced-choice trials, then maybe animals also 
lack the faculty of metacognition.  Indeed, Occam’s razor 
almost compels that conclusion. 

 Another possible conclusion, for believers in metacogni-
tion, is that the usual behavioral criteria for metacognition 
are inadequate. Should we craft new behavioral criteria, 
extending the list that an animal must fulfill before we can 
declare it has metacognition?  Recognizing the limits of the 
current criteria, several researchers have proposed just that.  
Metcalfe (in press) has proposed that, besides the two crite-
ria described in this paper, the animal must based its decision 
on an internal representation (as in a DMTS task) instead of 
on its perception of a stimulus present in the environment (as 
in Foote & Crystal, 2007).  But, in a framework like BEM, 

Figure 7.  Top panel: Probability of picking the uncertain 
response in a delayed matching-to-sample if the subject is 
allowed to make its decision based on both subjective stimu-
lus intensity and subjective time since sample offset.  Bottom 
panel: Accuracy in forced and free-choice trials in a delayed 
matching-to-sample if the subject is allowed to make its de-
cision based on both subjective stimulus intensity and sub-
jective time since sample offset.   
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there is no real difference between these two kinds of task.  
Smith et al. (2008) have added that the uncertainty response 
must not be explicitly reinforced.  This is rather puzzling: 
the controversy between models like BEM, which does not 
need the concept of metacognition, and models that require 
it is about the information they use to make their decisions.  
A point which should not be controversial is that, in the end, 
the reinforcement contingencies explain why animals make 
these decisions at all.  As a thought-experiment, imagine a 
hypothetical organism having real, genuine metacognition.  
Even such an organism would never pick the uncertain re-
sponse if the payoff for doing so is less then what it would 
get by responding randomly to the test.  In other words, if 
you are given the choice between taking a test, and winning 
either 100 dollars if you are correct or 0 dollar if you are 
not, or declining the test and not getting anything, then you 
have nothing to loose in taking the test, even if you don’t 
know the answer and if, having metacognition, you know 
that you don’t.  Hence, not only is reinforcing the uncertain 
response necessary if we want the animal to pick it, adding 
reinforcement does not compromise the procedure as far as 
metacognition is concerned. 

 Some researchers have started to develop new procedures 
altogether, allowing the animal subject to ask for further in-
formation (e.g. Hampton, Zivin, & Murray, 2004) or to make 
confidence judgements (e.g. Shields, Smith, Guttmanova, & 
Washburn, 2005; Son & Kornell, 2005; Kornell, Son, & Ter-
race, 2007).  We have not yet applied BEM to those tasks 
and it is very possible that it might fail.  For instance, as we 
said, BEM can account for generalization of the use of the 
uncertain response if, without further training, there is some 
ground for stimulus generalization between the task where 
the uncertain response was initially trained and the task 
where it is introduced.  BEM may therefore have difficulty 
in cases where stimulus generalization between tasks is not 
plausible, as for example, in recent research by Son and Ko-
rnell (2005) and Kornell et al. (2007) where monkeys trained 
to emit confidence judgements in a perceptual task are then 
able to generalize their use to a new short-term memory task 
(BEM has no problem with the confidence judgment task 
itself as, despite the labels used to describe it, it is basically a 
DMTS task not very different in principle from the one used 
by Hampton, 2001). 

 Does it mean than those tasks would have demonstrated 
genuine animal metacognition? Obviously, no. The failure 
of BEM has implications for BEM only.  It says nothing 
about whether or not metacognition is required by these new 
data.  Maybe another model, based on different assumptions, 
will be able to perfectly account for them, also without using 
the concept of metacognition. 

