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Abstract

The classical goodness-of-fit problem, in the case of a null continuous and completely specified distribution, is

faced by a new version of the Girone–Cifarelli test (see Girone, 1964; Cifarelli, 1974 & 1975). This latter test

was introduced for the two-sample problem and showed a substantial gain of power over other common tests

based on the empirical distribution function, notably over the Kolmogorov–Smirnov test. First, the problem of

the re-definition of the Girone–Cifarelli test-statistic is considered, by reviewing the literature on the subject. A

classical remark by Anderson (1962) is shown to be useful to choose the integrating function in the newly defined

test-statistic. The sample properties of such a test-statistic are then studied. A table of critical values is obtained

by simulation; moreover, the asymptotic null distribution is considered and its accuracy as an approximation of

the finite distribution is discussed. Finally, a simulation study, considering a wide set of distributions mostly

used in applications, is conducted to compare the proposed test with its classical competitors. The study gives

some indications to locate such situations where the Girone-Cifarelli test performs at its best, notably over the

Kolmogorov–Smirnov test.

Keywords: goodness-of-fit tests, empirical distribution function, Girone–Cifarelli test, nonparametric statistical

methods

1. Introduction

A random sample x1, . . . , xn is drawn from a population X with continuous distribution function F, to test the null

hypothesis H0 : F(x) = F0(x) against the alternative H1 : F(x) � F0(x), x ∈ �, where F0 is completely specified.

This common goodness-of-fit problem is usually faced by three classes of tests: the chi-square test, the tests based

on spacings and the tests based on the empirical distribution function (edf). In this latter class several test-statistics

can be considered, usually by adapting their versions for the two-sample problem.

The most known test based on the edf Fn is surely the Kolmogorov–Smirnov test, which rejects H0 for large values

of the test-statistic

Kn = sup
t∈(−∞,+∞)

|F0(t) − Fn(t)|. (1)

As known, other test-statistics can be defined by considering the square of the difference |F0(t) − Fn(t)|, like in the

Cramér–Von Mises test

Cn = n
∫ +∞

−∞
[F0(t) − Fn(t)]2 dF0(t). (2)

Notice that in the above considered test-statistics F0, a continuous model, is compared with Fn, which has dis-

continuities at x1, . . . , xn. However, in (1) the supremum of the difference |F0(t) − Fn(t)| is taken, while in (2) the

squared difference [F0(t) − Fn(t)]2 is integrated with respect to the continuous function F0. Because of these latter

choices, no particular care is needed in the definition of the value taken by the edf at its points of discontinuity.

This means that one can use the usual definition

Fn(x) =
i
n
, for x(i) ≤ x < x(i+1) (i = 0, . . . , n), (3)

(where x(1), . . . , x(n) denotes the ordered sample, x(0) = −∞ and x(n+1) = +∞), which makes Fn to be right-

1
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continuous, or equivalently set

Fn(x(i)) =
i − c

n
(i = 1, . . . , n), (4)

(where c is chosen in [0,1]), so that Fn can take every value of its jump at x(i) (i = 1, . . . , n).

Turning back to (2), the function with which the squared difference [F0(t)−Fn(t)]2 is integrated could be substituted

by the edf itself. This choice allows to simplify the test-statistic as

C
′
n = n

∫ +∞

−∞
[F0(t) − Fn(t)]2 dFn(t) =

n∑
i=1

[F0(x(i)) − Fn(x(i))]
2, (5)

but the definition of Fn(x(i)) becomes now relevant. However, Anderson (1962) pointed out that, when c = 1/2 is

taken in (4), the test-statistics Cn and C
′
n are equivalent, as the former can be also written as

Cn =

n∑
i=1

[
F0(x(i)) − i − 1/2

n

]2

+
1

12n
. (6)

Besides such a latter equivalence, setting c = 1/2 in (4) is, as a matter of fact, a natural choice. Indeed, forcing

the edf to take the mid-point of its jump at x(i) seems less arbitrary than choosing any other value in the jump

(including the extremes i/n and (i − 1)/n, i = 1, . . . , n.

Notice again that any choice of Fn(x(i)), made to give a final form to C
′
n in (5), does not affect the usual definition

of the edf in the open intervals (x(i), x(i+1)), i = 1, . . . , n − 1. However, in the literature some modifications of the

edf in such intervals were also proposed. For instance, Green and Hegazy (1976) pointed out that when the edf is

re-defined as

F
′
n(x) =

i + 1/2

n + 1
for x(i) < x < x(i+1) (i = 1, . . . , n − 1), (7)

the criterion Cn in (2) reduces, up to a multiplicative constant, to

n∑
i=1

[
F0(x(i)) − i

n + 1

]2

, (8)

which is shown to lead to a powerful test under some circumstances. Notice that the test-statistic in (8) can be also

obtained from C
′
n in (5) by re-defining accordingly the value of the edf at its discontinuities, that is by setting

F
′
n(x(i)) =

i
n + 1

(i = 1, . . . , n), (9)

which is again the mid-point of the jump of F
′
n at x(i). Other modifications of the definition of the edf in the open

intervals (x(i), x(i+1)) are known. By noticing that the term i/(n + 1) is actually the expectation of F0(x(i)) under

the null hypothesis, Pyke (1959) proposed a new version of the Kolmogorov–Smirnov criterion (1), which in turn

induces a further modification of the definition of the edf (see also Brunk, 1962).

The above remarks will be used in this paper to propose a goodness-of-fit version of the Girone–Cifarelli test,

which was mainly studied for the two-sample problem. The definition of the test-statistic for goodness-of-fit

purposes raises some questions which will be addressed in the next section, where the sample properties of the

newly proposed test-statistic will be also analyzed. Section 3 will report some results of a simulation study, where

the proposed test is compared with its most important competitors based on the edf. Section 4 will provide a

real-data example and some conclusions.

2. Definition of the Test-statistic

Girone (1964) proposed a test for the equality of two populations X and Y , based on the statistic

(m + n)

∫ +∞

−∞
|Fn(t) −Gm(t)| dHm+n(t), (10)

where Fn, Gm and Hm+n denote respectively the edf’s of a n-sample from X, a m-sample from Y and the pooled

(m + n)-sample. The test was actually originally proposed in the special case n = m and its sample properties

were studied by Cifarelli (1974 & 1975). Generalizations for the case n ≤ m were proposed by Goria (1972),
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by Borroni (2001) and independently by Schmid and Trede (1995). For the two-sample problem, the Girone–

Cifarelli test proved to be superior to other common tests, notably the Kolmogorov–Smirnov test, under a wide

set of circumstances. This fact is far from being unexpected, as in (10) the whole behavior of the difference

|Fn(t) −Gm(t)| is considered, while in the Kolmogorov–Smirnov test just its supremum is taken.

A goodness-of-fit version of the Girone–Cifarelli test would result useful. Using the same settings as in section

1, the edf Fn of the single n-sample is now to be compared with the null model F0. The function with respect to

which the difference |Fn(t) − F0(t)| is to be integrated could then be the null model F0 or the edf Fn. As above

remarked, this latter choice highly simplifies the structure of the test statistic, as

n
∫ +∞

−∞
|F0(t) − Fn(t)| dFn(t) =

n∑
i=1

|F0(x(i)) − Fn(x(i))|; (11)

as a consequence, the definition of the value taken by the edf at its discontinuities becomes relevant. Following the

above suggestion by Anderson (1962) for C
′
n, we can then take

Fn(x(i)) =
i − 1/2

n
(i = 1, . . . , n), (12)

and define

A
′
n =

n∑
i=1

∣∣∣∣∣F0(x(i)) − i − 1/2

n

∣∣∣∣∣ . (13)

The sample properties of A
′
n are easily derived from its two-sample equivalent. First of all notice that, being F0 a

continuous model, the variables F0(x(i)), i = 1, ..., n, are uniform over [0,1] and hence A
′
n is distribution-free under

H0. For small sample sizes, the null distribution of A
′
n can then be determined by simulation, as pointed out in the

next section. Moreover, following Cifarelli (1975), n(−1/2)A
′
n is asymptotically distributed as the r.v.∫ 1

0

|w(τ)| dτ
∣∣∣∣w(1) = 0, (14)

where {w(τ), t ∈ [0, 1]} denotes the Brownian motion in [0,1]. A tabulation of the quantiles of (14) is found in

Johnson and Killeen (1983); see also Shepp (1982 & 1991) and Takács (1993).

Differently from C
′
n, A

′
n is not equivalent to the statistic obtained by using F0 as an integrating function in (11).

This is shown by considering that

An =

∫ +∞

−∞
|F0(t)−Fn(t)| dF0(t) =

1

2

n∑
i=1

[∣∣∣∣∣F0(x(i)) − i − 1

n

∣∣∣∣∣ (F0(x(i)) − i − 1

n

)
−

∣∣∣∣∣F0(x(i)) − i
n

∣∣∣∣∣ (F0(x(i)) − i
n

)]
. (15)

Schmid and Trede (1996) considered
√

n An as a test-statistic and reported a small simulation study to evaluate

its performance. They concluded that the power of An is quite close to the one of the Cramér–Von Mises test,

without reporting situations where An performs definitely nor uniformly better than Cn. It should be pointed out

that A
′
n, which has a rather simpler form, is not equivalent to An, even if the two tests have often similar powers.

Consequently, the next section will first present some results of a simulation study without distinguishing between

A
′
n and An. In the following, some insights about the situations where the two tests are likely to perform differently

will then be given. In a sense, the reported simulation study can be considered as an extension of the one by

Schmid and Trade (1996), because it will be able to locate some alternatives where the test based on A
′
n, along with

the one based on An, performs definitely better than the Cramér–Von Mises test.

3. Simulation Study

The first task to develop a goodness-of-fit test based on A
′
n is to determine its critical values. As above mentioned,

being F0 completely specified and continuous, the transformation F0(X) gives a Uniform distribution over (0,1).

Hence the null distribution of A
′
n can be simulated by randomly generating a large number of samples from such

a distribution, with a fixed size n. The critical values of the test can then be determined by computing the value

taken by A
′
n for each simulated sample as long as the related frequency distribution. For a selected range of sample

sizes and some common significance levels, Table 1 reports the critical values of n(−1/2)A
′
n based on 106 simulated

samples.

3



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 2, No. 1; 2013

Table 1. Simulated critical values of n(−1/2)A
′
n

α n = 5 n = 10 n = 20 n = 30 n = 50 ∞
0.01 0.7142 0.7364 0.7436 0.7465 0.7478 0.7518

0.05 0.5670 0.5747 0.5783 0.5791 0.5807 0.5821

0.10 0.4893 0.4942 0.4966 0.4972 0.4982 0.4993

0.15 0.4398 0.4439 0.4459 0.4462 0.4470 0.4480

0.20 0.4029 0.4064 0.4081 0.4088 0.4092 0.4103

As a term of comparison, the last column of Table 1 reports the critical values of the asymptotic distribution of

n(−1/2)A
′
n (see section 2). The fast convergence to the asymptotic approximation can be easily appreciated. In order

to get further indications about the accuracy of the asymptotic distribution and the sample sizes needed to use it,

the simulated cdf’s obtained for fixed values of n were compared with the asymptotic cdf, whose expression is

found in Johnson and Killeen (1983). Figure 1 reports the results obtained for n = 10. As seen, the asymptotic cdf

is very close to the “real” one, even if a certain difference is observed, especially for small values of the variable.

However, one can claim that, to develop a goodness-of-fit test based on A
′
n, just the right tail of its null distribution

is relevant. In effect, when the last part of the distribution is considered (say for such x so that Pr{A′n ≤ x} > 0.8)

the finite cdf is rather close to the asymptotic cdf. To get into further details, Table 2 reports, for some selected

sample sizes, the greatest absolute difference of the two cdf’s and the same difference referred to the right tail of

the distribution. From such a table, a minimum value of n = 50 is to be advised to get a correct approximation of

the null distribution.

Figure 1. Comparison of the “real” cdf and the asymptotic cdf of A
′
n under H0 (n = 10)

Table 2. Greatest absolute difference between the “real” cdf and the asymptotic cdf of A
′
n under H0 (whole distri-

bution and right tail)

n whole distrib. right tail

5 0.0626 0.0112

10 0.0330 0.0065

20 0.0173 0.0035

30 0.0123 0.0023

50 0.0068 0.0018

100 0.0042 0.0005

After computing the critical values of the test based on A
′
n, its power can be estimated by simulation as well. This

section reports some results of a wide simulation study conducted at this aim. Notice that the power of a goodness-

4
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of-fit test will depend on the model F0 chosen under H0 as long as on the real cdf of X under H1, which will be

denoted as F1. Generally F1 will belong to a family of distributions containing F0 itself, which is hence obtained

by an appropriate choice of the parameter(s) of the family. In this paper we will focus on three models for H0,
mostly used in applications: the standard Normal distribution, the unit exponential distribution and the uniform

distribution on the unit interval. For each null model, F1 will belong to three different families of distributions

containing F0.

Consider first the standard Normal as a null model. A suitable family for F1 could be the skew-normal (SN)

distribution (see Azzalini, 1985) with density:

f (x) = 2 φ(x)Φ(ax), x ∈ �, (16)

where φ(·) and Φ(·) denote the density and the cdf of a standard Normal respectively. The parameter a ∈ �
regulates the skewness of the distribution, thus giving a standard Normal if set to zero. To this end, using family

(16) for F1 in a simulation study, can result in an useful analysis of such situations where the researcher needs to

test normality against possible asymmetries of data. It is known, however, that data may depart from normality

due to heavy-tailedness. To simulate such latter situations, the Student’s T density can be used as a family for F1 :

f (x) =
Γ
(

a+1
2

)
√

aπ Γ
(

a
2

) (
1 +

x2

a

)− a+1
2

, x ∈ �, (17)

(Γ(·) denotes the gamma function). The family (17) gives only symmetric distributions with heavy tails, such

phenomenon being reduced by increasing the parameter a > 0; as known, the family converges to the normal

distribution when a → ∞. Finally, to simulate such cases where the normality of data depends on the application

of the central limit theorem, one can choose for F1 the gamma (GA) density with unit scale:

f (x) =
1

Γ(a)
xa−1e−x, x > 0. (18)

As an effect of the above theorem, when a→ ∞, family (18) gives a normal density (which can be then standardized

to be consistent with the null model F0). However, in applications, a may not be large enough to guarantee a good

convergence; the researcher may then need a powerful test to detect such a failed convergence.

Table 3. Simulated powers when the null model is a standard Normal distribution (α = 0.01, 0.05, 0.1)

n H1 A
′
n Kn Cn Dn

10 null

.0101 .0099 .0099 .0103

.0500 .0506 .0502 .0506

.1007 .1010 .1013 .1002

10 SN(1)

.1989 .1575 .1925 .1707

.4503 .3849 .4392 .4088

.5948 .5308 .5841 .5555

10 SN(1.5)

.3320 .2743 .3291 .2755

.6460 .5739 .6399 .5908

.7850 .7243 .7807 .7431

10 T(1.5)

.0312 .0243 .0284 .4673

.1117 .0933 .1044 .6088

.1948 .1772 .1843 .6868

10 T(1.25)

.0369 .0302 .0339 .5883

.1272 .1062 .1197 .7080

.2185 .2007 .2076 .7703

10 GA(2)

.0119 .0203 .0158 .0146

.0687 .0841 .0748 .0768

.1363 .1485 .1415 .1525

5
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Table 3 (continued). Simulated powers when the null model is a standard Normal distribution (α = 0.01, 0.05, 0.1).

n H1 A
′
n Kn Cn Dn

10 GA(1.5)

.0132 .0240 .0179 .0169

.0769 .0946 .0839 .0879

.1508 .1653 .1556 .1716

25 SN(0.5)

.2022 .1491 .1904 .1904

.4215 .3494 .4067 .4054

.5501 .4809 .5385 .5350

25 SN(1)

.6637 .5441 .6471 .6302

.8716 .7989 .8627 .8585

.9317 .8894 .9272 .9251

25 T(1.75)

.0335 .0274 .0313 .6016

.1299 .1107 .1219 .7532

.2321 .1986 .2160 .8246

25 T(1.5)

.0392 .0347 .0374 .7334

.1528 .1329 .1434 .8468

.2717 .2355 .2543 .8957

25 GA(2)

.0296 .0455 .0363 .0316

.1230 .1403 .1314 .1395

.2171 .2295 .2201 .2520

25 GA(1.5)

.0398 .0592 .0483 .0427

.1585 .1745 .1754 .1817

.2703 .2692 .2698 .3192

100 SN(0.25)

.2427 .1775 .2304 .2400

.4684 .3886 .4523 .4626

.5904 .5198 .5777 .5859

100 SN(0.5)

.8476 .7331 .8315 .8439

.9514 .9040 .9453 .9507

.9762 .9505 .9730 .9760

100 T(2)

.0728 .0677 .0675 .9398

.2909 .2545 .2708 .9839

.4779 .4245 .4563 .9931

100 T(1.75)

.1005 .1005 .0953 .9811

.3682 .3421 .3225 .9959

.5697 .5291 .5558 .9984

100 GA(2)

.1959 .2275 .2179 .2678

.4719 .4442 .4711 .6476

.6408 .5777 .6278 .8400

100 GA(1.5)

.3151 .3245 .3351 .4569

.6350 .5839 .6327 .8505

.7863 .8208 .7805 .9635

Table 3 reports the results of a set of simulations, each based on 105 replications, for the null standard normal

model. Some selected alternative distributions, all belonging to the above described families, are chosen. Table 3

reports the powers of the tests based on A
′
n, Kn and Cn. Another classical goodness-of-fit test is also considered:

6
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the Anderson–Darling test,

Dn =

∫ +∞

−∞
[Fn(t) − F0(t)]2 1

F0(t)[1 − F0(t)]
dF0(t); (19)

here the squared difference [Fn(t) − F0(t)]2 is weighted to get more sensibility in the tails of the distributions.

The powers reported in Table 3 were obtained by fixing three different values of the significance level α: 0.01,

0.05 and 0.1 (for each entry, the corresponding powers are listed in the latter order; the best power is highlighted

too). It seems, however, that the performance of none of the considered tests is really affected by the choice of

α. Moreover, the first row of Table 3 reports the estimated actual significance level, which is always very close to

the nominal one, even for a small sample size as n = 10 (similar results, not reported here for the sake of brevity,

were obtained for larger sample sizes). Notice that, for each considered alternative distribution, the values of the

related parameter were set to allow a relevant comparison of the estimated powers; this need implies, incidentally,

that the same value of the parameter cannot be chosen for all sample sizes in most cases. However, Table 3 (along

with the following tables) was built so that at least one same value of the parameter is chosen for adjacent sample

sizes. Table 3 emphasizes that, when used as a test of normality, the Girone–Cifarelli test has a good power against

some kinds of alternatives. More specifically, the test outperforms all the other considered tests (and notably

the Kolmogorov–Smirnov and the Cramér–Von Mises test) when the alternative distribution belongs to the skew-

normal class. The superiority of the Girone–Cifarelli test for skewed alternatives seems indeed to be a general rule,

at least among the considered tests, as further evidenced in the following simulations. When normality is to be

tested against heavy tailedness, like for the Student’s T alternatives considered in Table 3, the performance of the

Girone–Cifarelli test gets worse, notably over the Anderson–Darling test. This result is far from being unexpected,

but it has to be underlined that A
′
n still keeps its superiority over the Cramér–Von Mises test (and the Kolmogorov–

Smirnov test). The superiority of the Anderson–Darling test still characterizes Gamma alternatives. In this chance,

however, the Girone–Cifarelli test gets worse even over the Cramér–Von Mises test and the Kolmogorov–Smirnov

test. A global evaluation of Table 3 shows that, as expected, the performances of the considered tests become

similar when the sample size increases, even if all the above conclusions still hold. Notably, A
′
n outperforms the

other considered tests for skew-normal alternatives, as Dn does for Student’s T and Gamma alternatives. However,

in this latter case, the Girone–Cifarelli test seems to grow better over its competitors as the sample size increases.

Another set of simulations was conducted by setting the unit exponential distribution as a null model. This as-

sumption is typical for many datasets in reliability analyses. In this kind of applications, exponentiality is often to

be tested against some more complicate distributional assumptions. To this end, a natural choice for F1 is again

the gamma (GA) density with unit scale. When a = 1, (18) reduces to the unit exponential. Another family of

distributions, mostly used in reliability analyses as well, is the Weibull (W) density with unit scale:

f (x) = a xa−1 e−xa
, x > 0, (20)

which was used as a family for F1, after noticing that it reduces to the unit exponential when a = 1. Finally, a third

family was used to shape the alternative hypothesis:

f (x) = (1 + a x)−(1+ 1
k ) , x > 0, (21)

that is the generalized-Pareto (GP) density with zero location and unit shape. (21) gives the unit exponential density

as a → 0. The best results for the Girone–Cifarelli test were obtained for the Gamma alternatives, as shown by

Table 4, which has the same settings as Table 3. A
′
n outperforms all the other considered tests, notably the Cramér–

Von Mises test. The Anderson–Darling test has generally a worse power than A
′
n, even if it becomes its main

competitor as n increases. It has to be emphasized that the simulated powers reported for Gamma alternatives in

Table 4 cannot be compared with the ones reported in Table 3, as the null distribution is quite different in the two

sets of simulations. More specifically, when the null model is the Normal distribution, the power of each considered

test is a decreasing function of the parameter a in (18); conversely, when the null model is the unit exponential

distribution, the power is an increasing function, at least if a > 1. This fact explains why, even if the sample size

and the value of a may coincide, Table 4 and Table 3 report quite different values of the estimated powers. Turning

to other distributions considered in Table 4, one can notice that the above conclusions are reversed for alternatives

of the generalized-Pareto kind, as Dn outperforms here all the other tests; A
′
n has a similar power to the one of

the Cramér–Von Mises test, but it seems to worsen as n increases. The Weibull alternatives evidence a problem of

bias for some tests under some circumstances; apart from this fact, this case resembles the Student’s T alternatives

7
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of Table 3: except for n = 5, the test based on Dn has definitely the best power, but A
′
n clearly outperforms the

Cramér–Von Mises and the Kolmogorov–Smirnov tests.

Table 4. Simulated powers when the null model is a unit exponential distribution (α = 0.01, 0.05, 0.1)

n H1 A
′
n Kn Cn Dn

10 null

.0094 .0100 .0097 .0095

.0494 .0495 .0494 .0492

.1001 .0992 .1001 .0989

10 GA(1.5)

.1515 .1152 .1437 .1444

.3560 .2891 .3428 .3420

.4827 .4229 .4710 .4684

10 GA(2)

.6191 .4863 .5928 .6048

.8388 .7511 .8222 .8269

.9088 .8507 .8988 .9004

10 W(2)

.0021 .0144 .0049 .0010

.0618 .0984 .0712 .0360

.1951 .2036 .1903 .1315

10 W(3)

.0038 .0501 .0105 .0007

.2587 .2889 .2579 .1469

.5906 .4925 .5440 .4554

10 GP(0.35)

.0269 .0215 .0257 .0871

.0946 .0829 .0908 .2048

.1659 .1486 .1585 .3019

10 GP(0.45)

.0411 .0323 .0337 .1469

.1179 .1018 .1119 .2830

.1892 .1964 .1830 .3821

25 GA(1.25)

.1098 .0818 .1018 .1039

.2772 .2249 .2645 .2649

.3882 .3334 .3764 .3765

25 GA(1.5)

.4973 .3752 .4711 .4811

.7339 .6351 .7149 .7226

.8281 .7538 .8140 .8201

25 W(1.75)

.0224 .0554 .0326 .0235

.2296 .2205 .2199 .2317

.4582 .3806 .4291 .4618

25 W(2)

.0708 .1160 .0818 .0689

.4462 .3758 .4174 .4549

.7093 .5743 .6680 .7231

25 GP(0.35)

.0422 .0344 .0395 .1456

.1339 .1153 .1271 .3028

.2168 .2007 .2152 .4181

25 GP(0.45)

.0647 .0531 .0616 .2599

.1743 .1564 .1696 .4433

.2705 .2531 .2672 .5603

8
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Table 4 (continued). Simulated powers when the null model is a unit exponential distribution (α = 0.01, 0.05, 0.1)

n H1 A
′
n Kn Cn Dn

100 GA(1.15)

.1843 .1332 .1737 .1829

.3945 .3228 .3812 .3916

.5202 .4504 .5064 .5144

100 GA(1.25)

.5705 .4317 .5476 .5675

.7873 .6902 .7700 .7868

.8705 .7996 .8578 .8696

100 W(1.5)

.2994 .2756 .2920 .4657

.7534 .6165 .7201 .8719

.9046 .7945 .8842 .9605

100 W(1.75)

.8391 .7054 .8199 .9463

.9880 .9462 .9832 .9986

.9982 .9850 .9977 .9999

100 GP(0.35)

.1441 .1424 .1504 .5048

.3378 .3432 .3488 .7313

.4754 .4844 .4865 .8288

100 GP(0.45)

.2359 .2712 .2604 .7616

.4807 .5287 .5124 .9028

.6251 .6670 .6529 .9461

In the simulations reported in Table 4, both the null and the alternative distributions are skewed. To consider other

cases where a null symmetric model is to be tested against skewed alternatives, like for the above standard Normal

case, a third set of simulations is finally reported. The uniform distribution on the unit interval (0, 1) is used as a

null model. Some “modifications” of the uniform density are considered as alternatives. The first has density

f (x) =

{
a (2x)a−1 0 ≤ x ≤ 0.5,

a (2 − 2x)a−1 0.5 ≤ x ≤ 1,
(22)

(where a > 0) and it is labeled as MU; the second,

f (x) = (1 − 2a)−1, a < x < 1 − a, (23)

is essentially a “compressed” uniform (CU) distribution over the interval (a, 1 − a), where 0 ≤ a ≤ 1/2. Both

densities reduces to the uniform distribution on the unit interval when a = 0. They were drawn from the study

conducted by Schmid and Trede (1996). To complete such an investigation, a third alternative family is here

considered for F1:

f (x) =
Γ(a + b)

Γ(a) Γ(b)
xa−1(1 − x)b−1, 0 < x < 1. (24)

The Beta (B) density in (24) reduces to the uniform distribution on (0, 1) when a = b = 1. In the reported simulation

study, b is then set to 1 and a > 0 is left to vary. Notice that, as a grows over 1, the distribution becomes more

skewed, thus giving exactly the needed kinds of alternatives.

