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Abstract

A new shrinkage estimator for the Poisson model is introduced in this paper. This method is a generalization of the Liu
(1993) estimator originally developed for the linear regression model and will be generalized here to be used instead of
the classical maximum likelihood (ML) method in the presence of multicollinearity since the mean squared error (MSE)
of ML becomes inflated in that situation. Furthermore, this paper derives the optimal value of the shrinkage parameter
and based on this value some methods of how the shrinkage parameter should be estimated are suggested. Using Monte
Carlo simulation where the MSE and mean absolute error (MAE) are calculated it is shown that when the Liu estimator
is applied with these proposed estimators of the shrinkage parameter it always outperforms the ML.

Keywords: Estimation, MSE, MAE, Multicollinearity, Poisson, Liu, Simulation

AMS Subject classification: Primary 62J07, Secondary 62F10

1. Introduction

In the field of economics, health, social and physical sciences, the dependent variable often comes in the form of a non-
negative integers or counts. In that situation one often apply the Poisson regression model which is usually estimated
by maximum likelihood (ML) where the solution to a non-linear equation is found by applying iterative weighted least
square (IWLS). This method has been shown in Mansson and Shukur (2011) to be sensitive to multicollinearity and it
becomes difficult to make a valid statistical inference since the mean squared error (MSE) becomes inflated. In Mansson
and Shukur (2011), a ridge regression estimator (RRE) was presented for logistic regression which was a generalization
of that proposed for linear regression by Hoerl and Kennard (1970). It has been shown that the RRE outperformed the
ML.

The RRE is effective but as Liu (1993) pointed out it has the disadvantage that the estimated parameters are complicated
non-linear functions of the ridge parameter k. Therefore, in this paper another shrinkage estimator for the Poisson model
will be proposed which is a generalization of the method proposed for linear regression by Liu (1993). The advantage
of this method is that the estimators are a linear function of the shrinkage parameter d. For this reason, this shrinkage
estimator has become more popular during recent years (see for examples, Akdeneiz & Kaciranlar, 1995; Kaciranlar,
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2003; Alheety & Kibria, 2009 among others).

The purpose of this paper is to solve the problem of an inflated MSE of the ML estimator by applying a Liu estimator.
Furthermore, we derive the optimal value of the shrinkage parameter and based on this value we suggest some methods
of how the shrinkage parameter should be estimated. In a Monte Carlo study we evaluate the performance of the ML
and the Liu estimator applied with the suggested estimators of the shrinkage parameter. The performance criteria used
in the simulation study is the MSE and mean absolute error (MAE). In our simulation, factors including the degree of
correlation, the sample size and the number of explanatory variables are varied. In this application, the effect of the usage
of cars and trucks on the number of killed pedestrians in different counties in Sweden is investigated.

This paper is organized as follows: In Section 2, the statistical methodology is described. In Section 3, the design of the
Monte Carlo experiment is presented and the result from the simulation study is discussed. An application is presented in
Section 4. Finally, a brief summary and conclusions is given in section 5.

2. Methodology

2.1 Poisson Regression

The Poisson regression model is a benchmark model when the dependent variable (yi) comes in the form of counts data
and distributed as Po (µi), where µi = exp (xiβ), xi is the ith row of X which is a n× (p + 1) data matrix with p explanatory
variables and β is a (p + 1) × 1 vector of coefficients. The log likelihood of this model may be written as:

l (µ; y) =
n∑

i=1

exp (xiβ) +
n∑

i=1

yi log
(
exp (xiβ)

)
+ log

 n∏
i=1

yi!

 . (1)

The most common method to maximize the likelihood function is to apply the IWLS algorithm:

β̂ML =
(
X′ŴX

)−1 (
X′Ŵẑ

)
, (2)

where Ŵ = diag
[
µ̂i

]
and ẑ is a vector where the ith element equals ẑi = log (µ̂i)+

yi−µ̂i
µ̂i

. The MSE of this estimator equals:

E
(
L2

ML

)
= E

(
β̂ML − β

)′ (
β̂ML − β

)
= tr

(
X′WX

)−1
=

J∑
j=1

1
λ j
, (3)

where λ j is the jth eigenvalue of the X′WX matrix. When the explanatory variables are highly correlated the weighted
matrix of cross-products, X′WX, is ill-conditioned which leads to instability and high variance of the ML estimator. In
that situation it is very hard to interpret the estimated parameters since the vector of estimated coefficients is on average
too long. By noting that the IWLS algorithm approximately minimizes the weighted sum of squared error (WSSE) one
may apply a generalization of the Liu (1993) estimator for linear regression instead:

β̂d =
(
X′ŴX + I

)−1 (
X′ŴX + dI

)
β̂ML (4)

For this estimator we have replaced the matrix of cross-products used in the Liu (1993) estimator with the weighted matrix
of cross-products and the ordinary least square estimator (OLS) of βwith the ML estimator. The MSE of the Liu estimator
equals:

MS E
(
β̂d

)
= E

(
L2

d

)
= E

(
β̂d − β

)′ (
β̂d − β

)
= E

[(
β̂ML − β

)′
Z′Z

(
β̂ML − β

)]
+ (Zβ − β)′ (Zβ − β)

= tr
[(
β̂ML − β

)′ (
β̂ML − β

)
Z′Z

]
+ k2β′ (X′WX + kI)−2 β

=
∑J

j=1
(λ j+d)2

λ j(λ j+1)2 + (d − 1)2 ∑J
j=1

α2
j

(λ j+1)2

(5)

where α2
j is defined as the jth element of γβ and γ is the eigenvector defined such that X′WX = γ′Λγ, where Λ equals

diag
(
λ j

)
. In order to show that there exist a value of d bounded between zero and one so that MS E

(
β̂d

)
< MS E

(
β̂ML

)
,

we start by taking the first derivative of equation (5) with respect to d:

g′ (d) = 2
J∑

j=1

λ j + d

λ j

(
λ j + 1

)2 + 2 (d − 1)
J∑

j=1

α2
j(

λ j + 1
)2 (6)
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and then by inserting the value one in equation (6) we get:

g′ (d) = 2
J∑

j=1

1

λ j

(
λ j + 1

) (7)

which is greater than zero since λ j > 0. Hence, there exists a value of d that lies between zero and one so that MS E
(
β̂d

)
<

MS E
(
β̂ML

)
. Furthermore, the optimal value of any individual parameter d j can be found by setting equation (6) to zero

and solve for d j. Then it may be shown that

d j =
α2

j − 1
1
λ j
+ α2

j

, (8)

corresponds to the optimal value of the shrinkage parameter. Hence, the optimal value of d j is negative when α2
j is less

than one and positive when it is greater than one. However, just as in Liu (1993) the shrinkage parameter will be limited
to take on values only between zero and one.

2.2 Estimating the Shrinkage Parameter

The value of d may only take on values between zero and one and there does not exist a definite rule of how to estimate
it. However, in this paper some methods will be proposed that are based on the work for linear ridge regression by for
instance Hoerl and Kennard (1970), Kibria (2003) and Khalaf and Shukur (2005). As in those papers, the shrinkage
parameter, d j, will be estimated by a single value d̂. The first estimator is the following:

D1 = max

0, α̂2
max − 1

1
λ̂max
+ α̂2

max

 ,
where we define α̂2

max and λ̂max to be the maximum element of α̂2
j and X′ŴX, respectively. Replacing the values of the

unknown parameters with the maximum value of the unbiased estimators is an idea taken from Hoerl and Kennard (1970).
However, for the Liu estimator another maximum operator is also used that will ensure that the estimated value of the
shrinkage parameter is not negative. Furthermore, the following estimators will be used:

D2 = max

0,median

 α̂2
j − 1

1
λ̂ j
+ α̂2

j


 ,D3 = max

0, 1
p

J∑
j

α̂2
j − 1

1
λ̂ j
+ α̂2

j

 ,
D4 = max

0,max

 α̂2
j − 1

1
λ̂ j
+ α̂2

j


 ,D5 = max

0,min

 α̂2
j − 1

1
λ̂ j
+ α̂2

j


 .

Using the average value and the median is very common when estimating the shrinkage parameter for ridge parameter
and the D2 and D3 estimators has direct counterparts in equation (13) and (15) in Kibria (2003). Using other quantiles
such as the maximum value, was successfully applied in Khalaf and Shukur (2005) and the idea behind the D4 and D5
estimator are taken from those papers.

2.3 Judging the Performance of the Estimators

To investigate the performance of the Liu and the ML methods, we calculate the MSE using the following equation:

MS E =

∑R
i=1

(
β̂ − β

)′ (
β̂ − β

)
R

, (9)

and the MAE as:

MAE =

∑R
i=1

∣∣∣β̂ − β∣∣∣i
R

(10)

where β̂ is the estimator of β obtained from either ML or Liu and R equals 2000 which corresponds to the number of
replicates used in the Monte Carlo simulation.

3. The Monte Carlo Simulation

This section consists of a brief description of how the data is generated together with a discussion of our findings.
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3.1 The Design of the Experiment

The dependent variable of the Poisson regression model is generated using pseudo-random numbers from the Po (µi)
distribution, where

µi = exp
(
β0 + β1xi1 + · · · + βpxip

)
, i = 1, 2, ...n, j = 1, 2, ...p. (11)

Following Gibbons (1981), the parameter values in equation (11) are chosen so that
∑p

j=1 β
2
j = 1 and β1 = · · · = βp. To be

able to generate data with different degrees of correlation we use the following formula to obtain the regressors:

xi j =
(
1 − ρ2

)(1/2)
zi j + ρzip, i = 1, 2, ...n, j = 1, 2, ...p (12)

where zi j are pseudo-random numbers generated using the standard normal distribution and ρ2represents the degree of
correlation (see, Kibria, 2003; Muniz & Kibria, 2009 among others). In the design of the experiment three different values
of ρ2 corresponding to 0.85, 0.95 and 0.99 are considered. To reduce eventual start-up value effects we discard the first
200 observations.

In the design of the experiment the factors n and p are also varied. Since the ML estimators are consistent, increasing
the sample size is assumed to lower MSE and MAE while p is assumed to increases the instability of X′WX and lead to
an increase of both measures of performance. We use sample sizes corresponding to 15, 20, 30, 50 and 100 degrees of
freedoms (df=n-p) and number of regressors p equals to 2 and 4.

3.2 Results Discussion

The estimated MSE and MAE for p=2 and 4 are presented in Tables 1 and 2 respectively. It is evident from these tables
that the degree of correlation and the number of explanatory variables inflate both the MSE and MAE while increasing
the sample size leads to a decrease of both measures of performance. We can also see that the MSE increases more
when considering the MSE instead of the MAE criteria. Hence, the gain of applying Liu is larger in terms of MSE than
MAE. Furthermore, when looking at both measures of performance we can see that the estimator D5 is always either the
shrinkage parameter that minimizes the MSE and MAE or it is very close to the shrinkage parameter that minimizes these
loss functions.

4. Conclusions

In this paper, the shrinkage estimator developed by Liu (1993) for the linear regression model has been extended for the
Poisson regression model. This estimator is proposed in order to reduce the inflation of the variance of the ML estimator
caused by multicollinearity. The Liu and the ML estimators are evaluated by means of Monte Carlo simulations. Both
MSE and MAE are used as a performance criteria and factors including the degree of correlation, the sample size and
the number of explanatory variables are varied. Both measures of performance show that the proposed Liu estimators
are better than ML in the sense of smaller MSE and MAE. We also observed that the estimator D5 is often the shrinkage
parameter that minimizes the estimates MSE and MAE.
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Table 1. Estimated MSE and MAE of the estimators when p=2

Estimated MSE Estimated MAE
ML D1 D2 D3 D4 D5 ML D1 D2 D3 D4 D5

ρ2=0.85
50 0.514 0.244 0.216 0.216 0.251 0.210 0.742 0.517 0.499 0.499 0.520 0.495
75 0.350 0.198 0.183 0.183 0.201 0.179 0.626 0.478 0.468 0.468 0.479 0.465
100 0.181 0.125 0.122 0.122 0.125 0.122 0.459 0.387 0.385 0.385 0.387 0.385
150 0.098 0.080 0.080 0.080 0.080 0.080 0.339 0.308 0.308 0.308 0.308 0.308
200 0.038 0.035 0.035 0.035 0.035 0.035 0.215 0.207 0.207 0.207 0.207 0.207
ρ2=0.95
50 1.755 0.581 0.442 0.442 0.656 0.375 1.391 0.730 0.655 0.655 0.761 0.621
75 1.044 0.379 0.302 0.302 0.396 0.279 1.104 0.633 0.589 0.589 0.644 0.575
100 0.621 0.273 0.250 0.250 0.279 0.239 0.847 0.552 0.538 0.538 0.556 0.531
150 0.324 0.186 0.183 0.183 0.187 0.181 0.625 0.477 0.474 0.474 0.477 0.473
200 0.135 0.103 0.103 0.103 0.103 0.103 0.409 0.359 0.359 0.359 0.359 0.359
ρ2=0.99
50 10.49 3.366 3.277 3.277 4.887 2.453 3.345 1.439 1.305 1.305 1.748 1.094
75 6.396 1.922 1.764 1.764 2.679 1.356 2.685 1.150 1.009 1.009 1.338 0.887
100 3.443 1.010 0.809 0.809 1.221 0.670 2.001 0.870 0.770 0.770 0.951 0.712
150 1.767 0.541 0.445 0.445 0.582 0.414 1.473 0.718 0.667 0.667 0.742 0.648
200 0.774 0.310 0.298 0.298 0.318 0.290 0.984 0.597 0.590 0.590 0.602 0.585

Table 2. Estimated MSE and MAE of the estimators when p=4

Estimated MSE Estimated MAE
ML D1 D2 D3 D4 D5 ML D1 D2 D3 D4 D5

ρ2=0.85
50 1.810 0.861 0.645 0.572 1.079 0.465 1.846 1.260 1.109 1.082 1.341 1.049
75 0.916 0.483 0.386 0.374 0.533 0.366 1.383 1.025 0.956 0.948 1.052 0.943
100 0.424 0.286 0.268 0.268 0.290 0.267 0.978 0.815 0.800 0.800 0.818 0.800
150 0.194 0.158 0.157 0.157 0.158 0.157 0.671 0.613 0.612 0.612 0.613 0.612
200 0.072 0.067 0.067 0.067 0.067 0.067 0.417 0.404 0.404 0.404 0.404 0.404
ρ2=0.95
50 5.658 2.191 1.627 1.231 3.592 0.695 3.253 1.878 1.521 1.395 2.260 1.225
75 3.165 1.324 0.877 0.753 1.780 0.606 2.571 1.607 1.337 1.276 1.786 1.207
100 1.513 0.756 0.544 0.520 0.832 0.501 1.818 1.270 1.133 1.119 1.312 1.109
150 0.618 0.387 0.349 0.349 0.394 0.348 1.187 0.949 0.920 0.920 0.953 0.920
200 0.226 0.181 0.180 0.180 0.181 0.180 0.733 0.662 0.661 0.661 0.662 0.661
ρ2=0.99
50 27.75 9.273 8.294 7.180 20.554 2.621 7.329 3.530 3.052 2.810 5.577 1.553
75 17.44 6.077 4.952 3.854 11.940 1.424 5.880 2.988 2.446 2.168 4.274 1.390
100 7.538 2.631 1.740 1.370 4.320 0.750 4.050 2.173 1.699 1.555 2.725 1.279
150 3.471 1.435 0.870 0.730 1.795 0.616 2.791 1.687 1.362 1.297 1.852 1.236
200 1.321 0.693 0.520 0.510 0.728 0.508 1.739 1.241 1.127 1.122 1.263 1.121
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Abstract

This paper aims to provide a framework for modeling and estimating the implied volatilities of stock prices using stochas-
tic processes. The CIR (Cox-Ingersoll-Ross) model is proposed to capture the mean reversion characteristic as shown in
the movement of the daily implied volatilities of the S&P 500 Index and Nikkei 225 Index. The maximum likelihood pro-
cedure is applied to estimate the parameters appearing in the model, where both analytical and approximation techniques
are sought to handle the difficulties arising from the corresponding optimization problem. The procedure is validated with
varying sampling methods by setting different time horizons and observation intervals. Results from numerical experi-
ments show that the stochastic volatility model proposed in this paper functions well in both the US and Japan markets.
As one of the applications, our approach is tested to be effective in detecting jumps in likelihood ratios, hence useful for
forecasting stock market shocks and crisis.

Keywords: Stock volatility, CIR model, Maximum likelihood ratio, Financial forecasting

1. Introduction

Implied volatility plays a key role in studies of financial options and derivatives. A classic example is the Black-Schole
option pricing method (Black and Scholes, 1973), where the implied volatilities of the same underlying asset with the
same expiration date are assumed as constant, even when the strike prices are different. Here one of the most important
assumptions of BS model is the constant volatility, or local volatility. However, abundant studies have questioned the
validity of the constant volatility assumption. Dumas et al. (1998) analyzes the prices of S&P 500 index options for the
period from June 1988 to December 1992, and shows that the volatility is a function of asset price and time to maturity.
Derman et al. (1994) argues that the implied volatility is a function of share price, exercise price, time to maturity and a
drift function. In the experiment of Pen̂a et al. (1999), moneyness is considered as a determining factor of the implied
volatility for options on the Spanish IBEX-35 exchange market. In Cont and Fontseca (2002), a contrast study focusing on
out of money options is reported using S&P500 index and FTSE100 index. Cassese and Guidolin (2003) studies whether
the implied volatility is a function of time to maturity, moneyness, or the interaction between the two with data of the
DOTM options of MIB30 index on Italian market.

Understanding implied volatility is important to both theoretical and practical finance as it offers a reliable barometer to
forecast the trend of financial market and largely affects the values of option contracts. Most of the previous literatures in
this topic are of empirical in nature. In this work, we intend to address the problem by structural modeling approach where
the CIR mean-reverting process is adopted to describe the movement of implied volatilities over time. The exponential
average method is used to generate the daily implied volatilities for S&P 500 and Nikkei 225, for the purpose of which
Chaikin’s volatility function is implemented in finding the spread between the stocks’ high price and low price and in
determining the percent of changes in moving average of high price against low price for a specified time interval. The
maximum likelihood procedure is carried out to estimate the parameters of the CIR model based on discretization of the
model and approximation of the corresponding transitional probability density function. Matlab algorithms are proved to
be helpful in solving the pertaining optimization problems arising from the maximum likelihood procedure. Likelihood
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ratio analysis of historical movement of volatilities is carried out for predicting stock market shocks.

The rest of the paper is organized as follows. Section 2 discusses the methodology and procedures of our study, including
data description and model derivation. Section 3 contains data analysis and empirical results of our study. Section 4 is to
show the applications of our modeling and estimation procedure for financial crisis prediction. Concluding remarks and
and possible future directions are provided in Section 5.

2. Methodology and Procedures

2.1 Data for the Study

The data sets used in this paper are S&P 500 index and Nikkei 225 index. The S&P 500 index is chosen for the following
considerations. First, since its inception in 1957, S&P 500 index has been a barometer for the American economy, which
draws interests from many researchers. The market trend predicted by the many financial analysts is mostly based on
observing the movement of S&P 500 index, although such a trend analysis may not always quickly foresee the potential
bubbles existed in the market. Second, since there is a large trading volume of S&P 500 index every day, the data set is
abundant and representative for the experiment in this model. Third, the data are maintained continuous and consistent
in S&P 500 index, which is critically important for model testing and selection. Nikkei 225 is a stock market index
for the Tokyo Stock Exchange. As the most widely quoted average of Japanese equities, Nikkei 225 is a benchmark to
value the Japanese economy. Previous literatures such as Kunitomo and Sato (2009) have emphasized the importance
of Nikkei 225 for Japanese market. The financial systems are relatively mature in the United States and Japan, which is
also one reason to choose the indexes of these two countries. The data entry is composed of trading date, high price and
low price. The data sets are openly available at yahoofinance. All public holidays are deleted from the raw data entries
for considerations of consistency and continuity. The implied volatilities can be computed by the method of exponential
average, for instance. The parameters for CIR model can be estimated through maximum likelihood procedure, although
technical points such as the singularities arising from the optimization iterations involving Bessel type of functions have
to be addressed separately.

2.2 Model Description

The adoption of a mean-reverting stochastic process expressed in terms of, say, the Ornstein Uhlenbeck equation

d
√

v(t) = −β
√

v(t)dt + δdZ(t) (1)

where v(t) is the variance of the stock, and Z(t) is a Brownian Motion, and β and δ are positive constants, for modeling
volatilities can be traced back to Stein and Stein (1991), for instance, where several theoretical favorable consequences
ensuing from such a gratification have been discussed, including the mathematical tractability in the case of simple coupon
bond pricing. On the other hand, some undesirable implications, mainly the allowing of negative variance, have also been
noticed and explained in Stein and Stein (1991). Therefore, it is more theoretically plausible and practically useful to
adopt a model with only non-negative trajectories.

To transform equation (1), let x(t) =
√

v(t), one gets

dx = −βxdt + δdZ(t)

Applying Ito′s lemma with d f = dv(t) = dx2(t) (Heston,1993) gives

dx2(t) =
∂ f
∂x(t)

dx(t) +
1
2
∂2 f
∂x(t)2 dx2(t)

= 2x(t)(−βx(t)dt + δdZ(t)) + δ2dt

= (δ2 − 2βx2(t))dt + 2x(t)δdZ(t)

Replacing x(t) by
√

v(t) yields
dv(t) = (δ2 − 2βv(t))dt + 2δ

√
v(t)dZ(t), (2)

which is a special case of the usual CIR model:

dv(t) = k(θ − v(t))dt + σ
√

v(t)dZ(t) (3)

In this way, one can capture the variance or the volatility of the stock prices described by the CIR model. While Heston
(1992) mainly concerns the theoretical benefits of adopting such models in terms of the option pricing, the work contained
herein focuses on the validity and robustness of such modelings from statistical analysis perspective. In particular, we
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are more interested in the consistency and convergence of the parameter estimation via maximum likelihood procedure,
for instance. We are also interested in whether the model is applicable to predicting stock plunges and economic cycles,
which are more practical and reasonable concerns from practitioner and policy maker’s point of view.

2.3 ML Estimation for CIR Process

Under the Euler-Maruyama approximation, we can rewrite equation (3) as

∆v(t) = k(θ − v(t))∆t + σ
√

v(t)∆Z(t)

or equivalently, by the definition of ∆v(t) = v(t + ∆t) − v(t) and εt = ∆Z(t)

v(t + ∆t) − v(t) = k(θ − v(t))∆t + σ
√

v(t)εt (4)

where εt is to be minimized in the following maximum likelihood procedure.

To obtain maximum likelihood estimation of the CIR process, we first notice that the transitional probability density for
the process is explicitly given as (Cox et al., 1985)

p(∆, x, y) = c ∗ exp(−u − v) ∗ (
u
v

)
q
2 ∗ Iq(2

√
uv)

where

c =
2k

σ2(1 − exp(−k∆))

q =
2kθ
σ2 − 1

u = cx ∗ exp(−k∆)
v = cy

from which one can derive the log-likelihood function of CIR process :

ln L(m) = (N − 1) ln c +
N−1∑
i=1

(−ut(i) − vt(i+1)

+0.5q ln
vt(i+1)

ut(i)
+ ln Iq[2

√
ut(i)vt(i+1)])

where m = (k, θ, σ) denotes the estimation of the parameters for the model, and N is the total number of observations. To
obtain the estimated parameters m = (k, θ, σ), one needs to maximize the log-likelihood function ln L(m). The maximum
of ln L(m) can be solved by the system of equations (5) :

∂ ln L(m)
∂k

= 0
∂ ln L(m)

∂θ
= 0

∂ ln L(m)
∂σ

= 0

(5)

However, the estimation of m = (k, θ, σ) is not trivial with a modified Bessel function of the first kind Iq(2
√

uv) contained
in the expression, which is related one of the two linearly independent solutions to the following modified Bessel’s
differential equation:

x2 d2y
dx2 + x

dy
dx
− (x2 + n2)y = 0

Consider the definition of the Modified Bessel’s function of the first kind of order n:

In(x) =
xn

2nΓ(n + 1)
[1 +

x2

2(2n + 2)
+

x4

2 ∗ 4(2n + 2) + (2n + 4)
+ · · · ]

=

∞∑
k=0

xn

2nΓ(n + 1)
∗

( x
2 )2k

(n+k)!
n! k!

=

∞∑
k=0

( x
2 )2k+n

n! (n+k)!
n! k!

=

∞∑
k=0

( x
2 )2k+n

k!Γ(n + k + 1)
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Substituting x = 2
√

uv, n = q into the equation Ix(n) yields

Iq(2
√

uv) =
∞∑

k=0

(−1)k( 2
√

uv
2 )q+2k

k!Γ(q + k + 1)

It is costly to solve the system of the equations (5) for obtaining the estimated parameters m = (k, θ, σ) without leveraging
on computing packages provided by the fminsearch function in Matlab, for instance. However, the Matlab routine pro-
duces different answers for the estimated parameters with different initial values. In this paper, the ordinary least square
procedure proposed by Kladıvkos (2011) is used to obtain the initial points of optimization.

Plug in the observed sample values into equation (4) and rearrange it, we have

N−1∑
i=1

ε2
t =

N−1∑
i=1

[
v(ti+1) − v(ti)
σ
√

v(ti)
− k(θ − v(ti))∆t

σ
√

v(ti)
]2 (6)

where the estimation of initial value of σ is the standard deviation of residuals, after which the initial values of k and θ
can be obtained using the following procedure of ordinary least squares:

∂
∑N−1

i=1 ε2
t

∂k
= 0

∂
∑N−1

i=1 ε2
t

∂θ
= 0

(7)

2.4 Procuring Daily Volatilities

As the main objective is to model the implied volatilities of S&P 500 index and Nikkei 225 index as well as to estimate
the parameters of the governing model, we need a proper scheme to measure the daily volatility of a specific stock given
the historical data, where the model under consideration in this work is given in the equation (3).

Since v(t), the daily variance is unknown, the daily volatility has to be retrieved with implicit method. In this paper the
spread between the stock’s high price and low price in a specified interval such as a trading day is computed in order
to determine the Chaikin’s volatility using percentage change in the moving averages for a given period. There are two
major steps for the calculation.

First, we calculate an exponential moving average of the difference between the daily high and low prices. Compared to
simple average method, the exponential moving average method assumes the latest price contributes more weight than the
prices in more distant periods. Generally, a 10-day moving average is recommended (Achelis, 2011). The general form
of a series Y is defined as

S t = α ∗ Yt−1 + (1 − α) ∗ S t−1

where S t is the exponential average value of stock price at time t, Yt is the observation at time t, α represents the degree
of weighting decrease. According to Hunter (1986), we can rewrite as a weighted sums of the following series:

S t = α ∗ [Yt−1 + (1 − α) ∗ Yt−2 + (1 − α)2 ∗ Yt−3 + · · ·
+(1 − α)9 ∗ Yt−10] + (1 − α)10 ∗ S t−10

where Yt represents difference between the high price and the low price of a specific stock at time t.

Second, we calculate the percentage of changes over a specified time period according to the formula

σ =
S t − S t−10

S t−10
∗ 100%.

3. Data Analysis and Numerical Results

3.1 Model Calibration Using Historical Data

We present the results for estimated parameters, k, θ, and σ using daily observations of S&P 500 Index and Nikkei 225
index. Since the observations are daily recorded, the time interval, ∆, is set as 1/365 in the unit of number of years. The
Figure 1 and 2 below show the historical behavior of S&P 500 Index and Nikkei 225. The daily volatility against time
is plotted in the graph. The data of S&P 500 Index and Nikkei 225 Index both have a duration of 12 years from 1995 to
2006. The results of parameter estimations from the implementation of the maximum likelihood procedure are presented
in the following Table 1 and Table 2.
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Table 1 shows the results for the estimated parameters k, θ and σ for S&P 500 index. In this experiment, 5 years’, 8 years’,
10 years’ and 12 years’ data are used for comparative analysis. As shown in Table 1, the speed that the process comes
back to the mean, k, decreases smoothly from 5 years data to 12 years data. The estimated long-term means, θ , are close
to the means of historical data for different durations, which means the value for θ approaches to the corresponding value
of the mean of v(t). In addition, the values for estimated long-term means, θ, converge to 0.03 in different sub-periods.
The estimated values for volatility, σ, for the periods of 5 years, 8 years, 10 years and 12 years are all located in the
interval [0.05 0.08]. The estimated value for θ has shown slight increment with the increase of time duration, although the
increment is not significant.

Table 2 shows the results for the estimated parameters k, θ and σ for Nikkei 225 index. In this experiment, again, we
use 5 years’, 8 years’, 10 years’ and 12 years’ data to make comparisons. In Table 2, the drift parameter, k, varies in a
wide range for different periods. The sudden change of k is a symbol of the dramatic changes in the implied volatility,
which has to do with the economic shocks. For instance, the Asian market saw financial and currency crisis in 1997.
Russia experienced debt default and long-term capital management crisis in 1998. Both of the two crises had a significant
impact on major Asian markets like Japan’s Nikkei 225, which can explain why k jumped from 4 to 26.8. Moreover, the
estimated long-term means approach to the means of historical data, the trend of which is the same as S&P 500 index,
And the estimated volatility, σ, with the time period of 5 years, 8 years, 10 years and 12 years are approaching to 0.07.
Similarly, the values for θ are not exactly the same for different periods, but the difference is insignificant.

Overall, two stock markets have profiled similar trends of volatility. Compared to those for Nikkei 225 Index, the estimated
parameters of the volatilities of S&P 500 Index are more consistent. As shown in Table 1, the estimated parameters, k, θ
and σ show small difference when using different sampling periods. However, for Nikkei 225, the estimates to the speed
of adjustment for the process, k, has dramatic changes from one sampling period to another, which is due to the economic
crisis in Asia. The volatility model in this paper, or CIR model, functions well in a stable market.

To make the results more comprehensive, we extend our experiment to include the cases of using short-term data, i.e., 1
year and 2 years of S&P 500 Index and Nikkei 225 Index to obtain the estimates of the model parameters. However, the
results are not as consistent as expected. In particular, k, the speed that the process will come back to the mean, decreases
dramatically from 1 year’s data to 2 years’ data for S&P 500 Index. By observing the daily recorded data in 2006, the
value for k is 144.2, while when we use 2 years’ data in 2005 and 2006, k jumps to 45.8. As shown in Table 1, the
estimates of k using medium to long term observation durations approach to 6, implying that the model is more suitable
for medium to longterm forecast. In addition, we use 1 year’s data to 2 years’ data for Nikkei 225 Index to estimate the
parameters. The estimations of k, θ and σ are consistent in different samplings, but the estimation of k flutters due to
economic shocks.

3.2 Influence of Observation Frequency

3.2.1 Volatility Indicator Based on EMA

Chainkin’s volatility is used in this paper to obtain the daily implied volatilities for S&P 500 Index and Nikkei 225 Index.
Practically a 10-day exponential moving average is generally used for computing the volatility. However, there is not a
generally agreed horizon for risk management. The horizons differ from different derivatives, or financial instruments.
The equity and foreign exchange have horizons of 7 to 10 days, while the interest rate instruments have horizons for about
30 days (Diebold et al., 1998). Traders will choose a time period fitting to their investment time frame or preference.
Generally, risk is assessed at a short time horizon (Christoffersen et al., 1998). To make the results more conclusive, we
repeat the estimation process and compare the volatilities obtained by 5-day and 15-day EMA methods, in comparison
with the previous results using 10-day EMA method.

Table 3 and 4 show the results of estimated parameters for S&P 500 Index and Nikkei 225 Index for 5-day moving
average, 10-day moving average and 15-day moving average from 1995 to 2006. As shown in Table 3, for S&P 500
Index, k fluctuates wildly when using different time periods for averaging. In addition, k achieves the smallest value when
10 day moving average is used. The values for σ and θ vary insignificantly with different time periods. Table 4 shows the
similar results for the values of estimated parameters for Nikkei 225 index.

3.2.2 Influence of Observation Frequency

In this paper, abundant observations are recorded with daily recorded data. It is desirable to investigate the influence of
observation frequency on the parameter estimation. For the selected CIR model in this paper, we carry out the estimation
process using not only daily observations, but also weekly observations and monthly observations. Table 5 and 6 present
the results of estimated parameters for S&P 500 Index and Nikkei 225 Index for daily, weekly and monthly data from
1995 to 2006. The values of the estimated parameters using the data set of S&P 500 Index do not change significantly
except for k. The value for k achieves the maximum for monthly recorded data, and the minimum for daily recorded data.
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The results of the estimated parameters using Nikkei 225 index are consistent with S&P 500 Index, implying that time
increment in sampling or increase of observation frequencies result in different parameter values for stochastic volatility
models.

In this study, the parameters of the stochastic volatility model are estimated through the maximum likelihood procedure.
We would like to remark that there exist alternative approaches to estimate the parameters for stochastic models, such
as the Bayesian estimation method. Compared to maximum likelihood method, Bayesian estimation requires the speci-
fication of a prior distribution for unknown parameters. And also, Bayesian method is often realized through sampling
simulations with augmented latent points, giving rises of the issue of inconsistency. Thus maximum likelihood estimation
is still more preferred for the current work. The results of the maximum likelihood procedure through this work show
that the parameters θ and σ are more consistent for different sampling time periods. However, the estimated values for
k are not quite consistent for different sampling periods, even for different time horizons of averaging. Similar findings,
particularly the difficulty of achieving convergent values for k, have been discussed in Feng and Xie (2011, 2012), for
instance.

4. Application in Financial Crisis Prediction

4.1 Economic Cycle

Stock volatility, which represents massiveness of the change of stock prices ( Olowe & Ayodeji, 2009), is a major indicator
of future economic activity (Romer, 1990). It is generally believed that the stock market fluctuation is closely related to
the macroeconomic development. The increased stock volatility usually signals higher uncertainty for future economic
activity. The investors or the stock holders will tend to spend less money or wealth on consumption and investment,
which will lead to decrease in aggregate demand, even economic slack. On the other hand, the decrease in stock volatility
encourages the investors to make consumption or investment, which is often the first move in a cycle towards the economic
prosperity.

4.2 Financial Crisis Prediction

Financial crisis, a symbol of economic downturn, or recession, happens when financial institutions or financial markets
lose large part of their value. The stock volatility is a powerful indictor of financial crisis because it is closely related to
business or economic cycle. By observing the U. S. stock market’s implied volatility and quarterly percentage growth of
real GDP, Raunig and Scharler (2011) carried out an experiment on the relationship between stock volatility and stock
market shocks and found a negative relationship between volatility and GDP growth.

From Figure 7, one can see that the implied volatility fluctuates during the period from 1984 to 2006. As mentioned, stock
market shocks are often a strong indicator of economic recessions. From the historical record of the implied volatility,
it can be seen that the implied volatility fluctuates intensely in the period from 1986 to 1994. During these years, Japan
suffered several major financial crises, including the burst of Japanese real estate bubble. From 1986 to 1991 the property
market of Japan had undergone a great inflation, which explains the fluctuant movement of volatilities during the same
period. In the following years, the world saw the Japan’s ERM crisis in 1992, Mexican peso crisis in 1994, the Asian
financial and currency crisis in 1997, Russian debt default and long-term capital crisis in 1998. All these crises had
severally and collectively impacted the Japanese economy and its stock market.

4.3 Case Study: Stock Market Crisis in 1987

The U. S. stock market suffered one of its largest daily percentage decline on October 19, 1987, on which day the volatility
saw a huge jump. Black (1988) largely attributed the stock market plunges on October 19 to the errors in the perception of
mean-reversion expectations of investors, or equivalently, the so called mean reversion illusion (Hillerbrand, 2003). Here
the mean reversion speed is the speed that the process will come back to the mean, which corresponds to the parameter,
k, in the stochastic volatility model in this paper.

According to Hillebrand (2003), the mean reversion in returns is phenomenal, which is transient but recurring. In Table 7
and Figure 8, one can observe the fact that the value of k, the mean reversion speed, is higher after the stock plunge than
before the plunge, which supports the concept of mean-reversion disillusion. In addition, k is higher at about 9 months
before the plunge, which is consistent with the experiment carried out by Hillebrand (2003). The underestimation of the
mean reversion is the leading reason for the stock plump.

In order to provide a further proof of the mean-reversion disillusion, which assumes the mean-reversion rate is higher after
stock fluttering period, we carry out the statistical t-test with the following hypotheses:

H0 : k1 < k2

H1 : k1 ≥ k2
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where k1 refers to the mean of k before the stock plump and k2 is the mean of k after the plump. We use two sampled
t-test to evaluate the null hypothesis and alternative hypothesis:

t =
k2 − k1

S (k2−k1)

S (k2−k1) =

√
S 2

k1

n1
+

S 2
k2

n2

where S t is the unbiased estimator of the variance of the two samples, n1 = number of participants before the market
plunge, n2 = number of participants after the plunge. The degree of freedom, denoted as d. f., of our approximation is

d. f . =
(

S 2
k1

n1
+

S 2
k2

n2
)2

(
S 2

k1
n1

)2/(n1 − 1) + (
S 2

k2
n2

)2/(n2 − 1)

The calculation shows that the p-value of the t-statistics 0.1695, which means we can not reject H0 even at 10% significant
level.

We apply Hillebrand (2003)’s approach of using likelihood ratio to test whether the mean-reversion speed is higher after
the stock market plump. For this purpose, the following two models are compared.

Model1 : d ln S t = (u − 1
2
σ2)dt + σdWt

Model2 : d ln S t = (u − 1
2

)dt + λ(ln Vt − ln S t)dt + σdWt

The unconditional distribution of the log-price processes above are given by:

Model1 : (ln S t − ln S t−1) v N(u − 1
2
σ2, σ2)

Model2 : (ln S t − ln S t−1) v N(u − 1
2
σ2 + λ(ln Vt − ln S t), σ2)

where S t is the stock price at time t, Vt = S 0exp((u − 1
2σ

2)t), u is the long-term mean growth of the market, λ is the
mean-reversion speed, σ is the volatility of the stock price, and Wt is the standard Brownian Motion. The hypotheses are

H0 : λ = 0
H1 : λ , 0

The likelihood-ratio statistics is used to evaluate the null hypothesis and alternative hypothesis, where the likelihood ratio
statistics is defined as

L =
supu>,σ>0[

∏N
i=1

1√
2πσ

exp(− ((yi−xi)−(u− 1
2σ

2))2

2σ2 )]

supu>0,σ>0,λ>0[
∏N

i=1
1√
2πσ

exp(− ((yi−xi)−(u− 1
2σ

2+λ(ln Vt−ln S t)))2

2σ2 )]

where yi and xi represent the logarithms of stock prices on ith and (i − 1)th day.

We apply the transition probability functions of Model (1) and Model (2) to the likelihood ratio statistics using four
different sampling periods. The parameters (u, σ) in Model (1) and (u, σ, λ) in Model (2), are estimated by MLE using
daily stock index values. The results are presented in Figure 9.

4.4 Further Applications

The implied volatility model is widely accepted and used in financial market. In risk management and financial mathe-
matics, value-at-risk is a widely used risk measure technique which estimates the risk of loss on a specific portfolio of
financial assets. To be more concrete, value-at-risk of a given portfolio demonstrates the expected maximum loss over an
aimed horizon within a given confidence interval (Larsen, 2001). Since the implied volatility provides an unbiased and
efficient forecast of future market, capturing the volatility process is a main approach for value-at-risk estimation. Hence,
the implied volatility models in Section 2 can be used for computing value-at-risk portfolios, which include assets whose
payoffs/returns are functions of the S&P 500 index or Nikkei 225 Index (Cassese & Guidolin, 2003), although it is not
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often to have closed form solution for value-at-risk. The chosen portfolio can be combination of equity shares, assets and
other financial derivatives.

5. Concluding Remarks

To estimate whether the implied volatilities are constant during the whole duration of options as Black-Schole model as-
sumed, we use CIR model to describe the implied volatilities and maximum likelihood method to estimate the parameters.
The data set in this paper are S&P 500 Indexes and Nikkei Index from 1995 to 2006. According to the statistical analysis
results, the selected stochastic volatility model fits well the S&P 500 Index and Nikkei Index. The robustness of our model
is calibrated with historical data with varying sampling methods. The estimated parameters are convergent in the stable
market.

The implied volatilities can be used as an unbiased and efficient forecast of the performance of financial market. The
model of implied volatility can be applied in many fields of financial market, including for calculation of the value-at-risk
for portfolios and for stock crisis prediction. The results support the idea that the implied volatility tends to be higher in
the recession period. In the meantime, the mean-reverting disillusion, which explains the mean-reverting speed is higher
after the stock fluttering period than before, is proved by both the t-statistics and likelihood ratio test in the study. The
approaches of financial modeling and the relating parameter estimation procedures contained in this study also provide
useful supports to neighboring studies such as characterization of mortgage loans and American put options (Xie et al.,
2007, 2011).

One limitation of the current study is the relatively narrow scope of the observations, where only 12 years of data of
two mature markets are considered. For future research, the data set period should be chosen to allow more frequent
regime switches. Also an improved modeling should be able to achieve more stable and convergent estimation of the
mean-reverting speed, k. In addition, the current work only concerns the stochastic modeling for S&P 500 Index and
Nikkei Index. A further study is recommended to be carried on for other types of index such as KOPSI 200 in Korea and
the Hushen 300 Index in China.
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Table 1. Maximum Likelihood estimates of CIR model using historical daily data of S&P 500 Index. The starting dates
for the data are January 3rd, 1995, January 2nd, 1997, January 4th, 1999 and January 2nd, 2002, respectively. The closing
date is December 29th, 2006

SP 500 k θ σ2 ¯v(t)
1995−2006 5.751066 0.042041 0.087743 0.041898
1997−2006 6.071555 0.039969 0.082144 0.038925
1999−2006 7.057089 0.034299 0.059359 0.034474
2002−2006 7.611455 0.029819 0.050125 0.029942

Table 2. Maximum Likelihood estimates of CIR model using historical daily data of Nikkei 225 Index. The starting dates
for the data are January 4th, 1995, January 6th, 1997, January 4th, 1999 and January 4th, 2002, respectively. The closing
date is December 29th, 2006

Nikkei 225 k θ σ2 ¯v(t)
1995−2006 4.008421 0.051751 0.086224 0.045755
1997−2006 26.79940 0.044146 0.083093 0.044349
1999−2006 627.2639 0.041893 0.064212 0.042393
2002−2006 85.44733 0.041163 0.064792 0.041298
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Table 3. Maximum Likelihood estimates of CIR model using historical daily data of S&P 500 Index from January 3rd,
1995 to December 29th, 2006. The table shows 5-day moving average, 10−day moving average and 15-day moving
average for Chaikins Volatility

SP 500 k θ σ2

n=5 226.3401 0.057505 0.132672
n=10 5.751065 0.042041 0.087743
n=15 95.10144 0.038993 0.078978

Table 4. Maximum Likelihood estimates of CIR model using historical daily data of Nikkei 225 Index from January 3rd,
1995 to December 29th, 2006. The table shows 5−day moving average, 10−day moving average and 15−day moving
average for Chaikins Volatility

Nikkei 225 k θ σ2

n=5 174.3905 0.060898 0.121118
n=10 4.008421 0.051751 0.086224
n=15 79.60699 0.040406 0.060591

Table 5. Maximum Likelihood estimates of CIR model using historical daily, weekly and monthly data of S&P 500 Index
from January 3rd, 1995 to December 29th, 2006

SP 500 k θ σ2

Daily 5.751066 0.042041 0.087743
Weekly 17.58786 0.059539 0.080261
Monthly 299.2399 0.085253 0.060909

Table 6: Maximum Likelihood estimates of CIR model using historical daily, weekly and monthly data of Nikkei 225
Index from January 3rd, 1995 to December 29th, 2006

Nikkei 225 k θ σ2

Daily 4.008421 0.051751 0.086224
Weekly 13.63029 0.053029 0.081287
Monthly 164.2547 0.045228 0.053284

Table 7. The estimated results k of S&P 500 index on sample periods before and after the day of stock plunge on October
16, 1987. The data from October 16, 1987 to October 26, 1987 are not included so that the fluttering itself does not affect
the sampling process

quarters before Oct.16 k quarters after Oct.26 k
1 133.61 1 41.823
2 63.106 2 92.779
3 107.88 3 76.940
4 85.051 4 196.08
5 50.758 5 324.93
6 24.601 6 35.162
7 42.492 7 129.60
8 9.5577 8 11.100
9 60.435 9 72.700
10 77.535 10 4.8500
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Figure 1. The daily implied volatility of S&P 500 Index over a duration of 12 years
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Figure 2. The daily implied volatility of Nikkei 225 Index over a duration of 12 years
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Figure 3. The daily implied volatility of S&P 500 Index over a duration of 12 years, for n=5 and n=15

Published by Canadian Center of Science and Education 17



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 1, No. 1; May 2012

0

20

40

60

80

100

120

140

160

180

Implied Vola!lity for Nikkei 225  (n=5)

Implied Vola!lity for Nikkei 225 (n=15)

Figure 4. The daily implied volatility of Nikkei 225 Index over a duration of 12 years, for n=5 and n=15
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Figure 5. The weekly and monthly implied volatility of S&P 500 Index over a duration of 12 years
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Figure 6. The Weekly and Monthly implied volatility of Nikkei 225 Index over a duration of 12 years
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Figure 7. The monthly implied volatility of Nikkei 225 Index over a duration of 2 decades from 1984 to 2006
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Abstract

This paper presents a structural credit model with underlying stochastic volatility, a CIR process, combining the Black/Cox
framework with the Heston Model. We allow to calibrate a Heston Model for a non-observable process as underlying of
the Black/Cox Model. A closed-form solution for the price of a down-and-out call option on the assets with the debt
as barrier and strike price is derived using the concept of optional sampling. Furthermore, estimators are derived with
the Method of Moments for Hidden Markov Chains. As an application in Statistical Finance, the default probabilities of
Merrill Lynch during the financial crisis are examined.

Keywords: Credit models, Barrier options, Stochastic volatility, Black/Cox model, Heston model

1. Introduction

In order to describe the performance of a company on a daily basis, we can often refer to quoted stock prices only. These
prices reflect the market value of the company’s equity. Yet, it’s mainly the assets and the liabilities which drive the
performance of a stock, and which may develop independently. The higher the leverage ratio (i. e. the ratio between debt
and equity capital) the more important it becomes to consider these underlying factors. Yet in general, we cannot observe
daily time series for assets or liabilities.

Following the theory of structural models, whose foundations have been laid mainly by Merton (1973) and Black and Cox
(1976), the company’s value i.e. its equity’s value is modeled as an option on the asset value with the value of the debt
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as strike price. In this paper, the value is modeled as the value of a down-and-out call option (DOC) with the assets as
underlying and the value of the debt as both, knock-out barrier and strike price. A simple call option pays the difference
between the underlying and the strike price at maturity if this difference is positive. A down-and-out call option only pays
this difference if the underlying does not fall below a certain threshold at any time before maturity. This threshold is called
knock-out barrier. Knock-out barrier and strike price do not necessarily have to be equal (see Escobar et al., 2012).

Modeling the assets as a Brownian motion as in the Black/Cox Model would have the drawback of assuming normally
distributed returns and constant volatility. However, in particular the financial crisis has shown that volatility is not
constant over time. Heston Model, which is used here to model the assets allows the company’s assets to have stochastic
volatility. This model is chosen for its suitability in the pricing of financial products as well as for its closed-form
expression for higher conditional moments. It should be noted that Heston Model is a continuous-time stochastic volatility
(SV) process as oppose to popular discrete-time SV processes known as ARCH/GARCH (see Bollerslev, 1986). There
is a recent literature on continuous-time extensions of GARCH models, see for example COGARCH by Brockwell et al.,
(2006); but the complexity of these extensions for estimation and pricing purposes makes well-established SV models as
Heston model still dominant for academics and practitioners alike. The first part of the paper focuses on the modeling
and introduces a closed-form formula for the down-and-out option. In the second part, estimators are derived using the
method of moments on a discretization of the process as well as the mixing properties of the Hidden Markov Chain. This
generalization is inspired by the work of Genon-Catalot et al., (2000) and allows for the calibration of the parameters of
the asset process.

The model not only allows to describe the value of the company and its assets. It also enables to simulate multiple
scenarios of possible paths how the stock would evolve over time according to the model. These scenarios can be analyzed
under different aspects. As an example, the default probabilities in these scenarios are examined. In this example, the
model is applied to a case which can be regarded as one of the key events of the financial crises: the takeover of Merrill
Lynch by the Bank of America, which The Wall Street Journal headlined “The End of Wall Street”.

This paper is organized as follows: Section 2.1 introduces the stochastic volatility model for the assets. Section 2.2
presents the relationship between assets and equity as well as some numerical results. Section 2.3 derives the estimation
methodology, while in Section 3 the approach is applied to data from Merrill Lynch. Section 4 gives a conclusion of the
study.

2. The Stochastic Volatility Model

Asset returns, and hedge fund returns in particular, are not normally distributed. Thus, from today’s point of view, a
Black/Scholes Model is barely able to map reality in an appropriate way, as one of the main assumptions is that the
returns are normally distributed. Furthermore, the Black/Scholes Model assumes the volatility of the asset process to be
constant over time. This characteristic feature is called homoscedasticity. However, even the stock market suggests that
this is not the case. For example, it can be observed that those times when the stock markets take a hit, the (implied)
volatility is higher than in “peaceful” times of strong markets, see e.g. Engle (1982) or Heston (1993). Therefore, we
propose a model with stochastic volatility to describe the asset process which also implies a stochastic volatility model
for the equity process of the company.

2.1 Model Setup

Let (Ω, F , F, Q) be a filtered probability space on the domain Ω with sigma algebra F , filtration F = {Ft}t≥0, and a
probability measure Q on (Ω, F ) . The underlying asset process A and the variance v of that process can be expressed
through the following SDEs:

dA(t) = µA(t)dt +
√

v(t)A(t)dZ(t) (1)

dv(t) = κv (v∞ − v(t)) dt + εv
√

v(t)dZv(t) (2)

where
A = underlying asset process,
v = variance of asset process, where the volatility σA =

√
v,

µ = drift of the assets,
Z, Zv = two independent Wiener processes in the probability space (Ω, F , Q),

v∞ = long-term value of volatility,
εv = volatility of the variance process,
κv = mean-reversion speed.

These assumptions provide the bare minimum to obtain a setting where closed-form solutions are available not only for
the price of the credit products but also for a fast and reliable estimation of the parameters. For example, in a more general
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formulation, Z and Zv can be correlated, however the assumption of zero correlation is required to obtain closed-form
expressions for the estimators in Section 2.3. The parameters v∞, κv and εv have to fulfill the following conditions:

κv · v∞ ≥ 1
2
ε2

v (3)

κv > 0 (4)

These conditions guarantee strict stationarity and α-mixing, see Genon-Catalot et al. (2000) which is necessary for the
derivation of estimators in Section 2.3. Furthermore, the barrier as the debt is exponentially growing with the risk-free
rate r:

D(t) = D(0) · e
∫ t

0 r ds = D(T ) · e−
∫ T

t r ds (5)

where D(t) denotes the value of the company’s debt (or “liabilities”) at time t.

The model defined by (1) and (2) is a so-called stochastic volatility model. Heston (1993) developed the model to over-
come the shortcomings of the Black/Scholes Model where the latter seems to be too restrictive to map reality. Therefore,
the model described by (1–2) is often referred to as the “Heston Model”. In this model, the variance (2) is a stochastic
process, introduced by Cox, Ingersoll, and Ross (1985), with the following features: First, the variance process has a
long-term value or a “limit” v∞ around which it oscillates. Next, there is the mean-reversion speed κv. This parameter
describes how fast the variance will adjust to its mean v∞. The term (v∞ − v(t)) is the deviation of the current variance
from v∞. This term is weighted with the mean-reversion rate κv. Therefore, the higher κv the faster the variance will
tend towards v∞. Up until now, the variance process would be deterministic. In order to make it stochastic, the diffusion
term εv

√
v(t)dZv(t) is added, where εv is the volatility of the variance process itself. The characteristics of the stochastic

volatility model become “visible” in Figure 1.

