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Despite prolonged interest in comparing brain size and behavioral proxies of “intelligence” across taxa, the 
adaptive and cognitive significance of brain size variation remains elusive. Central to this problem is the continued 
focus on hominid cognition as a benchmark and the assumption that behavioral complexity has a simple relationship 
with brain size. Although comparative studies of brain size have been criticized for not reflecting how evolution 
actually operates, and for producing spurious, inconsistent results, the causes of these limitations have received little 
discussion. We show how these issues arise from implicit assumptions about what brain size measures and how it 
correlates with behavioral and cognitive traits. We explore how inconsistencies can arise through heterogeneity in 
evolutionary trajectories and selection pressures on neuroanatomy or neurophysiology across taxa. We examine how 
interference from ecological and life history variables complicates interpretations of brain–behavior correlations and 
point out how this problem is exacerbated by the limitations of brain and cognitive measures. These considerations, 
and the diversity of brain morphologies and behavioral capacities, suggest that comparative brain–behavior 
research can make greater progress by focusing on specific neuroanatomical and behavioral traits within relevant 
ecological and evolutionary contexts. We suggest that a synergistic combination of the “bottom-up” approach of 
classical neuroethology and the “top-down” approach of comparative biology/psychology within closely related but 
behaviorally diverse clades can limit the effects of heterogeneity, interference, and noise. We argue that this shift away 
from broad-scale analyses of superficial phenotypes will provide deeper, more robust insights into brain evolution.
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Motivation
One of the central motivations for research into 

brain measurement is its potential to reveal links 
between neuroanatomical structures and cognitive capa-
bilities. Many debates on the evolution of brains and 
complex behavior suggestive of advanced cognitive abil-
ities have privileged measures where humans come out 
on top. This bias has been built into a number of “mono-
lithic” general hypotheses (Barton, 2012) claiming links 
between measures of absolute or relative brain size and 
a diverse range of proxy measures of complex behavior, 
such as “social” intelligence (Dunbar & Shultz, 2007a, 
2007b), “cultural” intelligence (Tomasello, 1999; van 
Schaik & Burkart, 2011; van Schaik, Isler, & Burkart, 
2012), “general” intelligence (Burkart, Schubiger, & 
van Schaik, 2016; Reader, Hager, & Laland, 2011), and 
behavioral drive (Navarrete, Reader, Street, Whalen, & 
Laland, 2016; Wyles, Kunkel, & Wilson, 1983). In each 
of these cases, Homo sapiens emerge as the presumed 
pinnacle of a trajectory of brain evolution that correlates 
with increasing behavioral flexibility, intelligence, or 

socialization. These investigations frequently emphasize 
the significance of brain size. Yet we now have a more 
sophisticated brain measurement tool kit available (e.g., 
data on neuronal density or molecular variables; Mont-
gomery, 2017). However, even with such a powerful tool 
kit, problems remain in establishing links between brain 
size and cognitive abilities because the interpretation of 
the correlated behaviors as more “complex” or “cogni-
tive” remain poorly elucidated (Healy & Rowe, 2007).

Here, we argue that a fruitful approach linking 
brain measures and cognition involves deemphasizing 
coarse-grained notions of “intelligence” and whole-brain 
measurements in favor of (a) taxa-specific measurements 
of brains and ecologically meaningful behaviors, and 
(b) “bottom-up” extrapolation of intraspecies measures 
based on phylogenetic context. Based on our review of the 
various limitations that have previously been highlighted, 
we conclude by developing a framework that incorporates 
bottom-up and top-down approaches to advance the field. 
Central to this is a movement away from Homo sapiens 
as the measuring stick for evaluating the neuroanatomi-
cal features and behavioral capabilities of other animals.

Aims
We introduce a wide variety of research that exam-

ines brains and behavior across various phyla and 
discuss how lessons learned from disparate taxa can 
inform the way we interpret brain evolution, even 
among more familiar taxa such as vertebrates. Our aim 
is to emphasize the advantages and disadvantages of 
the different metrics, methods, and assumptions in this 
field. Our review is structured to first provide an over-
view of the issues that limit interpretations of brain size 
studies (which readers may already be familiar with; see 
the Limitations of Research on Brain Size and Cogni-
tion section) and explain why the limitations arise in the 
context of two concepts borrowed from philosophy of 
science: noise and interference (see the sections Why Do 
These Limitations of Brain–Behavior Comparative Stud-
ies Arise? and Why Do Limitations in Brain–Behavior 
Comparative Studies Arise?). We end with our proposed 
framework for how to move forward in the study of 
brains and behavior (Beyond Brain Size section).

•	 Limitations of Research on Brain Size and Cogni-
tion section: We review criticisms leveled against 
comparative studies of brain size.

•	 Why Do These Limitations of Brain–Behavior 
Comparative Studies Arise? Noise (p. 62) and Why Do 
Limitations in Brain–Behavior Comparative Studies 
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Arise? Evidence of Interference (p. 65) sections: We 
go further by establishing why the recognized limi-
tations arise. By doing so, we show why broad-stroke 
narratives struggle to capture the wide diversity of 
neuroanatomical features and behavioral capacities 
in animals.

•	 Beyond Brain Size section: We argue that a more 
targeted bottom-up approach that measures brains 
and behaviors at the intraspecies level to investigate 
cognitive, neuroanatomical, and behavioral diver-
sity is needed to fully understand how behavioral 
complexity emerges from neural systems, and how 
well, or poorly, brain size reflects this variation.

Limitations of Research on  
Brain Size and Cognition

Interpreting how variation in brain size might be 
related to variation in cognition involves a set of assump-
tions that are frequently made in comparative studies:

•	 Brain size can be measured with negligible error.

•	 Investing in a larger brain comes at a cost of invest-
ing in other tissues and/or life history traits.

•	 Scaling relationships between brain size and body 
size are conserved within and across species.

•	 Brain regions scale uniformly with total brain size.

•	 Brain size scales with neuron number.

•	 Cognitive abilities are discretely coded in the brain.

•	 Cognitive abilities can be unambiguously ascer-
tained by measuring behavior.

•	 Brain size is directly and linearly associated with 
variation in cognition.

•	 Selection on cognitive abilities and brain measures 
acts uniformly across species.

These assumptions are applied uniformly both 
across and within species. The validity of these assump-
tions has previously been challenged by Snell (1892) 
and Healy and Rowe (2007), and we provide additional 
arguments in this section. First, the use of brain size 
as a trait makes implicit assumptions about how brains 
develop and evolve (see the Assumptions and Limita-
tions of What Brain Size Measures section). Second, 
when correlating brain size and a measure of cogni-
tion we make assumptions about how selection acts on, 
or for, either trait (see the Does Selection Act on Brain 
Size? section). Finally, measuring cognition inevitably 
requires making some assumptions about the nature of 

behavioral complexity and what we view as a cognitive 
trait (see the Assumptions and Limitations About What 
Brains Mean for Cognition section). In each case, the 
lack of data supporting the validity of these assumptions 
directly limits our capacity to make reliable inferences 
on the link between brain size and cognition.

Assumptions and Limitations  
of  What Brain Size Measures

Brain size may seem like an easy neuroanatomical 
trait to measure, and the ease of obtaining a data point 
for a species, using one to a few specimens, renders it a 
historically useful starting point for many studies (Healy 
& Rowe, 2007; Jerison, 1985). However, brain size has 
also become the end point for many studies, with the 
variability of this trait becoming a target for evolu-
tionary explanation. Large databases are populated by 
both individual measures and species’ brain size aver-
ages, which are used to examine cross-species correla-
tions between brain size and a number of other traits. 
Researchers look to these databases for answers to ques-
tions such as What is the significance of a large brain? 
What are the costs, and what are the benefits? (e.g., Aiello 
& Wheeler, 1995; Armstrong, 1983; Harvey & Bennett, 
1983; Isler & van Schaik, 2009; Nyberg, 1971). Cross-
species correlations reveal that relative brain size (brain 
size relative to body size) is putatively associated with a 
range of life history and ecological traits. For example, 
relative brain size may correlate positively with longev-
ity (a benefit) and negatively with fecundity (a cost) in 
mammals (Allman, McLaughlin, & Hakeem, 1993; 
Deaner, Barton, & van Schaik, 2003; González-Lagos, 
Sol, & Reader, 2010; Isler, 2011; Isler & van Schaik, 
2009; Sol, Székely, Liker, & Lefebvre, 2007). Crucially, 
however, these correlations are not necessarily inde-
pendent or consistent across taxa; for example, relative 
brain size and longevity do not significantly correlate in 
strepsirrhine primates (lemurs and lorises; Allman et al., 
1993). Other analyses suggest that the relationship may 
be a consequence of developmental costs rather than an 
adaptive relationship (Barton & Capellini, 2011). Such 
inconsistencies in applicability and explanation raise the 
question, Are we failing to accurately measure and explain 
brain size and associated traits?

Burgeoning research in artificial intelligence and 
machine learning suggests the correlation between raw 
computing power (“brain size”) and intelligence is unlikely 
to be straightforward. For example, a machine-learning 
algorithm designed to solve a specific task may indeed get 
a performance boost from a “bigger brain” (i.e., utilizing 
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more hardware, for example, when playing Go; Silver et al., 
2016). However, algorithmic improvements that create 
more efficient ways of forming “neuronal” connections 
based on input data may account for even greater perfor-
mance or speed improvements given fixed hardware. The 
effective utilization of hardware resources is itself an active 
research field within machine learning (e.g., Nair et al., 
2015), hinting that a bigger brain does not straightfor-
wardly translate into greater speed or better performance.

Despite Healy and Rowe’s (2007) warning, studies 
reporting cross-species correlations between brain size 
measures and various behavioral and life history traits 
continue to accumulate. This is also in spite of recent 
evidence falsifying many of the assumptions listed in 
the Limitations of Research on Brain Size and Cogni-
tion section (see Montgomery, 2017, for a review). For 
example, brain size does not scale linearly with body 
size within (Rubinstein, 1936) or across (e.g., Fitzpat-
rick et al., 2012; Montgomery et al., 2013; Montgomery, 
Capellini, Barton, & Mundy, 2010) species, brain regions 
do not scale uniformly with total brain size across 
species (see Heterogeneity in Brain Composition Within 
Taxonomic Groups section; e.g., Barton & Harvey, 2000; 
Farris & Schulmeister, 2011; Gonzalez-Voyer, Winberg, 
& Kolm, 2009), brain size does not uniformly scale with 
neuron number across taxa (see Heterogeneity in Brain 
Composition Within Taxonomic Groups section; Hercu-
lano-Houzel, Catania, Manger, & Kaas, 2015; Olkow-
icz et al., 2016), brain size does not necessarily translate 
into cognitive ability (see the Assumptions and Limita-
tions About What Brains Mean for Cognition section 
and the Measuring Cognition Through Behavior Is 
Noisy Because We Use Unvalidated Proxies section), 
and brain size is not consistently related to variables of 
interest even within species (see the Does Selection Act 
on Brain Size? section; e.g., there are sex differences with 
regard to brain size and its relationship with cognition 
[Kotrschal et al., 2014; Kotrschal et al., 2013] and fitness 
and longevity [Logan, Kruuk, Stanley, Thompson, & 
Clutton-Brock, 2016]). Therefore, a research program 
that relies on one or more of these assumptions is limited 
in its ability to make reliable inferences about what brain 
size measures and what it means when such measures 
correlate (or not) with other traits.