9
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Table 5. Simulated powers when the null model is a uniform distribution on the unit interval (α = 0.01, 0.05, 0.1)

n H1 A
′
n Kn Cn Dn

10 null

.0100 .0097 .0101 .0098

.0507 .0501 .0501 .0503

.1000 .1001 .0998 .1004

10 MU(4.5)

.0001 .0047 .0001 .0000

.2705 .2974 .2263 .1042

.6944 .4963 .6357 .5301

10 MU(5)

.0001 .0051 .0001 .0000

.3862 .2588 .3115 .1569

.7963 .5793 .7432 .6469

10 CU(0.3)

.0001 .0032 .0003 .0000

.1621 .0890 .1219 .0480

.6449 .3176 .5732 .4564

10 CU(0.35)

.0002 .0039 .0005 .0000

.5598 .2214 .4939 .2308

.9814 .8019 .9931 .9715

10 B(2)

.1951 .1556 .1898 .1686

.4501 .3830 .4378 .4085

.5941 .5289 .5829 .5548

10 B(3)

.6371 .5259 .6251 .5755

.8780 .8048 .8689 .8451

.9408 .8998 .9372 .9243

25 MU(3.5)

.3870 .2725 .3411 .3740

.9392 .7778 .9174 .9474

.9922 .9349 .9873 .9940

25 MU(4)

.6321 .4205 .5783 .6197

.9874 .8985 .9812 .9906

.9992 .9811 .9982 .9994

25 CU(0.2)

.0242 .0234 .0202 .0232

.4149 .2214 .3596 .5457

.7733 .5318 .7540 .9305

25 CU(0.225)

.0574 .0432 .0466 .0620

.6697 .4173 .6478 .8581

.9374 .8782 .9554 .9985

25 B(1.5)

.1833 .1386 .1740 .1661

.4043 .3390 .3935 .3831

.5395 .4766 .5280 .5210

25 B(2)

.6650 .5449 .6490 .6319

.8694 .7972 .8621 .8561

.9314 .8894 .9265 .9244

100 MU(1.5)

.0648 .0901 .0668 .1444

.4222 .3506 .3963 .5674

.6748 .5539 .6434 .7775

10
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Table 5 (continued). Simulated powers when the null model is a uniform distribution on the unit interval (α =
0.01, 0.05, 0.1)

n H1 A
′
n Kn Cn Dn

100 MU(1.75)

.3958 .3005 .3642 .6086

.8715 .7177 .8446 .9441

.9659 .8822 .9549 .9871

100 CU(0.1)

.0805 .0474 .0635 .3127

.4913 .2932 .4456 .9256

.7670 .5883 .7563 .9996

100 CU(0.12)

.2246 .1208 .1959 .7489

.7880 .6817 .8031 .9996

.9500 .9990 .9712 .9999

100 B(1.25)

.2458 .1851 .2351 .2413

.4830 .4078 .4704 .4801

.6123 .5431 .6008 .6099

100 B(1.5)

.8400 .7374 .8276 .8410

.9523 .9100 .9474 .9544

.9777 .9563 .9755 .9796

Table 5 reports some results of this last set of simulations. The alternatives of kind (22) and (23) evidence that

all the considered tests suffer from a problem of bias, to which the Anderson–Darling test seems to be the most

exposed. A second remark is that the performance of A
′
n is similar to the one of Cn, even if the former has almost

everywhere a higher estimated power. Both the Girone–Cifarelli and the Cramér–Von Mises test are outperformed

by the Anderson–Darling test for as large sample sizes as n = 100 (for alternatives (23) even from n = 25). These

conclusions add few extra details to the ones obtained by Schmid and Trede (1996) for the test based on An in (15),

which has actually a performance similar to the Girone–Cifarelli test. However, the alternatives of the Beta class

represent a considerable addition in the evaluation of such tests of uniformity: the power of A
′
n, as long as the one

of An (unreported), is here steadily over the one of the other considered tests, notably over the one of Cn,with some

minor exceptions for Dn. Even if Table 5 reports just the results for selected values of the parameter a in (24), the

simulation study showed the Girone–Cifarelli test to be uniformly more powerful than the Cramér–Von Mises test

for a > 1.

The discussion of Table 5 raises an important issue to be considered before giving some general conclusions in the

next section. As stated from the very beginning, the Girone–Cifarelli test performs often similarly to the test based

on An in (15); this fact resulted clearly from the conducted simulation study and it is essentially the reason why no

separate results about An are reported in the above discussion. However, the two test-statistics A
′
n and An are not

equivalent, as evidenced by the following simple decomposition:

An =
2

n

∑
i∈A

∣∣∣∣∣F0(x(i)) − i − 1/2

n

∣∣∣∣∣ + 2
∑
i∈A

[(
F0(x(i)) − i

n

) (
F0(x(i)) − i − 1

n

)
+

1

2n2

]
, (25)

where A ≡
{
i : i−1

n < F0(x(i)) <
i
n

}
. Notice that the set A is not empty (and thus A

′
n and An are not equivalent)

as long as the empirical distribution function is not dominated by the null model F0 (or conversely). Hence the

possible differences in the powers of A
′
n and An are likely to be observed when the alternative distribution does

not dominate the null model (or conversely), a fact that can be partially guaranteed by letting the two distributions

have the same location. A last set of simulations was then conducted where the alternative distribution was forced

to have the same mean of the null model. In effect, some of the above-reported alternative distributions do not

guarantee such a requirement. In addition, small values of the sample size were chosen, as the effect of the second

summand in (25) is likely to decrease with n. Table 6 reports some results when A
′
n and An are used to test unit

exponentiality against other skewed alternatives, a situation which proved to be good for both tests against their

classical competitors. On the average, A
′
n turns out to perform still similarly to An, even if there are cases where

the difference in their powers becomes relevant. Notice that, with some minor exceptions, the Girone–Cifarelli

11
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test has never a lower power with respect to An. A
′
n outperforms An for Gamma and notably for generalized-Pareto

alternatives. The Weibull case is less definite, as A
′
n has only a minor advantage over An and not for very small

same sizes.

Table 6. Comparison between the powers of A
′
n and An when the null and the alternative distributions have the

same location (H0 = unit exponential, α = 0.01, 0.05, 0.1)

n H1 A
′
n An

5 GA(2)

.0625 .0615

.1534 .1504

.2464 .2411

5 GA(3)

.0885 .0874

.1909 .1866

.3120 .3043

5 GA(4)

.1058 .1045

.2167 .2106

.3601 .3503

5 W(3)

.0000 .0000

.0354 .0382

.2207 .2278

5 W(4)

.0000 .0000

.0353 .0459

.3403 .3526

5 W(5)

.0000 .0000

.0401 .0572

.4746 .4870

5 GP(0.45)

.2889 .2866

.4406 .4323

.5734 .5635

5 GP(0.47)

.3162 .3138

.4659 .4574

.6032 .5937

5 GP(0.49)

.3428 .3409

.4953 .4864

.6322 .6226

7 GA(2)

.0624 .0618

.1665 .1645

.2778 .2749

7 GA(3)

.0849 .0839

.2275 .2242

.3745 .3709

7 GA(4)

.1030 .1019

.2745 .2698

.4475 .4418

7 W(3)

.0014 .0015

.1873 .1876

.5175 .5172
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Table 6 (continued). Comparison between the powers of A
′
n and An when the null and the alternative distributions

have the same location (H0 = unit exponential, α = 0.01, 0.05, 0.1)

n H1 A
′
n An

7 W(4)

.0007 .0007

.3404 .3422

.7563 .7557

7 W(5)

.0005 .0004

.5029 .5108

.8934 .8941

7 GP(0.45)

.3406 .3386

.5568 .5522

.6969 .6937

7 GP(0.47)

.3689 .3666

.5898 .5853

.7280 .7246

7 GP(0.49)

.3999 .3971

.6216 .6167

.7578 .7550

9 GA(2)

.0643 .0638

.1834 .1815

.3042 .3014

9 GA(3)

.0933 .0927

.2655 .2623

.4319 .4276

9 GA(4)

.1147 .1140

.3358 .3314

.5240 .5189

9 W(3)

.0163 .0168

.4135 .4128

.7501 .7486

9 W(4)

.0297 .0305

.6895 .6878

.9370 .9365

9 W(5)

.0546 .0539

.8668 .8649

.9874 .9871

9 GP(0.45)

.4183 .4166

.6565 .6532

.7814 .7778

9 GP(0.47)

.4593 .4579

.6923 .6891

.8124 .8097

9 GP(0.49)

.4943 .4927

.7261 .7232

.8381 .8355
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4. A Real-Data Example and Some Conclusions

Before drawing some conclusions, a simple example where the test proposed in this paper is applied to real data

is reported. The “warp breaks” dataset in Pearson (1963) has fast become a term of comparison of the results of

various goodness-of-fit tests where the null distribution F0 is completely specified. In this case, one has to test

if the places where some warp breaks occur on a loom can be considered as uniformly distributed on the whole

length of the warp. More specifically, the following distances of n = 20 breaks from the beginning of the warp

are recorded: 30, 36, 104, 286, 291, 658, 893, 955, 1149, 1195, 1208, 1240, 1277, 1282, 1363, 1384, 1421, 1477,

1504, 1510 (see Pearson, 1963 for further details) and the ratios of these distances with respect to the total length

(1520) are considered; a goodness-of-fit test is then applied to verify if such a sample of ratios comes from a

population with unit uniform distribution. The observed value of A
′
n is 2.9964, so that n(−1/2)A

′
n = 0.6633 and, by

looking at Table 1, the null hypothesis is to be rejected at the 5%-level but not at the 1%-level. More specifically,

by using the simulated null distribution of A
′
n, a p-value 0.0213 is obtained. As a term of comparison, the p-values

of the other considered tests are: 0.0090 for the Kolmogorov–Smirnov test, 0.0156 for the Cramér–Von Mises test

and 0.0110 for the Anderson–Darling test. The results of all tests are then consistent, even if some differences can

be appreciated.

This paper presents a simulations study which gives some new insights about goodness-of-fit tests based on the

empirical distribution function. The main conclusion is that a good analysis should never neglect tests based

on the averaged absolute difference |Fn(t) − F0(t)|. The tests based on A
′
n and An will both serve at this aim,

even if the former can give some slight advantages over the latter, at least for small sample sizes. Moreover,

the test-statistic A
′
n has a rather simple form and it can be computed very easily. A second important conclusion

is that A
′
n (and An) has very often a different performance from the one of Cn, which is based on the averaged

squared difference [Fn(t) − F0(t)]2 . The reported simulations give a good evidence of such alternatives where A
′
n

outperforms Cn. It seems, specifically, that this happens more frequently for skewed alternatives. Concerning the

Kolmogorov–Smirnov test Kn, which takes into consideration the supremum and not an average of the difference

|Fn(t)−F0(t)|, the reported study shows that there are few practical situations where it performs better than the other

considered tests, and notably than A
′
n. The superiority, under some circumstances, of the Girone–Cifarelli test over

the Kolmogorov–Smirnov test has been evidenced, in effect, in other studies concerning the two-samples problem.

As a last issue, one can claim that the real competitor of A
′
n (and similarly for An) is the Anderson–Darling test

Dn, rather than Kn or Cn. The discussion in this paper shows that there are cases where Dn outperforms all other

considered tests and that it leaves A
′
n as a second best. These are mainly cases of alternatives with heavy tails,

probably thanks to the weighting function in the definition of Dn. An important element of a future research could

then be to evaluate the effect of the introduction of suitable weighting functions in the definition of A
′
n as well.
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Abstract

Shocking ship-bridge collisions indicate that there’s large space in the previous bridge anti-collision technology re-

search. There are several advantages in the risk-based anti-collision technology of the bridges. Thus the databases

such as SpringerLink, Elsevier ScienceDirect and CNKI, the Chinese database, are included to collect literature

for the purpose of examining the probabilistic models. Reviewing the current representative models, this paper

argues some limitations in the models, such as the questionable applicability of models, the neglected affects of

pier turbulent zones as well as some inaccuracies in the mathematical formulations. Accordingly, the paper revises

the current models and also addresses increasing the representativeness of samples with sufficient experiments.

This paper explores the topic for its potential applications, and aims to make some contribution to the references

on the topic so as to popularize and promote the technology in a real sense.

Keywords: vessel-bridge collision, probabilistic model, limitations, further studies

1. Introduction

Shocking ship-bridge collisions indicate that bridge anti-collision technology research still has very large space

in that the practicality and operability of the research results need further proof. Therefore, the author used PDF-

Geni and Google as search engines to collect literature, with bridge anti-collision as key words. Meanwhile, the

databases such as SpringerLink, Elsevier ScienceDirect and CNKI, the Chinese database, were also included. The

literature review found that previous risk-based studies on the bridge anti-collision at home and abroad are com-

paratively deficient. In the case of optimizing the placement of the bridge sensors, the method proposed by Guo

(2010) can not only alarm the collision between ships and bridges, but also can note down the data of accidents

to evaluate the degree of damage in the bridge. However, studies like Guo’s excessively focused on those mathe-

matical models of the collision probability, underestimating the impact of the turbulent zone around piers on the

collision probability. Accordingly, Jiang and Wang (2009) recommended using AASHTO model and LARSEN

model if the calculation is adjusted to the domestic situation. Based on the previous researches at home and abroad,

this paper reviews and comments on the present researches on the probabilistic models for ship-bridge collision,

discusses the limitations of the studies, and addresses the corresponding improvements, attempting to make some

contributions to the present literature.

2. Literature Review and Commentary

2.1 Literature Review

Bridge anti-collision technology is classified into passive technology and active technology and the domestic re-

searches mostly focus on the passive one, for instance, setting the mechanical anti-collision device to reduce the

impact of the collision between the ship and bridge. However, it is acknowledged that it’s impossible to block

all the collisions unless it depends on the bridge itself (Larsen, 1993; Vrouwenvelder, 1998). Furthermore, the

bridge anti-collision device costs too much, for example, the cost of the flexible energy-absorbing anti-collision

device for the main pier of Zhanjiang Bay Bridge in China remains twenty million RMB, which is an unacceptable

cost for the regular bridges. The existing bridge anti-collision devices are restricted to the critical bridges in the

dense waterway. In contrast, bridge anti-collision technology based on risk ideas has the advantage of preventing

accidents in advance. Thus we should pay enough attention to the risk-based anti-collision research on the bridges,

and studies on the probabilistic models for ship-bridge collision catch the author’s eye.

The result of applying the AASHTO Method II design procedure is the calculation of an annual frequency of
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collapse for a given bridge. For critical bridges, the risk acceptance criterion is less than or equal to 0.0001, or

once every ten-thousand years. For regular bridges, the acceptable risk is less than or equal to 0.001, or once every

thousand years (AASHTO, 1994. AASHTO LRFD Bridge Design Specification and Commentary). Collision risk

models consider the effects of the vessel traffic, the navigation conditions, the bridge geometry with respect to the

waterway, and the bridge element strength with respect to the impact loads (Knott & Pruca, 2000). By reviewing

the previous literature, 5 models are currently found to the most representative ones. These models taken from

original works are listed as following, whose inaccuracies will be put off until the 3rd section.

2.2.1 AASHTO Model

The 1991 AASHTO Specifications provide three methods (Methods I, II, and III) for designing a bridge while

taking into account potential vessel impact. Method II is the only method presented in the 2001 AASHTO LRFD

Bridge Design Specification, whose essential data include vessel description, speed and loading conditions, wa-

terway geometry, navigable channel geometry, water depths etc. Under AASHTO Method II, bridges must be

assigned an importance classification as a Regular or Critical bridge, based on society/survival demand and se-

curity/defense requirements (AASHTO: 2009. Guide Specification and Commentary for Vessel Collision Design
of Highway Bridges). The equation for the calculation of an annual frequency of collapse for a given bridge is

generally formulated as follows:

AF = N · PA · PG · PC

where,

AF = The annual frequency of bridge element collapse due to vessel collision;

N = The annual number of vessels classified by type, size, and loading which can strike the bridge element;

PA = The probability of vessel aberrancy;

PG = The geometric probability of a collision between an aberrant vessel and a bridge pier or span;

PC = The probability of bridge collapse due to a collision with an aberrant vessel.

To provide an alternative means for calculating the probability of aberrancy, the 2001 AASHTO Specifications

allow this probability to be approximated using the equation below:

PA = BR · RB · RC · RXC · RD

where,

PA = The probability of aberrancy;

BR = The aberrancy base rate;

RB = The correction factor for bridge location;

RC = The correction factor for current acting parallel to vessel transit path;

RXC = The correction factor for crosscurrents acting perpendicular to vessel transit path;

RD = The correction factor for vessel traffic density.

The AASHTO model uses dynamic analysis to determine the force of ships and also provides a simplified way to

design a probability model to simulate the ship-bridge collision. The AASHTO model is based on the results of

accidents, and the movement of ships is not related to the probability of vessel aberrancy (PA), or the geometric

probability of a collision (PG). The probability calculation is larger than the truth value unless the probability of a

collision not between the ship and the vessel is eliminated.

2.1.2 Larsen Model

In 1991, Larsen proposed the collision risk model at IABSE’s annual conference (Larsen, 1993), which is expressed

in the following form, where the first summation refers to all ship classes considered and the second summation

refers to all bridge piers and superstructure spans:

F =
∑

Ni · PC, j ·
∑

PG,i,k · PF,i,k

where,

F = Expected number of annual collisions to the bridge (bridge piers and/or superstructure);
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Ni = Annual number of vessels belonging to a certain class (i) of the vessels passing the bridge;

Pc, j = The “causation probability” related to the actual class of vessel (i);

PG,i,k = The “geometrical probability” or “rate of collision candidates” related to the actual class of vessel (i) and

to the actual part (pier or span) of the bridge (k);

PF,i,k = The “failure probability” related to the actual class of vessels (i) and to the actual part of the bridge (k).

A probabilistic approach is based on a probabilistic model for the vessel impact force and a spatial stochastic model

of the resistance properties of the bridge elements. Larsen model calculates the probability of bridge failure, which

means not until PF,i,k being removed can the calculation truly represent the probability of the bridge collision (Jiang

& Wang, 2009). As described in AASHTO model, the “causation probability” Pc, j does not change with the sailing

course. And the accidents are classified into the linear impact, meeting impact and random drifting impact, related

to the angle of attack and the different failure modes of the bridge elements (e.g. crushing, rotation, sliding, etc.).

Meanwhile, the linear impact can be subdivided into impacts on the axis of channel and those at the turns or bends

in the navigation route. When applying the model at a certain river, we should get the gross impact probability by

considering the ratio of the three situations in all accidents.

2.1.3 Eurocode Model

In 1997, Eurocode proposed a model to calculate the probability of the ship-bridge collision in volume 1. The

model uses the centerline of the channel as X axis and parallel Y axis with the bridge axis, and the pier is located

at X = 0 and Y = d (Vrouwenvelder, 1998). Ship-bridge collision is considered as a non-homogeneous Poisson

process, assuming that the error of Poisson process is λ(x) so that the probability of the collision in a referenced

period T can be expressed as follows:

PC(T ) = nT Pna

�
λ(x)PC(x, y) fs(y)dxdy

where,

Pc(T ) = The probability of not avoiding at least one collision within the reference period (usually 1 year);

n = The number of ships per time unit (traffic intensity);

T = The reference period (usually 1 year);

Pna = The probability that a collision is unavoided in spite of human intervention;

λ(x) = The probability of a failure per unit traveling distance, determined with reference to data of previous

accidents;

Pc(x, y) = The probability of situations where a collision occurs with a given initial ship position (x, y);

fs(y) = The distribution of the ship position in the y-direction.

Eurocode and AASHTO Specifications share the similarity in the basic design philosophy. Eurocode 1, Part 2.7

refers in a note to ISO (Draft Proposal DP 10252): 1995. Accidental Action due to Human Activities, which

specifies the representative value of an accidental action should be chosen in such a way that there is an assessed

probability less than p=10−4 per year for one structure (Vrouwenvelder, 1998). Although the acceptable risk crite-

rion is determined by each country government, but the acceptable annual frequency of collapse they recommend

for the critical bridge is less than or equal to 1×10−4, or once every ten-thousand years (Knott, 1998; AASHTO,

2009. Guide Specification and Commentary for Vessel Collision Design of Highway Bridges). Various collision

risk models have been developed to achieve design acceptance criteria, while determining the risk acceptance

criteria is based on the society’s willingness to pay for the risk reduction.

2.1.4 KUNZI Model

Based on the variables describing the accidental course of the ship, a mathematical risk model was formulate by

the German researcher Kunz (1998), in which a deviation on the maneuvering path with angle ϕ and the stopping

distance x are chosen. Given the numerous affecting elements, the minimum distance x necessary for avoiding the

pier should be a normal random variable. The collision model is outlined here in the following:

P(T ) = N ·
∫

dλ
ds
·W1(s) ·W2(s)ds
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where,

P(T ) = The probability of not avoiding at least one collision within the reference period (usually 1 year);

N = The number of ships per time unit (traffic intensity);

T = The reference period (usually 1 year);

dλ/ds = The failure rate per travel unit;

W1(s) = The probability of collision course;

W2(s) = The probability not to come to a stop before collision to structure.

where,

W1(s) = Fϕ(ϕ1) − Fϕ(ϕ2)

Fϕ(ϕ) =
1√

2πσϕ

∫ ϕ

−∞
exp

⎧⎪⎨⎪⎩ (ϕ − ϕ)2

2σ2
ϕ

⎫⎪⎬⎪⎭ dϕ

where, ϕ̄, σϕ are mean value and standard deviation of the angle ϕ between the planned course and the maneuvering

course path;

W2(s) = 1 − Fx(s)

Fx(x) =
1√

2πσx

∫ x

−∞
exp

{
(x − x)2

2σ2
x

}
dx

where, x̄, σx are mean value and standard deviation of stopping distance x, referring to the distance between the

ship and the pier when the ship detecting the danger of collision and taking urgent measures.

By calculating the probability W1(s) and W2(s) for each position along the approaching course of the ship, any

probability of collision can be determined. The failure rate is mainly determined by accidents analysis, simulation,

or by transferring such value from other technical systems (Galor, 2005). KUNZI model as well as Eurocode model

focus on the process of the ship bridge collision. The former calculates the probability of a collision between

the ship on a course to a bridge, while the latter does offer the mathematical equation for PC(x, y) in the given

location (x, y). Therefore, the equation W1(s) ·W2(s) in KUNZI model are recommended to use when calculating

Pc(x, y) in Eurocode model, meanwhile the distribution of the ship location in the y-direction f s(y) should be taken

into consideration when calculating the probability of collision. As a result, KUNZI model becomes a concrete

formulation of the Eurodecode model. However, it is not so convenient to determine the probability of collision in

Eurocode model and KUNZI model as to determine in AASUTO model and Larsen model (Jiang & Wang, 2009).

2.1.5 Dai Tongyu Simplified Model

Based on numerous experiments and data analyses, Dai et al. (2003) formulated a simplified model to calculate

the probability of a collision, which applies more to the navigational conditions in China. It is hypothesized that

the collision frequency Fi of ship class (i) is relevant to the probability of a collision pi on the course with potential

collisions and the value affecting collisions fi, the model is then defined as follows,

F =
∑

i

Ni · fi · pi

where pi is determined based on the normal distribution of navigation courses. Based on the distribution of navi-

gation courses of the ship passing the bridge, the mean value μ and the standard deviation σ are calculated in the

following model:

pi =

∫ B

A

1√
2πσ

· e− (x−μ)2
2σ2 dx

The probability of a collision to a bridge refers to the summation of the probabilities that passing ships come into

collision with the pier and other structures of the bridge. The mathematical equation is formulated in the following:

F =
∑

i

Ni · fi · pi =
∑

i

Ni · fi

∫ B

A

1√
2πσ

· e− (x−μ)2
2σ2 dx

where,
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Ni = The number of ship class (i) per time unit (traffic intensity);

fi = The value affecting the collisions ship class (i), such as navigation course, current, weather, ship size, speed,

direction etc.;

pi = The probability of a collision on the course with potential collisions;

μ = The mean value of the location that a ship passes the axis of a bridge;

σ = The standard deviation of the location when a ship passing the axis of the bridge.

The feasibility and applicability of the simplified model has been proved by verifying the ship-bridge collision

accidents of Nanking Yangtse River Bridge in China. Based on the relevant statistics of the waterway of the

mentioned bridge, the value affecting the collisions f varies from 0.05 to 0.12. However, as far as the bigger ship

sizes are concerned, the affecting value f may be a bit smaller.

2.2 Limitations in Relevant Models

AASHTO model and Larsen model attach attention to extreme situations, and the calculation focuses on the proba-

bility of the bridge destruction, while Eurocode model, Kunzi model and Dai Tongyun simplified model pay atten-

tion to all the accidents including the situations that the bridge is not destroyed. Excluding the failure probability,

AASHTO Model and Larsen Model will be as practical as the other three models. However, these mathematical

models have additional drawbacks in that their samples are not representative enough, the influence of the turbu-

lent zones around piers is not considered in the calculation, and there’re some mathematical inaccuracies in the

equations.

2.2.1 Insufficient Samples and Doubtful Applicability of Models

Admittedly, excessive stress on the affecting factors is not significant because some of the factors do not affect a lot

and even can be ignored. However, when the river system is different, the applicability of those models should be

doubtful. Let’s take Dai Tongyu simplified model as an example. In the case of Huangshi Yangtse River Bridge in

Hubei with 20 ship-bridge collisions after it came into use, its hydrological conditions around piers is comparably

more complex than those around Nanking Yangtze River Bridge. Whether Dai Tongyu simplified model can still

be applied to this bridge or not obviously needs further consideration and verification. Dai Tongyu simplified

model only verified its applicability in the middle and lower Yangtze River and was formulated only based on the

hydrological conditions around Nanking Yangtse River Bridge. The upper reaches is fast-flowing, with a straight

and smooth river way and a “V” font river valley, while the middle and lower reaches is mostly slow-flowing,

with a winding river way and a “U” font river valley. Obviously, there is a significant difference between the

hydrogeological conditions of the upper and lower reaches. In comparing the upper and lower reaches in just one

river system, we do find that the net width of navigable channel, angle between the sailing direction and the axis of

a bridge, the stopping distance have changed a lot. The applicability of the models is doubtful, let alone applying

Dai Tongyu simplified models to a totally different river system such as Great Canal and Yellow River.

2.2.2 Neglected Impact of Turbulence Zones around Piers

When a current flows by the piers, there will be vortex which gives attraction to the surface layer around the piers.

It’s called the turbulence zones, whose width depends on the type of the pier as well as the size and shape of the

river under the bridge. When the ship enters the turbulent zones, it will be exerted by an attraction which points

to the pier. If we still use the present mathematical models to evaluate the risk regardless of the turbulence zones,

we will underestimate the probability of the ship-bridge collision. Some domestic researchers simply include the

width of the turbulence zones into the calculation (Gong, 2010), which may fall into the wrong idea that “any

boat moving into any area of the turbulence zones will have a collision”. Nowadays, the peripheral area of a

turbulence zones perhaps can not make any difference to the ships with increasing weight and velocity, so counting

the whole width of the turbulence zones without careful consideration can shorten the navigation span, which may

cause problems to some bridges. To conclude, the relevant researches to date lack the accurate verification on the

influence of turbulence zones on the calculation of collision probability.

2.2.3 Some Inaccuracies in the Mathematical Equations

There’re some inaccuracies from the viewpoint of mathematics. Taking Dai Tongyu simplified model as an ex-

ample, an index i should not be included in the formulation of pi. The index i means different types of ships, but

when calculating the value of pi, the model uses data and courses of all the ships to get the value of μ and σ, which

indicates that the value of pi means no difference to different types of ships. Thus the model should be revised as
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follows.

F =
∑

i

Ni · fi · p =
∑

i

Ni · fi

∫ B

A

1√
2πσ

· e− (x−μ)2
2σ2 dx

Also, the sum in Larsen Model should be more clearly stated. The index i refers to different types of ships and k
refers to different parts of a bridge, which should be indicated more directly. The model should be completed as

follows.