2.2 Barrier Options in the Stochastic Volatility Model

The aim is to price a barrier option with strike D(T ) on the assets A:

C(t, A) = EQ

[
e−

∫ T
t r(s) ds ·max {A(T ) − D(T ), 0} · 1{τ>T }

∣∣∣∣ Ft

]
(6)

where

C(t, A) = option price of the barrier option with underlying A at time t,

1{τ>T } =

{
1 if τ > T
0 else

and τ is the time of default of the option, i.e. the first time, the asset process A crosses the barrier D. It is modeled as a
stopping time on the interval (t, T ]:

τ = inf
{
t′ ∈ (t, T ] : A(t′) < D(t′)

}
(7)

The symbol EQ denotes the expected value under the arbitrage-free measure Q.

Equation (6) describes a down-and-out call option with underlying A, strike and knock-out barrier D. This means that
when the price of the underlying hits or falls below the barrier the option expires (Note 1).

2.2.1 Derivation of Option Pricing Formula

For deriving the formula of the option price described by (6), the most straight-forward approach would be to solve the
corresponding SDEs. However, in this particular case, the option price can also be derived with the help of optional
sampling, which actually is more elegant than working through the SDEs. As it is shown in detail in the appendix, the
price of the option is:

C(t, A) = (A(t) − D(t)) · 1{τ>t}. (8)

The big advantage of (8) is that it provides a straight-forward inverse to calculate the asset value if both debt and equity
value are known: Given the value of the equity C(t) as well as the liabilities D(t), and assuming that the company didn’t
default up to time t, i.e. 1{τ>t}, the underlying assets A(t) can be calculated as follows:

A(t) = C(t) + D(t) (9)
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Next, the option price – given a set of parameters specifying (1) and (2) – is calculated according to this formula and
compared to a numerical simulation of the option price which is gained by evaluating (6). For this purpose, a large
number of possible underlying asset paths is simulated with the same set of parameters. Then, the option price is the
expected value of the discounted payoffs of all paths.

Figure 1 gives five examples for possible paths following the stochastic volatility model defined in (1) and (2). The
parameters were chosen as follows, and are the same for all five paths:

A(0) r v(0) = v∞ κv εv

100 0.04 0.01 0.5 0.1

Figure 1 displays the variance process v(t), the according volatility process which is the square root of the variance
process, and the asset process A(t), where the shading of lines in these three graphs indicates that the three time series
belong together.

For validating the formula, the price for several options is calculated analytically according to (8). This price is then
compared to a numerical simulation of the option price. For that purpose, 10 000 paths under the given parameter set (the
same as above, with t = 0 and T = 5) for the underlying asset process are simulated. For each of those paths, the payoff
is calculated as

PO = max {A(T ) − D(T ), 0} · 1{τ>T } (10)

in accordance with (6). The “numerical option price” is the discounted mean over those 10 000 payoffs, i.e.

Cnum(t, A) = e−
∫ T

t r(s) ds · PO

where PO = 1
n
∑n

i=1 POi.

Table 1 presents the outcomes of this test. From left to right, the columns give the values of the initial debt D(t) = D(0), and
the number of paths for which the payoff equals zero. Next, the discounted mean over all payoffs is provided (Cnum) along
with the “correct” analytical option price, i.e. the option price according to Formula (8), together with their difference
and the standard deviation of the 10 000 values for Cnum, i.e. the discounted payoff. The last four columns provide some
validation for the derived formula in form of the confidence interval. Considering these number, this test numerically
validates the analytical derivation of Equation (8).

2.3 Estimation and Fitting of Parameters

Having the formula for the barrier option at hand, the next tool required is the estimators for the method of moments. The
aim is to find the parameters of the asset process which is calculated from the equity and debt time series employing (8).
In the following, there are always three different time series of interest: (1) the underlying asset path A of the company, (2)
its debt D, which is also referred to as its liabilities, and (3) the company’s equity C which is also referred to as the stock
price itself or the equity. Furthermore, there are different possible interpretations of the initial value of the debt D(0). If
A(0) = 1, then D(0) can be interpreted as the percentage of debt capital in the financing structure of the company at time
t = 0. If C(0) = 1, then D(0) is the leverage ratio the company operates with, because the leverage ratio is defined as the
ratio between debt and equity capital.

The derivation of the estimators follows the lines of Genon-Catalot et al. (2000). As already mentioned, the two Wiener
processes Z and Zv denoting the stochastic component of the asset and volatility process are assumed to be uncorrelated.
This leaves the following unknown parameters of the model described in (1) and (2): Θ = (µ, v∞, κv, εv) which are to
be fitted. The information on the debt D as well as the risk-free rate r can be observed and are assumed to be known.
Actually, there is one more parameter which is unknown from the start which is v(t), the level of variance at the time t the
option is to be priced for (usually, t = 0). However, having v0 = v(0) as well as v∞ as free parameters might bear problems
for the fitting. Therefore, it is assumed that v0 = v∞. Note that this does not imply that v∞ is equal to the current volatility
at the time the option price is calculated. As the volatility v itself is not observable and thus cannot directly influence the
fitting, v∞ and v0 are rather regarded as two parameters of the model.

First of all, the actual calculation of suitable estimators requires some preparation. Assuming the model given by Equa-
tions (1) and (2), an application of Itô’s lemma to the process Y := log A immediately shows:

dY(t) =
(
µ − v(t)

2

)
dt +

√
v(t)dZ(t) (11)
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Under the condition that the variance process (2) is known and assuming Y(0) = 0 i.e. A(0) = 1,

(Y(t)|v) := (Y(t)|v(s), 0 < s < t) ∼ N
(
µ · t − 1

2

∫ t

0
v(s) ds,

∫ t

0
v(s) ds

)
(12)

where X ∼ N(µ, σ2) means that the random variable X is normally distributed with mean µ and variance σ2.

Lemma 2.1 Assume the partition {ti}ni=1 of the time interval [0, t] where △ := ti − ti−1. Set

R(i) =

µ − V(i)
2

 · √△ + 1
√
△

i△∫
(i−1)△

√
v(s)dZ(s)

V(i) =
1
△

i△∫
(i−1)△

v(s) ds (13)

then

R(i) =
Y(i△) − Y((i − 1)△)

√
△

(14)

Using (12) and the fact that the sum of two normally distributed random variables is also normally distributed, it follows
that:

(R(i)|v) ∼ N
(√
△µ − 1

2
√
△

∫ i△

(i−1)△
v(s) ds,

1
△

∫ i△

(i−1)△
v(s) ds

)
and in terms of (13) (

R(i), |V
)
∼ N

((
µ − 1

2
V(i)

)
·
√
△, V(i)

)
. (15)

The concept of α-mixing was introduced by Rosenblatt (1956) under the term “strongly mixing”. A formal definition of
α-mixing can be found in the appendix. It can be interpreted as a form of asymptotic independence of a process: X(t) and
X(s) are more nearly independent the farther apart s and t, as commented by Davidson (1993). Thus, α-mixing is a weaker
form of dependence. Under the mixing condition a central limit theorem can be shown to hold for general processes. A
deeper discussion of α-mixing and other forms of the mixing-condition can be found in Bradley (2005).

Proposition 2.2 Assume the process (2) satisfies (3) and (4). Then, for the process (14) there exist the following estimators
for the moments of R:

1
n

n−1∑
i=0

R(i + 1)
a.s.−→

√
△µ −

√
△

2
E

[
V(1)

]
(16)

1
n − 1

n−2∑
i=0

R(i + 1)R(i + 2)
a.s.−→ △µ2 − △µE

[
V(1)

]
+
△
4
E

[
V(1)V(2)

]
(17)

1
n

n−1∑
i=0

R2(i + 1)
a.s.−→ △µ2 − (△µ − 1)E

[
V(1)

]
+
△
4
E

[
V

2
(1)

]
(18)

1
n − 1

n−2∑
i=0

R2(i + 1)R(i + 2)
a.s.−→

(
△µ2 − (△µ − 1)E

[
V(1)

]
+
△
4
E

[
V

2
(1)

])
·
(√
△µ −

√
△

2
E

[
V(1)

])
(19)

1
n

n−1∑
i=0

R4(i + 1)
a.s.−→ △2µ4 +

(
6 △ µ2 − 2 △2 µ3

)
E

[
V(1)

]
+

(
3
2
△2 µ2 − 6 △ µ + 3

)
E

[
V

2
(1)

]
(20)
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where E
[
V(1)

]
, E

[
V

2
(1)

]
, and E

[
V(1)V(2)

]
can be calculated as (see Proposition 4.1 in Genon-Catalot et al., 2000):

E
[
V(1)

]
= v∞ (21)

E
[
V

2
(1)

]
= v2

∞ +
ε2

vv∞
κv

(
κv △ −1 + e−κv△)

κ2
v△2 (22)

E
[
V(1)V(2)

]
= v2

∞ +
ε2

vv∞
2κv

(
1 − e−κv△)2

κ2
v△2 (23)

In order to find the optimal parameters, the sum of deviations between the empirical and theoretical statistics of equations
(16) to (20) is minimized:

min
Θ

∑
i∈{(16),(17),(18),(19),(20)}

(empS tati(Θ) − theoS tati(Θ))2 (24)

where empS tati denotes the empirical estimator (i.e. the left hand side) of equation i, and theoS tati the theoretical
estimator (i.e. the right hand side). (24) represents the basic optimization problem of how to fit the parameters. This
minimization could be avoided if the system of equations (16–20) led to closed-form solutions, but the nonlinearity of the
system avoids such a quick path. Equation (24) could be altered by assigning different weights on the specific estimators
or completely neglecting one or more of the five estimators. Theoretically, all these approaches would lead to consistent
estimators although not efficient ones unless using a suitable more complicated set of weights as in the Generalized Method
of Moments. Furthermore, we could also include moments of order higher than 4. However, the theoretical estimators get
more complex and contain the parameters with higher exponents. This would make the numerical estimations less stable.

3. Application: Merrill Lynch and the Financial Crisis

In order to show an application of the model, one of the most spectacular stories of the financial crises is scrutinized:
the downfall of former Wall-Street giant Merrill Lynch (Note 2). Merrill Lynch stocks have long been deemed a save
investment. But in September 2008, the existence of Merrill Lynch could only be saved by the takeover by the Bank of
America. The stock price reached its peak in early 2007 being close to 100 USD. After still announcing record earnings
in early 2007, Merrill Lynch was severely struck by the subprime crisis. In the summer of 2008, the events speeded up
dramatically. Finally, the investment bank with the bull as figurehead fell prey to the bear. On September 15, Bank of
America announced its intention to acquire Merrill Lynch. This way, Merrill Lynch was prevented from pursuing the
same tragic fate as Lehman Brothers which were filing for insolvency that very same day.

The first period which is to be examined in this example is the time between July 2001 and June 2007. The performance
over that time horizon seemed to be satisfying (see Figure 2), yet what was already striking is the fairly high volatility of
the stock price. The daily mean of log-returns is 0.0227% (corresponding to an annual return of 5.71% which is calculated
assuming 252 trading days per year), the standard deviation is 1.85% (which can be approximated by an annual standard
deviation of 29.35%), the skewness is–0.140, and the kurtosis is 6.06. But at first sight, there seemed to be no obvious
sign that Merrill Lynch could default so soon.

3.1 Fitting the Model Parameters

The introduced stochastic volatility model requires several parameters which have to be determined before the model can
be applied: the time to maturity T , the risk-free rate r, and the level of debt D(0). The time to maturity is the time until
the barrier option introduced in Section 2.2 extinguishes. It is therefore assumed to represent the average time to maturity
of the company’s liabilities. Unfortunately, this information is not provided by Merrill Lynch. For that reason, the time to
maturity is assumed to be 5 years, i.e. T = 5 to represent the average time of maturity of Merrill Lynch’s liabilities. In
order to get an appropriate risk-free rate, the average of the 5-year treasury rate over the according time horizon is used.
Therefore, r = 3.93%.

Furthermore, the initial debt D(0) is required. In order to gain that information, the adjusted leverage ratio (Note 3)
is extracted from the company’s annual reports which are summarized in Table 2. The average adjusted leverage ratio
over the considered time horizon is 12.7. However, note that Merrill Lynch defines the leverage as assets (not liabilities)
divided by equity. Thus, the adjusted leverage ratio according to the common definition,, is 11.7. In order to define the
initial value of the debt D(0) assume that the initial value of the equity is C(0) = 1. Therefore, D(0) = 11.7.

The problem with fitting the model parameters is that the variance process cannot directly be observed, in particular κv

and εv. Thus, a sufficiently large number of data points is required in order to capture the characteristics and influence
of these parameters. For finding the model parameters, the procedure works as follows: A value for εv is fixed, and the
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remaining parameters µ, v∞, and κv are fitted. The optimal set of parameters (including the optimal εv) is that set which
minimizes the error function (i.e. the sum of squared residuals as described in (24) as a global minimum.

The parameters Θ = (µ, v∞, κv εv) for the time series of the Merrill Lynch stock between July 2001 and June 2007 are the
following:

µ r v∞ κv εv

0.040916 0.000323 0.355731 0.5 0.012545

At first sight, the long-term variance seems to be fairly low. Yet, one has to bear in mind that the model has one important
assumption which is that the debt is deterministic, i.e. it has no stochastic component and does not allow for a volatility
of the returns of the debt. Thus, only the volatility of the equity can influence the volatility of the assets and vice versa.
Furthermore, the leverage ratio is fairly high which dilutes the volatility of the equity in the asset process.

The value of κv already indicates the necessity to apply the stochastic volatility model, as the parameter is clearly different
from 0 (κv = 0, under Equation 4, would make the stochastic volatility model a common Black/Scholes Model). However,
as this statement has no scientific relevance, an ARCH-test is applied. This test has been developed by Engle (1982)
in order to test time series for homoscedasticity (constant volatility over time). In this case, the hypothesis of constant
volatility can be rejected at a significance of 4.8 · 10−7 emphasizing the use of the stochastic volatility model.

Figure 3 shows the histogram of daily returns of Merrill Lynch between July 2001 and June 2007. Furthermore, the normal
distribution with same mean and standard deviation as the historic distritbuion as well as the distribution according to
the stochastic volatility model is displayed. For the latter, more than 1 million daily asset returns (1 000 time series each
consisting of 1 506 daily returns) have been simulated with the estimated parameters and the according equity returns have
been calculated. The graph already shows that the stochastic volatility model maps reality much better than a common
Black Scholes model. In order to validate this observation, a chi-square test is applied (see Chernoff and Lehmann, 1954).
First, it is tested whether the historic returns follow a normal distribution. The test statistic with value 961.85 is clearly
higher than the 95% critical value of the chi-square distribution 98.48 (accounting for two estimated parameters, mean
and standard deviation). Therefore, the hypothesis can clearly be rejected. Next, the stochastic volatility model is tested.
The resulting value of the test statistic is 89.82, and thus lower than the critical value of 96.22 (now accounting for four
estimated parameters). As we cannot reject the hypothesis, we conclude that the stochastic volatility model maps the
distribution of historic returns well.

3.2 The Default Risk of Merrill Lynch

One interesting aspect which is worth to study is the default risk of Merrill Lynch. In July 2007, all the information which
has been used so far was known. Therefore, the estimated parameters Θ = (µ, v∞, κv, εv) reflect the information given at
that point of time. In order to study the default risk, 10 000 underlying asset time series for Merrill Lynch are simulated
over a 100-year time horizon applying the estimated parameters µ, v∞, κv, and εv starting on July 1, 2007. As already
discussed above, it is arguable whether these simulated asset time series reflect Merrill Lynch’s true assets. However, a
model is always a simplification of reality, and despite the shortcomings of the simulated asset time series, this does not
affect the validity of the equity time series gained by that model.

Every simulated asset time series is compared to the debt which is assumed to follow (5). Merrill Lynch would have to
declare insolvency once its liabilities exceeded its assets. Therefore, the time of default is calculated as τ according to (7),
as the first point of time where the assets fall below the debt. Figure 4 shows the results of that test: As already mentioned,
10 000 asset time series have been simulated daily over a time horizon of 100 years. Figure 4 indicates how many paths
default in the respective year, for example, 11 of them already default within the first year which represents July 2007
until June 2008, 34 default in the second year which represents July 2008 until June 2009. The last bar comprises those
paths which have not defaulted within the first 100 years (i.e. until June 2107) which are 5 913 paths. As the total of
simulated time series is 10 000, the numbers can easily be interpreted as default probabilities in the respective years: The
probability for a default amounts to 0.11% in the first year (starting on July 2007) and 0.34% in the second year.

With that information another interesting question can be answered: What is the probability for Merrill Lynch to survive
over a certain span of time? This answer is given in Figure 5. Assuming the probabilities for the event of a default given
in Figure 4, this figure provides the probability that Merrill Lynch survives until the respective year, which is 1 minus the
sum over the default probabilities until that year. As the time series have been simulated daily, Figure 5 provides an almost
continuous function. This graph tells that, for example, the probability to survive 10 years is 88.88%, and the probability
to survive 100 years is 59.13%.

Figure 4 already points out that there is a significant default probability for Merrill Lynch in the years from July 2007 on,
given the information described above. The probability for a default until June 2009 would be estimated to be 0.45% by
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this model. Although this number still seems to be fairly low (but is not negligible though), it can already be concluded
that even Merrill Lynch bears a certain default risk. However, the takeover by the Bank of America did not mean a default
for Merrill Lynch. Merrill Lynch accepted an offer by the Bank of America in order to overcome its own default risk, and
the Bank of America finally paid 50 billion USD for that acquisition according to the Wall Street Journal.

3.3 Development of Default Risk

It is even more interesting to compare the findings so far with the condition of Merrill Lynch not before but in the middle of
the financial crisis. Therefore, the situation of Merrill Lynch in January 2008 is examined. In order to have a comparable
data basis, but which still allows to employ the stochastic volatility model, the time between January 2003 and December
2007 is considered for fitting the parameters. The average 5-year US treasury rate is 3.94%, and from the average adjusted
leverage ratio we get D(0) = 12.6.

The fitted parameters Θ = (µ, v∞, κv, εv) for Merrill Lynch based on the time between January 2003 and December 2007
are the following:

µ r v∞ κv εv

0.041350 0.000637 0.595501 0.5 0.024382

Once more, 10 000 asset paths are simulated with those parameters and the event of default is examined. Figure 7 shows
the number of defaults in the respective year. In this graph, the first year represents the time from January 2008 until
December 2008, the second year is 2009, and so on. Especially when comparing these outcomes to those presented
in Figure 4, the highly increased default risk becomes obvious. In the new setting, 0.47% of the simulated time series
default within the first year (compared to 0.11%), and 6.27% default within the first three years (compared to 1.40%). In
only 41.39% of the time series, the company does not default over the simulated time horizon of 100 years (compared to
59.13%). Figure 8 displays the development of the survival probabilities for the two examined periods (the first year of a
possible default starts in July 2007, or January 2008). The survival probability decreases notably. Especially in the first
years, the probability to survive is dramatically lower for the situation in January 2008. This means that already on January
1st, 2008 this model only shows a 3:1 chance for Merrill Lynch to survive the next ten years. Therefore, the “unexpected”
development of July, August and September 2008 does not really come as such a big surprise anymore. Considering that
Merrill Lynch actually has not defaulted in September 2008 when being taken over by the Bank of America, it was almost
clear that with these prospects, something “had to happen”.

Furthermore, Figure 8 compares the survival probabilities of this model with the survival probabilities derived from the
S&P credit rating of Merrill Lynch. In January 2008, Merrill Lynch was rated “A+”. Assuming that the transition matrix
for the rating classes will not change over the next 100 years, yields the survival probabilities indicated by the dotted line.
It becomes clear that, in particular, in the near future, the credit rating severely underestimates the probability of a default
compared to the credit model under stochastic volatility.

4. Conclusion

This paper presented a model for a company’s asset process if only the equity process is observable. Companies’ equity
is regarded as a barrier option, namely a down-and-out call on the company’s assets where barrier and strike price are
equal to the debt. The assets are modeled with stochastic volatility providing for more degrees of freedom than a common
Black/Scholes Model. Thus, this paper combines the credit model as in Black and Cox (1976) with the stochastic volatility
model in Heston (1993). As a first result, a closed-form solution for the price of a down-and-out call option on the assets
with the debt as barrier and strike price has been derived. Second, a method of gaining consistent estimators was derived
from Genon-Catalot et al. (2000), and five estimators were given explicitly which are utilized during the fitting process for
single time series. Given the equity value of the company and information on the liabilities, we can derive an asset process
where the assets have stochastic volatility. These contributions provide a computationally and statistically friendly setting
for practitioners in economics and finance.

The applications in this study have been limited to one dimension. One potential extension of this research is to look at
several companies and estimate their dependence structure within our stochastic volatility setting. Furthermore, it would
also be of interest to examine a setting in the stochastic volatility model where the barrier is not equal to the strike price
and/or where the debt is assumed to follow a stochastic process to account for uncertainty on the liability side as well. Yet,
this would probably make it a lot more difficult to arrive at (closed-form) formulas for option prices or to obtain estimators
with sound statistical properties. However, models with a higher complexity than the Black/Scholes Model where assets
follow a Geometric Brownian Motion are very important, in particular stochastic volatility models which are able to better
capture realistic features of market behavior, and thus better describe reality.
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Appendix

Derivation of Option Pricing Formula The following lemma is stated from Zagst (2002, Theorem 2.21, p. 21):

Lemma 5.3 (Optional Sampling) Let (Ω, F , Q, F) be a filtered probability space and X = (Xt)t≥0 a right-continuous
martingale which means that all paths of Xt are right-continuous. Furthermore, let τ be a stopping time and 0 ≤ s ≤ t <
∞. Then, for all t ≥ 0 it holds Q-a.s. that

E [Xt∧τ | Fs] = Xs∧τ (25)

where the stopped process Xt∧τ is defined as

Xt∧τ(ω) :=
{

Xt(ω) if t ≤ τ(ω)
Xτ(ω) if t > τ(ω)

In the present scenario, the option (6) can be rewritten as

C(t, A) = EQ

[
e−

∫ T
t r(s) ds ·max {A(T ) − D(T ), 0} · 1{τ>T }

∣∣∣∣ Ft

]
(26)

= EQ

[
e−

∫ T
t r(s) ds · (A(T ) − D(T )) · 1{τ>T }

∣∣∣∣ Ft

]
because if the asset value is below the value of the debt at maturity, i.e. A(T ) − D(T ) < 0, the indicator function 1{τ>T }
with τ = inf {t′ : A(t′) < D(t′)} already is zero. Thus, taking the maximum becomes redundant.

Now define

Xt = X(t) := Ã(t) − D̃(t) (27)

with the discounted processes

Ã(t) := e−
∫ t

0 r(s) dsA(t)

D̃(t) := e−
∫ t

0 r(s) dsD(t)

for assets and debt. As A(t) and D(t) are continuous Xt is continuous, and thus, Xt∧τ is continuous as well, in particular for
t = τ. As a tradable underlying Ã(t) can be assumed a Q-martingale. Therefore, Xt is a martingale. The stopped process
is

Xt∧τ(ω) =

{
Ã(t) − D̃(t) if t ≤ τ(ω)
0 if t > τ(ω)

=
(
Ã(t) − D̃(t)

)
· 1{τ>t}

Using the stopped process, the option price (27) is:

C(t, A) = EQ

[
e−

∫ T
t r(s) ds · (A(T ) − D(T )) · 1{τ>T }

∣∣∣∣ Ft

]
= e

∫ t
0 r(s) ds · EQ

[(
Ã(T ) − D̃(T )

)
· 1{τ>T }

∣∣∣∣ Ft

]
= e

∫ t
0 r(s) ds · EQ [XT∧τ | Ft]

=
(25)

e
∫ t

0 r(s) ds · Xt∧τ

= e
∫ t

0 r(s) ds ·
(
Ã(t) − D̃(t)

)
· 1{τ>t}

= (A(t) − D(t)) · 1{τ>t} (28)

Given that the company didn’t default up to time t, i.e. 1{τ>t} = 1,

C(t, A) = A(t) − D(t). (29)

Definition 5.4 (α-mixing) Let X be a stochastic process (which is a sequence of random variables {Xk}k∈Z) on a probability
space (Ω, F , Q) and define

F B
A := σ (Xk, k ∈ [A, B])
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for −∞ ≤ A ≤ B ≤ ∞. σ(E) denotes the generated σ-algebra with generator E.

Furthermore,

α(n) := sup
j∈Z

α
(
F j
−∞, F ∞j+n

)
.

with

α (F1, F2) := sup
E1∈F1, E2∈F2

|Q(E1 ∩ E2) −Q(E1) ·Q(E2)|

The process X is α-mixing, if

α(n)
n→∞−→ 0

Proof. (Lemma 2.1) The stochastic differential equation (11) can be re-written as:

Y(t) = y0 +

∫ t

0
µ − v(s)

2
ds +

∫ t

0

√
v(s)dZ(s)

Therefore,

Y(i△) − Y((i − 1)△) =

i△∫
(i−1)△

µ − v(s)
2

ds +

i△∫
(i−1)△

√
v(s)dZ(s)

= µ △ −
i△∫

(i−1)△

v(s)
2

ds +

i△∫
(i−1)△

√
v(s)dZ(s)

and

Y(i△) − Y((i − 1)△)
√
△

= µ
√
△ − 1

√
△

i△∫
(i−1)△

v(s)
2

ds +
1
√
△

i△∫
(i−1)△

√
v(s)dZ(s)

=

µ − V(i)
2

 · √△ + 1
√
△

i△∫
(i−1)△

√
v(s)dZ(s)

Proof. (Proposition 2.2) The proof of this proposition works along Sections 3 and 4 of Genon-Catalot (2000). According
to them, the volatility process v which is characterized by (2) is α-mixing if the following conditions hold, as shown in
detail in the example in their Section 4.2:

κv > 0 (30)

κvv∞ ≥ ε2
v

2
(31)

If this is the case, due to Proposition 3.2 in Genon-Catalot (2000) (Note 4), v(t) in (2) is also α-mixing. It follows that:

1
n

n−2∑
i=0

f (R(i + 1), R(i + 2))
n→∞−→ E[E[ f (R(1), R(2))]] a.s. (32)

where f is chosen (Note 5) to be

f (A, B) = Ap · Bq

In particular (p, q) ∈ {(1, 0), (1, 1), (2, 0), (2, 1), (4, 0)}. Therefore, 1
n

n−1∑
i=0

R(i+ 1)
a.s.−→ E[R(1)], 1

n

n−2∑
i=0

R(i+ 1)R(i+ 2)
a.s.−→

E[R(1)R(2)], and so on.

E [R(1)] = E
[
E

[
R(1)|V

]]
=

(15)
E

[√
△µ − 1

2

√
△V(1)

]
=

√
△µ − 1

2

√
△E

[
V(1)

]
(33)
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E [R(1)R(2)] = E
[
E

[
R(1)R(2)|V

]]
= E

[
Cov(R(1), R(2)|V) + E

[
R(1)|V

]
· E

[
R(2)|V

]]
= E

[
0 +

(√
△µ − 1

2

√
△V(1)

) (√
△µ − 1

2

√
△V(2)

)]
= E

[
△µ2 − 1

2
△ µV(1) − 1

2
△ µV(2) +

1
4
△ V(1)V(2)

]
= △µ2 − 1

2
△ µE

[
V(1)

]
− 1

2
△ µE

[
V(2)

]
+

1
4
△ E

[
V(1)V(2)

]
= △µ2 − △µE

[
V(1)

]
+

1
4
△ E

[
V(1)V(2)

]
(34)

E
[
R2(1)

]
= E

[
E

[
R2(1)|V

]]
= E

[
Var(R(1)|V) + E

[
R(1)|V

]2
]

= E
V(1) +

(√
△µ − 1

2

√
△V(1)

)2
= E

[
V(1) + △µ2 − △µV(1) +

1
4
△ V

2
(1)

]
= △µ2 − (△µ − 1)E

[
V(1)

]
+

1
4
△ E

[
V

2
(1)

]
(35)

E
[
R(1)2R(2)

]
= E

[
E

[
R(1)2R(2)|V

]]
= E

[
Cov(R(1)2, R(2)|V) + E

[
R(1)2|V

]
· E

[
R(2)|V

]]
= E

[
E

[
R(1)2|V

]]
· E

[
E

[
R(2)|V

]]
= E

[
E

[
R(1)2|V

]]
· E

[
E

[
R(1)|V

]]
=

(33),(35)

(
△µ2 − (△µ − 1)E

[
V(1)

]
+

1
4
△ E

[
V

2
(1)

])
·
(√
△µ − 1

2

√
△E

[
V(1)

])
(36)

For the derivation of E
[
R4(1)

]
it is used that if X is normally distributed, then the fourth moment of X is

E[X4] = E[X]4 + 6 · E[X]2 · Var(X) + 3 · Var(X)2 (37)

E[R4(1)] = E
[
E[R4(1)|V]

]
= E

E[R(1)|V]4︸       ︷︷       ︸
(I)

+ 6 · E[R(1)|V]2 · Var(R(1)|V)︸                              ︷︷                              ︸
(II)

+ 3 · Var(R(1)|V)2︸              ︷︷              ︸
(III)


= E


(
△µ2 − △µV(1) +

1
4
△ V

2
(1)

)2

︸                                 ︷︷                                 ︸
(I)

+ 6
(
△µ2 − △µV(1) +

1
4
△ V

2
(1)

)
V(1)︸                                         ︷︷                                         ︸

(II)

+ 3V
2
(1)︸ ︷︷ ︸

(III)


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= E

△2µ4 + △2µ2V
2
(1) +

1
16
△2 V

4
(1) − 2 △2 µ3V(1) +

1
2
△2 µ2V

2
(1)︸                                                                                ︷︷                                                                                ︸

(I)

−1
2
△2 µV

3
(1)︸           ︷︷           ︸

(I)

+ 6 △ µ2V(1) − 6 △ µV
2
(1) +

6
4
△ V

3
(1)︸                                           ︷︷                                           ︸

(II)

+ 3V
2
(1)︸ ︷︷ ︸

(III)


≈ △2µ4 +

(
6 △ µ2 − 2 △2 µ3

)
E

[
V(1)

]
+

(
3
2
△2 µ2 − 6 △ µ + 3

)
E

[
V

2
(1)

]
(38)

Note that the influence of those terms containing E
[
V

3
(1)

]
or E

[
V

4
(1)

]
is negligible. Summing up, (33), (34), (35), (36)

and (38) prove (16), (17), (18), (19) and (20).

(21), (22) and (23) have already been calculated in Genon-Catalot (2000).
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Table 1. Numerical and analytical pricing of a DOC in the stochastic volatility model

zero Cnum C 95% confidence
D(t) payoffs mean analytical diff. sigma lower upper
0.00 0 99.936 100.000 –0.064 22.507 99.494 100.377

10.00 0 89.877 90.000 –0.123 22.749 89.431 90.323
20.00 0 79.845 80.000 –0.155 22.624 79.402 80.288
30.00 0 70.118 70.000 0.118 22.864 69.670 70.566
40.00 0 60.350 60.000 0.350 22.649 59.906 60.794
50.00 14 49.776 50.000 –0.224 22.026 49.345 50.208
60.00 288 40.240 40.000 0.240 22.888 39.792 40.689
70.00 1 291 29.737 30.000 –0.263 22.098 29.304 30.170
80.00 3 479 20.163 20.000 0.163 21.617 19.739 20.587
90.00 6 637 10.003 10.000 0.003 17.764 9.655 10.352

Table 2. Consolidated financial data of Merrill Lynch 2000–2008

*(in million USD) 2000 2001 2002 2003 2004 2005 2006 2007 2008
EBIT* 5 717 1 377 3 757 5 649 5 836 7 231 10 426 –12 831 –41 831
Net Revenues* 26 766 21 880 18 608 20 154 22 023 26 009 34 659 11 250 –12 593
Total Assets* 407 200 419 419 447 928 494 518 648 059 681 015 841 299 1 020 050 667 543
Total Liabilities* 386 182 396 716 422 395 464 197 616 689 645 415 802 261 988 118 647 540
Stockholders’ Equity* 18 304 20 008 22 875 27 651 31 370 35 600 39 038 31 932 20 003
Adjusted Leverage 13.2 13.1 11.1 11.7 13.9 11.6 13.1 17.7 13.3

Figure 1. Five simulated paths in the stochastic volatility model
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Figure 2. Performance of Merrill Lynch Stocks on NYSE (July 2001 – June 2007)

Figure 3. Observed equity returns of Merrill Lynch (July 2001 – June 2007) and simulated returns

Figure 4. Number of defaults out of 10 000 simulated time series for Merrill Lynch (July 2007)
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Figure 5. Survival probability for Merrill Lynch (July 2007)

Figure 6. Performance of Merrill Lynch Stocks on NYSE (January 2003 – December 2007)

Figure 7. Number of defaults out of 10 000 simulated time series for Merrill Lynch (January 2008)

Figure 8. Survival probability for Merrill Lynch (July 2007 and January 2008)
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Notes

Note 1. The basic idea of a barrier option is that the option expires if the underlying hits a barrier (“out options”) or
becomes exercisable only if such a barrier is reached (“in options”). A down-and-out call option therefore describes a call
option which expires if the underlying falls below a certain barrier. Thus, barrier options are path-dependent.

Note 2. In order to accurately fit the parameters of the volatility process which is not directly observable, we need
sufficiently many data points. Thus, daily data is used in the example.

Note 3. The adjusted leverage ratio is defined in the annual reports as “assets reduced by securities financing transactions
and securities received as collateral less trading liabilities net of derivative contracts and segregated cash and securities
and separate accounts assets, [...] divided by equity capital.”

Note 4. Although it is not stated in the proof of that proposition, it may be noted that the basic for this finding has already
been laid by Rosenblatt (1956).

Note 5. The Proposition in Genon-Catalot (2000) deals with a more general class of functions.
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Abstract

For multi-way contingency tables with nominal categories, this paper proposes three kinds of proportional reduction in
error measures, which describe the relative decrease in the probability of making an error in predicting the value of one
variable when the values of the other variables are known, as opposed to when they are not known. The measures have
forms of arithmetic, geometric and harmonic means. An example is shown.

Keywords: Arithmetic mean, Geometric mean, Harmonic mean, Proportional reduction in error

1. Introduction

Consider an R×C contingency table with both nominal categories of the explanatory variable X and the response variable
Y . Let pi j denote the probability that an observation will fall in the ith category of X and in the jth category of Y
(i = 1, . . . ,R; j = 1, . . . ,C). Goodman and Kruskal (1954) proposed two kinds of measures, i.e., (1) the measure which
describes the proportional reduction in variation (PRV) in predicting the Y category obtained when the X category is
known, as opposed to when the X category is not known, and (2) the measure which describes the proportional reduction
in error (PRE) in predicting it. Although the details are omitted, some PRV measures are considered by, e.g., Theil (1970),
Tomizawa, Seo and Ebi (1997), Tomizawa and Ebi (1998), Tomizawa and Yukawa (2003), and Yamamoto, Miyamoto and
Tomizawa (2010).

The present paper considers the PRE measures. Goodman and Kruskal (1954) proposed the PRE measure as

λB =

(1 − p•m0 ) −
R∑

i=1

pi•

(
1 −

(
pimi

pi•

))
1 − p•m0

=

R∑
i=1

pimi − p•m0

1 − p•m0

,

where

pimi = max
j

(pi j), p•m0 = max
j

(p• j), pi• =
C∑

t=1

pit, p• j =

R∑
s=1

ps j;

also see Bishop, Fienberg and Holland (1975, p. 388), and Everitt (1992, p. 58). This measure describes the relative
decrease in the probability of making an error in predicting the value of Y when the value of X is known, as opposed to
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when it is not known. The measure λB has the properties that (i) 0 ≤ λB ≤ 1, (ii) λB = 0 if and only if the information
about the explanatory variable X does not reduce the probability of making an error in predicting the category of the
variable Y , and (iii) λB = 1 if and only if no error is made, given knowledge of the explanatory variable X; namely there
is complete predictive association.

Next, consider the reverse case which is the explanatory variable Y and the response variable X. The following measure
λA is suitable for predictions of X from Y , defined by

λA =

C∑
j=1

pM j j − pM0•

1 − pM0•
,

where
pM j j = max

i
(pi j), pM0• = max

i
(pi•);

see Goodman and Kruskal (1954).

The measures λB and λA are specifically designed for the situation in which the explanatory and response variables are
defined. Now consider the situation where the explanatory and response variables are not defined. In this case, the
following measure λ is given:

λ =

R∑
i=1

pimi +

C∑
j=1

pM j j − p•m0 − pM0•

2 − p•m0 − pM0•
;

see Goodman and Kruskal (1954). This indicates the PRE in predicting the category of either variable as between knowing
and not knowing the category of the other variable. Also, the measure λ is the weighted sum of the measures λB and λA.

For a two-way contingency table with both nominal categories, Yamamoto and Tomizawa (2010) proposed new PRE
measures, say Λ, expressed as the arithmetic, geometric and harmonic means of λB and λA. For a two-way contingency
table with nominal-ordinal categories, Yamamoto, Nozaki and Tomizawa (2011) proposed a PRE measure although the
detail is omitted.

The purpose of the present paper is to extend the Yamamoto and Tomizawa’s (2010) measures into T -way contingency
tables (T ≥ 3) with all nominal categories. Section 2 proposes measures for three-way tables (T = 3), and Section 3
extends them for multi-way (T ≥ 4) and expresses as more generalized form including such three kinds of means. Section
4 analyzes data as an example.

2. New PRE Measures for Three-way Contingency Tables

2.1 Measures

Consider an R×C × L contingency table with variables X, Y and Z which have all nominal categories. Let pi jk denote the
probability of that an observation will fall in the (i, j, k)th cell of the table (i = 1, . . . ,R; j = 1, . . . ,C; k = 1, . . . , L). When
the explanatory and response variables are not defined, namely, we cannot specifically define which of the variables is a
response, we consider three kinds of prediction, predicting X, predicting Y and predicting Z.

First, consider the table with a response variable X and two explanatory variables Y and Z. In this case, a PRE measure,
which describes the relative decrease in the probability of making error in predicting the value of X when the values of
the other variables, Y and Z, are known, as opposed to when they are not known, is defined by

λ(3)
A =

C∑
j=1

L∑
k=1

pm jk jk − pm1••

1 − pm1••
,

where

pm jk jk = max
i

(pi jk), pm1•• = max
i

(pi••), pi•• =
C∑

t=1

L∑
u=1

pitu.

Similarly, each PRE measure for the table as having a response variable Y and two explanatory variables X and Z and as
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having a response variable Z and two explanatory variables X and Y is defined by

λ(3)
B =

R∑
i=1

L∑
k=1

pimikk − p•m2•

1 − p•m2•
,

and

λ(3)
C =

R∑
i=1

C∑
j=1

pi jmi j − p••m3

1 − p••m3

,

where

pimikk = max
j

(pi jk), p•m2• = max
j

(p• j•), p• j• =
R∑

s=1

L∑
u=1

ps ju,

pi jmi j = max
k

(pi jk), p••m3 = max
k

(p••k), p••k =
R∑

s=1

C∑
t=1

pstk.

Then, we shall propose three kinds of new PRE measures as follows:

λ(3)
a =

λ(3)
A + λ

(3)
B + λ

(3)
C

3
,

λ(3)
g =

3
√
λ(3)

A λ(3)
B λ(3)

C ,

and

λ(3)
h =

3
1

λ(3)
A

+
1

λ(3)
B

+
1

λ(3)
C

.

The measures λ(3)
a , λ(3)

g and λ(3)
h are the arithmetic mean, geometric mean and harmonic mean of the λ(3)

A , λ(3)
B and λ(3)

C ,
respectively.

Let λ∗ denote each of measures λ(3)
a , λ(3)

g and λ(3)
h . Each measure has the properties that (i) λ∗ must lie between 0 and 1, (ii)

λ∗ = 0 if and only if the information about two variables does not reduce the probability of making an error in predicting
the category of the other variable, and (iii) λ∗ = 1 if and only if no error is made, given knowledge of two variables;
namely there is complete predictive association. We point out that if the variables are independent, then the measure λ∗

takes 0, but the converse need not hold. Note that when the values of λ(3)
A , λ(3)

B and λ(3)
C are 0 such as the variables are

independent, the measure λ(3)
h cannot measure the PRE. So in such a case, the measures λ(3)

a and λ(3)
g should be used as a

PRE measure.

We see that
min

(
λ(3)

A , λ(3)
B , λ(3)

C

)
≤ λ(3)

h ≤ λ
(3)
g ≤ λ(3)

a ≤ max
(
λ(3)

A , λ(3)
B , λ(3)

C

)
,

where the equality holds if and only if λ(3)
A = λ

(3)
B = λ

(3)
C .

2.2 Approximate Confidence Interval for Measures

Let ni jk denote the observed frequency in the (i, j, k)th cell of the table (i = 1, . . . ,R; j = 1, . . . ,C; k = 1, . . . , L). Assuming
that {ni jk} result from full multinomial sampling, we consider an approximate standard error and large-sample confidence
interval for λ∗, using the delta method, descriptions of which are given by Bishop et al. (1975, Sec. 14.6). The sample
version of λ∗, i.e., λ̂∗, is given by λ∗ with {pi jk} replaced by {p̂i jk}, where p̂i jk = ni jk/n and n =

∑∑
ni jk. Using the delta

method,
√

n(λ̂∗ − λ∗) has asymptotically (as n→ ∞) a normal distribution with mean 0 and variance σ2[λ∗], where

σ2 [
λ∗

]
=

R∑
i=1

C∑
j=1

L∑
k=1

(
∂λ∗

∂pi jk

)2

pi jk −
 R∑

s=1

C∑
t=1

L∑
u=1

(
∂λ∗

∂pstu

)
pstu

2

.
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For measures λ(3)
a , λ(3)

g and λ(3)
h , the variances are

(a) σ2
[
λ(3)

a

]
=

1
9

 R∑
i=1

C∑
j=1

L∑
k=1

(Ui jk)2 pi jk −
 R∑

s=1

C∑
t=1

L∑
u=1

Ustu pstu

2 ,
(b) σ2

[
λ(3)

g

]
=

1
9

(
λ(3)

g

)−4

 R∑
i=1

C∑
j=1

L∑
k=1

(Vi jk)2 pi jk −
 R∑

s=1

C∑
t=1

L∑
u=1

Vstu pstu

2 ,
(c) σ2

[
λ(3)

h

]
=

1
9

(
λ(3)

h

)4

 R∑
i=1

C∑
j=1

L∑
k=1

(Wi jk)2 pi jk −
 R∑

s=1

C∑
t=1

L∑
u=1

Wstu pstu

2 ,
where

Ui jk = ∆i jk(1) + ∆i jk(2) + ∆i jk(3),

Vi jk = ∆i jk(1)λ
(3)
B λ(3)

C + ∆i jk(2)λ
(3)
A λ(3)

C + ∆i jk(3)λ
(3)
A λ(3)

B ,

Wi jk =
∆i jk(1)(
λ(3)

A

)2 +
∆i jk(2)(
λ(3)

B

)2 +
∆i jk(3)(
λ(3)

C

)2 ,

with

∆i jk(1) =

I(i = m jk)(1 − pm1••) − I(i = m1)

1 − C∑
j=1

L∑
k=1

pm jk••


(1 − pm1••)2 ,

∆i jk(2) =

I( j = mik)(1 − p•m2•) − I( j = m2)

1 − R∑
i=1

L∑
k=1

p•mik•


(1 − p•m2•)2 ,

∆i jk(3) =

I(k = mi j)(1 − p••m3 ) − I(k = m3)

1 − R∑
i=1

C∑
j=1

p••mi j


(1 − p••m3 )2 ,

and I(·) is the indicator function.

Let σ̂2[λ∗] denote σ2[λ∗] with {pi jk} replaced by {p̂i jk}. Then, σ̂[λ∗]/
√

n is an estimated standard error for λ̂∗, and
λ̂∗ ± z1−α/2σ̂[λ∗]/

√
n is an approximate 100(1−α)% confidence interval for λ∗, where z1−α/2 is the (1−α/2)th quantile of

the standard normal distribution.

3. Extension to Multi-way Contingency Tables

3.1 Measures

Consider an R1 × R2 × · · · × RT contingency table with nominal categories in which the (T − 1) explanatory variables and
one response variable are not defined. Let pi1i2···iT denote the probability that an observation will fall in the (i1, i2, · · · , iT )th
cell of the table (ik = 1, . . . ,Rk; k = 1, . . . , T ) and Xk (k = 1, · · · ,T ) denote the kth variable. For k = 1, . . . , T , a PRE
measure in predicting the value of Xk is defined by

λ(T )
k =

R1∑
i1=1

· · ·
Rk−1∑

ik−1=1

Rk+1∑
ik+1=1

· · ·
RT∑

iT=1

p(k)
mi1 ···ik−1 ik+1 ···iT

− p(k)
mk

1 − p(k)
mk

,

where
p(k)

mi1 ···ik−1 ik+1 ···iT
= max

ik
(pi1···ik ···iT ), p(k)

mk
= max

ik

(
p(k)

ik

)
,

and p(k)
ik
= P(Xk = ik). Then, we shall extend the measures as follows:

λ(T )
a =

1
T

T∑
k=1

λ(T )
k ,
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λ(T )
g =

T

√√√ T∏
k=1

λ(T )
k ,

and

λ(T )
h =

T
T∑

k=1

1

λ(T )
k

.

The measures λ(T )
a , λ(T )

g and λ(T )
h are the arithmetic mean, geometric mean and harmonic mean of the λ(T )

1 through λ(T )
T ,

respectively.

Let Λ(T ) denote each of measures λ(T )
a , λ(T )

g and λ(T )
h . Each measure has the properties that (i) Λ(T ) must lie between 0 and

1, (ii) Λ(T ) = 0 if and only if the information about (T − 1) variables does not reduce the probability of making an error
in predicting the category of the other variable, and (iii) Λ(T ) = 1 if and only if no error is made, given knowledge of
(T − 1) variables; namely there is complete predictive association. We point out that if all variables are independent, then
the measure Λ(T ) takes 0, but the converse need not hold. Note that when λ(T )

k = 0 (k = 1, · · · T ) such as all variables are
independent, the measure λ(T )

h cannot measure the PRE. So in such a case, the measures λ(T )
a and λ(T )

g should be used as a
PRE measure.

We see that
min

(
λ(T )

1 , · · · , λ(T )
T

)
≤ λ(T )

h ≤ λ
(T )
g ≤ λ(T )

a ≤ max
(
λ(T )

1 , · · · , λ(T )
T

)
,

where the equality holds if and only if λ(T )
1 through λ(T )

T are all equal.

We note that Λ(T ) when T = 2 is equivalent to the measure Λ proposed in Yamamoto et al. (2010).

3.2 Generalization of the Measures

Considering the monotonic function g, we shall propose a generalized measure, which includes the measures λ(T )
a , λ(T )

g

and λ(T )
h , as follows:

Λ(T ) = g−1


∑T

k=1 g
(
λ(T )

k

)
T

 .
The functions g and g−1 are differentiable functions. Especially, (i) when g(x) = x, the measure Λ(T ) is identical to λ(T )

a ,
(ii) when g(x) = log x, the measure Λ(T ) is identical to λ(T )

g , and (iii) when g(x) = 1/x, the measure Λ(T ) is identical to
λ(T )

h .

Λ(T ) has the same properties as λ(T )
a , λ(T )

g and λ(T )
h (see Section 3.1).

3.3 Approximate Confidence Interval for Measures

Let ni1i2···iT denote the observed frequency in the (i1, i2, . . . , iT )th cell of the table (ik = 1, . . . ,Rk; k = 1, . . . ,T ). Assume
that a multinomial distribution applies to the R1×R2×· · ·×RT table. In a similar way to the case of T = 3,

√
n(Λ̂(T )−Λ(T ))

(n is sample size and Λ̂(T ) is the estimated measure) has asymptotically a normal distribution with mean 0 and variance

σ2
[
Λ(T )

]
=

R1∑
j1=1

· · ·
RT∑

jT=1

(
∂Λ(T )

∂p j1··· jT

)2

p j1··· jT −
 R1∑

s1=1

· · ·
RT∑

sT=1

(
∂Λ(T )

∂ps1···sT

)
ps1···sT


2

.

For measures λ(T )
a , λ(T )

g and λ(T )
h , the variances are

(a) σ2
[
λ(T )

a

]
=

1
T 2

 R1∑
j1=1

· · ·
RT∑

jT=1

(U j1··· jT )2 p j1··· jT −
 R1∑

s1=1

· · ·
RT∑

sT=1

Us1···sT ps1···sT


2 ,

(b) σ2
[
λ(T )

g

]
=

1
T 2

(
λ(T )

g

)2(1−T )

 R1∑
j1=1

· · ·
RT∑

jT=1

(V j1··· jT )2 p j1··· jT −
 R1∑

s1=1

· · ·
RT∑

sT=1

Vs1···sT ps1···sT


2 ,

(c) σ2
[
λ(T )

h

]
=

1
T 2

(
λ(T )

h

)4

 R1∑
j1=1

· · ·
RT∑

jT=1

(W j1··· jT )2 p j1··· jT −
 R1∑

s1=1

· · ·
RT∑

sT=1

Ws1···sT ps1···sT


2 ,
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where

U j1··· jT =
T∑

k=1

∆ j1··· jT (k),

V j1··· jT =
T∑

k=1

∆ j1··· jT (k)λ
(T )
1 · · · λ

(T )
k−1λ

(T )
k+1 · · · λ

(T )
T ,

W j1··· jT =
T∑

k=1

∆ j1··· jT (k)(
λ(T )

k

)2 ,

with

∆ j1··· jT (k) =
1(

1 − p(k)
mk

)2

I( jk = m j1··· jk−1 jk+1··· jT )
(
1 − p(k)

mk

)
− I( jk = mk)

1 − R1∑
i1=1

· · ·
Rk−1∑

ik−1=1

Rk+1∑
ik+1=1

· · ·
RT∑

iT=1

p(k)
mi1 ···ik−1 ik+1 ···iT


 ,

and I(·) is the indicator function.

Then, we can construct an asymptotic confidence interval using estimated variance although the detail is omitted.

4. An Example

Consider the data in Table 1, taken from Goodman (1975), which shows the McHugh test data on creative ability in
machine design. This table cross-classifies 137 engineers with respect to their dichotomized scores (above the subtest
mean (1) or below the subtest mean (2)) obtained on each of four different subtests that were supposed to measure creative
ability in machine design. There are sixteen response patterns because the table has four variables (items A, B, C and D)
and each has two categories.

Now, we are interested in what degree the relative decrease in the probability of making an error in predicting the value of
one variable when we know the values of the other three variables as opposed to when we do not know them is. We shall
analyze these data by using the proposed measure because the explanatory and response variables are not defined. When
we use the measure λ(4)

a , for example, the estimated value of λ(4)
a is 0.470 (Table 2). We see that in prediction of one of the

variables from the others, the information reduces the probability of making an error by 47.0%. Similarly, the estimated
values of λ(4)

g and λ(4)
h are 0.469 and 0.467, respectively. So we can also obtain a similar interpretation for the data.