Does Selection Act on Brain Size?
Attempts to explain variation in brain size often 

implicitly assume that natural selection acts on it directly. 
In vertebrates this assumption has been given added trac-
tion from models exploring how brain development may 

shape patterns of evolution that place greater emphasis 
on the conservation of brain architecture (Montgomery, 
2017). This renders brain size a potent target of selection, 
in contrast to selective adaptation of particular brain 
regions (see the Deep Convergence in Brain Architec-
ture section). Artificial selection experiments further 
highlight the capacity for selection to directly act on 
brain size (e.g., Atchley, 1984; Kotrschal et al., 2013). For 
example, artificial selection for small and large brain size 
in guppies (Poecilia reticulata) produced a grade shift in 
the scaling relationship between brain and body size, 
resulting in an approximately 15% difference in rela-
tive brain size between selection lines (Kotrschal et al., 
2013). Although the resulting large- and small-brained 
guppies differed in several traits, including performance 
in learning tasks (Kotrschal et al., 2014; Kotrschal et al., 
2013) and survival (Kotrschal  et al., 2015), almost all 
of these correlations between behavioral performance 
and brain size were either test context dependent or sex 
dependent (Kotrschal et al., 2015; Kotrschal et al., 2014; 
Kotrschal et al., 2013; van der Bijl, Thyselius, Kotrschal, 
& Kolm, 2015).

These various trade-offs and sex-specific effects 
suggest that the selection landscape in natural popula-
tions may routinely be more complex than under labo-
ratory conditions. Several recent studies of variation in 
brain composition among closely related populations or 
species that are isolated by habitat reveal heritable diver-
gence in particular brain components rather than overall 
size (Gonda, Herczeg, & Merilä, 2011; Montgomery & 
Merrill, 2017; Park & Bell, 2010). Indeed, a recent analy-
sis of brain morphology in wild guppies suggests selec-
tion may frequently favor changes in the size of specific 
brain regions, although in this case a role for plasticity 
has not been ruled out (Kotrschal, Deacon, Magurran, 
& Kolm, 2017). Focusing solely on overall brain size, as 
in the artificial selection experiments, might mask the 
co-occurring changes within the brain that underlie the 
observed differences in behavior. Accordingly, adaptive 
responses to ecological change may involve alterations 
in specific components of neural systems, presumably in 
response to selection on particular behaviors. This latter 
distinction is important. It is unlikely that selection ever 
acts “on” any neuroanatomical trait because what selec-
tion “sees” is variation in the phenotypes produced by 
neural systems (i.e., behavior), and the energetic and 
physiological costs associated with their production.

Understanding how brain size relates to selection for 
behavioral complexity or cognition is therefore a two-
step process. First, we must understand how behavioral 
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variation emerges from variation in neural systems. 
Second, we must understand how this variation in neural 
systems relates to overall brain size. Currently, our abil-
ity to take these steps is limited by a paucity of well-
understood examples of behavioral variation in natu-
ral populations. However, existing examples provide 
some insight into the limitations of total brain size as 
a unitary trait. Recent studies of the proximate basis of 
schooling behavior in fish (Greenwood, Wark, Yoshida, 
& Peichel, 2013; Kowalko  et  al., 2013), and burrow-
ing (Weber, Peterson, & Hoekstra, 2013) and parental 
behaviors in Peromyscus mice (Bendesky et al., 2017) 
suggest that outwardly unitary “behaviors” may often 
be composites of genetically discrete behavioral pheno-
types the variation of which is determined by indepen-
dent neural mechanisms.

The role of FOXP2, a transcription factor, in 
language development and evolution provides another 
informative example. FOXP2 is generally highly 
conserved across mammals but it has two human-
specific amino acid substitutions that were likely fixed 
by positive selection (Enard et al., 2002). Disruption of 
this gene in humans severely impacts language acquisi-
tion (Lai, Fisher, Hurst, Vargha-Khadem, & Monaco, 
2001), suggesting that it plays a key role in vocal learn-
ing. Insertion of the human version of the protein into 
the mouse genome affects the development of particu-
lar cell types in the basal ganglia without gross effects 
on brain size or morphology (Enard  et  al., 2009) yet 
leads to improved performance on certain learning 
tasks and may have a broader role in motor learning 
(Schreiweis et al., 2014).

These examples illustrate how variation in behaviors 
that are considered by many comparative studies to be 
correlated with whole brain size may in fact arise from 
localized changes in brain development that do not affect 
total size. This may be the kind of incremental variation 
selection plays with over small evolutionary time scales, 
and it is reasonable to assume that the accumulation of 
this kind of change makes a significant contribution to 
species differences in total brain size. Although there is 
some evidence that genetic pleiotropy (i.e., genetic varia-
tion in loci that cause phenotypic variation in multiple 
traits) can drive shifts in multiple behaviors, in many 
cases selection may be able to shape specific behavioral 
traits independently of other behaviors. Global measures 
of brain size and cognition both suffer from a lack of 
support for the underlying assumption that the corre-
lated variation in their component parts stems from a 
shared proximate basis.

Assumptions and Limitations About  
What Brains Mean for Cognition

A highly visible thread within the literature linking 
cognitive abilities and brain size is a sustained attempt 
to use  brain size as a proxy for “intelligence” (e.g., Jeri-
son, 1969; Table 1). Notably, Jerison (1973, 1985) hypoth-
esized that species showing behaviors assumed to require 
increased neural processing required the evolution of a 
larger brain relative to their body size to create “extra 
neurons” for those seemingly complex behaviors.

In discussing indicators of cognition, we first need 
to know when a behavior is “cognitive” or indicative 
of “complex cognitive abilities” (sometimes referred to 
as “intelligence” and often invoking the term “behav-
ioral flexibility”; Mikhalevich, Powell, & Logan, 2017; 
Table 2). This is problematic because these terms are not 
defined well enough to test empirically or even to prop-
erly operationalize, and therefore cannot be measured in 
a systematic way. Appeals to “neural processing” like-
wise suffer from ill-definition and are poorly suited for 
accurate quantification in most contexts. Researchers 
studying animal behavior tend to avoid using the term 
intelligence due to its anthropocentric connotations and 
instead often adopt Shettleworth’s (2010) definition of 
cognition as “the mechanisms by which animals acquire, 
process, store, and act on information from the envi-
ronment. These include perception, learning, memory, 
and decision-making” (p. 4). However, this all-encom-
passing definition still does not allow us to answer basic 
questions about the proximate machinery underly-
ing “cognitive” traits: Is a behavior more “cognitively 
complex” if it engages more neurons, or certain networks 
of neurons, or neurons only in particular brain regions 
that are responsible for learning and memory? Or should 
we think of neural processing in dynamic terms, such as 
the “flexibility” of neurons to abandon old connections 
and form new ones as task demands change? Is behav-
ior considered to rely on complex cognition only if it is 
flexible? There are no clear answers to these questions 
because, without a clear articulation of the empirical 
target, data are greatly lacking.

Indeed, it is nearly impossible to determine which 
behaviors require increased neural processing when 
they are observed in isolation from real-time brain activ-
ity. Creative studies using imaging technology can now 
measure behavior and brain activity at the same time, 
but only in species that can be trained to remain station-
ary in an fMRI scanner (e.g., dogs: Andics et al., 2016; 
pigeons: De Groof et al., 2013; see also Mars et al., 2014). 
However, without a priori predictions about which neural 
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Table 1.  Examples of cross-species comparisons that link cognition and brain size, and a description of the caveats about the ability to draw 
inferences due to the limitations involved in measuring both traits.

Study Cognitive Measure

Brain Size Measure  
That Correlates With  
the Cognitive Measure Caveats

MacLean et al. (2014) Attempts to measure “self-
control” in 36 species of birds 
and mammals, using the 
A-not-B test and the cylinder 
(detour) test

Absolute and relative brain 
size

It is unclear whether self-control was measured 
(see Jelbert, Taylor, & Gray, 2016; Kabadayi, Taylor, 
Bayern, & Osvath, 2016)

Benson-Amram, 
Dantzer, Stricker, 
Swanson, and 
Holekamp (2016)

Problem solving in 39 species 
of carnivores, using a puzzle 
box that could be opened to 
obtain food

Relative brain size
Relative brain size + regional 
brain volume

Problem solving is an ambiguous concept, with 
success being heavily influenced by differences in 
motivation, neophobia and animals’ typical behav-
ioral repertoires, among other things. In addition, 
here, the puzzle boxes could be opened in multiple 
ways, that is, by sliding a latch on the box open, or 
rolling the box over (which could cause the latch to 
slide open without being manipulated). It is unclear 
what success on this task really means in terms of 
underlying cognitive ability

Captive animals in zoos were tested, which likely 
have variable rearing histories and experiences with 
enrichment or solving problems

Motivation identified as a confounding variable

Given the large variation among individuals within 
species on cognitive tests (see Table 2), a sample 
size of one to a few individuals (mean = 4.9) is not 
likely to be representative of the species

Deaner, Isler, Burkart, 
and van Schaik (2007); 
Deaner, van Schaik, 
and Johnson (2006)

General cognition as indi-
cated by successful perfor-
mance of 24 primate genera 
on many different tests: string 
pulling, detouring, invis-
ible displacement, object 
discrimination, reversal learn-
ing, oddity learning, sorting, 
delayed response

Absolute brain size Mean brain and body mass were collected per 
genus rather than per species because cognition 
data were available only per genus. This scale is 
likely too broad (see the section Measuring Cogni-
tion Through Behavior Is Noisy Because We Use 
Unvalidated Proxies)

Cognitive test data were pooled when the same 
tests had been conducted on different species. 
However, interlab noise has been shown to mask 
any differences or similarities even among individu-
als of the same species (Thornton & Lukas, 2012)

Did not account for ecological differences among 
genera

Many tasks draw on similar sensory-motor capaci-
ties, which questions whether “general cognition” 
can be inferred

Reader et al. (2011) General cognition as indi-
cated by successful perfor-
mance of 62 primate species 
on many different measures: 
extractive foraging, innovation 
frequency per species, social 
learning, tactical deception, 
tool use

Ratio of the neocortex and 
the rest of brain

Ratio of neocortex + striatum 
and the brainstem

Neocortex size

Some of the cognitive measures are proxies of the 
behavior in question (see the section Measuring 
Cognition Through Behavior Is Noisy Because We 
Use Unvalidated Proxies)

The method of correcting for research effort does 
not account for biases in the publication of the 
reports on which the data are based (see the section 
Measuring Cognition Through Behavior Is Noisy 
Because We Use Unvalidated Proxies)

Herculano-Houzel 
(2017)

Tasks in Deaner et al. (2007) 
(above in this table), and 
cylinder and A not B tasks 
in MacLean et al. (2014) and 
Kabadayi et al. (2016)

Number of cortical or pallial 
neurons

See row above on Deaner et al. (2007).  
See also Jelbert et al. (2016)

Logan et al.
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Table 2.  Examples of experiments attempting to test cognition, and their potential confounds as identified by the studies listed in the far right column.