F =
∑

i

Ni · PC, j ·
∑

k

PG,i,k · PF,i,k

3. Ideas on Further Studies

AASHTO model is an empirical formula though most of its parameters are statistical. Those statistical parameters

mainly focus on the main piers, which leads to the errors in calculating the collision possibility concerning the

transition piers and the piers of approach bridges. KUNZI model and Eurocode model focus on the process of

the accidents, without taking into account the wind speed, visibility and navigational aids so that the results of the

calculation tend to be relatively larger. Accordingly, the paper makes the recommendations as follows.

3.1 Enlarging the Capacity of Samples

Vessel collision accidents to bridge structures are relatively rare and conditions differ from bridge to bridge. There-

fore, the estimation of the risk of collision can not be based on vessel/bridge collisions alone. Collision risk mod-

els, stimulating potential collision scenarios are necessary (Larsen, 1993), thus simulating the collision accidents

to enlarge the capability of samples is recommended hereby. The stimulation of collision consists of the computer-

assisted technique as well as the realistic stimulation technique. The computer stimulation technique, such as

FEM stimulation approach, can stimulate numerous characteristics such as the collision force, deformation of the

structure or collision energy change. As for the realistic technique, we may choose one bridge which is going to

be abandoned in each different river system and put them into a second use. Samples need to be representative,

so that we can simulate the collisions with different vessel number (in the morning, at noon, in the afternoon) and

in different situations (at night with light interference, upstream, downstream, different visibility etc.). To make

the statistics more representative, we should relax the drivers or even deliberately distract the drivers. Getting too

close to the piers or being fairly difficult to manipulate the ship when coming into the turbulence zones should be

counted as most collisions have actually taken place on account of human errors. Of course, the experiment safety

is to be guaranteed by some well planned protective measures.

3.2 Applying Revised Models in Bridge Design

Larsen (1993) and Vrouwenvelde (1998) addressed that risk assessment of the bridges should be based on the

probabilistic models. Thereby the paper suggests using the newly revised models to calculate the bridge collision.

As is pointed out, the impact of the turbulence zones should be included in the calculation of the probabilistic

models. The parameter fT is here used to represent the influence coefficient of the turbulence zones:

fT = k · f (D, β, v1, v2, h)

The parameter k represents the actual correction factor to influence the moving of the ships, D represents the size of

the piers, β represents the angle between the moving direction of the river and the axis of the bridge, v1 represents

the velocity of the water flow in front of the piers, v2 represents the velocity of the wind in front of the bridge

and h represents the depth of the river around the piers. With the influence coefficient of the turbulence zones

considered and removing the term of the failure probability, new models with better applicability are addressed in

the following:

AASHTO model

AF = N · PA · PG · fT

Larsen model

F =
∑

i

Ni · PC, j ·
∑

k

PG,i,k · fT

Eurocode model

PC(T ) = nT Pna · fT ·
�
λ(x)PC(x, y) fs(y)dxdy
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KUNZI model

P(T ) = N · fT ·
∫

dλ
ds
·W1(s) ·W2(s)ds

Dai Tongyu simplified model

F =
∑

i

Ni · fi · p · fT

From the design point of view, the bridge characteristics would be adjusted or the risk reduction requirements

would be implemented until the risk acceptance is satisfied (Knott, 1998). The purpose of the risk assessment is

to reduce the collision probability and provide theoretical support for the adjustment and perfecting of the bridge

design. After the design proposal of a bridge is scheduled, the latest probability model should be used to simulate,

analyze and predict all the possible bridge collisions so that the probability of a collision is minimized before

putting the design proposal into construction. Likewise, anti-collision devices and better shipping management are

also necessary after a bridge is constructed, for instance we can turn to alarming facilities.

4. Conclusive Remarks

Despite its good practicality, AASHTO model presents larger in the calculation results. Eurocode model features

focusing on the process of the accidental action, in which a collision occurs when a vessel approaching the bridge

becomes aberrant, or the aberrant vessel hits a bridge element, or the stricken bridge element fails. KUNZI model

as well as Eurocode model merely focuses on the process of vessel bridge collision. Therefore, Jiang and Wang

(2009) proposed to calculate the collision probability in AASHTO model or KUNZI model, on condition that some

adjustments should be taken into consideration based on the domestic navigation conditions. On the basis of the

previous researches, this paper has reached the following conclusions:

1) Analyzing the representative models, the paper has further discovered the questionable applicability of mod-

els, the neglected affects of pier turbulent zones in the models and some mathematical inaccuracies in the proba-

bilistic models.

2) Accordingly, the paper has completed the probabilistic models with mathematical inaccuracies, and further

revised the current models with the influence coefficient fT aiming to improve the practicality of the probabilistic

models.

3) This paper has also proposed increasing the representativeness of samples with sufficient experiments, the

application of current researches into the design of bridges, and improving the system of shipping management

with the aid of alarming facilities.

The paper has attempted to apply the more verified research findings to the anti-collision technology of the bridges

so as to popularize and promote the technology in a real sense. Of course, the bridge anti-collision technology

based on risk idea has its limitations. No matter how strong the risk idea-based anti-collision capacity is, even if

a pier has the least probability to be impacted and the most accurate alarming systems, we do not have enough

time to stop a collision when a ship is fairly close to that pier. Therefore, we still cannot delay the research on

the anti-collision devices. Furthermore, ship owners have, in principle, the same interest as bridge owners, since

the collision will bring damage and losses to both ship owners as well bridge owners (Manen & Frandsen, 1998).

Thereby, only by improving the comprehensive anti-collision technology can we fundamentally ensure the safety

of the bridge to fulfill their designed life, as well as the ship owner to escape the losses.
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Abstract

In this work, we study the empirical estimator of the Value at Risk (VaR for short) for weak dependent observations.

Our approach uses the oscillation of the empirical process under hypothesis of moment’s inequality. We provide

general conditions which ensure the convergence of the empirical estimator of the VaR. We also prove a central

limit theorem (CLT) for the difference. We perform some simulations for different sequences to illustrate our

results. Finally, we apply the results for different sequences under assumptions of mixing or covariance.

Keywords: Value at Risk (VaR), modulus of continuity, empirical process, quantile function, moment’s inequality,

dependent random variables

1. Introduction

The Value at Risk VaR is a method to evaluate financial risks. It summarizes the risks of loss in a unique number

and aggregating the risks of market through several classes of financial assets (stocks, bonds, etc.).

The VaR is a probabilistic measure of the possible loss for a given horizon. It represents a level of loss, for a

financial position or a portfolio, which will be exceeded during a given period only with a chosen typically small

probability.

The VaR is obviously neither the loss which one can expect nor the maximum loss which one may suffer, but a

level of loss which will be exceeded only with a level of a fixed probability q.

Definition 1 (P&L and loss function) Let Pt be the value of a portfolio of assets at time t. Then the variation of the

value of this portfolio over the interval [t, t + T ], is called the profit-and-loss (P&L) function:


Pt ≡ Pt+T − Pt,

and the function

Xt :≡ −
Pt

is called the loss function.

In practice, we decide to fix T (e.g. one day or one week), yet 
Pt ≡ Pt+1 − Pt.

Definition 2 (Value at Risk) The Value at Risk VaR (q) of a portfolio of assets for a period [t, t + 1] at the confidence

level q ∈ (0, 1) is given by the smallest number x such that the probability that the loss Xt exceeds x is no larger

than (1 − q). Formally

VaR(q) ≡ inf {x : P (Xt > x) ≤ 1 − q}
or

VaR (q) ≡ F−1
t (q) = inf {x : F (x) ≥ q} := ξ. (1.1)

where Ft (x) = P (Xt ≤ x) , x ∈ R is the distribution function of Xt and F−1
t its quantile function.

Definition (1.1) clearly shows that the knowledge of the distribution function (in short d f ) of the r.v X can de-

termine the VaR (q). Often the function F is assumed to be normal. However a lot of financial practitioners use

historical distributions which are far from being normally distributed (see e.g. Cont, 2001). Moreover, in general,

the historical data have an intertemporally dependent structures. Indeed the assumption that the variables (Xi)1≤i≤n
(denote the variations (−
Pi)1≤i≤n in the value of a portfolio over the n periods) are i.i.d, is not easily satisfied
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in practice. Hence the feeling of the need of taking into account a possible dependence structure or an effect of

memory in the observations. In order to model and measure this memory aspect in the data, we consider two cases:

correlations or mixing coefficients.

So the main objective of this paper is to provide ways which allow to tackle the issue of estimation of the VaR in

the cases where there is either a lack of parameterizations of F or some weak dependency among the data. To do

so, we use the empirical distribution function Fn (x) = 1
n
∑n

i=1 I(Xi≤x), where x ∈ R and I is the indicator function,

for a stationary sequence of dependent real-valued random variables (Xi)1≤i≤n to estimate the VaR.

The empirical estimator of the VaR
(
V̂aR

)
(see e.g. Dowd, 2001) is defined by:

V̂aR (q) ≡ F−1
n (q) ≡ inf {x : Fn (x) ≥ q} .

We note that if we order the independent random variables Xn,1 ≤ Xn,2 ≤ ... ≤ Xn,n then V̂aRe (q) can be written as

V̂aR (q) = Xn,s, s =
[
nq

]
+ 1.

where [a] is the integer part of a.

Next let us recall the definitions of some mixing coefficients which are criteria needed to introduce dependency

measures between variables.

Let (Ω,K , P) be a probability space and letA, B be two sub σ−algebras of K .We define:

1) The α−mixing coefficient by:

α (A,B) = sup
A∈A,B∈B

|P (A ∩ B) − P (A) P (B)| .

2) The ρ−mixing coefficient by:

ρ (A,B) = sup
f∈L2(A),g∈L2(B)

|corr ( f , g)| ,

where corr ( f , g) =
Cov( f ,g)√

Var( f )
√

Var(g)
.

3) The ϕ−mixing coefficient by:

ϕ (A,B) = sup
A∈A,B∈B

∣∣∣∣∣P (A ∩ B)

P (A)
− P (B)

∣∣∣∣∣ .
Finally, we say that a stationary sequence (Xi)i∈Z is strong mixing or α−mixing, if

αn = α (σ (Xi, i ≤ 0) , σ (Xi, i ≥ n))→n→∞ 0.

The paper is organized as follows. The section 2 is related to the notion of oscillation of an empirical process

which is defined for each fx ∈ F by:

Zn ( fx) =
1√
n

n∑
i=1

[
fx (Xi) − E ( fx (Xi))

]
=
√

n [Fn (x) − F (x)]

where F is the set of characteristic functions of intervals of the form (−∞, x) for any x ∈ R. We study the mean of

the modulus of continuity of the empirical process defined by

W (n, δ) := E

⎛⎜⎜⎜⎜⎜⎜⎝ sup
‖ fx− fy‖v≤δ

∣∣∣∣Zn

(
fx − fy

)∣∣∣∣⎞⎟⎟⎟⎟⎟⎟⎠ (1.2)

where ‖ fx‖v = (E | fx|v)
1
v . Our method is inspired by the work by Ben Hariz (2005) who studied the stochastic

equicontinuity of empirical processes indexed by a family of functions.
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In the section 3, which is the main part of this work, we prove the consistency as well as a central limit theorem

for the V̂aR, i.e.
√

n (ξn − ξ) −→d N
(
0,
σ2∞ (ξ)

f 2 (ξ)

)
where

σ2
∞(ξ) =

∑
i∈Z

Cov
(
I(X1≤ξ), I(Xi+1≤ξ)

)
= Var

(
I(X1≤ξ)

)
+ 2

+∞∑
i=1

Cov
(
I(X1≤ξ), I(Xi+1≤ξ)

)
is assumed to satisfy 0 < σ2∞(ξ) < ∞.
In the section 4, several applications are discussed. Finally, the section 5 is devoted to simulations which illustrate

the results.

2. Oscillation of the Empirical Process

First let us introduce the following assumptions:

H(X) : (Xi)1≤i≤n is a stationary sequence of real-valued random variables with a common distribution function

F.

H(p, X) : For all positive real numbers 2 ≤ v < p < r ≤ ∞ and for any ε > 0, there exists a positive constant

D = D (ε, p, v, r) < ∞ such that for any f ∈ F
E |Zn ( f )|p ≤ D

(
‖ f ‖pv + n1+ε− p

2 ‖ f ‖pr
)
.

H(F) : F is continuous in I = [
ξ − an, ξ + an

]
where 0 < an →n→∞ 0, and F has a density function f which is

continuous and 0 < f (ξ) < ∞.

For 0 < bn →n→∞ 0 we denote,

an � bn ⇔
{

an < bn and
an

bn
→n→∞ 0

}
.

In the proofs C denote constant where values may change from one line to another. We will now focus on the

modulus of continuity of an empirical process (Xi)1≤i≤n.

Theorem 1 Under conditions H(X) and H(p, X), there exists C = C (ε, p, v, r) < ∞ such that for δ > n

1+ε
p −1

v(1+ 1
p − 1

r ) ,

W (n, δ) ≤ C ·
(
n
− 1

2
+

2+ε− p
r

p+1− p
r + δ

(
1− v

p

))
.

If in addition ε < p
2

(
1 − 1

p +
1
r

)
− 1 and δ = δn → 0, then

lim
n→∞W (n, δn) = 0.

Remark

•When r = p the result becomes for δ > n
1+ε−p

vp ,

W (n, δ) ≤ C ·
(
ln n · n− 1

2
+ 1+ε

p + δ
(
1− v

p

))
. (2.1)

• If F is L−Lipschitz, then for δ0 >
1

C(v,L)
n

1+ε
p −1

1+ 1
p − 1

r ,

E

⎡⎢⎢⎢⎢⎣ sup
|x−y|≤δ0

∣∣∣∣Zn

(
fx − fy

)∣∣∣∣⎤⎥⎥⎥⎥⎦ ≤ C ·
(
n
− 1

2
+

2+ε− p
r

p+1− p
r +C (v, p, L) · δ

(
1
v− 1

p

)
0

)
.

Proof of Theorem 1. Let N (k) = N�.�
(
2−k, ‖.‖v ,F

)
, k ∈ N (the bracketing number) be the minimal number of

brackets which are of a norm ‖.‖v less than or equal 2−k needed to cover F . As N (k) ≤ 2.2vk is finite (see e.g. Van

der Vaart & Wellner, 1996, ex 2.5.4 in p. 129), there exists a finite sequence{
fxk(i),Δxk(i) = I(xk(i)≤.≤xk(i+1))

}
1≤i≤2vk
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such that:

1)
∥∥∥Δxk(i)

∥∥∥
v ≤ 2−k,

2) ∀ fx ∈ F ,∃ i :
∣∣∣ fx − fxk(i)

∣∣∣ ≤ Δxk(i).

We set (πk ( f ) ,Δk ( f )) the first pair
(
fxk(i),Δxk(i)

)
which satisfies

∣∣∣ fx − fxk(i)

∣∣∣ ≤ Δxk(i). Let q0, k and q1 ∈ N such that

q0 ≤ k ≤ q1, we define for 1 ≤ i ≤ 2vq0 ,

Ei =
{
f ∈ F : πq0

( f ) = fxq0
(i)

}
,

then the sets Ei form a partition of F . For δ ∼ 2−q0 ⇔ q0 ∼ − ln δ
ln 2

, we define:

Fi, j =
{(

fx, fy
)
∈ F × F : fx ∈ Ei, fy ∈ E j,

∥∥∥ fx − fy
∥∥∥

v ≤ δ
}
.

Let now Λ =
{
(i, j) : Fi, j � ∅

}
. For every pair (i, j) ∈ Λ, we fix an element of Fi, j and denote this pair

(
φi, j, ψi, j

)
.

Let
(

fx, fy
)

be a pair satisfying
∥∥∥ fx − fy

∥∥∥
v ≤ δ, then

(
fx, fy

)
∈ Fi, j for some (i, j) ∈ Λ. We write

fx − fy = fx − πq0
( fx) + πq0

( fx) − φi, j + φi, j − ψi, j + ψi, j − πq0

(
fy
)
+ πq0

(
fy
)
− fy

but πq0
( fx) = πq0

(
φi, j

)
and πq0

(
fy
)
= πq0

(
ψi, j

)
since fx, φi, j ∈ Ei, fy, ψi, j ∈ E j. Consequently:

sup
‖ fx− fy‖v≤δ

∣∣∣∣Zn

(
fx − fy

)∣∣∣∣ ≤ 4 sup
fx∈F

∣∣∣∣Zn

(
fx − πq0

( fx)
)∣∣∣∣ + sup

(i, j)∈Λ

∣∣∣∣Zn

(
φi, j − ψi, j

)∣∣∣∣
That gives by applying the expectation:

E

⎛⎜⎜⎜⎜⎜⎜⎝ sup
‖ fx− fy‖v≤δ

∣∣∣∣Zn

(
fx − fy

)∣∣∣∣⎞⎟⎟⎟⎟⎟⎟⎠ ≤ 4E

⎛⎜⎜⎜⎜⎝sup
fx∈F

∣∣∣∣Zn

(
fx − πq0

( fx)
)∣∣∣∣⎞⎟⎟⎟⎟⎠ + E ⎛⎜⎜⎜⎜⎝ sup

(i, j)∈Λ

∣∣∣∣Zn

(
φi, j − ψi, j

)∣∣∣∣⎞⎟⎟⎟⎟⎠
≡ 4E1 + E2.

In order to control the terms E1 and E2, we put ‖Zn ( f )‖F = sup f∈F |Zn ( f )| , and we use the following inequality

due to Pisier: For all random variables Z1,Z2, ..., ZN

E

[
max
1≤i≤N

|Zi|
]
≤ N

1
p max

1≤i≤N
(E |Zi|p)

1
p .

Control of E1: For f ∈ F , we write:

f − πq0
( f ) = f − πq1

( f ) +

q1∑
k=q0+1

[
πk ( f ) − πk−1 ( f )

]
.

Therefore,

E1 ≡ E

∥∥∥∥Zn

(
f − πq0

( f )
)∥∥∥∥F

≤ E

∥∥∥∥Zn

(
f − πq1

( f )
)∥∥∥∥F +

q1∑
k=q0+1

E ‖Zn (πk ( f ) − πk−1 ( f ))‖F

≤ E1,q1+1 + 2
√

n sup
f∈F

E

∣∣∣Δq1
( f )

∣∣∣ + q1∑
k=q0+1

E1,k

where E1,k = E ‖Zn (πk ( f ) − πk−1 ( f ))‖F , q0 + 1 ≤ k ≤ q1 and E1,q1+1 = E

∥∥∥∥Zn

(
Δq1

( f )
)∥∥∥∥F . Note that πk ( f ) −

πk−1 ( f ) = πk ( f ) − πk−1 (πk ( f )) and πk ( f ) take values on a finite set N (k) ≤ 2.2vk. Then using Pisier’s inequality,

we can write:

E1,k ≤ 2
vk
p max

g∈πk(F )
‖Zn (g − πk−1 (g))‖p .
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Apply H(p, X) to h = g − πk−1 (g) to get:

‖Zn (h)‖p ≤ D
1
p
(
‖h‖pv + n1+ε− p

2 ‖h‖pr
) 1

p

≤ D
1
p

(
‖h‖v + n

1+ε
p − 1

2 ‖h‖r
)

Using the fact that

‖X‖r ≤ ‖X‖
v
r
v × ‖X‖

r−v
r∞ ,

we obtain

‖Zn (h)‖p ≤ D
1
p ·

(
2−(k−1) + n

1+ε
p − 1

2 2−
(k−1)v

r

)
≤ 2D

1
p ·

(
2−k + n

1+ε
p − 1

2 2−
kv
r

)
.

Hence,

E1,k ≤ 2D
1
p · 2 vk

p

(
2−k + n

1+ε
p − 1

2 2−
kv
r

)
≤ 2D

1
p ·

(
2−k

(
1− v

p

)
+ n

1+ε
p − 1

2 2k
(

v
p− v

r

))
≤ C ·

(
2−k

(
1− v

p

)
+ n

1+ε
p − 1

2 2k
(

v
p− v

r

))
Similarly for E1,q1+1:

E1,q1+1 ≤ C ·
(
2−(q1+1)

(
1− v

p

)
+ n

1+ε
p − 1

2 2(q1+1)
(

v
p− v

r

))
.

Finally, using that E
∣∣∣Δq1

( f )
∣∣∣ = ∥∥∥Δq1

( f )
∥∥∥v

v ≤ 2−q1v, we obtain:

E1 ≤ C · √n2−q1v +

q1+1∑
k=q0+1

E1,k ≤ C · √n2−q1v +C ·
q1+1∑

k=q0+1

(
2−k

(
1− v

p

)
+ n

1+ε
p − 1

2 2k
(

v
p− v

r

))
(2.2)

≤ C ·
(√

n2−q1v + 2−q0

(
1− v

p

)
+ n

1+ε
p − 1

2

[
2q1

(
v
p− v

r

)
− 2q0

(
v
p− v

r

)])
.

Then,

E1 ≤ C ·
(√

n2−q1v + 2−q0

(
1− v

p

)
+ n

1+ε
p − 1

2

[
2q1

(
v
p− v

r

)
− 2q0

(
v
p− v

r

)])
. (2.3)

Control of E2: Noting that |Λ| ≤ 2 × 2vq0 (since if Fi, j � φ, then j = {i − 1, i, i + 1} , because
∣∣∣ fx − fxq0

(i)

∣∣∣ ≤ Δxq0
(i)

and
∥∥∥Δxq0

(i)

∥∥∥
v
≤ 2−q0 ) and

∥∥∥φi, j − ψi, j

∥∥∥
v ≤ δ, using the inequality of Pisier, we get

E2 = E

⎛⎜⎜⎜⎜⎝ sup
(i, j)∈Λ

∣∣∣∣Zn

(
φi, j − ψi, j

)∣∣∣∣⎞⎟⎟⎟⎟⎠
≤ 2

vq0
p max

(i, j)∈Λ

∥∥∥∥Zn

(
φi, j − ψi, j

)∥∥∥∥
p
.

Again by H(p, X),

E2 ≤ 2
vq0

p

[
D

1
p ·

(∥∥∥φi, j − ψi, j

∥∥∥
v + n

1+ε
p − 1

2

∥∥∥φi, j − ψi, j

∥∥∥
r

)]
≤ 2

vq0
p D

1
p ·

(
δ + n

1+ε
p − 1

2 δ
v
r

)
Then,

E2 ≤ D
1
p · 2 vq0

p

(
δ + n

1+ε
p − 1

2 δ
v
r

)
. (2.4)

Thus, from (2.3) and (2.4) we conclude that:

W (n, δ) ≤ C ·
[√

n2−q1v + 2−q0

(
1− v

p

)
+ 2

vq0
p δ + n

1+ε
p − 1

2

(
2q1

(
v
p− v

r

)
− 2q0

(
v
p− v

r

)
+ 2

vq0
p δ

v
r

)]
.
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We have δ ∼ 2−q0 then 2
vq0

p · δ ∼ 2−q0

(
1− v

p

)
∼ δ

(
1− v

p

)
, hence

W (n, δ) ≤ C ·
[√

n2−q1v + δ
(
1− v

p

)
+ n

1+ε
p − 1

2 2q1

(
v
p− v

r

)]
.

Take q1 such that
√

n2−q1v ∼ n
1+ε

p − 1
2 2q1

(
v
p− v

r

)
then

2q1 ∼ n
1− 1+ε

p

v(1+ 1
p − 1

r ) ⇒ q1 ∼
(
1 − 1+ε

p

)
ln n

v
(
1 + 1

p − 1
r

)
ln 2
.

Therefore,

W (n, δ) ≤ C ·
(
n
− 1

2
+

2+ε− p
r

p+1− p
r + δ

(
1− v

p

))
.

As q1 and q0 have to satisfy q0 < q1 then δ > n

1+ε
p −1

v(1+ 1
p − 1

r ) . And to ensure that W (n, δ) →{n→∞,δ→0} 0, we need

− 1
2
+

2+ε− p
r

p+1− p
r
< 0 which is this

ε <
p
2

(
1 − 1

p
+

1

r

)
− 1.

Proof of Remark 1. The proof of the first point of the Remark 1 has the same steps of the proof of Theorem 1 up to

the inequality (2.2). This relation becomes in the case where r = p,

E1 ≤ C · √n2−q1v +C ·
q1+1∑

k=q0+1

(
2−k

(
1− v

p

)
+ n

1+ε
p − 1

2

)
≤ C ·

(√
n2−q1v + 2−q0

(
1− v

p

)
+ q1n

1+ε
p − 1

2

)
.

Since

q1 ∼ 1

v ln 2

(
1 − 1 + ε

p

)
ln n.

Therefore,

W (n, δ) ≤ C ·
(
ln n.n−

1
2
+ 1+ε

p + δ
(
1− v

p

))
.

3. Limit Theorems for the Empirical VaR

In this part we will apply the results of the previous section on the fluctuations of the empirical process to deduce

asymptotic results on the V̂aR (q).

Theorem 2 Under conditions H(X), H(F) and H(p, X) where ε < p
2

(
1 − 1

p +
1
r

)
− 1, we have for an � n−

1
2 ,

|ξn − ξ| = op (an) .

If in addition √
n (Fn (ξ) − F (ξ))→d N

(
0, σ2

∞ (ξ)
)
,

then √
n (ξn − ξ) −→d N

(
0,
σ2∞ (ξ)

f 2 (ξ)

)
.

The proof of the previous theorem is based on the two following lemmas:

Lemma 1 Under conditions H(X), H(F) and H(p, X) where ε ≤ p
2
− 1, we have for an > 0,

P (|ξn − ξ| > an) ≤ C (ε, p, v, r, ξ) .
(
n

1
2 an

)−p
.

If in addition an � n−
1
2 , then

|ξn − ξ| = op (an) .
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Proof of Lemma 1. Let s =
[
nq

]
+ 1. Then, we note that

P (ξn < ξ − an) = P (s or more of the Xi (1 ≤ i ≤ n) are < ξ − an)

= P

⎛⎜⎜⎜⎜⎜⎝ n∑
i=1

I(Xi<ξ−an) ≥ s

⎞⎟⎟⎟⎟⎟⎠
= P

(
Fn (ξ − an) ≥ s

n

)
= P

(
Fn (ξ − an) − F (ξ − an) ≥ s

n
− F (ξ − an)

)
.

Since

Fn (ξn) =
s
n
= F (ξ) + O

(
n−1

)
, (see e.g. Sen, 1972)

then, using H(F) and the first-order Taylor expansion of F (ξ − an), one obtains

s
n
− F (ξ − an) = f (ξ) an [1 + o (1)] .

Then

P (ξn < ξ − an) = P (Fn (ξ − an) − F (ξ − an) ≥ f (ξ) an [1 + o (1)]) .

And by Markov’s inequality, this is bounded by

P (ξn < ξ − an) ≤
(

1

f (ξ) an [1 + o (1)]

)p

E
[
Fn (ξ − an) − F (ξ − an)

]p ,

≤ C ·
(

1

f (ξ) an

)p

E |Fn (ξ − an) − F (ξ − an)|p .