We are also interested in the values of test statistic for the hypotheses of independence of (1) item A and items (B, C, D),
(2) B and (A, C, D), (3) C and (A, B, D), and (4) D and (A, B, C). The values of Pearson’s chi-squared statistic are 35.93
for (1), 37.67 for (2), 48.17 for (3), and 42.06 for (4) with seven degrees of freedom. Therefore, we can see the strong
association between one of the variables and the other three variables. So, it would be meaningful to see the values of
proposed measures.

5. Concluding Remarks

For analyzing multi-way (T -way) contingency tables with nominal categories, we have proposed three kinds of PRE
measures which describes the relative decrease in the probability of making error in predicting value of one variable when
the values of the other variables are known, as opposed to when they are not known. The proposed measures include
arithmetic mean (λ(T )

a ), geometric mean (λ(T )
g ) and harmonic mean (λ(T )

h ). These measures are useful for analyzing the
table which explanatory and response variables are not defined. A point to notice is that the measure λ(T )

h cannot measure
the PRE when the variables are independent and/or any λ(T )

k (k = 1, . . . ,T ) is 0. In such a case, the measures λ(T )
a and

λ(T )
g should be used. It is difficult to discuss how to choose between three propositions: arithmetic, geometric or harmonic

mean. We recommend the use of λ(T )
a for the simple interpretation.

In addition, the measure Λ(T ), including λ(T )
a , λ(T )

g and λ(T )
h , is invariant under arbitrary permutations of the categories.

Therefore the measure is suitable for analyzing the data on a nominal scale, but it is possible for analyzing the data on an
ordinal scale because it only requires a categorical scale.
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Table 1. Frequency of occurrence of response patterns for the four machine design subtests (Goodman, 1975)

Response pattern
item Observed

A B C D frequencies
1 1 1 1 23
1 1 1 2 5
1 1 2 1 5
1 1 2 2 14
1 2 1 1 8
1 2 1 2 2
1 2 2 1 3
1 2 2 2 8
2 1 1 1 6
2 1 1 2 3
2 1 2 1 2
2 1 2 2 4
2 2 1 1 9
2 2 1 2 3
2 2 2 1 8
2 2 2 2 34

Total 137

Table 2. Estimates of the measures, approximate standard errors for them and approximate 95% confidence intervals for
the measures, applied to Table 1

Measures Estimated Standard Confidence
measure error interval

λ(4)
a 0.470 0.065 (0.343, 0.597)
λ(4)

g 0.469 0.066 (0.340, 0.597)
λ(4)

h 0.467 0.066 (0.337, 0.598)

42 ISSN 1927-7032 E-ISSN 1927-7040



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 1, No. 1; May 2012

Association between Spatial Patterns of Acute Malnutrition
and Household Income in Iraq-2004

Faisal G. Khamis (Corresponding author)

AL-Zaytoonah University of Jordan, Faculty of Economics and Administrative Sciences, Jordan

E-mail: faisal alshamari@yahoo.com

Ghaleb A. El-Refae

Al Ain University of Science and Technology, U.A.E

Received: February 6, 2012 Accepted: February 20, 2012 Published: May 1, 2012

doi:10.5539/ijsp.v1n1p43 URL: http://dx.doi.org/10.5539/ijsp.v1n1p43

Abstract

In this research acute malnutrition (AM) and household income (HI) are investigated. Historically, governorates of Iraq
suffered inequality in AM and HI for several reasons, such as government’s focus on heart of city in specific governorates;
like Baghdad, Basra, and Nineveh. Question is raised whether the spatial patterns of AM and HI are existed in Iraq? If
so, can the pattern of HI explain the pattern of AM?

The present paper investigates the spatial structure of AM across different governorates in Iraq and its spatial correlation
to HI. This investigation will provide implications for policy makers, finding local clusters and showing visual picture for
each of AM and HI.

The study utilizes a cross-sectional survey data collected in 2004 for 18 governorates. Mapping is used as the first
step to conduct visual inspection for AM and HI using quartiles. Several spatial econometric techniques are available
in the literature, which deal with the spatial autocorrelation in geographically referenced data. Two statistics of spatial
autocorrelation, based on sharing boundary neighbours, known as global and local Moran’s I, are carried out. Wartenberg’s
measure is used to detect bivariate spatial correlation.

In conclusion, based on visual inspection of mapping, global clustering in high level of AM and low level of HI were
in general concentrated in western-southern governorates. This global clustering for AM was confirmed by significant
global Moran’s I statistic, but was not confirmed for HI. Out of 18 governorates, three and one governorates were found
as local clusters in AM and HI respectively based on local Moran’s Ii. Bivariate spatial correlation between AM and HI
was not found significant.

Keywords: Spatial autocorrelation, Acute malnutrition, Household income, Mapping, Moran measure, Iraq

1. Introduction

Areas, independent of their geographic level of aggregation, are known to be interrelated partly due to their relative loca-
tions. Similar economic performance among areas can be attributed to proximity. Consequently, a proper understanding
and accounting of spatial liaisons are needed in order to effectively forecast regional economic variables. Acute malnu-
trition (AM) and household income (HI) were studied in many developed and some developing countries using different
statistical measures. We have developed a framework to better understand how AM and HI are spatially associated across
governorates of Iraq. Martin et al. (2011) examined how poverty and education influence adolescent overweight. They
found that family poverty and parental education do not predict adolescent overweight. Janjua, Iqbal, and Mahmood
(2001) assessed the relationship between socioeconomic position (SEP) and under- and over-nutrition in Pakistan using
multinomial regression based on cross-sectional data in 2006. They didn’t find significant association between SEP and
underweight.

The relationship between malnutrition and socioeconomic indicators was studied by several authors in many countries.
Based on demographic and health survey 2004 to 2006, Urke, Bull, and Mittelmark (2011) investigated the association of
parents socioeconomic status (SES) using parental education, occupation, and household wealth index, with malnutrition
using the indicator child stunting in Peruvian Andes and in Peru nationally. In both samples, SES was significantly related
to stunting. Subramanyam et al. (2011) assessed the association between changes in state per capita income and the risk
of under-nutrition among children in India. They applied logistic models that accounted for the clustering of data and
they didn’t find consistent evidence that economic growth leads to reduction in childhood under-nutrition. Magalhães et
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al. (2011) estimated geographical risk profile of anemia accounting for malnutrition, malaria, and helminth infections
in Burkina Faso, Ghana, and Mali in 2003-2006. They found malnutrition and parasites make to anemia. In Kenya,
The high prevalence of chronic malnutrition suggested that stunting is a sustained problem within this urban informal
settlement, not specifically resulting from the relatively brief political crisis (Burke et al., 2011). As stated by Filho,
Kawachi, and Gotlieb (2012), income inequality is associated with worse population health in Sõ Paulo, Brazil. One
of malnutrition reasons is the deprivation from basic requirements of life. There is greater variation in death rates and
socio-demographic characteristics among the most deprived constituencies in Britain. Socio-demographic factors that are
most strongly correlated with death rates among the most deprived places differ from areas of all deprivation levels and
include population density, ethnicity and migration (Tunstall et al., 2011).

Twenty-five years ago, Iraq had the best living standard comparing to its neighbours. In the last years, Iraq was fallen due
to some indicators. In some cases, was fallen far behind. The growing income inequality was contributed significantly to
the deprivation increasing in Iraq. By the beginning of 1980s, other factors contributed to the rise in disparities among
some governorates. These factors include geographic location of governorate in terms of its proximity to battlefields, and
social composition of governorate’s population especially in north and south. In other governorates, disparities stemmed
according to political and tribal origins. The ratios of AM at main regions, South, Baghdad, Center, and North, in 2004
were 2.5, 1.8, 1.4, and 1.2 respectively. Median total of HI (in Iraqi Dinar) at these main regions in 2004 were 105
500, 100 000, 100 000, and 129 081 respectively. In recent years, a growing interest has been seen in examining the
existence of spatial autocorrelation of AM and its spatial relationship to several indicators such as HI, education, etc. Low
wage flexibility and limited labour mobility involve persistent unemployment differentials across governorates of Iraq.
Governorates are tightly linked by migration, commuting, and inter-governorate trade. These types of spatial interaction
are exposed to the frictional effects of distance, possibly causing the spatial dependence of governorate labour market
conditions.

To understand linkages between socioeconomic health indicators, investigation should focus on features of areas rather
than on compositional characteristics of residents of area, which cannot fully describe the social environment in which
people live (Macintyre, Maciver, & Sooman, 1993). So, the aim of the research is to investigate geographical mapping
and spatial autocorrelation of AM and its spatial relationship to HI. Spatial autocorrelation is the term used for the in-
terdependence of the values of lattice data over space. However, it was argued that lattice data are spatially correlated.
Mapping plays an important role in monitoring health status of people. Maps can reveal spatial patterns that is neither
recognized previously nor suspected from the examination of statistics table. It reveals high risk communities or prob-
lem areas (Lawson & Williams, 2001). The purpose of spatial analysis is to identify pattern in geographical data and
then attempts to explain this pattern. Findings are expected to enhance health monitoring and policy interventions across
governorates of Iraq.

The importance of this research objective emanates the studies conducted by Amaral et al., (2011) in Brazilian community
and Burke et al., (2011) in sub-Saharan Africa. They stated that malnutrition represents the strongest risk factor for mor-
bidity and mortality. Also, to author’s knowledge, no previous studies used spatial analysis techniques and geographical
mapping in studying spatial inequality in AM and HI in Iraq. The importance of mapping was stated by Koch (2005): why
make the map if detailed statistical tables carry the same results? Perhaps the most important reason for studying spatial
statistics is not only interested in answering the “how much” question, but the “how much is where” question (Schaben-
berger & Gotway, 2005). Therefore, the usefulness of the paper is to suggest where to intervene geographically. In light
of these: (1) the existence of spatial global clustering, (2) spatial local clusters for each of AM and HI were investigated,
(3) mapping was displayed for each of AM and HI and for their local Moran’s values, and (4) bivariate spatial correlation
between AM and HI was examined based on Wartenberg’s (1985) statistic. Study design was a cross-sectional analysis in
a survey conducted in Iraq in 2004.

The paper is structured as follows: Section one reviews the literature relating to AM and HI disparities generally in several
countries and particularly in Iraq. Materials and methods including data and analysis are presented in the second Section.
Third section explains the results with many details. Discussion is explained in fourth Section. Last section is closed with
several conclusions.

2. Materials and Methods

2.1 Data

Data were collected from the ministry of planning and development cooperation (2005), based on a survey conducted at
Iraq in 2004. For each of (N=18) governorates, transformed AM and HI data were applied. AM is a devastating public
health problem of epidemic proportions. The prevalence of AM is now one of the most widely used indicators of the
severity of humanitarian crises throughout the world. This is endorsed by a wide array of UN organizations, donors,
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national governments and international agencies. AM for male and female in Iraq in 2004 were approximately same as
accounted 1.9 and 1.8 respectively. AM is measured as low weight for height. The individual’s weight is compared to the
‘normal’ weight for that height. Normal weights for children are determined by studies that have weighed thousands of
healthy children. Based on this information, World Health Organization (WHO) developed charts known as international
standards for expected growth. If the weight is less than international standards, the individual is considered acutely
malnourished. WHO created cut-off points to indicate the severity of malnutrition? If the individual’s weight-for-height
is less than -3 z-scores (or standard deviations) of normal, s/he suffers from severe acute malnutrition. The formula for
calculating this index is given by:

z = (measured value - median of reference population) / standard deviation of the reference population

HI (in Iraqi Dinars) is measured as the median total of household income. Overall, households receive 45.3% of their
income from wages and salaries; 25.0% from self-employment and employer income; 19.8% from property income;
5.2% from social payments; and 4.7% from “transfers”. These percentages vary geographically. For example, wages and
salaries account for 31.4% of household income in Al-Najaf but 56.7% in Basrah; self-employment and employer income
account for 8.8% in Diala but 43.1% in Al-Najaf; and property income accounts for 14.2% in Al-Muthanna but 27.3% in
Erbil.

2.2 Analysis

Data analysis involved six steps. In step 1, AM and HI variables were tested for normal distribution. Both variables
aren’t found to follow normal distribution. Therefore, both variables are transformed to follow normal distribution using
LISREL software. LISREL scales normal scores so that transformed variable has the same sample mean and standard
deviation as the original variable. Thus, normal score is a monotonic transformation of original score with same mean
and standard deviation (this characteristic can be considered as an advantage in this transformation) but with values of
skewness and kurtosis much reduced. In step 2, visual inspection based on quantified gradients for each of AM and HI
was conducted using quartiles. Step 3 included the calculation of global Moran’s -statistic for each of AM and HI to detect
global clustering. Also, the significance of -statistic was examined using permutation test. Step 4 involved the calculation
of local Moran’s for governorate and it’s -value using Monte Carlo simulation to detect local clusters for each of AM
and HI. In step 5, visual inspection for local Moran values was inspected using choropleth mapping. In Step 6, bivariate
spatial correlation between AM and HI was examined using Wartenberg’s (1985) statistic.

Variables were categorized by four intervals. These intervals were used for all maps using darker shades of gray to indicate
increasing values of studied variables. Such approach enables qualitative evaluation of spatial pattern. In neighbourhood
researches, neighbours may be defined as areas border each other or within a certain distance of each other. In this
research neighbouring structure was defined as governorates share a boundary. The second order method (queen pattern)
that include both the first-order neighbours (rook pattern) and those diagonally linked (bishop pattern) was used. A
neighbourhood structure of Iraq’s governorates is explained in Figure 1, where the ID neighbours for each governorate
are shown.

Although maps allow visual assessment for spatial pattern, they have two important limitations. First, their interpretation
varies from person to person. Second, there is possibility that a perceived pattern is actually the result of randomness and
thus not meaningful. For these reasons, it makes sense to compute a numerical measure for spatial pattern, which can
accomplish using spatial autocorrelation measures.

2.2.1 Identification of Global Spatial Clustering

Moran’s I coefficient was used to measure the strength of spatial autocorrelation. In this exploratory spatial analysis, the
spatial autocorrelation was tested using standard normal deviate (z-value) of Moran’s I under normal assumption. The null
hypothesis of no spatial autocorrelation or spatially independent versus the alternative of positive spatial autocorrelation
is as follows:

H0 : No clustering exists (no spatial autocorrelation)
H1 : Clustering exists (positive spatial autocorrelation)

Moran’s I is calculated as follows (Cliff & Ord, 1981):

I =
N

∑N
i=1

∑N
j=1 wi j(xi − x̄)(x j − x̄)

S 0
∑N

i=1(xi − x̄)2

and

S 0 =

N∑
i=1

N∑
j=1

wi j, i , j
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Where, n = 18 is the number of governorates, wi j = 1 is a weight denoting the strength of the connection if the two
governorates i and j shares a common boundary, otherwise, wi j = zero, and xi and x j represent AM or HI in ith and jth
governorate respectively.

A significant positive value of Moran’s I indicates positive spatial autocorrelation, showing the overall pattern for gov-
ernorates having a high/low level of AM or HI similar to their neighbouring governorates. A significant negative value
indicates negative spatial autocorrelation, showing the governorates having a high/low level of AM or HI unlike their
neighbouring governorates. To test the significance of global Moran’s I, z-statistic which follows a standard normal
distribution was applied. It is calculated as follows (Weeks, 1992):

z =
I − E(I)
√

var(I)

Permutation test was applied. A permutation test tells us that a certain pattern in data is or is not likely to have arisen
by chance. The observations of AM or HI were randomly reallocated 1 000 times with 1 000 of spatial autocorrelations
were calculated in each time to test the null hypothesis of randomness. The hypothesis under investigation suggests that
there will be a tendency for a certain type of spatial pattern to appear in data. Whereas the null hypothesis says that if this
pattern is present, then this is a pure chance effect of observations in a random order. Null hypothesis is: no pattern in the
data.

The analysis suggests an evidence of clustering if the result of the global test is found significant; though it doesn’t identify
the location of any particular cluster. Besides clustering that represents global characteristic of AM or HI, the existence
and location of localized spatial clusters are of interest in geographic sociology. Accordingly, local spatial statistic was
advocated for identifying and assessing potential clusters.

2.2.2 Identification of Local Spatial Clusters

A global index can suggest clustering but cannot identify individual clusters (Waller & Gotway, 2004). Anselin (1995)
proposed local Moran’s Ii statistic to test local autocorrelation. Local spatial clusters, sometimes referred to as hot spots,
may be identified as those locations or sets of contiguous locations for which the local Moran’s Ii is significant. Local
Moran statistic was used to test the null hypothesis of no clusters. Moran’s Ii for ith governorate may be defined by Waller
and Gotway (2004) as:

Ii =
(xi − x̄)

S

N∑
j=1

wi j

/ Ni∑
k=1

wik

 (x j − x̄)
S

, i = 1, 2, ..., 18

Where, analogous to the global Moran’s I, xi and x j represent the AM or HI in ith and jth governorate respectively, N =
number of neighbours for ith governorate, and S is the standard deviation. It is noteworthy to mention that the number
of neighbours for ith governorate was taken into account by the amount: (wi j/

∑Ni
k=1 wik), where wi j was measured in the

same manner as in Moran’s I statistic.

Cluster could be due to either aggregation of high values, aggregation of low values, or aggregation of moderate values.
Thereby, high value of Ii suggests a cluster of similar (but not necessarily large) values across several governorates. Low
value of Ii suggests an outlying cluster in a single governorate i (being different from most or all of its neighbours). A pos-
itive local Moran value indicates local stability, such as a governorate that has high/low value surrounded by governorate
that has high/low value. A negative local Moran value indicates local instability, such as a governorate having low value
surrounded by governorates having high value or vice versa. Each governorate’s Ii value was mapped to provide insight
into the location of governorates with comparatively high or low local association with their neighbouring values.

2.2.3 Bivariate Spatial Association

So far, only univariate spatial correlation is presented. It quantifies the spatial structure of one variable at a time. Rates of
malnutrition on their own do not mean very much, unless the underlying related indicators of malnutrition are understood:
i.e. whether a socioeconomic indicator such as HI is correlated with malnutrition? Spatial dependence or spatial clustering
causes losing in the information that each observation carries. When N observations are made on a variable that is spatially
dependent and that dependence is positive so that nearby values tend to be similar, the amount of information carried by
the sample is less than the amount of information that would be carried if the N observations are independent. Due to a
certain amount of information carried by each observation is duplicated by other observations in the cluster. A general
consequence of this is that the sampling variance of statistics is underestimated. As the level of spatial dependence
increases, the underestimation increases. The problem prevails when spatial autocorrelation is present. The variance of
sampling distribution of e.g. Pearson correlation coefficient, which is a function of number of pairs of observations, is
underestimated. Spatial autocorrelation coefficient can be modified to estimate the bivariate spatial correlation between
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two variables (Wartenberg, 1985):

Ixy =
1

S 0

∑N
i=1

∑N
j=1 wi j(xi − x̄)(y j − ȳ)

[
√∑N

i=1(xi − x̄)2/N][
√∑N

j=1(y j − ȳ)2/N]

Where x and y are AM and HI variables respectively. Although the mathematics is quite straightforward, very few
software packages offer the option of computing, Ixy. Thus, programming was used to find Ixy. To test the significance
of Ixy, z-statistic was applied: z = Ixy

√
N − 1 , which follows approximately standard normal distribution. In statistical

analysis, all programs were performed using S + 8 Software.

3. Results

Figure 1 shows the study area explaining all governorates with their identification numbers (ID). Figure 2a and b show
visual insight for AM and HI respectively. Visual inspection shows that high level in AM was concentrated in western-
southern governorates, particularly in governorates 9, 10, 14, and 15. While low level of HI was concentrated in northern
and western-southern governorates, particularly in governorates 12, 13, 15, and 16. Several governorates are not observed
visually as hot spots, such as 1, 2, and 4 in AM, and 7 and 18 in HI. But, after considering the information of their
neighbours, i.e. calculating their local Moran values, the pattern of their hot spots can be obviously seen. Figure 3a and b
show visual insight for local Moran values of AM and HI respectively. Darkest shade corresponds to the highest quartile.
These maps display geographical inequalities across governorates of Iraq. Based on visual inspection for AM taken from
Figure 2a, an overall worsening pattern (high scores) was found in eastern-southern parts. Based on visual inspection for
HI taken from Figure 2b, an overall worsening pattern (low scores) was found in northern and eastern-southern parts.

The suggestion of spatial clustering in HI that results from a visual inspection of mapping was not confirmed by global
Moran’s I of .01 with an associated -statistic of .53 and p = .593. The suggestion of spatial clustering in AM that
results from a visual inspection of mapping was confirmed by a positive slightly significant global Moran’s I of .16 with
an associated -statistic of 1.68 and p = .092. To investigate global clustering, permutation test was done. For AM,
permutation p = .051 was found slightly significant, and for HI, permutation p = .294 was found not significant. Thus,
the null hypothesis of no spatial autocorrelation was rejected for AM while for HI was not rejected. Three and one
significant local clusters were found for AM (their ID are 12, 14, and 15) and HI (its ID is 15) respectively. Clusters of
AM and HI are located, as shown in Figures 3a and b respectively, in northern and southern parts. Transformed AM and
HI variables, their local Moran values, and their significant p-values in boldface are shown in Table 1.

Simulated data are useful for validating the results of spatial analysis. When the word simulation is used, it is referred to
an analytical method meant to imitate a real-life system, especially when other analyses are too mathematically complex
or too difficult to reproduce. However, using Monte Carlo simulation, 9 999 random samples, eighteen values for each
sample, were simulated. The process of simulation was conducted under standard normal distribution to calculate p-
values for local Moran values of AM and HI. While results are specific to these data the case study helps to identify
general concepts for future studies.

The AM is influenced by several variables in various ways. Spatial relationship between AM and HI was investigated.
Pearson correlation coefficient between AM and HI, that is not spatial measure, was found -.18. Pearson correlation was
not found significant with p = .243. Bivariate spatial correlation between AM and HI was found (Ixy = −.24), that is not
significant with z = −.99 and p = 0.990.

4. Discussion

This study aims to clarify how the risk of AM is spatially clustered and how is associated with HI across governorates of
Iraq. The above framework revealed some noteworthy findings. Such findings allow policy makers to better identify what
types of resources are needed and precisely where they should be employed across governorates. After rejecting the null
hypothesis for AM, it becomes possible to state that there was a form of global clustering and it was, of course, of interest
to know the exact nature of this clustering. Are there hot-spot clusters? If so, how many hot-spots are there? Where are
they located?

Exploratory tools such as descriptive Table and somewhat small area choropleth maps were used. Maps provide powerful
means to communicate data to others. Unlike information displayed in graphs, tables and charts; maps also provide
bookmarks for memories. In this way, maps are not passive mechanism for presenting information. Usually, in the
spatial analysis and geographical mapping, small spatial areas should be used such as districts, counties. . . etc. But, in this
research governorates were used which are considered somewhat larger than for example districts due to data were not
available for smaller areas. Most often the word ’neighbourhood’ suggests a relatively small area surrounding individuals’
homes. But researchers commonly make use of larger spatial area such as census tracts (Coulton et al., 2001). Often,
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choices about neighbourhood spatial definitions were made with respect to convenience and availability of contextual data
rather than study purpose (Schaefer-McDaniel et al., 2009). Schaefer-McDaniel et al. stated that, researchers might utilize
census data and thus rely on census-imposed boundaries to define neighbourhoods even though these spatial areas may
not be the best geographic units for the study topic.

Although, this work was conducted as part of a wider study, its immediate implications are more for policy makers
and practitioners than for researchers. This study adds to the global body of knowledge on the utilization of spatial
analysis to strengthen the research–policy interface in the developing countries such as Iraq. The spatial pattern of high
AM in Iraq was concentrated in old governorates such as AL-Muthana, Salahuddin, and AlQadisiya. This pattern was
characterized by underprivileged living conditions. This was consistent with what found by Yuan, Fulong, and Xueqiang
(2011) in the city of Guangzhou, China. Our contribution shows that the patterns of AM and HI are quite complicated.
Also, Investigators should draw from different research strands to understand where and why socioeconomic indicators
particularly HI could matter for AM. The findings of this study suggest that tackling AM is a high priority. There should
be fostered efforts to ensure that malnutrition-prevention strategies include the poor governorates.

As noted by Waller and Jacques (1995), the test for spatial pattern employs alternative hypotheses of two types; the
omnibus not the null hypothesis or more specific alternatives. Tests with specific alternatives include focused tests that are
sensitive to monotonically decreasing risk as distance from a putative exposure source (the focus) increases. Acceptance
of either types (the omnibus or a more specific alternatives) only demonstrates that some spatial pattern exist, and does
not implicate a cause (Jacques, 2004). Hence, the existence of spatial pattern alone cannot demonstrate nor prove a causal
mechanism.

It is very well known that employment is considered a major source for household income. Iraq faced specific challenges
with regard to jobs in its state-owned enterprises. With over 500 000 workers on the payroll, state-owned enterprises were
a major source of employment. Analysis of other episodes of conflict in Iraq indicates a very strong reciprocal relationship
between the lack of security and high unemployment (World Bank, 2006). While reconstruction and associated public-
sector jobs are important in the initial phase of Iraq’s recovery, they will not create a sufficient number of jobs to meet
the population’s needs in the long term; even if recovery is on a massive scale. Researchers recommend designing global
development strategies that focus on job creation and income generation. These strategies incorporate elements of basic
social protection and social dialogue at the global and local levels as an attempt to reduce inequalities in AM and HI.

The usual correlation coefficients, such as Pearson coefficient, only test whether there is an association between two
attributes by comparing values at the same location. While measuring spatial correlation involves more than pair wise
comparison between data recorded at the same locations as spatial units are arbitrary subdivisions of study region, people
could move around from one area to another. People could be affected by the variation in HI and other socioeconomic
indicators in areas other than the area they live in. i.e., AM inequality in ith governorate is thought to be influenced
and explained by the inequality of HI and probably other socioeconomic variables not just in ith governorate but also in
neighbouring governorates. However, the population size in these governorates is not equal; i.e. the rate of AM does not
express the absolute size of the problem.

Anselin (1995) stated that indication of local pattern of spatial association may be in line with a global indication, although
this is not necessarily be the case. It is quite possible that the local pattern is an aberration that the global indicator would
not pick up, or it may be that a few local patterns run in the opposite direction of the global spatial trend. This case is found
in this research. Local values that are very different from the mean (or median) would indicate locations that contribute
more than their expected share to the global statistic. These may be outliers or high leverage points and thus would invite
closer scouting. Although global clustering was not found significant for HI and was found slightly significant for AM,
several local clusters were found significant in AM and HI.

The application of statistical techniques to spatial data faces an important challenge, as expressed in the first law of
geography: “everything is related to everything else, but closer things are more related than distant things” (Tobler,
1979). The quantitative expression of this principal is the effect of spatial dependence, i.e. when the observed values
are spatially clustered, the samples are not independent. Increasing in AM level in governorate generates increasing in
AM level in governorate . This mechanism of transmission causes a spatial autocorrelation. The obvious question after
finding significant clusters in AM is-why? Could this pattern associated by the spatial pattern of socioeconomic indicators
such as HI or by the limitation of economic resources? However, further research is required regarding this bivariate
spatial association between AM and other socioeconomic indicators. This research will be our interest in Iraq and other
developing countries in the near future.

It should be emphasized that AM problem cannot overcome in the short-run, but long-term efforts are needed to tackle
inequality across governorates. In turn, enabling the economy to create more job opportunities and establish new projects,
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especially in the governorates that found as hot spot clusters. It means that the place of the problem is now clearly shown.
Health inequality is ubiquitous around the world. Thus, fresh perspective to tackle inequality is always welcomed by
research community invested in reducing and eventually eliminating this inequality. Finally, this kind of studies should
be conducted periodically in light of the changing of socioeconomic and political conditions.

5. Conclusions

Conclusions are comprehensive in at least five aspects. First, visual inspection shows that high level in AM was con-
centrated in western-southern governorates. While low level of HI was concentrated in northern and western-southern
governorates. Second, several governorates are not observed visually as hot spots in am and HI. But, after considering the
information of their neighbours, the pattern of their hot spots can be obviously seen. Third, global clustering in AM was
found slightly significant but was not found significant in HI. Based on local Moran measure, three governorates were
found to be significant local clusters in AM located in central and western-southern governorates. Only one significant
local cluster in HI was found. The opposite being the case for those with low AM were in general seen in central and
eastern governorates and those with high HI were seen in central and some southern governorates. Forth, from negative
local Moran values, looking at the local variation, some governorates were represented as areas of dissimilarity in AM
and in HI. Means that these governorates with low AM and/or HI surrounded by governorates with high AM and/or HI or
vice versa. Fifth, spatial correlation between AM and HI was not found significant. This is consistent with what found by
several studies. Martin et al. (2011) concluded that poverty status is not associated with overweight. Janjua, Iqbal, and
Mahmood (2011) stated that no significant association found between SEP and underweight. Subramanyam et al. (2011)
didn’t find consistent evidence that economic growth leads to reduction in childhood under-nutrition.

Maps display geographical inequality in AM and HI across governorates of Iraq. The analytical approach used here de-
lineates governorates of relatively high AM. This permits policy makers to develop strategies to minimize this inequality.
Policy which pays attention to area characteristics will reduce the variation in AM and HI. Consequently this will im-
prove prosperity which in turn improves population health. In summary, the study supports the hypothesis of a spatial
clustering in AM at governorate level that probably reflects the inequality distribution in several socioeconomic indicators
across governorates of Iraq. Researchers recommend that direct investments in appropriate health interventions may be
necessary to reduce both AM level in each governorate and the variation across all governorates.
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Table 1. Shows both transformed HI (Iraqi Dinars) and AM (%), local Moran’s Ii values for transformed HI and AM, and
their corresponding p-values (significant values in boldface at. 1 level)

ID HI Ii for HI p-value AM Ii for AM p-value
1 130688.32 .90 .056 .69 .44 .153
2 94859.43 -.47 .879 .69 .44 .082
3 118281.79 .03 .369 -.13 .37 .106
4 105361.23 -.03 .542 1.09 .61 .070
5 141569.82 -.03 .535 2.53 -.59 .929
6 100400.44 .07 .308 2.29 -.24 .770
7 121537.60 -.39 .884 1.92 .01 .421
8 102918.52 .02 .386 1.54 .00 .435
9 112740.78 -.04 .560 2.90 .29 .085
10 110222.71 .00 .465 3.14 .08 .306
11 107779.99 -.01 .470 1.54 -.26 .816
12 82452.91 -.43 .915 1.28 .36 .044
13 87700.21 .23 .144 1.92 -.07 .610
14 97743.74 .35 .083 4.12 .79 .011
15 71571.41 .95 .011 3.46 .73 .025
16 91603.63 .14 .212 2.29 .20 .168
17 125441.02 -.10 .627 2.71 -.05 .568
18 115397.48 -.29 .775 1.92 -.05 .571

Figure 1. Study area shows all governorates with their ID and the neighbours of each governorate
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Figure 2. Choropleth maps show visual insight for: a. AM variable, and b. HI variable

Figure 3. Choropleth maps show visual insight for local Moran values of: a. AM and b. HI variables
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Cidade Universitária, 50740-540, Recife, PE, Brazil

Tel: 55-81-2126-7434 E-mail: abraao.susej@gmail.com

M. Santos-Neto (Note 1)
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Abstract

The gamma distribution has been widely used in many research areas such as engineering, hydrology and survival analy-
sis. We propose a new distribution, called the McDonald gamma distribution, which presents greater flexibility to model
scenarios involving non-negative data. The new density function is represented as a double linear combination of gamma
densities. We also propose analytical expressions for some mathematical quantities: moments, moment generating func-
tion, log-moment, mean deviations, Lorentz and Bonferroni curves, order statistics, entropy and quantile function. The
score function and the observed information matrix of this new distribution are derived. A real data set is used to illustrate
the importance of the proposed model.

Keywords: Beta-Generated class, Entropy, Generalized distribution, Maximum likelihood estimation, Moment

1. Introduction

The gamma distribution is a very general distribution that belongs to the Pearson type III family of distributions. It
includes, among other well-known distributions, the exponential and chi-square distributions. Some of its structural
properties can be found in Jambunathan (1954). It has a variety of applications and can be used to model the queuing
systems, the flow of items through manufacturing and distribution processes, the risk management and some distributions
in hydrology. More detailed information on hydrology can be found in (Yevjevich, 1972; Bobee & Ashkar, 1991).

Several generalized distributions have been studied in recent years. The generalization of continuous distributions began
with Amoroso (1925). He introduced the generalized gamma (GG) distribution for income rate data. It is also discussed
by Stacy (1962). Esteban (1981) showed that the GG distribution has several distributions as special cases or limiting
forms, for example, the log-normal, Weibull, gamma, exponential, normal and Pareto distributions. The GG distribution
has several applications in areas such as engineering, hydrology and survival analysis, and it is very useful in discrimi-
nating between alternative probabilistic models. Nadarajah & Gupta (2007) applied it to drought data. Nadarajah (2008)
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presented a study on its use in electrical and electronic engineering. Cox (2008) studied the F-generalized family by
comparing it with the GG model. Cordeiro et al. (2011) proposed the exponentiated GG distribution with application
to lifetime data and Pascoa et al. (2011) defined the called Kumaraswamy GG distribution with application in survival
analysis, since it is capable of modeling a bathtub-shaped hazard rate function.

In recent years, several authors published new distributions. Eugene et al. (2002) introduced a class of generalized
distributions based on the logit of the beta random variable. They proposed the beta normal distribution. After their
work, new distributions have been developed in this class, such as the beta Fréchet (Nadarajah & Gupta, 2004), beta
Gumbel (Nadarajah & Kotz, 2004), beta exponential (Nadarajah & kotz, 2005), beta Weibull (Lee et al., 2007), beta
Pareto (Akinsete et al., 2008), beta half-normal (Pescim et al., 2006), beta generalized exponential (Barreto-Souza et al.,
2010) and beta power (Cordeiro & Brito, 2012) distributions.

In this sense, our purpose is to present a new distribution, called the McDonald gamma distribution (Mc-Γ for short),
which extends the gamma model and has several other models as special cases. Some of its mathematical properties are
obtained and the method of maximum likelihood estimation is discussed. The new model provides greater flexibility than
other distributions, since it has more shape parameters, yielding a large variety of forms. It can also be useful for testing
the goodness of fit of its sub-models.

The rest of the article is organized as follows. In Section 2, we discuss the modeling of the Mc-Γ distribution, in which
the class Mc is contextualized. We also present its density function, cumulative distribution and hazard function. Some
expansions of its mathematical quantities are derived in Section 3. Additionally, its moment generating function (mgf)
and the limiting density and cumulative distribution functions are derived. Moreover, we propose analytical expressions
for the following statistical measures: Shannon and Rényi entropies, mean deviations, Bonferroni and Lorentz curves,
skewness, kurtosis, order statistics and quantile function. In Section 4, we discuss maximum likelihood estimation. In
Section 5, the Mc-Γ distribution is applied to a real data set. Finally, in Section 6, we provide some concluding remarks.

2. The Mc-Γ Distribution

The Mc-Γ distribution originated from the work of Eugene et al. (2002) who defined a general class of distributions
as follows: if G denotes the cumulative distribution function (cdf) of a random variable, then a generalized class of
distributions can be defined as

F(x) = IG(x)(a, b) =
1

B(a, b)

∫ G(x)

0
ωa−1(1 − ω)b−1dω, (1)

for a > 0, b > 0, where Iy(a, b) = By(a, b)/B(a, b) denotes the incomplete beta function ratio and By(a, b) =
∫ y

0 ω
a−1(1 −

ω)b−1dω is the incomplete beta function. The probability density function (pdf) corresponding to (1) can be expressed as

f (x) =
1

B(a, b)
G(x)a−1 [1 −G(x)]b−1 g(x),

where g(x) = ∂G(x)/∂x is the baseline density function.

We start with the generalized beta distribution of the first kind (or beta type I) introduced by McDonald (1984). Its pdf is
given by

f (x) =
c

B
(

a
c , b

) xa/c−1 (1 − xc)b−1,

where a > 0, b > 0 and c > 0 are shape parameters.

Alexander et al. (2011) introduce the generalized beta-generated (GBG) distribution which has as sub-models the classical
beta-generated, Kumaraswamy-generated and exponentiated distributions. Consider starting from an arbitrary baseline
continuous distribution function G(x), the cdf F(x) of the GBG distribution can be expressed as

F(x) = IG(x)c

(a
c
, b

)
=

1

B
(

a
c , b

) ∫ G(x)c

0
ωa/c−1(1 − ω)b−1dω. (2)

We follow the works of Eugene et al. (2002), Jones (2004), Cordeiro & de Castro (2011) and Alexander et al. (2011) to
define the Mc-Γ distribution. If we substitute the gamma cdf in (2), we obtain the Mc-Γ cumulative distribution.

Here and henceforth, consider the pdf of the Γ(α, β) distribution given by

h(x;α, β) =
βα

Γ(α)
xα−1 exp(−βx), x > 0,
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where α > 0 and β > 0 are shape and scale parameters, respectively.

Thus, the Mc-Γ cumulative distribution is

FMc-Γ(x;α, β, a, b, c) =
1

B
(

a
c , b

) ∫ γ1(α,βx)c

0
w

a
c−1(1 − w)b−1dw, (3)

where γ1(α, βx) = 1
Γ(α)

∫ βx
0 tα−1e−tdt is the incomplete gamma function ratio, β > 0 is a scale parameter and α, a, b, c > 0

are shape parameters.

The Mc-Γ density function is obtained by differentiating (3). We have

fMc-Γ(x;α, β, a, b, c) =
c βα xα−1 e−βx

Γ(α) B( a
c , b)

γ1(α, βx)a−1 [1 − γ1(α, βx)c]b−1. (4)

If X is a random variable with density (4), we write X ∼ Mc-Γ(α, β, a, b, c). Two important special sub-models are the beta
gamma (B-Γ) distribution (when c = 1), proposed by Jones (2004), and the Kumaraswamy gamma (Kw-Γ) distribution
(when a = 1), studied by Cordeiro & de Castro (2011). The Mc-Γ density function for selected parameter values is plotted
in Figs. 1(a)-1(b).

The survival and hazard rate function of the Mc-Γ distribution are

S Mc-Γ(x;α, β, a, b, c) = 1 − 1

B
(

a
c , b

) ∫ γ1(α,βx)c

0
w

a
c −1(1 − w)b−1dw

and

hMc-Γ(x;α, β, a, b, c) =
c βα xα−1e−βx γ1(α, βx)a−1 [1 − γ1(α, βx)c]b−1

Γ(α) B( a
c , b) S Mc-Γ(x;α, β, a, b, c)

,

respectively.

In Figs. 2(a)-2(b), we plot the hazard function for selected parameter values. This function is quite flexible and may take
different forms: constant, increasing, decreasing and bathtub.

To generate random numbers from the Mc-Γ(α, β, a, b, c) distribution, we have to solve the nonlinear equation

γ1(α, βX) − U1/c = 0, (5)

where U ∼ B
(

a
c , b

)
. We use the R programming language (R Development Core Team, 2008) for solving this equation.

Figs. 3(a)-3(b). present the theoretical and approximate densities for different sample sizes, n ∈ {500, 2000, 10000}. In
Fig. 3(b), we provide the histogram of the simulated data for n = 500. Clearly, the data are well-fitted by the Mc-Γ
theoretical density.

2.1 Special Sub-models

The Mc-Γ distribution contains as special cases several well-known distributions shown in Fig. 4. In addition to these
distributions, it contains other special cases such as: Mc-χ2 (α = k/2, β = 1/2), Mc-Exp (α = 1), Kw-χ2 (α = k/2, β =
1/2, a = 1), Kw-Exp (α = 1, a = 1), B-χ2 (α = k/2, β = 1/2, c = 1), B-Exp (α = 1, c = 1), L1-χ2 (α = k/2, β = 1/2, b =
1), L1-Exp (α = 1, b = 1), L2-χ2 (α = k/2, β = 1/2, a = 1, c = 1), L2-Exp (α = 1, a = 1, c = 1). Here, Kw-G denotes the
family of Kumaraswamy G distributions, B-G the family of beta G distributions, L1-G the family of Lehmann type I G
distributions and L2-G the family of Lehmann type II G distributions.

3. Theoretical Properties

3.1 Expansions for Important Mathematical Quantities

Theorem 1. Here and henceforth, let X ∼ Mc-Γ(α, β, a, b, c). If s is a non-negative real number, we obtain the double
linear combination

f s
Mc-Γ(x;α, β, a, b, c) =

∞∑
v,m=0

w(s)
v,m h(x;αv + m + 1 + s(α − 1), β),

where h(x;αv+m+ 1+ s(α− 1), β) is the gamma density with shape parameter αv+m+ 1+ s(α− 1) and scale parameter
β,

w(s)
v,m =

tm,v Γ(αv + m + 1 + s(α − 1))

βm+1−sΓ(α)v ∑∞
i,k=0

(
ic+s(a−1)

k

)(
s(b−1)

i

)(
k
v

)
(−1)i+k+v

,

and the quantity tm,v is defined in Appendix A.
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The proof of this theorem is given in Appendix A.

Corollary 1. We obtain the double linear combination for the density function of X

fMc-Γ(x;α, β, a, b, c) =
∞∑

v,m=0

w(1)
v,m h(x;αv + m + α, β),

where w(1)
v,m is given in Theorem 1.

Corollary 2. If Y ∼ Γ(αv + m + α, β), explicit expressions for the cdf, nth moment and mgf of X are given by

FMc-Γ(x;α, β, a, b, c) =
∞∑

v,m=0

w(1)
v,m γ1(αv + m + α, β),

E(Xn) =
∞∑

v,m=0

w(1)
v,m E(Yn) =

∞∑
v,m=0

w(1)
v,m
Γ(αv + m + α + n)
Γ(αv + m + α)βn ,

MX(t) =
∞∑

v,m=0

w(1)
v,m MY (t) =

∞∑
v,m=0

w(1)
v,m (1 − βt)−(αv+m+α),

for t < β, respectively, where w(1)
v,m is given in Theorem 1.

3.2 Asymptotic Density and Cumulate Distribution Functions

Consider the representation in power series in Appendix B and the asymptotic results for the exponentiated gamma density
function given by Nadarajah and Kotz (2006). The following approximations for the asymptotic density and cumulate
distribution functions hold:

fMc-Γ(x;α, β, a, b, c) ∼


∑∞

k=1 w′k
{

(ck+1)α−ck xαck

Γ(α)ck+1

}
, x→ 0,∑∞

k=1 w′k

{
(ck+1)xα−1 exp(−x)

Γ(ck+1)

}
, x→ ∞

and

FMc-Γ(x;α, β, a, b, c) ∼


∑∞
k=1 w′k

{
(ck+1)α−ck xαck+1

(αck+1)Γ(α)ck+1

}
, x→ 0,∑∞

k=1 w′k
{

(ck+1)Γ(α)
Γ(ck+1)

}
, x→ ∞

where

w′k =
cβ(−1)k

(
b−1

k

)
(ck + 1)B( a

c , b)
.

3.3 Alternative Forms for Ordinary Moments

The following discussion proposes an alternative expression for the nth ordinary moment of X. We have

E(Xn) =
cβ

Γ(α)B( a
c , b)

∫ ∞

0
xn+α−1e−βx[γ1(α, βx)]a−1[1 − γ1(α, βx)c]b−1dx. (6)

Since γ1(α, βx) < 1 and c > 0, the following expansion holds

[1 − γ1(α, βx)c]b−1 =

∞∑
i=0

(−1)i
(

b−1
i

)
γ1(α, βx)ci.

Additionally, we work with an expansion for the incomplete gamma function

γ1(α, βx) =
(βx)α

Γ(α)

∞∑
m=0

(−βx)m

(α + m)m!
. (7)
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Thus, equation (6) can be reduced to

E(Xn) =
cβα

Γ(α)B( a
c , b)

∞∑
i=0

(−1)i
(

b−1
i

) ∫ ∞

0
xn+α−1e−βx γ1(α, βx)ic+a−1dx

=
cβα

Γ(α)B( a
c , b)

∞∑
i=0

(−1)i

Γ(α)ic+a−1

(
b−1

i

)∫ ∞

0
xn+α−1e−βx

{
(βx)α

∞∑
m=0

(−βx)m

(α + m)m!

}ic+a−1

dx.

Setting u = βx, we have

E(Xn) =
cβ−n

Γ(α)B( a
c , b)

∞∑
i=0

(−1)i

Γ(α)ic+a−1

(
b−1

i

) ∫ ∞

0
un+α−1 exp(−u)

{
uα

∞∑
m=0

(−u)m

(α + m)m!

}ic+a−1

du︸                                                          ︷︷                                                          ︸
Lauricella function of type A (Cordeiro & Nadarajah, 2011)

.

=
cβ−n

Γ(α)B( a
c , b)

∞∑
i=0

(−1)iα−(ic+a−1)

Γ(α)ic+a−1

(
b−1

i

)
Γ(n + α(ic + a))F(ic+a−1)

A (n + α(ic + a);α, . . . , α;α + 1, . . . , α + 1;−1, . . . ,−1).

3.4 Expression for the Rényi Entropy

Let Y be a random variable with density f (y; θ) and support y ∈ D ⊂ R. The Rényi entropy is defined by

Hs
R(Y) =

1
1 − s

log
{
E[ f (y; θ)s−1]

}
=

1
1 − s

log
(∫
D

f (y; θ)sdy
)
,

where s ≥ 0 and s , 1.

From the expansion given in Theorem 1, we can write

Hs
R(X) =

1
1 − s

log

 ∞∑
v,m=0

w(s)
v,m

∫ ∞

0
h(x;αv + m + 1 + s(α − 1), β)dx


=

1
1 − s

log

 ∞∑
v,m=0

w(s)
v,m

 ,
where w(s)

v,m is given in Theorem 1.

3.5 Expressions for the Log-moment and Shannon Entropy

Let Y be defined as in Section 3.4. The log-moment is given by

E{[log(Y)]n} =
∫
D

log(y)n f (y; θ)dy.

Now, we consider Y ∼ Γ(α, β) with density function h(x;α, β). Minor manipulations yield

E{[log(Y)]n} = βα

Γ(α)

{
∂(n)

∂αn

(
Γ(α)
βα

)}
n=1−−−→ E[log(Y)] = ψ(α) − log(β),

where ψ(·) is the digamma function.

Combining this result with Corollary 1, if Z ∼ Γ(αv + m + α, β), we have

E{[log(X)]n} =
∞∑

v,m=0

w(1)
v,m E{[log(Z)]n}

=

∞∑
v,m=0

w(1)
v,m

βαv+m+α

Γ(αv + m + α)

{
∂(n)

∂ jn

(
Γ( j)
β j

)}
j=αv+m+α

n=1−−−−−−−→

E[log(X)] =
∞∑

v,m=0

w(1)
v,m {ψ(αv + m + α) − log(β)}.
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In the following discussion, we derive the Shannon entropy defined by

HS(X) = E{− log[ fMc-Γ(X)]} =
∫ ∞

0
− log[ fMc-Γ(x)] fMc-Γ(x)dx.

The log-likelihood function relative to one observation follows from (4) as

ℓ(α, β, a, b, c; x) = log

 cβα

Γ(α)B
(

a
c , b

)  + (α − 1) log(x) − βx + (a − 1) log[γ1(α, βx)] + (b − 1) log[1 − γ1(α, βx)c].

It is known that the expected value of the score function vanishes, and then from E{∂ℓ(θ)/∂a} = 0 and E{∂ℓ(θ)/∂b} = 0,
we obtain

E{log[γ1(α, βX)]} =
ψ( a

c ) − ψ( a
c + b)

c
and

E{log[1 − γ1(α, βX)c]} = ψ(b) − ψ
(a

c
+ b

)
,

respectively.

Hence, the Shannon entropy of the Mc-Γ distribution reduces to

HS(X) = log

Γ(α)B
(

a
c , b

)
cβα

 − (α − 1)
∞∑

v,m=0

w(1)
v,m {ψ(αv + m + α) − log(β)}

+

∞∑
v,m=0

w(1)
v,m (αv + m + α) +

(a − 1)
c

{
ψ

(a
c

)
− ψ

(a
c
+ b

)}
+ (b − 1)

{
ψ(b) − ψ

(a
c
+ b

)}
.

3.6 Means Deviations

The mean deviations of a random variable X with respect to the mean and the median are

δ1(X) =
∫ ∞

0
|x − µ| f (x) dx and δ2(X) =

∫ ∞

0
|x − M| f (x) dx,

respectively, where µ = E(X) and M = Median(X) denotes the median. These quantities can be expressed as

δ1(X) = 2 µ F(µ) − 2 µ + 2 T (µ) and δ2(X) = 2 T (M) − µ,

where F(µ) is the cdf of X and T (q) =
∫ ∞

q x f (x)dx.

Based on the Corollary 1, the quantity T (q) for the Mc-Γ distribution becomes

T (q) =
∞∑

v,m=0

w(1)
v,m

∫ ∞

q
x h(x;αv + m + α, β)dx

=

∞∑
v,m=0

w(1)
v,m

[
1 −

∫ q

0
x h(x;αv + m + α, β)dx

]

=

∞∑
v,m=0

w(1)
v,m

[
1 − (αv + m + v)

β
γ1(αv + m + v + 1, βq)

]
and F(x) comes from equation (3).

3.7 Bonferroni and Lorentz Curves

Bonferroni (B(·)) and Lorentz (L(·)) curves have been applied in many fields such as economics, reliability, demography,
insurance and medicine. Expressions of these measures for several important probability distributions were proposed by
Giorgi & Nadarajah (2010). For the Mc-Γ distribution, these quantities are defined by

B(p) =
1
pµ

∫ q

0
x fMc-Γ(x) dx and L(p) =

1
µ

∫ q

0
x fMc-Γ(x) dx = p B(p),
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where q = F−1(p) = QMc-Γ(p) is the Mc-Γ quantile function for a given probability p and µ = E(X). The Mc-Γ quantile
function can be calculated by inverting (5) and it will be studied in Section 3.8 (see also equation (8)). We obtain

B(p) =
1

pµβ

∞∑
v,m=0

w(1)
v,m (αv + m + α)

∫ q

0
x h(x;αv + m + α, β)dx

=
1
p


∑∞

v,m=0 w(1)
v,m (αv + m + α) γ1(αv + m + α, βq)∑∞

v,m=0 w(1)
v,m (αv + m + α)

 .
3.8 Skewness and Kurtosis

We can express the Mc-Γ quantile function in terms of the quantile functions of the Γ(α, β) and B
(

a
c , b

)
distributions,

denoted by QΓ(p) and QB(p), respectively. Using (3), we have FMc-Γ(x) = Iγ1(α,βx)c ( a
c , b). By inverting Iγ1(α,βx)c ( a

c , b) = p,
we obtain γ1(α, βx)c = QB(p), and the Mc-Γ quantile function becomes

QMc-Γ(p) = QΓ(QB(p)1/c). (8)

There are several robust measures in the literature for location and dispersion. The median, for example, can be used for
location and the interquartile range. Both the median and the interquartile range are based on quantiles. From this fact,
Bowley (1920) proposed a coefficient of skewness based on quantiles given by

S K =
Q(3/4) + Q(1/4) − 2Q(1/2)

Q(3/4) − Q(1/4)
,

where Q(·) is the quantile function of a given distribution F. It can be shown that Bowley’s coefficient of skewness takes
the value zero for symmetric distributions. Additionally, its largest value is one and the lowest is -1.

Moors (1986) demonstrated that the conventional measure of kurtosis may be interpreted as a dispersion around the values
µ + σ and µ − σ. Thus, the probability mass focuses around µ or on the tails of the distribution. Therefore, based on
this interpretation, Moors (1988) proposed, as an alternative to the conventional coefficient of kurtosis, a robust measure
based on octiles given by

KR =
(Q(7/8) − Q(5/8)) + (Q(3/8) − Q(1/8))

Q(6/8) − Q(2/8)
.