Cognitive 
Tests Attempting to Test

Assumed Cognitive Measures  
Might Be Confounded By

For a Discussion of These 
Confounds, see, for example,

String pulling Insight
Learning speed
Means–end understanding

Responses to perceptual-motor feedback
Motivation to obtain reward
Age
Attention
Rearing effects
Dexterity
Object permanence
Exploration
Neophobia/neophilia
Side biases
Visual acuity
Salience of the stimuli

Jacobs and Osvath (2015)

Aesop’s fable 
tube tests

Physical cognition
Causal reasoning

Learning speed
Motivation to obtain reward
Object biases
Responses to perceptual-motor feedback
Salience of the stimuli

Jelbert, Taylor, Cheke, Clayton, and Gray 
(2014); Jelbert, Taylor, and Gray (2015); 
Logan, Jelbert, Breen, Gray, and Taylor 
(2014); R. Miller et al. (2016)

Cylinder and A 
not B tasks

Self-control/Inhibition Neophobia/Neophilia
Exploration
Dexterity
Perseveration
Salience of the stimuli
Visual acuity/Tracking

Jelbert et al. (2016); MacLean et al. (2014)

Puzzle boxes Innovativeness
Problem solving
Creativity

Neophobia/Neophilia
Exploration
Dexterity
Motivation to obtain reward
Behavioral repertoire size
Perseveration
Operant conditioning (likelihood of repeating 
actions that led to obtaining reward)
Salience of the stimuli
Age
Dominance rank
Sex

Benson-Amram and Holekamp (2012); 
Boogert, Reader, Hoppitt, and Laland 
(2008); Thornton and Samson (2012)

Reversal 
learning

Learning speed
Behavioral flexibility

Neophobia/neophilia
Exploration
Perseveration
Learning speed
Motivation to obtain reward
Body condition
Age
Sex
Reproductive hormonal state
Habituation to captivity
Salience of the stimuli

Boogert, Anderson, Peters, Searcy, and 
Nowicki (2011); Boogert, Monceau, and 
Lefebvre (2010); O’Hara, Huber, and 
Gajdon (2015)

Trap-tube tasks Tool-use
Physical cognition
Causal reasoning

Operant conditioning
Learning speed
Dexterity
Neophobia
Motivation to obtain the reward
Motivation to avoid incorrect responses
Inhibitory control
Salience of the stimuli

Mulcahy and  Call (2006); Seed, Tebich, 
Emery, and Clayton (2006) 

Note: We note that there may be additional confounds in such studies that are likely to have affected test performance. These cannot be ruled out 
until explicitly quantified and taken into account in analyses (see also Macphail, 1982).
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measures indicate complex cognition, this will remain a 
process of post hoc explanations and goal-post moving 
based on anthropocentric biases about which species 
should be “intelligent” (see Mikhalevich et al., 2017).

Theoretical reflection within the field of artificial 
intelligence has provided alternative definitions of intel-
ligence that highlight the difficulties faced by cognitive 
ethologists. For example, Legg and Hutter (2007) aimed 
to provide a universal definition that could apply to 
machine intelligence as well as human and nonhuman 
animal intelligence. Informally, their definition suggests, 
“Intelligence measures an agent’s ability to achieve goals 
in a wide range of environments.” Following Legg and 
Hutter’s definition (without committing to whether it is 
definitive) clarifies several difficulties with the current 
approach to evaluating intelligence in nonhuman 
animals, and subsequently our ability to relate it to brain 
size. More specifically:

1.	 Intelligence is goal dependent. A behavior, no matter 
how complex, cannot be counted as intelligent if it 
does not serve a clear goal. Yet, interpreting goal 
orientation in nonhumans is inherently difficult, 
even under strict experimental conditions.

2.	 Intelligence is environment dependent. Problem-
atically, behavioral features often associated with 
complex cognition such as innovation, planning, 
and tool use may have varying degrees of availability 
or relevance in different environments, which may 
affect whether they are displayed, irrespective of the 
organism’s ability to display them.

3.	 Intelligence of an organism is displayed across a 
range of environments. The few experimental setups 
usually used to quantify “intelligence” in captive 
animals may therefore be minimally informative; 
instead, the ability of an organism to achieve its 
goals should be evaluated across the range of envi-
ronments it is likely to encounter within its lifetime.

Regardless of the validity of the definition, these 
three features—goal orientedness, environment depen-
dency, and utility across heterogeneous conditions—
highlight the practical limitations of assessing cogni-
tion in animals. The focus on utility further illustrates 
why selection may favor “simple” behavioral solutions 
to a task, or why the expression of simple behavior does 
not preclude the ability of an organism to identify and 
carry out more complex solutions in alternative contexts. 
Research by Bird and Emery (2009) illustrates this point 

nicely: Wild rooks are not reported to make or use tools;  
however, when given the opportunity in the lab, they 
are highly proficient at it. If cognition is something akin 
to problem-solving capacity, then we should develop 
measures that pay careful attention to the range of prob-
lems animals face in their natural environments, rather 
than transferring proxies of intelligence in humans that 
are relevant to the problems humans face in human envi-
ronments (see also, e.g., McAuliffe & Thornton, 2015; 
Pritchard, Hurly, Tello-Ramos, & Healy, 2016; Rowe 
& Healy, 2014; Thornton, Isden, & Madden, 2014). For 
example, a population of a spider species (Portia orienta-
lis) that normally encounters a wide range of prey in its 
natural habitat is more proficient at solving tasks than 
another population of the same species that normally 
encounters a narrow range of prey (Jackson & Carter, 
2001; Jackson, Cross, & Carter, 2006).

Nevertheless, many comparative studies do find 
associations between gross measures of brain size and 
broadly descriptive behaviors. In what follows, we focus 
on two factors that explain when and why the results 
of such comparative studies should be treated with 
caution: biological heterogeneity, and statistical noise 
and interference.

Why Do These Limitations of Brain–Behavior 
Comparative Studies Arise? Noise

The lack of consistency in results from compara-
tive studies (see Healy & Rowe, 2007, for an overview) 
strongly suggests some underlying variability in the rela-
tionship between brain size and complex cognition. In 
attempting to understand the properties of a particular 
system, it is useful to distinguish between noise (exog-
enous) and interference (endogenous; Currie & Walsh, 
2018) as distinct kinds of confounds in brain–behav-
ior correlations. Noise limits our ability to accurately 
determine and measure coevolving brain structures and 
cognitive abilities (this section), whereas interference 
hampers our ability to make inferences about the rela-
tionships between interacting features of systems (see the 
Why Do Limitations in Brain–Behavior Comparative 
Studies Arise? Evidence of Interference section). Noise 
and interference are major factors that shape the limita-
tions of comparative studies of brain size and cognition 
by virtue of the numerous covariates that influence the 
reliability and power of attempts to detect true associa-
tions. Noise results from exogeneous factors that under-
mine our capacity to extrapolate across data points. 
Measurement error is an inevitable source of noise in 
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these studies because behavior is noisy (Measuring 
Behavior Is Noisy Because Behavior Is Noisy section); 
the behaviors observed might not directly reflect single 
specific cognitive abilities (Measuring Cognition 
Through Behavior Is Noisy Because We Use Unvali-
dated Proxies section); and the feasibility of obtain-
ing brain measures differs across species, thus limiting 
comparison (Measuring Brain Size Is Noisy Because It 
Is More Difficult Than It Seems section). As we show 
next, reducing noise requires a range of different experi-
mental and analytical approaches.

Measuring Behavior Is Noisy Because Behavior Is Noisy
Animal behavior depends on the integration of 

internal motivational states and external environmen-
tal cues. Although many behaviors are largely stereo-
typed, the kinds of behavioral traits routinely studied in 
comparative studies of cognition are not. The expression 
of behaviors that we might interpret as social cognition 
(such as theory of mind) or physical cognition (such as 
tool use) depend on an individual’s internal state and 
perception of the external environment, factors that are 
not readily assessed. This introduces a degree of stochas-
ticity in an animal’s behavioral expression and noise in 
our behavioral measurements.

Even if there seems to be an intuitive way to iden-
tify and describe a behavior, generating clear definitions 
that tie the behavior to a cognitive ability is frequently 
elusive. For example, identifying that some species live in 
groups does not indicate anything about their cognitive 
abilities (L. E. Powell, Isler, & Barton, 2017). In another 
example, Japanese macaques (Macaca fuscata) provide a 
famous case of innovation. In this case, two novel behav-
iors involving washing sweet potatoes before eating them 
and separating grains from dirt by throwing them in 
water were innovated by a single female (called Imo) and 
spread through a wild population via social transmission 
(cf. Allritz, Tennie, & Call, 2013; Kawai, 1965). At a popu-
lation level the high rate of social transmission may be 
impressive, but at an individual level does the innovative-
ness of Imo suggest some neuroanatomical variation that 
supports more complex cognition and increased inno-
vation achieved through trial-and-error learning? Imo’s 
brain may be no more innovative than her peers: She 
may simply have been in the right place at the right time 
or more receptive to reward stimuli. Whether inferred 
behavioral categories such as innovation reflect popula-
tion-level variation in cognition is therefore unclear. The 
assumption that innovation and behavioral flexibility 
reflect similar cognitive processes is extrapolated from 

anthropocentric concepts and experiences of innovation, 
but this clearly requires empirical validation.