But,

E |Fn (ξ − an) − F (ξ − an)|p =
(

1√
n

)p

E

∣∣∣∣Zn

(
f(ξ−an)

)∣∣∣∣p .
By H(p, X),

E |Fn (ξ − an) − F (ξ − an)|p ≤
(

1√
n

)p

D ·
(∥∥∥I(Xi<ξ−an)

∥∥∥p
v + n1+ε− p

2 · ∥∥∥I(Xi<ξ−an)

∥∥∥p
r

)
≤ n

−p
2 D ·

(
F (ξ − an)

p
v + n1+ε− p

2 F (ξ − an)
p
r

)
.

Then,

P (ξn < ξ − an) ≤ C ·
(

1

f (ξ) an

)p

n
−p
2 D ·

(
F (ξ − an)

p
v + n1+ε− p

2 F (ξ − an)
p
r

)
≤ C · D

(
1

f (ξ)

)p

n
−p
2 a−p

n

(
F (ξ − an)

p
v + n1+ε− p

2 F (ξ − an)
p
r

)
≤ C (ε, p, v, r, ξ) ·

(
1 + n1+ε− p

2

)
n
−p
2 a−p

n .

Consequently for 0 < an and ε ≤ p
2
− 1

P (ξn < ξ − an) ≤ C (ε, p, v, r, ξ) · n −p
2 a−p

n . (3.1)

For the second term, we note that:

P (ξn > ξ + an) = P (s or less of the Xi (1 ≤ i ≤ n) are < ξ + an)

= P

⎛⎜⎜⎜⎜⎜⎝ n∑
i=1

I(Xi<ξ+an) ≤ s

⎞⎟⎟⎟⎟⎟⎠
= P

(
Fn (ξ + an) ≤ s

n

)
= P

(
Fn (ξ + an) − F (ξ + an) ≤ s

n
− F (ξ + an)

)
.
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But, using H(F) and the first-order Taylor expansion of F (ξ + an), one obtains

P (ξn > ξ + an) = P (Fn (ξ + an) − F (ξ + an) ≤ − f (ξ) an [1 + o (1)])

= P (F (ξ + an) − Fn (ξ + an) ≥ f (ξ) an [1 + o (1)]) .

and by Markov’s inequality, this is bounded by

P (ξn > ξ + an) ≤
(

1

f (ξ) an [1 + o (1)]

)p

E
[
F (ξ + an) − Fn (ξ + an)

]p ,

≤ C ·
(

1

f (ξ) an

)p

E |Fn (ξ + an) − F (ξ + an)|p .

In the same way for the first term, we have

E |Fn (ξ + an) − F (ξ + an)|p =
(

1√
n

)p

E

∣∣∣∣Zn

(
f(ξ+an)

)∣∣∣∣p .
By H(p, X),

E |Fn (ξ + an) − F (ξ + an)|p ≤
(

1√
n

)p

D ·
(∥∥∥I(Xi<ξ+an)

∥∥∥p
v + n1+ε− p

2 · ∥∥∥I(Xi<ξ+an)

∥∥∥p
r

)
≤ n

−p
2 D.

(
F (ξ + an)

p
v + n1+ε− p

2 F (ξ + an)
p
r

)
.

Then,

P (ξn > ξ + an) ≤ C ·
(

1

f (ξ) an

)p

n
−p
2 D ·

(
F (ξ + an)

p
v + n1+ε− p

2 F (ξ + an)
p
r

)
≤ C · D ·

(
1

f (ξ)

)p

n
−p
2 a−p

n

(
F (ξ + an)

p
v + n1+ε− p

2 F (ξ + an)
p
r

)
≤ C (ε, p, v, r, ξ) ·

(
1 + n1+ε− p

2

)
n
−p
2 a−p

n .

Consequently for 0 < an and ε ≤ p
2
− 1

P (ξn > ξ + an) ≤ C (ε, p, v, r, ξ) · n −p
2 a−p

n . (3.2)

Thus, from (3.1) and (3.2) we conclude for 0 < an and ε ≤ p
2
− 1

P (|ξn − ξ| > an) ≤ C (ε, p, v, r, ξ) ·
(
n

1
2 an

)−p
.

Finally, if an � n−
1
2 , then

P (|ξn − ξ| > an)→n→∞ 0.

The following lemma studies the proximity between Zn

(
fξn

)
=
√

n (Fn (ξn) − F (ξn)) and Zn

(
fξ
)
=
√

n(Fn(ξ)−

F(ξ)).

Lemma 2 Under conditions H(X), H(F) and H(p, X) where ε < p
2

(
1 − 1

p +
1
r

)
− 1, we have for an � n−

1
2 and

bn � max

(
n
− 1

2
+

2+ε− p
r

p+1− p
r , a

(
1
v − 1

p

)
n

)
,

∣∣∣√n (Fn (ξn) − F (ξn)) − √n (Fn (ξ) − F (ξ))
∣∣∣ = op (bn) .

Proof of Lemma 2. Let 0 < an and 0 < bn, we note that

P

(∣∣∣∣Zn

(
fξn − fξ

)∣∣∣∣ > bn

)
= P

(∣∣∣∣Zn

(
fξn − fξ

)∣∣∣∣ > bn ∩ |ξn − ξ| ≤ an

)
+ P

(∣∣∣∣Zn

(
fξn − fξ

)∣∣∣∣ > bn ∩ |ξn − ξ| > an

)
≤ P

(∣∣∣∣Zn

(
fξn − fξ

)∣∣∣∣ I(|ξn−ξ|≤an) > bn

)
+ P (|ξn − ξ| > an) .
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If H(p, X) is verified for ε < p
2

(
1 − 1

p +
1
r

)
− 1 ≤ p

2
− 1 and 0 < an, then by Lemma 1:

P (|ξn − ξ| > an) ≤ C ·
(
n

1
2 an

)−p
.

If H(F) is verified, then F is locally Lipschitz, then for |y − ξ| ≤ an, we have∥∥∥ fy − fξ
∥∥∥

v = |F (y) − F (ξ)| 1v ≤ C (v, ξ) · |y − ξ| 1v ≤ C (v, ξ) · a 1
v
n .

In addition, by Markov’s inequality and Theorem 1 for an >
1

C(v,ξ) n

1+ε
p −1

1+ 1
p − 1

r

P

(∣∣∣∣Zn

(
fξn − fξ

)∣∣∣∣ I(|ξn−ξ|≤an) > bn

)
≤ 1

bn
E

∣∣∣∣∣∣ sup
|y−ξ|≤an

∣∣∣∣Zn

(
fy − fξ

)∣∣∣∣∣∣∣∣∣∣
≤ C · b−1

n

(
n
− 1

2
+

2+ε− p
r

p+1− p
r +C.a

(
1
v − 1

p

)
n

)
.

Consequently, for an >
1

C(v,ξ) n

1+ε
p −1

1+ 1
p − 1

r where ε < p
2

(
1 − 1

p +
1
r

)
− 1 and 0 < bn

P

(∣∣∣∣Zn

(
fξn − fξ

)∣∣∣∣ > bn

)
≤ C ·

[
b−1

n

(
n
− 1

2
+

2+ε− p
r

p+1− p
r +C · a

(
1
v − 1

p

)
n

)
+

(
n

1
2 an

)−p
]
.

If an � n−
1
2 and bn � max

(
n
− 1

2
+

2+ε− p
r

p+1− p
r , a

(
1
v − 1

p

)
n

)
, then

∣∣∣∣Zn

(
fξn − fξ

)∣∣∣∣ = op (bn) .

Finally, by the definition of Zn ( fx), we obtain∣∣∣√n (Fn (ξn) − F (ξn)) − √n (Fn (ξ) − F (ξ))
∣∣∣ = op (bn) .

Proof of Theorem 2. By Lemmas 1 and 2 for an � n−
1
2 and bn � max

(
n
− 1

2
+

2+ε− p
r

p+1− p
r , a

(
1
v − 1

p

)
n

)
, we have

∣∣∣√n (Fn (ξn) − F (ξn)) − √n (Fn (ξ) − F (ξ))
∣∣∣ = op (bn) . (3.3)

Since

Fn (ξn) =
s
n
= F (ξ) + O

(
n−1

)
,

then, √
n (Fn (ξn) − F (ξn)) =

√
n (F (ξ) − F (ξn)) + O

(
n−

1
2

)
. (3.4)

If H(F) is satisfied, then by the Mean Value Theorem of F (ξ) − F (ξn),

F (ξ) − F (ξn) = (ξ − ξn) f (θξn + (1 − θ) ξ)
where θ ∈ [0, 1]. Then

√
n (Fn (ξn) − F (ξn)) =

√
n (ξ − ξn) f (θξn + (1 − θ) ξ) + O

(
n−

1
2

)
.

Hence, ∣∣∣∣√n (ξ − ξn) f (θξn + (1 − θ) ξ) + O
(
n−

1
2

)
− √n (Fn (ξ) − F (ξ))

∣∣∣∣ = op (bn) . (3.5)

But we have, √
n (Fn (ξ) − F (ξ))→d N

(
0, σ2

∞ (ξ)
)
.

And by Lemma 1 for an � n−
1
2 ,

f (θξn + (1 − θ) ξ) =
[
f
(
ξ + op (an)

)]
→n→∞ f (ξ) in probability. (3.6)
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Then by (3.3), (3.4), (3.5), (3.6) and Slutsky’s Theorem (Cramér, 1946, p. 254), we have:

√
n ( f (ξ) (ξ − ξn))→d N

(
0, σ2

∞ (ξ)
)
.

Which is equivalent in the result to,
√

n (ξn − ξ) −→d N
(
0,
σ2∞ (ξ)

f 2 (ξ)

)
.

4. Applications

In this section we apply the previous results for different sequences. Using the findings of Hu (2003, p. 1124) and

Peligrad (1985, Theorem 2.1, p. 1305), we apply our result to ϕ−mixing case. Making use of the result of Utev

and Peligrad (2003, Theorem 2.1 and 2.2), we apply our result to the ρ−mixing case and to α−mixing by mean

of the results in Shao and Yu (1996, Theorem 4.1) and Rio (1997, Theorem 7.2). We also consider the nonlinear

functional of Gaussian sequences to which we apply the result of Ben Hariz (2011) and Breuer and Major (1983).

Finally we compare the results with those in the existing literature.

4.1 ϕ−mixing Process

Corollary 1 Under condition H(X), if the ϕ−mixing coefficient satisfies

∞∑
i=0

ϕ
1
p
(
2i
)
< ∞ with p > 2,

Then, for δ > n−
1
2

(
1− 1

p

)
, there is a positive constant C(p, ϕ (.)) such that for any f ∈ F

E

⎡⎢⎢⎢⎢⎢⎢⎣ sup
‖ fx− fy‖2≤δ

∣∣∣∣Zn

(
fx − fy

)∣∣∣∣⎤⎥⎥⎥⎥⎥⎥⎦ ≤ C(p, ϕ (.)) ·
(
ln n.n

1
p− 1

2 + δ
(
1− 2

p

))
.

If H(F) is verified, then for an � n−
1
2 we have

|ξn − ξ| = op (an) .

and if in addition 0 < σ2∞ < ∞, then

√
n (ξn − ξ) −→d N

(
0,
σ2∞ (ξ)

f 2 (ξ)

)
.

Proof of Corollary 1. When (Xi)i≥1 are identically distributed, using a Lemma by Hu (2003, p. 1124), if

∞∑
i=0

ϕ
1
p
(
2i
)
< ∞,

then, there exists a positive constant K = K(p, ϕ (.)) such that for all n ≥ 1 and for any f

E |Zn ( f )|p ≤ C (p, ϕ (·)) .
(
‖ f ‖p

2
+ n1− p

2 ‖ f ‖pp
)
.

Then H(p, X) is satisfied with ε = 0, v = 2 and p = r. Apply now Theorem 1 for δ > n−
1
2

(
1− 1

p

)
, to obtain

E

⎡⎢⎢⎢⎢⎢⎢⎣ sup
‖ fx− fy‖2≤δ

∣∣∣∣Zn

(
fx − fy

)∣∣∣∣⎤⎥⎥⎥⎥⎥⎥⎦ ≤ C ·
(
ln n · n 1

p− 1
2 + δ

(
1− 2

p

))
.

If H(F) is verified and an � n−
1
2 , then by Lemma 1 for p > 2 we obtain

|ξn − ξ| = op (an) .

To show that √
n (Fn (ξ) − F (ξ))→d N

(
0, σ2

∞ (ξ)
)
,
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we will apply a result by Peligrad (1985, Theorem 2.1, p. 1305) with Yi ≡ I(Xi≤ξ) − F (ξ), σ2
n = E

[∑n
i=1 Yi

]2
and

Wn (t) := 1
σn

∑[nt]
i=1

Yi, t ∈ [0, 1] and 0 < σ2∞ < ∞. If we have 0 < σ2∞ < ∞, then
σ2

n
n →n→∞ σ2∞.

The condition (L) therein can be written for ε > 0,

1

σ2
n

n∑
i=1

E

[
Y2

i I[Y2
i >εσ

2
n]

]
≤ n
σ2

n
E

[
Y2

i I[Y2
i >εσ

2
n]

]
≤ C · n

σ2
n
P

[[
I(Xi≤ξ) − F (ξ)

]2
> εσ2

n

]
≤ C · n
εσ4

n
E

[[
I(Xi≤ξ) − F (ξ)

]2
]
→n→∞ 0.

The conditions:

(A) σ2
n = nh(n) où h(n) is a slowly varying function defined on R,

(B) supm≥0,n≥1

[
E

(∑m+n
i=1 Yi −∑m

i=1 Yi

)2
/σ2

n

]
< ∞,

therein are a result of 0 < σ2∞ < ∞. We take t = 1 to conclude

√
n (Fn (ξ) − F (ξ))→d N

(
0, σ2

∞ (ξ)
)
.

Therefore by Theorem 2
√

n (ξn − ξ) −→d N
(
0,
σ2∞ (ξ)

f 2 (ξ)

)
.

4.2 ρ−mixing Process

For a stationary sequence (Xi)i∈Z ,we define

α∗n = sup
S ,T⊂Z,dist(S ,T )≥n

α (MT ,MS ) ,

ρ∗n = sup
S ,T⊂Z,dist(S ,T )≥n

ρ (MT ,MS ) ,

whereMT = σ (Xi, i ∈ T ) ,MS = σ (Xi, i ∈ S ) .We apply a result by Utev and Peligrad (2003, Theorems 2.1 and

2.2) to prove the following Theorems:

Corollary 2 Under condition H(X), we assume: H (ρ) : There exists a real number 0 ≤ η < 1 and integer number
N ≥ 1 such that ρ∗N ≤ η. Then, for p > 2 and δ > n−

1
2

(
1− 1

p

)
, there is a positive constant C (p,N, η) such that for any

f ∈ F
E

⎡⎢⎢⎢⎢⎢⎢⎣ sup
‖ fx− fy‖2≤δ

∣∣∣∣Zn

(
fx − fy

)∣∣∣∣⎤⎥⎥⎥⎥⎥⎥⎦ ≤ C (p,N, η) .
(
ln n · n 1

p− 1
2 + δ

(
1− 2

p

))
.

If H(F) is verified, then for an � n−
1
2 we have

|ξn − ξ| = op (an) in probability.

If in addition the sequence (Xi)i≥1 is stongly mixing and 0 < σ2∞ < ∞, then

√
n (ξn − ξ) −→d N

(
0,
σ2∞ (ξ)

f 2 (ξ)

)
.

Proof of Corollary 2. Assuming that the condition H (ρ) is satisfied and the random variables are identically

distributed, then by Utev and Peligrad (2003, Theorem 2.1), for any p > 2, there exists a positive constant D =
D (p,N, η) such that for n ≥ 1,

E |Zn ( f )|p ≤ D
(
‖ f ‖p

2
+ n1− p

2 ‖ f ‖pp
)
.

Apply now Theorem 1 with the condition H(p, X) where ε = 0, v = 2 and p = r, we obtain

E

⎡⎢⎢⎢⎢⎢⎢⎣ sup
‖ fx− fy‖2≤δ

∣∣∣∣Zn

(
fx − fy

)∣∣∣∣⎤⎥⎥⎥⎥⎥⎥⎦ ≤ C ·
(
ln n · n 1

p− 1
2 + δ

(
1− 2

p

))
.
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If H(F) is verified and an � n−
1
2 , then by Lemma 1 for p > 2 we obtain

|ξn − ξ| = op (an) in probability.

To show that √
n (Fn (ξ) − F (ξ))→d N

(
0, σ2

∞ (ξ)
)
,

we will apply a result by Utev and Peligrad (2003, Theorem 2.2, p. 105) with ξni ≡ I(Xi≤ξ)−F (ξ), σ2
n = E

[∑n
i=1 ξni

]2
,

kn = n and Wn (t) := 1
σn

∑vt
i=1
ξni where vt = [nt] and t ∈ [0, 1]. Si on a 0 < σ2∞ < ∞, alors

σ2
n

n →n→∞ σ2∞. The

condition (2.5) of Utev and Peligrad (2003):

(2.5) limn→∞ sup
[
nE (ξn1)2 /σ2

n

]
≤ C, is a consequence of 0 < σ2∞ < ∞. The condition (2.3) is proved in Corollary

2: (condition (L). We take t = 1 to conclude

√
n (Fn (ξ) − F (ξ))→d N

(
0, σ2

∞ (ξ)
)
.

Therefore by Theorem 2
√

n (ξn − ξ) −→d N
(
0,
σ2∞ (ξ)

f 2 (ξ)

)
.

4.3 α−mixing Process

Corollary 3 Under conditions H(X) and H(F), if the α−mixing coefficient satisfies

α (n) ≤ Cn−θ for some C ≥ 1 and θ > 1 +
√

2.

Then, for an � n−
1
2 we have

|ξn − ξ| = op (an) .

and if in addition 0 < σ2∞ < ∞, then

√
n (ξn − ξ) −→d N

(
0,
σ2∞ (ξ)

f 2 (ξ)

)
.

Proof of Corollary 3. When (Xi)i≥1 are identically distributed, then by Shao and Yu (1996, Theorem 4.1), if

α (n) ≤ Cn−θ for C > 0 and θ > 0.

Then, for some real numbers 2 < p < r ≤ ∞, 2 < v ≤ r, ε > 0, θ > v
v−2

and θ ≥ (p−1)r
r−p , there is a constant

K = K (v, p, r, ε, θ,C) < ∞ such that for any f ∈ F
E |Zn ( f )|p ≤ K

(
‖ f ‖pv + n1+ε− p

2 ‖ f ‖pr
)

which satisfies H(p, X). If ε ≤ p
2
− 1 and an � n−

1
2 , then by Lemma 1 we have

|ξn − ξ| = op (an) .

For determining θ which allows to apply Theorem 1 we need v < p < r and
p
2

(
1 − 1

p +
1
r

)
− 1 > 0. Now we have

θ ≥ (p − 1) r
r − p

⇔ p ≤ r (θ + 1)

θ + r
,

and

θ >
v

v − 2
⇔ v >

2θ

θ − 1
.

Since v < p we need
2θ

θ − 1
<

r (θ + 1)

θ + r
which is satisfied if

θ > 1 +
√

2

⎛⎜⎜⎜⎜⎝ √r (r − 1) +
√

2

r − 2

⎞⎟⎟⎟⎟⎠ .
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Consequently, we take θ = 1 + η where η >
√

2. For η >
√

2 we have 2 + 2
η
< 2 +

2η2+6η+4

η3+η2+2η+4
< 2 +

2(2η+3)

η2−2
, then we

choose v, p, r

i) v = 2 + 2
η
,

ii) p = 2 +
2η2+6η+4

η3+η2+2η+4
,

iii) r = 2 +
2(2η+3)

η2−2
.

With these choices we have v < p < r and

p
2

(
1 − 1

p
+

1

r

)
− 1 > 0.

Then we have

W (n, an) ≤ C.
(
n
− 1

2
+

2+ε− p
r

p+1− p
r + a

1
v − 1

p
n

)
→n→∞ 0.

If in addition 0 < σ2∞ < ∞, then by Rio (1997, Theorem 7.2) for

α (n) ≤ Cn−θ where C ≥ 1 and θ > 1,

we have √
n (Fn (ξ) − F (ξ))→d N

(
0, σ2

∞ (ξ)
)
.

Finally, by applying Theorem 2 for an � n−
1
2 , we obtain that

√
n (ξn − ξ) −→d N

(
0,
σ2∞ (ξ)

f 2 (ξ)

)
.

4.4 Nonlinear Functional of Gaussian Sequences

Corollary 4 Let Xi = G (Zi) where G is a measurable function and (Zi) is a stationary Gaussian sequence with
zero mean and covariance function

� (n) = E (ZiZi+n) .

Assume
∑∞

i=0 |� (i)| < ∞. Then, for p > 2 and δ > n−
1
2

(
1− 1

p

)
, there is a positive constant C (p, �) such that for any

f ∈ F
E

⎡⎢⎢⎢⎢⎢⎢⎣ sup
‖ fx− fy‖2≤δ

∣∣∣∣Zn

(
fx − fy

)∣∣∣∣⎤⎥⎥⎥⎥⎥⎥⎦ ≤ C (p, �) .
(
ln n.n

1
p− 1

2 + δ
(
1− 2

p

))
.

If H(F) is verified, then for an � n−
1
2 we have

|ξn − ξ| = op (an) in probability,

and if in addition 0 < σ2∞ < ∞, then

√
n (ξn − ξ) −→d N

(
0,
σ2∞ (ξ)

f 2 (ξ)

)
.

Proof of Corollary 4. The proof of this corollary is a consequence of the following results:

Lemma 3 (Ben Hariz, 2011) Let p be an even integer and assume that
∑∞

i=0 |� (i)| < ∞, then there exists a constant
K = K (p, �) such that for all n > 0,

E

⎛⎜⎜⎜⎜⎜⎝ 1√
n

n∑
i=1

f (Zi) − E ( f (Zi))

⎞⎟⎟⎟⎟⎟⎠p

≤ K (p, �)
(
‖ f ‖p

2
+ n1− p

2 ‖ f ‖pp
)
.

We apply Lemma 3 for f (Z) = IG(Z)≤x. Then H(p, X) is satisfied with ε = 0, v = 2 and p = r. If H(F) is verified,

then by Lemma 1 for an � n−
1
2 , we have

|ξn − ξ| = op (an) .
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And by Theorem 1

W (n, δ) ≤ C.
(
ln n.n−

1
2
+ 1

p + δ
(
1− 2

p

))
.

For the central limit theorem we need to apply the following results due to Breuer and Major (1983), (see also

Csörgo, Sándor & Mielniczuk, 1996, for a functional extension) .

Lemma 4 Let (Zi) be a stationary Gaussian sequence with a covariance function satisfying
∑∞

i=0 |� (i)| < ∞, then

1√
n

n∑
i=1

(
IG(Zi)≤x − F (x)

) −→d N
(
0, σ2

∞ (x)
)

where σ2
n (x) = Var

(
IG(Zi)≤x

)
+ 2

∑∞
i=1 Cov

(
IG(Z1)≤x, IG(Zi)≤x

)
.

If 0 < σ2∞ < ∞, then by Lemma 3, Lemma 4 and Theorem 2 we have

√
n (ξn − ξ) −→d N

(
0,
σ2∞ (ξ)

f 2 (ξ)

)
.

4.5 Comparison with the Existing Results of the Literature

• In Sen (1972), Sen has proved that for a ϕ-mixing sequence of random variables, if we have

∞∑
i=0

ϕ
1
2 (i) < ∞,

then √
n (ξn − ξ) −→d N

(
0,
σ2∞ (ξ)

f 2 (ξ)

)
.

which is stronger than our condition:
∞∑

i=0

ϕ
1
p
(
2i
)
< ∞.

Indeed,
∑∞

i=0 ϕ
1
2 (i) < ∞ needs an algebraic decay of the the mixing coefficient ϕ (i) , and

∑∞
i=0 ϕ

1
p
(
2i
)
< ∞ needs

only a logarithmic decay.

• In 2005, Chen and Tang studied the nonparametric estimation of the Value at Risk (VaR) for a geometric

α-mixing sequence of random variables, that means

α (k) ≤ cρk where k ≥ 1, c > 0 and ρ ∈ (0, 1) .

Using the kernel estimation of the VaR:

F̂n,h

(
V̂aRh (q)

)
=

1

n

n∑
i=1

G
⎛⎜⎜⎜⎜⎝ V̂aRh (q) − Xi

h

⎞⎟⎟⎟⎟⎠ = q,

where G (x) =
∫ x
−∞ K (u) d (u) is a distribution function of a kernel density K, they showed that:∣∣∣∣V̂aRh (q) − VaR (q)

∣∣∣∣ = oa.s.

(
n−

1
2 ln (n)

)
.

√
n
(
V̂aRh (q) − VaR (q)

)
→ dN

(
0,
σ2∞ (VaR (q))

f 2 (VaR (q))

)
.

• Lahiri and Sun (2009) showed that for a α-mixing sequence of random variables such that

α (n) ≤ dn−θ where θ > 12,

the empirical V̂aR (q) satisfy for a constant C > 0 and n ≥ 1

sup
x∈R

∣∣∣∣∣∣P [√
n (ξn − ξ) ≤ x

]
− Φ

[
x × f (ξ)

σ∞ (ξ)

]∣∣∣∣∣∣ ≤ C√
n
,
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where Φ is the standard normal distribution. In particular they obtained as n→ ∞,
√

n (ξn − ξ) −→d N
(
0,
σ2∞ (ξ)

f 2 (ξ)

)
.

Observe that for the CLT to hold for strong mixing sequences, we only need that α (k) ≤ Cn−θ with θ > 1 +
√

2.

Remark 2 Our results also apply for stochastic differential equations and stochastic volatility models discretely

observed. Indeed, Genon-Catalot et al. (2000) showed that, under some conditions, these models as well as theirs

discrete versions, satisfies geometric α or ρ−mixing. Therefore the main hypothesis H(p, X) is then fulfilled for any

p ≥ 2. Regarding GARCH models which are also widely used in financial modeling, we mention that Davis et al.

(1999) showed that under conditions on the moment of the innovations and on the Lyapunov exponent associated

to the sequence, the squared of the GARCH sequence is geometric α−mixing. Hence, our results apply also for

GARCH models.

5. Simulation Studies

In this section we present some numerical studies which illustrate the conditions under which V̂aR (q) converges to

VaR (q). In these simulations, we choose a correlated Gaussian and Pareto sequences. In both cases, we compare

the VaR(q) where q = 0.95 to the empirical estimate of VaR(q). For each set of parameters, we run (M = 10000)

Monte Carlo simulations and compute the mean absolute error (MAE(n)) between V̂aR (q) and VaR (q)

MAE(n) =
1

M

M∑
i=1

∣∣∣∣V̂aR(i) (q) − VaR (q)
∣∣∣∣ .

We also give a confidence interval with level 95% to the VaR(q). We consider three different models. First, a cor-

related Gaussian sequence, then a correlated sequences with Pareto marginal distributions and finally a stochastic

volatility model.

5.1 Case 1: Dependent Gaussian Process

Let (Xi)0≤i≤n be a Gaussian sequence with zero mean, unit variance and a correlation function given by:

�n (i) := Cov(X0, Xi) = (1 + |i|)−α , i = 1, ..., n

where α > 0. The parameter α tunes the strength of dependence. In particular α = ∞ corresponds to the i.i.d.

sequence, whereas α = 0, (�n (i) = 1) gives perfectly correlated sequence.