Figs. 5(a)-5(b) provide the plots of the Bowley’s skewness and Moors’s kurtosis, respectively, for the proposed distribu-
tion.

3.9 Order Statistics

In the following discussion, we derive the order statistics and their vth moments. The pdf of the ith order statistic Xi:n, for
i = 1, 2, . . . , n, is given by

fi:n(x) =
f (x)

B(i, n − i + 1)

n−i∑
k=0

(−1)k
(

n−i
k

)
F i+k−1(x).

From equation (18) given in Appendix C, we have

fi:nx) =
1

B(i, n − i + 1)

n−i∑
k=0

(−1)k
(

n−i
k

)  ∞∑
h1,h2,r,m,s1,s2=0

W (i+k−1)
h1,h2,r,m,s1,s2

 h(x;αs1 + s2 + α + αh2 + m, β). (9)

Additionally, the vth ordinary moment of Xi:n is

E(Xv
i:n) =

∫ ∞

0
xv fi:n(x)dx =

1
B(i, n − i + 1)

n−i∑
k=0

(−1)k
(

n−i
k

) ∫ ∞

0
xv f (x)F i+k−1(x)dx︸                       ︷︷                       ︸

µv,i+k−1 ,E{XvFi+k−1(X)}

,

where the quantity µv,i+k−1 is the probability weighted moment (PWM) of the Mc-Γ distribution. From equation (9), we
obtain

E(Xv
i:n) =

1
B(i, n − i + 1)

n−i∑
k=0

(−1)k
(

n−i
k

)
µv,i+k−1,
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where

µv,i+k−1 =

∞∑
h1,h2,r,m,s1,s2=0

W (i+k−1)
h1,h2,r,m,s1,s2

[
Γ(αs1 + s2 + α + αh2 + m + v)
Γ(αs1 + s2 + α + αh2 + m)βv

]
.

3.10 Expansion for the Quantile Function

Quantile functions are in widespread use in general statistics and often find representations in terms of lookup tables for
key percentiles. An extensive discussion of the use of quantile functions in mainstream statistics is given in the book by
Gilchrist (2000).

The quantile function Q(u) usually does not have closed-form expressions for several important distributions, such as the
normal, Student t, gamma and beta distributions. As a potential solution, this function can be expressed in terms of a
power series of a transformed variable v, which takes the form v = p (q u − t)ρ, for p, q, t and ρ known constants:

Q(u) =
∞∑

i=0

ϵi vi, (10)

where the coefficients ϵi are suitably chosen real numbers. Steinbrecher (2002) explored the solution of this equation by
standard power series methods.

According to Steinbrecher & Shaw (2008), the following two results hold:

(r1): For the gamma distribution, equation (10) is defined by v = β[Γ(α + 1)u]1/α and

ϵi = mi =


0, if i = 0
1, if i = 1
ai+1, if i ≥ 1,

where

ai+1 =
1

i(α + i)

{ i∑
r=1

i−s+1∑
s=1

ar as ai−r−s+2 s (i − r − s + 2) − ∆(i)
i∑

r=2

ar ai−r+2 r [r − α − (1 − α)(i + 2 − r)]
}
,

∆(i) = 0 if i < 2 and ∆(i) = 1 if i ≥ 2. Here, the first coefficients are a2 = 1/(α+1), a3 = (3α+5)/[2(α+1)2(α+2)], . . .
Hence, the power series for the gamma quantile is given by

QΓ(u) =
∞∑

i=0

mi [βΓ(α + 1)1/α]i ui/α. (11)

(r2): For the beta quantile, the power series reduces to

QB(u) =
∞∑

i=0

d′i uic/a, (12)

where the transformed variable is v = [ac−1B(ac−1, b)u]ca−1
,

d′i = di [ac−1B(ac−1, b)]ic/a and di is given by

di =


0, if i = 0
1, if i = 1
λi, if i ≥ 2,

λi =
1

[i2 + (a/c − 2)i + (1 − a/c)]

{
(1 − δi,2)

i−1∑
r=2

λr λi+1−r [r(1 − a/c)(i − r)

− r(r − 1)] +
i−1∑
r=1

i−r∑
s=1

λr λs λi+1−r−s [r(r − a/c) + s(a/c + b − 2)(i + 1 − r − s)]
}
,
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δi,2 = 1 if i = 2 and δi,2 = 0 if i , 2. The first quantities are:

λ2 =
b − 1

a/c + 1
,

λ3 =
(b − 1) (a/c2 + 3ba/c − a/c + 5b − 4)

2(a/c + 1)2(a/c + 2)
,

λ4 = (b − 1)[a/c4 + (6b − 1)a/c3 + (b + 2)(8b − 5)a/c2 + (33b2 − 30b + 4)a/c

+ b(31b − 47) + 18]/[3(a/c + 1)3(a/c + 2)(a/c + 3)], . . .

Inserting equation (11) into (8), we obtain

QMc-Γ(p) =
∞∑

i=0

mi [βΓ(α + 1)1/α]i [QB(p)]i/cα. (13)

Since 0 < QB(p) < 1 and i/cα > 0, we have

[QB(p)]i/cα =

∞∑
k,v=0

(−1)k+v
(
i/cα

k

)(
k
v

)
[QB(p)]v.

Additionally, the beta quantile function (12) can be expressed as pc/a ∑∞
j=0 w j p jc/a, where w j = d′j+1 = d j+1[ac−1B(ac−1, b)]( j+1)c/a

for j = 0, 1, . . . In this case, the first two quantities are

w0 = [ac−1B(ac−1, b)]c/a and w1 = [(b − 1)c/(a + c)][ac−1B(ac−1, b)]2c/a.

Applying the previous expressions in (13) and using the power series for the beta quantile function in (12), we obtain

QMc-Γ(p) =
∞∑

i,k,v=0

mi β
i Γ(α + 1)i/α(−1)k+v

(
i/cα

k

)(
k
v

)
︸                                     ︷︷                                     ︸

Ei,k,v

pc/a
∞∑
j=0

w j p jc/a

v

.

Thus, using a power series raised to a positive integer v (Gradshteyn & Ryzhik, 1980, p. 17), it follows that

QMc-Γ(p) =
∞∑

i,k,v, j=0

Ei,k,v sv, j pc(v+ j)a−1
.

where sv,0 = wv
0 and sv, j = ( jw0)−1 ∑ j

m=1[m(v+1)− j] wm sv, j−m. Notice that the coefficient sv, j can be recursively obtained
from {sv,0, . . . , sv, j−1} and {w0, . . . ,w j}.
Finally, setting ℓ = v + j, the quantile function can be rewritten as

QMc-Γ(p) =
∞∑
ℓ=0

Nℓ π
ℓ,

where Nℓ =
∑∞

i,k=0
∑ℓ

v=0 Ei,k,v sv,ℓ−v and π = pca−1
. The last expansion can be used as an alternative way for calculating

some mathematical quantities of the new distribution. For example, the result

E(Xn) =
∫ ∞

0
xn f (x)dx =

∫ 1

0
Q(p)ndp

combined with a power series raised to a positive integer, leads to an alternative form for the ordinary moments

E(Xn) = ac−1
∫ 1

0

 ∞∑
ℓ=0

Nℓ π
ℓ

n

πac−1−1dπ = ac−1
∞∑
ℓ=0

N′n,ℓ

∫ 1

0
πℓ+ac−1−1dπ = ac−1

∞∑
ℓ=0

N′n,ℓ
ℓ + ac−1 ,

where N′n,0 = Nn
0 and N′n,ℓ = (ℓN0)−1 ∑ℓ

m=1 [m(n + 1) − ℓ] Nm N′m,ℓ−m.
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4. Estimation

The parameters of the Mc-Γ distribution can be estimated by the method of maximum likelihood. Let x1, · · · , xn be a
random sample of size n from the Mc-Γ(α, β, a, b, c) distribution given by (4). The log-likelihood function for the vector
of parameters θ = (α, β, a, b, c)⊤ can be expressed as

l(θ) =n log c + nα log β − n log B
(a

c
, b

)
− n logΓ(α) + (α − 1)

n∑
i=1

log xi − β
n∑

i=1

xi + (a − 1)
n∑

i=1

log γ1(α, βxi)

+ (b − 1)
n∑

i=1

log[1 − γ1(α, βxi)c].

The components of the score vector U(θ) are

Uα(θ) =
∂l(θ)
∂α
=n log β − nψ(α) +

n∑
i=1

log(xi) + (a − 1)
n∑

i=1

{
∂γ1(α, βxi)/∂α
γ1(α, βxi)

}
− c(b − 1)

n∑
i=1

{
γ1(α, βxi)c−1∂γ1(α, βxi)/∂α

1 − γ1(α, βxi)c

}
,

Uβ(θ) =
∂l(θ)
∂β
=

nα
β
−

n∑
i=1

xi + (a − 1)
n∑

i=1

xi

{
∂γ1(α, βxi)/∂β
γ1(α, βxi)

}
− c(b − 1)

n∑
i=1

xi

{
γ1(α, βxi)c−1∂γ1(α, βxi)/∂β

1 − γ1(α, βxi)c

}
,

Ua(θ) =
∂l(θ)
∂a
=

n
c

[
ψ

(a
c
+ b

)
− ψ

(a
c

)]
+

n∑
i=1

log[γ1(α, βxi)],

Ub(θ) =
∂l(θ)
∂b
=n

[
ψ

(a
c
+ b

)
− ψ(b)

]
+

n∑
i=1

log[1 − γ1(α, βxi)c],

Uc(θ) =
∂l(θ)
∂c
=

n
c
− na

c2

[
ψ

(a
c
+ b

)
− ψ

(a
c

)]
− (b − 1)

n∑
i=1

{
γ1(α, βxi)c log γ1(α, βxi)

1 − γ1(α, βxi)c

}
.

These expressions depend on the quantities ∂γ1(·)/∂α and ∂γ1(·)/∂β. Now, we provide formulas for these quantities.
Using MATHEMATICA, we obtain

∂γ(α, βx)
∂α

= Γ(α)ψ(α) − log(βx)γ(α, βx) −G3 0
2 3

(
βx

∣∣∣∣ 1, 1
0, 0, α

)
,

where G3 0
2 3(·) is a particular case of the Meijer G-function (note 2) given by

G3 0
2 3

(
βx

∣∣∣∣ 1, 1
0, 0, α

)
=

(βx)α2F2({α, α}; {α + 1, α + 1};−βx)
α2 − Γ(α) log(βx) + Γ(α)ψ(α),

and 2F2(·; ·; ·) denotes the hypergeometric function defined by

2F2({a1, a2}; {b1, b2}; z) =
∞∑
j=0

(a1) j(a2) j

(b1) j(b2) j

z j

j!
,

where, for some parameter µ, the Pochhammer symbol (µ) j is defined by

(µ)0 = 1, (µ) j = µ(µ + 1) · · · (µ + j − 1), j = 1, 2, . . .

We obtain
∂γ(α, βx)

∂α
= log(βx){Γ(α) − γ(α, βx)} − (βx)α2F2({α, α}; {α + 1, α + 1};−βx)

α2 .

Finally, we have

∂γ1(α, βx)
∂α

= log(βx){1 − γ1(α, βx)} − (βx)α2F2({α, α}; {α + 1, α + 1};−βx)
Γ(α)α2 − ψ(α)γ1(α, βx).

Additionally,
∂γ1(α, βx)

∂β
=

xαβα−1 exp{−βx}
Γ(α)

.
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The maximum likelihood estimate (MLE) θ̂ of θ is the solution of the system of nonlinear equations U(θ) = 0. For
interval estimation and tests of hypotheses on the parameters in θ, we require the 5 × 5 unit observed information matrix
J = J(θ), whose elements are given in Appendix D. Under certain regularity conditions for the likelihood function,
confidence intervals and hypothesis tests can be constructed using the fact that the asymptotic distribution of the MLE θ̂
is
√

n(θ̂− θ) ∼ Np(0, I(θ)−1), where I(θ) is the Fisher information matrix and p is the number of model parameters (Sen &
Singer, 1993). We can substitute I(θ) by J(θ̂), i.e., the observed information matrix evaluated at θ̂.

The multivariate normal N5(0, J(θ̂)−1) approximated distribution can be used to obtain confidence intervals for the in-
dividual parameters. We can compute the maximum values of the unrestricted and restricted log-likelihoods to define
likelihood ratio (LR) statistics for testing some sub-models of the Mc-Γ distribution. We may be interested to check if the
fit using the Mc-Γ distribution is statistically “superior” to a fit using the B-Γ, Kw-Γ and Γ distributions for a given data
set.

5. Application

In this section, we present and compare the performance of the Mc-Γ distribution and its Kw-Γ, B-Γ and Γ sub-models
to describe a real data set from USS Halfbeak diesel engine. The data were previously studied by (Ascher, 1984, p. 75)
and (Meeker, 1998, p. 415). They represent times of unscheduled maintenance actions for the USS Halfbeak number 4
main propulsion diesel engine over 25.518 operating hours. Table 1 gives some statistical measures for these data. These
values indicate that the empirical distribution is skewed to the left and platycurtic.

In order to compare the fits of the Mc-Γ, B-Γ, Kw-Γ and Γ distributions, the maximum likelihood method was adopted
using the subroutine ‘NLMixed’ in the SAS software. Table 2 lists the MLEs, their standard errors, and three goodness-
of-fit statistics: AIC (Akaike Information Criterion), BIC (Bayesian Information Criterion) and CAIC (Consistent Akaike
Information Criterion). The lowest values of these statistics correspond to the Mc-Γ distribution. Fig. 6 shows that the
Mc-Γ distribution provides a closer fit to the histogram of the data than the other three sub-models.

In order to verify the importance of the Mc-Γ distribution in relation to its sub-models by means of hypothesis tests, we
consider the LR statistic given by

Λ = 2{l(̂θ) − l(̃θ)} = 2{l(α̂, β̂, â, b̂, ĉ) − l(α̃, β̃, ã, b̃, c̃)},

where θ̂ and θ̃ are the MLEs of the parameter θ under the alternative and null hypotheses, respectively. The LR statistic
can be used to verify if the fit of the Mc-Γ distribution outperforms statistically those fits of their sub-models. Table 3
lists the values of the LR statistics in order to quantify the adequacy of the new distribution. The results provide evidence
that the additional parameters of the new distribution are statistically significant in these comparisons, justifying its use
for modelling positive real data sets.

6. Conclusions

We present a new five-parameter distribution, called the McDonald gamma (Mc-Γ) distribution, which includes as special
cases several commonly used distributions in the literature. Further, the new distribution has proved to be versatile and
analytically tractable. We provide a mathematical treatment of this distribution including analytical expressions for the
moments, moment generating function, log-moment, mean deviations, Lorentz and Bonferroni curves, order statistics,
entropy and quantile function. Additionally, maximum likelihood estimation of the model parameters was discussed and
the observed information matrix was derived.

An application to real data was performed in order to quantifying the adequacy of the Mc-Γ distribution and some of its
sub-models. The results indicate that the proposed distribution outperforms its main sub-models.
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Appendix

A. Proof of Theorem 1 and Corollary 1: representation in power series for fMc-Γ(x)s, where s is a positive real number.

First, consider the derivation of the following expression:

δ(α, β, a, b, c, s) =
{
γ1(α, βx)a−1[1 − γ1(α, βx)c]b−1

}s
.
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Since γ1(α, βx) < 1 and s(a − 1), c > 0, we have

[1 − γ1(α, βx)c]s(b−1) =

∞∑
i=0

(−1)i[γ1(α, βx)]ci
(

s(b−1)
i

)
. (14)

Thus,

δ(α, β, a, b, c, s) =
∞∑

i=0

(−1)i[γ1(α, βx)]ci+s(a−1)
(

s(b−1)
i

)
.

The kernel of the above function can be represented as

[γ1(α, βx)]ci+s(a−1) = {1 − [1 − γ1(α, βx)]}ci+s(a−1)

=

∞∑
k=0

(−1)k[1 − γ1(α, βx)]k
(

ci+s(a−1)
k

)
=

∞∑
k=0

(−1)k
(

ci+s(a−1)
k

) ∞∑
v=0

(−1)vγ1(α, βx)v
(

k
v

)
.

Combining this result with the power series (7), we obtain

δ(α, β, a, b, c, s) =
∞∑

i,k,v=0

(−1)i+k+v
(

k
v

)(
s(b−1)

i

)(
ci+s(a−1)

k

){ (βx)α

Γ(α)

}v{ ∞∑
m=0

(−β)mxm

(α + m)m!

}v

.

We consider the result concerning a power series raised to a positive integer v (Gradshteyn & Ryzhik, 1980, p. 17) given
by { ∞∑

m=0

(−β)m

(α + m)m!︸       ︷︷       ︸
am

xm
}v

=

∞∑
m=0

tm,v xm,

where t0,v = α−v and tm,v = m−1α
∑m

h=1[h(v + 1) − m] ah tm−h,v for m ≥ 1. Hence,

δ(α, β, a, b, c, s) =
∞∑

i,k,v,m=0

(−1)i+k+v
(

k
v

)(
s(b−1)

i

)(
ci+s(a−1)

k

){βvαxαv+mtm,v
Γ(α)v

}
. (15)

Now, we provide a power series for fMc-Γ(x)s. From equation (15), this quantity can be rewritten as

fMc-Γ(x;α, β, a, b, c, )s =

{
cβαxα−1 exp(−βx)
Γ(α)B( a

c , b)

}s

δ(α, β, a, b, c, s)

=

∞∑
v,m=0

{
Γ(αv + m + 1 + s(α − 1))

βm+1−sΓ(α)v tm,v

} ∞∑
i,k=0

(−1)i+k+v
(

k
v

)(
s(b−1)

i

)(
ci+s(a−1)

k

)}
︸                                                                                 ︷︷                                                                                 ︸

w(s)
v,m

× βαv+m+1+s(α−1)xαv+m+1+s(α−1)−1 exp(−βx)
Γ(αv + m + 1 + s(α − 1))︸                                               ︷︷                                               ︸

h(x;αv+m+1+s(α−1),β)

=

∞∑
v,m=0

w(s)
v,m h(x;αv + m + 1 + s(α − 1), β),

where h(x; ·, ·) denotes the gamma density function. From this result, we have

fMc-Γ(x;α, β, a, b, c, ) =
∞∑

v,m=0

w(1)
v,m h(x;αv + m + α, β), (16)

i.e., the density function of the Mc-Γ distribution is a double linear combination of gamma density functions.

B. Representation for fMc-Γ(x) and FMc-Γ(x) as functions of the exponentiated gamma distribution.

Applying the result (14) for s = 1 in (4), this density can be rewritten as

fMc-Γ(x;α, β, a, b, c) =
∞∑

k=0

[
(−1)k

(
b−1

k

)] [ cβ
β( a

c , b)

]
(βx)α−1 exp(−βx)

Γ(α)
[γ1(α, βx)]ck+a−1.
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Setting u = βx, we have

fMc-Γ(u;α, β, a, b, c) =

=

∞∑
k=1

[
(−1)k

(
b−1

k

)] [ cβ
β( a

c , b)

]
uα−1 exp(−u)
Γ(α)

[γ1(α, u)]ck+a−1

=

∞∑
k=0

[
(−1)k

(
b−1

k

)] [ cβ
(ck + a)β( a

c , b)

]
(ck + a)

uα−1 exp(−u)
Γ(α)

[γ1(α, u)]ck+a−1︸                                          ︷︷                                          ︸
hEG(u;α,ck+a)

=

∞∑
k=0

[
(−1)k

(
b−1

k

)] [ cβ
(ck + a)B( a

c , b)

]
︸                                 ︷︷                                 ︸

w′k

hEG(u;α, ck + a),

where hEG(x; k1, k2) is given by

hEG(x; k1, k2) =
k2xk1−1 exp(−x)

Γ(k1)

{
γ(k1, x)
Γ(k1)

}k2−1

,

which is the exponentiated standard gamma density with parameters k1, k2 > 0 (termed here by EG(k1, k2)) (Nadarajah &
Kotz, 2006). In this case, its cdf can be expressed as

FMc-Γ(u;α, β, a, b, c) =
∞∑

k=0

w′k HEG(u;α, ck + a) =
∞∑

k=0

w′k [γ1(α, βu)]ck+a. (17)

C. A linear combination for the quantity fMc-Γ(x)FMc-Γ(x)v1, where v1 is a positive integer number.

From equations (16) and (17), we can write

fMc-Γ(x)FMc-Γ(x)v1 =
[
γa

1(α, βu)
]v1

 ∞∑
s1,s2=0

w(1)
s1,s2

h(x;αs1 + s2 + α, β)


 ∞∑

k=0

w′k [γ1(α, βu)]ck


v1

.

Since v1 is a positive integer number, we obtain

fMc-Γ(x)FMc-Γ(x)v1 =

 ∞∑
s1,s2=0

w(1)
s1,s2

h(x;αs1 + s2 + α, β)


 ∞∑

k=0

sk,v1 [γ1(α, βu)]ck+av1

 ,
where s0,v1 = w′0

v1 and sk,v1 = (w′0
v1 k)−1 ∑k

i=1(iv1 − k − i)w′i sk−i,v1 for k ≥ 1.

Now, following similar arguments of the result (15), we have

[γ1(α, βx)]ck+av1 =

∞∑
h1,h2,m=0

(−1)h1+h2
(

h1
h2

)(
ck+av1

h1

) { tm,h2 xαh2+mβαh2

Γ(α)h2

}
.

Thus,

fMc-Γ(x)FMc-Γ(x)v1 =

=

∞∑
h1,h2,k,m,s1,s2=0

sk,v1 w(1)
s1,s2

(−1)h1+h2
(

h1
h2

)(
ck+av1

h1

) { tm,h2β
αh2

Γ(α)h2

}
xαh2+mh(x;αs1 + s2 + α, β)︸                            ︷︷                            ︸

Γ(αs1+s2+α+αh2+m)

βαh2+mΓ(αs1+s2+α)
h(x;αs1+s2+α+αh2+m,β)

=

∞∑
h1,h2,k,m,s1,s2=0

W (v1)
h1,h2,k,m,s1,s2

h(x;αs1 + s2 + α + αh2 + m, β), (18)

where

W (v1)
h1,h2,k,m,s1,s2

= sk,v1 w(1)
s1,s2

(−1)h1+h2
(

h1
h2

)(
ck+av1

h1

) { tm,h2 Γ(αs1 + s2 + α + αh2 + m)
βmΓ(αs1 + s2 + α)Γ(α)h2

}
.

Published by Canadian Center of Science and Education 65



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 1, No. 1; May 2012

D. Information Matrix.

The elements of the observed information matrix J(θ) for the parameters (α, β, a, b, c) are:

Jαα = − nψ′(α) + (a − 1)
n∑

i=1

yαα1(xi) − c(b − 1)
n∑

i=1

yαα2(xi),

Jαβ =
n
β
+ (a − 1)

n∑
i=1

xi yαβ1(xi) − c(b − 1)
n∑

i=1

xi yαβ2(xi),

Jαa =

n∑
i=1

yαa(xi),

Jαb = − c
n∑

i=1

yαb(xi),

Jαc = − (b − 1)

 n∑
i=1

yαb(xi) + c
n∑

i=1

yαc(xi)

 , Jββ = −nα
β2 + (a − 1)

n∑
i=1

x2
i yββ1(xi) − c(b − 1)

n∑
i=1

x2
i yββ2(xi),

Jβa =

n∑
i=1

xi yβa(xi),

Jβb = − c
n∑

i=1

xi yβb(xi),

Jβc = − (b − 1)

 n∑
i=1

xi yβb(xi) + c
n∑

i=1

xi yβc2(xi)

 ,
Jaa =

n
c2

[
ψ′

(a
c
+ b

)
− ψ′

(a
c

)]
,

Jab =
n
c
ψ′

(a
c
+ b

)
,

Jac =
n
c2

[
ψ

(a
c

)
− ψ

(a
c
+ b

)]
+

na
c3

[
ψ′

(a
c

)
− ψ′

(a
c
+ b

)]
,

Jbb =n
[
ψ′

(a
c
+ b

)
− ψ′(b)

]
,

Jbc = −
na
c2 ψ

′
(a

c
+ b

)
−

n∑
i=1

ybc(xi),

Jcc = −
n
c2 +

2na
c3

[
ψ
(a

c
+ b

)
− ψ

(a
c

)]
+

na2

c4

[
ψ′

(a
c
+ b

)
− ψ′

(a
c

)]
− (b − 1)

n∑
i=1

ycc(xi),

where the quantities yαα1(xi), yαα2(xi), yαβ1(xi), yαβ2(xi), yαa(xi), yαb(xi), yαc(xi), yββ1(xi), yββ2(xi), yβa(xi), yβb(xi), yβc(xi),
ybc(xi) and ycc(xi) are given in Appendix E.

E. Auxiliary terms for the observed information matrix.

yαα1(xi) =
γ1(α, βxi){∂2[γ1(α, βxi)]/∂α2} − {∂[γ1(α, βxi)]/∂α}2

γ1(α, βxi)2 ,

yαα2(xi) =
{
∂[γ1(α, βxi)]

∂α

}2 [γ1(α, βxi)c−2(c − 1) + γ1(α, βxi)2(c−1)]
[1 − γ1(α, βxi)c]2 +

∂2[γ1(α, βxi)]
∂α2

[γ1(α, βxi)c−1 − γ1(α, βxi)2c−1]
[1 − γ1(α, βxi)c]2 ,

yαβ1(xi) =
γ1(α, βxi){∂2[γ1(α, βxi)]/∂α∂β} − {∂[γ1(α, βxi)]/∂α}{∂[γ1(α, βxi)]/∂β}

γ1(α, βxi)2 ,

yαβ2(xi) =
∂[γ1(α, βxi)]

∂α

∂[γ1(α, βxi)]
∂β

[γ1(α, βxi)c−2(c − 1) + γ1(α, βxi)2(c−1)]
[1 − γ1(α, βxi)c]2 +

∂2[γ1(α, βxi)]
∂α∂β

[γ1(α, βxi)c−1 − γ1(α, βxi)2c−1]
[1 − γ1(α, βxi)c]2 ,
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yαa(xi) =
∂[γ1(α, βxi)]/∂α

γ1(α, βxi)
,

yαb(xi) =
γ1(α, βxi)c−1{∂[γ1(α, βxi)]/∂α}

1 − γ1(α, βxi)c ,

yαc(xi) =
γ1(α, βxi)c−1 log[γ1(α, βxi)]{∂[γ1(α, βxi)]/∂α}

[1 − γ1(α, βxi)c]2 ,

yββ1(xi) =
γ1(α, βxi){∂2[γ1(α, βxi)]/∂β2} − {∂[γ1(α, βxi)]/∂β}2

γ1(α, βxi)2 ,

yββ2(xi) =
{
∂[γ1(α, βxi)]

∂β

}2 [γ1(α, βxi)c−2(c − 1) + γ1(α, βxi)2(c−1)]
[1 − γ1(α, βxi)c]2 +

∂2[γ1(α, βxi)]
∂β2

[γ1(α, βxi)c−1 − γ1(α, βxi)2c−1]
[1 − γ1(α, βxi)c]2 ,

yβa(xi) =
∂[γ1(α, βxi)]/∂β

γ1(α, βxi)
,

yβb(xi) =
γ1(α, βxi)c−1{∂[γ1(α, βxi)]/∂β}

1 − γ1(α, βxi)c ,

yβc(xi) =
γ1(α, βxi)c−1 log[γ1(α, βxi)]{∂[γ1(α, βxi)]/∂β}

[1 − γ1(α, βxi)c]2 ,

ybc(xi) =
γ1(α, βxi)c log[γ1(α, βxi)]

1 − γ1(α, βxi)c ,

ycc(xi) =
γ1(α, βxi)c log[γ1(α, βxi)]2

[1 − γ1(α, βxi)c]2 .
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Table 1. Descriptive statistics for diesel engine data from the USS Halfbeak

Mean Median Std. Desv. Variance Skewness Kurtosis Min Max

19.3997 21.4610 5.8165 33.8322 -1.5104 4.3305 1.3820 25.5180

Table 2. MLEs and Goodness-of-fit measures
M

od
el Estimates Goodness-of-fit

(standard errors) measures

α̂ β̂ â b̂ ĉ AIC BIC CAIC

Mc-Γ 99.8654 2.0299 0.0421 200.0400 0.2796 444.7 456.1 445.7(0.2942) (0.0221) (0.0058) (60.1782) (0.0135)

Kw-Γ 6.3844 0.1996 1 2.4034 0.0013 486.4 503.5 495.0(0.9922) (0.0404) × (0.0011) (0.0000)

B-Γ 46.4007 3.4952 0.1536 0.0851 1 496.8 505.9 497.4(0.0311) (0.0017) (0.0253) (0.0115) ×
Γ 5.8339 0.3007 1 1 1 492.9 497.4 493.0(0.9525) (0.0513) × × ×

Table 3. LR tests under Mc-Γ parameters based on real data

Model Hypotheses Statistic Λ p-value

Mc-Γ vs Kw-Γ H0 : a = 1 vs H1 : a , 1 51.7 <0.0001
Mc-Γ vs B-Γ H0 : c = 1 vs H1 : c , 1 54.1 <0.0001
Mc-Γ vs Γ H0 : a = b = c = 1 vs H1 : not H0 54.2 <0.0001

Figure 1. The Mc-Γ density function for some parameter values
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Figure 2. Plots of the Mc-Γ hazard function for some parameter values

Figure 3. Approximate density (a) and histogram (b) of the values generated from the theoretical density

Figure 4. Relationships of the Mc-Γ sub-models
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Figure 5. Skewness and kurtosis of the Mc-Γ distribution for different values of c : (a) For α = 1.0 and β = 10
(skewness), (b) For α = 0.2 and β = 10 (kurtosis)

Figure 6. Estimated densities of the Mc-Γ, Kw-Γ, B-Γ and Γ models for USS Halfbeak diesel engine data

Notes

Note 1. This author also is a doctoral student at the Federal University of Pernambuco.

Note 2. This result can be obtained in Wolfram Alpha website http://www.wolframalpha.com/
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Abstract

For paired comparisons, we propose a measure to represent the degree of departure from the extended Bradley-Terry
model. The measure is expressed by using the Kullback-Leibler information and it ranges between 0 and 1. The measure
is applied to the win-loss standings of professional baseball league in Japan.

Keywords: Extended Bradley-Terry model, Kullback-Leibler information, Power-divergence

1. Introduction

Consider the athletic competitions with the outcome for the play of any two teams of R teams, namely a set of data from
R(R − 1)/2 paired comparison. Let πi j for i , j denote the probability that team i defeats team j when team i plays team
j. Note that π ji = 1 − πi j for i < j; that is, a tie cannot occur.

The Bradley-Terry (BT) model is defined by

πi j =
δi

δi + δ j
for i , j.

This may be expressed by
Gi jk = Gk ji for i < j < k,

where
Gi jk = πi jπ jkπki, Gk ji = πk jπ jiπik;

see Bradley and Terry (1952), and Tahata, Miyamoto and Tomizawa (2004).

Assume that R teams are arranged in an order, for example, in order of ranking. The extended Bradley-Terry (EBT) model
is defined by

πi j =
γδi

γδi + δ j
for i < j.

This may be expressed as
Gi jk = γGk ji for i < j < k;
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see Davidson and Beaver (1977), and Agresti (1990, p. 373). A special case of this model obtained by putting γ = 1 is the
BT model. This model indicates that for the plays of any two teams of teams i, j and k, the probability that team i defeats
team j, team j defeats team k, and team k defeats team i, is γ times higher than the probability that k defeats j, j defeats
i, and i defeats k.

For square tables with nominal categories, in which cells on the main diagonal are empty, Tahata et al. (2004) proposed
the measures to represent the degree of departure from the BT model. We are interested in considering a measure which
represents the degree of departure from the EBT model for square tables with ordered categories.

Section 2 proposes the measure to represent the degree of departure from the EBT model. Section 3 gives the approximate
confidence interval for the measure. Section 4 shows examples.

2. Measure

Let for i < j < k,

G(1)
i jk =

Gi jk∑
s<t<u Gstu

, G(2)
i jk =

Gk ji∑
s<t<u Guts

where ∑
s<t<u

Gstu , 0,
∑

s<t<u

Guts , 0, Gi jk +Gk ji , 0.

The EBT model may be expressed as
G(1)

i jk = G(2)
i jk for i < j < k.

Denote any probabilities having the structure of EBT by {qi j} with qi j + q ji = 1. Then denote {G(t)
i jk} with {πi j} replaced by

{qi j}, by {Q(t)
i jk}, t = 1, 2. Thus

Q(1)
i jk = Q(2)

i jk (= QEBT
i jk ) for i < j < k.

Consider a measure defined by

Ψ =
1

2 log 2
min
{QEBT

i jk }

2∑
t=1

I
({

G(t)
i jk

}
;
{
QEBT

i jk

})
, (1)

where

I
({

ai jk

}
;
{
bi jk

})
=

∑
i< j<k

ai jk log
(

ai jk

bi jk

)
,

being the Kullback-Leibler information. Then we can see that QEBT
i jk satisfying (1) are Q̄EBT

i jk = (G(1)
i jk+G(2)

i jk)/2 for i < j < k.
Thus, the measure can be expressed as

Ψ =
1

2 log 2

2∑
t=1

I

{G(t)
i jk

}
;

G(1)
i jk +G(2)

i jk

2


 .

We see that (i) 0 ≤ Ψ ≤ 1, (ii) Ψ = 0 if and only if the EBT model holds, and (iii) Ψ = 1 if and only if the degree
of departure from the EBT model is maximum, in the sense that G(1)

i jk = 0 (then G(2)
i jk > 0) for some i < j < k and

G(2)
i jk = 0 (then G(1)

i jk > 0) for the other i < j < k. The maximum degree of departure from EBT can also be expressed as
Gi jk/(Gi jk +Gk ji) = 0 for some i < j < k and Gk ji/(Gi jk +Gk ji) = 0 for the other i < j < k. Namely, Ψ = 1 indicates that
for any three teams of R teams, the conditional probability that team i defeats team j, team j defeats team k, and team k
defeats team i on conditional that i defeats j, j defeats k and k defeats i, or i defeats k, k defeats j, j defeats i, is 0 or 1.
We shall refer to this situation as ”strongest stochastic three way deadlock”. Note that from the assumption, G(1)

i jk = 0 for

all i < j < k and G(2)
i jk = 0 for all i < j < k are excluded from the strongest stochastic three way deadlock. Moreover, since

Ψ = 1 indicates that G(1)
i jk/G

(2)
i jk = 0 for some i < j < k and G(1)

i jk/G
(2)
i jk = ∞ for the other i < j < k, it seems appropriate to

consider that then the degree of departure from EBT (i.e., from G(1)
i jk/G

(2)
i jk = 1 for i < j < k) is the largest.

3. Approximate Confidence Interval for Measure

Consider a set of data from R(R − 1)/2 paired comparison experiments for R treatments. Let ri j be the number of com-
parisons for the treatment pair (i, j), and ni j the number that the treatment i exceeds the treatment j in the ri j comparisons.
We assume that there is no tie, i.e., ri j = r ji = ni j + n ji. The probability for {ni j}, i , j, is then the product of R(R − 1)/2
binomials. The sample version of Ψ, i.e., Ψ̂, is given by Ψ with {πi j} replaced by {π̂i j}, where π̂i j = ni j/ri j. Using the
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delta method (Bishop, Fienberg and Holland, 1975, sec.14.6), Ψ̂ has asymptotically a normal distribution with mean Ψ
and variance σ2[Ψ̂]. The σ2[Ψ̂] is given in Appendix 1.

Let σ̂2[Ψ̂] denote σ2[Ψ̂] with {πi j} replaced by {π̂i j}. Then, σ̂[Ψ̂]/
√

n is an estimated approximate standard error for Ψ̂,
and Ψ̂ ± zp/2σ̂[Ψ̂]/

√
n is an approximate 100(1 − p) percent confidence interval for Ψ, where zp/2 is the percentage point

from the standard normal distribution corresponding to a two-tail probability equal to p.

4. Examples

Table 1 gives the results of professional baseball league in Japan in 2008 and 2011. These data are obtained from the
official website of Japan Professional Baseball (http://www.npb.or.jp/). The categories have the ranking in these years.
Namely, for the data in Table 1a, the first is Giants, the second is Tigers and so on. For example, from Giants’s perspective,
the (Giants, Tigers) result in 2008 correspond to 14 successes and 10 failures in 24 trials.

<Table 1>

The estimated measure Ψ̂ are 0.137 for the data in Table 1a and 0.081 for the data in Table 1b. The approximate 95%
confidence interval for Ψ are (0.014, 0.259) with standard error 0.063 for the data in Table 1a and (−0.021, 0.184) with
standard error 0.052 for the data in Table 1b. Since the confidence interval for Ψ applied to the data in Table 1a do not
contain zero, this would indicate that there is not a structure of EBT between the teams in Central league in 2008. On the
other hand, since the confidence interval for the measure applied to the data in Table 1b contains zero, this would indicate
that there is a structure of EBT between the teams in Central league in 2011; or if this is not the case, then it indicates that
the degree of departure from the EBT model is slight.

When the degrees of departure from the EBT model in Tables 1a and 1b are compared using the estimated measures Ψ̂, it
is greater for Table 1a than for Table 1b. Namely, the data in Table 1a rather than in Table 1b is estimated to be close to
the maximum departure from the EBT model.

5. Discussions

Consider an R × R square contingency table with same ordinal row and column classifications. Let pi j denote the prob-
ability that an observation will fall in the ith row and the jth column of the table (i = 1, . . . ,R; j = 1, . . . ,R). Tomizawa
(1984) proposed the extended quasi-symmetry (EQS) model defined by

pi j = αiβ jψi j for i = 1, . . . ,R; j = 1, . . . ,R,

where ψi j = γψ ji (i < j). Let pc
i j = pi j/(pi j + p ji) for i , j. Then the EQS model may also be expressed as

pc
i j p

c
jk pc

ki = γpc
ji p

c
k j p

c
ik for i < j < k.

It is seen that the EQS model is essentially equivalent to the EBT model. Thus we shall define the measure ϕ which
represents the degree of departure from the EQS model, by Ψ with {πi j} replaced by {pc

i j}.
Let xi j denote the observed frequency in the ith row and the jth column of the table (i = 1, . . . ,R; j = 1, . . . ,R). We
assume that {xi j} have a multinomial distribution. Let ϕ̂ denote ϕ with {pi j} replaced by { p̂i j} where p̂i j = xi j/n with
n =

∑∑
xi j. Using delta method, ϕ̂ has asymptotically a normal distribution with mean ϕ and variance σ2[ϕ̂]. The

measure Ψ̂ is applied to the data obtained from independent binomial sampling, and ϕ̂ is applied to the data obtained from
multinomial sampling. So, σ2[Ψ̂] with {πi j} replaced by {pc

i j}, i , j, is not always identical to σ2[ϕ̂]. Let σ̂2[ϕ̂] denote
σ2[ϕ̂] with {pi j} replaced by { p̂i j}. Noting that {p̂i j + p̂ ji = (xi j + x ji)/n} in σ̂2[ϕ̂], we point out that the estimated variance
σ̂2[ϕ̂] is theoretically identical to the estimated variance σ̂2[Ψ̂]. For more detail, see Tahata et al. (2004).

Note that we can consider a generalized measure for representing the degree of departure from the EBT (EQS) model by
using the power-divergence (Cressie and Read, 1984) including the Kullback-Leibler information as follows: for λ > −1,

Ψ(λ) =
λ(λ + 1)
2(2λ − 1)

2∑
t=1

I(λ)

{G(t)
i jk

}
;

G(1)
i jk +G(2)

i jk

2


 ,

where

I(λ)
({

ai jk

}
;
{
bi jk

})
=

1
λ(λ + 1)

∑
i< j<k

ai jk

(ai jk

bi jk

)λ
− 1

 ,
and the value at λ = 0 is taken to be the limit as λ → 0. When λ = 0, Ψ(0) is identical to Ψ. The approximate variance of
estimated measure Ψ̂(λ) is given in Appendix 2.
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Consider the data in Table 1, again. Since Ψ̂ = 0.137 for Table 1a, we can see that the degree of departure from EBT is
estimated to be 13.7 percent of the maximum degree of departure from EBT. Similarly, we can infer that the degree of
departure from EBT is 8.1 percent of the maximum degree of departure from EBT for the data in Table 1b. Also, we point
out that the measure proposed in this paper may be useful to analyze the square contingency tables, for example, social
mobility data, paired comparison data, and so on.

6. Concluding Remarks

Since the measure Ψ always ranges between 0 and 1 independent of the number of categories and sample size, it may be
useful for comparing the degree of departure from the EBT model in several tables.

The proposed measures would be useful when we want to see with single summary measure what degree the departure
from EBT is toward the strongest stochastic three way deadlock, although we cannot see it by the test statistic.

The proposed measures are not invariant under the arbitrary similar permutations of row and column categories. Therefore
it is possible to apply these measures for analyzing the data on an ordered categories.

Finally, for the data having nominal category, if one wants to measure the degree of departure from BT, it is appropriate
to use the measure proposed by Tahata et al. (2004). On the other hand, for the data having ordinal categories, if one
wants to measure the degree of departure from EBT, it is appropriate to use the measure proposed.
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Appendix 1

The variance σ2[Ψ̂] is given as follows:

σ2[Ψ̂] =
R−1∑
a=1

R∑
b=a+1

1
rab

{
1
πab

(Aab)2 +
1
πba

(Bab)2 − (Aab + Bab)2
}
, (A.1)

where

Aab =
1

2 log 2

∑
i< j<k

[
G(1)

i jk(log H(1)
i jk )

{
Ii j + I jk −

∑
s<t<u

G(1)
stu(Ist + Itu)

}
+G(2)

i jk(log H(2)
i jk ){Iik −

∑
s<t<u

G(2)
stuIsu}

]
,

with

H(t)
i jk =

G(t)
i jk

G(1)
i jk +G(2)

i jk

, Ii j =

{
1 (when i = a and j = b),
0 (otherwise),

and Bab is defined by Aab obtained by interchanging G(1)
i jk and G(2)

i jk.

Appendix 2

The variance σ2[Ψ̂(λ)] is given by (A.1), where for λ > −1 and λ , 0,

Aab =
2λ−1

2λ − 1

∑
i< j<k

[
G(1)

i jk(H(1)
i jk )λ

{
Ii j + I jk −

∑
s<t<u

G(1)
stu(Ist + Itu)

}
+G(2)

i jk(H(2)
i jk )λ

{
Iik −

∑
s<t<u

G(2)
stuIsu

}
+λ

(
(H(1)

i jk )λ+1G(2)
i jk − (H(2)

i jk )λ+1G(1)
i jk

){
Ii j + I jk − Iik −

∑
s<t<u

(
G(1)

stuIst +G(1)
stuItu −G(2)

stuIsu

)}]
,

and Bab is defined by Aab obtained by interchanging G(1)
i jk and G(2)

i jk. When λ = 0, σ2[Ψ̂(0)] is identical to σ2[Ψ̂].
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Table 1. Score sheet of the Central League in Japan in 2008 and 2011

(a) 2008
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Carp 12 10 9 - 12 13 56
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Total 49 47 49 56 60 73 334
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Abstract

Managing large complex stochastic systems, including competitive interests, when one or several players can control the
behavior of a large number of particles (agents, mechanisms, vehicles, subsidiaries, species, police units, etc), say Nk

for a player k, the complexity of the game-theoretical (or Markov decision) analysis can become immense as Nk → ∞.
However, under rather general assumptions, the limiting problem as all Nk → ∞ can be described by a well manageable
deterministic evolution. In this paper we analyze some simple situations of this kind proving the convergence of Nash-
equilibria for finite games to equilibria of a limiting deterministic differential game.

Keywords: Markov control, Large complex systems, Dynamic law of large numbers, Differential games, Rates of con-
vergence, Nonlinear Markov games

1. Introduction

A steady increase in complexity is one of the characteristic features of the modern technological development. It requires
an appropriate (or better optimal) management of complex stochastic systems consisting of large number of interacting
components (agents, mechanisms, vehicles, subsidiaries, species, police units, etc), which may have competitive or com-
mon interests. Carrying out a traditional Markov decision analysis for a large state space is often unfeasible. However,
under rather general assumptions, the limiting problem as the number of components tends to infinity can be described by
a well manageable deterministic evolution, which represents a performance of a dynamic law of large numbers (LLN). In
general, this limiting deterministic evolution is measure-valued (it is an evolution of probability laws on the initial state
space), and its probabilistic analysis has led to the notion of a nonlinear Markov process, see monograph (Kolokoltsov,
2010) and references therein. Its controlled version can be naturally called a nonlinear Markov control process or (in
case of competitive interests) a nonlinear Markov game (Kolokoltsov, 2009). In case of finite initial state space, the cor-
responding space of measures is a finite-dimensional Euclidean space (more precisely its positive orthant Rd

+), so that
the limiting measure-valued evolution becomes a deterministic control process or a differential game in Rd. This paper
is devoted to the analysis of simplest situations of this kind, aiming at the identification of deterministic limit and proof
of convergence with explicit rates. More precisely, we shall assume that there is a fixed number of players {1, · · · ,K}
each controlling a stochastic system consisting of a large number N1, · · · ,NK → ∞ components respectively. These can
be generals controlling armies, engineers controlling robot swamps, large banks managers controlling subsidiaries, etc.
The components can interact between themselves and with agents of other groups. The limit N1, · · · ,Nk → ∞ will be
described by a differential game in RK

+ .

The plan of the paper is as follows. In a preliminary Section 2 we set the stage by describing the dynamic law of large
numbers for interacting Markov chains (without control). This topic is rather well developed by now, but we present it on
the level of generality needed for what follows, including time nonhomogeneous chains (with discontinuous dependence
on time) and rates of convergence resulting from Hölder continuity assumptions on the r.h.s. of the limiting ODE. Section
3 introduces control without competition. A strong progress for the analysis of such systems was made recently in (Gast,
Gaujal & Le Boudec, 2010). We present it in a quite different form (see discussion in the last Section), which paves the
road for the extension to competitive interests developed further. Main results are presented in Sections 3-5, where we
discuss consecutively two player zero-sum games with mean -field interaction, two player zero-sum games with binary
interaction and a K player noncooperative game. The proofs are given in Sections 6 and 7. The last section is devoted to
a short review of relevant literature and to further perspectives.
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The following (rather standard) notations for functional spaces will be used throughout the paper. For a closed subset Ω
of a Euclidean space we shall denote by C(Ω) the Banach space of bounded continuous functions on Ω equipped with
the usual sup-norm (which will be denoted simply ∥.∥ everywhere), and by Ck(Ω), k ∈ N, the Banach space of k times
continuously differentiable functions in the interior of Ω with f and all its derivatives up to and including order k having
continuous and bounded extension to Ω, equipped with norm ∥ f ∥Ck(Ω) which is the sum of the sup-norms of f and all its
derivatives up to and including order k. Finally, for α ∈ (0, 1], we denote by Ck,α(Ω) the subspace of Ck(Ω) consisting of
functions, whose kth order derivatives are Hölder continuous of index α. The Banach norm on this space is defined as the
sum of the norm in Ck(Ω) plus the minimal Hölder constant. For an operator Φ in a Banach space B we shall denote by
∥Φ∥B the corresponding operator norm of Φ.

2. Preliminaries: LLN for Interacting Markov Chains

Let us first recall the basic setting of mean-field interacting particle systems with a finite number of types. Suppose our
initial state space is a finite set {1, ..., d}, which can be interpreted as the types of particles (say, possible opinions of
individuals on a certain subject, or the levels of fitness in a military unit, or the types of robots in a robot swamp). Let
{Q(t, x)} = {(Qi j)(t, x)} be a family of d × d square Q-matrices or Kolmogorov matrices (i.e. non-diagonal elements of
these matrices are non-negative and the elements of each row sum up to one) depending continuously on a vector x from
the closed simplex

Σd = {x = (x1, ..., xd) ∈ Rd
+ :

d∑
j=1

x j = 1},

and piecewise continuously on time t ≥ 0. For any x, the family {Q(., x)} specifies a Markov chain on the state space
{1, ..., d} with the generator

(Q(t, x) f )n =
∑
m,n

Qnm(t, x)( fm − fn), f = ( f1, · · · , fd),

and with the intensity of jumps being
|Qii(t, x)| = −Qii(t, x) =

∑
j,i

Qi j(t, x).

In other words, the transition matrices P(s, t, x) = (Pi j(s, t, x))d
i, j=1 of this chain satisfy the Kolmogorov forward equations

d
dt

Pi j(s, t, x) =
d∑

l=1

Ql j(t, x)Pil(s, t, x), s ≤ t.

Remark 1. Instead of piecewise continuous dependence on t we can assume that Q is uniformly bounded and depends
measurably on t. Everything remains the same. This extension is relevant if one is interested in arbitrary discontinuous
controls.

Suppose we have a large number of particles distributed arbitrary among the types {1, ..., d}. More precisely our state
space S is Zd

+, the set of sequences of d non-negative integers N = (n1, ..., nd), where each ni specifies the number of
particles in the state i. Let |N| denote the total number of particles in state N: |N | = n1 + ... + nd. For i , j and a state N
with ni > 0 denote by N i j the state obtained from N by removing one particle of type i and adding a particle of type j,
that is ni and n j are changed to ni − 1 and n j + 1 respectively. The mean-field interacting particle system specified by the
family {Q} is defined as the Markov process on S specified by the generator

Lt f (N) =
d∑

i, j=1

niQi j(t,N/|N |)[ f (N i j) − f (N)]. (1)

Probabilistic description of this process is as follows. Starting from any time and current state N one attaches to each
particle a |Qii|(N/|N |)-exponential random waiting time (where i is the type of this particle). If the shortest of the waiting
times τ turns out to be attached to a particle of type i, this particle jumps to a state j according to the distribution
(Qi j/|Qii|)(N/|N|). Briefly, with this distribution and at rate |Qii|(N/|N|), any particle of type i can turn (migrate) to a type
j.After any such transition the process starts again from the new state N i j. Notice that since the number of particles |N| is
preserved by any jump, this process is in fact a Markov chain with a finite state space.

Remark 2. Yet another way of describing the chain generated by Lt is via the forward Kolmogorov (or master) equation
for its transition probabilities PMN(s, t):

d
dt

PMN(s, t) =
d∑

i, j=1

(ni + 1)Qi j(t,
N ji

|N| )PMN i j (s, t) −
d∑

i, j=1

niQi j(t,
N i j

|N | )PMN(s, t), s ≤ t.
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To shorten the formulas, we shall denote the inverse number of particles by h, that is h = 1/|N |. Normalizing the states to
N/|N | ∈ Σh

d, where Σh
d is a subset of Σd with coordinates proportional to h, leads to the generator of the form

Lh
t f (N/|N|) =

d∑
i=1

d∑
j=1

ni

|N | |N|Qi j(t,N/|N|)[ f (N i j/|N|) − f (N/|N|)], (2)

or equivalently

Lh
t f (x) =

d∑
i=1

d∑
j=1

xiQi j(t, x)
1
h

[ f (x − hei + he j) − f (x)], x ∈ hZd
+, (3)

where e1, ..., ed denotes the standard basis in Rd. With some abuse of notation, let us denote by hN t,h the corresponding
Markov chain. The transition operators of this chain will be denoted by Ψh

s,t:

Ψh
s,t f (hN) = Es,hN f (hN(t, h)), s ≤ t, (4)

where Es,x denotes the expectation of the chain started at x at time s. These operators are known to form a propagator, i.e.
they satisfy the chain rule (or Chapman-Kolmogorov equation)

Ψh
s,tΨ

h
t,r = Ψ

h
s,t, s ≤ t ≤ r.