Developments in artificial intelligence and machine 
learning, especially in the field of reinforcement learn-
ing, illustrate how easy it is to have misconceptions 
regarding the neural processes that underlie innovative 
behavior. One possible conclusion is that Imo’s innova-
tive ability is due to neuroanatomical variation at the 
intraspecies level. However, high levels of task perfor-
mance can be achieved by systems that combine trial-
and-error learning with feedback on their performance 
in the form of a reward (similar to reward-based asso-
ciative learning). As reported by Mnih and colleagues 
(2015), a system trained from raw pixel inputs and rein-
forced using an environment-provided performance 
metric (game score) was able to achieve human-level 
performance in Atari gameplay by iteratively searching 
for the patterns that maximize game score. Silver and 
colleagues (2016) reported another achievement of artifi-
cial intelligence, namely of human-level performance on 
the game of Go, with gameplay that has been described 
as “creative” and “innovative” by the artificial agent first 
learning to predict expert moves (supervised learning) 
and then by improving performance through self-play 
(reinforcement learning). These engineering achieve-
ments suggest that the combination of chance, feedback, 
and repeated iterations (possibly over generations) could 
yield the same behavioral performance by artificial intel-
ligence, at least in narrow domains, as organisms associ-
ated with having “complex cognition.”

Measuring Cognition Through Behavior Is Noisy 
Because We Use Unvalidated Proxies

Cognition is unobservable and must be inferred 
from behavior. Many of the 50-plus traits that have been 
correlated with brain size across species (Healy & Rowe, 
2007) are proxy measures of the actual trait of interest 
(e.g., the number of novel foraging innovations at the 
species level is a proxy for individual-level behavioral 
flexibility). This would not be a problem if proxies were 
validated by directly testing the link between the trait of 
interest and its correlational or causal relationship with 
its proxy within a population (see Rosati, 2017, for an 
example of how to validate a foraging cognition proxy). 
However, the proxies used are generally not validated, 
which contributes noise and uncertainty about what the 
correlations, or lack thereof, between these trait proxies 
and brain size actually mean. We illustrate why and how 
unvalidated proxies are an issue for this field using inno-
vation frequency as an example.
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The hypothetical link between innovation frequency 
per species and their relative brain size was origi-
nally proposed by Wyles and colleagues (1983). Lefe-
bvre, Whittle, Lascaris, and Finkelstein (1997) opera-
tionalized the term innovation to make it measurable 
and comparable across bird species, defining it as the 
number of novel food items eaten and the number of 
novel foraging techniques used per species as anec-
dotally reported in the literature (see also Overington, 
Morand-Ferron, Boogert, & Lefebvre, 2009). Innovation 
is assumed to represent a species’ ability to modify its 
behavior in response to a change in its environment, and 
is therefore a trait proxy for behavioral flexibility (e.g., 
Overington et al., 2009; Reader & Laland, 2002; Sol & 
Lefebvre, 2000; Sol, Timmermans, & Lefebvre, 2002). 
Behavioral flexibility is defined here as modifying behav-
ior in response to changes in the environment based on 
learning from previous experience (Mikhalevich et al., 
2017; Swaddle, 2016). Two challenges emerge from this 
conceptualization.

First, it is unclear how to calculate innovation 
frequency per species, or its biological significance to the 
species in question. For example, when one of us (Logan, 
2015) tried to follow standard methods (from Lefeb-
vre et al., 1997; Overington et al., 2009) to quantify the 
number of innovations in New Caledonian crows (Corvus 
moneduloides), it was unclear how distinct each technical 
innovation was. Sometimes New Caledonian crows used 
tools in a similar way, but they were made from different 
materials. More important, many innovations were only 
novel or unusual to the humans who saw crows performing 
these behaviors; these behaviors are commonly performed 
by New Caledonian crows across their natural habitat 
(e.g., Hunt & Gray, 2002) and are certainly not novel to 
them, suggesting that innovation frequency databases 
(e.g., Overington et al., 2009) may contain many similar 
cases of species-typical behaviors that had gone unnoticed 
to the human observer. Therefore, it is also unclear what 
innovation frequency per species means to that species, 
which further confounds the significance of innovation 
frequency per species. At this stage, it is unclear what an 
appropriate measure of innovation frequency would be 
when comparing across species. However, it is clear that 
any measure needs to be grounded in direct observations 
at the within-species level.

Second, the small number of comparative studies 
that exist shows that innovation frequency per species 
does not correlate with measures of behavioral flex-
ibility in individuals (Auersperg, Bayern, Gajdon, 
Huber, & Kacelnik, 2011; Bond, Kamil, & Balda, 2007; 

Ducatez, Clavel, & Lefebvre, 2015; Jelbert et al., 2015; 
Logan, 2016a, 2016b; Logan, Harvey, Schlinger, & 
Rensel, 2016; Logan, Jelbert, Breen, Gray, & Taylor, 
2014; Manrique, Völter, & Call, 2013; Reader et al., 2011; 
Tebbich, Sterelny, & Teschke, 2010) or with species-level 
estimates of brain size (Cnotka, Güntürkün, Rehkäm-
per, Gray, & Hunt, 2008; Ducatez et al., 2015; Emery 
& Clayton, 2004; Isler et al., 2008; Iwaniuk & Nelson, 
2003; Pravosudov & de Kort, 2006) in predictable ways. 
More generally, despite a lack of validation that they 
accurately reflect the trait of interest, proxies of behav-
ioral traits are pervasive in the comparative brain size 
literature and introduce unknown amounts of exogenous 
noise into cross-species analyses. This noise may gener-
ate spurious results, masking “true” patterns in the data 
and impeding their interpretation.

Measuring Brain Size Is Noisy Because It Is  
More Difficult Than It Seems

Most work on brain evolution has focused on over-
all brain size or changes in large regions of the brain, 
such as the forebrain and the cerebellum (see review in 
Healy & Rowe, 2007; see also Herculano-Houzel, 2012; 
Reader et al., 2011). However, volumetric measurements 
are particularly noisy. We use primate brain data to 
illustrate the difficulties involved in obtaining, preserv-
ing, and measuring brain volumes.

More is known about brain anatomy in primates 
than in other orders, yet volumetric measurements of 
specific brain regions in this group are available only 
for a few species, from only a few individuals per species 
(Reader & Laland, 2002); are limited to only a few brain 
collections (Zilles, Amunts, & Smaers, 2011); and often 
come from captive individuals. This introduces a large 
amount of noise because a species’ average brain, or 
brain region, volume might be biased due to sexual 
dimorphism or other variables that differ across indi-
viduals (Montgomery & Mundy, 2013).

Complications arise in determining whether it is 
appropriate to correlate behavioral data from wild 
individuals with morphological data (e.g., brain size) 
obtained from captive individuals. Studies comparing 
the morphology of wild and captive animals have shown 
that rearing conditions may influence body composi-
tion (e.g., skull shape, brain size, digestive tract) after 
only a few generations (O’Regan & Kitchener, 2005). In 
primates, brain mass is not generally affected by captiv-
ity (Isler et al., 2008), but body mass is: some species 
become heavier, while others become lighter due to inad-
equate diets (O’Regan & Kitchener, 2005).
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Furthermore, although brain size might not be 
affected by captivity, primate populations of the same 
species that were reared under different captive condi-
tions differ in cortical organization (Bogart, Bennett, 
Schapiro, Reamer, & Hopkins, 2014). In macaques and 
humans, there is evidence that individual differences in 
social network size correlate with amygdala volume and 
areas related to this structure (Bickart, Wright, Dautoff, 
Dickerson, & Barrett, 2011; Kanai, Bahrami, Roylance, 
& Rees, 2011; Sallet et al., 2011). Among individuals of the 
same species, brain anatomy changes significantly with 
age (Hopkins, Cantalupo, & Taglialatela, 2007). Choos-
ing individuals with closely matched histories can reduce 
noise in brain measures that are introduced by individual 
differences in previous experience, but the noise involved 
in brain volume measurements is most effectively 
controlled and minimized by obtaining large sample sizes 
per species to acquire more reliable species averages. This 
problem is particularly vexing when combining behav-
ioral data sets from observations in the wild with neuro-
anatomical data from captive populations.

Data collection methods can also compromise the 
quality of the data. Many reported brain weights and 
brain volumes are actually proxies of these measures, 
obtained instead by calculating endocranial volume 
from skulls, which are much easier data to collect (e.g., 
Isler et al., 2008; Iwaniuk & Nelson, 2002). Although 
endocranial volume has been shown to reliably approxi-
mate brain volume across species of primates (Isler et al., 
2008) and birds (Iwaniuk & Nelson, 2002) and within 
species of birds (Iwaniuk & Nelson, 2002), this might 
not always be the case. For example, Ridgway, Carlin, 
Alstyne, Hanson, and Tarpley (2016) suggested that 
endocranial vascular networks and other peripheral 
appendages can account for 8% to 65% of endocranial 
volume in cetaceans, leading to a consistent overestima-
tion of brain size that is more severe in some species 
than others. In addition, there is a risk of bias during the 
measurement or assessment if researchers might favor a 
particular hypothesis and if the identity of the skulls or 
brains is not blinded during the study (Lewis et al., 2011).

Because brains are valuable tissues, noninvasive 
methods such as magnetic resonance imaging (MRI) 
are preferred for obtaining data on brain anatomy and 
function. Yet high-resolution, high-quality MRIs from 
primate brains are difficult to obtain from live individ-
uals. Images obtained using in vivo techniques, where 
the animal is sedated for a short period while scanning 
the brain, might be more accessible, but image qual-
ity and resolution are poorer than in images obtained 

postmortem (K. L. Miller  et  al., 2011). Postmortem 
MRIs can have a higher resolution and are therefore 
more suited to calculating volumes. However, even MRIs 
are problematic because of other sources of noise that 
arise from brain extraction methods, including the post-
mortem delay between death and extraction and pres-
ervation, and the “age” of the preserved brain (i.e., how 
long a brain has been stored; Grinberg et al., 2008; K. L. 
Miller et al., 2011). Although postmortem MRI is the best 
method available for calculating brain volumes, brain 
volume in itself is a noisy measure because of its unclear, 
and usually untested, relationship with other variables of 
interest (see the Measuring Cognition Through Behavior 
Is Noisy Because We Use Unvalidated Proxies section).

Why Do Limitations in Brain–Behavior 
Comparative Studies Arise?  