We study the process:

Tn :=
√

n
(
V̂aR (q) − VaR (q)

)
.

We show that for α > 1
(
⇒ ∑∞

i=0 |�n (i)| < ∞.
)
,

Tn −→d
n→∞ N

(
0, τ2
∞
)
, (5.1)

where τ2∞ =
σ2∞(VaR(q))

f 2(VaR(q))
. Here we recall that VaR (0.95) = 1.6449.

In Figure 1, we plot the mean absolute error with a 95% confidence interval as a function of n for different values

of α when q = 0.95. Clearly the MAE(n) goes to zero when n large, for any α > 0. The simulations shows that the

V̂aR (q) is consistent when the correlation parameter α > 0. When α > 1, in Figure 2, we plot
√

n MAE against n
to see that it converges to a constant. In Figure 3, we see that the MAE (n) as a function of α for different values

of n with q = 0.95, tends to zero for large values of n. In Figure 4, we compare the histogram of Tn for α = 3 and

n = 800 with the density function of Gaussian distribution N
(
0, τ2∞

)
. Clearly, for α > 1 the histogram of Tn is

close to the normal distribution, confirming our result (5.1).

5.2 Case 2: Dependent Pareto Process

We now consider the V̂aR (q) for a correlated Pareto sequence (Xi)0≤i≤n. Recall that the distribution function of

Pareto is defined for β > 0 by:

Gβ (x) =

⎧⎪⎪⎨⎪⎪⎩ 1 −
(

x0

x

)β
x > x0

0 x ≤ x0
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To construct a correlated Pareto sequence, we let Xi = G−1
β (Φ (Yi)) where Φ is the Gaussian distribution N (0, 1)

and {Yi}0≤i≤n is a correlated Gaussian sequence defined as in the previous example. As in the first case, we study

the process Tn to illustrate the central limit theorem (see (5.1)). Here VaR (0.95) = 2.7144 when β = 3.

In Figure 5, we plot MAE (n) with a 95% confidence interval as a function of n for different values of α when

q = 0.95. Clearly, the MAE goes to zero when n large, for any α > 0. The simulations shows that the V̂aR (q) is

consistent when the correlation parameter α > 0. When α > 1, in Figure 6, we plot
√

n MAE (n) against n to see

that it converges to a constant. In Figure 7, we see that the MAE (n) as a function of α for different values of n with

q = 0.95, tends to zero for large values of n. In Figure 8, we compare the histogram of Tn for α = 3 and n = 800,
with the density function of Pareto distribution. Here again, when α > 1, the CLT is satisfied.

5.3 Case 3: Stochastic Volatility Models

We assume that V̂aR (q) of the correlated sequence (Xi)0≤i≤n with stochastic volatility:

Xi = σi.εi

where (εi)0≤i≤n is an iid Gaussian sequence N (0, 1) and (σi)0≤i≤n correlated Gaussian or Pareto sequences.

As in the first case, we study the process Tn to prove (5.1) where VaR (0.95) ≈ 1.5949 for the Gaussian sequence

and VaR (0.95) ≈ 2.4615 for the Pareto sequence with β = 3. In Figure 9, we compare the histogram of Tn for

α = 3 and n = 800, with the density function of Gaussian distribution N
(
0, τ2∞

)
using two cases (Gaussian and

Pareto for the distribution function of σi). Here again, when α > 1, the CLT is satisfied.
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Figure 1. The Mean Absolute Error (MAE(n)) with 95% confidence intervals for correlated Gaussian sequence

with correlation function �n (i) = (1 + |i|)−α is plotted against the sequence length n for different values of

dependence parameter α
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Figure 2.
(√

nMAE(n)
)

with 95% confidence intervals for correlated Gaussian sequence with correlation function

�n (i) is plotted against the sequence length n for α ∈ {0.5, 1.5,∞}. The value
(√

nMAE(n)
)

tends to a constant for

α > 1 indicating that the optimal convergence rate O(n−
1
2 ) is achieved
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Figure 3. The Mean Absolute Error (MAE(n)) with 95% confidence intervals for correlated Gaussian sequence

with correlation function �n (i) is plotted against the dependence parameter α for different values of n
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correlation function �n (i) is plotted against the sequence length n for different values of dependence parameter α
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with 95% confidence intervals for correlated Pareto sequence with correlation function

�n (i) is plotted against the sequence length n for α ∈ {0.5, 1.5,∞}. The value
(√
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)

tends to a constant for

α > 1 indicating that the optimal convergence rate O(n−
1
2 ) is achieved
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Figure 7. The Mean Absolute Error (MAE(n)) with 95% confidence intervals for correlated Pareto sequence with

correlation function �n (i) is plotted against the dependence parameter α for different values of n
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Figure 9. Comparing the histogram of Tn for α = 3 and n = 800, with the density function of Gaussian

distribution N
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for two case (Gaussian and Pareto sequence)

6. Conclusion

In this work, we considered the nonparametric estimator of the VaR. We proved the consistency of the empirical

estimator and a central limit theorem for
√

n (ξn − ξ) . Ours results apply as soon as we have a moment inequality

for the partial sums. Although the limit is normal like the i.i.d. case, the limiting variance is different and typically

larger with dependent observations. One consequence is: the confidence interval for the VaR will be larger. Another

question arise about the estimation of this variance. Our results apply for weakly dependent sequences, including

mixing sequences, linear process, gaussian sequences and others. It would be interesting to study the estimation of

the VaR for long-range dependent sequences.
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Abstract

Multiple myeloma is a blood cancer that develops in the bone marrow. It is assumed that in most cases multiple

myeloma develops in association with several medical factors acting together, although the leading cause of the

disease has not yet been identified. In this paper, we investigate the relationship between the factors to measure

multiple myeloma patients’ survival time. For this, we employ a copula that provides a convenient way to construct

statistical models for multivariate dependence. Through an approach via copulas, we find the most influential

medical factors that affect the survival time. Some goodness-of-fit tests are also performed to check the adequacy

of the copula chosen for the best combination of the survival time and the medical factors. Using the Monte Carlo

simulation technique with the copula, we re-sample survival times from which the anticipated life span of a patient

with the disease is calculated.

Keywords: elliptical copula, multiple myeloma, tail dependence

1. Introduction

Multiple myeloma is a blood cancer caused by the accumulation of abnormal plasma cells in the bone marrow. It

is the second most common blood cancer, after non-Hodgkin’s lymphoma, and represents approximately 1 percent

of all cancers and 2 percent of all cancer deaths. The American Cancer Society estimates that 20,180 people

were diagnosed with multiple myeloma during 2010 (Multiple Myeloma: Disease Overview, Multiple Myeloma

Research Foundation, 2010). The prognosis of the disease is often unpredictable and overall survival is ranged

from a few months to more than 10 years (Kyle & Rajkumar, 2008). It has been known that multiple myeloma

may be the result of several medical risk factors that act together. Therefore, it is important to understand the

relationship between survival time of patients and the risk factors in the bone marrow for the disease. So this work

investigates possible associations in multiple myeloma data, carried out at the Medical Centre at the University

of West Virginia, with a particular focus on potential survival time (denoted by ST hereafter) of a patient over

the treatment period in association with the following four medical factors: level of blood urea nitrogen (BUN),

serum calcium (CA), hemoglobin (HB), and the percentage of plasma cells (PC). See Collect (1999) and Krall et

al. (1975) for the details of the data.

When analyzing dependence of several variables, such as the survival time and associated disease factors, an often

used measure is Pearson’s linear correlation coefficient. However, the linear correlation coefficient does not detect

non-linear behaviors of the variables considered, is strongly affected by extreme values and not invariant under

non-linear transformations (Embrechts, McNeil, & Straumann, 2002; Frees & Valdez, 1998; Schweizer & Wolff,

1981). To overcome these problems, we employ a statistical function called a copula which links multivariate

distributions to marginal distributions. A copula captures both the linear and non-linear dependence that may exist

between the variables. It is also invariant under monotone transformations. Especially, the use of a copula has

gained importance as a simple tool to measure the amount of dependence in the tails. For example, the treatment

of a disease can either exceed or fall below a given level at either the early or late stage of the disease. The use of

a copula has been studied in several disciplines such as survival analysis (Zheng & Klein, 1995), risk management

and financial applications (Breymann et al., 2003; Embrechts et al., 2002; 2003). Excellent reviews on copulas can

be found in Nelson (1999).

Copulas have varying amounts of tail dependence. So an appropriate copula that fits the data should be used.

A poorly chosen copula may lead to undesirable results. This issue has been studied by many authors, including
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Melchiori (2003), Durrelaman (2000), Kumar and Shoukri (2008), Frees and Valdez (1998), and Genest and Rivest

(1993). Similar to the approach employed in the literature, based on the distance of copula and its empirical version,

we choose a copula that best fits data. We then assess the adequacy of the copula chosen. The procedures are based

on the Monte Carlo simulation technique by which the distribution of the distance can be seamlessly approximated

under the null hypothesis of the no model misspecification. As a numerical measure of the model adequacy, the

empirical - value, obtained from the simulated distance process, is used.

The primary objective of this paper is to estimate the expected life span of a patient with the disease by identifying

the dependence between the variables considered. To this end, a systematic study in search for the most influential

medical factors that affects the survival time is performed through copulas. Based on a large number of simulated

data obtained from a copula chosen for a best combination of the survival time and medical factors, we calculate

maximum extension possible for a life with reference to the factors that influence the survival time. This work is

organized as follows. An overview of copulas is given in section 2. Section 3 discusses the procedures of finding

an appropriate copula for multiple myeloma data. Numerical results of the anticipated life span of a patient with

the disease are presented in section 4. Section 5 concludes the paper.

2. Copula

If X1, . . . , Xn are random variables, the multivariate distribution function is defined as

F(x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn),

which completely describes the dependence between the random variables. A copula provides a useful way to

construct such a multivariate distribution of two or more random variables. The essential idea of the copula

approach is that a joint distribution is factored into two components: the marginal distributions and a dependence

function called a copula, as described in the following theorem (Sklar, 1959).

Theorem If F is a multivariate distribution function with marginal distribution functions F1, . . . , Fn, then there is
a copula C such that

F(x1, . . . , xn) = C(F1(x1)), . . . , Fn(xn)). (1)

Theorem states that a copula function defines a joint distribution, evaluated at x1, . . . , xn, with marginal distributions

F1, . . . , Fn. Letting f be the probability density function of F, ui = Fi(xi), i = 1, . . . , n, and c the density function

of a copula C, it can be easily shown that

f (x1, . . . , xn) = c(u1, . . . , un) ×
∏

i

fi(xi).

This indicates that a multivariate probability density function f (x1, . . . , xn) can be split into the univariate marginal

probability density functions fi(xi)’s and the copula density function c(u1, . . . , un) that determines a dependence

structure. Hence, it is possible to separately specify marginal density functions and the dependence relation deter-

mined by the copula density function. A copula itself is in fact a multivariate distribution with standard uniform

marginal distributions due to the fact that Fi(Xi)’s are uniformly distributed over the interval [0,1]. So it maps

points on the n−dimensional unit square to values between 0 and 1. Specifically, with the values u1, . . . , un of

standard uniform random variables U1, . . . ,Un, the copula C(u1, . . . , un) of the multivariate distribution function F
is

C(u1, . . . , un) = F(F−1
1 (u1), . . . , F−1

n (un)), (2)

where F−1
1 , . . . , F

−1
n denote the quantile functions of the marginal distributions F1, . . . , Fn. Note that from (1)

and (2), a specified copula determines the dependence structure of data, while the marginal distribution does not.

This is due to the fact that a copula links univariate marginal distributions to their multivariate distribution and

is independent of marginal distributions. Therefore, we need to consider several copulas, leading to different

dependence structures, from which an appropriate copula for data is chosen. In this work, we look at elliptical

copulas the most commonly used copulas.

Elliptical copulas are the copulas of elliptical distributions. Examples include the Gaussian and t copulas (Embrecht

et al., 2002; Demnarta & McNeil, 2005). The key advantages of elliptical copulas are that they are suitable in

modeling dependence structures with multi-dimensions and specify different levels of correlations between the

marginal distribution functions. As seen from the expressions in (1) and (2), any marginal distributions can be

imposed over an elliptical copula, provided that marginal distributions are known and can be consistently estimated
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from data (Nelson, 1999; Embrechts et al., 2002). A copula with given marginals is called meta-elliptical copula.

However, for simplicity and without loss of generality, elliptical copula indicates meta-elliptical copula hereafter.

2.1 Gaussian and t Copulas
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Figure 1. Contour plots of Gaussian and t copulas, ρ = 0.7

The Gaussian copula is the copula of multivariate normal distribution. From (2), it is defined as

CG(u1, . . . , un) = Φρ(Φ
−1(u1), . . . ,Φ−1(un)),

where Φρ denotes the standard multivariate normal distribution function with correlation coefficient matrix ρ and

Φ−1 the inverse of the standard univariate normal distribution function. As ρ approaches -1 and 1, the Gaussian

copula captures stronger positive and negative linear relationship between random variables, respectively. See

Figure 1 for these phenomena. The linear correlation coefficients depend on the marginal distributions, measuring

the overall strength of a linear relationship, but give no information about how that varies across the distribution. So

it is not preserved by copulas. It is important to note that the linear correlation coefficient has such shortcomings,

but it is still needed to parameterize the Gaussian copula. Rank based correlations describe the global association

of variables and are invariant under any monotonic transformations. In this work, the linear correlation coefficient

(ρ) calculated by the Kendall’s rank correlation (τ) was used such that ρ = sin(τπ/2). We plug the marginal

distributions into a Gaussian copula function to obtain a multivariate distribution. For example, using the copula

CG(u1, . . . , un) and the marginal distribution functions F1, . . . , Fn, we have the multivariate distribution

F(x1, . . . , xn) = CG(F1(x1), . . . , Fn(xn)).

Note that the multivariate normal distribution has thin tails. Thus, the Gaussian copula is not appropriate in the

analysis of tail dependence of variables that have heavy-tailed distributions (Embrechts et al., 2002). To repair this

problem, we consider the t copula which can capture dependence between variables in the tails of the distribution.

The t copula is a copula of the multivariate t distribution. From (2) it is defined as

Ct(u1, . . . , un) = tρ,ν(t−1
ν (u1), . . . , t−1

ν (un)),

where tρ,ν denotes the standard multivariate t distribution function with correlation coefficient matrix ρ and the

degrees of freedom ν, and t−1
ν is the inverse of the standard univariate t distribution function. Similar to the

Gaussian copula, ρ is approximated by Kendall’s τ. The second parameter ν controls the thickness of the tails of

the distribution, exhibiting co-movement of the variables in the tails as seen in Figure 1.

Note that the Gaussian copula is a limiting case of the t copula as ν → ∞, and the t copula with ν = 1 is often

called the Cauchy copula. This implies that with increasing degrees of freedom, the t copula tends to look more
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like the Gaussian copula. We insert the marginal distributions into the t copula function to obtain a multivariate

distribution, as follows.

F(x1, . . . , xn) = Ct(F1(x1), . . . , Fn(xn)).

Table 1. Coefficient of Tail Dependence of the t copula (Embrechts et al., 2002)

ν \ ρ -0.5 0 0.5 0.9 1

2 0.06 0.18 0.39 0.72 1

4 0.01 0.08 0.25 0.63 1

10 0 0.01 0.08 0.46 1

∞ 0 0 0 0 1

2.2 Tail Dependence

The relationship between random variables, especially in the tails, is controlled by the choice of copulas. It can

be described by the coefficient of asymptotic tail dependence of a copula. For a pair of random variables, X and

Y , it quantifies the probability to observe a large Y given that X is large. Specifically, the coefficient of upper tail

dependence is

λU = lim
q→1−

P(Y > F−1
2 (q)|X > F−1

1 (q)),

provided the limit exists, and the coefficient of lower tail dependence is

λL = lim
q→0+

P(Y ≤ F−1
2 (q)|X ≤ F−1

1 (q)),

provided the limit exists. See Embrechts et al. (2002) for details on these expressions. Note that λU = λL for the

Gaussian and t copulas, due to the symmetric property of the elliptical distributions. Let λU = λL = λ. Then the

following formula is often used for computational purposes:

λ = 2tν+1(−√ν + 1
√

1 − ρ/√1 + ρ), (3)

where tν is the standard univariate t distribution with ν degrees of freedom. Table 1 shows the results of the

tail dependence coefficients for a few representative values of ρ and ν (Embrechts el al., 2002) calculated by the

formula in (3).
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Figure 2. Scatter plots of 2000 simulated data points for Gaussian and t copulas

The tail dependence coefficient λ tends to zero as the degrees of freedom ν tends to infinity for ρ < 1. Since the

Gaussian copula is a limiting case of the t copula as ν → ∞, the value of λ for the Gaussian copula is 0. So the
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Gaussian copula exhibits no tail dependence. On the contrary, the t copula has non-negative values of λ for all

values of ρ, and so the association of extreme values is captured by the t copula, with different amounts depending

on ν at a fixed value of ρ. As seen in Table 1, λ increases as ν decreases at a fixed value of ρ. This indicates that

the t copula has tail dependence that increases, whether it is upper tail dependence or lower tail dependence, with

decreasing parameter ν. So it is useful when dependence of extreme values is observed in data.

Note that although the t copulas generate different dependence structures, they may still have the same marginal

distribution functions and the same correlation. To illustrate this, we generate 2000 simulated data points using the

Gaussian and t copulas with 1, 5, 25 degrees of freedom for ρ=0.7. The scatter plots of those simulated values are

presented in Figure 2, displaying that the tail dependence is not remarkable in the t copula with ν=25 when com-

pared to either ν=1 or ν=5. It is evident from this figure that the tail dependence becomes stronger as the degrees of

freedom decreases, and this indicates that an increase in ν results in fewer occurrences of joint extremes. The plots

also demonstrate that the dependence structure of multivariate distributions may not be perfectly identified only by

their marginal distributions and correlations. In summary, a copula fully captures real dependence structure among

random variables and hence provides a model that reflects on more detailed information about data.

3. Procedures

Multiple myeloma is a malignant disease caused by the accumulation of abnormal plasma cells in the bone marrow.

Pain emanating from bone tissue and cancerous destruction of bone tissue may occur as a result. This section

analyzes the effect of the medical factors on the survival time of patients with the disease carried out at the Medical

Centre of the University of West Virginia. Survival time of patients (ST), the level of blood urea nitrogen (BUN),

serum calcium (CA), hemoglobin (HB), and the percentage of plasma cells (PC) in the bone marrow are considered.

Data can be found in Krall et al. (1975). For simplicity, complete data points for males in the data set are used,

where the sample size is 22.

Procedures are based on a copula chosen by the Kolmogorov-Smirnov type distance. We select a best copula within

the class of the t copulas from the Kolmogorov-Smirnov type distance criterion and then check its adequacy using

some goodness of fit tests. Finally, we explore the anticipated longest life span of a patient with the disease based

on a large number of simulated data points generated by the copula. We start with finding the marginal distribution

of the medical factors.

3.1 Marginal Distribution

Appropriate marginal distributions should be plugged in the t copula. Toward an optimal distribution for the data

given, numerical model checking methods, such as the Kolmogorov-Smirnov and Anderson-Darling tests, were

used to check if the distribution chosen is appropriate. The Kolmogorov-Smirnov test uses maximum difference

between the empirical distribution and the theoretical distribution, defined as supx

{∣∣∣F̂(x) − F(x)
∣∣∣} where F̂(x) is

the empirical distribution. The Anderson-Darling test is the test that is more sensitive in the tails of the distribution

than the Kolmogorov-Smirnov test. Best fitting marginal distributions for data are selected such that the distance

function is minimized. Judging from those two criteria, we arrive at the distributions summarized in Table 2. Table

3 shows the correlations coefficients for the data.

Table 2. Distribution and parameter estimate for the multiple myeloma data

Distribution Parameter Estimate Mean Std. Dev. Skewness Kurtosis

ST Lognormal μ=2.47, σ=1.29 22.77 24.42 1.44 1.26

BUN Lognormal μ=3.28, σ=0.66 34.0 32.44 3.37 13.50

CA Lognormal μ=9.59, σ=1.26 10.32 1.62 1.37 2.14

HB Lognormal μ=14.79, σ=0.73 10.43 2.77 -0.14 -0.89

PC Lognormal μ=3.55, σ=0.65 42.59 27.45 0.94 0.01

Table 3. Correlation coefficient for the multiple myeloma data

S BUN CA HB PC

S 1 -0.3454 -0.0196 0.3435 -0.2899

BUN -0.3454 1 0.1219 -0.3624 -0.0599

CA -0.0196 0.1219 1 0.2175 -0.0831

HB 0.3435 -0.3624 0.2175 1 -0.2985

PC -0.2899 -0.0599 -0.0831 -0.2985 1
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The distribution function gives the probability that a random variable is less than a given value, describing the par-

ent distribution. The empirical distribution function is similar, the difference being that the empirical distribution

is calculated by data, resembling the theoretical distribution that fits data. So the plot of F̂ versus F should be close

to each other if the distribution considered is legitimate for data. For example, Figure 3 shows that the empirical

distribution for the survival time is fairly close to the specified distribution, the lognormal distribution. Hence the

lognormal distribution appears to be an appropriate distributional model. This graphical method confirms the result

from the numerical methods.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Empirical vs Lognormal

x

F(
x)

Empirical
Lognormal

Figure 3. Plot of empirical vs lognormal for survival time

3.2 Copula Selection and Its Adequacy

Depending on the degrees of freedom, the t copulas specify different amounts of structural information, especially

on tail behavior of distributions. Even with identical correlations, the dependence structure of distributions may

be different depending on the choice of copulas. The t copula with low degrees of freedom captures the non-linear

trends well, while the Gaussian copula or the t copula with high degrees of freedom fit well when the dependence

is mostly linear. So a copula that well describes the structure of data should be used in practice. This section finds

such a suitable copula to use and checks its statistical significance. The procedures are based on the empirical

copula, Ĉ, introduced in Deheuvels (1978), defined as

Ĉ(u1, . . . , un) = Ĥ(F̂1(x1), . . . , F̂n(xn)), (4)

where

Ĥ(u1, . . . , un) =
1

n

m∑
i=1

I{U1,i ≤ u1, . . . ,Un,i ≤ un}

and F̂i’s are the usual empirical distributions that correspond to univariate marginal distributions. Similar to the

empirical distribution that estimates an unknown distribution, the empirical copula obtained by data estimates a

theoretical copula. The empirical copula in (4) actually provides approximate probabilities of the number of pairs

(u1, . . . , un) such that u1 ≤ u1(i), . . . , un ≤ un(i), where u(i) denotes the order statistic. A best copula within a class of

the t copulas is chosen such that the distance of the empirical copula Ĉ and the theoretical copula C is minimized

(Durrleman et al., 2000). However, this does not mean that a copula chosen is a fitted model for data in an absolute

sense. Statistical testing procedures should be conducted to decide whether the copula chosen is adequate for data.

To this end, based on the Cramr-von Mises type statistic (Genest & Rmillard, 2008; Genest et al., 1993; Genest et

al., 2009), define the process in x

D(x) = n
∫ x

0

{
Ĉ −C

}2
dĈ,

for 0 < x ≤ 1. From this, define the simulated process,

D∗(x) = n
∫ x

0

{
Ĉ −C∗

}2
dĈ, (5)

where C∗ is the simulated copula of C from which data are re-sampled. Under the null hypothesis that the copula C
is valid for data, the empirical copula resembles the assumed copula. Therefore, comparison of D to a large number
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of simulated realizations from the process D∗ in (5) will lead to goodness-of-fit tests for the model. Specifically,

since the process D(x) randomly fluctuates around zero under the null hypothesis, a distinguishably large value of

D compared to the values of D∗ would indicate model misspecification. Thus, S = sup0<x≤1 |D(x)| can be used as a

numerical measure for the assessment of the model adequacy. A large value of S will lead to rejection of the null

hypothesis. Let S ∗ = sup0<x≤1 |D∗(x)|. Then, the p−value defined as P(S ≥ s), where s is the observed value of

S , can be used as a measure of strength of the model adequacy, and this p−value is approximated by P(S ∗ ≥ s)

which can be empirically estimated by the Monte Carlo simulation method, similar to Lee et al. (2008). We use

this p−value as a numerical measure of how well a copula model chosen fits the data. Lower the p−value, the less

likely the goodness of fit is.

4. Numerical Results

The goal of this study is to estimate the expected life span of a patient with the disease by finding a combination

of the survival time and the medical factors that best summarizes it. We considered various cases, each of which

contains the survival time denoted by ST. Specifically, we investigate the following four classes: 1. (ST, HB), (ST,

CA), (ST, BUN), (ST, PC), 2. (ST, BUN, CA), (ST, BUN, HB), (ST, BUN, PC), (ST, CA, HB), (ST, CA, PC), (ST,

HB, PC), 3. (ST, BUN, CA, HB), (ST, BUN, CA, PC), (ST, BUN, HB, PC), (ST, CA, HB, PC), and 4. (ST, BUN,

CA, HB, PC). Classes 1, 2, 3, and 4 consider the association of two, three, four and all the factors, respectively. To

find the best copula from the four classes, in the first step we performed the copula selection process mentioned

in Section 3.2. Based on this, we arrived at the following cases as superior within their own class: (ST, HB), (ST,

CA, HB), (ST, BUN, CA, HB), and (ST, BUN, CA, HB, PC). Results are summarized in Table 4. Note that to find

the best t copula for each case, the degrees of freedom ranging from 1 to 30 was considered. The t copula with low

degrees of freedom would be selected if the dependence of extreme values is detected.

Table 4. Copula selected and its p−value

Case Copula Distance/n p−value

(ST, HB) t copula, ν=6 0.0038 0.8580

(ST, CA, HB) t copula, ν=16 0.0065 0.7250

(ST, BUN, CA, HB) t copula, ν=6 0.0082 0.4590

(ST, BUN, CA, HB, PC) t copula, ν=5 0.0192 0.3640

In the next step, we obtained the p−values using the goodness-of-fit test procedures described in Section 3.2 to

check the adequacy of the copulas chosen. The estimated p−values obtained for (ST, HB), (ST, CA, HB), (ST,

BUN, CA, HB), and (ST, BUN, CA, HB, PC) are presented in Table 4. Results are based on 2000 simulated

realizations. Judging from the results, we conclude that the relationship between survival time and hemoglobin,

(ST, HB), which is modeled by the t copula with the degrees of freedom 6 would most likely be distinguishable

among others. Multiple myeloma has been staged by the method developed by Durie and Salmon (1975). From the

staging method by Durie and Salmon (1975), it was found that the level of hemoglobin in the blood of a multiple

myeloma patient is strongly associated with the tumor mass and thus is a strong indicator of the disease progress

(Durie & Salmon, 1975; Kyle & Rajkumar, 2008). Our results are in agreement with this study.