We shall be interested in the asymptotic behavior of these chains as h→ 0. To this end, let us observe that, for f ∈ C1(Σd),

lim
|N|→∞,N/|N|→x

|N |[ f (N i j/|N|) − f (N/|N |)] = ∂ f
∂x j

(x) − ∂ f
∂xi

(x),

so that
lim

|N|→∞,N/|N|→x
Lh

t f (N/|N|) = Λt f (x),

where

Λt f (x) =
d∑

i=1

∑
j,i

xiQi j(t, x)[
∂ f
∂x j
− ∂ f
∂xi

](x) =
d∑

k=1

∑
i,k

[xiQik(t, x) − xkQki(t, x)]
∂ f
∂xk

(x). (5)

The limiting operator Λt f is a first-order PDO with characteristics solving the equation

ẋk =
∑
i,k

[xiQik(t, x) − xkQki(t, x)] =
d∑

i=1

xiQik(t, x), k = 1, ..., d, (6)

called the kinetic equations for the process of interaction described above. The characteristics specify the dynamics of
the deterministic time-nonhomogeneous Markov Feller process in Σd defined via the generator Λt. The corresponding
transition operators act on C(Σd) as

Φs,t f (x) = f (Xs,x(t)), s ≤ t, (7)

where Xs,x(t) is the solution to (6) with the initial condition x at time s. These operators form a Feller propagator (i.e. Φs,t

depend strongly continuous on s, t and satisfy the chain rule Φs,tΦt,r = Φs,r, s ≤ t ≤ r). Of course in case of Q that do not
depend on time t explicitly, Φs,t depend only on the difference t − s and the operators Φt = Φ0,t form a Feller semigroup.

Remark 3. It is easy to see that if xk , 0, then (Xs,x(t))k , 0 for any t ≥ s. Hence the boundary of Σd is not attainable
for this semigroup, but, depending on Q, it can be glueing or not. For instance, if all elements of Q never vanish, then the
points Xs,x(t) never belong to the boundary of Σd for t > s, even if the initial point x does so.

The convergence of the Markov chains with generators of type (2) to a deterministic evolution and various versions of this
result are well known, see e.g. (Darling & Norris, 2008; Kolokoltsov, 2010; Benaı̈m & Le Boudec, 2008) and references
therein.

We present here an extension (for time-nonhomogeneous chains with discontinuous time dependence) of a result from
(Kolokoltsov, 2011, Sect. 5.11), on a level of generality which allows us to get the corresponding convergence results for
controlled problems as more or less straightforward corollaries.

Theorem 1. (i) Let all the elements Qi j(t, .) belong to C1,α(Σ), α ∈ (0, 1], with norms uniformly bounded in t. Then, if for
some s > 0 and x ∈ Rd, the initial data hNs converge to x in Rd, as h→ 0, the Markov chains hN(t, h) with the initial data
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hNs (generated by Lh
t and with transitions Ψs,t) converge in distribution and in probability to the deterministic charac-

teristic Xs,x(t). For the corresponding converging propagators of transition operators the following rates of convergence
hold:

sup
0≤s≤t≤T

sup
N∈Zd

+:|N|=1/h

[
Ψh

s,t f (hN) − Φs,t f (hN)
]
≤ C(T )(t − s)hα∥ f ∥C1,α(Σd), (8)

for f ∈ C1,α(Σ) and

sup
0≤s≤t≤T

[
Es,hN f (hN(t, h)) − f (Xs,x(t))

] ≤ C(T )
(
(t − s)hα∥ f ∥C1,α(Σd) + ∥ f ∥C1(Σd)|hN − x|

)
, (9)

where C(T ) depends only on the supremum in t of C1,α(Σ)-norm of the functions Q(t, x).

(ii) Assuming a weaker regularity condition, namely that Qi j(t, .) belong to C1(Σ) uniformly in t, the convergence of
Markov chains hN(t, h) in distribution and in probability to the deterministic characteristics still holds, but instead of (8),
we have weaker rates in terms of the modulus of continuity wh of ∇ f and Q (see (39) for the definition):

sup
0≤s≤t≤T

sup
N∈Zd

+:|N|=1/h

[
Ψh

s,t f (hN) − Φs,t f (hN)
]

≤ C(T )(t − s)
(
whC(T )(∇ f ) + whC(T )(∇Q)∥ f ∥C1(Σd)

)
, 0 (10)

where C(T ) depends on the C1(Σ)-norm of Q. A similar modification of (9) holds.

Our objective is to extend this result to interacting and competitively controlled families of Markov chains.

3. Mean Field Markov Control

As a warm-up, let us start with mean-field controlled Markov chains without competition. Suppose we are given a family
of Q-matrices {Q(t, u, x)} = {(Qi j)(t, u, x), i, j = 1, · · · d}, depending on x ∈ Σd, t ≥ 0 and a parameter u from a metric
space interpreted as control. The main assumption will be that Q ∈ C1,α(Σd) as a function of x with the norm bounded
uniformly in t, u, and Q depends continuously on t and u.

Any given bounded measurable curve u(t), t ∈ [0,T ], defines a Markov chain on Σh
d with the time-dependent family of

generators of type (2), that is

Lt,u(t) f
(

N
|N|

)
=

d∑
i, j

niQi j

(
t, u(t),

N
|N|

) [
f
(

N i j

|N |

)
− f

(
N
|N|

)]
, (11)

or equivalently

Lh
t,u(t) f (x) =

d∑
i=1

d∑
j=1

xiQi j(t, u(t), x)
1
h

[ f (x − hei + he j) − f (x)]. (12)

For simplicity (and effectively without loss of generality), we shall stick further to controls u(.) from the class Cpc[0,T ]
of piecewise-continuous curves (with a finite number of discontinuities).

Again for f ∈ C1(Σd),
lim

h=1/|N|→0,N/|N|→x
Lh

t,u(t) f (N/|N|) = Λt,u(t) f (x),

where

Λt,u(t) f (x) =
d∑

k=1

∑
i,k

[xiQik(t, u(t), x) − xkQki(t, u(t), x)]
∂ f
∂xk

(x), (13)

with the corresponding controlled characteristics governed by the equations

ẋk =
∑
i,k

[xiQik(t, u(t), x) − xkQki(t, u(t), x)] =
d∑

i=1

xiQik(t, u(t), x), k = 1, ..., d. (14)

For a given T > 0 and continuous functions J (current payoff) and VT (terminal payoff), let Γ(T, h) denote the problem of
a centralized controller of the chain with |N| = 1/h particles, aiming at maximizing the payoff∫ T

0
J
(
s, u(s),

N(s, h)
|N |

)
ds + VT

(
N(T, h)
|N|

)
. (15)

80 ISSN 1927-7032 E-ISSN 1927-7040



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 1, No. 1; May 2012

The optimal payoff will be denoted by Vh(t, x):

Vh(t, x) = sup
u(.)∈Cpc[t,T ]

Eu(.)
t,x

[∫ T

t
(J(s, u(s), hN(s, h))ds + VT (hN(T, h))

]
, (16)

where Eu(.)
t,x denotes the expectation with respect to the Markov chain on Σh

d generated by (11) and started at x = hN at
time t.

We are aiming at approximating Vh(t, x) by the optimal payoff

V(t, x) = sup
u(.)∈Cpc[t,T ]

[∫ T

t
J(s, u(s), Xt,x(s)) ds + VT (Xt,x(T ))

]
(17)

for the controlled dynamics (14).

We can also obtain approximate optimal synthesis for problems Γ(T, h) with large |N| = 1/h, at least if regular enough
synthesis is available for the limiting system. Let us recall that a function γ(t, x) is called an optimal synthesis (or an
adaptive policy) for the problem Γ(T, h) if

Vh(t, x) = Eγ
t,x

[∫ T

t
(J(s, γ(s, hN(s, h)), hN(s))ds + VT (hN(T, h))

]
(18)

for all t ≤ T and x ∈ Σh
d, where Eγ

t,x denotes the expectation with respect to the Markov chain on Σh
d generated by (11) with

u(t) = γ(t, x) and starting at x = hN at time t. A function γ(t, x) is called an ϵ-optimal synthesis or an ϵ-adaptive policy, if
the r.h.s. of (18) differs from its l.h.s. by not more than ϵ. Similarly an optimal synthesis or an adaptive policy are defined
for the limiting deterministic system.

Theorem 2. (i) Assume that Q, J depend continuously on t, u and Q, J ∈ C1,α(Σd), α ∈ (0, 1], as functions of x, with the
norms bounded uniformly in t, u, and finally VT ∈ C1,α(Σd). Then

sup
0≤t≤T

[Vh(t, hN) − V(t, x)]

≤ C(T )((T − t)hα + |hN − x|)
(
∥VT ∥C1,α(Σd) + sup

s,u
∥J(t, u, .)∥C1,α(Σd)

)
, (19)

with C(T ) depending only on the bounds of the norms of Q in C1,α(Σd). Moreover, if u(t) is an ϵ-optimal control for
deterministic dynamics (14), that is the payoff obtained by using u(.) differs by ϵ from V(t, x), then u(.) is also an (ϵ +
C(T )hα)-optimal control for |N| = 1/h particle system.

(ii) Suppose additionally that u belong to a convex subset of a Euclidean space and that Q(t, u, x) depends Lipschitz
continuously on u. Let ϵ ≥ 0, and let γ(t, x) be a Lipschitz continuous function of x uniformly in t that represents an
ϵ-optimal synthesis for the limiting deterministic control problem. Then, for any δ > 0, there exists h0 such that, for
h ≤ h0, γ(t, x) is an (ϵ + δ)-optimal synthesis for the approximate optimal problem Γ(T, h) on Σh

d.

Remark 4. As in Theorem (ii), there is a version of Theorem with Q ∈ C1(Σd) and VT ∈ C1(Σd). We omit the detail. The
same remark concerns other theorems given below.

Notice finally that by the standard dynamic programming, see e.g. (Fleming & Soner, 2006; McEneaney, 2006), the
optimal payoff V(t, x) given by (17) represents the unique viscosity solution of the HJB-Isaacs equation

∂V
∂t

(t, x) +max
u

J(t, u, x) +
d∑

i,k=1

xiQik(u, x)
∂V
∂xk

(t, x)

 = 0, (20)

and the optimal payoff Vh(t, x) given by (16) solves the HJB equation

∂Vh

∂t
(t, x) +max

u
[J(t, u, x) + Lh

t,uVh(t, x)] = 0. (21)

Thus, as a corollary of Theorem , we have proved the convergence of the solutions of the Cauchy problem for equation
(21) to the viscosity solution of (20).
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4. Two Players with Mean-field Interaction

Let us turn to a game-theoretic setting starting with a simplest model of two competing mean-field interacting Markov
chains. Suppose we are given two families of Q-matrices {Q(t, u, x) = (Qi j)(u, x)} and {P(t, v, x) = (Pi j)(v, x)}, i, j =
1, · · · d, depending on x ∈ Σd and parameters u and v from two subsets U and V of Euclidean spaces. Any given bounded
measurable curves u(t), v(t), t ∈ [0,T ], define a Markov chain on Σ1/|N|

d × Σ1/|M|
d , specified by the generator

Lt,u(t),v(t) f (
N
|N | ,

M
|M| ) =

d∑
i, j

niQi j(t, u(t),
N
|N| )[ f

(
N i j

|N| ,
M
|M|

)
− f

(
N
|N| ,

M
|M|

)
]

+

d∑
i, j

miPi j(t, v(t),
M
|M| )[ f

(
N
|N| ,

Mi j

M

)
− f

(
N
|N| ,

M
|M|

)
], (22)

where N = (n1, · · · , nd), M = (m1, · · · ,md).

We shall assume for simplicity that |N| = |M| = 1/h.

Then (22) rewrites as

Lh
t,u(t),v(t) f (x, y) =

d∑
i=1

d∑
j=1

xiQi j(t, u(t), x)
1
h

[ f (x − hei + he j, y) − f (x, y)]

+

d∑
i=1

d∑
j=1

yiPi j(t, v(t), y)
1
h

[ f (x, y − hei + he j) − f (x, y)], x, y ∈ hZd
+. (23)

For f ∈ C1(Σd × Σd),
lim

h→0,N/|N|→x,M/|M|→y
Lh

t,u(t),v(t) f (N/|N |,M/|M|) = Λt,u(t),v(t) f (x, y),

where

Λt,u(t),v(t) f (x, y) =
d∑

k=1

∑
i,k

[xiQik(t, u(t), x) − xkQki(t, u(t), x)]
∂ f
∂xk

(x)

+

d∑
k=1

∑
i,k

[yiPik(t, u(t), x) − ykPki(t, v(t), y)]
∂ f
∂yk

(y). (24)

The corresponding controlled characteristics are governed by the equations

ẋk =
∑
i,k

[xiQik(t, u(t), x) − xkQki(t, u(t), x)] =
d∑

i=1

xiQik(t, u(t), x), k = 1, ..., d, (25)

ẏk =
∑
i,k

[yiPik(t, v(t), y) − ykPki(t, v(t), y)] =
d∑

i=1

yiPik(t, v(t), y), k = 1, ..., d. (26)

For a given T > 0, let us denote by Γ(T, h) the stochastic game with the dynamics specified by the generator (22) and with
the objective of the player I (controlling Q via u) to maximize the payoff∫ T

0
J
(
s, u(s), v(s),

N(s, h)
|N | ,

M(s, h)
|M|

)
ds + VT

(
N(T, h)
|N| ,

M(T, h)
|M|

)
(27)

for given functions J (current payoff) and VT (terminal payoff), and with the objective of player II (controlling P via v) to
minimize this payoff (zero-sum game). As previously we want to approximate it by the deterministic zero-sum differential
game Γ(T ), defined by dynamics (25), (26) and the payoff of player I given by∫ T

0
J(s, u(s), v(s), Xt,x(s),Yt,y(s)) ds + VT (Xt,x(T ), Yt,y(T )). (28)

Recall the basic notions of the upper and lower values for a game Γ(T ), see e.g. (Fleming & Soner, 2006) or (Malaeyev,
2000). As above, we shall use controls u(.) and v(.) from the classes Cpc([0,T ]; U) and Cpc([0,T ]; V) of piecewise-
continuous curves with values in U and V respectively. A progressive strategy of player I is defined as a mapping β
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from Cpc([0,T ]; V) to Cpc([0,T ]; U) such that if v1(.) and v2(.) coincide on some initial interval [0, t], t < T , then so
do u1 = β(v1(.)) and u2 = β(v2(.)). Similarly progressive strategies are defined for player II. Let us denote the sets of
progressive strategies for players I and II by S p([0,T ]; U) and S p([0,T ]; V). Then the upper and the lower values for the
game Γ(T ) are defined as

V+(t, x, y) = sup
β∈S p([0,T ];U)

inf
v(.)∈Cpc([0,T ];V)[∫ T

t
J(s, (β(v))(s), v(s), Xt,x(s),Yt,x(s)) ds + VT (Xt,x(T ),Yt,x(T ))

]
, (29)

V−(t, x, y) = inf
β∈S p([0,T ];V)

sup
u(.)∈Cpc([0,T ];U)[∫ T

t
J
(
s, u(s), (β(u))(s), Xt,x(s),Yt,x(s)

)
ds + VT

(
Xt,x(T ),Yt,x(T )

)]
.

If the so called Isaac’s condition holds, that is, for any pk, qk,

max
u

min
v

J(t, u, v, x, y) +
d∑

i,k=1

xiQik(t, v, x)qk +

d∑
i,k=1

yiPik(t, v, x)pk


= min

v
max

u

J(t, u, v, x, y) +
d∑

i,k=1

xiQik(t, v, x)qk +

d∑
i,k=1

yiPik(t, v, x)pk

 , (30)

then the upper and lower values coincide: V+(t, x, y) = V−(t, x, y).

Similarly the upper and the lower values Vh
+(t, x, y) and Vh

−(t, x, y) for the stochastic game Γ(T, h) are defined.

Theorem 3. Assume that Q, P, J depend continuously on t, u and Q, P, J,VT ∈ C1,α(Σd), α ∈ (0, 1], as functions of x, with
the norms bounded uniformly in t, u, v. Then

sup
0≤t≤T

[Vh
±(t, hN) − V±(t, x)]

≤ C(T )((T − t)hα + |hN − x|)
(
∥VT ∥C1,α(Σd) + sup

s,u
∥J(t, u, v, .)∥C1,α(Σd)

)
, (31)

with C(T ) depending only on the bounds of the norms of Q in C1,α(Σd). Moreover, if β ∈ S p([0,T ]; U) and v(.) ∈
Cpc([0,T ]; V) are ϵ-optimal for the minimax problem (29), then this pair is also (ϵ+C(T )hα)-optimal for the corresponding
stochastic game Γ(T, h).

As in Theorem (ii), one can also approximate optimal (equilibrium) adaptive polices for Γ(T, h), if regular enough (i.e.
Lipschitz continuous) equilibrium adaptive policies exist for the limiting game Γ(T ). In fact, as is known from differential
games, see e.g. (Fleming & Soner, 2006; Malaeyev, 2000) or (Petrosjan & Zenkevich, 1996), the upper value V+(t, x, y)
represents the unique viscosity solution of the upper Isaac’s equation

∂V+
∂t

(t, x, y) +min
v

max
u

[
J(t, u, v, x, y) + Λt,u,vV+(t, x, y)

]
, V+(T, x, y) = VT (x, y), (32)

and V−(t, x, y) of the lower Isaac’s equation (with min and max placed in a different order). Similar equations are satisfied
by the values of stochastic games Vh

±(t, x, y), see e.g. (Fleming & Souganidis, 1989). Now, if V∗ is a solution to the Cauchy
problem (32) and there exist Lipschitz continuous functions v∗(t, x, y) and u∗(t, v, x, y) such that

u∗(t, v, x, y) ∈ argmax[J(t, u, v, x, y) + Λt,u,vV∗(t, x, y)],

v∗(t, x, y) ∈ argmin max
v

[J(t, u, v, x, y) + Λt,u,vV∗(t, x, y)],

then V∗ is a saddle point for the differential game Γ+(T ) giving the information advantage to maximizing player I, see e.g.
(Fleming & Soner, 2006, Theorem 3.1). Analogously to Theorem (ii), we can conclude by Theorem that the policies
v∗(t, x, y) and u∗(t, v, x, y) represent ϵ-equilibria for the corresponding stochastic game Γ+(T, h).
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5. Two Players with Binary Interaction

In a slightly different setting one can assume that changes in a competitive control process occur as a result of group
interactions, and are not determined just by the overall mean field distribution. Let us discuss a simple situation with
binary interaction.

As in the previous section, assume we have two groups of d states (of objects or agents) controlled by players I and II
respectively. Suppose now that any particle from a state i of the first group can interact with any particle from a state j of
the second group (binary interaction) producing changes i to l and j to r with certain rates Qlr

i j(t, u, v) that may depend on
controls u and v of the players. Assuming, as usual, that our particles are indistinguishable (any particle from a state is
selected for interaction with equal probability), leads to the process, generated by the operators

Lt,u(t),v(t) f (N,M) =
d∑

i, j,l,r=1

nim jQlr
i j(t, u(t), v(t),

N
|N| ,

M
|M| )[ f (N il,M jr) − f (N,M)].

Again let us assume for simplicity that |M| = |N| and define h = 1/|N| = 1/|M|. To get a reasonable scaling limit, it is
necessary to scale time by factor h leading to the generators

Lh
t,u(t),v(t) f (

N
|N| ,

M
|M| ) = h

d∑
i, j,l,r=1

nim jQlr
i j(t, u(t), v(t),

N
|N| ,

M
|M| )[ f (N il,M jr) − f (N,M)], (33)

which, for x = hN, y = hM and h→ 0, tends to

Λt,u(t),v(t) f (x, y) =
d∑

i, j,l,r=1

xiy jQlr
i j(t, u(t), v(t), x, y)

[
∂ f
∂xl
+
∂ f
∂yr
− ∂ f
∂xi
− ∂ f
∂y j

]
(x, y). (34)

The corresponding kinetic equations (characteristics of this first order partial differential operator) have the form

ẋk =

d∑
i, j,r=1

y j

[
xiQkr

i j (t, u(t), v(t)) − xkQir
k j(t, u(t), v(t))

]
,

ẏk =

d∑
i, j,l=1

xi

[
y jQlk

i j(t, u(t), v(t)) − ykQl j
ik(t, u(t), v(t))

]
,

As in the previous section, we are interested in the zero-sum stochastic game, which will again be denoted by Γ(T, h),
with the dynamics specified by generator (33) and with the objective of the player I (controlling Q via u) to maximize
the payoff of the same type (27), and in an approximation of this game by the limiting deterministic zero-sum differential
game Γ(T ), defined by the payoff (28) of player I.

Theorem 4. Assume that Q, J depend continuously on t, u, v and Q, J,VT ∈ C1,α(Σd), α ∈ (0, 1], as functions of x, with
the norms bounded uniformly in t, u, v. Then the same estimate (31) holds for the difference of upper and lower values of
limiting and approximating games.

Moreover, literally the same approximations (as in the game of the previous section) hold for optimal strategies and
policies.

6. Several Players with Coupled Mean-field Interaction

Suppose now that there are K players, each one controlling a mean-field interacting Markov chain, which are coupled via
the joint mean-field distribution. Namely, suppose we are given K families of Q-matrices {Qk = (Qk

i j)(t, uk, µ1, · · · , µK)},
k = 1, · · ·K, i, j = 1, · · · d, depending on a parameter uk from a metric space Uk (control space of the player k) and K
vectors µk ∈ Σd. Any bounded measurable vector-valued curve u(t) = (u1(t), · · · uK(t)), t ∈ [0, T ], and natural numbers
|N1|, · · · , |Nk | define a Markov chain on S 1/|N1 | × · · · × S 1/|Nk | (each S k consists of sequences of d negative integers Nk =

(nk
1, · · · , nk

d) totting up to a given number |Nk |), specified by the generator

Lt,u(t) f (
N1

|N1|
, · · · , NK

|NK |
) =

K∑
k=1

d∑
ik , jk=1

nk
ik Qk

ik jk

(
t, uk(t),

N1

|N1|
, · · · , NK

|NK |

)

×
 f (

N1

|N1|
, · · · , Nk−1

|Nk−1|
,

N ik jk
k

|Nk |
,

Nk+1

|Nk+1|
, · · · , NK

|NK |
) − f (

N1

|N1|
, · · · , NK

|NK |
)

 , (35)
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where Nk = (nk
1, · · · , nk

d) with elements totting up to |Nk |. For

xk =
Nk

|Nk |
=

 nk
1

|N1|
, · · · ,

nk
d

|Nk |

 ∈ hZd
+, k = 1, · · ·K,

this rewrites as

Lh
t,u(t) f (x1, · · · , xk) =

1
h

K∑
k=1

d∑
ik , jk=1

xik
k Qk

ik jk (t, uk(t), x1, · · · , xK)

×[ f (x1, · · · , xk−1, xk − heik + he jk , xk+1, · · · xK) − f (x1, · · · , xK)], (36)

where we denote by h the maximum of all |Nk |−1.

For f ∈ C1(Σd × · × Σd),

lim
h→0,Nk/|Nk |→xk ,k=1,···K

Lh
t,u(t) f (

N1

|N1|
, · · · , NK

|NK |
) = Λt,u(t) f (x1, · · · , xK),

where

Λt,u(t) f (x) =
K∑

k=1

d∑
j,i=1

xiQi j(t, uk(t), x1, · · · , xK)
∂ f
∂xk

j

(x1, · · · , xK). (37)

The corresponding controlled characteristics are governed by the equations

d
dt

x j
k =

d∑
i=1

xiQi j(t, uk(t), x1, · · · , xK), j = 1, ..., d, k = 1, · · · ,K. (38)

For a given T > 0, suppose the objective of player k is to maximize the payoff

Vh
k (t, x1, · · · , xk, u(.))

= Eu(.)
t,x1,··· ,xk

∫ T

0
Jk

(
s, uk(s),

N1(s, h)
|N1|

, · · · , NK(s, h)
|NK |

)
ds + Vk

T

(
N1(T, h)
|N1|

, · · · , NK(T, h)
|NK |

)
with given functions Jk (current payoffs) and Vk

T (terminal payoffs). Let us denote by ΓK(T, h) the corresponding stochastic
game. In the limit h → 0 with all ratios Nk/N j uniformly bounded we get the deterministic differential game ΓK(T ) of K
players with separated dynamics (38) and the payoffs

V(t, x1, · · · , xk, u(.)) =
∫ T

0
Jk(s, uk(s), x1(s), · · · , xK(s)) ds + Vk

T (x1(T ), · · · , xK(T )).

K-player differential games are much less understood as two-player zero-sum games, see e.g. (Friedman, 1971; Malafeyev,
2000; Olsder, 2001; Ramasubraanian, 2007; Tolwinski, Haurie & Leitmann, 1986) for informative discussions, including
links with viscosity solutions of the systems of HJB equations. It is not our objective here to contribute to this develop-
ment. We just want to stress that, as our method shows, most of the natural equilibria of various kinds that can be analyzed
for the limiting differential game ΓK(T ) do approximate the corresponding equilibria for games ΓK(T, h). As simplest ex-
amples, let us consider open-loop equilibria and K-player analogs of upper and lower values of zero-sum games. A vector
curve u∗(t) = (u∗1(t), · · · , u∗K(t)) is called an open-loop Nash equilibrium for the game ΓK(T ), if for any k = 1, · · · ,K,

V(t, x1, · · · , xk, u∗(.)) = max
uk(.)

V(t, x1, · · · , xk, u∗1(.), · · · u∗k−1(.), uk(.), u∗k+1(.), · · · uK(.))).

Similarly open-loop Nash equilibria are defined for the games ΓK(T, h).

On the other hand, for any permutation π of K players one can define a vector-value Vπ arising from information discrim-
ination specified by π. That is, the set of strategies of player π(1) is just Cpc([0,T ]; Uπ(1)), and the progressive strategies
for a player π(k) , π(1) are defined as mapping

βk : ×k−1
i=1 Cpc([0,T ]; Uπi )→ Cpc([0,T ]; Uπk )

such that if u1 = (uπ(1)(.), · · · , uπ(k−1)(.)) and u2 = (uπ(1)(.), · · · , uπ(k−1)(.)) coincide on some initial interval [0, t], t <
T , then so do βk(u1) and βk(u2). Let us denote the sets of progressive strategies for players π(k) by S p([0,T ]; Uπ(k)).

Published by Canadian Center of Science and Education 85



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 1, No. 1; May 2012

The discriminated vector-value Vπ(t, x1, · · · , xK) = (V1
π , · · · ,VK

π )(t, x1, · · · , xK) of the game ΓπK(T ) is defined as a Nash-
equilibrium payoff of the game (in normal form) with these strategy spaces.

Theorem 5. Assume that Qk, Jk depend continuously on all parameters and Qk, Jk,VK
T ∈ C1,α(Σd), α ∈ (0, 1], as functions

of x1, · · · , xk, with the norms bounded uniformly in t, u, v. Then the same estimate (31) holds for the difference of payoffs in
open-loop Nash equilibria of limiting and approximating games, as well as for the difference of payoffs in Nash equilibria
of the limiting and approximating discriminatory games specified by any permutation π.

There does not seem to exits any general results on the regularity of adaptive policies for N player game. On the other
hand, in many examples, see (Case, 1967), and in some sense in a general position, see (Malafeyev, 2000), the state
space can be decomposed into a finite number of open sets, where equilibrium adaptive policies are smooth, with these
sets being separated by lower dimensional manifolds, where switching occurs. Under this condition, one could possibly
prove the convergence of adaptive policies for large |N|-approximations to adaptive policies of the limiting deterministic
differential games, but such analysis is beyond the present contribution.

7. Auxiliary Lemmas

We shall need two simple lemmas (possibly well known for experts), one on the bounds for semigroups arising from
deterministic processes, and another on the coupling of jump-type Markov processes.

Let us recall that the modulus of continuity for a continuous function ϕ on Σd is defined as follows:

wh(ϕ) = sup{|ϕ(x1) − ϕ(x2)| : |x1 − x2| ≤ h}, h > 0. (39)

Below we denote by ∇ the derivative operator with respect to variable x ∈ Σd.

Lemma 1. (i) Let Q(t, x) ∈ C1(Σd) as a function of x uniformly in t and depends measurably on t. Let Φs,t denote the
linear operators (7), where Xs,x(t) is the solution to (6) with the initial condition x at time s. Then Φs,t preserve the space
C1(Σd) and

∥Φs,t∥C1(Σd) ≤ eω(t−s), (40)

or more explicitly
∥Φs,t f ∥C1(Σd) ≤ eω(t−s)∥ f ∥C1(Σd),

where ω is the supremum over t of the norms of the functions xQ(t, x) (as functions of x) in C1(Σd). Moreover, let w̃h

denote the supremum over t of the modulus of continuity of the functions ∇(xQ(t, x)) (as functions of x). Then

wh(∇(Φs,t f )) ≤ eω(t−s)
[
wheω(t−s) (∇ f ) + w̃heω(t−s)∥ f ∥C1(Σd)

]
. (41)

(ii) Supposes additionally that Q(t, .) ∈ C1,α(Σd), α ∈ (0, 1], uniformly in t, and let ωα denote any uniform upper bound
for the corresponding Hölder constants. Then the space C1,α(Σd) is preserved by Φs,t and

∥Φs,t∥C1,α(Σd) ≤ [1 + (t − s)ωα]eω(t−s). (42)

Proof. (i) The derivative of Xs,x(t) with respect to x solves the linear ODE

d
dt
∂Xs,x(t)
∂x

=
∂

∂y
(yQ(t, y)|y=Xs,x(t)

∂Xs,x(t)
∂x

implying

∥∂Xs,x(t)
∂x

∥ ≤ eω(t−s), (43)

and hence (40). The proof of (41) is the same as of (42) below, and therefore is omitted.

(ii) The function

ϕs,t(x1, x2) =
∂Xs,x(t)
∂x

∣∣∣∣∣
x=x1

− ∂Xs,x(t)
∂x

∣∣∣∣∣
x=x2

satisfies the linear ODE

d
dt
ϕs,t(x1, x2) =

∂

∂y
(yQ(t, y)|y=Xs,x1 (t)

∂Xs,x(t)
∂x

∣∣∣∣∣
x=x1

− ∂

∂y
(yQ(t, y)|y=Xs,x2 (t)

∂Xs,x(t)
∂x

∣∣∣∣∣
x=x2

.

The r.h.s. of this equation rewrites as(
∂

∂y
(yQ(t, y)|y=Xs,x1 (t) −

∂

∂y
(yQ(t, y)|y=Xs,x2 (t)

)
∂Xs,x(t)
∂x

∣∣∣∣∣
x=x1
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+
∂

∂y
(yQ(t, y)|y=Xs,x2 (t)

(
∂Xs,x(t)
∂x

∣∣∣∣∣
x=x1

− ∂Xs,x(t)
∂x

∣∣∣∣∣
x=x2

)
and hence, by (40), is bounded in magnitude by the expression

ωαeω(t−s)|x1 − x2|α + ω|ϕs,t(x1, x2)|.

By Gronwall’s lemma,
|ϕs,t(x1, x2)| ≤ (t − s)ωαeω(t−s)|x1 − x2|α.

Hence the Hölder constant (of index α) for the function ∂Xs,x(t)/∂x, as a function of x, is bounded by ωαeω(t−s) implying
(42), because

∂

∂x
f (Xs,x(t))|x=x1 −

∂

∂x
f (Xs,x(t))|x=x2

=

[
∂ f
∂x

(Xs,x1 (t)) − ∂ f
∂x

(Xs,x2 (t))
]
∂Xs,x(t)
∂x

∣∣∣∣∣
x=x1

+
∂ f
∂x

(Xs,x2 (t))
(
∂Xs,x(t)
∂x

∣∣∣∣∣
x=x1

− ∂Xs,x(t)
∂x

∣∣∣∣∣
x=x2

)
.

The next lemma will be used only for the proof of the second part of Theorem 2. It is needed to compare the effects of
applying different adaptive policies.

Lemma 2. Let Zz(t) and Ww(t) be two jump-type Markov processes in Rd (z and w stand for the initial points) with
integral generators

LZ f (x) =
∫

( f (x + y) − f (x))ν(x, y)M(dy), LW f (x) =
∫

( f (x + y) − f (x))µ(x, y)M(dy),

with a certain probability measure M on Rd and uniformly bounded non-negative functions ν(x, y), µ(x, y) such that∫
|y|ν(x, y)M(dy) and

∫
|y|µ(x, y)M(dy) are bounded for any x and∫

|y|ν(x1, y) − ν(x2, y)|M(dy) ≤ κ|x1 − x2|,∫
|y|ν(x, y) − µ(x, y)|M(dy) ≤ ϵ

for a κ > 0 and an ϵ > 0.

Then there exists a Markov process Xz,w(t) on Rd ×Rd that couples Zz(t) and Ww(t) in the sense that the distribution of the
first (respectively second) coordinate of Xz,w(t) coincides with the distribution of Zz(t) (respectively Ww(t)), and such that,
with respect to this coupling,

E|Zz(t) −Ww(t)| ≤ eκt(|z − w| + tϵ). (44)

Proof. Let Xz,w(t) be specified by the so called marching coupling, that is by the generator

L f (x1, x2) =
∫

[ f (x1 + y, x2 + y) − f (x1, x2)]m(x1, x2, y)M(dy)

+

∫
[ f (x1 + y, x2) − f (x1, x2)][ν(x1, y) − m(x1, x2, y)]M(dy)

+

∫
[ f (x1, x2 + y) − f (x1, x2)][µ(x2, y) − m(x1, x2, y)]M(dy).

where
m(x1, x2, y) = min(ν(x1, y), µ(x2, y)).

Clearly, if f does not depend on the second argument, then L f (x1, x2) = LZ f (x1), and if f does not depend on the first
argument, then L f (x1, x2) = LW f (x2), so that Xz,w(t) is really a coupling of Zz(t) and Zw(t). Moreover, as one sees by
inspection, for f (x1, x2) = |x1 − x2|,

L f (x1, x2) ≤
∫
|y|[max(ν(x1, y), µ(x2, y)) − m(x1, x2, y)]M(dy).
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Consequently,

L f (x1, x2) ≤
∫
|y||ν(x1, y) − µ(x2, y)|M(dy) ≤ κ|x1 − x2| + ϵ.

By Dynkin’s formula, the process

f (Xx1,x2 (t)) −
∫ t

0
L f (Xx1,x2 (s))ds

is a martingale. Hence
E|X1

x1,x2
(t) − X2

x1,x2
(t)|

≤ |x1 − x2| + κ
∫ t

0
E|X1

x1,x2
(s) − X2

x1,x2
(s)|ds + tϵ

(where X = (X1, X2)), which by Gronwall’s lemma implies

E|X1
x1,x2

(t) − X2
x1,x2

(t)| ≤ eκt(|x1 − x2| + tϵ),

that is (44).

8. Proof of the Theorems

Proof of Theorem 1.

Let us start by noting that the transition operators Ψh
s,t of the Markov chains hN t,h satisfy (outside the finite number of

discontinuity points of Q(t, x)) the standard Kolmogorov equations

d
dt
Ψh

s,t f = Ψh
s,tLt f ,

d
ds
Ψh

s,t f = −LsΨ
h
s,t f , 0 ≤ s ≤ t, (45)

for any function f on Σh
d. Similarly, the transition operators Φs,t of the deterministic Markov process Xs,x(t) satisfy the

equations
d
dt
Φs,t f = Φh

s,tΛt f ,
d
ds
Φs,t f = −ΛsΦs,t f , 0 ≤ s ≤ t (46)

(again outside the discontinuity points of Q(t, x)), for any f ∈ C1(Σd), which is of course easily checked.

To compare these propagators, we shall use the following standard trick. We write

Ψh
s,t f − Φs,t f = Ψh

s,rΦr,t |tr=s f =
∫ t

s

d
dr

(Ψh
s,rΦr,t) f dr =

∫ t

s
Ψh

s,r(L
h
r − Λr)Φr,t f dr,

if only Φr,t f ∈ C1(Σd) for any r. Let us apply this equation to an f ∈ C1,α(Σd). By Lemma 1 (ii), Φr,t f ∈ C1,α(Σd) for all r
with a uniform bound, so that the above equation applies. Moreover, from (3) and (5) we conclude that

∥(Lh
t − Λt) f ∥ ≤ C(T )hα∥ f ∥C1,α(Σd), (47)

with a constant C(T ) depending on the sup-norm of Q(t, x) only. Consequently, by (42),

∥Ψh
s,t f − Φs,t f ∥ ≤ (t − s)C(T )hα[1 + (t − s)ωα]eω(t−s)∥ f ∥C1,α(Σd),

implying (8). The estimate (9) is a straightforward corollary, taking into account (40). The convergence of the chains in
distribution follows from the convergence of transition operators by a well known general result, see e.g. (Kallenberg,
2002), or (Kolokoltsov, 2011). Moreover, weak convergence of random variables to a constant implies their convergence
in probability.

Finally, (10) is proved analogously, if instead of (47), one uses the estimate

∥(Lh
t − Λt) f ∥ ≤ C(T )wh(∇ f ) (48)

together with (41).

Proof of Theorem 2.

(i) By Theorem 1 (and taking into account that the integral of the function J can be approximated by Riemannian sums),
for any u(.) ∈ Cpc(t,T ),

Vh(t, x, u(.)) = Eu(.)
t,x

[∫ T

t
(J(s, u(s), hN(s, h))ds + VT (hN(T, h))

]
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differs from

V(t, x, u(.)) =
∫ T

t
J(s, u(s), Xt,x(s)) ds + VT (Xt,x(T ))

by

C(T )((T − t)hα + |hN − x|)
(
∥VT ∥C1,α(Σd) + sup

s,u
∥J(t, u, .)∥C1,α(Σd)

)
.

Hence the same estimate holds for the difference of the suprema of these two functions of u(.).

(ii) First of all approximating J̃ by a smooth function (and noting that all payoffs will be then uniformly approximated)
reduces the problem to the case of a smooth J. Next, we can approximate γ(t, x) arbitrary close by a smooth function
γ̃(t, x) in x, so that the corresponding V(t, x, γ) and V(t, x, γ̃) differ by arbitrary small amounts. By Theorem 1, Vh(t, x, γ̃)
will converge to V(t, x, γ̃) as h → 0, and hence γ̃ becomes an (ϵ + δ)-optimal policy of Γ(T, h) for small enough h. It
remains to compare Vh(t, x, γ̃) and Vh(t, x, γ). But they are close by Lemma 2.

Proof of Theorems 3, 4, 5. It is the same as the proof of Theorem 2, being based on Theorem 1 and an evident observation
that if two families of functions are uniformly close, then so are also their minimax values.

9. Conclusion and Bibliographical Comments

The work on deterministic LLN limits for interacting particles and its representation in terms of nonlinear kinetic equations
goes back to (Leontovich, 1935) and (Bogolyubov, 1946). A deduction of kinetic equations in a very general setting of kth
order (binary, ternary, etc) interaction can be found in (Maslov & Tariverdiev, 1982) or (Belavkin & Kolokoltsov, 2003).
In particular, for the corresponding limit in a game-theoretic setting (replicator dynamics), we can refer to (Benaim &
Weibull, 2003) or the last section of (Kolokoltsov & Malafeyev, 2010).

For the introduction to nonlinear Markov processes we refer to (Kolokoltsov, 2007, 2010) and references therein, or, for
more physical point of view, to (Frank, 2008) or (Zak, 2002).

Mean-field control is a rapidly expanding area, see e.g. (Andersson & Djehiche, 2003; Buckdahn, B. Djehiche, J. Li, &
S. Peng, 2009) and references therein, for diffusion based models, and (Le Boudec, McDonald, & Mundinger, 2007; Gast
& B. Gaujal, 2009; Gast, Gaujal, & Le Boudec, 2010; Bordenave, McDonald, & Proutiere, 2007; Benaı̈m & Le Boudec,
2008; Milutinovic & Lima, 2006) for discrete models, more engineering application oriented. In these papers one can
find various concrete applications (from robot swamps to transportation theory and networks), which are also relevant to
the mathematical models discussed in the present paper.

The closest to our setting seems to be the recent work (Gast, Gaujal, & Le Boudec, 2010), which is devoted to a con-
vergence result similar to our Theorem 2. However, in (Gast, Gaujal, & Le Boudec, 2010) a continuous time mean-field
control model is obtained as a limit of discrete-time models, and we work directly with continuous time models. More
essentially, under a slightly stronger regularity assumptions on the model (basically continuous differentiability of coef-
ficients instead of Lipschitz continuity) we obtain explicit rate of convergence for the averages over empirical measures,
and in some cases even for adaptive control policies. Moreover, our main objective was to develop a general framework
to treat competitive control problems presented in Sections 4-6. Even further, we developed a method to treat not only the
simplest mean-field type interactions, but more involved binary or ternary ones.

As was mentioned, our initial state space was finite, resulting in the corresponding measure-valued limit being a finite-
dimensional differential game. In more general setting (which will be discussed elsewhere), for an arbitrary initial state
space of a single particle (in our large ensemble), the corresponding limit becomes truly measure-valued controlled nonlin-
ear evolution (controlled nonlinear Markov process) specified by kinetic equations of rather general type. Other possible
extensions can include models with variable number of particles (robots becoming out of order, or military units destroyed,
etc).

A slightly different class of models describe the situations when each agent in a large group pursue his/her own interests.
These class of models is often referred to as mean-field games. Related equilibrium concept was called the Nash certainty
equivalence principle, see (Lasry & Lions, 2006; Achdou & Capuzzo-Dolcetta, 2010; Gomes, Mohr, & Souza, 2010;
Huang, Caines, & Malhamé, 2003; Huang, Malhamé, & Caines, 2006; Huang, 2010; Kolokoltsov, Li, & Yang, 2011)
and references therein. Unlike our centralized setting above, analysis of these models does not lead to the control of
distributions in the limit, but rather to certain consistency condition on homogeneous individual controls (Nash certainty
equivalence). However, recent paper (Huang, Malhamé, & Caines, 2007) aims at linking individual and centralized
controls.

The main objective of this paper was to approximate discrete stochastic systems with large number of particles by a
simpler continuous state limit. One can also look at these results from an opposite point of view: as approximating
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differential games by discrete Markov chains. This point of view would relate our results with Kushner (2002), Kushner
and Dupuis (2001).
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Huang, M, Caines, P. E. & Malhamé, R. P. (2007). Large-population cost-coupled LQG problems with nonuniform
agents: individual-mass behavior and decentralized ϵ?-Nash equilibria. IEEE Trans. Automat. Control, 52, 1560-1571.
http://dx.doi.org/10.1109/TAC.2007.904450

Kallenberg, O. (2002). Foundations of Modern Probability. 2ed., Springer.

Kolokoltsov, V. N. (2007). Nonlinear Markov Semigroups and Interacting Lévy Type Processes. Journ. Stat. Physics,
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Abstract

A general method is proposed for constructing nonparametric tests of trend for proportions. Such alternatives arise in
situations where it is of interest to test for monotonicity in rates of growth. The class of tests is based on the ranks of the
observations. The general approach consists of defining two sets of rankings: the first describes the time and the other the
binary data itself. The test statistics measures the similarity between the two sets. The asymptotic null distributions are
determined for similarity measures due to Spearman, Kendall and Hamming. A limited simulation study shows that the
Spearman test has greater power.

Keywords: Tests of trend for proportions, Ranks, Spearman, Kendall, Hamming similarity measure, Asymptotic Distri-
butions

1. Introduction

There are several instances in practice when one is interested in testing for a trend in proportions. For instance, one may
be interested in the trend in birth rates, in mortality rates or in the incidence of a certain disease. As an example, we
will consider the mortality statistics in South Africa during the period 2000-2008 in Table 1. One may ask if there is an
increasing trend in the mortality rates. We refer the reader for other examples of applications to Chen et al. (1997), to
Arase et al. (2001) for controlled clinical trials and to Ku et al. (2001) for community based surveys.

In such problems, one usually observes at time values t1 < t2 < ... < tk a random sample of ni binary variables
{
yi j

}
with

yi j taking values 1 or 0 with unknown probabilities pi and 1 − pi respectively. The observed data may be viewed as :

t1 t2 · · · tk Total
y1 y2 · · · yk y
n1 − y1 n2 − y2 · · · nk − yk n − y

Total n1 n2 · · · nk n

where yi =
∑

j yi j , y =
∑

i yi. Let p̄i = yi/ni and p̄ = y/n. Without loss in generality, we shall be interested in detecting
a monotone increasing trend in pi. There are a number of different approaches to the problem as discussed in Terpestra
(1952) and Armitage (1955). One approach founded on regression and analysis of variance and discussed below leads to
the Cochran-Armitage test (Cochran 1954; Armitage 1955). Williams (1988) and Chen et al. (1997) have noted that when
the expected values ni pi, or ni (1 − pi) are small, the normal approximation may become unreliable. As a consequence the
Cochran-Armitage test becomes conservative and may lead to a type I error rate greater than to the prescribed significance
level Portier and Hoel (1984), Hothorn and Bretz (2000). Corcoran et al. (2000) have noted that the Cochran-Armitage
test is very sensitive to the choice of scores and conclude that this “makes its general use suspect”. Williams (1988)
has proposed an exact conditional test whereby the test statistic is calculated for all possible 2 x k tables with identical
marginal totals. This is the randomization model in which the groups or treatments have the experimental units assigned
to them at random. Randomization models are predominantly chosen in biomedical research. Neuhäuser (2006) proposed
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a modification of the Baumgartner-Weiβ-Schindler (1998) two-sample statistic which utilizes ranks instead of scores. A
simulation study is inconclusive and does not reveal a clear winner. In section 2, we consider the problem using ranking
methods.

Let {xi} represent arbitrary pre-selected scores, x1 < x2 < ... < xk which mimic a monotone increasing time trend. The
linear model regression of yi j expressed by

pi = α + β (xi − x̄k) (1)

and subject to the constraint that
∑

i ni (xi − x̄k) = 0 where x̄k =
∑

nixi/n, yields estimates

α̂ =

∑
i ni p̄i∑

i ni
= p̄, β̂ =

∑
i ni (xi − x̄k) ( p̄i − p̄)∑

i ni (xi − x̄k)2 .

The hypothesis of homogeneity is
H0 : pi = p, i = 1, ..k

(or equivalently β = 0). Possible alternatives are

H1 : p1 ≤ p2 ≤ ... ≤ pk.with at least one strict inequality
H2 : pi , p j, for at least one pair (i, j)

Hypothesis H2 can also be expressed as ∑
i< j

(
pi − p j

)
=

∑
i

(k + 1 − 2i) pi , 0 (2)

(Van Eeden & Hemelrijk, 1955).

Under the null hypothesis of homogeneity, the estimate of variance of β̂ is given by

V
(
β̂
)
=

p̄ (1 − p̄)∑
i ni (xi − x̄k)2

and consequently we reject H0 in favor of H1 (or equivalently β > 0) for large values of the statistic

β̂/
√

V
(
β̂
)
=

∑
i ni (xi − x̄k) ( p̄i − p̄)√

p̄ (1 − p̄)
√∑

i ni (xi − x̄k)2

which for large samples has a standard normal. If we suppose further that p̄ is small (of the order of 1% − 2%) so that p̄2

is negligible, then the statistic becomes ∑
i ni (xi − x̄k) ( p̄i − p̄)√∑

i ni p̄ (xi − x̄k)2
.

The difference between observed and expected frequencies ni ( p̄i − p̄) are multiplied by the score effect (xi − x̄k) in the
numerator whereas the square of the score effects are weighted by the expected frequencies in the denominator. The
statistic provides a test of trend in frequencies as opposed to a test of trend on the proportions.

Since the sample correlation between {p̄i − p̄} and {xi − x̄k} is given by∑
i ni (xi − x̄k) ( p̄i − p̄)√∑

i ni (p̄i − p̄)2 ∑
i ni (xi − x̄k)2

= β̂

√∑
i ni (xi − x̄k)2∑
i ni (p̄i − p̄)2

we may view the test of monotonicity as equivalent to a test that the correlation is 0.

Alternatively, the test of homogeneity may be conducted by treating the data as coming from a 2 x k contingency table.
That tests rejects H0 in favor of H2 for large values of the statistic∑

i

(ni p̄i − ni p̄)2

ni p̄
+

∑
i

(ni (1 − p̄i) − ni (1 − p̄))2

ni (1 − p̄)

=

∑
i ni ( p̄i − p̄)2

p̄ (1 − p̄)
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which for large samples ni → ∞, has a chi square distribution with (k − 1) degrees of freedom. In that case there is no
need to define scores. We note that even though H1 is included in H2, “one-sided” tests which focus strictly on H1 will in
general be more powerful.

The regression model may be extended to apply to two or more groups of individuals. For example, to model the birth
rates of men and women in the population, the functional regression model becomes

pi = α + β (xi − x̄k) + γ
(
α′ + β′ (xi − x̄k)

)
(3)

where γ takes value 1 for the first group and 0 otherwise.

In section two, we propose a general approach for constructing nonparametric test statistics based on the ranks of the
observations to test H0 against H2. We obtain the asymptotic null distributions for these test statistics whenever either
the sample sizes gets large or the number of time points k gets large. In section three, we report on the results of some
simulation studies and note that the test statistics perform well under a variety of different underlying patterns. We present
an application and conclude with some final remarks.

2. The Construction of the Test Statistics

In the previous section we considered the problem of testing for trend in proportions when scores provide a proxy for
time. In this section we consider the problem from an entirely new perspective using methods based on the ranks of the
data. The approach by-passes the use of scores. We first provide an introduction to statistical methods based on ranks.

A complete ranking of n objects is a permutation of the integers (1, ..., n) . For any two rankings µ = (µ (1) , ..., µ (n))′ , ν =
(ν (1) , ..., ν (n))′ , we may define the following measures of similarities due to Spearman, Kendall and Hamming respec-
tively:

AS (µ, ν) =

n∑
i=1

(
µ(i) − n + 1

2

) (
ν(i) − n + 1

2

)
AK(µ, ν) =

∑
i< j

sgn (µ( j) − µ(i)) sgn (ν( j) − ν(i))

AH(µ, ν) =

n∑
i=1

n∑
j=1

(
I
[
µ(i) = j

] − 1
n

) (
I
[
ν(i) = j

] − 1
n

)
where sgn(x) is either 1 or −1 depending on whether x > 0 or x < 0 and where I [·] is the indicator function which is
1 or 0 depending on whether the statement in brackets holds or not. Measures of similarity can be used to define rank
correlations to provide tests of trend and of independence. A review of related results may be found in Alvo and Cabilio
(1992).

In what follows, we make use of the notion of tie compatibility (see Alvo & Cabilio, 1999) to extend the measures of
similarity defined above to the case where ties occur in the data.

Definition 1. A tied ordering of n objects is a partition into e sets, 1 ≤ e ≤ n, each of which contains di objects,
d1 + d2 + ... + de = n, so that the di objects in each set share the rank i, 1 ≤ i ≤ e. Such a tie pattern is denoted by δ
= (d1, d2, ..., de) .The ranking denoted by νδ = (νδ (1) , νδ (2) , ..., νδ (n)) , resulting from such an ordering, is a tied ranking,
and is one of n!/(d1!d2!...de!) possible permutations.