Evidence of Interference
Interference occurs when systems consist of multiple 

interacting parts whose interactions tend to be complex. 
A potentially useful way of understanding some critiques 
of brain size–cognition comparative studies is to 
consider the ramifications of heterogeneity within and 
across species in terms of their brain architectures and 
associated traits (e.g., behavior, cognition, life history; 
Figure 1). If parts of the brain evolve in concert due to 
developmental coupling, for instance, then interference 
from those components makes it difficult to isolate the 
evolutionary causes of changes in brain size, or any of its 
components, over time. Similarly, if many ecological and 
life history traits covary, identifying which factors drive 
changes in brain size is complicated by autocorrelation 
between independent variables. Philosophers distinguish 
heterogeneity within and between systems as a useful 
concept for framing the validity of comparisons (Elliott-
Graves, 2016; Matthewson, 2011). Heterogeneity arises 
as a confounding factor in comparisons among individ-
uals and/or species when the components of a system 
(e.g., brain structures) differ (see the Heterogeneity in 
Brain Composition Within Taxonomic Groups section), 
or when similar components exist but differ in scaling 
relationships or patterns of connectivity (e.g., neuron 
density, neural network; see the Deep Convergence in 
Brain Architecture section). Treating brain size as a 
unitary trait assumes either that the brain is a unitary 
trait or that any signal from a brain–behavior associa-
tion is sufficient to overpower the influence of hetero-
geneity on either trait. Comparisons of taxonomically 
diverse neural systems can identify where similar brain 
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architectures exist and where heterogeneity in brain 
composition is masked by comparisons of brain size (see 
the Effects of Size-Efficient Selection section). Inter-
ference in the form of heterogeneity between systems 
occurs because of the complex interactions among life 
history and ecological factors that shape the coevolution 
of cognitive abilities and particular brain measures (see 
the Correlations Suffer From Interference section).

Heterogeneity in Brain Composition Within Taxonomic 
Groups: Brains That Appear Similar According to 

Certain Measures May Actually Be Different
The brain architecture underlying ecologically rele-

vant neural computation will depend on the behavioral 
requirements of a task; the evolutionary history of the 
machinery that selection is building on; and the strength 
of potentially opposing selective forces such as energetic, 
volumetric, and functional trade-offs and constraints. 
Even across more closely related species—for example, 
among mammals—heterogeneity between brain struc-
tures introduces noise and variation that can complicate 
brain–behavior relationships.

Although some authors argue that the major axis 
of variation in mammalian brains is overall size (e.g., 
Clancy, Darlington, & Finlay, 2001; Finlay, Darlington, 
& Nicastro, 2001), there is ample evidence for variation 
in brain structure across species (e.g., Kaas & Collins, 
2001; Workman, Charvet, Clancy, Darlington, & Finlay, 
2013) caused by brain region–specific selection pressures, 

so-called mosaic brain evolution (Barton & Harvey, 
2000; Smaers & Soligo 2013). When a behavior gener-
ated by a specific brain structure is targeted by selection, 
the effect on total brain size will depend on the scaling 
relationship between that brain structure and total brain 
size. For example, one general trend across mammalian 
brain evolution is a correlated expansion of the neocor-
tex and cerebellum, which occurs independently of 
total brain size (Barton, 2012; Whiting & Barton, 2003). 
These structures share extensive physical connections 
and are functionally interdependent (Ramnani, 2006), 
but, although they tend to coevolve, both have evolved 
independently in some evolutionary lineages (Barton & 
Venditti, 2014; Maseko, Spocter, Haagensen, & Manger, 
2012). Independent selection pressure on individual brain 
components such as the neocortex and cerebellum do 
not have equal effects on overall brain size or measures 
of encephalization (Figure 2). Neocortex volume scales 
hyperallometrically with brain volume (i.e., as brain size 
increases, the proportion of neocortex tissue increases), 
whereas cerebellum volume, and several other major 
brain components, scale hypoallometrically with brain 
volume (Barton, 2012). As a result, increases in neocortex 
volume have a disproportionate effect on brain volume 
compared to similar proportionate increases in cere-
bellum size, largely due to differences in the scaling of 
neuron density and white matter in the two structures 
(Barton & Harvey, 2000; Herculano-Houzel, Collins, 
Wong, & Kaas, 2007). Variations in whole brain size, or 

Figure 1.  Effects of noise and heterogeneity on brain–behavior correlations as measures of a biological trait (on both axes) become increasingly crude. 
As measurements move away from direct, quantitative data of primary biological processes both axes become increasingly noisy (as indicated by the 
gray halos around each data point). The interaction between signal, noise, and heterogeneity may result in contrasting correlations between taxonomic 
groups (indicated by differently colored lines). When correlations are averaged across these groups, the resulting associations may retain little information.
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measures of brain size relative to body size, such as the 
encephalization quotient (Jerison, 1973), therefore essen-
tially correspond to variation in neocortex size and mask 
variation in other brain components, even though the 
latter may be of great functional significance. For exam-
ple, the frequency of tool use in primates (Barton, 2012) 
and the complexity of nest structure in birds (Z. J. Hall, 
Street, & Healy, 2013) have been linked with variation 
in relative cerebellum volume; and hippocampal volume 
has been linked with performance on a variety of cogni-
tive tasks in primates (Shultz & Dunbar, 2010), and with 
spatial memory in birds (e.g., Krebs et al., 1996).

When comparing brain size across species, further 
heterogeneity is apparent at the level of the cellular 
composition of brain structures. Recent data on neuron 
number in brain regions of birds and mammals have 
revealed extensive variation across taxonomic groups 
(Herculano-Houzel et al., 2015). For example, primates 
have significantly higher neuron densities in the neocor-
tex and cerebellum than other closely related terres-
trial mammals, whereas elephants have substantially 
higher neuron densities in the cerebellum than other 
Afrotheria (e.g., golden moles and sea cows; Herculano-
Houzel et al., 2015), and the brains of some birds pack 
similar numbers of neurons as found in monkeys due 
to the relatively higher neuron densities in avian brains 
(Olkowicz et al., 2016). Because neurons and their synap-
tic connections are the basic computational units of any 
neural system, if variation in brain, or brain region, 
volume does not consistently reflect variation in neuron 
number, then any inference made about the cognitive 
significance of brain size is largely invalid. To illustrate 
this effect, averaging across brain regions, a 1g brain 
that follows primate neuron number brain-size scal-
ing rules will contain approximately 26% more neurons 
than a brain that follows the glire scaling rules (the clade 
including rodents; Herculano-Houzel et al., 2015). A 1g 
brain that follows psittacine (parrots) scaling rules will 
contain about 100% more neurons than a brain that 
follows the glire scaling rules and about 58% more than 
a brain that follows the primate scaling rules (Olkow-
icz et al., 2016). Comparing brain size across taxa with 
different or unknown scaling rules thus erroneously 
assumes that the computational output (based on neuron 
number) of these hypothetical brains would be equal. 
At an even smaller scale, brains differ in traits such as 
neuronal connectivity, receptor density, or neurochem-
istry (Butler & Hodos, 2005), traits that are difficult to 
measure but could have important roles in the function-
ing of the brain (Mars et al., 2014).

Figure 2.  Effects of brain component scaling on the contributions brain 
regions make to brain expansion. (A) The size of the neocortex and 
cerebellum, once corrected for the size of the rest of the brain, coevolve 
with a positive scaling relationship. Both residual size of the neocortex 
(B) and cerebellum (C), after correcting for the size of the rest of the 
brain, correlate with the total brain size corrected for body size indicating 
both components contribute to encephalization. However, the scaling 
relationships differ, such that any increase in absolute neocortex volume 
has a greater influence on residual brain size compared to a similar 
increase in absolute cerebellum volume (see also Barton, 2012).
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The assumption that brain volume is comparable 
and meaningful across species is often explicitly made 
in broad phylogenetic studies of cognitive ability (e.g., 
MacLean et al., 2014). Variation in brain structure and 
cellular composition strongly questions this assumption. 
The effect of incorporating more fine-grained data, even 
if they are relatively crude, is apparent in existing stud-
ies. For example, in Benson-Amram, Dantzer, Stricker, 
Swanson, and Holekamp’s (2016) analysis of how perfor-
mance on a puzzle-box test is associated with brain size 
across 39 species of mammalian carnivore, the addi-
tion of data on volumetric variation in brain structure 
significantly improved their predictive model compared 
to one containing only brain volume. In a recent opinion 
piece, Herculano-Houzel (2017) also argued that (corti-
cal) neuron number outperforms total brain size as a 
predictor of behavioral performance in self-control tests 
reported by MacLean and colleagues (2014). The power 
of brain size as a causative predictor of cognitive perfor-
mance is therefore apparently vulnerable to the addition 
of only narrowly more fine-grained data.  

Deep Convergence in Brain Architecture:  
Brains That Appear Different According to  

Certain Measures May Actually Be Homologous
At the broadest taxonomic scale, brain composition 

is remarkably diverse. For example, comparative stud-
ies have traditionally focused on linking learning and 
memory with arachnid protocerebrums (e.g., Meyer 
& Idel, 1977; Punzo & Ludwig, 2002), insect mush-
room bodies (e.g., Snell-Rood, Papaj, & Gronenberg, 
2009), cephalopod vertical lobes (e.g., Grasso & Basil, 
2009), the vertebrate pallium (e.g., Jarvis et al., 2005), 
and mammalian neocortices (e.g., Pawłowskil, Lowen, 
& Dunbar, 1998). Despite their independent evolu-
tion, some research points toward commonalities in the 
molecular and neural systems that function in hetero-
geneous brain organizations across animal phyla. A 
combinatory expression pattern of developmental 
control genes suggests the deep origin of key learning 
and memory centers, including in the complex sensory 
centers and cell types of the mushroom bodies of anne-
lids and arthropods, and the pallium of vertebrates 
(Tomer, Denes, Tessmar-Raible, & Arendt, 2010). Simi-
larly, Pfenning and colleagues (2014) proposed that vocal 
learning in birds and humans has evolved via convergent 
modification of brain pathways and molecular mecha-
nisms. G. Roth (2013) proposed that the centers for learn-
ing and memory in insect, octopus, avian, and mamma-
lian brains share a comparable associative network that 

“bring[s] the most diverse kinds of input into the same 
data format and [integrates] the respective kinds of 
information” (p. 292). These broad comparisons suggest 
that such brain structures in taxonomically and anatom-
ically diverse animals may share a number of features, 
including high neuron density, and similar organizations 
with hierarchical connectivity (G. Roth, 2013). Similarly, 
the vertebrate basal ganglia and insect central complex 
have been shown to exhibit a deep homology, sharing 
similar network organizations, neuromodulators, and 
developmental expression machineries (Strausfeld & 
Hirth, 2013). Accordingly, divergent structures may have 
converged on similar architectures and computational 
solutions to analogous behavioral challenges (Shigeno, 
2017). By simplifying brain measures by focusing only 
on size, we may miss out on opportunities to study how 
convergences in behavior and complex neural systems 
can inform how cognition evolves.