Lastly, we examine the anticipated life expectancy of a patient with multiple myeloma from diagnosis until death

by generating a large number of simulated survival times from the copula chosen. Specifically, based on the

aforementioned results, in association with the marginal distributions described in Table 2, we re-sampled survival

times of size 200,000 from the t copula (ν=6) with reference to hemoglobin only. Table 5 presents the estimated

survival times at various percent confidence levels, from 5% (shortest) survival time to 95% (longest) survival time,

in months, from diagnosis until death from multiple myeloma. Table 5 also shows the corresponding estimated

hemoglobin levels. For example, the 95th percentile of the survival times indicates that survival times of a patient

under treatment could extend to 99.13 months (approximately 8.3 years) and its corresponding hemoglobin level

is 14.68. Figure 4 shows 2000 simulated realizations under the t copula with degrees of freedom 6. The positive

effect of hemoglobin on survival time seems somewhat stronger than the negative effect in the scatter plot.

Table 5. Multiple myeloma life expectancy for (ST, HB), 200,000 samples

Percentile 5% 10% 30% 50% 70% 90% 95%

Estimated life expectancy 1.41 2.26 6.04 11.84 23.25 62.02 99.13

Estimated hemoglobin 7.52 7.53 6.67 7.89 9.51 10.65 14.68
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Figure 4. Survival time vs Hemoglobin, t copula with ν=6, 2000 simulated samples

5. Concluding Remarks

Multiple myeloma is a malignant disease that develops in the bone marrow. In most cases this disease develops in

association with several medical factors that act together. A copula provides a convenient tool in the analysis of

multivariate data that represent such medical factors. It was found that the relationship between survival time and

hemoglobin which is modeled by the t copula with the degrees of freedom 6 would be most distinguishable. Some

goodness-of-fit tests based on the simulated process were then performed to check the adequacy of the copula

model. Based on the copula, we simulated a large number of simulated realizations of the survival time from

which the anticipated life span of a patient with the disease was calculated.
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Amadou Kamagaté1,2 & Ouagnina Hili2

1 Nangui Abrogoua University, Abidjan, Côte d’Ivoire
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Abstract

In this Note, we estimate the parameters of a nonstationary multivariate ARFIMA (AutoRegressive Fractionally

Integrated Moving Average) process by the quasi likelihood approach. Then, we define the pseudo spectral density

of the process. Under some assumptions, we establish Consistency and Asymptotic normality.

Keywords: quasi maximum likelihood, long memory, multivariate time series, nonstationary ARFIMA process

1. Introduction

We have proposed in this note an another estimation method for an Auto Regressive Fractionally Integrated Moving

Average (ARFIMA) process. Granger and Joyeux (1980) have proposed a class of process whose d is a real value

in ARIMA(p, d, q) process of (Box & Jenkins, 1976). This model is well known to have many applications in

financial statistics. Granger (1980) introduced the ARFIMA model where d ∈ (0, 1/2). For d ∈ (−1/2, 1/2), the

multivariate ARFIMA process is stationary and has a spectral density as in (Hosoya, 1996).

For d > 1/2, we define a pseudo spectral density in (5) as in (Nielsen, 2009). A number of authors estimated

the parameters in the case of nonstationary processes with respect to his method. Also, for a univariate process,

Phillips and Shimotsu (2004) showed that the Whittle estimation of a nonstationary process is inconsistent as

d > 1 but Shao (2009) showed that extended Whittle estimation is consistent for d > 1. The resulting estimate

as in (Shao, 2009) is asymptotically normal and is more efficient than the tapered Whittle estimate as in (Velasco,

1999a). For the multivariate process, Nielsen (2009) generalized the works of (Shao, 2009). He showed that the

Extended Multivariate Local Whittle Estimation (ExtMLWE) improves the Multivariate Local Whittle Estimation

(MLWE) used by Shimotsu (2007).

The present note estimates the parameters by the quasi likelihood method for estimation of a nonstationary multi-

variate process. We use the general form of the spectral density as in (Hosoya, 1996) and then we extend his results

to a nonstationary case of the process by using the extended discrete Fourier transform and the periodogram as in

(Nielsen, 2009). The works of this paper have permitted to establish consistency and asymptotic normality for a

nonstationary multivariate fractionally integrated process.

The Lp-norm of a complex-valued function g on (−π; π] is denoted by ‖g‖p and it is defined by [
∫ π
−π |g(λ)|pdλ]1/p.

Moreover, we use positive constants c j where j = 1, 2, . . . in this note. The notations Ai j and Bi or A and B denote

in order a matrix or a column vector.

We organize this note as follows. The ARFIMA model and the quasi likelihood function are introduced in section

2. Section 3 constitutes the main result of this note. The quasi maximum likelihood estimation method and the

asymptotic properties of the estimate are discussed in this section. All proofs are gathered in section 4. We

conclude in section 5 by some simulations.

2. The Model and the Quasi Maximum Likelihood Function

Granger and Joyeux (1980) and Hosking (1981) have proposed the ARFIMA (p, d, q) models to define a time
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series which presents a character of short or long memory following d. The model of multiple ARFIMA pro-

cesses was introduced by Sowell (1987; 1989). We consider a m-dimensional ARFIMA nonstationary process

{y1(t), . . . , ym(t)} following d0 > 1/2 which is generated by⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
A1,1(L) . . . A1,m(L)
...

...
Am,1(L) . . . Am,m(L)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 − L)d1,0

...
(1 − L)dm,0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1(t)
...

ym(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1,1(L) . . . B1,m(L)
...

...
Bm,1(L) . . . Bm,m(L)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ε1(t)
...
εm(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (1)

di,0 = d∗i,0 + r with d∗i,0 ∈ (−1/2, 1/2) and r ≥ 1 is a positive integer.

For all r ≥ 1, (1) becomes⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
A1,1(L) . . . A1,m(L)
...

...
Am,1(L) . . . Am,m(L)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 − L)d∗
1,0

...

(1 − L)d∗m,0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 − L)r

...
(1 − L)r

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1(t)
...

ym(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1,1(L) . . . B1,m(L)
...

...
Bm,1(L) . . . Bm,m(L)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ε1(t)
...
εm(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (2)

where {ε1(t), . . . , εm(t)} have a distribution law with mean zero and cov{εi(t), ε j(s)} = δ(t, s)Ki j, i, j = 1, . . . ,m,
K = {Ki j} supposed positive definite, r−1/2 < di,0 < r+1/2 (i = 1, . . . ,m) with di,0 = d∗i,0+r and L is the backshift

operator defined by Lyt = yt−1.

Letting (1 − L)ry(t) = X(t), (2) becomes⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
A1,1(L) . . . A1,m(L)
...

...
Am,1(L) . . . Am,m(L)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 − L)d∗
1,0

...

(1 − L)d∗m,0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X1(t)
...

Xm(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1,1(L) . . . B1,m(L)
...

...
Bm,1(L) . . . Bm,m(L)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ε1(t)
...
εm(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (3)

where Ai, j(L) =
∑p

k=0
Ai, j(k)Lk and Bi, j(L) =

∑q
k=0

Bi, j(k)Lk such as A(0) = Im and the zeros of det A(z) and det B(z)

are outside the unit circle.

Also, we assume here-after that {Xt} is a second-order stationary ARFIMA (p, d∗i,0, q) process. Odaki (1993) and

Hosking (1981) have showed that {Xt} is invertible and stationary respectively as long as d∗i,0 > −1 and d∗i,0 < 1/2.

So, the process is short memory if −1/2 < d∗i,0 < 0 and long memory if 0 < d∗i,0 < 1/2. Let θ be the vector

whose components consist of d∗1, . . . , d
∗
m, A1,1(k), A1,2(k), . . . , Am,m(k), B1,1(k), B1,2(k), . . . , Bm,m(k). Suppose that

the parameter space Θ is a compact subset of Rm(p+q+1).

Considering the conditions on the polynomials, the process is invertible and causal. (3) can be rewritten as an

infinite moving average (MA(∞)) representation:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
X1(t)
...

Xm(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G1,1(L, θ) . . . G1,m(L, θ)
...

...
Gm,1(L, θ) . . . Gm,m(L, θ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ε1(t)
...
εm(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (4)

where ε(t) is a white noise and the infinite polynomials Gi, j =
∑∞

k=0 Gi, j(k, θ)Lk are determined in (4) in view of the

following relationship

(1 − L)d = 1 +

∞∑
k=0

Γ(k − d)

k!Γ(−d)
Lk.

We assume that the coefficients matrices G( j, θ) satisfy
∑∞

j=0 tr G(j, θ)KG(j, θ)∗ < ∞ and the process has a m × m
pseudo spectral density matrix determined by

fθ(λ) := |1 − exp(iλ)|−2r 1
2π

[(∑∞
j=0 G( j, θ) exp(iλ j)

)
K
(∑∞

j=0 G( j, θ) exp(iλ j)
)∗]
. (5)

Now, we define the extended discrete Fourier transform (EDFT) and the extended periodogram matrix of y(t)
evaluated at the Fourier frequencies λ j =

2π j
n , where j = 1, . . . , n by

wj(d0) = w(λ j, d0) = wy(λ j) + c(λ j, d0) (6)
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I j(d0) = I(λ j, d0) = w(λ j, d0)w∗(λ j, d0) (7)

where wy(λ j) is the DFT defined as

wy(λ j) =
1√

(2πn)

n∑
t=1

y(t)eitλ j , (8)

and the correction term for the ith element ci(λ j, d0) takes on constant values on the intervals di,0 ∈ Dr := [r −
1/2, r + 1/2), r ∈ N∗, i = 1, . . . ,m and is defined by

ci(λ j, d0) =

{
0, if di,0 ∈ D0 = [−1/2, 1/2),

eiλ j
∑r

l=1(1 − eiλ j )−lZi,l, if di,0 ∈ Dr for r ≥ 1.
(9)

where

Zi0 = wiy(0) =
1√

(2πn)

n∑
t=1

yi(t) (10)

Zil =
1√

(2πn)
{(1 − L)l−1yi(n) − (1 − L)l−1yi(0)}, l = 1, 2, . . . , r. (11)

The w(λ j, d0) for j = 1, . . . , n is a multivariate normal distribution and they are approximately independent when n
is large, the probability density function

1

π2
√

det fθ(λ j)
exp

(−1

2
tr
(

f −1
θ (λ j)w(λ j, d0)w(λ j, d0)∗

))
, j = 1, . . . , n, (12)

(see Hannan & Edward, 1970, pp. 224-225). An approximate log-likelihood Ln(θ) following these observations

y(1), . . . , y(n) is defined by the following expression

Ln(θ) = −
n∑

j=1

(
log det fθ(λ j) + tr( f −1

θ (λ j)In(λ j, d0)
)
. (13)

The integral form of (13) is

Ln(θ) = −n
[ ∫ +π

−π
log det fθ(λ)dλ +

∫ +π

−π
tr
(

f −1
θ (λ)In(λ, d0)

)
dλ

]
. (14)

The function Ln(θ) is termed the quasi-log-likelihood function.

3. Quasi-maximum-likelihood Estimation of the Parameters

Assume throughout that ∂
∫ +π
−π log det fθ(λ)dλ/∂θ j exists and at almost all points of θ, ∂ f −1

θ (λ)/∂θ j exists following

θ. We denote Hj(θ) = ∂
∫ +π
−π log det fθ(λ)dλ/∂θ j and h j(λ, θ) = ∂ f −1

θ (λ)/∂θ j. For j = 1, . . . , p + q + 1, the notations

Hj(θ) and tr{h j(λ, θ) f (λ)} represent in order the jth elements of H(θ) and tr{hθ(λ) f (λ)}. Suppose that

S n j(θ) = Hj(θ) +

∫ π

−π
tr{h j(λ, θ)In(λ, d0)}dλ, j = 1, . . . , p + q + 1 (15)

and denote by S n(θ) the vector {S n j(θ)}, where In(λ, d0) is the extended periodogram matrix defined similarly to

(7). The quasi maximum likelihood estimate (QMLE) of θ is defined by the value θ̃n such that S n (̃θn) = 0.

Suppose that {ε(t)} is fourth-order stationary and that

∞∑
t1, t2, t3=−∞

|Q̃εβ1,...,β4
(t1, t2, t3)| < ∞,

where Q̃εβ1,...,β4
(λ1, λ2, λ3) is the joint fourth cumulant of εβ1

(t), εβ2
(t+t1), εβ2

(t+t2), εβ3
(t+t3) moreover Qεβ1,...,β4

(λ1, λ2,

λ3) is a fourth-order spectral density of {ε(t)} defined by

Qεβ1,...,β4
(λ1, λ2, λ3) =

1

(2π)3

∞∑
t1, t2, t3=−∞

exp{−i(λ1t1 + λ2t2 + λ3t3)}Q̃εβ1,...,β4
(t1, t2, t3).
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We assumed Assumption A throughout the note.

Assumption A

(A1) There exists ε > 0 such that for any t < t1 ≤ t2 ≤ t3 ≤ t4 and for each β1, β2, Var
[
E{εβ1

(t1)εβ2
(t2)|B(t)} −

δ(t1− t2, 0)Kβ1β2

]
= O{(t1− t)−2−ε}, ε > 0 and E

∣∣∣∣E{εβ1
(t1)εβ2

(t2)εβ3
(t3)εβ4

(t4)|B(t)}−E{εβ1
(t1)εβ2

(t2)εβ3
(t3)εβ4

(t4)}
∣∣∣∣ =

O{(t1 − t)−1−ε}, uniformly in t, where B(t) is the σ-field generated by {ε(s), s ≤ t}.
(A2) For any ε > 0 and for any integer M ≥ 0, there exists Bε > 0 such that E

[
T (n, s)2I{T (n, s) > Bε}] < ε,

uniformly in n, s, where I implies the indicator function and

T (n, s) =

[ m∑
α,β=1

M∑
r=0

{ n∑
t=1

(εα(t + s)εβ(t + s + r) − Kα,βδ(0, r))/n
1
2

}2
] 1

2

.

(A3) Each component Qεβ1,...,β4
(λ1, λ2, λ3) is uniformly γ-lipschitz for some γ > 0, namely∣∣∣∣Qεβ1...β4

(λ1 + ε1, λ2 + ε2, λ3 + ε3) − Qεβ1,...,β4
(λ1, λ2, λ3)

∣∣∣∣ < {max
i
|εi|}γ,

uniformly in λ1, λ2, λ3.

To establish the consistence and the asymptotic normality, we assume the following conditions.

Assumption B

(B1) The process observed y(t) has a pseudo spectral density

fθ(λ) := |1 − eiλ|−2r 1
2π

k(λ)Kk(λ)∗

that satisfies

1)
∫ π
−π |kαβ(λ)|2udλ < ∞, for u such that 1 < u ≤ 2, α, β = 1, . . . ,m, where k(λ) =

∑∞
j=0 G( j, θ) exp(iλ j), kαβ the

(α, β)th element of the matrix k(λ) and K the covariance matrix of {ε(t)}.
2) Let c > 0, following

sup
|ν|<ε

max
α,β

∥∥∥∥∥[ f −1
θ (.){ fθ(.) − fθ(. − ν)}

]
αβ

∥∥∥∥∥
u
= O(εc), (16)

(B2) For any ε > 0, there exists a > 0 and Hermitian-valued bounded functions h̃ j and h j such that if |θ1−θ| < a,

h̃ j ≤ h j(λ, θ1) ≤ h j

and

max
α,β
‖[{h j − h̃ j} fθ(.)]α,β‖υ < ε, (17)

where A ≤ B denotes that B − A is positive definite and υ = (u − 1)/u for u defined in (16).

(B3) Vj(θ) = 0 for all j at θ = θ0 where θ0 ∈ Θ and Vj(θ) ≡ Hj(θ) +
∫ π
−π tr{h j(λ, θ) fθ(λ)}dλ.

(B4) Hj(θ) is continuous on Θ.

Theorem 1 Under Assumption B, the QML estimate θ̃n tends to θ0 in probability.

Assumption C The pair {g(1)(λ), k(1)(λ)} of complex functions holds:

(C1) For some γ, ε > 0, |g(1)(λ) − g(1)(λ + ε)| < |ε|γ uniformly in λ.

(C2) There exists u > 1 such that
∫ π
−π |k(1)(λ)|2udλ < ∞.

(C3) There exists γ1 > 0 such that

sup
|ε |≤ε1
‖g(1)(.)|k(1)(. + ε) − k(1)(.)|2‖2 = O(|ε1|γ1 ).
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(C4) ‖g(1)|k(1)|2‖2 < ∞.

Assumption D

(D1) For some c > 1/2, the relation (16) satisfies.

(D2) lima→0 sup|θ−θ0 |≤a ‖[{h j(., θ)−h j(., θ0)} fθ(.)]αβ‖ < ∞, for some a > 0, j = 1, . . . , p+q+1 and α, β = 1, . . . ,m.

(D3) Given ε > 0, there exists an integer m(ε), a partition U1(a), . . . ,Um(ε)(a) of the ball in Θ, with center θ0 and

radius a, and bounded Hermitian-matrix-valued h̃i
j(λ); h

i
j(λ) such that, for all considerably small a and for all j;

h̃i
j(λ) ≤ h(λ, θ) ≤ h

i
j(λ) if θ ⊂ Ui(a) and also

‖[k∗ (̃hi
j − h0

j )k]β1β2
‖v ≤ εa, ‖[k∗(hi

j − h0
j )k]β1β2

‖v ≤ εa, (18)

where h0
j = h j(., θ0) and ∗ denotes the transpose.

(D4) |V(θ)| ≥ α1|θ − θ0| for some α1 > 0 in neighborhood of θ0.

(D5) Assumption C holds for all pairs {h jα2α1
; kαβ}, {̃h jα2α1

; kαβ} and {h jα2α1
; kαβ} where α = α1 or α2 and 1 ≤ β ≤

m.

Theorem 2 Under Assumptions B and D,
√

n(̃θn− θ0) −→D N
(
0,W−1U(W−1)∗

)
if V is differentiable at θ = θ0 and

Wi j = ∂Vi/∂θ j evaluated at θ = θ0 and U j,l is defined as

U jl = 4π

∫ π

−π
tr{h j(λ, θ) f j(λ)hl(λ, θ) fl(λ)}dλ2π

m∑
β1,..,β4=1

∫ π

−π

∫ π

−π

[
k∗(λ1)h j(λ1, θ0)k(λ1)

]
β1β2

×
[
k∗(λ2)hl(λ2, θ0)k(λ2)

]
β3β4

Qεβ1,..,β4
(λ1, λ2,−λ2)dλ1dλ2. (19)

4. Proofs

Proof of Theorem 1. Suppose that ε > 0 and B(a(θ)) = {θ : |θ1 − θ| < a(θ)}. Moreover h j(λ) and h̃ j(λ) are functions

which verify (17) for ε. a = a(θ). We have

sup
B(a(θ))

|S n j(θ1) − S n j(θ)| ≤ |Hj(θ1) − Hj(θ)|
∫ π

−π
tr
[(

hj(λ) − h̃ j(λ)
)
fθ(λ)

]
dλ

+

∫ π

−π
tr
{
h j(λ) − h̃ j(λ)

}{
In(λ, d0) − E(In(λ, d0))

}
dλ

≤ c1ε1 + op(1),

for j = 1, . . . , p + q + 1. Then

sup
B(a(θ))

|S n(θ1) − S n(θ)| ≤ c1(p + q + 1)ε1 + op(1).

Since V(θ) is continuous due to Assumption B, then for an open neighborhood N of θ0 there exists ε2 > 0 such that

infΘ−N |V(θ)| > ε2.We assume that Bj = B(a(θ j)), j = 1, . . . , k is an open finite of Θ − N. Then,

inf
Θ−N
|S n(θ)| ≥ inf

j
|V(θ j)| − sup

Bj

|S n(θ)| + sup
j
|S n(θ j) − V(θ j)|

≥ ε2 − c1(p + q + 1)ε1 + op(1),

since sup j |S n(θ j) − V(θ j)| −→ 0 in probability. We choose ε1 to have ε2 − c1(p + q + 1)ε1 > 0 and ε = ε2 − c1(p +
q + 1)ε1 > 0.

The next lemma constitutes the main part of Theorem 2.

Lemma 1
√

n{S n(θ0)+V (̃θn)} −→p
n−→∞ 0 if

√
n{S n (̃θn)} −→p 0 and Pr{|̃θn − θ0| ≤ b0} −→ 0 as n −→ ∞, for b0 > 0

and considerably small.

Proof of Lemma 1. We shall show that in probability

sup
|θ−θ0 |≤b0

|S n(θ) − S n(θ0) − V(θ)|/{n−1/2 + |V(θ)|} −→p
n−→∞ 0.
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This lemma is as in (Huber, 1967). For simplify the expressions, we define h j(λ; θ) − h j(λ; θ0) by h − h0 and set

Tn(g) defined as

Tn(g) =

∫ π

−π
tr
{
(g − h0)(In(λ, d0) − E(In(λ, d0)))

}
dλ.

Also set b0 = 1. Notice that in the following inequality

sup
|θ|≤1

∣∣∣∣∣ ∫ π

−π
tr
{
(h − h0)(In(λ, d0) − fθ)

}
dλ

∣∣∣∣∣ ≤ sup
|θ|≤1

|Tn(h)| + sup
|θ|≤1

∣∣∣∣∣ ∫ π

−π
tr
{
(h − h0)(E(In(λ, d0)) − fθ)

}
dλ

∣∣∣∣∣.
As in (Hosoya, 1997), the second member on the right-hand side of the preceding inequality is bounded by

sup
|θ|≤1

∣∣∣∣∣ ∫ π

−π
tr{(h − h0)(E(In(λ, d0)) − fθ)}dλ

∣∣∣∣∣ ≤ C1

m∑
α,β=1

‖{(h − h0) fθ}α,β‖v × ‖{ f −1
θ (E(In(λ, d0)) − fθ)}β,α‖u.

Under (B1): ‖{ f −1
θ (E(In(λ, d0))− fθ)}β,α‖u = O(n−c) and under (D2): sup|θ−θ0 |≤r ‖{(h−h0) fθ}α,β‖v < C2 where C2 > 0.

Now, we shall show that, as n −→ ∞
sup
|θ|≤1

|Tn(h)|/{n−1/2 + |V(θ)|} −→ 0.

Choose l0 such that n
2
< 4l0+1 < n and B(l) is the ball with center θ0 and radius 2−l, l = 0, 1, . . . , l0 and A(l) denotes

B(l − 1) − B(l). Suppose that ε > 0, let U1, . . . ,Um be a partition of A(l) which satisfies (18) of (D3) for ε
′
> 0.

Suppose that

Q(2−l) = max
β1β2

{‖[k∗(hi − h0)k]β1β2
‖v + ‖[k∗ (̃hi − h0)k]β1β2

‖v}.

As in (Hosoya, 1997),

Tn(h) ≤ Tn(h
i
) +

∫ π

−π
tr{(hi − h̃i)E(In(λ, d0))}dλ,

whereas, for θ ∈ Ui, it follows from Assumption (D3) that∣∣∣∣ ∫ π

−π
tr{(hi − h̃i)E(In(λ, d0))}dλ

∣∣∣∣ ≤ ‖tr{(hi − h̃i) fθ}‖v‖tr{ f −1
θ (E(In(λ, d0)) − fθ)}‖u + ‖tr{(hi − h̃) fθ}‖1

≤ (
a1ε

4
)2−l.

Since

‖tr{(hi − h̃) f }‖1 ≤ ‖tr{(hi − h̃) f }‖v
≤ C1 max

β1β2

{
‖[k∗(hi − h0)k]β1β2

‖v + ‖[k∗(̃hi − h0)k]β1β2
‖v
}
.

Therefore, in view of Assumption (D3),

Pr
[

sup
A(l)

Tn(h)/{n−1/2 + |V(θ)|} > ε
]
≤ m(ε

′
) max

i
P
[√

nTn(hi) > εa1

√
n2−(l+1)

]
. (20)

For sufficiently large n,

Var(Tn(hi)) ≤ C2

[
max
α1α2

‖[(hi − h0) f ]α1α2
‖22 +max

β1β2

‖[k∗(hi − h0)k]β1β2
‖22

]
= C2Q(2−l).

Thus, following the Schwartz inequality, we can rewrite (20) as follows

m(ε
′
) max

i
P
[√

nTn(hi) > εa1

√
n2−(l+1)

]
≤ m(ε

′
)C2Q(2−l)/

(
εa1

√
n2−(l+1)

)2

= m(ε
′
)C2Q(2−l)4l+1/nε2.
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For P{infA(l) Tn(h) > −ε}, a similar limit can be used and we have

P
[

sup
A(l)
|Tn(h)|/{n−1/2 + |V(θ)|} > ε

]
≤ 8m(ε

′
)C2Q(2−l)4l/nε2.

Furthermore, we have

P
[

sup
B(l0)

|Tn(h)|/{n−1/2 + |V(θ)|} > ε
]
≤ C3Q(2−l0 )/ε2.

Set l
′

and ε
′

such that, for l ≥ l
′
, 8m(ε

′
)C3Q(2−l)/ε2 < ε,

P
[

sup
B(l0)

|Tn(h)|/{n−1/2 + |V(θ)|} > ε
]

≤
( l
′ −1∑
l=0

+

l0∑
l′

)
P
[

sup
A(l)
|Tn(h)|/{n−1/2 + |V(θ)|} > ε

]
+ P

[
sup
B(l0)

|Tn(h)|/{n−1/2 + |V(θ)|} > ε
]

≤ 8m(ε
′
)C3Q(1)(4l

′ − 1)/3nε2 + ε(4l0+1 − 1)/3n +C3Q(2l0 )/ε2.

Since l
′

is independent of n, 8m(ε
′
)C3Q(1)(4l

′ − 1)/3nε2 → 0 and ε(4l0+1 − 1)/3n → 0 as n −→ ∞ moreover

C3Q(2l0 )/ε2 < ε and the result follows.

Proof of Theorem 2. Under Assumptions B and D,
√

nS n(θ0)→d N(0,U).

1) We consider that each element of cov(
√

nS n(θ0)) is defined by

Kn(λ1λ2λ3λ4) =
1

n

4∏
j=1

{
1√
2π

n∑
t=1

exp(itλ j)
}
,

where ϕn(λ1) = 1√
2π

∑n
t=1 exp(itλ1) and Kn(λ1λ2λ3λ4) = 1

nϕn(λ1)ϕn(λ2)ϕn(λ3)ϕn(λ4).

As in (Hosoya, 1997), following {λ1−λ2+λ3−λ4 = 0} as n→ ∞ and Assumption (D4), we have lim
n→∞ cov{ √nS n(θ0)}

= U (see Hosoya, 1993).

2) If fθ is square-integrable, Theorem 2 is satisfied (Hosoya & Taniguchi, 1982). So, if fθ is non-square-

integrable, we consider that

fθ(λ) = Γ(exp(−iλ))Γ(exp(−iλ))∗,

where Γ(exp(−iλ)) is the boundary value of a m × m-matrix-valued analytic function Γ(z) in the unit disk (see

Rozanov, 1967). Using this Γ, set k
′
(λ) = Γ−1(exp(−iλ))k(λ) and h

′
j(λ) = Γ(exp(−iλ))∗h j(λ)Γ(exp(−iλ)). Then, we

define the coefficients G′j by k′(λ) ≡ ∑∞
j=0 G

′
( j, θ)ε(t − j) construct a new process {Z′ (t)} by

Z
′
(t) =

∞∑
j=0

G
′
( j, θ)ε(t − j).