Example 1. Suppose that n = 7 objects have the ranking (3172465) , that is object 1 is ranked 3, object 2 is ranked 1,
object 3 is ranked 7, and so on. Suppose that ties are allowed and that the ordering assumes the form ⟨(24) (157) (6) (3)⟩ ,
where now the parentheses indicate members of the same tie class, so that objects 2 and 4 receive rank 1, objects 1, 5, and
7 receive rank 2, and objects 6 and 3 receive ranks 3 and 4 respectively. The tied ranking then becomes (2141232) . In this
case e = 4, d1 = 2, d2 = 3, d3 = d4 = 1.

The ranking which describes the time points may be viewed as a tied ranking with tie pattern

δ1 = (n1, n2, ..., nk) (4)

and with ordering ⟨
(1, ..., n1) (n1 + 1, ..., n1 + n2) ...

 k−1∑
i=1

ni + 1, ...,
k∑

i=1

ni

⟩ (5)

On the other hand, the binary variables yi j have with e = 2 the simple tie pattern

δ2 = (y, n − y) (6)
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We now define tie compatibility whereby a tie ranking could be conceived as having arisen from a complete ranking in
which some objects are grouped as being of equivalent standing. A re-ranking will then produce the tied ranking. All
complete rankings which could give rise in this way to the specified tied ranking are then said to be compatible to it. More
precisely, we have the following.

Definition 2. A complete ranking of n objects is compatible with a tied ranking of these objects with tie pattern δ =
(d1, d2, ..., de) , if every pair of objects which receive distinct ranks is given the same relative ranking in both rankings. We
shall denote by C (µ) and C (ν) the class of complete rankings compatible to µ, ν respectively.

Example 2. Suppose that k = 2, n1 = 3, n2 = 2, and we observe 2 successes 1 failure at time t1, and 1 success 1 failure at
time t2. The compatibility class corresponding to the time ranking ν contains the 12 permutations obtained by permuting
ranks 1, 2, 3 among themselves and ranks 4, 5 among themselves

C (ν) =
{

(123|45) , (132|45) , (213|45) , (231|45) , (321|45) , (312|45) ,
(123|54) , (132|54) , (213|54) , (231|54) , (321|54) , (312|54)

}
On the other hand, there are a total of 6 patterns of rankings with (2 successes, 1 f ailure) at time t1, and (1 success, 1 f ailure)
at time t2 as follows:

(341|52) , (351|42) , (451|32) , (342|51) , (352|41) , (452|31) .

Permuting the entries in blocks 1 and 2 respectively, we obtain a total of 72 compatible rankings in the class C (µ).

Definition 3. The measure of similarity for the case of tied rankings µδ1 , νδ2 is defined to be the conditional expectation

A
(
µδ1 , νδ2

)
= E

[A(µ, ν)|C (µ) ,C (ν)
]

where the expectation is computed by averaging over the complete rankings compatible to µδ1 , νδ2 .

In the next section, we compute the statistics corresponding to tied rankings for each of the similarity measures defined
above.

2.1 The Test Statistic Corresponding to Spearman Similarity

To that end we note that

AS
(
µδ1 , νδ2

)
=

n∑
i=1

E
[(
µ(i) − n + 1

2

)
|C (µ)

]
E

[(
ν(i) − n + 1

2

)
|C (ν)

]

The average of the compatible ranks at time t1 is g1 =
(

n1+1
2

)
, at time t2 it is g2 = n1 +

(
n2+1

2

)
and so on. In general at time

tl the average rank is gl =
∑l−1

i=1 ni +
(

nl+1
2

)
, l = 1, .., k. Clearly,

∑k
i=1 nigi =

n(n+1)
2 . Hence, the conditional expectation

E [ν(l)|C (ν)] = gl, l = 1, ..., ni

Turning attention now to the binary observations, the average rank for the n − y which take value 0 is l1 =
n−y+1

2 whereas
the average rank for the y observations which take value 1 is l2 = n − y +

(
y+1

2

)
= n − y

2 +
1
2 It follows that at time ti,

E
[
µ(l)|C (µ)

]
=

{
l1 l = 1, ..., ni − yi,
l2 l = ni − yi + 1, ..., ni,

Since l2 − l1 = n
2 and

∑k
i=1 nigi =

n(n+1)
2 , we have that

AS
(
µδ1 , νδ2

)
=

k∑
i=1

[
gi −

n + 1
2

] [
l2yi + (ni − yi) l1

]
=

n
2

k∑
i=1

[
gi −

n + 1
2

]
yi
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We shall define the Spearman statistic to be

S =

k∑
i=1

[
gi −

n + 1
2

]
yi

=

k∑
i=1

nici (pi − p) (7)

where ci = gi − n+1
2 and

∑k
i=1 nici = 0.

2.2 The Test Statistic Corresponding to Kendall Similarity

We now consider the test statistic when using Kendall’s similarity measure. Note that within a given time period, the
difference between ties is zero and hence there is no contribution to the distance. Between different time periods we have

n∑
i< j

E
[
sgn (µ( j) − µ(i)) |C (µ)

]
E

[
sgn (ν( j) − ν(i)) |C (ν)

]
=

k∑
i< j

[
(ni − yi) y j −

(
n j − y j

)
yi

]
=

k∑
i< j

[
niy j − n jyi

]
Now

k∑
j=i+1

n j =

n − ni −
i−1∑
j=1

n j


=

[
n − gi −

ni − 1
2

]
Hence,

AK
(
µδ1 , νδ2

)
=

k∑
i=1

yi

[
gi −

ni + 1
2

]
−

k∑
i=1

yi

[
n − gi −

ni − 1
2

]

= 2
k∑

i=1

[
gi −

n + 1
2

]
yi

Hence, the Kendall and Spearman statistics are equivalent.

2.3 The Test Statistic Corresponding to Hamming Similarity

In this section, we consider a test statistic based on the Hamming similarity. Returning to Example 2, we may define a
matrix of scores given by

t1
t1
t1
t2
t2


1/3 1/3 1/3 0 0
1/3 1/3 1/3 0 0
1/3 1/3 1/3 0 0
0 0 0 1/2 1/2

0 0 0 1/2 1/2


where rows indicate time periods and columns indicate rank. At time t1, there are 3 observations and hence ranks 1, 2, 3
will occur 1/3 of the time. Similarly, at time t2, ranks 4, 5 occur with probability 1/2. Entries outside the block diagonals
are 0.

Hence, in general we have for time ti, l =
∑i−1

q=1 nq + 1, ...,
∑i

q=1 nq

E
[
I (ν(l) = j) |C (ν)

]
=


1
ni
,
∑i−1

q=1 nq + 1 ≤ j ≤ ∑i
q=1 nq

0, otherwise


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We now consider the data ranking in accordance with the model. First the complete rankings corresponding to successes
(and correspondingly failures) can be permuted among themselves in

y!
Πyi!

(n − y)!
Π (ni − yi)!

ways. Since entries in time blocks can be permuted in Πni! ways, we have that the total number of compatible rankings is
given by the product

y! (n − y)!
Πyi! (ni − yi)!

Πni!

Define the set of integers

Bi =


i−1∑
q=1

nq + 1, ...,
i∑

q=1

nq

 , i = 1, ..., k

A0y = {1, 2, ..., n − y}
A1y = {n − y + 1, ..., n}

and let

w0i = Card (A0Y ∩ Bi)

w1i = Card (A1Y ∩ Bi)

where w0i = 0 if y = n and w1i = 0 if y = 0.

It follows that at time ti and l =
∑i−1

q=1 nq + 1, ...,
∑i

q=1 nq,

E
[
I (µ(l) = j) |C (µ)

]
= P (µ (l) = j|C (µ))

=


yi

niy
, jϵA1y

(ni−yi)
ni(n−y) , jϵAy

In fact, at time ti, jϵA0y, we have

P (µ (l) = j|C (µ)) =

y!(n−y−1)!(ni−1)!
Πyi!Π j,i(n j−y j)!(ni−yi−1)!

Π j,in j!

y!(n−y)!
Πyi!(ni−yi)!

Πni!

In Example 2, we obtain a total of 72 compatible rankings. Averaging the frequency of occurrences of each ranking leads
to the following matrix of scores:

t1
t1
t1
t2
t2


1/6 1/6 2/9 2/9 2/9
1/6 1/6 2/9 2/9 2/9
1/6 1/6 2/9 2/9 2/9
1/4 1/4 1/6 1/6 1/6
1/4 1/4 1/6 1/6 1/6


Noting that each row at time ti is repeated ni times, and since w0i +w1i = ni, the Hamming similarity measure for tied data
becomes

AH
(
µδ1 , νδ2

)
=

n∑
i, j

(
E

[
I (µ(i) = j) |C (µ)

]
E

[
I (ν(i) = j) |C (ν)

]) − 1

=

k∑
i=1

[
w1i

yi

niy
+ w0i

(ni − yi)
ni (n − y)

]
− 1

=

k∑
i=1

w1i

[
p̄i

y
− (1 − p̄i)

(n − y)

]

=
1

np̄ (1 − p̄)

k∑
i=1

[
niwi (p̄i − p̄)

]
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where wi =
w1i
ni
. We may define the Hamming statistic as

H =
1

p̄ (1 − p̄)

k∑
i=1

[
niwi ( p̄i − p̄)

]
(8)

The weights {wi} which depend on y may also be expressed as

wi =


0 n − y + 1 >

∑i
q=1 nq

1
ni

(∑i
q=1 nq − (n − y)

) ∑i−1
q=1 nq + 1 ≤ n − y + 1 ≤ ∑i

q=1 nq

1 n − y + 1 <
∑i−1

q=1 nq + 1
(9)

and in this form we see that most of the weight is assigned to later time points. In the next section, we determine the
asymptotic null distribution of the Spearman and Hamming statistics.

3. The Asymptotic Distribution of the Test Statistics Under the Null Hypothesis

In this section, we consider the asymptotic distribution of the Spearman and Hamming test statistics under the null hy-
pothesis. Let {yi} be k independent binomials (ni, pi) and suppose we would like to test H0 vs H1. In most applications the
asymptotic situation of interest occurs when

ni → ∞,with
ni

n
→ λi > 0, i = 1, ..., k. (10)

In Theorem 1, we shall show that the Spearman statistic has an asymptotic normal distribution under either (10) or under
the condition that the {ni} are bounded while k → ∞.
Theorem 1. Suppose that both y→ ∞ and n−y→ ∞ as n→ ∞. Under Ho the Spearman test statistic has asymptotically
a standard normal distribution, i.e. ∑k

i=1 nici (p̄i − p̄)√∑k
i=1 c2

i ni pi (1 − pi)
→d N (0, 1)

under either i) (10) or ii) the {ni} are bounded and k → ∞.

We may estimate pi either by p̄i or by p̄. In the first case, the test rejects whenever∑k
i=1 ciyi√∑k

i=1 c2
i ni p̄i (1 − p̄i)

≥ zα

where zα is the upper 100 (1 − α) % percentage point from a standard normal distribution. The expression for the estimate
of the asymptotic power becomes

1 − Φ

zα −
∑k

i=1 nici pi√∑
c2

i ni pi (1 − pi)


= Φ


∑k

i=1 nici pi√∑k
i=1 c2

i ni pi (1 − pi)
− zα


It is seen that the power converges to 1 with increasing n.

Alternatively, we may use the statistic ∑k
i=1 nici ( p̄i − p̄)√

p̄ (1 − p̄)
√∑k

i=1 nic2
i

(11)

which in the simulation studies reported appears to more closely attain the prescribed significance level. In the case of
equal sample sizes, ni = n0 say, the test statistic (11) takes the simpler form∑k

i=1

(
i − k+1

2

)
( p̄i − p̄)

√
n0

√
p̄ (1 − p̄)

√
k(k2−1)

12
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Theorem 2. Under the null hypothesis and under (10) , the conditional mean and variance of
∑k

i=1 wiyi given that∑k
i=1 yi = y, are given respectively by yp̄ and

p̄ (1 − p̄)
k∑

i=1

ni (wi − p̄)2

In the next theorem we demonstrate that asymptotically the Hamming statistic converges to a normal distribution.

Theorem 3. Suppose that both y→ ∞ and n−y→ ∞ as n→ ∞. Under Ho, the Hamming test statistic has asymptotically
a standard normal distribution, i.e. ∑k

i=1
[
niwi ( p̄i − p̄)

]√
p̄ (1 − p̄)

∑k
i=1 ni (wi − p̄)2

→d N (0, 1)

under either i) (10) or ii) the {ni} are bounded and k → ∞.

Both test statistics share the same general form as the regression statistic, namely∑
i ni (xi − x̄k) ( p̄i − p̄)√∑

i ni (xi − x̄k)2
√

p̄ (1 − p̄)
, x̄k =

∑
nixi/n (12)

where for Spearman, xi = gi and for Hamming xi = wi.

We may also consider the asymptotic null distribution of the Spearman and Hamming test statistics under the condition
that k → ∞.in lieu of (10) .

4. Simulation Study

Comparing Table 2 with Table 3, it is seen that the significance level actually attained by the Spearman similarity measure
when the {pi} in the variance expressions are estimated by p are closer to the prescribed 5% level than when {pi} are used.
From Table 4 we note that the level actually attained by the Hamming similarity measure is closer to the prescribed 5%
level than Spearman’s.

In Table 5 we report on simulations for the power when k = 5. Three cases were considered: proportions which are
strictly increasing, proportions which are non-decreasing and some which have no particular pattern. It can be seen that
the Spearman measure is clearly only superior in the first two cases. Predictably the power is smaller when the {pi} are
closer together than when they are further apart.

5. Applications

Returning to the example on mortality rates in South Africa, we calculated values of 260.1 and 70.3 for the Spearman and
Hamming similarity measures respectively. These yielded p-values < 10−4.

Another application deals with water quality at Hong Kong beaches. Table 6 shows the geometric E. Coli count for each
of 6 beaches in the Sai Kung district of Hong Kong during the period 1986-2009. A beach is classified as good if the count
is at most 24. The Spearman test statistic yielded a value of 22.98 which points to strong evidence of an upward trend in
the annual proportion of good beaches. The Hamming test statistic on the other hand yielded a value of 2.90 which has a
p-value equal to 0.0018.

6. Conclusion

An approach has been proposed for constructing nonparametric tests of trend in proportions. Similarity measures due to
Spearman, Kendall and Hamming led to new test statistics. It was shown that the Spearman and Kendall measures led to
identical test statistics. The asymptotic null distributions for the Spearman and Hamming test statistics were shown to be
normal. Simulations were performed to check on the significance level attained. It was seen that the Hamming measure
was closer to the prescribed level. On the other hand, the Spearman similarity measure attained greater power under a
variety of alternatives. Two applications were considered.
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Appendix

Proof of Theorem 1.

i) The Spearman statistic (7) is expressible as a linear combination of independent binomials,
∑k

i=1 ciyi where ci = gi −
n+1

2 and gi =
∑i−1

i=1 ni +
(

ni+1
2

)
. Hence, under (10), we have approximately yi ≈d N (ni pi, ni pi (1 − pi)) . In view of the

independence of the {yi} , ∑
ciyi ≈d N

(∑
cini pi,

∑
c2

i ni pi (1 − pi)
)

and hence
(
∑

ciyi −
∑

cini pi)√∑
c2

i ni pi (1 − pi)
→d N (0, 1) .

Under H0,
∑

cini pi = 0 and hence ∑
ciyi√∑

c2
i ni pi (1 − pi)

→d N (0, 1) .

The theorem follows.

ii) For this part, note that the Spearman statistic is expressible as

k∑
i=1

ni∑
j=1

ciyi j

where the
{
yi j

}
are Bernoulli (pi) . We need to show that

max1≤i≤k c2
i∑k

i=1
∑ni

j=1 c2
i

→ 0, as k → ∞

Note that if ni ≤ M, for all i,

c2
i ≤ g2

i +
(n + 1)2

4

≤ M2
(
i − 1

2

)2

+
1
4
+

(n + 1)2

4
= O

(
k2

)
Moreover, since n =

∑k
i=1 ni ≤ Mk

k∑
i=1

ni∑
j=1

c2
i =

k∑
i=1

nig2
i −

n (n + 1)2

4

≥
k∑

i=1

nig2
i −

M3k3

4

=

k∑
i=1

ni

 i−1∑
j=1

n j


2

+

k∑
i=1

(ni + 1)

 i−1∑
j=1

n j

 + k∑
i=1

ni

(
ni + 1

2

)2

− M3k3

4

≥
k∑

i=1

ni (i − 1)2 + 2
k∑

i=1

(i − 1) = O
(
k3

)
It follows that

max1≤i≤k c2
i∑k

i=1
∑ni

j=1 c2
i

= O(
1
k

)→ 0, as k → ∞

and the theorem is proved.
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Proof of Theorem 2.

Turning attention to the Hamming statistic (8), we note that under H0 and conditional on
∑k

i=1 yi = y, the joint probability
distribution of the {yi} is the multivariate hypergeometric

Πk
i=1

(
ni
yi

)
(

n
y

) (13)

It follows that

E (yi|H0, y) =
ni

n
y

Var (yi|H0, y) =
ni (n − ni)
n2 (n − 1)

y (n − y)

Cov
(
yi, y j|H0, y

)
= −

nin j

n2 (n − 1)
y (n − y) , i , j

Hence,

E

 k∑
i=1

wiyi|H0, y

 =

 k∑
i=1

wi
ni

n
y


= yp̄

and

Var

 k∑
i=1

wiyi|H0, y

 =
∑

i

w2
i Var (yi|H0, y) +

∑
i, j

wiw jCov
(
yi, y j|H0, y

)
=

y (n − y)
n2 (n − 1)

∑
i

ni (n − ni) w2
i −

∑
i, j

nin jwiw j


=

y (n − y)
n2 (n − 1)

n ∑
i

niw2
i −

(∑
niwi

)2


= p̄ (1 − p̄)
k∑

i=1

ni (wi − p̄)2

Proof of Theorem 3.

Given (10), it follows that (13) converges to a multinomial distribution independent of p given by(
y

y1y2...yk

)
λ

y1
1 λ

y2
2 ...λ

yk
k

Suppose now that the observed weights {wi} are the values obtained from an i.i.d. sample from a population with mean
µ and variance σ2. Consider a bootstrap random sample of size y, say W∗1 , ...,W

∗
y obtained with replacement from that

population of observed weights {wi} in accordance with the distribution

P (W∗ = wi) = λi, i = 1, ..., k

The central limit theorem then asserts that for large y, the sum of the bootstrap sample

S ∗ =
y∑

i=1

W∗i

is asymptotically normal. Now y will get large a.s. since n→ ∞ for otherwise y/n 9 p a.s. and thus contradict the strong
law of large numbers.

To relate the Hamming distribution to that of the bootstrap, let xi denote the number of times wi is selected in the resam-
pling. It follows that the vector (x1, ..., xk) has a multinomial distribution (y; λ1, ..., λk) and S ∗ can be equivalently written
as

S ∗ =
k∑

i=1

wixi =d

k∑
i=1

wiyi.
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Consequently, under the null hypothesis for large n and conditional on y∑k
i=1

[
niwi (p̄i − p̄)

]√
p̄ (1 − p̄)

∑k
i=1 ni (wi − p̄)2

→d N (0, 1)

and hence this is also true unconditionally. Note that

k∑
i=1

ni (wi − p̄) =

 k∑
i=1

w1i

 − np̄ = 0.

ii) For this part, it follows that since 0 ≤ wi ≤ 1, for all i and

k∑
i=1

niw2
i ≥ y (14)

max1≤i≤k w2
i∑k

i=1
∑ni

j=1 w2
i

= O(
1
y

)→ 0

and the theorem is proved.
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Table 1. Mortality statistics for South Africa 2000-2008

Year Number of deaths Population size
2000 416, 155 43, 789, 115
2001 454, 882 43, 997, 828
2002 502, 050 44, 187, 637
2003 556, 779 44, 344, 136
2004 576, 709 42, 718, 530
2005 598, 131 42, 768, 678
2006 612, 778 43, 647, 658
2007 603, 094 43, 586, 097
2008 592, 073 43, 421, 021

Table 2. Significance level for Spearman’s similarity when pi is estimated by pi

p 10 20 30 50
0.1 0.018 0.035 0.045 0.053

0.2 0.048 0.057 0.055 0.055

0.3 0.062 0.060 0.058 0.054

0.4 0.067 0.057 0.057 0.055

0.5 0.071 0.055 0.059 0.053

Table 3. Significance level for Spearman’s similarity when pi is estimated by p

p 10 20 30 50
0.1 0.044 0.045 0.050 0.053

0.2 0.051 0.054 0.052 0.053

0.3 0.052 0.053 0.052 0.052

0.4 0.052 0.049 0.052 0.052

0.5 0.048 0.052 0.049 0.051

Table 4. Significance level for Hamming’s similarity

p 10 20 30 50
0.1 0.056 0.064 0.061 0.056

0.2 0.054 0.056 0.056 0.055

0.3 0.054 0.052 0.052 0.052

0.4 0.054 0.055 0.052 0.053

0.5 0.053 0.053 0.050 0.050

Published by Canadian Center of Science and Education 103



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 1, No. 1; May 2012

Table 5. Power for Spearman (S) and Hamming (H) similarity measures using a 5% significance level

ni = 10 ni = 30
p1 p2 p3 p4 p5 H S H S

0.1 0.2 0.4 0.5 0.6 0.77 0.89 0.99 1.00
0.3 0.6 0.7 0.8 0.9 0.88 0.94 1.00 1.00
0.5 0.6 0.7 0.8 0.9 0.58 0.72 0.94 0.99
0.2 0.25 0.3 0.35 0.4 0.25 0.29 0.50 0.60
0.1 0.3 0.3 0.4 0.5 0.51 0.64 0.88 0.97
0.3 0.5 0.5 0.5 0.9 0.58 0.81 0.94 1.00
0.4 0.5 0.6 0.8 0.8 0.62 0.75 0.95 0.99
0.2 0.5 0.3 0.8 0.4 0.51 0.39 0.98 0.80
0.6 0.2 0.4 0.8 0.5 0.46 0.18 0.88 0.39

Table 6. Annual Geometric Mean E. Coli level (per 100ml) in the Sai Kung District. Beaches: Clear Water Bay First (1),
Clear Water Bay Second (2), Hap Mun Bay (3), Kiu Tsui (4), Silverstrand (5), Trio (6); number of good beaches (7)

(1) (2) (3) (4) (5) (6) (7)
1986 102 69 9 18 255 49 2
1987 133 52 6 9 62 32 2
1988 39 35 4 3 129 35 2
1989 80 38 3 5 192 23 3
1990 51 42 4 5 89 31 2
1991 30 14 2 4 106 14 4
1992 52 42 2 5 94 32 2
1993 31 16 3 4 56 20 4
1994 30 35 3 3 72 14 3
1995 55 39 6 3 226 16 3
1996 34 43 5 5 126 29 2
1997 62 66 3 5 148 30 2
1998 41 44 2 4 99 21 3
1999 11 12 2 4 32 17 5
2000 16 26 2 5 61 10 4
2001 28 22 1 5 100 12 4
2002 28 14 2 4 133 6 4
2003 17 21 4 5 97 10 5
2004 9 10 3 17 74 2 5
2005 16 19 4 14 67 6 5
2006 20 13 4 11 30 5 5
2007 14 9 3 6 33 2 5
2008 11 19 5 12 35 12 5
2009 15 27 3 19 31 5 4
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Abstract

In the last few decades, there has been an emergent interest in the construction of flexible parametric classes of probability
distributions in Bayesian as compared to Classical approach. In present study Bayesian Analysis of Laplace model using
Inverted Gamma, Inverted Chi-Squared informative, Levy and Gumbel Type-II priors is discussed. The properties of
posterior distribution, credible interval, highest posterior density region (HPDR) and Bayes Factor are discussed in current
study. Bayes estimators are derived under squared error loss function (SELF), precautionary loss function, weighted
squared error loss function and modified (quadratic) squared error loss function. Hyperparameters are determined through
Empirical Bayes method. The estimates are also compared using the posterior risks (PRs) under the said loss functions.
The priors and loss functions are compared using a real life data set.

Keywords: Censored sampling, Squared error loss function (SELF), Precautionary loss function, Weighted squared error
loss function (WSELF), Modified squared error loss function (MSELF), Credible interval (CI), Highest posterior density
region (HPDR), Fixed test termination time, Informative prior, Posterior risk, Empirical Bayes

1. Introduction

Very few real world events that we need to statistically study are symmetrical. Thus the popular normal model would
not be a useful model for studying every phenomenon. The normal model at times is a poor description of observed
phenomena. Skewed models, which exhibit varying degrees of asymmetry, are a necessary component of the modeler’s
tool kit. A variety of different forms of the Laplace distribution have been introduced and applied in several areas of
real world problems. So Laplace distribution is getting popularity due to simplicity of its characteristic function as an
alternative to Normal model. In particular, various forms of the Laplace distribution have been introduced and applied in
several areas. In this article Laplace model is considered as a lifetime model using complete and censored data because in
many experiment we cannot continue experiment up to last item failure due to cost or time constraints. So in these cases
censoring is unavoidable.

It needs to be mentioned here Laplace distribution has been considered before in literature. Kappenman (1975) obtain
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the conditional confidence interval for the parameters of a double exponential distribution by finding the conditional
distributions of the pivotal quantities for location and scale parameters. Kappenman (1977) propose a procedure for
obtaining and lower probability tolerance interval for a proportion of a population for the unknown two parameters of
Laplace (double exponential) distribution. Balakrishnan and Chandramouleeswaran (1996) present an estimators for the
reliability function based on the best linear unbiased estimators (BLUEs) for the location and scale parameters of Laplace
distribution based on Type-II censored samples, and they show that obtained estimator is almost unbiased at varying level
of reliability, Childs and Balakrishnan (2000) consider the progressively type-II right censored sample for analysis of
Laplace distribution. Childs and Balakrishnan (1997) constrain the maximum likelihood estimators for the parameters of
Laplace distribution under the general Type-II censored samples, which are simple linear functions of the order statistics.
They also examine the asymptotic variance through the Fisher information matrix. Nadarajah (2009) utilize the Laplace
distribution random variables with application to price indices. Kozubowski and Nadarajah (2010) motivated by the recent
popularity of Laplace distribution, provide a comprehensive review of the known Laplace distributions along with their
properties and applications Nadarajah (2010) obtain two posterior distributions for the mean of the Laplace distribution by
deriving the distributions of the product XY and the ratio X/Y when X and Y are Student’s t and Laplace random variables
distributed independently of each other.

The rest of the article is organized as follows. The Laplace model likelihood, posterior distribution using different in-
formative priors and their properties are defined in Section 2 for complete and censored data. Empirical Bayes method,
predictive distributions (prior and posterior) are provided in Section 3. Simulation study of different properties defined
in section 2 is conducted using simulated data and real data in Section 4. Section 5 contains discussion and derivation of
Bayesian Interval Estimation using real data. Bayesian hypotheses testing discussed in Section 6, while Bayes Estimates
and their respective Posterior Risks are evaluated using different loss functions in Section 7 for real and simulated data.
A model comparison framework is presented in Section 8. Some concluding remarks and further research proposal are
given in last Section 8.

2. Posterior Distribution and Likelihood Function

The posterior distribution summarizes available probabilistic information on the parameters in the form of prior distribu-
tion and the sample information contained in the likelihood function. The likelihood principle suggests that the informa-
tion on the parameter should depend only on its posterior distribution. Bayesian scientist’s job is to assist the investigator
to extract features of interest from the posterior distribution. In this section we will use the Laplace distribution as sam-
pling distribution mingles with the informative and noninformative priors for the derivation of posterior distribution. A
random variable x is said to possess a Laplace distribution if it has the following form:

f (x) =
1

2λ
exp

(
−|x|
λ

)
, λ > 0,−∞ < x < ∞,

here λ is scale parameter and location parameter is zero. The likelihood function for a random sample x1, x2,.... xn which
is taken from Laplace distribution is:

L(.) =
1

2nλn exp

− n∑
i=1

|Xi| /λ
 (1)

The likelihood function for censored data as described Mendenhall and Hader (1958) is:

L(λ|x) ∝
 r∏

j=1

f (x j)

 [1 − F(T )](n−r)

L(λ, x) ∝
(

1
λ

)r

e−
1
λ

[∑r
j=1|x j|+(n−r)T

]

Where T is time, r is for censored observations and n-r are uncensored observations.

2.1 Posterior Distribution Using Inverted Gamma Prior

Informative priors are those that deliberately insert information that researchers have at hand. This seems like a reasonable
and reasoned approach since previous scientific knowledge should play a role in statistical inference. The author is
deliberately manipulating prior information to obtain a desired posterior result. An informative prior provides more
information than the non-informative priors, therefore the analysis using these prior more accurate and informative than
classical approach.
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The Inverted Gamma prior of λ is defined as:

f (λ) =
ba

Γ(a)

(
1
λ

)(a+1)

exp (−b/λ) , a, b, λ > 0 (2)

The posterior distribution of parameter λ for the given data (x = x1, x2, ..., xn) using equation (1) and (2) is:

p(λ|x) =

(
b +

∑n
i=1 |xi|

)(a+n)

Γ(a + n)
1

λ(a+n+1) exp

− b + n∑
i=1

|xi|
 /λ , λ > 0

which is the density similar to Inverted-Gamma distribution. So λ|x∼G−1 (α, β) where G−1 for Inverted Gamma distribu-
tion and α = a + n, β = b +

∑n
i=1 |xi|.

For Censored data the posterior distribution of parameter λ

p(λ|x) =

(∑r
j=1

∣∣∣x j

∣∣∣ + (n − r)T + b
)(r+a)

Γ(r + a)

(
1
λ

)(r+a+1)

e−
1
λ

[∑r
j=1|x j|+(n−r)T+b

]
, λ > 0

which is the density similar to Inverted-Gamma distribution. So λ|x∼G−1
(
a + r,

∑r
j=1

∣∣∣x j

∣∣∣ + (n − r)T + b
)

2.2 Posterior Distribution Using the Inverted Chi-squared (ICS) Prior

Using ICS an informative prior with hyperparameters ‘a’ and ‘b’, this is defined by the following density:

f (λ) =
(b/2)

a
2

2
a
2 Γ (a/2)

(
1
λ

)( a
2+1)

exp (−b/2λ) , a, b, λ > 0 (3)

We obtain the posterior distribution of λ for the given data (x = x1, x2, ..., xn) using equation (1) and (3) as:

p(λ|x) =

(
(b/2) +

∑n
i=1 |xi|

)((a/2)+n)

Γ ((a/2) + n)
1

λ((a/2)+n+1) exp

− (b/2) +
n∑

i=1

|xi|
 /λ , λ > 0

Which is similar to inverted-gamma distribution, so λ|x∼G−1 (α, β), where α = a
2 + n, β = b

2 +
∑n

i=1 |xi|.
For Censored, the posterior distribution as follows

p(λ|x) =

(∑r
j=1

∣∣∣x j

∣∣∣ + (n − r)T + b
2

)(r+ a
2 )

Γ
(
r + a

2

) (
1
λ

)(r+ a
2+1)

e−
1
λ

[∑r
j=1|x j|+(n−r)T+ b

2

]
, λ > 0

Which is similar to inverted-gamma distribution, so λ|x∼G−1 (α, β), where α = a
2 + r, β =

∑r
j=1

∣∣∣x j

∣∣∣ + (n − r)T + b
2 .

2.3 Posterior Distribution Using Levy Prior

The Levy prior of λ is defined as:

f (λ) =

√
b

2π

(
1
λ

)(1.5)

exp (−b/2λ) , b, λ > 0 (4)

The posterior distribution of parameter λ for the given data (x = x1, x2, ..., xn) using equation (1) and (4) is:

p(λ|x) =

(
b
2 +

∑n
i=1 |xi|

)( 1
2+n)

Γ
(

1
2 + n

) 1

λ( 3
2+n)

exp

− b
2
+

n∑
i=1

|xi|
 /λ , λ > 0

which is the density similar to Inverted-Gamma distribution and we can write it as λ|x∼G−1 (α, β), where α = 0.5 + n, β =
0.5b +

∑n
i=1 |xi| and here G−1 for Inverted Gamma distribution.

For Censored data the posterior distribution of parameter λ

p(λ|x) =

(∑r
j=1

∣∣∣x j

∣∣∣ + (n − r)T + b
2

)(r+ 1
2 )

Γ
(
r + 1

2

) (
1
λ

)(r+ 3
2 )

e−
1
λ

[∑r
j=1|x j|+(n−r)T+ b

2

]
, λ > 0
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Here also λ|x∼G−1
(
0.5 + r,

∑r
j=1

∣∣∣x j

∣∣∣ + (n − r)T + 0.5b
)
.

2.4 Posterior Distribution Using Gumbel Type-II (GTII) Prior

Using GTII an informative prior with hyperparameter ‘b’, this is defined by the following density:

f (λ) = b
(

1
λ

)(2)

exp (−b/λ) , b, λ > 0 (5)

We obtain the posterior distribution ofλ for the given data (x = x1, x2, ..., xn) using equation (1) and (5) as:

p(λ|x) =

(
b +

∑n
i=1 |xi|

)(1+n)

Γ (1 + n)
1

λ(2+n) exp

− b + n∑
i=1

|xi|
 /λ , λ > 0

which is inverted-Gamma distribution, λ|x∼G−1 (α, β), whereα = 1 + n, β = b +
∑n

i=1 |xi|.
For Censored, the posterior distribution as follows

p(λ|x) =

(∑r
j=1

∣∣∣x j

∣∣∣ + (n − r)T + b
)(r+1)

Γ (r + 1)

(
1
λ

)(r+2)

e−
1
λ

[∑r
j=1|x j|+(n−r)T+b

]
, λ > 0

So λ|x∼G−1 (α, β), where α = 1 + r, β =
∑r

j=1

∣∣∣x j

∣∣∣ + (n − r)T + b.

2.5 Properties of Posterior Distribution Assuming Different Priors

Since our Posterior distribution is Inverted-Gamma distribution, here we give general forms of properties for Inverted-
Gamma distribution.

Mean = β/(α − 1), α > 1, Mode = β/(α + 1). Variance = β2/
(
(α − 1)2(α − 2)

)
, α > 2. Coefficient of Skewness

=
(
4
√
α − 1

)
/ (α − 3), α > 3. Excess Kurtosis = (30α − 66) / ((α − 3) (α − 4)), α > 4, where α and β are respective

posterior distribution parameters.

3. Elicitation of Hyperparameters through Empirical Bayes

Empirical Bayes procedures utilize past data as a means for bypassing the necessity of identifying a completely unknown
and unspecified prior distribution having frequency interpretation. Grabski and Sarhan (1996), Sarhan (2003) used em-
pirical Bayes estimation in the case of exponential reliability while Ahn et al. (2006) consider this procedure for the
hazard rate estimation of a mixture model with censored lifetimes. The empirical Bayes approach may be considered
as a two-stage estimation procedure in which the hyperparameter is estimated from the marginal distribution and then
the parameter is estimated using ‘pseudo-prior’ where the hyperparameters are replaced by the estimation of first stage.
Robbins (1955) sought a representation of the desired Bayes rule in terms of the marginal distribution of data (called prior
predictive distribution) and then uses the data to estimate it rather than the prior distribution. For excellent discussion
about empirical Bayes see Kass and Steffey (1989), Bansal (2007). We use the Inverted Gamma, levy, Gumbel type-II
and Inverted Chi-Squared informative priors for the cradle of prior predictive distribution which will be used for empirical
Bayes procedure. Followings are the prior predictive equations used for Empirical Bayes procedure. Let Y be the random
variable from Laplace distribution with unknown parameter λ.

f (y|λ) =
1

2λ
exp

(
−|y|
λ

)
, λ > 0,−∞ < y < ∞

The prior predictive distribution is obtained by using the following equation:

p(y) =
∫ ∞

0
p(λ) f (y, λ)dλ

3.1 Prior Predictive Distribution Using Inverted Gamma Prior

The prior predictive distribution using Inverted Gamma prior is:

p(y) =
aba

2 (|y| + b)(a+1) ,−∞ < y < ∞

We use above equation of prior predictive distribution for the elicitation of hyperparameters ‘a’ and ‘b’.
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3.2 Prior Predictive Distribution Using Inverted-chi Prior

The prior predictive distribution using Inverted Chi-Squared prior is:

p(y) =
ab(a/2)

2(a/2)+1 (|y| + (b/2))((a/2)+1) ,−∞ < y < ∞

We use above equation of prior predictive distribution for the elicitation of hyperparameters ‘a’ and ‘b’.

3.3 Prior Predictive Distribution When Prior is Levy Distribution

The prior predictive distribution using Levy prior is:

p(y) =

√
b

2(5/2) (|y| + (b/2))(3/2) ,−∞ < y < ∞

3.4 Prior Predictive Distribution When Prior is Gumbel Type-II Distribution

The prior predictive distribution using Gumbel Type-II prior is:

p(y) =
b

2 (|y| + b)(2) ,−∞ < y < ∞

3.5 Predictive Distribution

Often it is necessary to make predictions of future observations, based on our best inferences on parameters determined
through observations already made. Posterior predictive distribution is the product of the posterior distribution and (con-
ditional) independence (given the parameters) of the new observation from the “learning sample”.

p(y |x) =
∫ ∞

−∞
p(λ |x)p(y |λ ) dλ

Where y = xn+1 be the future observation given the sample information x = x1, x2, ......xn, from of the model with unknown
parameter λ.

Predictive Interval can be obtained as:∫ ∞

−∞
p(y|x)dy =

∫ L

−∞
p(y|x)dy =

α

2
=

∫ ∞

U
p(y|x)dy

3.6 Predictive Distribution and Predictive Intervals Using Inverted-Gamma Prior

The posterior predictive distribution for a future random variable ‘y’ given that data x = x1, x2, ......xn is:

p(y|x) =
(n + a)

[
b +

∑n
i=1 |xi|

](a+n)

2
(∑n

i=1 |xi| + |y| + b
)(a+n+1) ,−∞ < y < ∞ (6)

And Predictive interval is:

α

2
=

[
b +

∑n
i=1 |xi|

](a+n)

2
(∑n

i=1 |xi| + L + b
)(a+n) ,

α

2
=

[
b +

∑n
i=1 |xi|

](a+n)

2
(∑n

i=1 |xi| + U + b
)(a+n)

For Censored Data

p(y|x) =

[∑r
j=1

∣∣∣x j

∣∣∣ + (n − r)T + b
](r+a)

(r + a)

2
[∑r

j=1

∣∣∣x j

∣∣∣ + (n − r)T + b + |y|
](r+a+1) ,−∞ < y < ∞

And Predictive interval is:

α

2
=

[∑r
j=1

∣∣∣x j

∣∣∣ + (n − r)T + b
](r+a)

2
[∑r

j=1

∣∣∣x j

∣∣∣ + (n − r)T + b + L
](r+a) ,

α

2
=

[∑r
j=1

∣∣∣x j

∣∣∣ + (n − r)T + b
](r+a)

2
[∑r

j=1

∣∣∣x j

∣∣∣ + (n − r)T + b + U
](r+a)

Published by Canadian Center of Science and Education 109



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 1, No. 1; May 2012

where a and b are hyperparameters determined by empirical Bayes method.

3.7 Predictive Distribution and Predictive Intervals Using Inverted-Chi Prior

The posterior predictive distribution for a random variable ‘y’ given that data x = x1, x2, ......xn is:

p(y|x) =

(
n + a

2

) [
b
2 +

∑n
i=1 |xi|

]( a
2+n)

2
(∑n

i=1 |xi| + |y| + b
2

)( a
2+n+1)

,−∞ < y < ∞

Equations of Predictive Intervals are:

α

2
=

[
b
2 +

∑n
i=1 |xi|

]( a
2+n)

2
(∑n

i=1 |xi| + L + b
2

)( a
2+n)

,
α

2
=

[
b
2 +

∑n
i=1 |xi|

]( a
2+n)

2
(∑n

i=1 |xi| + U + b
2

)( a
2+n)

For Censored Data

p(y|x) =


(
r + a

2

) [∑r
j=1

∣∣∣x j

∣∣∣ + (n − r)T + b
2

](r+ a
2 )

2
[∑r

j=1

∣∣∣x j

∣∣∣ + (n − r)T + b
2 + |y|

](r+ a
2+1)

 ,−∞ < y < ∞

Equations of Predictive Intervals are:

α

2
=

(∑r
j=1

∣∣∣x j

∣∣∣ + (n − r)T + b
2

)(r+ a
2 )

2
(∑r

j=1

∣∣∣x j

∣∣∣ + (n − r)T + b
2 + L

)(r+ a
2 )
,

α

2
=

(∑r
j=1

∣∣∣x j

∣∣∣ + (n − r)T + b
2

)(r+ a
2 )

2
(∑r

j=1

∣∣∣x j

∣∣∣ + (n − r)T + b
2 + U

)(r+ a
2 )

Where ‘a’ and ‘b’ are hyperparameters to be elicited by empirical Bayes procedure.

3.8 Predictive Distribution and Predictive Intervals Using Levy Prior

The posterior predictive distribution for a future random variable ‘y’ given that data x = x1, x2, ......xn is:

p(y|x) =

(
n + 1

2

) [
b
2 +

∑n
i=1 |xi|

]( 1
2+n)

2
(∑n

i=1 |xi| + |y| + b
2

)( 3
2+n)

,−∞ < y < ∞

And Predictive interval is:

α

2
=

[
b
2 +

∑n
i=1 |xi|

]( 1
2+n)

2
(∑n

i=1 |xi| + L + b
2

)( 1
2+n)

,
α

2
=

[
b
2 +

∑n
i=1 |xi|

]( 1
2+n)

2
(∑n

i=1 |xi| + U + b
2

)( 1
2+n)

For Censored Data

p(y|x) =

[∑r
j=1

∣∣∣x j

∣∣∣ + (n − r)T + b
2

](r+ 1
2 ) (

r + 1
2

)
2
[∑r

j=1

∣∣∣x j

∣∣∣ + (n − r)T + b
2 + |y|

](r+ 3
2 )
,−∞ < y < ∞

And Predictive interval is:

α

2
=

[∑r
j=1

∣∣∣x j

∣∣∣ + (n − r)T + b
2

](r+ 1
2 )

2
[∑r

j=1

∣∣∣x j

∣∣∣ + (n − r)T + b
2 + L

](r+ 1
2 )
,

α

2
=

[∑r
j=1

∣∣∣x j

∣∣∣ + (n − r)T + b
2

](r+ 1
2 )

2
[∑r

j=1

∣∣∣x j

∣∣∣ + (n − r)T + b
2 + U

](r+ 1
2 )

<Table 1>

3.9 Predictive Distribution and Predictive Intervals Using Gumbel Type-II Prior

The posterior predictive distribution for a random variable ‘y’ given that data x = x1, x2, ......xn is:

p(y|x) =
(n + 1)

[
b +

∑n
i=1 |xi|

](n+1)

2
(∑n

i=1 |xi| + |y| + b
)(n+2) ,−∞ < y < ∞
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Equations of Predictive Intervals are:

α

2
=

[
b +

∑n
i=1 |xi|

](n+1)

2
(∑n

i=1 |xi| + L + b
)(n+1) ,

α

2
=

[
b +

∑n
i=1 |xi|

](n+1)

2
(∑n

i=1 |xi| + U + b
)(n+1)

For Censored Data

p(y|x) =
(r + 1)

[∑r
j=1

∣∣∣x j

∣∣∣ + (n − r)T + b
](r+1)

2
[∑r

j=1

∣∣∣x j

∣∣∣ + (n − r)T + b + |y|
](r+2) ,−∞ < y < ∞

Equations of Predictive Intervals are:

α

2
=

[∑r
j=1

∣∣∣x j

∣∣∣ + (n − r)T + b
](r+1)

2
[∑r

j=1

∣∣∣x j

∣∣∣ + (n − r)T + b + L
](r+1) ,

α

2
=

[∑r
j=1

∣∣∣x j

∣∣∣ + (n − r)T + b
](r+1)

2
[∑r

j=1

∣∣∣x j

∣∣∣ + (n − r)T + b + U
](r+1)

4. Simulation Study

For conducting simulation study, data from Laplace model is generated using inverse transformation. Simulation study
of different properties discussed in above section are given in appendix. From Tables 1-8 in appendix, one can easily
observe that mode is more close to the true supposed parameter values than the mean and variance value increase as we
increase the parameter value and especially for censored data it is clear that variance is more than complete data because
in censored data we are using less information as compared to complete data set. Similar conclusion for skewness and
kurtosis tables can be drawn. One thing is common in Table 1-11 that with the increase of sample size our parameter
values approach to true values of parameters and variances, skewness and kurtosis decreases. Also comparing the prior,
one can easily observe that GTII prior has better results in terms of posterior risk, skewness and kurtosis than the other
informative priors.

4.1 Real Data Findings

Childs and Balakrishnan (1996) consider the data of mean difference of 33 year in flood stage for two stations on the Fox
River in Wisconsin. Following table shows the different posterior distribution properties using real data set assuming IG
and ICS informative priors.

GT-II prior performance is better than IG, ICHI and LP prior based on variance, mode, skewness and kurtosis. Graphical
presentation as follows:

<Figure 1-4>

Above figures confirm the same behaviors in terms of their shape but Gumbel Type-II prior is different from others and
also from above figure one can easily observe that using censored data information lost but due to application this is
unavoidable. Figure 1(i) is for complete data set using informative priors and Figure 1(ii) is for complete and censored
data using IG prior. Here in figure 1(ii) IG (c) denotes the censored data. One can easily observe that using censored data
we lost information.

5. Bayesian Interval Estimation

In Bayesian analysis, credible interval becomes the counterpart of the classical confidence interval when we put hyper-
parameter (s) values equal to zero. Also credible interval may be unique for all models. The difference between credible
interval and highest density region (HPDR) is that credible interval is comparable with classical interval but HPDR is
unique.

5.1 Credible Interval Assuming Informative Priors

Let Ac=
2(B)

χ2
2(A),1− α2

, Bc=
2(B)
χ2

2(A), α2

, where A, B are the parameters of respective posterior distribution. Thus a (1−α)100% credible

interval is {Ac ≤ λ ≤ Bc}, (See Ahmed Abu-Taleb et al. (2007) and Saleem and Aslam (2009)).

5.2 Highest Posterior Density Region (HPDR)

The HPD interval is defined on the posterior density such that the posterior density at every point inside the HPD interval
is greater than the posterior density at every point outside the HPD interval. An interval (λ1, λ2) would be a (1- α) 100%
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HPD interval for λ if it satisfy the following two conditions simultaneously.

λ2∫
λ1

p(λ|x)dλ = 1 − α

p(λ1|x) = p(λ2|x)

 (7)

5.2.1 HPDR for Inverted Gamma Prior

Using above two conditions given in equation (7) solving for IG prior we get (an+1) ln(λ1/λ2)−(b+
∑n

i=1 |xi|)(λ−1
2 −λ−1

1 ) =
0 and Γ(a + n, (b +

∑n
i=1 |xi|)/λ1) − Γ(a + n, (b +

∑n
i=1 |xi|)/λ2) − (α − 1)Γ(a + n) = 0 where Γ(n − 1,

∑n
i=1 |xi| /λ1) =∫ ∞∑n

i=1 |xi |/λ1
λn−1 exp(−λ)dλ is incomplete gamma function.

For Censored data

λ and Γ(a + r, (b + (n − r)T +
∑r

i=1 |xi|)/λ1) − Γ(a + r, (b + (n − r)T +
∑r

i=1 |xi|)/λ2) − (α − 1)Γ(a + r) = 0.

5.2.2 HPDR for Inverted Chi-squared Prior

HPDR equations for Inverted Chi-Squared prior as follows (0.5a+ n+ 1) ln(λ1/λ2)− (0.5b+
∑n

i=1 |xi|)(λ−1
2 − λ−1

1 ) = 0 and
Γ(n + 0.5a, (0.5b +

∑n
i=1 |xi|)/λ1) − Γ(n + 0.5a, (0.5b +

∑n
i=1 |xi|)/λ2) − (α − 1)Γ(n + 0.5a) = 0.

For censored data

(0.5a + r + 1) ln(λ1/λ2) − (0.5b + (n − r)T +
∑r

i=1 |xi|)(λ−1
2 − λ−1

1 ) = 0 and λ (43)

5.2.3 HPDR for Levy Prior

Above two conditions given in equation (6), solving for Levy prior we get HPDR equations for Levy prior as follows:
(n+1.5) ln(λ1/λ2)− (0.5b+

∑n
i=1 |xi|)(λ−1

2 −λ−1
1 ) = 0 and Γ(n+0.5, (0.5b+

∑n
i=1 |xi|)/λ1)−Γ(n+0.5, (0.5b+

∑n
i=1 |xi|)/λ2)−

(α − 1)Γ(n + 0.5) = 0.

For censored data

λ and Γ(r + 0.5, (0.5b + (n − r)T +
∑r

i=1 |xi|)/λ1) − Γ(r + 0.5, (0.5b + (n − r)T +
∑r

i=1 |xi|)/λ2) − (α − 1)Γ(r + 0.5) = 0.

5.2.4 HPDR for Gumbel Type-II Prior

HPDR equations for Gumbel Type-II prior as follows (n + 2) ln(λ1/λ2) − (b +
∑n

i=1 |xi|)(λ−1
2 − λ−1

1 ) = 0 and Γ(n + 1, (b +∑n
i=1 |xi|)/λ1) − Γ(n + 1, (b +

∑n
i=1 |xi|)/λ2) − (α − 1)Γ(n + 1) = 0, where Γ(n − 1,

∑n
i=1 |xi| /λ1) =

∫ ∞∑n
i=1 |xi |/λ1

λn−1 exp(−λ)dλ
is incomplete gamma function.

For Censored data

For real data set the HPD and Credible intervals for different level of significance evaluated in the following table consid-
ering different informative priors.

<Table 2>

The HPD has smaller band than credible interval. ICSP and GTII has wider CI and HPD than IGP and LP.

6. Bayesian Hypotheses Testing and Bayes Factor

Bayesian hypothesis testing is less formal than non-Bayesian varieties. In fact, Bayesian researchers typically summarize
the posterior distribution without applying a rigid decision process. If one wanted to apply a formal process, Bayesian
decision theory is the way to go because it is possible to get a probability distribution over the parameter space and one
can make expected utility calculations based on the costs and benefits of different outcomes. Considerable energy has
been given, however, in trying to map Bayesian statistical models into the null hypothesis testing framework, with mixed
results at best. This section contains the Bayesian hypotheses for parameterλ under the posterior distribution, considering
using noninformative priors. Posterior probabilities are defined for the H1 : λ ≥ λ1 vs. H2 : λ < λ1hypotheses:

P(H1) = P(λ ≥ λ1) =
∫ ∞

λ1

p(λ |x)dλ

where p(λ |x) is the posterior distribution of λ given x and P(H2) = 1 − P (H1).

Bayes Factors are the dominant method of Bayesian model testing. These are Bayesian analogues of likelihood ratio tests.
The basic intuition is that prior and posterior information are combined in a ratio that provides evidence in favor of one
model specification verses another. By dividing posterior odds under null and alternative hypotheses we get Bayes Factor.
Bayes Factors are very flexible, allowing multiple hypotheses to be compared simultaneously and nested models are not
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required in order to make comparisons – it goes without saying that compared models should obviously have the same
dependent variable.

The Bayes factor can be interpreted as the ‘odds for H1 to H2 that is given by the data’. While the Bayesian approach
typically avoids arbitrary decision thresholds, Jeffreys (1961) gives the following typology for comparing H1 vs H2.

B ≥ 1 H1 is supported 10−
1
2≤ B ≤1 minimal evidence against H1, 10−1≤ B ≤10−

1
2 substantial evidence against H1 10−2 ≤

B ≤10−1 strong evidence against H1 B < 10−2 decisive evidence against H1. Here B is used for Bayes factor.