Nevertheless, the heterogeneity identified by these 
studies may also provide useful variation that can 
contribute to our understanding of brain and cogni-
tive evolution. For example, if neuronal density can 
vary independently of volume, why? And how does this 
impact the functional properties of the pathways that 
produce complex behaviors associated with cognitive 
prowess?

Effects of Size-Efficient Selection
Although heterogeneity in brain systems limits 

the scope of comparative studies of brain size, it also 
provides an opportunity to understand how selection 
acts on neural systems and why selection favors partic-
ular solutions over others. One key factor may be the 
role of size-efficient selection and redundancy in nervous 
systems. Neurons are energetically expensive cells, and 
their total cost scales predictably with the size of the 
neural system (Laughlin, de Ruyter van Steveninck, & 
Anderson, 1998). Selection must therefore constantly 
trade off behavioral performance with energetic and 
computational efficiency. Exploring how these trade-offs 
are resolved in real and artificial systems has the capac-
ity to greatly inform why some animals invest in larger 
brains and others do not (Burns, Foucaud, & Mery, 
2010; Chittka & Niven, 2009; Chittka, Rossiter, Skorup-
ski, & Fernando, 2012; Menzel & Giurfa, 2001).

Compared with vertebrates, arthropods have tiny 
brains and vastly fewer neurons in their nervous systems 
(Eberhard & Wcislo, 2011), yet many insects and spiders 
display highly sophisticated motor behaviors, social 
organizations, and cognitive abilities (Chittka & Niven, 
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2009). For example, insects and spiders exhibit numeri-
cal cognition (Cross & Jackson, 2017; Dacke & Srini-
vasan, 2008; Rodríguez, Briceño, Briceño-Aguilar, & 
Höbel, 2015), planning (Cross & Jackson, 2016; Tarsi-
tano & Jackson, 1997), selective attention (Jackson & Li, 
2004),  working memory (Brown & Sayde, 2013; Cross 
& Jackson, 2014; Zhang, Bock, Si, Tautz, & Srinivasan, 
2005), and they flexibly match behavior to changes in 
prey behavior (Wardill et al., 2017)—all typically stud-
ied in vertebrates and considered cognitively demanding 
(Chittka & Niven, 2009), illustrating that selection has 
favored highly efficient neuronal systems in these taxa.

Although an imperfect analogy, researchers’ expe-
rience with training artificial neural networks provides 
an insight into how efficient neural networks can be 
constructed. Indeed, researchers who aim to create 
an artificial network that serves as a pattern-learning 
machine have been largely inspired by the organization 
of the cerebral cortex in mammals (Mnih et al., 2015). 
This comparison between artificial networks and cerebral 
cortex organization was made more notable with recent 
advances in deep convolutional neural networks (an arti-
ficial neural network with a large number of intermediary 
layers, specialized in identifying patterns in perceptual 
inputs) such as the deep-Q network. Beyond mammals, 
this layerlike organization can also be identified in the 
brains of, for example, the common octopus and Drosoph-
ila, suggesting that a common functionality of informa-
tion processing patterns may be represented in both arti-
ficial and biological neural networks (Shigeno, 2017).

One of the key messages from such research is that 
training large neural networks is still difficult (Bengio, 
Simard, & Frasconi, 1994; Glorot & Bengio, 2010; 
Pascanu, Mikolov, & Bengio, 2013). Even when train-
ing is successful, it requires a great deal of time and 
input data, but, more importantly, training too large a 
network without the right algorithm often simply fails. 
In artificial systems, this happens when feedback from 
the environment is used by the neural network to deter-
mine certain flexible values of the computational archi-
tecture (e.g., connections between artificial neurons). 
This problem scales up: Greater numbers of flexible 
values (i.e., network parameters, which grow in tandem 
with “brain size”) require greater amounts of input data 
and increasingly complex algorithms. Such trade-offs 
are likely also faced by biological organisms. Thus, in 
addition to the energetic costs of larger brains, there are 
also informational costs (i.e., a need for more, better, 
and/or faster inputs) and computational costs (i.e., effi-
cient ways to use inputs, which may be architecturally 

difficult for natural selection to find) that limit brain size 
and may channel the response to selection away from 
simple increases in the total size of the system or brain.

The hand of size-efficient selection can also be seen 
in the network architecture of large brains that display a 
“small-world” topology (Ahn, Jeong, & Kim, 2006; Chen, 
Hall, & Chklovskii, 2006), which minimizes energetically 
costly long-range connections in favor of proportion-
ally high local connectivity (Bullmore & Sporns, 2012; 
Buzsáki, Geisler, Henze, & Wang, 2004; Watts & Stro-
gatz, 1998). Yet, if network architecture is constrained by 
energetic costs, then what does the evidence of variation 
in cellular scaling between brain components within and 
across species tell us about how brains evolve?

Variation in the scaling of neuron number with 
volume likely reflects differences in cell size and patterns 
of connectivity between neurons. The low neuron density 
in the neocortex in mammals, compared to that of the 
cerebellum, reflects the high proportion of the neocortex 
given over to white matter that consists of mid- to long-
range fibers connecting neurons (Ringo, 1991). Varia-
tion in the pattern of neuronal connections, and integra-
tion between brain regions, may help explain variation 
in cellular scaling. Similar explanations may also apply 
to scaling differences across taxa, with the high neuro-
nal density of primates being associated with rela-
tively smaller volumes of white matter and connectivity 
(Ventura-Antunes, Mota, & Herculano-Houzel, 2013). 
However, these scaling differences could also be driven 
in part by external influences related to ecology, body 
size, and morphology. Body size affects many aspects of 
an animal’s ecology, diet and energy consumption, and 
physiology (LaBarbera, 1986). It should be no surprise 
that this may extend to brain composition. For example, 
the ancestor of extant primates, and most of its descen-
dants, occupied arboreal niches (Cartmill, 1972) and 
had arboreal locomotor strategies that constrain body 
size and favor a low center of mass—a strategy that is 
likely inconsistent with volumetrically expensive modes 
of brain expansion. Selection pressures that favored the 
evolution of increased neuron number may therefore 
have been constrained by the physical demands of occu-
pying an arboreal niche, resulting in changes in neural 
development that were associated with increased neuron 
density. Similar, but stronger, selection regimes may 
also explain the extremely high neuron densities in bird 
brains (Olkowicz et al., 2016). Conversely, the much lower 
neuron densities of cetaceans (Eriksen & Pakkenberg, 
2007) would be consistent with the relaxed constraints 
on body size and locomotor evolution associated with 
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the rapid diversification of this lineage (Slater, Price, 
Santini, & Alfaro, 2010).

The expectation that brain size should be a simple 
predictor of cognitive performance ignores the effect of 
size-related selection pressures (Chittka & Niven, 2009; 
Chittka et al., 2012). Size-efficiency is most obvious when 
considering brain function in small invertebrates, but 
mounting evidence suggests that the same principles 
may apply even among vertebrates occupying distinct 
ecological niches that define the range of permissible 
body sizes and architectures (Olkowicz  et  al., 2016). 
Body size is regularly used as a “size-correction factor” 
on the assumption that residual brain size is more cogni-
tively relevant, but variation in body size itself reflects 
the presence of wider ecological and physical selection 
pressures that may render brain composition and func-
tion more divergent than size alone (Fitzpatrick et al., 
2012; Montgomery et al., 2010; Montgomery et al., 2013).

Correlations Suffer From Interference
Problems of noise are compounded by interference 

from the complex relationships between many behav-
ioral and anatomical traits. This interference influences 
our ability to determine not only whether a mecha-
nistic link exists between specific brain measures and 
a certain behavior or cognitive ability, but also their 
functional link and their adaptive evolutionary history. 
The comparative study of different species can provide 
insights into how differences in behavior link with differ-
ences in brains (Harvey & Pagel, 1991), and phylogenetic 
comparisons have been the most widely used approach 
to test hypotheses about adaptation (see the section 
Does Selection Act on Brain Size?). However, in addition 
to relying on unvalidated proxies, adaptive stories are 
frequently based on correlations. It is therefore neces-
sary to identify potential interference from unmeasured 
variables to gather evidence for causation before we can 
accept such adaptive accounts as accurate.

There are four main ways in which interference limits 
the potential to interpret whether correlations represent 
adaptations. First, any association between differences 
in brain measures and behavior might not be direct but 
be caused by interfering factors. For example, increases 
in brain size and group size both appear to occur in 
species that eat foods with high nutritional value; there-
fore, the correlation between brain size and group size 
might be the result of noise from dietary changes (Clut-
ton-Brock & Harvey, 1980; DeCasien, Williams, & 
Higham, 2017; L. E. Powell et al., 2017). Second, even if 
population studies indicate that a measure of brain size 

and a behavior are directly linked, comparisons across 
species cannot immediately reveal the causal direction 
of the association. For example, an association between 
increased brain size and decreased risk of predation 
might result from large-brained species being better 
able to avoid predation (Kotrschal et al., 2015), or from 
species with low predation pressure having the oppor-
tunity to invest additional resources into brain growth 
(Walsh, Broyles, Beston, & Munch, 2016). Third, exter-
nal factors frequently mediate the expression of any 
link across taxonomic groups. For example, switching 
to a frugivorous diet might lead to selection on olfac-
tory ability in nocturnal species and visual abilities in 
diurnal species, resulting in independent episodes of 
brain expansion driven by selection on distinct sensory 
modalities and brain components (Barton, Purvis & 
Harvey, 1995). Fourth, any current link between brain 
size and behavior might be the product of co-option, 
after the initial evolution of that brain aspect, rather 
than the driving selection pressure itself. For example, 
abilities such as object permanence (i.e., the ability to 
recall the presence of an out-of-sight object) might have 
been selected because individuals need to remember 
the spatial position and temporal availability of food 
sources in their home range, but it could subsequently 
be used to distinguish neighbors from strangers (Barton, 
1998). Similarly, selection for improved visual acuity in 
foraging primates may have later been co-opted to serve 
in individual recognition and social cognition (Barton, 
1998). Although some attempts have been made to tease 
apart these relationships using path analysis (Dunbar & 
Shultz, 2007b), this approach still suffers from the effects 
of colinearity among variables and does not provide a 
mechanistic understanding of causative relationships 
(Petraitis, Dunham, & Niewiarowski, 1996). Recent 
advances provide some ways to overcome these limita-
tions in the comparative approach (see Scaling Across 
Taxa to Integrate Evidence section), but as previous 
authors have pointed out (Garland, Bennett, & Rezende, 
2005; Gonzalez-Voyer & Hardenberg, 2014; Harvey & 
Pagel, 1991), interference fundamentally limits our abil-
ity to determine past evolutionary processes based on 
simple observations of species alive today.