As in (Hosoya, 1997, Theorem 1.2)∫ π

−π
tr{h j(λ)In(λ, d0)}dλ →

∫ π

−π
tr{h j(λ) f (λ)}dλ

as n→ ∞ and

tr{h(λ) f (λ)h(λ) f (λ)} = tr{h′j(λ) f
′
(λ)h

′
j(λ) f

′
(λ)} = tr{h j(λ)k(λ)∗h j(λ)k(λ)},

with f
′
(λ) = Γ−1(exp(−iλ)) f (λ)Γ−1(exp(−iλ))∗ and k(λ)∗h j(λ)k(λ) = k

′
(λ)∗h′j(λ)k

′
(λ), then

lim
n→∞Var

[√
n
∫ π

−π
tr{hj(λ)In(λ, d0)}dλ

]
= Var

[√
n
∫ π

−π
tr{h′j(λ)In(λ, d

′
0)}dλ

]
.
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Also the variance of the difference

lim
n→∞ n

{
Var

[ ∫ π

−π
tr{h j(λ)In(λ, d0)}dλ

]
− Var

[ ∫ π

−π
tr{h′j(λ)In(λ, d

′
0)}dλ

]}
= 0,

for all j = 1, . . . , p + q + 1, where

lim
n→∞ nVar

[ ∫ π

−π
tr{h j(λ)In(λ, d0)}dλ

]
= 4π

∫ π

−π
tr{h j(λ, θ) f j(λ)h j(λ, θ) f j(λ)}dλ + 2π

m∑
β1,..,β4=1

∫ π

−π

∫ π

−π

[
k∗(λ1)h j(λ1, θ0)k(λ1)

]
β1β2

×
[
k∗(λ2)h j(λ2, θ0)k(λ2)

]
β3β4

× Qεβ1,..,β4
(λ1, λ2,−λ2)dλ1dλ2

= U

= lim
n→∞ ncov

(
S n(θ0)

)
.

And
√

n
∫ π
−π tr

{
h
′
j(λ)[In(λ, d

′
0) − E(In(λ, d

′
0))]

}
dλ is asymptotically normal if the pseudo spectral density of {Z′ (t)}

is square-integrable.

3) And then, from Lemma 1, we have the result following these relations
√

n(̃θn − θ0) = W−1
√

nS n(θ0) + op(1),

for
√

nS n(θ0)→ N(0,U) and
√

n(̃θn − θ0)→ N
(
0,W−1U(W∗)−1

)
implies that

√
n(̃θn − θ0)/W−1 → N(0,U).

5. Simulations

In this section, we expose the Quasi-Maximum Likelihood Estimate (QMLE) and the Extended Multivariate Local

Whittle Estimate (ExtMLWE). We consider the model ARFIMA(0, d, 0) for our simulation and we generate non-

stationary multivariate ARFIMA processes by truncating the moving average representation in (4). We allow the

fractional parameter of interest (d1,0, d2,0) to belong to the set {(0.6, 0.7), (1.1, 1.2), (1.4, 1.3), (1.6, 1.7)}. The sam-

ple size n ∈ {100, 200}. The bias and the root mean squared error (RMSE) are computed using 1000 replications.

We obtain the following tables:

Table 1. Simulation results for bias and RMSE of QMLE and ExtMLWE, with n = 100

QMLE ExtMLWE

n = 100 n = 100

d0 Bias RMSE d0 Bias RMSE

d1,0 = 0.6 0.01 0.00636 d1,0 = 0.6 -0.01 0.0068201

d2,0 = 0.7 0.01 0.004459 d2,0 = 0.7 -0.01 0.00577

d1,0 = 1.1 0.01 0.00129 d1,0 = 1.1 -0.011 0.00334

d2,0 = 1.2 -0.0002 0.000227 d2,0 = 1.2 -0.003 0.000933

d1,0 = 1.4 0.0001 0.00179 d1,0 = 1.4 0.01 0.001874

d2,0 = 1.3 0.001 0.00029 d2,0 = 1.3 -0.01 0.00072

d1,0 = 1.6 0.001 0.000127 d1,0 = 1.6 -0.001 0.000534

d2,0 = 1.7 -0.001 0.000132 d2,0 = 1.7 -0.01 0.000202
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Table 2. Simulation results for bias and RMSE of QMLE and ExtMLWE, with n = 200

QMLE ExtMLWE

n = 200 n = 200

d0 Bias RMSE d0 Bias RMSE

d1,0 = 0.6 0.002 0.001425 d1,0 = 0.6 -0.011 0.001673

d2,0 = 0.7 0.001 0.00187 d2,0 = 0.7 0.001 0.00427

d1,0 = 1.1 0.001 0.00105 d1,0 = 1.1 0.002 0.001286

d2,0 = 1.2 0.0019 0.00157 d2,0 = 1.2 -0.001 0.0046486

d1,0 = 1.4 -0.001 0.000217 d1,0 = 1.4 -0.01 0.000466

d2,0 = 1.3 -0.001 0.00045 d2,0 = 1.3 -0.01 0.000615

d1,0 = 1.6 0.001 0.000898 d1,0 = 1.6 -0.001 0.001547

d2,0 = 1.7 -0.001 0.000863 d2,0 = 1.7 -0.002 0.001223

In general, according to Tables 1 and 2, the QMLE and the ExtMLWE present a good result for the bias. Thus,

the QMLE improves the estimates because the bias and the RMSE are in general quite lower than that of the

ExtMLWE.
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Abstract

In this paper, using Marshall-Olkin transformation, a new class of Extended Power Log-normal distribution which

includes the Power Log-normal and Log-normal distributions as special cases is introduced. Its characterization

and statistical properties are studied. A real survival dataset is analyzed and the results show that the proposed

model is flexible and appropriate.

Keywords: power log-normal distribution, Marshall-Olkin transformation, survival analysis, maximum likelihood

1. Introduction

A Log-normal distribution is a well known continuous probability distribution of a random variable whose loga-

rithm is normally distributed. In survival analysis, the lognormal distribution is extensively used in applications,

for example, see Gupta et al. (1997), Royston (2001), Rutqvist (1985) and Johnson et al. (1996) etc. The density

and cumulative distribution functions of a Log-normal random variable denoted by X ∼ LN(μ, σ) are given by, for

−∞ < μ < ∞, σ > 0, x > 0,

f (x) =
1

xσ
φ(

ln(x) − μ
σ

), F(x) = Φ(
ln(x) − μ
σ

), (1)

where φ and Φ are the density and cumulative distribution functions of the standard normal distribution.

Nelson and Dognanksoy (1992) extended the Log-normal distribution and introduced the Power Log-normal dis-

tribution whose density and cumulative distribution functions are given by,

f (x) =
p

xσ
φ(
μ − ln(x)

σ
)[Φ(
μ − ln(x)

σ
)]p−1, F(x) = 1 − [Φ(

μ − ln(x)

σ
)]p, (2)

for −∞ < μ < ∞, σ > 0, p > 0, x > 0. We denote it as X ∼ PLN(μ, σ, p).

They fitted it to the life or strength data from specimens of various sizes. They presented that such a model arises

when any specimen can be regarded as a series system of smaller portions, where portions of a certain size have a

normal life (or strength) distribution. The statistical analysis can also be found in Nelson and Doganaksoy (1995).

Szyszkowicz and Yanikomeroglu (2009) and Liu et al. (2008) proposed the use of power lognormal distributions

to approximate lognormal sum distributions.

On the other hand, by adding a new parameter α > 0 to an existing distribution, Marshall and Olkin (1997)

proposed a new family of survival functions. The new parameter results in flexibility in the distribution. Let

F̄(x) = 1 − F(x) be the survival function of a random variable X. Then

Ḡ(x) =
αF̄(x)

1 − (1 − α)F̄(x)
(3)

is a proper survival function. Ḡ(x) is called Marshall-Olkin family of distributions. If α = 1, we have that G = F.

The density function corresponding to (3) is given by

g(x) =
α f (x)

[1 − (1 − α)F̄(x)]2
,
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and the hazard rate function is given by

h(x) =
hF(x)

1 − (1 − α)F̄(x)
,

where hF(x) is the hazard rate function of the original model with distribution F.

Using the Marshall-Olkin transformation (3), several researchers have studied various distribution extensions. Mar-

shall and Olkin (1997) generalized the exponential and Weibull distributions. Alice and Jose (2003) introduced

Marshall-Olkin extended semi Pareto model for Pareto type III and estabilished its geometric extreme stability.

Semi-Weibull distribution and generalized Weibull distributions are discussed by Alice and Jose (2005). Ghitany

et al. (2005) studied the Marshall-Olkin Weibull distribution, that can be obtained as a compound distribution

mixing with exponential distribution, and applied it to model censored data. Marshall-Olkin Extended Lomax

Distribution was introduced by Ghitany et al. (2007). Jose et al. (2010) investigated Marshall-Olkin q-Weibull

distribution and its max-min processes. Garcı́a et al. (2011) generalized the standard Log-normal distribution.

In this paper, we use the Marshall-Olkin transformation to define a new model, so-called the Marshall-Olkin Power

Log-normal distribution (MPLN), which generalizes the Power Log-normal, the Log-normal model. We aim to

reveal some statistical properties of the proposed model and apply it to survival analysis.

The rest of this article is organized as follows: in Section 2, we introduce the new defined distribution and in-

vestigate its basic properties, including the shape properties of its density function and the hazard rate function,

stochastic orderings and representation, moments and measurements based on the moments. Section 3 discusses

the estimation of parameters by the method of maximum likelihood. An application of the MPLN model to real

survival data is illustrated in Section 4. Our work is concluded in Section 5.

2. Marshall-Olkin Power Log-normal Distribution and Its Properties

2.1 Density and Hazard Function

Let X follow the Power Log-normal distribution PLN(μ, σ, p), then its survival function is given by F̄(x) = 1 −
F(x) = [Φ(

μ−ln(x)

σ
)]p. Substituting it in (3) we obtain a Marshall-Olkin Power Log-normal distribution denoted by

MPLN(μ, σ, p, α) with the following survival function

Ḡ(x) =
α[Φ(

μ−ln(x)

σ
)]p

1 − (1 − α)[Φ(
μ−ln(x)

σ
)]p
, x > 0. (4)

The corresponding density function is given by

g(x) =
pα[Φ(

μ−ln(x)

σ
)]p−1φ( μ−ln(x)

σ
)

xσ
(
(α − 1)[Φ(

μ−ln(x)

σ
)]p + 1

)2
, x > 0. (5)

If α = 1, we obtain the Power Log-normal distribution with parameter μ, σ, p. Furthermore, if p = 1, it reduces

to the Log-normal distribution. This distribution contains the Power Log-normal distribution and Log-normal

distribution as particular cases.

Figure 1. Plots of Marshall-Olkin power log-normal density and hazard function for some parameter values
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Figure 1(a) shows some density functions of the MPLN(μ, σ, p, α) distribution with various parameters. It indicates

that the value of α has a subtantial effect on the tail of the density function.

The hazard rate function of the MPLN(μ, σ, p, α) distribution is given by

h(x) =
g(x)

Ḡ(x)
=

pφ( μ−ln(x)

σ
)

xσΦ(
μ−ln(x)

σ
)[(α − 1)[Φ(

μ−ln(x)

σ
)]p + 1]

, x > 0. (6)

Figure 1(b) shows some shapes of the MPLN(μ, σ, p, α) hazard function with various parameters.

2.2 Stochastic Orderings

In statistics, a stochastic order measures the concept of one random variable being “larger” than another. It is an

important tool to judge the comparative behavior. Here are some basic definitions.

A random variable X is less than Y in the ususal stochastic order (denoted by X ≺st Y) if FX(x) ≥ FY (x) for all

real x. X is less than Y in the hazard rate order (denoted by X ≺hr Y) if hX(x) ≥ hY (x), for all x > 0. X is less

than Y in the likelihood ratio order (denoted by X ≺lr Y) if fY (x)/ fX(x) increases in x > 0. It is well known that

X ≺lr Y ⇒ X ≺hr Y ⇒ X ≺st Y , see Ramesh and Kirmani (1987).

Proposition 1 If X ∼ MPLN(μ, σ, p, α1) and Y ∼ MPLN(μ, σ, p, α2), and α1 < α2, then X ≺lr Y, X ≺hr Y and
X ≺st Y.

Proof. The density ratio is given by

U(x) =
fX(x)

fY (x)
=
α1[1 − (1 − α2)Φp(

μ−ln(x)

σ
)]2

α2[1 − (1 − α1)Φp(
μ−ln(x)

σ
)]2
.

Taking the derivative with respect to x,

U′(x) =
2pα1(α1 − α2)Φp−1(

μ−ln(x)

σ
)[(α2 − 1)Φp(

μ−ln(x)

σ
) + 1]φ( μ−ln(x)

σ
)

xσα2[(α1 − 1)Φp(
μ−ln(x)

σ
) + 1]3

.

If α1 < α2, U′(x) < 0, U(x) is a decreasing function of x. The results follow.

2.3 Stochastic Representation

Let Ḡ0(x|λ),−∞ < x < ∞,−∞ < λ < ∞, be the conditional survival function of a continuous random variable X
given a continuous random variable λ. Let Λ be a random variable with probability density function m(λ). Then

the distribution with survival function

Ḡ(x) =

∫ ∞

−∞
Ḡ0(x|λ)m(λ)dλ, −∞ < x < ∞,

is called a compounding distribution with mixing density m(λ). Compounding distribution provides a useful way

to obtain new class of distributions in terms of existing ones. The following result shows that the MPLN(μ, σ, p, α)

distribution can be expressed as a compound distribution.

Proposition 2 Suppose that the conditional survival function of a continuous random variable X given Λ = λ is
given by

Ḡ0(x|λ) = exp

[
−λΦ−p(

μ − ln(x)

σ
) + λ

]
, x > 0. (7)

Let Λ have an exponential distribution with density function

m(λ) = αe−αλ, α > 0, λ > 0.

Then the random variable X has the MPLN(μ, σ, p, α) distribution.

Proof. For x > 0, the survival function of X is given by

Ḡ(x) =

∫ ∞

0

Ḡ0(x|λ)m(λ)dλ = α
∫ ∞

0

e−λΦ
−p(

μ−ln(x)
σ )+λe−αλdλ =

α[Φ(
μ−ln(x)

σ
)]p

1 − (1 − α)[Φ(
μ−ln(x)

σ
)]p
,
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which is the survival function of the MPLN(μ, σ, p, α) distribution.

For λ > 0, Ḡ0(x|λ) defines a class of non-standard distributions. Compounding a distribution belonging to this

class with an exponential distribution for λ leads to a certain MPLN(μ, σ, p, α) distribution. Next we will present

another stochastic representation of the MPLN(μ, σ, p, α) distribution.

Proposition 3 Let {Xi, i ≥ 1} be a sequence of i.i.d. random variables with a Power Log-normal distribution
PLN(μ, σ, p). Let N be a geometric random variable with parameter 0 < α < 1 such that P(N = n) = α(1 −
α)n−1, n = 1, 2, . . . , which is independent of {Xi, i ≥ 1}. Then,

(1) min(X1, . . . , XN) has a Marshall-Olkin Power Log-normal distribution MPLN(μ, σ, p, α).

(2) max(X1, . . . , XN) has a Marshall-Olkin Power Log-normal distribution MPLN(μ, σ, p, 1/α).

Proof. The survival function of min(X1, . . . , XN) is

P(min(X1, . . . , XN) > x) =

∞∑
n=1

P(X1 > x, . . . , Xn > x)P(N = n)

=

∞∑
n=1

[F̄(x)]nα(1 − α)n−1

=
αF̄(x)

1 − (1 − α)F̄(x)
,

which is the survival function of the Marshall-Olkin Power Log-normal distribution MPLN(μ, σ, p, α).

The survival function of max(X1, . . . , XN) is

P(max(X1, . . . , XN) > x) = 1 − P(max(X1, . . . , XN) ≤ x)

= 1 −
∞∑

n=1

P(X1 ≤ x, . . . , Xn ≤ x)P(N = n)

= 1 −
∞∑

n=1

[F(x)]nα(1 − α)n−1

=

1
α

F̄(x)

1 − (1 − 1
α

)F̄(x)
,

which is the survival function of the Marshall-Olkin Log-Logistic distribution MPLN(μ, σ, p, 1/α).

2.4 Moments and Quantiles

Proposition 4 Let X ∼ MPLN(μ, σ, p, α), for k = 1, 2, . . . , Then the kth non-central moment is given by

μk = E(Xk) = pαekμ
∫ 1

0

e−kσΦ−1(h) hp−1

[(α − 1)hp + 1]2
dh, (8)

where Φ−1 is the inverse (quantile function) of the normal cumulative distribution function.

Proof. By definition of the moment,

μk =

∫ ∞

0

xkg(x)dx

=

∫ ∞

0

xk pα[Φ(
μ−ln(x)

σ
)]p−1φ( μ−ln(x)

σ
)

xσ
(
(α − 1)[Φ(

μ−ln(x)

σ
)]p + 1

)2
dx let t = (μ − ln(x))/σ

=

∫ ∞

−∞
ek(μ−σt) pα[Φ(t)]p−1φ(t)

((α − 1)[Φ(t)]p + 1)2
dt let h = Φ(t)

= pαekμ
∫ 1

0

e−kσΦ−1(h) hp−1

[(α − 1)hp + 1]2
dh.

The above expression seems to have no compact form. We can compute it with the help of computer. For

the standardized skewness coefficient
√
β1 =

μ3−3μ1μ2+2μ3
1

(μ2−μ2
1
)3/2 and kurtosis coefficient β2 =

μ4−4μ1μ3+6μ2
1
μ2−3μ4

1

(μ2−μ2
1
)2 , where
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μ1, μ2, μ3, μ4 are the moments given in (8), Figure 2 shows the skewness and kurtosis coefficients for the Marshall-

Olkin Power Log-normal MPLN(μ = 0, σ = 1, p, α) model.

Figure 2. The plots for the skewness
√
β1 and kurtosis coefficient β2

The qth quantile xq = G−1(q) of the MPLN(μ, σ, p, α) distribution is given by

xq = eμ−σΦ
−1[(

1−q
αq−q+1

)
1
p ], 0 ≤ q ≤ 1. (9)

where G−1(·) is the inverse of distribution function. In particular, the median of the MPLN(μ, σ, p, α) distribution

is given by median(X) = eμ−σΦ−1[( 1
α+1

)
1
p ].

Figure 3 displays the measures of central tendency (mean, median) of the MPLN(μ = 0, σ = 1, p, α) distribution.

From the figure, it is found that, as expected, the mean is larger than the median. The distribution has a right tail.

Figure 3. Plots of mean and median of the MPLN(μ = 0, σ = 1, p, α) distribution

3. Maximum Likelihood Estimation

In this section, we consider the maximum likelihood estimation about the parameters (μ, σ, p, α) of the Marshall-

Olkin Power Log-normal model. Suppose X1, X2, . . . , Xn is a random sample of size n from the Marshall-Olkin

Power Log-normal distribution MPLN(μ, σ, p, α). Then the likelihood function is given by

n∏
i=1

gX(xi) =

n∏
i=1

pα[Φ(
μ−ln(xi)

σ
)]p−1φ( μ−ln(xi)

σ
)

xiσ
(
(α − 1)[Φ(

μ−ln(xi)

σ
)]p + 1

)2
, (10)
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and the log-likelihood function is given by

l = ln(

n∏
i=1

gX(xi))

= n ln(p) + n ln(α) − n ln(σ) + (p − 1)

n∑
i=1

ln(Φ(
μ − ln(xi)

σ
)) +

n∑
i=1

ln(φ(
μ − ln(xi)

σ
))

−
n∑

i=1

ln(xi) − 2

n∑
i=1

ln[(α − 1)Φp(
μ − ln(xi)

σ
) + 1]. (11)

The estimates of the parameters maximize the likelihood function. Taking the partial derivatives of the log-

likelihood function with respect to μ, σ, p, α respectively and equalizing the obtained expressions to zero yield

to likelihood equations.
∂l
∂μ
= 0,

∂l
∂σ
= 0,

∂l
∂p
= 0,

∂l
∂α
= 0.

However, the equations do not lead to explicit analytical solutions for the parameters. Thus, the estimates must

be obtained by means of numerical procedures such as Newton-Raphson method. The program R provides the

nonlinear optimization function optim for solving such problems.

It is known that under some regular conditions, as the sample size increases, the distribution of the MLE tends to

a multivariate normal distribution with mean θ = (μ, σ, p, α)T and covariance matrix equal to the inverse of the

Fisher information matrix I−1(θ), see Cox and Hinkley (1979). The score vector and Hessian matrix are given in

the Appendix. The multivariate normal distribution can be used to construct approximate confidence intervals for

the parameters.

The likelihood ratio test can be used to test if the fit using MPLN model is statistically better than a fit using

the PLN model. That is, we can test the hull hypothesis H0: α = 1 against H1: α � 1. When H0 is true, the

likelihood ratio statistic d = 2[l(μ̂, σ̂, p̂, α̂)− l(μ̂, σ̂, p̂, 1)] has approximately a chi-square distribution with 1 degree

of freedom, see Neyman and Pearson (1928) and Wilks (1938).

4. Application

In this section, we consider a real data set to illustrate the proposed model. The data taken from Davis (1952) are

the number of miles to first and succeeding major motor failures of 191 buses operated by a large city bus company.

The data is shown in Table 1.

Table 1. Initial bus motor failures

Distance interval(1000 miles) Observed number of failures

Less than 20 6

20-40 11

40-60 16

60-80 25

80-100 34

100-120 46

120-140 33

140-160 16

160-180 2

180-up 2

We fit the data set with the Log-normal(LN), the Power Log-normal (PLN) and the Marshall-Olkin Power Log-

normal(MPLN) distributions, respectively, using maximum likelihood method. The results are reported in Table

2. The usual Akaike information criterion (AIC) introduced by Akaike (1973) and Bayesian information criterion

(BIC) proposed by Schwarz (1978) to measure of the goodness of fit are also computed. AIC = 2k − 2 ln(L) and

BIC = k ln(n) − 2 ln(L). where k is the number of parameters in the distribution and L is the maximized value of

the likelihood function.

The results show that MPLN model fits best. Figure 4 displays the histogram and fitted models using the MLE

estimates.
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Table 2. Maximum likelihood parameter estimates (with standard deviation) of the LN, PLN and MPLN models

for the initial bus motor failure data

Model μ̂ σ̂ p̂ α̂ loglik AIC BIC

LN 4.454 0.566 − − −1013.410 2030.820 2037.325

(0.141) (0.290)

PLN 12.312 1.729 19.714 − −971.501 1949.002 1958.759

(0.437) (1.002) (1.208)

MPLN 15.435 2.671 10.558 12.454 −960.498 1928.996 1942.005

(0.529) (0.408) (1.604) (1.109)

Figure 4. Histogram and fitted curves for the initial bus motor failure data

5. Conclusions

In this paper, the Power Log-normal distribution is generalized by adding an extra parameter. It is achieved by

using the well known Marshall-Olkin transformation. The new model, named Marshall-Olkin Power Log-normal

distribution, includes the Power Log-normal and Log-normal distributions as special cases.

Its detailed characterization and statistical properties such as stochastic orderings, stochastic representation, the

moments and measures based on the moments, are presented. The estimation of parameters is approached by the

method of maximum likelihood and the Hessian matrix is derived. A real survival dataset is analyzed and the

results show that the proposed model is flexible and appropriate.