<Table 3>

For the smaller parameter value than Bayes Estimator value we does not get strong support for H1 but when we go further
from it we get strong evidence support for H1. For testing λ ≤ 6.0 we observe that decisive evidence againstH1 for all
priors, λ ≤ 7.5 we have strong evidence againstH1 for informative priors. Minimal evidence against H1 occur in case of
λ ≤ 9.0 and in case of λ ≤ 11.0, H1 is strongly supported especially for Inverted Gamma prior. Similarly for censored data
testing λ ≤ 15.0 we observe that minimal evidence against H1 for all priors, λ ≤ 16.5 we have minimal evidence against
H1 using informative priors. We have strong evidence against H1 occur in case of λ ≤ 18.0 and λ ≤ 19.5, H1 is strongly
supported especially for Gumbel prior. The values taken in complete data cannot be taken here because using that values
we have decisive evidences due to involvement of time, we are using less information about data.

7. Bayes Estimators Under Different Loss Functions

This section spotlight on the derivation of the Bayes Estimator (BE) under different loss functions and their respective
Posterior Risk (PR). The results are also compared their results for informative prior. Bayes decision is a decision d which
minimizes risk function then d is the best decision. If the decision is choice of an estimator then the Bayes decision
is a Bayes estimator. The Bayes estimator for different loss function is given below: we use four loss functions name
as squared error loss function (SELF), weighted squared error loss function (WSELF), precautionary loss function and
modified (quadratic) squared error loss function (M/QSELF).

The squared error loss function (SELF) was proposed by Legendre (1805) and Gauss (1810) to develop least square
theory. Later, it was used in estimation problems when unbiased estimators of parameter were evaluated in terms of the
risk function which becomes nothing but the variance of the estimators. It was also observed that SELF is a convex
loss function and, therefore, restricts the class of estimators by excluding randomized estimators. The difficulty with
unbounded loss function, like SELF is that Bayes estimates may change enormously when the observation of the random
variable changes infinitesimally. Therefore, the investigator has to be absolutely precise about his probability statements.
Furthermore, in real life situations, it is usually being impossible to lose an infinite amount of money. The extensive form
of analysis provides Bayes estimate under SELF, as E(λ|x). Also note that squared error loss function is not the only loss
function for which posterior mean is the Bayes estimate. The natural exponential family f (λ|x) = a(λ)b(x) exp(λx), the
Bayes estimates under entropy loss function is the posterior mean. The Bayes estimate under the weighted SELF may
not exist if the weight function w(λ) i ncreases too fast to infinity. Norstrom (1996) introduced an alternative asymmetric
precautionary loss function, and also presented a general class of precautionary loss functions as a special case. These loss
functions approach infinitely near the origin to prevent underestimation, thus giving conservative estimators, especially
when underestimation may lead to serious consequence. Since in risk analysis, both the potentiality of an undesired event
and its consequences are investigated. This potentiality is usually measured by either a probability or a failure rate. The
Bayes approach is widely applied to estimate this failure rate. When dealing with disastrous consequences, it can be worse
to underestimate the potentiality of an event than to overestimate it. This is important when risk-level is the basis of a
risk-reducing initiative, either by reducing the potentiality or the consequences. An erroneously low estimated risk-level
can lead to the absence of necessary initiative to reduce the risk level. It is unreasonable to use a loss function that allows
one to estimate a failure probability of zero. A positive loss function at the origin allows estimating zero, and in a risk
analysis, estimating zero failure probability simply means that no risk is anticipated. Hence, a precautionary loss function
is used. Also optimal policy selection has traditionally been discussed in relation to symmetric and often quadratic loss
functions. So by using non-symmetric loss functions one is able to deal with cases where it is more damaging to miss the
target on one side than the other.

7.1 Bayes Estimate and Posterior Risk Under Different Priors

Following tables gives the comparison of Bayes estimates and Posterior risk under different priors.

<Table 4>

7.2 Simulation of Bayes Estimates (BE) and Posterior Risk (PR)

Simulation is a flexible methodology, we can use it to analyze the behavior of a pattern of proposed business activity, new
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product, manufacturing line or plant expansion, and so on (analysts call this the ‘system’ under study). In simulation one
generates a sample of random data in such a way that mimics a real problem and summarizes that sample in the same
way. It is one of the most widely used quantitative methods because it is so flexible and can yield so many useful results.
There are different method such as Monte Carlo simulation and Bootstrap to simulate the data. Here we did simulation in
Minitab for non-informative prior. Following tables contains the Bayes estimates and their posterior risks.

It is immediate from appendix Table 17-24, as we increase sample size posterior risk comes down and also with the
increase of parameters values posterior risk also increase. For censored data posterior risk is greater than the complete
data because of time contribution. The choice of loss function as concerned, one can easily observe that modified squared
error loss function has smaller posterior risk than other three loss functions.

7.3 Real Data Bayes Estimates (BE) and Posterior Risk (PR)

Following tables shows the Bayes Estimates (BE) and their Posterior Risk (PR) in brackets for real data

<Table 5>

Modified squared error loss function has smaller posterior risk than other three loss functions using Gumbel Type-II prior.

8. Model Comparison

The comparison of model performances is proposed to be based on the generated posterior predictive distributions. The
criterion used to compare them is based on the use of the logarithmic score as a utility function in a statistical decision
framework. This was proposed by Bernardo (1979) and used, for example, by Walker and Gutiérrez-Peña (1999) and
Martı́n and Pérez (2009) in a similar context. In situations where the uncertainty is contained in the value of a future
observation y = xn+1, the logarithmic score log (pk(y|x)) is used, where pk(y|x) denotes the posterior predictive density
under model Mk. Then, the posterior predictive expected utility is given by:

Ūk =
∫

log (pk(y|x)) pk(y|x)dy. The optimal solution to the decision problem of choosing among the competing models M
0; M 1, ....; Ml is given by the model Mk∗, such that: Ūk∗ = max

k∈{0,1,...,l}
Ūk. From a practical viewpoint, Ūk can be estimated

as: ˆ̄Uk =
1
m

∑m
i=1 log (pk(yi|x)), where y1; y2, ... , ym are an independent and identically distributed random sample from

pk(y|x).

In order to illustrate this and the applicability of the proposed approaches, a performance comparison between posterior
distribution using Inverted Gamma and Inverted Chi-Squared priors, a random sample of size 10 generated from laplace
distribution with mean 0 and scale parameter equal to 4 using Minitab v 12 (0.97289, 4.02645, 5.07323, 0.75942, 2.09396,
0.98549, 2.22772, 5.06832, 0.40607, 3.74112). We get UIG=-2.734129, UICS=-2.732629 ULevy=-2.721256 and UGT II=-
2.714222 so Gumbel Type-II prior is best.

9. Conclusion and Suggestions

We consider the Bayesian analysis of the Laplace Model using complete and censored data assuming informative prior.
Based on different properties of posterior distribution, hypotheses testing, HPD and credible intervals, we conclude that
Gumbel Type II prior results are more precised than other prior. The choice of loss function as concerned, one can easily
observed based on evidence (different properties as discussed above) that modified squared error loss function has smaller
posterior risk. Model comparison method also suggest that Gumbel Type II prior is best. One thing is common as we
increase sample size posterior risk comes down. Also note that we cannot compare the result of complete data with
censored data because in censored data we are using less information than the complete data set. In future this work can
be extended using truncated Laplace model and considering location parameter.
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Table 1. Properties of posterior distribution using real data set

Prior Mean Mode Variance Skewness Excess Kurtosis
IGP 9.642985 9.080899 3.0369759 0.738423 1.050505
ICSP 9.664608 9.097899 3.002612 0.740996 1.058037
Levy 9.498996 8.948329 2.864474 0.736064 1.043623
GTII 9.360482 8.825597 2.738082 0.729917 1.025806

For Censored data, r = 16, T = 10
IGP 17.420240 15.407660 21.904380 1.136782 2.583209
ICSP 17.571010 15.516860 21.884360 1.146198 2.628963
Levy 17.023700 15.078140 19.986650 1.128263 2.542222
GTII 16.502870 14.669220 18.156310 1.106567 2.439560
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Table 2. HDR and CI using complete real data set; Parentheses contain credible intervals, Curly braces HPDR and brackets
classical intervals

Prior 90% 95% 99%
IGP (7.1894,12.7594)

[7.1787,12.7754]
{7.1909,12.7499}

(6.8420,13.5622)
[6.8304,13.5836]
{6.8421,13.5619}

(6.2258,15.3328)
[6.2128,15.3672]
{6.2299,15.3227}

ICSP (7.1989,12.7989)
[7.1787,12.7754]
{7.1998,12.7898}

(6.8500,13.6071)
[6.8304,13.5836]
{6.8501,13.6070}

(6.2315,15.3902)
[6.2128,15.3672]
{6.2320,15.3891}

Levy (7.0882,12.5592)
[7.0845,12.5528]
{7.0883,12.5522}

(6.7465,13.3468)
[6.7431,13.3400]
{6.7469,13.3386}

(6.1403,15.0833)
[6.1372,15.0756]
{6.1409,15.0732}

GT2 (7.0005,12.3509)
[6.9929,12.3375]
{7.0012,12.3305}

(6.6652,13.1188)
[6.6580,13.1046]
{6.6668,13.1038}

(6.0701,14.8105)
[6.0635,14.7944]
{6.0730,14.7901}

For Censored Data
IGP (11.3633,25.9382)

[11.4218,26.2865]
{11.3695,25.9228}

(10.6148,28.4342)
[10.6632,28.8462]
{10.6170,28.4336}

(9.3342,34.2887)
[9.3669,34.8632]
{9.3350,34.2880}

ICSP (11.4288,26.2273)
[11.4218,26.2865]
{11.4299,26.1867}

(10.6719,28.7708)
[10.6632,28.8462]
{10.6722,28.7700}

(9.3780,34.7448)
[0.3669,34.8632]
{9.3850,34.7431}

Levy (11.1327,25.2910)
[11.1313,25.2855]
{11.1330,25.2800}

(10.4038,27.7074)
[10.4016,27.7014]
{10.4039,27.7010}

(9.1544,33.3686)
[9.1524,33.3614]
{9.1590,33.3618}

GT2 (10.8656,24.3761)
[10.8558,24.3543]
{10.8657,24.3559}

(10.1623,26.6628)
[10.1532,26.6390]
{10.1631,26.6321}

(8.9562,32.0030)
[8.9482,31.9744]
{8.9559,32.9609}
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Table 3. Posterior probabilities under null and alternative hypotheses, Bayes factors using IG and ICS for real data

Null Hypothesis Alt. Hypothesis Prior Posterior Probabilities Bayes
H1 H2 Distribution P (H1) P (H2) Factor B
λ ≤ 6.0 λ > 6.0 IG 0.0023779 0.997622 0.002384

ICS 0.0023379 0.997662 0.002384
Gumbel 0.0039733 0.996027 0.003989
Levy 0.0031591 0.996841 0.003169

λ ≤ 7.5 λ > 7.5 IG 0.083724 0.916276 0.091374
ICS 0.082374 0.917626 0.089769
Gumbel 0.112830 0.887170 0.127180
Levy 0.098252 0.901748 0.108957

λ ≤ 9.0 λ > 9.0 IG 0.389080 0.610920 0.636876
ICS 0.384700 0.615300 0.625223
Gumbel 0.455220 0.544780 0.835603
Levy 0.422580 0.577420 0.731842

λ ≤ 11.0 λ > 11.0 IG 0.803010 0.196990 4.076400
ICS 0.799060 0.200940 3.976610
Gumbel 0.846710 0.153290 5.523583
Levy 0.825490 0.174510 4.730331

For Censored Data
λ ≤ 15.0 λ > 15.0 IG 0.331460 0.668540 0.4957970

ICS 0.320480 0.679520 0.471627
Gumbel 0.410820 0.589180 0.697274
Levy 0.365120 0.634880 0.575101

λ ≤ 16.5 λ > 16.5 IG 0.481430 0.518570 0.928380
ICS 0.468720 0.531280 0.882247
Gumbel 0.565640 0.434360 1.302238
Levy 0.517500 0.482500 1.072539

λ ≤ 18.0 λ > 18.0 IG 0.617240 0.382760 1.612603
ICS 0.604510 0.395490 1.528509
Gumbel 0.695460 0.304540 2.283641
Levy 0.651040 0.348960 1.865658

λ ≤ 19.5 λ > 19.5 IG 0.728020 0.271980 2.676741
ICS 0.716500 0.283500 2.527337
Gumbel 0.794250 0.205750 3.860267
Levy 0.756870 0.243130 3.113087
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Table 4. Bayes estimators and respective posterior risk under different loss function for complete data set

Posterior Distribution Using Prior
Squared Error Loss Function=L1 = L(λ, d) = (λ − d)2

Bayes Estimator Posterior Risk
d = E(λ|x) Eλ|xL1(λ, d) = Var(λ|x)

Inverse Gamma b+
∑n

i=1 |xi |
(a+n−1)

(b+
∑n

i=1 |xi |)2

(a+n−1)2(a+n−2)

Inverse Chi-Squared
b
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2 )
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2 )
Modified /Quadratic Square Error Loss Function=L2 = L(λ, d) =

(
1 − d

λ

)2

Bayes Estimator Posterior Risk

d = E(λ−1 |x)
E(λ−2 |x) Eλ|xL2(λ, d) = 1 − [E(λ−1 |x)]2

E(λ−2 |x)

Inverse Gamma b+
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1
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Weighted Loss Function=L3 = L(λ, d) = (λ−d)2

λ

Bayes Estimator Posterior Risk
d = 1

E(λ−1 |x) Eλ|xL3(λ, d) = E(λ|x) − 1
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∑n

i=1 |xi |
(a+n)

b+
∑n

i=1 |xi |
(a+n)(a+n−1)

Inverse Chi-Squared
b
2+

∑n
i=1 |xi |

( a
2+n)

b
2+

∑n
i=1 |xi |

( a
2+n)( a

2+n−1)
Gumbel Type-II b+

∑n
i=1 |xi |

(n+1)
b+

∑n
i=1 |xi |

n(n+1)

Levy
b
2+

∑n
i=1 |xi |

( 1
2+n)

b
2+

∑n
i=1 |xi |

( 1
2+n)(n− 1

2 )
Precautionary Loss Function=L4 = L(λ, d) = (λ−d)2
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Table 5. BEs and PRs using IC and ICS priors under different LFs

Complete Data Censored Data Complete Data Censored Data
LF IG ICS IG ICS Levy GTII Levy GTII
L1 9.6430

(2.969753)
9.6502
(3.002612)

17.420237
(21.9044)

17.571007
(21.8844)

9.5009
(2.865598)

9.3568
(2.735934)

17.023701
(19.9866)

16.502870
(18.1563)

L2 9.0809
(0.029345)

9.0979
(0.029319)

15.407665
(0.058765)

15.516856
(0.058453)

8.9483
(0.028986)

8.8256
(0.028571)

15.078135
(0.057143)

14.669217
(0.055556)

L3 9.3535
(0.299480)

9.3727
(0.291913)

16.352259
(1.097978)

16.531939
(1.097931)

9.2154
(0.283552)

9.0852
(0.275308)

15.991961
(1.031739)

15.532112
(0.970757)

L4 9.7958
(0.308550)

9.804538
(0.308677)

18.018575
(1.196677)

18.183088
(1.224162)

9.650528
(0.299257)

9.501876
(0.290151)

17.600937
(1.154473)

17.044090
(1.082441)
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Table 6. Posterior Distribution Properties via IGP for complete data

n λ=0.5 λ=1.0
Mean Mode Variance Mean Mode Variance

25 0.634249 0.586038 0.014256 1.142528 1.055682 0.055997
50 0.482757 0.464850 0.004577 0.959504 0.923913 0.018081
100 0.505960 0.495941 0.002612 1.008485 0.988515 0.010378
500 0.500441 0.498443 0.000503 1.002525 0.998523 0.002018
1000 0.499920 0.498921 0.000250 1.000841 0.998841 0.001004
n λ=3.0 λ=4.0

Mean Mode Variance Mean Mode Variance
25 3.206086 2.962383 0.440942 4.249382 3.926375 0.774610
50 2.893189 2.785872 0.164391 3.870105 3.726552 0.294151
100 3.027071 2.967129 0.093502 4.025859 3.946139 0.165383
500 3.003206 2.991218 0.018111 4.004609 3.988623 0.032203
1000 3.004404 2.998402 0.009045 4.000901 3.992907 0.016039

Table 7. Posterior distribution properties via ICSP for complete data

n λ=0.5 λ=1.0
Mean Mode Variance Mean Mode Variance

25 0.586962 0.541998 0.014909 1.099535 1.015304 0.052319
50 0.494853 0.476055 0.004932 0.983546 0.946184 0.019484
100 0.505960 0.495941 0.002612 1.008485 0.988515 0.010378
500 0.500441 0.498443 0.000503 1.002525 0.998523 0.002018
1000 0.499920 0.498921 0.000250 1.000841 0.998841 0.001004
n λ=3.0 λ=4.0

Mean Mode Variance Mean Mode Variance
25 3.180520 2.936875 0.437762 4.232628 3.908385 0.775285
50 2.965684 2.853026 0.177148 3.967078 3.816380 0.316977
100 3.027071 2.967129 0.093502 4.025859 3.946139 0.165383
500 3.003206 2.991218 0.018111 4.004609 3.988623 0.032203
1000 3.004404 2.998402 0.009045 4.000901 3.992907 0.016039

Table 8. Posterior distribution properties via IGP for censored data

n λ=0.5 λ=1.0
Mean Mode Variance Mean Mode Variance

25 0.625303 0.571655 0.019250 1.210194 1.070379 0.102336
50 0.584629 0.558242 0.008274 1.089618 1.024198 0.039169
100 0.545618 0.533120 0.003531 1.064532 1.031426 0.018483
500 0.508678 0.506330 0.000601 1.012137 1.005758 0.003259
1000 0.503393 0.502231 0.000294 1.006078 1.002901 0.001606
n λ=3.0 λ=4.0

Mean Mode Variance Mean Mode Variance
25 3.079968 2.815723 0.467038 4.529387 4.083393 0.211624
50 3.168282 3.025281 0.242984 4.106361 3.902629 0.086218
100 3.101677 3.030629 0.114106 4.159384 4.053157 0.043284
200 3.025270 2.990558 0.053425 4.063137 4.011150 0.020533
300 3.032845 3.009543 0.035747 4.028638 3.994250 0.013466
500 3.019045 3.005110 0.021181 4.024768 4.004091 0.008063
1000 3.003221 2.996288 0.010447 4.006019 3.995725 0.003989
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Table 9. Posterior distribution properties via ICSP for censored data

n λ=0.5 λ=1.0
Mean Mode Variance Mean Mode Variance

25 0.571209 0.519347 0.016227 1.142500 1.002617 0.092524
50 0.557316 0.530748 0.007556 1.055953 0.988944 0.037035
100 0.532012 0.519154 0.003365 1.047588 1.013202 0.017959
500 0.505974 0.503512 0.000595 1.008764 1.002061 0.003240
1000 0.502043 0.500821 0.000292 1.004392 1.001048 0.001601
n λ=3.0 λ=4.0

Mean Mode Variance Mean Mode Variance
25 3.049553 2.772676 0.462496 4.510230 4.039965 0.209604
50 3.153462 3.003133 0.241908 4.094997 3.880368 0.085695
100 3.094186 3.019406 0.113830 4.153836 4.041896 0.043155
500 3.017527 3.002845 0.021170 4.023606 4.001816 0.008058
1000 3.002460 2.995154 0.010445 4.005435 3.994586 0.003988

Table 10. Posterior distribution properties via LP for complete data

n λ=0.5 λ=1.0
Mean Mode Variance Mean Mode Variance

25 0.512586 0.473901 0.011181 1.016954 0.940202 0.044008
50 0.506343 0.486680 0.005286 1.006384 0.967301 0.020883
100 0.503417 0.493498 0.002573 1.003417 0.983645 0.010222
500 0.499940 0.497946 0.000501 1.001522 0.997527 0.002012
1000 0.499670 0.498672 0.000250 1.000340 0.998342 0.001002
n λ=3.0 λ=4.0

Mean Mode Variance Mean Mode Variance
25 3.064627 2.833334 0.399657 4.099892 3.790467 0.715282
50 3.034545 2.916699 0.189865 4.059192 3.901553 0.339733
100 3.011859 2.952512 0.092094 4.005628 3.926700 0.162894
500 3.000200 2.988235 0.018057 4.000601 3.984646 0.032106
1000 3.002901 2.996905 0.009031 3.998899 3.990914 0.016015

Table 11. Posterior distribution properties via GTIIP for complete data

n λ=0.5 λ=1.0
Mean Mode Variance Mean Mode Variance

25 0.509476 0.471737 0.010815 1.003756 0.929404 0.041980
50 0.501280 0.482000 0.005128 0.996320 0.958000 0.020258
100 0.500900 0.491078 0.002534 0.998400 0.978824 0.010069
500 0.499440 0.497450 0.000500 1.000520 0.996534 0.002006
1000 0.499420 0.498423 0.000250 0.999840 0.997844 0.001001
n λ=3.0 λ=4.0

Mean Mode Variance Mean Mode Variance
25 3.010476 2.787478 0.377624 4.025036 3.726886 0.675038
50 3.004200 2.888654 0.184188 4.018600 3.864038 0.329574
100 2.996800 2.938039 0.090715 3.985600 3.907451 0.160455
500 2.997200 2.985259 0.018002 3.996600 3.980677 0.032010
1000 3.001400 2.995409 0.009017 3.996900 3.988922 0.015991
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Table 12. Posterior distribution properties via LP for censored data

n λ=0.5 λ=1.0
Mean Mode Variance Mean Mode Variance

25 0.486743 0.445318 0.011557 1.010882 0.895352 0.070475
50 0.514714 0.491581 0.006384 0.992266 0.933026 0.032282
100 0.510952 0.499273 0.003090 1.015542 0.984052 0.016770
500 0.501825 0.499509 0.000585 1.002464 0.996149 0.003195
1000 0.499974 0.498820 0.000289 1.001247 0.998086 0.001590
n λ=3.0 λ=4.0

Mean Mode Variance Mean Mode Variance
25 2.919877 2.671377 0.415887 4.328560 3.906262 1.070653
50 3.086903 2.948165 0.229614 4.011932 3.813811 0.429216
100 3.061373 2.991398 0.110911 4.111730 4.006973 0.223925
500 3.011095 2.997203 0.021061 4.015425 3.994807 0.041717
1000 2.999257 2.992334 0.010418 4.001362 3.991082 0.020646

Table 13. Posterior distribution properties via GTIIP for censored data

n λ=0.5 λ=1.0
Mean Mode Variance Mean Mode Variance

25 0.483796 0.443480 0.011146 0.990451 0.880401 0.065400
50 0.512882 0.490087 0.006263 0.982341 0.924556 0.031129
100 0.510057 0.498465 0.003061 1.010316 0.979229 0.016464
500 0.501657 0.499345 0.000584 1.001443 0.995144 0.003184
1000 0.499891 0.498738 0.000289 1.000737 0.997580 0.001587
n λ=3.0 λ=4.0

Mean Mode Variance Mean Mode Variance
25 2.861632 2.623163 0.389950 4.224048 3.821758 0.991255
50 3.055161 2.919376 0.222238 3.965075 3.771656 0.413732
100 3.045650 2.976431 0.109129 4.087350 3.983872 0.219821
500 3.008023 2.994161 0.020994 4.010711 3.990143 0.041565
1000 2.997729 2.990814 0.010401 3.999017 3.988750 0.020608

Table 14. Skewness and excess kurtosis of posterior distribution assuming different prior for complete data

Prior IGP ICSP LP GTIIP
n Skewness Excess

Kurtosis
Skewness Excess

Kurtosis
Skewness Excess

Kurtosis
Skewness Excess

Kurtosis
25 0.912720 1.622659 0.898291 1.571810 0.853655 1.417511 0.838324 1.365766
50 0.555161 0.587239 0.569644 0.618607 0.583428 0.649236 0.577350 0.635638
100 0.408227 0.315077 0.408227 0.315077 0.406133 0.311837 0.404061 0.308647
200 0.179605 0.060581 0.179605 0.060581 0.284987 0.152904 0.284268 0.152130
300 0.126745 0.030145 0.126745 0.030145 0.232103 0.101282 0.231714 0.100942
500 0.912720 1.622659 0.898291 1.571810 0.179424 0.060459 0.179244 0.060338
1000 0.555161 0.587239 0.569644 0.618607 0.126681 0.030114 0.126618 0.030084
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Table 15. Skewness and excess kurtosis of posterior distribution assuming IG for censored data

Prior IG ICSP
n λ=0.5 λ=1.0 λ=0.5 λ=1.0

Skewness Excess
Kurtosis

Skewness Excess
Kurtosis

Skewness Excess
Kurtosis

Skewness Excess
Kurtosis

25 0.933504 1.706192 1.136782 2.583209 0.938710 1.726108 1.146198 2.628963
50 0.637774 0.778282 0.751322 1.088564 0.639430 0.782411 0.754033 1.096653
100 0.440858 0.367969 0.519315 0.512514 0.441404 0.368890 0.520209 0.514302
500 0.193276 0.070173 0.226341 0.096303 0.193322 0.070206 0.226415 0.096366
1000 0.136295 0.034863 0.159578 0.047808 0.136311 0.034871 0.159603 0.047823
n λ=3.0 λ=4.0 λ=3.0 λ=4.0
25 0.933504 1.706192 1.020316 2.055418 0.938710 1.726108 1.027119 2.084350
50 0.637774 0.778282 0.672880 0.868301 0.639430 0.782411 0.674826 0.873443
100 0.440858 0.367969 0.467127 0.413619 0.441404 0.368890 0.467777 0.414783
500 0.193276 0.070173 0.204041 0.078224 0.193322 0.070206 0.204095 0.078265
1000 0.136295 0.034863 0.143841 0.038834 0.136311 0.034871 0.143860 0.038845

Table 16. Skewness and excess kurtosis of posterior distribution assuming LP for censored data

Prior LP GTII
n λ=0.5 λ=1.0 λ=0.5 λ=1.0

Skewness Excess
Kurtosis

Skewness Excess
Kurtosis

Skewness Excess
Kurtosis

Skewness Excess
Kurtosis

25 0.928757 1.688150 1.128263 2.542222 0.916515 1.642105 1.106567 2.439560
50 0.636252 0.774496 0.748838 1.081178 0.632267 0.764634 0.742369 1.062069
100 0.440354 0.367120 0.518492 0.510869 0.439026 0.364888 0.516328 0.506557
500 0.193234 0.070142 0.226273 0.096245 0.193121 0.070060 0.226092 0.096091
1000 0.136280 0.034855 0.159554 0.047793 0.136240 0.034835 0.159490 0.047755
n λ=3.0 λ=4.0 λ=3.0 λ=4.0 λ=3.0 λ=4.0
25 0.928757 1.688150 1.014133 2.029326 0.916515 1.642105 0.998268 1.963235
50 0.636252 0.774496 0.671093 0.863593 0.632267 0.764634 0.666423 0.851351
100 0.440354 0.367120 0.466527 0.412546 0.439026 0.364888 0.464949 0.409730
500 0.193234 0.070142 0.203991 0.078185 0.193121 0.070060 0.203858 0.078084
1000 0.136280 0.034855 0.143823 0.038825 0.136240 0.034835 0.143777 0.038800
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Table 17. BEs and PRs using IGP under L1

Prior IGP ICSP
n λ=0.5 λ=1 λ=3 λ=4 λ=0.5 λ=1 λ=3 λ=4
25 0.634249

(0.017490)
1.142528
(0.056755)

3.206086
(0.446912)

4.249382
(0.785098)

0.586962
(0.014909)

1.099535
(0.052319)

3.180520
(0.437762)

4.232628
(0.775285)

50 0.567465
(0.006709)

1.069417
(0.023826)

3.105335
(0.200898)

4.133900
(0.356024)

0.543974
(0.006151)

1.048008
(0.022830)

3.092367
(0.198777)

4.125197
(0.353732)

100 0.533760
(0.002907)

1.034710
(0.010925)

3.046966
(0.094735)

4.042622
(0.166763)

0.522051
(0.002778)

1.024030
(0.010689)

3.040420
(0.094224)

4.038122
(0.166209)

500 0.505974
(0.000514)

1.007745
(0.002039)

3.007178
(0.018159)

4.007957
(0.032256)

0.503637
(0.000509)

1.005613
(0.002030)

3.005862
(0.018139)

4.007049
(0.032235)

1000 0.502685
(0.000253)

1.003449
(0.001009)

3.006389
(0.009056)

4.002575
(0.016053)

0.501517
(0.000252)

1.002384
(0.001007)

3.005731
(0.009052)

4.002120
(0.016047)

For Censored Data
25 0.625303

(0.019250)
1.210194
(0.102336)

3.079968
(0.277969)

4.529387
(0.482817)

0.571209
(0.016227)

1.142500
(0.092524)

3.049553
(0.272060)

4.510230
(0.475945)

50 0.584629
(0.008274)

1.089618
(0.039169)

3.168282
(0.132667)

4.106361
(0.191173)

0.557316
(0.007556)

1.055953
(0.037035)

3.153462
(0.131189)

4.094997
(0.189492)

100 0.545618
(0.003531)

1.064532
(0.018483)

3.101677
(0.061720)

4.159384
(0.093415)

0.532012
(0.003365)

1.047588
(0.017959)

3.094186
(0.061357)

4.153836
(0.092993)

500 0.508678
(0.000601)

1.012137
(0.003259)

3.019045
(0.011564)

4.024768
(0.017216)

0.505974
(0.000595)

1.008764
(0.003240)

3.017527
(0.011550)

4.023606
(0.017199)

1000 0.503393
(0.000294)

1.006078
(0.001606)

3.003221
(0.005720)

4.006019
(0.008517)

0.502043
(0.000292)

1.004392
(0.001601)

3.002460
(0.005717)

4.005435
(0.008513)

Table 18. BEs and PRs using IGP under L2

Prior IGP ICSP
n λ=0.5 λ=1 λ=3 λ=4 λ=0.5 λ=1 λ=3 λ=4
25 0.586038

(0.038006)
1.055682
(0.038006)

2.962383
(0.038006)

3.926375
(0.038006)

0.541998
(0.038303)

1.015304
(0.038303)

2.936875
(0.038303)

3.908385
(0.038303)

50 0.545346
(0.019489)

1.027734
(0.019489)

2.984297
(0.019489)

3.972771
(0.019489)

0.522687
(0.019566)

1.006996
(0.019566)

2.971354
(0.019566)

3.963766
(0.019566)

100 0.523223
(0.009871)

1.014283
(0.009871)

2.986815
(0.009871)

3.962816
(0.009871)

0.511725
(0.009890)

1.003774
(0.009890)

2.980278
(0.009890)

3.958244
(0.009890)

500 0.503955
(0.001995)

1.003724
(0.001995)

2.995181
(0.001995)

3.991967
(0.001995)

0.501627
(0.001996)

1.001600
(0.001996)

2.993865
(0.001996)

3.991056
(0.001996)

1000 0.501681
(0.000999)

1.001445
(0.000999)

3.000384
(0.000999)

3.994580
(0.000999)

0.500515
(0.000999)

1.000381
(0.000999)

2.999726
(0.000999)

3.994125
(0.000999)

For Censored Data
25 0.571655

(0.042897)
1.070379
(0.057765)

2.815723
(0.042897)

4.083393
(0.049233)

2.785611
(0.043275)

4.061625
(0.049732)

2.785611
(0.043275)

4.061625
(0.049732)

50 0.558242
(0.022568)

1.024198
(0.030020)

3.025281
(0.022568)

3.902629
(0.024807)

3.010473
(0.022672)

3.890798
(0.024933)

3.010473
(0.022672)

3.890798
(0.024933)

100 0.533120
(0.011453)

1.031426
(0.015549)

3.030629
(0.011453)

4.053157
(0.012770)

3.023143
(0.011480)

4.047475
(0.012803)

3.023143
(0.011480)

4.047475
(0.012803)

500 0.506330
(0.002308)

1.005758
(0.003151)

3.005110
(0.002308)

4.004091
(0.002569)

3.003593
(0.002309)

4.002925
(0.002570)

3.003593
(0.002309)

4.002925
(0.002570)

1000 0.502231
(0.001154)

1.002901
(0.001579)

2.996288
(0.001154)

3.995725
(0.001285)

2.995527
(0.001155)

3.995140
(0.001285)

2.995527
(0.001155)

3.995140
(0.001285)
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Table 19. BEs and PRs using IGP under L3

Prior IGP ICSP
n λ=0.5 λ=1 λ=3 λ=4 λ=0.5 λ=1 λ=3 λ=4
25 0.609191

(0.025058)
1.097390
(0.045139)

3.079420
(0.126666)

4.081498
(0.167884)

0.563584
(0.023378)

1.055742
(0.043793)

3.053846
(0.126675)

4.064050
(0.168578)

50 0.556186
(0.011279)

1.048161
(0.021256)

3.043613
(0.061722)

4.051734
(0.082166)

0.533118
(0.010856)

1.027093
(0.020915)

3.030653
(0.061714)

4.042870
(0.082326)

100 0.528439
(0.005321)

1.024395
(0.010315)

3.016591
(0.030375)

4.002321
(0.040301)

0.516836
(0.005215)

1.013801
(0.010229)

3.010049
(0.030371)

3.997784
(0.040338)

500 0.504962
(0.001011)

1.005731
(0.002014)

3.001168
(0.006011)

3.999946
(0.008011)

0.502630
(0.001007)

1.003602
(0.002011)

2.999852
(0.006010)

3.999036
(0.008012)

1000 0.502182
(0.000503)

1.002446
(0.001003)

3.003383
(0.003005)

3.998573
(0.004001)

0.501015
(0.000501)

1.001381
(0.001002)

3.002726
(0.003005)

3.998118
(0.004002)

For Censored Data
25 0.597276

(0.028026)
1.136001
(0.074193)

2.941924
(0.106498)

4.294842
(0.149708)

0.545371
(0.025837)

1.071572
(0.070928)

2.911613
(0.105796)

4.274189
(0.149336)

50 0.571131
(0.013498)

1.055896
(0.033722)

3.095131
(0.054052)

4.001903
(0.067938)

0.544388
(0.012928)

1.023065
(0.032888)

3.080309
(0.053871)

3.990287
(0.067805)

100 0.539297
(0.006322)

1.047718
(0.016814)

3.065741
(0.026429)

4.105584
(0.034308)

0.525833
(0.006178)

1.030988
(0.016600)

3.058252
(0.026382)

4.099966
(0.034274)

500 0.507501
(0.001177)

1.008938
(0.003200)

3.012061
(0.005160)

4.014403
(0.006641)

0.504803
(0.001171)

1.005573
(0.003191)

3.010544
(0.005158)

4.013239
(0.006640)

1000 0.502811
(0.000582)

1.004487
(0.001591)

2.999751
(0.002568)

4.000866
(0.003306)

0.501463
(0.000580)

1.002803
(0.001589)

2.998990
(0.002568)

4.000281
(0.003306)

25 0.597276
(0.028026)

1.136001
(0.074193)

2.941924
(0.106498)

4.294842
(0.149708)

0.545371
(0.025837)

1.071572
(0.070928)

2.911613
(0.105796)

4.274189
(0.149336)

Table 20. BEs and PRs using IGP under L4

Prior IGP ICSP
n λ=0.5 λ=1 λ=3 λ=4 0.599528

(0.025131)
1.123074
(0.047079)

3.248610
(0.136181)

4.323242
(0.181229)

25 0.647890
(0.027282)

1.167101
(0.049146)

3.275042
(0.137912)

4.340777
(0.182790)

0.549599
(0.011249)

1.058844
(0.021672)

3.124341
(0.063949)

4.167851
(0.085308)

50 0.573346
(0.011762)

1.080499
(0.022164)

3.137515
(0.064361)

4.176739
(0.085679)

0.524705
(0.005308)

1.029236
(0.010412)

3.055876
(0.030912)

4.058650
(0.041056)

100 0.536476
(0.005432)

1.039976
(0.010532)

3.062472
(0.031013)

4.063195
(0.041146)

0.504142
(0.001010)

1.006622
(0.002018)

3.008878
(0.006031)

4.011069
(0.008040)

500 0.506482
(0.001016)

1.008756
(0.002022)

3.010196
(0.006035)

4.011979
(0.008044)

0.501768
(0.000502)

1.002886
(0.001004)

3.007236
(0.003011)

4.004124
(0.004009)

1000 0.502936
(0.000503)

1.003952
(0.001005)

3.007895
(0.003011)

4.004580
(0.004009)

0.599528
(0.025131)

1.123074
(0.047079)

3.248610
(0.136181)

4.323242
(0.181229)

For Censored Data
25 0.640511

(0.030415)
1.251761
(0.083134)

3.124767
(0.089599)

4.582375
(0.105977)

0.585241
(0.028064)

1.182299
(0.079597)

3.093838
(0.088569)

4.562688
(0.104915)

50 0.591663
(0.014068)

1.107446
(0.035656)

3.189150
(0.041736)

4.129573
(0.046424)

0.564054
(0.013476)

1.073346
(0.034786)

3.174195
(0.041465)

4.118069
(0.046144)

100 0.548844
(0.006452)

1.073178
(0.017292)

3.111610
(0.019867)

4.170598
(0.022429)

0.535165
(0.006306)

1.056125
(0.017074)

3.104085
(0.019798)

4.165014
(0.022357)

500 0.509268
(0.001181)

1.013746
(0.003217)

3.020959
(0.003829)

4.026906
(0.004276)

0.506562
(0.001175)

1.010369
(0.003209)

3.019440
(0.003826)

4.025743
(0.004273)

1000 0.503685
(0.000584)

1.006876
(0.001596)

3.004173
(0.001904)

4.007082
(0.002126)

0.502334
(0.000581)

1.005189
(0.001593)

3.003412
(0.001904)

4.006497
(0.002125)
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Table 21. BEs and PRs using LP under L1

Prior LP GTII
n λ=0.5 λ=1 λ=3 λ=4 λ=0.5 λ=1 λ=3 λ=4
25 0.512586

(0.011181)
1.016954
(0.044008)

3.064627
(0.399657)

4.099892
(0.715282)

0.509476
(0.010616)

1.003756
(0.041587)

3.010476
(0.376441)

4.025036
(0.673457)

50 0.507502
(0.005310)

1.007543
(0.020931)

3.035704
(0.190010)

4.060351
(0.339927)

0.505998
(0.005177)

1.001038
(0.020354)

3.008918
(0.184478)

4.023318
(0.329961)

100 0.503994
(0.002579)

1.003994
(0.010234)

3.012436
(0.092130)

4.006205
(0.162941)

0.503259
(0.002546)

1.000759
(0.010093)

2.999159
(0.090787)

3.987959
(0.160550)

500 0.500055
(0.000502)

1.001636
(0.002013)

3.000315
(0.018058)

4.000715
(0.032108)

0.499912
(0.000500)

1.000992
(0.002007)

2.997672
(0.018005)

3.997072
(0.031013)

1000 0.499727
(0.000250)

1.000398
(0.001002)

3.002959
(0.009031)

3.998957
(0.016016)

0.499656
(0.000250)

1.000076
(0.001001)

3.001636
(0.009018)

3.997136
(0.015992)

For Censored Data
25 0.486743

(0.011577)
1.010882
(0.070475)

2.919877
(0.240887)

4.328560
(0.418715)

0.483796
(0.011146)

0.990451
(0.065400)

2.861632
(0.226266)

4.224048
(0.388698)

50 0.514714
(0.006384)

0.992266
(0.032282)

3.086903
(0.123442)

4.011932
(0.177967)

0.512882
(0.006263)

0.982341
(0.031129)

3.055161
(0.119595)

3.965075
(0.171766)

100 0.510952
(0.003090)

1.015542
(0.016770)

3.061373
(0.059521)

4.111730
(0.090120)

0.510057
(0.003061)

1.010316
(0.016464)

3.045650
(0.058594)

4.087350
(0.088527)

500 0.501825
(0.000585)

1.002464
(0.003195)

3.011095
(0.011481)

4.015425
(0.017093)

0.501657
(0.000584)

1.001443
(0.003184)

3.008023
(0.011445)

4.010711
(0.017033)

1000 0.499974
(0.000289)

1.001247
(0.001590)

2.999257
(0.005700)

4.001362
(0.008487)

0.499891
(0.000289)

1.000737
(0.001587)

2.997729
(0.005691)

3.999017
(0.008472)

Table 22. BEs and PRs using LP under L2

Prior LP GTII
n λ=0.5 λ=1 λ=3 λ=4 λ=0.5 λ=1 λ=3 λ=4
25 0.473901

(0.037736)
0.940202
(0.037736)

2.833334
(0.037736)

3.790467
(0.037736)

0.471737
(0.037037)

0.929404
(0.037037)

2.787478
(0.037037)

3.726886
(0.037037)

50 0.487793
(0.019417)

0.968415
(0.019417)

2.917813
(0.019417)

3.902667
(0.019417)

0.486537
(0.019231)

0.962537
(0.019231)

2.893191
(0.019231)

3.868575
(0.019231)

100 0.494063
(0.009852)

0.984210
(0.009852)

2.953077
(0.009852)

3.927265
(0.009852)

0.493391
(0.009804)

0.981136
(0.009804)

2.940352
(0.009804)

3.909764
(0.009804)

500 0.498061
(0.001994)

0.997642
(0.001994)

2.988350
(0.001994)

3.984760
(0.001994)

0.497920
(0.001992)

0.997004
(0.001992)

2.985729
(0.001992)

3.981147
(0.001992)

1000 0.498729
(0.000999)

0.998400
(0.000999)

2.996962
(0.000999)

3.990971
(0.000999)

0.498659
(0.000998)

0.99808
(0.000998)

2.995645
(0.000998)

3.989158
(0.000998)

For Censored Data
25 0.445318

(0.042553)
0.895352
(0.057143)

2.671377
(0.042553)

3.906262
(0.048780)

0.443480
(0.041667)

0.880401
(0.055556)

2.623163
(0.041667)

3.821758
(0.047619)

50 0.491581
(0.022472)

0.933026
(0.029851)

2.948165
(0.022472)

3.813811
(0.024691)

0.490087
(0.022222)

0.924556
(0.029412)

2.919376
(0.022222)

3.771656
(0.024390)

100 0.499273
(0.011429)

0.984052
(0.015504)

2.991398
(0.011429)

4.006973
(0.012739)

0.498465
(0.011364)

0.979229
(0.015385)

2.976431
(0.011364)

3.983872
(0.012658)

500 0.499509
(0.002307)

0.996149
(0.003150)

2.997203
(0.002307)

3.994807
(0.002567)

0.499345
(0.002304)

0.995144
(0.003145)

2.994161
(0.002304)

3.990143
(0.002564)

1000 0.498820
(0.002307)

0.998086
(0.003150)

2.992334
(0.002307)

3.991082
(0.002567)

0.498738
(0.001153)

0.997580
(0.001577)

2.990814
(0.001153)

3.988750
(0.001284)
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Table 23. BEs and PRs using LP under L3

Prior LP GTII
n λ=0.5 λ=1 λ=3 λ=4 λ=0.5 λ=1 λ=3 λ=4
25 0.492485

(0.020101)
0.977073
(0.039881)

2.944446
(0.120181)

3.939112
(0.160780)

0.489881
(0.019595)

0.965150
(0.038606)

2.894689
(0.115788)

3.870227
(0.154809)

50 0.497453
(0.010050)

0.987591
(0.019951)

2.975591
(0.060113)

3.979948
(0.080403)

0.496077
(0.009922)

0.981410
(0.019628)

2.949920
(0.058998)

3.944430
(0.078889)

100 0.498979
(0.005015)

0.994004
(0.009990)

2.982461
(0.029974)

3.966342
(0.039863)

0.498276
(0.004983)

0.990851
(0.009909)

2.969464
(0.029695)

3.948474
(0.039485)

500 0.499056
(0.000999)

0.999635
(0.002001)

2.994320
(0.005995)

3.992722
(0.007993)

0.498914
(0.000998)

0.998994
(0.001998)

2.991688
(0.005983)

3.989094
(0.007978)

1000 0.499228
(0.000499)

0.999398
(0.001000)

2.999957
(0.003001)

3.994960
(0.003997)

0.499157
(0.000499)

0.999077
(0.000999)

2.998637
0.002999)

3.993143
(0.003993)

For Censored Data
25 0.465110

(0.021633)
0.949616
(0.061266)

2.790105
(0.098765)

4.106583
(0.138817)

2.737214
(0.094775)

4.012846
(0.132255)

2.737214
(0.094775)

4.012846
(0.132255)

50 0.502882
(0.011833)

0.961734
(0.030531)

3.015939
(0.052032)

3.910364
(0.065402)

2.985725
(0.050937)

3.865948
(0.063870)

2.985725
(0.050937)

3.865948
(0.063870)

100 0.505045
(0.005907)

0.999549
(0.015993)

3.025981
(0.025927)

4.058676
(0.033658)

3.010643
(0.025652)

4.034948
(0.033254)

3.010643
(0.025652)

4.034948
(0.033254)

500 0.500664
(0.001160)

0.999297
(0.003167)

3.004133
(0.005140)

4.005090
(0.006616)

3.001076
(0.005129)

4.000401
(0.006600)

3.001076
(0.005129)

4.000401
(0.006600)

1000 0.499396
(0.000578)

0.999664
(0.001583)

2.995791
(0.002563)

3.996215
(0.003300)

2.994268
(0.002560)

3.993876
(0.003296)

2.994268
(0.002560)

3.993876
(0.003296)

25 0.465110
(0.021633)

0.949616
(0.061266)

2.790105
(0.098765)

4.106583
(0.138817)

2.737214
(0.094775)

4.012846
(0.132255)

2.737214
(0.094775)

4.012846
(0.132255)

Table 24. BEs and PRs using LP under L4

Prior LP GTII
n λ=0.5 λ=1 λ=3 λ=4 λ=0.5 λ=1 λ=3 λ=4
25 0.523379

(0.021586)
1.038366
(0.042823)

3.129152
(0.129051)

4.186215
(0.172646)

0.519790
(0.020628)

1.024262
(0.041012)

3.072362
(0.123771)

4.107843
(0.165613)

50 0.512707
(0.017426)

1.017877
(0.020668)

3.066840
(0.062272)

4.101997
(0.083291)

0.511088
(0.010180)

1.011153
(0.020231)

3.039419
(0.061001)

4.064117
(0.081598)

100 0.506546
(0.005104)

1.009078
(0.010167)

3.027689
(0.030506)

4.026490
(0.040569)

0.505782
(0.005046)

1.005789
(0.010060)

3.014256
(0.030195)

4.008038
(0.040157)

500 0.500557
(0.001003)

1.002640
(0.002009)

3.003323
(0.006016)

4.004726
(0.008021)

0.500412
(0.000999)

1.001994
(0.002004)

3.000674
(0.006003)

4.000949
(0.007755)

1000 0.499977
(0.000500)

1.000899
(1.001351)

3.004462
(0.003007)

4.000954
(0.003994)

0.499906
(0.000500)

1.000576
(0.001001)

3.003138
(0.003004)

3.999136
(0.003999)

For Censored Data
25 0.498493

(0.003501)
1.045159
(0.068554)

2.960839
(0.081924)

4.376659
(0.096199)

0.495181
(0.022771)

1.022934
(0.064965)

2.900897
(0.078530)

4.269810
(0.091524)

50 0.520878
(0.012329)

1.008402
(0.032271)

3.106833
(0.039860)

4.034051
(0.044237)

0.518952
(0.012139)

0.998059
(0.031437)

3.074671
(0.039021)

3.972429
(0.014708)

100 0.513967
(0.006030)

1.023765
(0.016447)

3.071079
(0.019412)

4.122674
(0.214499)

0.513049
(0.005984)

1.018431
(0.016231)

3.055254
(0.019208)

4.098165
(0.021630)

500 0.502407
(0.001165)

1.004056
(0.003185)

3.013001
(0.003812)

4.017553
(0.004256)

0.502239
(0.001163)

1.003031
(0.003177)

3.009925
(0.003804)

4.012834
(0.004246)

1000 0.500263
(0.000578)

1.002041
(0.001587)

3.000207
(1.900170)

4.002422
(0.002121)

0.500180
(0.000578)

1.001530
(0.001585)

2.998678
(0.001898)

4.000076
(0.002118)
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Figure 1. (i) For complete data set (ii) Using IG prior where IG(c) denote censored data

Figure 2. (i) For censored data set (ii) Using IG prior where IG(c) denote censored data

Figure 3. (i) For censored data set (ii) Using IG prior where IG(c) denote censored data

Figure 4. (i) For censored data set (ii) Using IG prior where IG(c) denote censored data
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Abstract

Diabetic Nephropathy (DN) is the deleterious effect of diabetes mellitus on renal structure, or a function caused by it. The
rate of rise in, serum creatinine is observed for the progression of DN. Retrospective data is collected from 132 patients.
As 60 patients form uncensored cases, remaining 72 patients are censored cases. In this paper we have developed three
models. The first model is based only on uncensored cases with left truncation. The second model also includes censored
data. Fisher’s information matrix has been applied to find variances and asymptotic confidence interval for the estimated
parameters. The method of maximum likelihood is used to estimate unknown parameters in both the models. In the last
model, onset times are arranged as to estimate mean onset time of DN for all the patients by using application of order
statistic. We aim to predict onset time of DN for new diabetic patients.

Keywords: Diabetic Nephropathy, Fisher’s information matrix, Left truncated and right censored data, Order statistic,
Serum creatinine, Survival time, Weibull distribution

1. Introduction

Diabetic nephropathy (DN) develops in 20 - 40% of the patients within 10 to 15 years after the onset of diabetes. About
one third of those affected eventually have progressive deterioration of renal function (Remmuzz, Schipath & Rugenetiti,
2002). Data from the UKPDS demonstrated that 25% of patients approximately with type-2 diabetes develop worse
diabetic nephropathy by 10 years (UKPDS, 1998a, 1998b). Also, it is estimated that almost 50% of patients develop DN
within 19 years from diagnosis of diabetes. According to the American Diabetic Association in year 2004, about 20-30%
of patients with type-1 or type-2 diabetes develop nephropathy (ADA, 2004). Thus, DN is a serious problem in terms of
financial load, morbidity and mortality in the developed world (Banerjee, Ghosh & Saha, 2005).

In many prospective and retrospective studies, survival data are subject to left truncation in addition to the usual right
censoring. There is a widespread application and use of left truncation and right censored data (LTRC) in survival analysis.
Alioum and Commenges have given proportional hazard models for arbitrarily censored and truncated data to estimate the
distribution of time from diabetes onset to development of DN (Alioum & Commenges, 1996). Enzo, Vittorio, and others
have applied conditional probability to find that a diabetic patient will develop a second complication, given that they had
already developed the first complication (Enzo, Vittorio et al., 2003). They also propose the Bayes’ formula for the same
problem. Chappell, Fine and Jiang have considered semi-parametric analysis of survival data with LTRC to quantify the
association between time to DN and diabetes related death and to estimate the probability of developing DN after being
diagnosed with insulin dependent diabetes (Chappell, Fine & Jiang, 2005). Sparling, Younes, and Lachin have applied a
parametric family of regression models for interval-censored event-time data accommodating both fixed (e.g. baseline)
and time-dependent covariates. Their model employs a three-parameter family of survival distributions including special
cases of Weibull, negative binomial, and log-logistic distributions , and can be applied to data with left, right, interval, or
non-censored event times. The model is applied by them on diabetic patients’ data to describe the effects of longitudinal
measures of glycemia over time on the risk of progression of diabetic retinopathy (Sparling, Younes & Lachin, 2006).