These effects are likely to be particularly influential 
in the small data sets that characterize many comparative 
analyses of cognition and brain measures, due to the diffi-
culty in obtaining data. With small data sets, correlations 
are unlikely to be stable, unless the effect size is large, 
or noise and interference are low (Schönbrodt & Peru-
gini, 2013). In the vast majority of studies, accuracy and 
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sample size are directly traded off against each other due 
to logistical and cost constraints. Although this is inev-
itable, studies aiming for broad phylogenetic compari-
sons by relying on crude proxies of cognition supposedly 
measurable across very divergent taxonomic groups may 
be futile. Any trade-off that reduces accuracy to increase 
taxonomic breadth risks relying on invalid measures, 
resulting in unstable and potentially meaningless corre-
lations. Comparisons across large, diverse taxonomic 
groups can be helpful to identify and describe patterns 
of variation; however, key insights into the evolutionary 
history of traits and their associations will be gained by 
incorporating detailed population studies (see the section 
Bottom-Up versus Top-Down). As neuronanatomical, 
behavioral, and statistical tools become increasingly 
comprehensive and sophisticated, the solutions to these 
issues will be reachable in the near future.

Beyond Brain Size
Matching the Right Tool With the Right Question

In the previous two sections we emphasized how 
heterogeneity in brain composition and behavior/cogni-
tion, and the subsequent noise this generates, can influ-
ence our attempts to measure the relationships between 
these variables. We think these issues motivate turn-
ing from coarse-grained, “taxon-neutral” (or hominid-
inspired) measures to more local, taxon-specific studies. 
This is not to say that heterogeneity on its own under-
mines existing “monolithic” narratives of brain size 
and behavioral complexity. Rather, these narratives 
ignore the complexity of links between brain morphol-
ogy, body morphology, and behavior, and often abstract 
away from the important ecological and evolutionary 
drivers of complex behavior that we are trying to under-
stand. We therefore argue against privileging anthropo-
centric measures or criteria. Instead, we urge a recogni-
tion of the multidimensional and multileveled structure 
of brains, as well as the disparate and varied ways that 
brains evolve—in conjunction with bodies, and in 
response to specific environments—to produce complex 
behavior. Understanding how brains evolve in response 
to selection on behavioral complexity or cognition is 
therefore a two-step process. First, we must understand 
how behavioral variation emerges from variation in 
neural systems. Second, we must understand how brains 
change across species and how this might relate to differ-
ences in adaptive regimes.

Discovering and probing correlations between prop-
erties of brains and behavioral features can be part of a 

powerful comparative approach, but we should be wary 
of reification: mistaking an operationalized target of 
measurement with a “real” object (Whitehead, 1925). 
There is a difference between something being measur-
able and it being causally meaningful. We, and others 
(e.g., Chittka et al., 2012; Healy & Rowe, 2007), have 
questioned whether coarse-grained, cross-taxa measure-
ments, such as the encephalization quotient, pick out 

Table 3.  Examples of how behavior (directly tested) links with brain 
measures at the within-species level. 

Taxa Description

Black-capped  
chickadee  
(Poecile atricapillus)

Birds in harsher environments (higher latitudes) 
had larger hippocampus volumes with 
more neurons (T. C. Roth & Pravosudov, 
2009) and more neurogenesis (Chancellor, 
Roth, LaDage, & Pravosudov, 2011), were 
more efficient at recovering caches (spatial 
memory) and better at an associative learning 
task than conspecifics from less harsh 
environments (Pravosudov & Clayton, 2002).

Mountain chickadee 
(Poecile gambeli)

Individuals living at higher elevations had 
better spatial memory and more hippocam-
pal neurons. Higher elevation environments 
are more challenging because variables such 
as day length and temperature vary more 
annually than they do at lower elevations 
(Freas, LaDage, Roth, & Pravosudov, 2012).

Gambel’s white-
crowned sparrow 
(Zonotrichia leucoph-
rys gambelii)

Neurogenesis increases in the song control 
nucleus HVC just prior to the breeding season 
(Larson et al., 2013). The breeding season is 
correlated with a higher song quality than in 
the nonbreeding season (Meitzen, Thompson, 
Choi, Perkel, & Brenowitz, 2009; Tramontin & 
Brenowitz, 2000). After the breeding season, 
as neurons die in the song control center the 
song structure degrades accordingly (Larson, 
Thatra, Lee, & Brenowitz, 2014).

Wolf spider
(Hogna carolinensis)

Spiderlings that remain in sibling groups 
with their mother have larger protocere-
brums, capture prey more efficiently, and 
have better spatial memory than spiderlings 
raised in isolation (Punzo & Ludwig, 2002). 
Note that there were no differences in the 
number of neurons between conditions.

Honey bee
(Apis melifera)

Bees with larger total brain sizes (due only 
to an increase in mushroom body calyx size) 
were better able to learn and remember to 
associate a scent with proboscis extensions 
(Gronenberg & Couvillon, 2010). Mushroom 
bodies are involved in learning and memory.

Common octopus
(Octopus vulgaris)

Octopus and cuttlefish have the highest 
brain-to-body mass ratios of all invertebrates 
and the ratios exceed that of most fish and 
reptiles (Packard, 1972). Lesions to the 
octopus associative centers, vertical lobes, 
impair tactile and visual learning and memory 
(Hochner, Shomrat, & Fiorito, 2006).

Note: These are the kinds of data that can contribute to the bottom-
up approach to generate hypotheses based on validated data.
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relations that are in fact explanatory of the evolution-
ary and developmental relationships between brain, 
cognition, and behavior across lineages. In fact, similar 
arguments have been made since scientists first started 
comparing brain measures across species (Snell, 1892). 
Instead, we argue for an increased focus on a bottom-up 
approach that begins with (a) measurements of features 
that can be validated within particular taxa in ecologi-
cally relevant experimental contexts, before (b) testing 
the evolutionary variability in the relationships between 
brains and behavior across related species. This will help 
avoid reification by starting with intraspecific, experi-
mentally verifiable causal connections. The first task 
involves probing how various taxa respond behavior-
ally to their environments and other stimuli and deter-
mining whether those properties correlate with brain 
measures in revealing ways. These brain measures will 
frequently be more fine-grained than brain size, concern-
ing particular neuroanatomical and/or neurophysiologi-
cal features. The second task involves the construction 
and testing of hypotheses about the ancestral and evolu-
tionary relationships between those taxa, enabling us to 
expand to broader categories and correlations in a care-
ful, piecemeal fashion. We expect the results of these 
two tasks to relate in dynamic ways: Considerations of 
evolutionary scenarios are likely to highlight new kinds 
of experimental tests and hypotheses in local contexts, 
and these scenarios will depend crucially on information 
about local taxa.

Bottom-Up versus Top-Down
The top-down approach uses cross-species corre-

lations between brain measures and a trait of interest 
and can be useful for generating hypotheses. However, 
although these are important for motivating research 
into the links between brains and behavior, we argue 
that specific hypotheses should then be tested at the 
within-species level: from the bottom up. The bottom-up 
approach involves directly testing behavior and cogni-
tion in individuals to determine how they relate to brain 
measures in these particular individuals of a particu-
lar species (ideally measured at the same time as behav-
ior/cognition) to build validated, causative correlations 
(Chittka et al., 2012). When sufficient data on individu-
als from a variety of species have accumulated, phylo-
genetic meta-analyses can be conducted to test whether 
consistent patterns emerge and hold within and across 
species (see the section Scaling Across Taxa to Inte-
grate Evidence; Table 3). Correlations within contem-
porary populations can tell us whether processes are 

homologous or analogous across species and show the 
limits of which processes are likely to occur.

The contrast between top-down and bottom-up 
approaches is often presented as a difference in terms of 
investigating the ultimate (top-down looking at adapta-
tions and fitness) versus proximate (bottom-up looking 
at mechanisms and development) reasons for the evolu-
tion of a trait (Laland, Sterelny, Odling-Smee, Hoppitt, 
& Uller, 2011; Scott-Phillips, Dickins, & West, 2011). 
However, the approach we suggest does not necessarily 
make this potentially problematic distinction (Beatty, 
1994; Calcott, 2013; Cauchoix & Chaine, 2016; Laland, 
Odling-Smee, Hoppitt, & Uller, 2013). Our main argu-
ment for a bottom-up approach is to encourage research-
ers to have a clear understanding of what they are 
investigating rather than to rely on proxies. Detailed 
individual-based studies can not only reveal which brain 
measures are involved in a particular cognitive ability 
or behavior but also provide important insights into the 
ecological correlates and fitness consequences of varia-
tion in particular brain measures (Table 3). Further, start-
ing from behaviors in particular species makes ensuring 
ecological, developmental, and evolutionary relevance 
significantly more straightforward: It is a strategy for both 
avoiding reification and being sensitive to the heterogene-
ity of both brains and behavior. Embracing neural diver-
sity provides an opportunity to take a step below volu-
metric variation to try to understand what larger brains 
can do that smaller ones cannot. This research does not 
have to be designed from a blank slate: Although many of 
the previous comparative studies that link brain measures 
to behavior/cognition do not help us understand how 
brains produce behavioral variation, they can help direct 
researchers in choosing which questions to address.

For example, spatial navigation behavior has been 
directly linked to the hippocampus using the bottom-up 
approach. Supporting evidence comes from intraspecies 
behavioral studies in birds with hippocampal lesions, 
which indicates the causal relationship between loca-
tion memory and the hippocampus (Hampton & Shet-
tleworth, 1996; Patel, Clayton, & Krebs, 1997). In addi-
tion, ecological correlates were found in black-capped 
chickadees where individuals living in harsher environ-
ments (higher latitudes) were more efficient at recover-
ing caches (spatial memory) and had larger hippocam-
pal volumes with higher neuron densities and more 
neurogenesis than individuals at lower latitudes (Chan-
cellor, Roth, LaDage, & Pravosudov, 2011; Pravosu-
dov & Clayton, 2002; T. C. Roth & Pravosudov, 2009). 
Further, real-time brain activity has been paired with 
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navigational behavior in rats: When navigating through 
a maze, particular neurons (place cells) fired at particu-
lar locations in the hippocampus (Gupta, van der Meer, 
Touretzky, & Redish, 2010). Later, when the rats were 
not in the maze, rats mentally “ran” through the maze 
and even invented novel routes as evidenced by the 
sequences of the firing of their place cells (Gupta et al., 
2010). Place cell research and experimental designs that 
behaviorally test episodic-like memory (e.g., Clayton & 
Dickinson, 1998) provide evidence for brain–behavior 
causations from the bottom-up.