 The core problem with metacognition is that it is not a 

scientific explanation in the usual sense.  No process is pro-
posed, no computable theory offered.  Rather, like “theory 
of mind” or “insight,” it is a faculty, a hypothetical new 
capacity supposedly inexplicable by existing theory, espe-
cially behavioristic theory.  It is defined by analogy to our 
own subjective experience—and by exclusion: an aspect of 
behavior not attributable to simple reinforcement principles 
or to any kind of associative learning.  And this is simply 
not satisfying.  We cannot accept metacognition as a “true” 
concept simply because existing models cannot account for 
some data—no more then we can accept that some peculiar-
ity of molecular biology which currently eludes evolutionary 
theory is proof of “intelligent design.” That would be mak-
ing an argument from ignorance.  Even if we do not have a 
model now, we might have in the future. This is especially 
true now when rather few attempts have been made in stud-
ies of animal metacognition to evaluate the ability of simple, 
behavioral models to account for the data. 

 Hence, we do not think the metacognition problem can be 
solved by adding new behavioral criteria that animals must 
display in order to qualify. Whether or not animals display 
metacognition is not an empirical problem.  It is a theoreti-
cal one. Researchers must develop models, mathematical 
or computational, describing how metacognition works in 
these tasks.  The proof that animal has metacognition will 
come, if it ever does, not from the inability of models with-
out metacognition to account for the data but from the ability 
of a model with metacognition to (better) account for them.  
Since no such model exists at this time, proof that animals 
display metacognition is still lacking. 

 Perhaps that doesn’t matter.  The tasks and results we re-
viewed in this article are intrinsically interesting.  Hence, 
the issue might not so much “do animals display metacogni-
tion in those tasks?” but simply “how do they perform those 
tasks?” If the best model is one requiring metacognition, then 
we will have discovered that animals indeed have metacog-
nition.  Otherwise, we might still learn something valuable 
about the mechanisms of behavior and how they contribute 
to the genesis of complex activities. 

 Progress on these lines might well lead to a reevaluation 
of the usefulness of the concept of metacognition in human 
beings.  After all, had many of the tasks described in this pa-
per been performed by humans, metacognition would have 
been invoked.  Studies (i.e., Smith et al., 1998) which have 
compared human with animal performance and have found 
them to be extremely similar, suggesting similar underlying 
mechanisms.  Thus, if a metacognition-free model such as 
BEM can account for the animal data, one may wonder if it 
can account for the human data as well.  Indeed, experimen-
tal work on metacognition has shown that feeling-of-know-
ing judgments in humans are based on the ability of the sub-
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ject to retrieve cues associated with the retrieval of the target 
item (see Metcalfe, 2008 for reviews).  This is what would 
have been expected if simple associative learning mecha-
nisms were underlying feeling-of-knowing judgments. The 
issue here is not whether or not animals or humans can judge 
the difficulty of the task. This is an empirical question and 
the answer is obviously yes.  It is how to explain this ability: 
do we need to invoke a mysterious new faculty, metacogni-
tion, that would eventually be uniquely human, or can basic 
associative learning process account for it?  Again, this issue 
is theoretical, not empirical.  It will not be decided by finding 
facts alone but by testing models to explain them.
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Footnotes

1 Risk-sensitivity is necessary to explain Foote and Crystal’s 
(2007) data, even if the rats had metacognition.  On a trial 
where they would not have known the answer, the animal 
has to choose between the uncertain response, delivering 
3 pellets for sure, and the other two responses, which 
will provide on average 3 pellets of food. Hence, in the 
absence of risk-sensitivity, the animal would not be biased 
toward the uncertain response but indifferent between this 
response and the discrimination task.

2 Here is a more traditional alternative. Let’s assume that, 
when presented with the sample, the animal forms a STM 
trace which can be in two states: present or absent. The 
probability that the trace moves from one (present) to the 
other (absent) increases with the retention interval. In this 
case, simple reinforcement processes would allow the 
animal to learn to pick the uncertain response when the 
memory is absent, to decline it if the memory is present. 
This does not require metacognition: it requires the animal 
to remember or not, not to know that it remembers or not. 
Again, whether or not DMTS task involves metacognition 
depends on how the forgetting problem is theorized.
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