Medical and epidemiological studies are mostly conducted with an interest in measuring the occurrence of an outcome
event. In this paper we are estimating the time from onset of diabetes to development of DN subject to censoring and
truncation. Weibull distribution is fitted on both uncensored and LTRC data. Weibull distribution fitting is tested through
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(i) chi-square test for goodness of fit and (ii) log-cumulative hazard plot for uncensored cases. Fitting of the Weibull
distribution for censored cases is tested by applying (i) Hollander and Proschan test and (ii) modified Cox-Snell residuals.
The unknown parameters shape , and scale, of the distribution are estimated by the method of maximum likelihood. Fisher
information matrix has been used to construct variances and asymptotic confidence intervals of the unknown parameters
for LTRC data. The DN onset times of uncensored out of total cases are arranged in ascending order for the application
of order statistic as: t(1), t(2), ..., t(i), ..., t(n1). The probability density functions and means of minimum and maximum DN
onset time have been estimated using the application of order statistic. Also, we have estimated mean DN onset times for
all the patients who are under advanced nephropathy. Observed DN onset times have been compared with DN onset times
obtained by using the application of order statistic. Besides introduction, the course of this paper is as follows: In section
2 developments of the models is discussed. Section 3 applies the models to type-2 diabetic patient data and section 4
contains discussion.

2. Methodology

2.1 Model for Uncensored but Left Truncated Data

Let t(1), t(2), ..., t(i), ..., t(n1) be the exact DN onset times of n1 individuals out of n patients which are known under this study.
Left truncation arises when a subject is not included in the study because its diabetic nephropathy onset times (event of
interest) originated prior to the starting time of the study. The DN onset times are assumed to follow Weibull distribution.
The probability density and survival function of a W(λ, γ) for the ith(i = 1, 2, ..., n1) patient are given by:

f (ti) =
γ(λ)γtγ−1

i exp(−(λti)γ)
exp(−(5λ)γ)

(1)

S (ti) =
exp(−(λti)γ)
exp(−(5λ)γ)

; t ≥ 5, λ > 0; γ > 0 (2)

2.1.1 Estimation of Unknown Parameters Using Maximum Likelihood Estimation

The log likelihood function is given as follows:

logL = n1logγ + n1γlogλ − n1(5λ)λ + (γ − 1)
n1∑
i=1

logti −
n1∑
i=1

(λti)γ (3)

The maximum likelihood estimates of λ and γ is found by differentiating above function with respect to λ and γ, and
equating the derivatives to zero. The resulting equations are:

n1 − (λ)γ[n1(5)λ +
n1∑
i=1

(ti)λ] = 0 (4)

n1

γ
+ n1logλ +

n1∑
i=1

logti − n1(5λ)γlog5λ −
n1∑
i=1

(λti)γ(logλti) = 0 (5)

The maximum likelihood estimates (MLE) of λ and γ obtained as λ̃, γ̃ by solving above two equations (4) and (5)
simultaneously.

2.1.2 Estimated Mean, Variance and 95% Confidence Interval of DN Onset Time from the Diagnosis of Diabetes

Using MLE of λ and γ as λ̃, γ̃we obtained estimated mean, variance and 95% confidence interval of DN onset time/survival
time, which are given by:

E(onset time) =
∫ ∞

5
tγ̃(λ̃)γ̃(t)γ̃−1 exp(−(λ̃t)γ̃)

exp(−(5λ̃)γ̃)
dt (6)

Var(onset time) =
∫ ∞

5
t2γ̃(λ̃)γ̃(t)γ̃−1 exp(−(λ̃t)γ̃)

exp(−(5λ̃)γ̃)
dt − E2(onset time) (7)

95% C. I o f onset time = E(onset time) ± 1.96
√

Var(onset time)/n1 (8)

2.2 Model for Left Truncated and Right Censored Data

All subjects under study experienced an initial event E1 (diagnosed as diabetes as per ADA standards), but not all of them
experienced a second event E2 i.e. the event of interest (onset of renal disease/diabetic nephropathy) till the study was
terminated on November 2007. Right censoring happens when DN onset time of a subject is not completely observed as
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a second event, the end time of the study is fixed and patients enter the study at different times i.e. duration of diabetes
is different for different patients. The form of censoring is generalized Type I censoring (Lee & Wang, 2003). This can
be explained as: suppose that there are four patients with different duration of time and study is terminated at fixed time,
where each individual’s minimum diabetes duration is 5 years (left truncated). Then the starting time is backed up to 5
years for four individuals. DN onset time for first patient is observed before the end of the study, it is an uncensored case
with (δ1 = 1); DN onset time for second patient cannot be observed before the end of the study, it is a censored case with
(δ2 = 0); DN onset time for third patient is known and an uncensored case with (δ3 = 1) and DN onset time for fourth
patient is unknown and is a censored case with (δ4 = 0). The DN onset time of first and third patient may not be same,
also, censoring time of second and fourth may not be same, because patients under study are with different duration of
diabetes.

There are n patients under study, out of which diabetic nephropathy onset times for n1 patients are uncensored and DN
onset time for remaining n− n1 patients are censored. The DN onset time from the diagnosis of diabetes is a non-negative
random variable which is assumed to follow Weibull distribution .The probability density function of a W(λ, γ) for the
ith (i = 1, 2, ..., n) patient is given by (Lee & Wang, 2003)

f (ti) =


γ(λ)γtγ−1

i exp(−(λti)γ)
exp(−(5λ)γ) , 5 ≤ ti ≤ Ti

exp(−(λTi)γ)
exp(−(5λ)γ) , ti > Ti

(9)

2.2.1 MLE for Unknown Parameters for Right Censored and Fixed Left Truncated Weibull Distribution

When the censoring times Ti are different for different patients, the likelihood function for the survival times is defined as:

L =
n∏
1

( f (ti))δi (S (Ti))1−δi

where δi is zero, if for the ith patient DN onset time is censored and δi is unity when DN onset time is known. The
corresponding log likelihood function is given by:

logL =
n∑
1

δilog(
γ(λ)γtγ−1

i exp(−(λti)γ)
exp(−(5λ)γ)

) +
n∑
1

(1 − δi)log
exp(−(λTi)γ)
exp(−(5λ)γ)

=

n∑
1

δi(logγ + γlogλ + (γ − 1)logti − (λti)γ + (5λ)γ) +
n∑
1

(1 − δi)((5λ)γ − (λTi)γ) (10)

The maximum likelihood estimates of λ and γ is found by partially differentiating the above function with respect to λ
and γ, and equating the derivatives to zero. The resulting equations are:

λγ(
n∑
1

δit
γ
i +

n∑
1

(1 − δi)T
γ
i − n5γ) −

n∑
1

δi = 0 (11)

λγ(
n∑
1

δit
γ
i log(λti) +

n∑
1

(1 − δi)log(λTi)T
γ
i − n5γlog(5λ)) −

n∑
i=1

δi(
1
γ
+ log(λti)) = 0 (12)

The MLE of λ and γ are obtained as λ̃, γ̃ by solving above (11) and (12) equations by trial and error method.

2.2.2 Approximate Fisher Information Matrix to Construct Asymptotic Confidence Intervals of the Unknown Parameters

In this sub-section, the approximate Fisher information matrix of maximum likelihood estimators of parameters from
Weibull distribution when the data are left truncated and right censored has been obtained, which can be used to construct
asymptotic variance and confidence intervals of the parameters (Gross & Clark, 1975). The Fisher information matrix can
be written as: [− ∂2

∂λ2 logL]0 [− ∂2

∂λ∂γ
logL]0

[− ∂2

∂γ∂λ
logL]0 [− ∂2

∂γ2 logL]0

−1

=

(
Var(λ̃) Cov(λ̃, γ̃)
Cov(λ̃, γ̃) Var(γ̃)

)
∂2

∂λ2 logL = γλγ−1(
n∑
1

δiti +
n∑
1

(1 − δi)T
γ
i − n5γ) (13)
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∂2

∂λ∂γ
logL =

∂2

∂γ∂λ
logL = [(

n∑
1

δi + n5γλγ(1+ γlog(5λ)))/λ]− λγ−1[
n∑
1

δitλi (γlog(λti)+ 1)+
n∑
1

(1− δi)Ti(γlog(λTi)+ 1)]

(14)
∂2

∂γ2 logL =
∑n

1 δi

γ2 + λγ[
n∑
1

δilog2(λti)t
γ
i +

n∑
1

(1 − δi)log2(λTi)T
γ
i − nlog2(5λ)5γ] (15)

The approximate 95% confidence intervals for λ and γ are λ̃ ± 1.96
√

Var(λ̃) and γ̃ ± 1.96
√

Var(γ̃), respectively; where
Var(λ̃) and Var(γ̃) are the diagonal elements of the variance-covariance matrix.

2.2.3 Estimated Mean, Variance and 95% Confidence Interval of DN Onset Time

Using maximum likelihood estimates of λ and γ for LTRC data as λ̃, γ̃ we obtained the estimated mean, variance and 95%
confidence interval of onset time /survival time which are given by:

E(DN onset time|5 ≤ time ≤ 26.6) =

∫ T
5 tγ̃(λ̃)γ̃(t)γ̃−1 exp(−(λ̃t)γ̃)

exp(−(5λ̃)γ̃) dt∫ T
5 γ̃(λ̃)γ̃(t)γ̃−1 exp(−(λ̃t)γ̃)

exp(−(5λ̃)γ̃) dt
(16)

E((DN onset time)2|5 ≤ time ≤ 26.6) =

∫ T
5 t2γ̃(λ̃)γ̃(t)γ̃−1 exp(−(λ̃t)γ̃)

exp(−(5λ̃)γ̃) dt∫ T
5 γ̃(λ̃)γ̃(t)γ̃−1 exp(−(λ̃t)γ̃)

exp(−(5λ̃)γ̃) dt
(17)

Var(DN onset time) = E((DN onset time)2|5 ≤ time ≤ 26.6) − E2(DN onset time|5 ≤ time ≤ 26.6) (18)

95% C. I = E(DN onset time) ± 1.96
√

Var(DN onset time)/n (19)

Where, T denotes the maximum duration of diabetes among n1 (uncensored) patients under study. The above results are
compared with those obtained for uncensored cases and observed cases.

2.3 The Probability Density Function and Mean Time of First, Last and Order Statistic for the Patients Who Proceed
Towards Nephropath

Let τ1 ≤ τ2 ≤ ... ≤ τi ≤ ... ≤ τn be the ordered duration of n diabetic patients and n1 be the number of uncensored
diabetic nephropathy of patients with ordered onset times as, t(1) ≤ t(2) ≤ ... ≤ t(i) ≤ ... ≤ t(n1) where t(1) and t(n1) denote
the minimum and maximum time taken by type-2 diabetic patient proceeding towards nephropathy, respectively, among
n1 patients. The DN onset times t(1), t(2), ..., t(i), ..., t(n1) are following left truncated Weibull distribution with parameters λ
and γ as given in equation (1).

The probability density function and mean of first order statistic or the patient who has taken minimum time to proceed
towards nephropathy is given as:

ft(1) (t) = n1[
exp(−(λt)γ)
exp(−(5λ)γ̃)

]n1−1γ(λ)γ(t)γ−1 exp(−(λt)γ)
exp(−(5λ)γ)

(20)

E(t(1)) =
∫ T

5
t(1)n1[

exp(−(λt)γ)
exp(−(5λ)γ̃)

]n1−1γ̃(λ̃)γ̃(t(1))γ̃−1 exp(−(λ̃t)γ̃)
exp(−(5λ̃)γ̃)

dt(1) (21)

Here we are dealing with right censored data and T denotes the maximum duration of diabetes among n1 patients under
study.

The probability density function and mean of rth order statistic is given as:

ft(r) (t) = rB(n1, r)[1 − exp(−(λt)γ)
exp(−(5λ)γ)

]r1−1γ(λ)γ(t(r))γ−1 exp(−(λt)γ)
exp(−(5λ)γ)

[
exp(−(λt)γ)
exp(−(5λ)γ)

]n1−r (22)

E(t(r)) = rB(n1, r)
∫ T

5
tγ̃(r)[1 −

exp(−(λ̃t)γ̃)
exp(−(5λ̃)γ̃)

]r−1γ̃(λ̃)γ̃
exp(−(λ̃t)γ̃)
exp(−(5λ̃)γ̃)

[
exp(−(λ̃t)γ̃)
exp(−(5λ̃)γ̃)

]n1−rdt(r)

The probability density function and mean of nth
1 order statistic or the patient who has taken maximum time to proceed

towards nephropathy is given as:

ft(n1) (t) = n1tγ−1
(n1) [1 −

exp(−(λt)γ)
exp(−(5λ)γ)

]n1−1γ(λ)γ
exp(−(λt)γ)
exp(−(5λ)γ) (23)
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Et(n1) (t) = n1γ̃(λ̃)γ̃[
∫ T

5
tγ̃(n1)

exp(−(λ̃t)γ̃)
exp(−(5λ̃)γ̃)

dt(n1) + (−1)(n1 − 1)
∫ T

5
tγ̃(n1)

exp(−2(λ̃t)γ̃)
exp(−2(5λ̃)γ̃)

dt(n1)+

(−1)2((n1 − 1)(n1 − 2)/2)
∫ T

5
tγ̃(n1)

exp(−3(λ̃t)γ̃)
exp(−3(5λ̃)γ̃)

dt(n1) + ... + (−1)n1−1
∫ T

5
tγ̃(n1)

exp(−n1(λ̃t)γ̃)
exp(−n1(5λ̃)γ̃)

dt(n1)]

Thus, the mean time of first or minimum, last or maximum and rth order statistic for the patients who proceed towards
nephropathy are computed.

2.4 Model Checking

There are a number of techniques for evaluating the fit of parametric survival models, including analogues of residuals
and influence diagnostics (Collett, 2003). To assess the adequacy of the present model, two methods have been applied
for the testing of the distribution assumption for both the uncensored and censored data. Firstly for uncensored data, log-
cumulative hazard plot is used, if the single sample of the survival data is available. For obtaining log-cumulative hazard
plot, first compute the Kaplan Meier estimate of the survivor function, Ŝ (t) for each uncensored observation and then find
the survivor function, Ŝ (t) of the fitted distribution. If the plot of log(−logS (t)) against log(t) is an approximate straight
line, and close to the line obtained from plotting log(−logŜ (t)) against log(t) then the fitted distribution assumption is
tenable. Secondly, the fitting has been tested by applying Karl-Pearson’s chi-square goodness of fit test. In case of
censored data, firstly, the modified Cox-Snell residual plot is used for fitting distribution, proposed by Crowley and Hu.
To include censored observation, Cox-Snell residual is modified by the addition of a positive constant ∆, the excess
residual. Suppose that the ith survival time is a censored observation, t∗i , and let ti be the actual, but unknown, survival
time, so that ti > t∗i . Then modified Cox-Snell residual can be used for ith censored observation as: r′Ci

= rCi for uncensored
and r′Ci

= rCi + ∆ for censored observation, where rCi = −logŜ i(t∗i ) = Ĥi(t∗i ). The, Ŝ i(t∗i ) and Ĥi(t∗i ) are the estimated KM
survival and cumulative hazard functions, respectively, for the ith individual at the censored survival time. After computing
r′Ci

, it is plotted against the −log(S (t)) where S (t) is the survival function of the fitted distribution. If this plot is close to
a straight line passing through the origin, this suggests that model fitted to the data is satisfactory. Secondly, Hollander
and Proschan test has been applied to test the fitted distribution survival function with the survival function obtained by
applying Kaplan Meier method (Hollander & Proschan, 1979).

3. Applications

The methods discussed above are applied to the following data concerning nephropathy of type-2 diabetic patients. Up-
to-date pathological reports/records of 132 diabetic patients, using a common path lab, are collected through a house to
house Survey. Retrospective study is conducted on the collected data. Patients with less than 5 years diabetic history are
not included or data considered is left truncated which arises when a patient is not included in the study because its DN
onset time (event of interest) originated prior to the starting time of the study. Under truncation these individuals are never
considered for inclusion into the study.

On the basis of serum creatinine the event of interest nephropathy, using reference as the rate of rise in SrCr, a well-
accepted marker for the progression of DN, (creatinine value 1.4 to 3.0 mg/dl) is the indicator for impaired renal function
(Adler, Stevens, Manley et al., 2003). Also, the renal health/dysfunction can be estimated from serum creatinine level for
132 patients under study. Thus, at the end of the study, out of 132 patients, there are only 60 diabetic nephropathy cases
and remaining 72 are treated as censored. Data is simultaneously left truncated and right censored. Table-1 represents the
duration-distribution of type-2 diabetic patients who developed diabetic nephropathy. It shows that out of 60 DN cases,
16.67% are with less than 10 years of diabetes, 25% with 10 to 15 years, 38.33% with 15 to 20 years and 20% are of more
than or equal to 20 years of duration of diabetes. In all there are 45.45% cases with diabetic nephropathy.

The minimum age at which diabetes is diagnosed is found to be 29 yrs and maximum age as 58 years, as available
from data. Table 2 represents descriptive statistics of 132 patients giving minimum, maximum and mean ± S.D of the
variables; age at diagnosis, duration of disease and SrCr for two groups; censored or non diabetic nephropathy (NDN)
and uncensored or diabetic nephropathy group.

<Table 1-2>

3.1 Estimated Mean, Variance and 95% Confidence Interval of DN Onset Time from the Diagnosis of Diabetes for Un-
censored Cases

For modelling the survival time (from the diabetes diagnosis till the onset of nephropathy) for the uncensored cases only
from the data, the minimum onset time is observed as 6 years and the maximum onset time is 26.6 years. Left truncated
Weibull distribution is assumed for this case. Fitting is tested, firstly, by applying Karl-Pearson’s chi-square goodness
of fit test and calculated chi-square value came out to be 2.732 with p=0.435. Therefore, we conclude that there is
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insufficient evidence to say that data are not from left truncated Weibull distribution with λ̃=0.079515 and γ̃=2.811274.
Secondly, graphical method, log-cumulative hazard plot is also used to test the fitting of distribution. For obtaining
this plot, the values log(−log(Ŝ (t))), where, Ŝ (t) is Kaplan-Meier estimate of survival, and log(−log(S (t))), where S (t)
is fitted distribution estimates of survival are computed. Then plotting, log(−log(Ŝ (t))) against log(survival time) and
log(−log(S (t))) against log(survival time), the resulting log-cumulative hazard plot is shown in Figure 1. In this figure
the line log(−log(S (t))) against log(survival time) is reasonably straight and close to the other line. This means that the
assumption of left truncated Weibull distribution for the uncensored data of DN onset times is quite plausible (Collett,
2003).

Using maximum likelihood estimates as λ̃=.079515 and γ̃ =2.811274, estimated mean DN onset time is obtained as
15.19228, variance of DN onset time as 17.09349 and 95% confidence interval as (14.14615, 16.23842). These results
are also compared with mean, variance and 95% confidence interval of DN onset time obtained from the observed data,
which are displayed in Table 4.

<Figure 1>

3.2 Estimated Mean, Variance and 95% Confidence Interval of DN Onset Time from the Diagnosis of Diabetes by Includ-
ing Censored Cases

For modelling the DN onset times including censored cases, the minimum duration of diabetes is found to be 5.6 years
and maximum as 27 years as available from the data. From the data we have only partial information about these 72
cases, as they are censored cases. For this model, data is left truncated and right censored simultaneously, and Weibull
distribution is assumed for this case also. Fitting is tested, firstly, on applying Hollander and Proschan goodness of fit
test for censored data. The observed value of the test statistic is 1.256186 with p= 0.182, which does not fall in the
rejection area. Therefore, we conclude that there is insufficient evidence to say that data are not from Weibull distribution
with λ̃ =0.066834 and γ̃=1.78211 estimated by applying maximum likelihood method. Secondly, graphical method, i.e.,
modified Cox-Snell residual plot (Gross & Clark, 1975) is also used to test the fitting of distribution. For obtaining this
plot, r = −(log(S (t))) is plotted against −log(Ŝ (t)), where S (t) and Ŝ (t) are same as defined in section 3.1. The resultant
line is modified Cox-Snell residual plot and line is close to straight line as shown in Figure 2.

Therefore, from both the methods Weibull distribution is found to be an appropriate parametric model for DN onset times.

3.2.1 Construct Asymptotic Confidence Intervals of the Estimated Parameter by Using Fisher Information Matrix

Again using maximum likelihood estimators as λ̃=0.066834 and γ̃=1.78211 of unknown parameters for censored case,
the Fisher information matrix is used to obtain the asymptotic confidence intervals, Var(λ̃) and Var(γ̃), the results are
depicted in Table 3. The estimated mean DN onset time is found to be 13.9058552 with corresponding variance and 95%
confidence interval are obtained as 13.953207 and (13.4213197, 14.695785), respectively. The results are displayed in
Table 4.

<Figure 2>

<Table 3-4>

3.3 Estimated Mean Time of First, Last and rth Order Statistic for the Patients Who are under Advanced Nephropathy
Group

For modelling the nephropathy onset time from diagnosis of diabetes for estimating mean DN onset time for every patient,
the application of order Statistic has been used. We have used this model to estimate mean DN onset time for 27 patients
with mean SrCr = 1.91mg/dl, who are under advanced nephropathy group out of 60 uncensored cases. Estimated minimum
and maximum mean DN onset time are obtained and the results came out to be 5.646346 years and 24.58083 years
respectively. Also, estimated mean DN onset times for 27 patients are compared with observed onset times and results
are displayed in Table 5. Comparison is also illustrated graphically in Figure 3. It is observed from graph that the mean
values of onset of DN for each patient up to 10th order are close to observed onset time, but as the order increases the
difference between observed and estimated mean value increases as higher ordered values depend on all the prior ordered
values. Also, it can be observed from Table 5. The mean and variance of means of mean DN onset time obtained through
application of order statistic are 15.71540 and 37.949, respectively. SPSS for Windows, Version 15 and MATLAB,
Version 6.5 statistical packages were used for the calculation and analysis.

<Table 5>

<Figure 3>
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4. Discussion

The aim of this paper is to estimate nephropathy onset time arising out of type-2 diabetic patients. Previous studies reveal
that type-2 DM is the most common form of diabetes constituting 90% of the diabetic population and nephropathy is a
life-threatening complication of diabetes mellitus. The DN onset times calculations throughout this paper are based on the
values of serum creatinine, since, Bio-Stratum at their 64th Scientific Sessions ADA meet accepted rate of rise in serum
creatinine as a marker for the progression of diabetic nephropathy.

There is a widespread application and use of left truncation and right censored data (LTRC) in survival analysis. Data
used in this paper are simultaneously left truncated and right censored. Thus, no information was available for the patients
whose DN onset time appear prior to five years and partial information was available for the patient whose DN onset times
could not be observed till the end of study.

The main objectives of this paper are to estimate mean, variance and 95% confidence interval of DN onset time by fitting
(i) model for uncensored cases, and (ii) model including censored cases. Weibull distribution is assumed for both the
cases as it is very flexible and because of flexible shape and ability to model a wide range of failure rates, the Weibull
has been successfully used in many applications (Collett, 2003; Lee & Wang, 2003). The distribution fitting is tested
through graphical method, to access whether a particular theoretical distribution provides an adequate fit to the data (Lee
& Wang, 2003). Also, most common Chi-square goodness of fit test is used for testing the fitting for uncensored data
and Hollander and Proschan goodness of fit test is used for testing the fitting of data that includes censored observations.
Weibull distribution is found to be appropriate in both the cases. Previous studies suggest that when survival time has
a specific statistical distribution; the statistical power of parametric distribution is higher than nonparametric and semi-
parametric models.

Firstly, for uncensored cases using Weibull model the mean of DN onset time is found to be 15.19228 years whereas the
the observed mean of DN onset time is 15.21333 years. Thus, the estimated and the observed mean DN onset times are
found to be remarkably similar. Secondly, mean of DN onset time, 13.905855 years, is obtained by including censored
cases. The mean of DN onset time based on uncensored observations is higher than the case which includes censored
observations and this matches with Li and Lagakos finding suggesting that considering only uncensored cases will increase
the mean of the survival time (Li & Lagakos, 1997). The mean DN onset times obtained from both the cases are almost
consistent with the previous findings which suggest that diabetic nephropathy develop within 10 to 15 years after the onset
of diabetes (ADA, 2004).

In part three, the model is applied with the application of order statistic to estimate minimum and maximum mean DN
onset time and also, mean DN onset time for all the 27 patients out of 60, who are under the advanced nephropathy group.
It is found from Table 5, which is visible through graph, that estimating mean DN onset time using the application of order
statistic is a useful exercise if the sample size is small. This is further, verified by applying paired t-test. We have divided
27 patients in accordance with the ascending order of DN onset time into two groups of sizes 14 and 13. By applying
paired t-test for comparing the observed DN onset times with those obtained from the application of order statistic on
first group( comparing first 14 ordered values) the test statistic value is found to be 1.659 with p=0.121, (p >0.05) on 13
degrees of freedom. Thus, we conclude that there is not enough evidence to reject the hypothesis as there is no significant
difference between the estimated and the observed DN onset times. Then by applying paired t-test on second group
(ordered values from 15 to 27) the test statistic value is found to be 14.645 with p <0.001 on 12 degrees of freedom.
From this we conclude that difference between observed and estimated mean DN onset time increases with an increase in
the order of the observation. The minimum and maximum mean of DN onset times are found to be 5.646346 years and
24.58083 years respectively.

Weibull model can empirically fit a wide range of data. Thus, Weibull distribution may be used to model the survival
distribution of a population with increasing, decreasing, or constant risk and can be taken as a baseline model for future
studies.The model can be applied for estimating survival times of other complication arising out of type-2 diabetes such
as retinopathy, CVD and others. The application of order statistic can be further explored with other survival models and
also for other biomedical complications. The major use of estimating the nephropathy onset time of diabetic patient is
that current as well as future DN onset time of new diabetic patients can be predicted.
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Table 1. Duration-distribution of Diabetic patients till Nov’2007, who developed Diabetic Nephropathy

Duration of Diabetes (years) Number of diabetic patients Diabetic Nephropathy (%)
<10 56 16.67

10-15 20 25
15-20 31 38.33
≥20 25 20
Total 132 45.45

Table 2. Descriptive statistics of 132 patients giving minimum, maximum and mean ± standard deviation of age at
diagnosis, duration of diabetes, and serum creatinine for two groups i.e. NDN (censored) and DN (uncensored) Group

Variable Statistic Censored (N=72) Uncensored (N=60)
Age at Minimum 35 29

Diagnosis Maximum 58 56
(years) Mean±S.D 44.0108±4.36 45.0034±5.2824

Duration of Minimum 5.6 6
Disease Maximum 27 26.6

(yrs) Mean±S.D 10.2784±5.5 14.0931±5.0528
Serum Minimum 0.71 1.29

Creatinine Maximum 1.39 2.21
(mg/dl) Mean±S.D 0.9780±0.12616 1.6686±0.28233
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Table 3. Variance and asymptotic confidence intervals for the estimates of the parameters obtained by using Fisher
information matrix

Parameter Maximum likeli- Variance 95% Confidence interval
hood estimator

λ̃ 0.066834 0.001078 (0.002487, 0.131181)
γ̃ 1.78211 0.000391 (1.820866, 1.743354)

Table 4. Estimated mean, variance and 95% confidence interval of DN onset time obtained from observed and fitting (i)
left truncated Weibull distribution on uncensored cases (ii) left truncated Weibull distribution by including censored cases

Cases Mean Variance 95% C.I
Observed

uncensored cases 15.21333 22.87686 (14.003195,16.42357)
LT Weibull

uncensored cases 15.19228 17.09349 (14.14615,16.23842)
Weibull LTRC data 13.9058552 13.953207 (13.4213197,14.6957854)

Table 5. Estimated and observed DN onset time for 27 patients who are under advance diabetic nephropathy group

Ordered Diabetes Serum Diabetic Nephropathy Estimated Diabetic
Observation Duration(yrs) Creatinine Onset time Nephropathy Onset

(mg/dl) Observed (yrs) time (yrs)
1 7.8 1.98 6 5.646346
2 12 1.7 6.6 6.215418
3 13 1.54 7.6 6.297053
4 13 1.66 7.9 7.321488
5 13.6 1.97 8.6 7.522939
6 15 2.14 9.2 10.32963
7 15 2.11 9.6 10.80505
8 15.6 2.21 11 12.42911
9 16 2.18 11.6 12.6954
10 16 1.99 12 14.13889
11 16 1.62 13 14.72397
12 16 1.66 13.6 15.22681
13 16.6 1.89 13.6 15.86091
14 17 1.57 14 16.52023
15 17 1.97 14.6 17.30451
16 17.2 1.6 15 17.76943
17 17.6 2.11 15.6 18.49336
18 18 1.79 15.6 19.55992
19 18 2.18 16 20.68734
20 19 2.19 16.6 20.79337
21 20 1.79 18 21.0774
22 20 1.74 18 21.9298
23 23 1.79 19.6 23.04411
24 24.4 2.05 19.6 23.28542
25 26 2.01 21 23.66707
26 26 1.94 22 24.08705
27 26.6 2.14 22.6 24.58083
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Figure 1. Fitting of Weibull distribution for the uncensored data by plotting (i) log(−log(Ŝ (t))) against log(survival time)
(ii) log(−log(S (t))) against log(survival time)

Figure 2. Fitting of Weibull distribution for censored data by modified Cox-Snell residual method by plotting
r=-log(Weibull Survival) against (-log(Kaplan-Meier Survival))

Figure 3. Estimated and observed survival time for 27 patients who are under advance diabetic nephropathy group
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Abstract

This paper presents a progression of events from a case study that explored elementary school teachers’ understanding
of essential topics in statistics. One particular teacher revealed misconceptions regarding the mode and range during
professional development. These misconceptions were corrected, the concepts taught appropriately in the classroom,
and then the original misconceptions resurfaced. This example sheds light on the importance of sustained professional
development.

Keywords: Teachers knowledge, Statistics education, Professional development

1. Introduction

Statistics is a relatively new component of the K-12 curriculum. In fact, the efforts of the Quantitative Literacy Project
(Schaeffer, 1986) led the National Council of Teachers of Mathematics (NCTM) to first include data analysis as part of
its Curriculum and Evaluation Standards (1989). The emphasis has gradually increased in the Principles and Standards
for School Mathematics and most notably in American Statistical Association’s (ASA) Guidelines for Assessment and
Instruction in Statistics Education (GAISE) (2007). These efforts to increase the quantity and quality of statistics content
are not isolated to the United States. For example, statistics educators in Australia have been attempting to increase the
amount of statistical content in their schools since the release of A National Statement on Mathematics for Australian
Schools (Australian Education Council, 1991). All of these efforts built upon the momentum that began with the Quanti-
tative Literacy Project and have eventually led to the inclusion of statistics in the College and Career Readiness Standards
that are currently being finalized at a national level in the United States.

The inclusion of statistics in the K-12 curriculum has been an exhausting effort for many statisticians and statistics educa-
tors. Now that it is in the curriculum, there is another concern that must be addressed - the preparation of teachers to teach
statistical content at the level of sophistication described in the GAISE framework. As Shaughnessy stated almost twenty
years ago, “Teachers’ backgrounds are weak or nonexistent in stochastics and in problem solving. This is not their fault,
as historically our teacher preparation programs have not systematically included either stochastics or problem solving
for prospective mathematics teachers” (1992, p. 467). This concern by Shaughnessy was still evident 15 years later, as
supported by his statement, “Most K-12 teachers in the United States have very little background in statistics” (p. 995). It
likely continues to be a concern.

Over the past several years, statistics educators have called for courses focused on the teaching and learning of statistics to
be included in teacher preparation programs (e.g., Jacobbe, 2007; Kader & Perry, 2002). As important as these are for the
preparation of preservice teachers, they cannot address the needs of inservice teachers who have already completed their
preservice training. For these teachers, many researchers have recommended and some have implemented professional
development programs (e.g., Friel & Bright, 1998; Watson, 1998).

Professional development is important for changing what transpires in the classroom. For inservice teachers, these oppor-
tunities represent one of the only avenues for exposing them to, and helping them master, the advanced content included
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in frequent reform efforts or additions to the curriculum. Research on key characteristics in professional development
(e.g., Abell, S., & Lee, M., 2008; Chval, K., Abell, S., Pareja, E., Musikul, K., & Ritzka, G., 2008; Loucks-Horsley,
Hewson, Love, & Stiles, 1998) clearly emphasizes the importance of sustained professional development. A report from
the Institute of Educational Sciences (2007) confirms this, stating:

Studies that had more than 14 hours of professional development showed a positive and significant effect on
student achievement from professional development. The three studies that involved the least amount of pro-
fessional development (5 - 14 hours total) showed no statistically significant effects on student achievement.
(2007, p. iv)

Of the studies cited by IES (2007), only six met this standard of a minimum of 14 hours. On average, the professional
development involved in these six studies contained 49 hours of contact hours, which translated to a net increase in
students’ achievement by 21 percentile points, though it is not always clear on what measures these improvements were
noted.

Guskey (2002) identified five levels of professional development evaluation. These include participants’ reactions (Level
1), participants’ learning (Level 2), organization support & change (Level 3), participants’ use of new knowledge and
skills (Level 4), and student learning outcomes (Level 5).

In another study, Guskey (2003) analyzed 13 lists of characteristics of effective professional development, in part to de-
termine if there was overlap between some of the characteristics various organizations recommended. Based on Guskey’s
analysis, the most common characteristic among the lists was that effective professional development “enhances teachers’
content and pedagogical knowledge,” which appeared on 12 of the 13 lists. The second most common was that effective
professional development ”provides sufficient time and other resources,” which appeared on 10 of the 13 lists.

In addition to the issue of time, and of more concern to the statistics education community, is the issue of whether
or not teachers actually receive training that promotes statistical rather than mathematical thinking. As delMas (2004)
eloquently described by pulling on the work of Cobb & Moore (1997), there is a difference between mathematical and
statistical reasoning. According to delMas,

...it is likely that many aspects of statistical and mathematical reasoning are highly similar. The task demands
of each discipline, however, may produce different sources of reasoning error. While instruction can be driven
and facilitated by contextualization in both disciplines, statistical practice is highly dependent on real world
context whereas mathematical practice tends to be removed from real world context (Cobb & Moore, 1997).
(delMas, 2004, p. 91)

This difference is also highlighted in the GAISE framework and is important to consider when developing and imple-
menting professional development programs to improve teachers’ preparation to teach statistics. Mathematics educators -
who themselves were most likely trained in a manner which did not promote statistical thinking focused on dealing with
the prevalence of variability - are the ones who are asked to primarily deliver professional development to schools. The
result of this may leave teachers being trained in a manner that promotes various measures of central tendency or variation
without engaging in the four components of statistical thinking as described in the GAISE framework - Formulating Ques-
tions, Collecting Data, Analyzing Data, and Interpreting Results. The remainder of this paper describes a professional
development experience that one teacher experienced and then highlights a progression of events that emphasizes the need
for sustained professional development situated within statistics.

The progression of experiences described in this paper provides a strong example of why professional development must
be a sustained effort. Further, it explores one participant’s learning (Level 2) as well as her use of new knowledge and
skills (Level 4) as described by Guskey. In particular, it sheds light on the impact a particular professional development
opportunity had on one participant’s content knowledge as measured on three occasions.

2. Method

A case study involving elementary school teachers was conducted in a school district in the USA. The example presented
in this paper is from a larger study that explored elementary school teachers’ understanding of basic ideas in statistics (for
further details see Jacobbe, 2007). Ms. Brown (a pseudonym), who had taught Grade 3 (age 9) for all four years of her
teaching career at the time of the study, is the participant discussed in this paper.

Initial contact was made with Ms. Brown through a gatekeeper - the district supervisor for mathematics and science
education. Ms. Brown was highly recommended by her principal and district supervisor as she was viewed to be an
exemplary teacher of mathematics. Although generalizations cannot be made based on this example, the sequence of
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events provides insight into the importance of sustained development, particularly since the participant had been identified
as an exemplary teacher.

Over the course of 18 months, the teachers in the study participated in interviews, completed questionnaires and as-
sessments, and allowed the researcher to observe their classroom at least 12 times. The researcher was also present for
professional development training the teachers received. The results reported in this paper are from the researcher’s ob-
servation of the professional development training as well as accounts from two of the observations involving Ms. Brown.
The professional development experience was designed to introduce the teachers to the investigations they would be
asked to lead while implementing the curriculum materials. Based on when the professional development was scheduled,
it worked out that Ms. Brown was actually scheduled to implement the very same lessons only two days later. The lessons
all came from the teachers’ manual of a newly developed curriculum by Clemson University entitled Math Out of the
Box (Moss, Diaz, Lashley, Moss, & Sanders 2005), which contained 10 lessons focused on statistics at each grade level.
The developers of the Math Out of the Box materials provided the professional development involved in this study. It is
important to point out that the professional development providers were not specifically trained in the area of statistics.

3. Results

The discussion presented here centers on Ms. Brown’s experiences with two fundamental topics in statistics, the mode
and the range. The first event stems from the professional development training, which is designated as Day 0. During
this experience the first author sat with Ms. Brown as she was participating in the professional development. Two days
later, Ms. Brown was observed teaching a lesson. Six days after the first observation of Ms. Brown, she was observed
teaching a lesson once again. All three of these experiences (researcher’s presence at professional development and two
observations of teaching) involved the concepts of the mode and range. Each of these events is described in succession.

3.1 Professional Development Training (Day 0)

The professional development training was provided by the authors of the Math Out of the Box materials. The purpose
of the training was to introduce some of the statistics lessons to the teachers who would be implementing them during the
academic year, as well as to review some of the statistical content that might arise during the lessons.

The context for the lesson introduced during the professional development was the circumference of individuals’ wrists.
During this training, the researcher sat at the table with Ms. Brown as she was participating in the professional develop-
ment. The following lineplot was constructed based on data from the participants in the training.

<Figure 1>

During Ms. Brown’s exploration with the teachers, she looked over at the researcher and indicated, ”I know this stuff.”
She proceeded to say that the mode of the data was 9, because 8 inches occurred as a data value 9 times. However, the
mode is the data value or values that occur most often, not the frequency of that value. For this particular data set, the
mode was 8 inches since that data point occurred most often (9 times). Ms. Brown reported the range as 9 - 2 or 7. This
was obtained by taking the highest frequency (9) minus the lowest frequency (2). For this particular data set, the range
should have been reported as 9 (the maximum value represented in the data set) minus 6 (the minimum value represented
in the data set, or 3 inches, so, as with mode, Ms. Brown confused the value of the variable in question with the frequency
of that value.

The authors believe that it is more valuable to report the range as a range of values (e.g. 6 to 9 inches) in addition to a
singular value (3 inches) that represents the difference between these values. By reporting the range of values, one knows
where the data are situated without having to view the original data set. In contrast, by reporting only a singular value
one only knows that the maximum and the minimum are 3 inches apart. In other words, if one knows that the range is
3 inches, one cannot tell if the data range from 6 inches to 9 inches, from 12 to 15 inches, or between any other values
3 inches apart. We further believe that this clarification may help reinforce the idea that the mode and range concern the
values of the variables rather than their frequencies.

The error exhibited my Ms. Brown is not uncommon (e.g., Groth & Bergner, 2006). It was most likely due to confusion
regarding the variable in question. The variable in this context was the wrist circumference; however Ms. Brown consid-
ered the frequency as the variable. The point made regarding the reporting of the mode above (reporting the mode as 3
inches, from 6 to 9 inches, vs. reporting it only as 3 inches) may have helped Ms. Brown as the range would have been
situated within the context of the investigation.

During the professional development training, the correct method to find the mode and the range were discussed. Ms.
Brown realized her error (i.e. using the frequencies rather than the values of the variables) and by the end of the training
indicated that the mode was 8 inches and the range was 3 inches. Given other contexts as part of the professional
development training, Ms. Brown was able to correctly determine the mode and the range.
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Two days after this training, Ms. Brown introduced the same lesson involving wrist circumference to her students and
included a discussion of the mode and range. Her success with these ideas is described below.

3.2 Wrist Circumference Lesson Two Days Later (Day 2)

During this lesson, students measured the circumference of each other’s wrists. The data were collected and organized
into a tally chart. Based on the data, the following lineplot was constructed.

<Figure 2>

During a discussion one of the students in Ms. Brown’s class introduced the terminology of the range. Comments 1
through 44 are from a discussion that occurred between Ms. Brown and her students regarding the mode and range.

<Table 1>

During this sequence of events, Ms. Brown corrected the misconceptions introduced by students. These were the same
misconceptions (comments number 4 and 8 for the range; comment number 34 for the mode) that Ms. Brown exhibited
during the professional development training just two days earlier. Based on this lesson, it would seem as though the
professional development training was successful.

Six days after the lesson on wrist circumference outlined above, Ms. Brown had another opportunity to work with this
same group of students on mode and range. This encounter is described in the following section.

3.3 Birth Length Lesson (Day 8)

The context of the lesson observed on this day was students’ birth lengths. Students had been asked to bring in their
birth lengths (in inches) for the class to investigate. During the morning of this lesson, Ms. Brown also re-introduced
the concept of the mode and range for a data set represented once again by a lineplot. However, in her discussion, there
was no context, so no variables were identified; further, Ms. Brown did not mention that the values of the variable were
identified on the horizontal axis, nor did she indicate that the vertical values, represented by the X’s in the chart, showed
the frequency, with each X representing one occurrence. The lineplot was displayed on the board as follows:

<Figure 3>

During this time, Ms. Brown told the students that the mode of this data set was 7 since this was the highest frequency
(note that the correct mode was 6) and the range for this data set was 7 (the highest frequency) minus 2 (the lowest
frequency) or 5 (note that the correct range was 3 to 7 or 4). This misconception matches the one Ms. Brown exhibited
during the professional development training and the one Ms. Brown had corrected during the class six days earlier
(comments 4, 8, and 34 above). This same misconception became an issue yet again during the session on birth lengths,
which involved the following lineplot.

<Figure 4>

Comments 45 through 52 represent the conversation between Ms. Brown and a student (the same student who made
comments 35 through 44 above) concerning the mode and range after Ms. Brown had explained (incorrectly) how to
determine these values.

<Table 2>

It should be noted that the student who went up to the board and correctly showed that the mode of the wrist sizes in the
first lesson was 6 inches (comment number 38) was the same student who questioned finding the mode and range in the
birth lengths lesson (comment number 45).

3.4 Summary of Observations

Table 3 provides a timeline for what transpired. In the table, Day 0 corresponds to the professional development training,
Day 2 corresponds to the wrist sizes lesson, and Day 8 corresponds to the lesson on birth lengths.

<Table 3>

This sequence of events causes a concern over the power of one-day professional development workshops. Even in
instances where they appear to have a clear and positive impact on teachers’ understanding, it is possible, perhaps even
likely, for teachers to revert back to their original misconceptions. The importance of sustained professional development
is widely documented (Chval, Abell, Pareja, Musikul, & Ritzka, 2008: Loucks-Horsley, Hewson, Love, & Stiles, 1998;
Abell & Lee, 2008; Fraser, Reid, & McKinney, 2007). Much of this research, however, has focused on sustained PD in
an effort to support and reinforce transformation in pedagogy. However the sequence of events described in this paper
provides an example of the need to sustain PD in regard to content, particularly in the area of correcting misconceptions.
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4. Discussion and Implications

The sequence of events outlined in this paper provides an example of the importance for sustained professional devel-
opment. It not only calls into concern the quantity of time, but also the quality of training teachers receive in regard to
statistics. That isn’t to say that the training Ms. Brown received was poor, but that it was not sufficient to overcome her
misconceptions. Perhaps if the PD had been more often and had addressed all four components of the statistical process
that the GAISE identifies - formulating questions, collecting data, analyzing data, and interpreting results - Ms. Brown
may have been able to overcome her misconceptions. Though the training the lead Author witnessed was of high quality,
it focused more on collecting and analyzing data, but did not engage her with formulating questions and interpreting
results. In the former case, the questions were pre-determined for her, and in the latter case, Ms. Brown did not have to
reflect upon and discuss what the results suggested. This may have been a result of the training not being provided by
individuals specifically trained in statistics. However, mathematics educators or exemplary teachers are often the ones
asked to provide professional development to districts. If the process of statistics is to be emphasized, it is important for
statisticians and statistics educators to become more engaged in providing professional development to teachers.

Although the professional development opportunity appeared to affect Ms. Brown’s knowledge (Level 2 as described by
Guskey), in that she was able to identify the mode and range for data sets after the professional development, and upon
her ability to implement this knowledge successfully in the classroom (Level 4 as described by Guskey), in that she was
able to teach the concepts appropriately two days after the professional development, this one-day training did not make a
lasting impact on Ms. Brown. This is evident by the fact that she reverted to her original misconceptions only eight days
after receiving the professional development training.

This situation seems to support the report from the IES and other professional development research (e.g., Chval, Abell,
Pareja, Musikul, & Ritzka, 2008; Loucks-Horsley, Hewson, Love, & Stiles, 1998; Abell & Lee, 2008; Fraser, Reid,
& McKinney, 2007), which calls not only for on-going professional development, but the creation of communities of
teachers. Despite initial indications that showed the professional development had an impact on Ms. Brown, follow-up
observations revealed that the professional development did not last. Perhaps even more troublesome is the fact that she
told her students one thing on Day 2 and another on Day 8, and in fact contradicted a student who had learned the ideas
correctly during the initial lesson and questioned the teacher when she reversed course on the later day.

Despite the setbacks, the study also revealed reasons for optimism. By the end of the study, Ms. Brown (and indeed the
other teachers in the study) had acknowledged an awareness of her lack of content knowledge in the area of statistics and
a desire to receive professional development focused on this particular content strand. From the larger study it was clear
that although the teachers did not experience lasting gains in their understanding of essential topics in statistics, it caused
them to reconsider the suitability of their own content knowledge.

As Gal (2004) points out, one of the biggest obstacles toward the inclusion of statistics in the curriculum is teachers’
(and society’s in general) disposition toward the discipline of statistics. If teachers have only been exposed to statistical
content as a discipline entrenched in procedures rather than the conceptual underpinnings of the processes, then they
will not realize that there is a gap in their knowledge. For all the teachers in the case study, the interaction caused the
teachers to question their dispositions toward statistics. In other words, this interaction problematized the awareness of
their knowledge.

Once teachers recognize new viewpoints or what may be lacking in their own understanding, problematization occurs.
Problematizing teachers’ knowledge is essential for professional development to be successful in changing teachers’
preparedness for teaching (Cobb & Bauersfled, 2005). Teachers who realize they have a lack of understanding in a
particular area are more likely to benefit from professional development focused on content. The teachers involved in
this study provide an example that illustrates the importance of such a realization. At the beginning of the study, the
teachers preferred activities they could use in their classrooms over developing their own content knowledge. At the end
of the study, they preferred professional development focused on content. With the problematization they experienced,
the teachers would be more likely to absorb the content introduced during sustained professional development that is
fundamental to true understanding and the processes of statistical inquiry. Though the initial professional development
had not had the desired effect in terms of knowledge and pedagogy, the teachers’ recognition of their gaps suggested that,
in the long term, the goals for understanding would be met.

5. Conclusion

This study confirmed that a single effort at correcting teachers’ misconceptions may not be successful. Professional
development in the area of statistics might be more successful if it were offered on a more sustained basis and focused
on the statistical processes as described in the GAISE framework. Further studies are necessary to investigate the effect
of various professional development opportunities on the statistical content knowledge of elementary school teachers;
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however it is clear that one-shot professional development will not overcome some teachers’ misconceptions.
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Table 1. Wrist circumference lesson transcript

Number Person Comment
1 Ms. Brown [To a particular student] You brought up a good

word earlier. What was that word?

2 Student Range

3 Ms. Brown What is the range?

4 Student Range is the difference between the biggest num-
ber of X’s and the smallest number of X’s.

5 Ms. Brown Anyone else?

6 Student Difference between the most popular and least
popular.

7 Ms. Brown Can you show me?

The student showed that there were 10 X’s at 6 and 2 X’s at 5.

8 Student So you take the 10 minus 2 to get a range of 8.

9 Ms. Brown Anyone else? How many number choices did we
have when we recorded the information?

10 Student 15

11 Ms Brown How many measurements, in inches, did we actu-
ally have?

12 Student 3

13 Ms. Brown What measurement is the highest we used?

14 Student 6 inches

15 Ms. Brown Was that the highest number of inches that we
used?

16 Student No. We used 7 as the highest.

17 Ms. Brown What was the smallest length?

18 Student 5

Ms. Brown wrote the word ”Range” on the board with the numbers 7 and 5 beneath the word.

19 Ms. Brown I want to know the difference between these two
numbers. What do I do?

20 Student Add them

21 Ms. Brown Close
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Number Person Comment
22 Student Subtract them

23 Ms. Brown So, 7 - 5 = 2. Guess what that is.

24 Student The range.

25 Ms. Brown I made a mistake. Two what?

26 Student Inches

27 Ms. Brown So it is not the number of X’s. You just look down
here (pointing to the numbers below the line in the
lineplot).

28 Student I do not get how it is 7 and 5.

29 Ms. Brown We took the greatest number we had and the least.

30 Student We took the most before.

31 Student What about the mode?

32 Ms. Brown Let’s talk about the mode.

33 Student I think I know the mode. I think the mode is the
opposite of the range, so it is 7 + 5 = 12.

34 Student I think when you do the number of X’s, the highest
amount of X’s is 10, so the mode would be 10.

35 Ms. Brown (Calling on a particular student) What did you say
about the mode?

36 Student It would be the measurement that has the most X’s
above it.

37 Ms. Brown What would that be?

38 Student 6 (The student went up to the board and pointed to
it.)

39 Ms. Brown So what is the mode?

40 Student 6

41 Ms. Brown Did I have to add anything?

42 Student No

43 Ms. Brown I just have to say 6 inches. Did I have to count
X’s?

44 Student You could just look at it.
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Table 2. Birth length lesson transcript

Number Person Comment
1 Student We [a group of students working on analyzing a

data set together] disagree how to find the mode
and range.

2 Ms. Brown How are you trying to find the mode?

3 Student I think you should look at the bottom of the line
plot rather than the number of X’s. Well I guess
you look at the number of X’s to see which birth
length happened most often. So I think the mode
should be 21.

4 Ms. Brown How are other people in your group finding the
mode?

5 Student They are saying that the mode is the most number
of X’s, so they say it is 8.

6 Ms. Brown The mode is the most number of X’s, so it is 8. I
like your thinking in trying to get 21, but the mode
is 8 here. What were you thinking about with the
range?

7 Student Well, I am probably wrong. I was thinking that
the range was the difference between the smallest
birth length and the biggest birth length. I thought
it was 6 (this was from 25 - 19), but they are saying
that it is 7 (this was from 8 - 1).

8 Ms. Brown Yes, it is 7.

Table 3. Timeline for Ms. Brown’s misconception regarding the range

Day Event
0 Professional Development Training introduced the concepts of mode and range. Dur-

ing this training, Ms. Brown originally exhibited the misconceptions regarding the
concepts of mode and range.

0 Ms. Brown’s misconceptions were corrected by her experiences with the lesson in the
professional development training.

2 Ms. Brown was able to correct the same misconceptions she had exhibited during the
professional development training when they were exhibited by her students.

8 Ms. Brown reverted to her original misconceptions as more time had passed between
the professional development training and her coverage of the mode and range. Early
in the day, Ms. Brown taught the students how to find the mode and range of a data
set incorrectly, using an example without context. This teaching contradicted the way
she originally introduced the concepts to the students on Day 2.

8 Ms. Brown, in error, informed a student that he was incorrect in the manner he found
the mode and range. This contradicted the responses she praised 6 days earlier.
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