Where functional assays are either unfeasible or 
unethical, causality can be determined using a quantita-
tive genetics approach to model how multiple measured 
traits are related to one another. Analyzing brain 
and behavioral data in pedigrees or full-sibling/half-
sibling families allows the estimation of genetic corre-
lations between traits (i.e., demonstrating variation in 
two traits that share a common genetic basis). If varia-
tion in brain size or composition causatively produces 
variation in behavior we should expect strong genetic 
correlations between these traits. This approach can be 
used not only to test brain–behavior relationships (e.g., 

Kotrschal et al., 2014), but also to help resolve debates 
about, for example, the relative roles of domain-general 
and domain-specific cognition (e.g., Pedersen, Plomin, 
Nesselroade, & McClearn, 1992), and developmental 
models of brain evolution (e.g., Hager, Lu, Rosen, & 
Williams, 2012; Noreikiene et al., 2015).

The Comparative Approach as a Tool for Generating 
Hypotheses and Testing Generality

Although we argue for increased emphasis on intra-
specific studies to validate causative relationships, the 
comparative approach will remain an integral part of 
investigations of the evolution of brains and cognitive abili-
ties, though their scope and design might change. Phyloge-
netic studies extend and inform detailed intraspecific stud-
ies, ideally leading to constant feedback that can enhance 
both (Figure  3). Continuously developing comparative 
approaches have the potential to reduce noise from small 
sample sizes, reveal relationships among multiple interfer-
ing traits, and indicate the directionality of a causal asso-
ciation—though not all at once. Combining findings from 
multiple populations can inform mechanistic studies by 
illustrating the range of possible solutions that might exist, 

Figure 3. Integrating the top-down and bottom-up approaches.
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indicating where natural experiments might have shaped 
evolution in similar ways, revealing potential mediators 
by indicating in which taxonomic groups established rela-
tionships break down, and showing which species to target 
for further study. In particular, the systematic combina-
tion of effect sizes from population studies in phylogenetic 
meta-analyses reduces noise and can test the robustness 
of an association between brain measures and behavior 
while revealing potential mediators that systematically 
change the form of the association in some populations 
or species (Nakagawa & Santos, 2012). For example, they 
might reveal whether the heritability of brain measures 
might depend on environmental variability.

In turn, the historical component of phylogenetic 
reconstructions extends population-level studies by 
revealing whether detected patterns are evolutionarily 
stable or lineage specific, and they can contribute to 
determining causal or adaptive relationships between 
traits by revealing temporal contingencies (Beaulieu, 
Jhwueng, Boettiger, & O’Meara, 2012; Pagel, 1999; 
Pagel & Meade, 2006) in whether a behavior consistently 
changed prior to or after associated changes in brain 
measures. The historical component provided by phylo-
genetic comparisons is necessary to determine whether 
traits not only occur together but also evolved together. 
For example, although the enlarged brains (compared to 
most other reptiles) among birds appear to be linked to 
cognitive capacities required for flight (Balanoff, Bever, 
Rowe, & Norell, 2013), evolutionary origins of flying 
behavior are not associated with particular increases in 
endocranial volume (Balanoff, Smaers, & Turner, 2016).

Our discussion of the power of the comparative 
approach in elucidating the adaptive history of traits 
indicates the inherent limits in fully explaining traits that 
supposedly make any species unique. The evolutionary 
processes themselves are not unique, but the particular 
combination of processes at play are. As such, under-
standing how such processes come together in a particular 
instance is problematic due to a lack of evidence required 
to confirm these hypotheses (Tucker, 1998). In addition, 
studies that focus on extraordinary traits in a single 
species (such as humans) frequently risk misrepresenting 
evolutionary processes by fixating on the endpoint as an 
optimal solution, whereas evolution typically progresses 
by responding to stochastic variation in selection regimes, 
incrementally adapting to the environment.

Scaling Across Taxa to Integrate Evidence
The bottom-up approach we suggest means that scal-

ing across taxa will initially be more difficult to achieve 

because studies will have to be designed to take into 
account the characteristics of the particular species, as 
well as its phylogenetic and ecological context. Questions, 
approaches, and methods might need time to converge or 
to be repeated across a relevant sample of different taxa 
(Figure 3). However, over an intermediate time frame, 
the bottom-up approach will be invaluable for compar-
ing and elucidating brain and cognitive evolution across 
taxa. Although the bottom-up approach initially makes 
scaling look difficult, we think it has two advantages. 
First, rather than positing or assuming a coarse-grained, 
cross-taxa category and applying it across a range of 
cases (thus losing ecological relevance and increas-
ing the potential for post hoc explanations and reifica-
tion), the bottom-up approach makes scaling a much 
more piecemeal, empirically tractable matter. Second, 
it more easily allows scaling to take place in an evolu-
tionary context. Understanding whether the same genes, 
genetic pathways, neural regions, neural physiology, and/
or neural networks are involved in generating cognitive 
abilities across taxa will provide us with an understand-
ing of how evolution has shaped the diversity of brains 
and the behavior they produce. In this sense, phenotypic 
heterogeneity and taxonomic diversity become a tool for 
discovery rather than a source of statistical noise.

It is not straightforward to bring together the dispa-
rate evidence involved in shifting from local experimen-
tal contexts to cross-taxa, evolutionary hypotheses. 
However, a detailed understanding of the mechanisms 
underlying brain measures and behavior is crucial to 
clarify whether traits are homologous, analogous, or 
completely independent solutions to ecological chal-
lenges. To give a sense of the possibilities for integra-
tion, we sketch three kinds of approaches to shifting 
from local (bottom-up) to general (top-down) scales 
(from Currie, 2013; see also Mikhalevich et al., 2017):

1.	 Detecting homologous relationships, where the same 
brain measures and behavior are related to the same 
environment across species descended from a recent 
common ancestor (Currie, 2012), offers opportuni-
ties to combine independent findings into one mech-
anistic pathway. In these instances, inheritance and 
stabilizing selection have maintained a stable trait, 
such that findings from one species can be accu-
rately inferred for another. Such investigations will 
rely on integrated models that bring together dispa-
rate evidence to support hypotheses about the evolu-
tionary, developmental, and ecological features of a 
particular lineage.
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2.	 Determining whether the same behavior occurs in 
similar environments across distantly related species 
can indicate environments most likely relevant for the 
emergence of the behavior. A bottom-up approach 
can reveal whether the observed behavior represents 
analogous reemergence of a behavior within the 
same adaptative environment (e.g., repeated evolu-
tion of feathers across dinosaurs; B. K. Hall, 2003; 
McGhee, 2011). This approach will rely on paral-
lel models that identify brain–behavior correlations 
within related taxa for which the main principles of 
brain evolution are known to be similar. As closely 
related taxa will likely share meaningful brain–
behavior correlations, such models are likely to be 
well validated, stable, and causally meaningful.

3.	 Observing a similar behavior in similar adap-
tive environments can reveal whether the behav-
ior represents a convergent solution to the same 
environment (e.g., feathered wings for flight vs. bat 
wings) or whether the relationship is more complex 
(e.g., wings to escape into the air vs. jumping legs; 
Currie, 2014; Pearce, 2012; R. Powell, 2007). This 
type of convergent model is similar to the top-down 
approach; however, convergent modeling avoids 
many of the cross-taxa comparison problems by (a) 
being placed in an explicitly ecological and phyloge-
netic context, (b) being carried out alongside paral-
lel and integrated modeling, and (c) avoiding over-
interpretation that arises from defining categories 
based on superficial similarities because convergent 
models are inherently sensitive to the explanatory 
limits of analogous categories (see Griffiths, 1994, 
for a discussion of these limits).

We may need to infer evolutionary relationships 
between brain measures, behavior, and environments 
across taxa in a wide variety of different scales, and the 
ecological and evolutionary relevance granted by start-
ing in local contexts is crucial for doing this.

Conclusion

We support a two-pronged strategy for understanding 
cross-taxa relationships between brain size, brain compo-
sition, behavior, and cognition that focuses on ecologi-
cally relevant contexts rather than attempting broad scale 
comparisons at gross phenotypic levels. The first prong 
is an experimental program examining correlations 
between behavior/cognition and brain structures at the 

smallest level at which variation can be detected and can 
be studied both from a mechanistic perspective (linking 
particular structures in the brain to behavior) and from 
a functional perspective (the ecological relevance of the 
behavior): Comparing individuals within species or from 
closely related species. The second prong involves the 
piecemeal identification of correlations at broader taxo-
nomic scales. We have contrasted our approach with one 
that has become dominant in recent years. The alternative 
approach relies on coarse-grained phenotypes and proxy 
measures, typically in anthropocentric contexts, and 
attempts to apply these to cross-taxa, correlative contexts.

We have highlighted a number of limitations to this 
approach. First, applying anthropocentric conceptions of 
brain correlates with behavior to disparate taxa comes at 
the crucial cost of ecological and evolutionary coherence. 
Second, the heterogeneity of brain composition and behav-
ior makes coarse-grained conceptions problematic because 
cross-taxa comparisons inevitably discount variation that 
matters for particular lineages. This variation creates 
noise in statistical comparisons. Heterogeneity can also be 
a source of interference because various interdependen-
cies both between brain structures (e.g., in development or 
function) and between multiple behavioral and ecological 
traits undermine our capacity to identify selection pres-
sures shaping individual traits or systems. Third, begin-
ning with “general” measures of intelligence potentially 
leads to reification and the establishment of misguided or 
causally meaningless properties. The top-down approach 
has not necessarily been misguided itself: Scientific 
progress is often facilitated by applying relatively crude 
measures, highlighting the value of using many investiga-
tive techniques. Indeed, the heterogeneity of these traits 
have become known to us because the top-down approach 
has exposed inconsistencies through cross-species corre-
lations. However, it is time to take the cognitive, behav-
ioral, and brain features of particular lineages seriously, 
rather than demand that they be shoehorned into anthro-
pocentric notions or judged against some general metric. 
In doing so, a more general understanding of the nature of 
cognition and behavior, and their relationship with brain 
measures, will be built from the bottom up.
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