6. Appendix: Score Vector and Hessian Matrix

Suppose x1, x2, ..., xn is a random sample from the MPLN(μ, σ, p, α) distribution, then the log-likelihood function

is given by (11). The elements of the score vector are obtained by differentiation

lμ = −
n∑

i=1

2p(α − 1)φ( μ−ln(xi)

σ
)Φp−1(

μ−ln(xi)

σ
)

σ[(α − 1)Φp(
μ−ln(xi)

σ
) + 1]

+

n∑
i=1

φ′( μ−ln(xi)

σ
)

σφ( μ−ln(xi)

σ
)
+

n∑
i=1

(p − 1)φ( μ−ln(xi)

σ
)

σΦ(
μ−ln(xi)

σ
)
,

lσ =

n∑
i=1

2p(α − 1)(μ − ln(xi))φ(
μ−ln(xi)

σ
)Φp−1(

μ−ln(xi)

σ
)

σ2[(α − 1)Φp(
μ−ln(xi)

σ
) + 1]

−
n∑

i=1

(μ − ln(xi))φ(
μ−ln(xi)

σ
)

σ2φ( μ−ln(xi)

σ
)

− n
σ

−
n∑

i=1

(p − 1)(μ − ln(xi))φ(
μ−ln(xi)

σ
)

σ2Φ(
μ−ln(xi)

σ
)

,

lp = −
n∑

i=1

2(α − 1) ln[Φ(
μ−ln(xi)

σ
)]Φp(

μ−ln(xi)

σ
)

(α − 1)Φp(
μ−ln(xi)

σ
) + 1

+

n∑
i=1

ln[Φ(
μ − ln(xi)

σ
)] +

n
p
,

lα =
n
α
−

n∑
i=1

2Φp(
μ−ln(xi)

σ
)

(α − 1)Φp(
μ−ln(xi)

σ
) + 1

.
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The Hessian matrix, second partial derivatives of the log-likelihood, is given by

H(θ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
lμμ lμσ lμp lμα
lσμ lσσ lσp lσα
lpμ lpσ lpp lpα

lαμ lασ lαp lαα

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where

lμμ = −
n∑

i=1

2(p − 1)p(α − 1)φ( μ−ln(xi)

σ
)2Φ

(
μ−ln(xi)

σ

)
p−2

σ2
(
(α − 1)Φ

(
μ−ln(xi)

σ

)p
+ 1

) −
n∑

i=1

2p(α − 1)φ′( μ−ln(xi)

σ
)Φ

(
μ−ln(xi)

σ

)
p−1

σ2
(
(α − 1)Φ

(
μ−ln(xi)

σ

)p
+ 1

)
+

n∑
i=1

2p2(α − 1)2φ( μ−ln(xi)

σ
)2Φ

(
μ−ln(xi)

σ

)2p−2

σ2
(
(α − 1)Φ

(
μ−ln(xi)

σ

)p
+ 1

)
2

+

n∑
i=1

φ′′( μ−ln(xi)

σ
)

σ2φ( μ−ln(xi)

σ
)
−

n∑
i=1

[φ′( μ−ln(xi)

σ
)]2

σ2[φ( μ−ln(xi)

σ
)]2

+

n∑
i=1

(p − 1)φ′( μ−ln(xi)

σ
)

σ2Φ
(
μ−ln(xi)

σ

) −
n∑

i=1

(p − 1)φ( μ−ln(xi)

σ
)2

σ2Φ
(
μ−ln(xi)

σ

)
2
,

lμσ = lσμ =
n∑

i=1

2(p − 1)p(α − 1)(μ − ln(xi))φ(
μ−ln(xi)

σ
)2Φ(

μ−ln(xi)

σ
)p−2

σ3
(
(α − 1)Φ

(
μ−ln(xi)

σ

)p
+ 1

)
+

n∑
i=1

2p(α − 1)φ( μ−ln(xi)

σ
)Φ(

μ−ln(xi)

σ
)p−1

σ2
(
(α − 1)Φ

(
μ−ln(xi)

σ

)p
+ 1

) +

n∑
i=1

2p(α − 1)(μ − ln(xi))φ
′ ( μ−ln(xi)

σ

)
Φ(
μ−ln(xi)

σ
)p−1

σ3
(
(α − 1)Φ(

μ−ln(xi)

σ
)p + 1

)
−

n∑
i=1

2p2(α − 1)2(μ − ln(xi))φ(
μ−ln(xi)

σ
)2Φ(

μ−ln(xi)

σ
)2p−2

σ3
(
(α − 1)Φ(

μ−ln(xi)

σ
)p + 1

)2
+

n∑
i=1

(μ − ln(xi))[φ
′ ( μ−ln(xi)

σ

)
]2

σ3[φ( μ−ln(xi)

σ
)]2

−
n∑

i=1

(μ − ln(xi))φ
′′ ( μ−ln(xi)

σ

)
σ3φ( μ−ln(xi)

σ
)

−
n∑

i=1

(p − 1)φ( μ−ln(xi)

σ
)

σ2Φ(
μ−ln(xi)

σ
)
−

n∑
i=1

(p − 1)(μ − ln(xi))φ
′ ( μ−ln(xi)

σ

)
σ3Φ(

μ−ln(xi)

σ
)

+

n∑
i=1

(p − 1) (μ − ln(xi)) φ(
μ−ln(xi)

σ
)2

σ3Φ
(
μ−ln(xi)

σ

)
2

−
n∑

i=1

φ′( μ−ln(xi)

σ
)

σ2φ( μ−ln(xi)

σ
)
,

lμp = lpμ = −
n∑

i=1

2p(α − 1) ln
(
Φ(
μ−ln(xi)

σ
)
)
φ
(
μ−ln(xi)

σ

)
Φ(
μ−ln(xi)

σ
)p−1

σ
(
(α − 1)Φ(

μ−ln(xi)

σ
)p + 1

) −
n∑

i=1

2(α − 1)φ
(
μ−ln(xi)

σ

)
Φ(
μ−ln(xi)

σ
)p−1

σ
(
(α − 1)Φ(

μ−ln(xi)

σ
)p + 1

)
+

n∑
i=1

2p(α − 1)2 ln
(
Φ

(
μ−ln(xi)

σ

))
φ( μ−ln(xi)

σ
)Φ

(
μ−ln(xi)

σ

)2p−1

σ
(
(α − 1)Φ

(
μ−ln(xi)

σ

)
p + 1

)2
+

n∑
i=1

φ( μ−ln(xi)

σ
)

σΦ
(
μ−ln(xi)

σ

) ,
lμα = lαμ =

n∑
i=1

2p(α − 1)Φ(
μ−ln(xi)

σ
)2p−1φ

(
μ−ln(xi)

σ

)
σ

(
(α − 1)Φ

(
μ−ln(xi)

σ

)p
+ 1

)2
−

n∑
i=1

2pΦ(
μ−ln(xi)

σ
)p−1φ

(
μ−ln(xi)

σ

)
σ

(
(α − 1)Φ(

μ−ln(xi)

σ
)p + 1

) ,
lσσ = −

n∑
i=1

2(p − 1)p(α − 1)(μ − ln(xi))
2φ( μ−ln(xi)

σ
)2Φ(

μ−ln(xi)

σ
)p−2

σ4
(
(α − 1)Φ

(
μ−ln(xi)

σ

)
p + 1

)
−

n∑
i=1

4p(α − 1)(μ − ln(xi))φ
(
μ−ln(xi)

σ

)
Φ(
μ−ln(xi)

σ
)p−1

σ3
(
(α − 1)Φ(

μ−ln(xi)

σ
)p + 1

) −
n∑

i=1

2p(α − 1)(μ − ln(xi))
2φ′( μ−ln(xi)

σ
)Φ

(
μ−ln(xi)

σ

)
p−1

σ4
(
(α − 1)Φ(

μ−ln(xi)

σ
)p + 1

)
+

n∑
i=1

2p2(α − 1)2(μ − ln(xi))
2φ( μ−ln(xi)

σ
)2Φ(

μ−ln(xi)

σ
)2p−2

σ4
(
(α − 1)Φ

(
μ−ln(xi)

σ

)
p + 1

)
2

+

n∑
i=1

2(μ − ln(xi))φ
′ ( μ−ln(xi)

σ

)
σ3φ

(
μ−ln(xi)

σ

)
−

n∑
i=1

(μ − ln(xi))
2[φ′

(
μ−ln(xi)

σ

)
]2

σ4[φ
(
μ−ln(xi)

σ

)
]2

+

n∑
i=1

(μ − ln(xi))
2φ′′

(
μ−ln(xi)

σ

)
σ4φ

(
μ−ln(xi)

σ

) +
n
σ2
+

n∑
i=1

2(p − 1)(μ − ln(xi))Φ
′( μ−ln(xi)

σ
)

σ3Φ
(
μ−ln(xi)

σ

)
70



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 2, No. 1; 2013

+

n∑
i=1

(p − 1)(μ − ln(xi))
2φ′( μ−ln(xi)

σ
)

σ4Φ(
μ−ln(xi)

σ
)

−
n∑

i=1

(p − 1)(μ − ln(xi))
2Φ′( μ−ln(xi)

σ
)2

σ4Φ(
μ−ln(xi)

σ
)2

,

lσp = lpσ =

n∑
i=1

2(α − 1)(μ − ln(xi))φ(
μ−ln(xi)

σ
)Φ(

μ−ln(xi)

σ
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σ2
(
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(
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σ

)
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+
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Φ(
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−
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σ
)
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.

The Fisher information matrix I(θ) = −E(H(θ)).
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Abstract

The time that Italian students spend at university is remarkably longer than in other European universities. For

this reason, the government has recently introduced new rules for academic courses, in order to reduce the issue of

long term students. In addition to this, universities need to address the growing problem of students prematurely

leaving university before completing their courses. This paper considers the analysis of the length of stay of groups

of students at Milano-Bicocca University using Coxian phase-type distributions classified according to the student

individual characteristics.

Keywords: Markov chain, classification and regression tree, hazard function, survival function, students progres-

sion

1. Introduction and Motivations

Economists and sociologists regard university education as an investment where the costs of the education is

balanced against the future benefits of having a better educated population and employable workforce. When a

student leaves the university without completing their degree, it is at a cost to the student’s family, the university as

an institution and society. The costs to society are due to the economic output loss: the graduated is more productive

than the non-graduated and society does not make a profit from the taxes of the missed graduate. Following this

line of thought, the reform of Italian universities, through Law 509/1999, aims to prevent university drop outs and

shorten the time taken to obtain a degree.

Moreover, graduation and drop out rates are adopted as criteria for evaluating the performance of universities.

Therefore, the challenge for university managers is to make better informed policy decisions that can streamline

the degree completion process, reduce the length of time it takes students to complete a degree and develop effective

programmes to prevent drop outs.

The focus of this paper is on the time-to-event data where the time is the number of days elapsed from when a

student first enrols until he/she experiences the event, that is, he/she graduates or drops out from that university

course.

The analysis of university education has been developing systematically for a long time and a wide literature

exists on this subject. Event-History analysis (DesJardin et al., 1999, 2006; Ishitani, 2003; Kalamatianou &

McClean, 2003) focuses on discrete events (the student drop out or graduation) occurring over time to establish

risk factors. This technique is particularly interesting for analysing the departure process because the assessment

of the transition from one state to another, that is, from enrolled to not enrolled, and the identification of the factors

(e.g. personal, academic, socio-economic status of family) which influence the students’ decision of leaving, are

attainable (Triventi et al., 2009).

Another piece of work makes use of Markov chain models to analyze the progression of students at university. In

these models, every student occupies a state at time t and transits from state to state at time t+1 (the first and the last

state represent enrolment and graduation/drop out respectively, while other states represent educational progress).
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Gani (1963) originally used a Markov chain for estimating the probability of Australian students completing their

degree course. Shah and Burke (1999) provided estimates for the mean time a student takes to complete the course,

and mean time students spend in the higher education system in Australia. Harden and Tcheng (1971) built the

transition matrices from available historical data. Other examples are given in Song and Chissom (1994), Sah

and Degtriarev (2005). Recently, Symeonaki and Kalamatianou (2011) proposed the theory of non-homogeneous

Markov systems with fuzzy states for describing student educational progress in Greek universities.

The aim of this paper is to analyse student progression in the Italian reformed degree system and to estimate the

influence of various factors on the probability that students, with certain characteristics, will progress successfully

towards their degree or drop out. We propose to use the Coxian phase-type distribution for modelling the length

of stay (in days) of the students enrolled at University of Milano-Bicocca. Student status has been observed for

six academic years, during which time the student can graduate (as of the third year), drop out, change course or

university, or can still be enrolled at the end of the observation (considered right-censored in the analysis).

There has been a wealth of literature devoted to investigating the determinants of the propensity of students to drop

out of the academic career or to complete their degree programme. Personal characteristics such as gender and

age; or individual abilities; income, education and socio-economic status of the family, academic-specific factors

(services, quality in teaching, etc), and time-varying variables such as number of passed exams or credits are found

to affect student choices at university (Arulampalam et al., 2004; Arulampalam et al., 2005; Checchi & Flabbi,

2006; Johnes, 1990; Light & Strayer, 2000; Robst et al., 1998; Smith & Naylor, 2001; among others).

A recent technical report by a consortium of Italian universities (Almalaurea, 2012) showed that one out of two

students, enrolled at university, makes a wrong decision about their own education thus resulting in a high rate of

drop out and a low level of satisfaction for graduated students. Motivated by this reason, we consider characteristics

of students, known on enrolment, such as individual information (age, gender) and pre-college qualification (high

school, mark). In this paper, we investigate the potential of using the Coxian phase-type distributions to give

insights to the risk of drop out and graduation, and on the probability to “survive” at university for groups of

students sharing common characteristics. It is hoped that by making students aware that, on the basis of their

education to date, their background and/or their personal characteristics, they are more likely to have a particular

outcome; either to drop out, complete their degree in time, or take up to six years or more to graduate, and that this

will help steer students towards an appropriate course choice which meets their expectations.

A classification tree is introduced to identify the different student profiles and, for each profile, we model student’s

time at university (length of stay, LoS) using different Coxian phase-type distributions. A new student upon

identifying to which of the considered groups they belong, can gain valuable perspective on his/her probability of

finishing the studies or dropping out, and on how long it should take him/her to complete or give up. Within the

fitted Coxian phase-type distributions, each phase could represent a specific stage in academic career or behaviour.

These issues are also of interest in assessing efficiency at the system and institutional level.

This enhances the use of the Coxian models for offering university leaders possible insights into the actual needs

of change in management and lead universities to develop effective retention programmes and initiatives aimed at

reducing drop outs and the time taken to complete the degree.

This paper is organized as follows: Section 2 introduces the Coxian phase-type distribution, Section 3 and 4

report the analysis of length of stay at Milano-Bicocca University using Coxian phase-type distributions for groups

of students classified according to their individual characteristics. Section 5 concludes the work and reports on

possible future developments.

2. Coxian Phase-Type Distribution

Coxian phase-type distributions (Neuts, 1989) are used to describe the time to absorption of a finite Markov chain

in continuous time, where there is a single absorbing state (n + 1) and n ordered transient states or phases. The

process starts in the first phase, then moves through sequential phases with the choice of entering the absorbing

state at any time. For example, the student career at university can be thought of as a series of transitions through

latent phases until an event of leaving university occurs due to graduation, drop out or transfer. Absorption from

the first phases would represent the drop out of academic programmes, while absorption from the latest phases

would indicate the conclusion for those students who complete a degree.

Let {X(t); t ≥ 0} be a (latent) Markov chain in continuous time with states {1, 2, . . . , n, n + 1}, where {1, 2, . . . , n}
are latent (transient) states of the process and state (n + 1) is the (absorbing) state, and X(0) = 1.
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For i = 1, 2, . . . , n − 1 the probability that a unit moves from one phase to the next one in the time interval δt is

Prob{X(t + δt) = i + 1|X(t) = i} = λiδt + o(δt) (1)

and for i = 1, 2, . . . , n the probability that a unit leaves the system by entering the absorbing state is

Prob{X(t + δt) = n + 1|X(t) = i} = μiδt + o(δt) (2)

The parameters of the Coxian phase-type distribution, λi and μi, describe the transition rates through the ordered

transient states (from state i to state i + 1) and the transition rates from the transient states to the absorbing state

(from state i to the absorbing state n + 1), respectively, see Figure 1.

Figure 1. An illustration of the Coxian phase-type distribution

The density and survival functions of the variable T , the time until absorption, are given by:

f (t) = p exp{Qt}q and S (t) = p exp{Qt}1
and the hazard function is h(t) = f (t)/S (t), where p = (1, 0, 0, ..., 0) is the 1 × n vector of probabilities defining the

initial transient phases, q = −Q1 = (μ1, μ2, ..., μn)′ is the n × 1 vector of transition rates from transient phases to

the absorbing phase, and Q is the matrix of transition rates restricted to the transient phases

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(λ1 + μ1) λ1 0 ... 0 0

0 −(λ2 + μ2) λ2 ... 0 0

· · · · ·
· · · · ·
· · · · ·
0 0 0 ... −(λn−1 + μn−1) λn−1

0 0 0 ... 0 −μn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3)

The probability that the individual leaves the system at phase i, say πi is determined as a function of the estimated

parameters μi and λi for i = 1, . . . , n, as follows:

π1 =

∫ ∞

0

μ1e−(λ1+μ1)tdt =
μ1

λ1 + μ1

;

π2 =

∫ ∞

0

μ2e−(λ2+μ2)tdt
∫ ∞

0

λ1e−(λ1+μ1)tdt =
(
λ1

λ1 + μ1

) (
μ2

λ2 + μ2

)
;

...

πi =

i−1∏
l=1

(
λl

λl + μl

) (
μi

λi + μi

)
;

...

πn = 1 −
n−1∑
l=1

πl.

It is a usual procedure to aggregate phases sharing common characteristics to form stages, the interpretation of the

stages is, often, more intuitive and meaningful.

Time (length of stay) may then be divided into intervals. In general, the kth length of stay interval (at the kth

stage for example) can be determined by S k =
{
t( j) : m

∑k−1
i=1 πi < j < m

∑k
i=1 πi

}
where t(1), t(2), ..., t(m) represent the
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ordered lengths of stay data for each individual and m represents the number of observations (Marshall & McClean,

2003).

Parameters μi and λi, i = 1, . . . , n, are estimated by fitting Coxian phase-type distributions via the EM algorithm

(Asmussen et al., 1996) appropriately modified to take censored data into account. Likelihood ratio tests are

performed to determine the most suitable number of phases. The likelihood function with censored observations

is:

L =
m∏

j=1

f (t j)
α j S (t j)

1−α j

where α j is an indicator variable which equals 1, if t j is a complete time for the jth unit and α j = 0, if t j is a

censored for the jth unit (that is, the event does not occur before the end of the observational period).

Previous research has successfully used Coxian phase-type distributions to represent survival times as the length

of time until a certain event occurs, where the phases are considered to be stages in the survival and the absorbing,

final stage, the event that occurs causing the individual or element to leave the system completely. For instance,

this event could be a patient recovering from an illness, a patient having a relapse, an individual leaving a certain

type of employment, a piece of equipment failing, or a patient dying. Faddy (1994) illustrates how useful the

Coxian phase-type distributions are in representing survival times for various applications such as the length of

treatment spell of control patients in a suicide study, the time prisoners spend on remand and the lifetime of rats

used as controls in a study of ageing.

In particular, Faddy and McClean (1999) used the Coxian phase-type distribution to find a suitable distribution

for modelling the duration of stay of a group of male geriatric patients in hospital. They found that the phase-

type distributions were ideal for measuring the lengths of stay of patients in hospital and showed how it was also

possible to consider other variables that may influence the duration. More recently, Marshall and McClean (2003)

have demonstrated how the Coxian phase-type distribution can, unlike alternative approaches, adequately model

the survival of various groups of elderly patients in hospital uniquely capturing the typical skewed nature of such

survival data in the form of a conditional phase-type model (C-Ph) which incorporates a Bayesian network of

inter-related variables.

3. Length of Stay at Milano-Bicocca University

3.1 Data

The empirical analysis is conducted on administrative data of students at the Milano-Bicocca University (hereafter

MIB). This university was established on June 10, 1998, to serve students from the northern Italy, to relieve some

of the pressure on the over-crowded university of Milan, but first of all to offer the opportunity to take a degree at

a much more affordable public university than the two renowned private universities of Milan.

The analyzed data refers to just over twenty thousand (20,069) students enrolled in the academic years 2000/01,

2001/02, 2002/3, 2003/04 at MIB in one of the 8 three year degree programmes: Economics (Ec), Educational

Science (ED), Law, Mathematics-Physics-Natural Sciences (MPN), Medicine (Med), Psychology (Psy), Sociology

(Soc) and Statistics (Stat). Conditions required for admission to the programmes at Milano-Bicocca university vary

according to the Faculty. Students who apply for Psychology, Educational Science, Sociology, or to some of the

Mathematics-Physics-Natural Sciences degree programmes are selected through an entry test while students of

Economics only need to pass a mathematical and Italian language test. In addition, the undergraduate technical

courses in Medicine such as Biomedical Laboratory Techniques, Dental Hygiene, Midwifery, Nursing and so on,

require students to pass an aptitude test to get enrolled.

For each surveyed student, the time-to-exit from university is measured as the number of days elapsed from when

a student first enrols until she/he graduates or drops out or changes institution. Drop out students never finish their

degree and are academically dismissed if they provide formal renunciation at any time during the year, if they do

not pay taxes or if they do not take exams for at least one year. Students who are still studying but transfer to

another institution exit in the data analysis.We follow the performances of the students for six academic years; if a

student is still enrolled at the end of the observation time, his/her length of stay at university is considered as right

censored in the analysis.

The event of interest is whether the student leaves during their study, gets a degree, transfers to another university,

or takes six or more years to finish. The life table of all the students during the six years under study is represented

graphically in Figure 2. In the first 3 years, 6167 students (31%) drop out and leave their academic career, 832
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(4%) change university and 4675 (23%) take the degree in the regular time. Surprisingly, out of those completing

within three years, 34% did so at the beginning of the third year. It is interesting to observe that 4817 students

complete the degree programme after the legal duration of the courses. They are known as fuoricorso students

representing 50.7% of graduated students, which is consistent with the other Italian universities (Miur, 2011). At

the end of the observation, 1256 students are still enrolled (6%) taking at least six years to complete their study.

Figure 2. The progression of students during the six years of observations. The percentage is calculated with

respect to students enrolled at the beginning of each academic year

As well as the length of stay, various attributes of each student are collected at the time of enrolment: gender, resi-

dence (Milan, out of Milan), high school (liceo, technical-vocational-training schools), high school mark (between

0.6 and 1), age at enrolment (at most 19, over 19 years old), enrolment (immediately after the high school, one or

more years after the high school), cohort for enrolment (2000/01, 2001/02, 2002/03, 2003/04).

Table 1. Distribution of students by faculties and information at enrolment

Faculty

Econ. Law Med. Psych.

Educ.

Science

Math.

Physics,

Nat. sc.

Stat. Soc.

Gender
Female 46.17% 59.62% 78.28% 74.22% 82.88% 36.55% 50.71% 70.89%

Male 53.83% 40.38% 21.72% 25.78% 17.12% 63.45% 49.29% 29.11%

Residence
Milan 66.95% 66.17% 31.54% 53.19% 54.46% 59.89% 58.40% 52.56%

Out/Milan 33.05% 33.83% 68.46% 46.81% 45.54% 40.11% 41.60% 47.44%

High Sch.
Liceo 34.16% 37.14% 31.30% 57.98% 33.29% 54.04% 51.85% 41.44%

Other 65.84% 62.86% 68.70% 42.02% 66.71% 45.96% 48.15% 58.56%

Mark
Average 0.75 0.74 0.74 0.81 0.75 0.77 0.79 0.79

Stand. Dev. 0.12 0.11 0.11 0.12 0.11 0.13 0.12 0.12

Age
<= 19 57.26% 55.23% 49.88% 59.84% 49.49% 68.73% 70.09% 49.15%

> 19 42.74% 44.77% 50.12% 40.16% 50.51% 31.27% 29.91% 50.85%

Enrolment
Immediat. 75.25% 74.88% 61.46% 70.38% 63.59% 85.14% 81.48% 63.62%

Later 24.75% 25.12% 38.54% 29.62% 36.41% 14.86% 18.52% 36.38%

Cohort

2000/01 24.63% 20.17% 24.78% 25.03% 26.51% 26.89% 20.57% 26.43%

2001/02 21.82% 24.26% 25.31% 23.67% 25.09% 22.72% 21.51% 25.23%

2002/03 23.94% 26.05% 24.90% 25.50% 23.82% 23.11% 25.06% 22.21%

2003/04 29.60% 29.53% 25.01% 25.80% 24.58% 27.28% 32.86% 26.14%

Enrolled

Students
4953 1481 1243 2211 3241 4772 351 1817
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Table 1 shows the distribution of students by personal information and Faculty. The composition of the surveyed

students is very heterogeneous among the Faculties. In particular, the courses of Mathematics and Physics attract

much more male students, while Medicine, Psychology, Sociology and Educational Science have typically a female

setting. Most students of Statistics and Mathematics-Physics-Natural Sciences enrol immediately after the high

school graduation. In general, more than half students live in Milan, but two out of three students enrolled on

Medicine programmes come from other cities, probably because the offered courses are not commonly supplied in

other Italian universities.

The preferences of students coming from different types of high school are in one case unexpected. Two-thirds of

the students enrolled in Economics, Educational Sciences, Law and Medicine attended professional high schools

while half the group of students who prefer to apply for the other programmes are qualified at liceo. It is unexpected

that 63% and 68% of enrolled students into Law and Medicine courses respectively are graduated at a technical

high school. More or less the same percentage of students enrolled in the four cohorts.

The final mark at the high school (Note: As the type of scale of mark at the high school has changed during

the last 10 years, we considered a homogeneous version with minimum value 0.6 and maximum 1) seems not

to be a discriminating factor. The average mark is quite similar for all the Faculties, except for the Psychology

and Statistics programmes which are preferred by students who graduate with a medium-high level. The smallest

average high school mark is for students on Medicine courses.

Table 2 shows the percentage of students of every Faculty by the cause of exit from MIB. Overall, almost half of

students (47%) succeed to earn a degree, but a high percentage of enrolled students (42%) do not complete the

degree programmes. At the end of the observation time (6 years), 6% of the students are still enrolled. As regards

the Faculties, students attending courses of Law and Economics perform the worst. The rate of students who start

studying Law (Economics) and never finish is dramatically high, 60% (53%). The Faculty of Law has also the

highest percentage (10%) of students still “in progress” toward the degree after six years.

On the other hand, the percentage of students who graduated in Medicine programmes is substantially higher:

nearly eighty percent of enrolled students complete their degree, while only 17% of students decide to drop out

and less than 1% take over five years to finish. Note that these students have the smallest average mark at high

school, but they do better in attaining a degree than their colleagues.

Students enrolled on Educational Sciences, Psychology, Sociology and Statistics courses perform similarly, with

approximately 55% of these students completing their degree and nearly 35% dropping out.

Table 2. Distribution of students by Faculties and exit from MIB

Faculty

Econ. Law Med. Psych.

Educ.

Science

Math.

Physics,

Nat. sc.

Stat. Soc.

Exit

Drop out 52.80% 59.89% 16.49% 35.19% 35.24% 41.60% 35.33% 38.14%

Degree 34.79% 26.00% 79.40% 55.99% 55.57% 45.66% 55.27% 54.21%

Transfer 5.69% 3.78% 3.38% 3.98% 1.97% 6.29% 3.42% 2.64%

Still enroled 6.72% 10.33% 0.72% 4.84% 7.22% 6.45% 5.98% 5.01%

Enroled

Students
4953 1481 1243 2211 3241 4772 351 1817

3.2 A Classification Tree

A CART (Classification and Regression Tree) is a binary decision tree that is constructed by splitting a node into

two child nodes repeatedly, beginning with the root node that contains the whole learning sample. Specifically, it

is a non-parametric tree-structured recursive partitioning method, introduced by Breiman et al. (1984), to predict

a response variable on the basis of certain predictors observed on a learning sample. The algorithm consists of

two main stages: growing and pruning. In growing, the tree is recursively partitioned into subsets (nodes); each

partition is obtained by examining all the possible binary splits along the observed data of each predictor variable

and selecting the split that most reduces some measure of node impurity. The result is a sequence of nested trees,

with increasing numbers of leaves (terminal nodes), until no more splits are possible and the fully grown tree is
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reached. The pruning operation on the fully grown tree aims then to select the best subtree and consists by declaring

an internal node as terminal and deleting all its descendants; this makes the tree more general and prevents any

over-fitting on the training set. The aim of the classification tree is to predict the level of the response on the basis

of the vector of the explanatory variables.In this paper the results for CART are obtained using the R package rpart
(Therneau, 2012).

We created the classification tree reported in Figure 3 to classify the students according to their propensity for com-

pleting their degree based on individual characteristics collected at enrolment. Actually, the categorical response

variable of interest is the event that determines the exit from MIB with four categories: degree, drop out, change,

still enrolled. In the nodes of the tree, students with common attitude towards study who behave in a similar way

are joined.

The Gini index is used to evaluate the node impurity and the misclassification rate at the final stage is 0.387.

The mode of the four categories is shown on the final nodes in Figure 3. Faculty (1), age at enrolment (1), mark

at high school (0.7), enrolment time (0.6) and high school type (0.2) give the most relevant contribution in the

classification. The normalized measure of the importance of each predictor variable in relation to the final tree is

reported in brackets.

Figure 3. The classification tree for the MIB students by the risk of graduation or drop out

At the end of the pruning procedure, the terminal nodes of the tree identified 10 groups. Table 3 reports the

description of the 10 groups ranked according to the likelihood of graduation, the graduation risk. For every group

identified, the most frequent cause of exit is reported (column 6, Table 3). The last three columns of the table

contain the mean, median and coefficient of variation of the length of stay(in days) at MIB of all the students

belonging to each group.

The first group, for example, associated to a high risk of graduation, consists of over 19 years old students in

Medicine. These students are probably the most motivated in studying: as they have been forced to pass an

admission test and are mostly living outside of Milan, deciding to come to Milan probably only to attend courses.

The study programmes give professional training where students interested in such courses make job-oriented

choices without wasting time. The students tend to be older than their colleagues probably as most of them have

failed the test previously. Their length of stay at MIB on average is 1031 days, so they are likely to complete their

degree in a timely manner. At the end of the six years only 2 students are censored.

The last node (hereafter, the tenth), corresponding to the highest risk of drop out (67%) combined with the smallest

percentage of graduated students (14%), and refers to the group of students who enrol in Economics, Mathematics-

Physics-Natural Sciences, Statistics and Law at least one year later than graduation at school when they are older

than 19 and drop out of the academic programmes during the first 2 years (average LoS is 775 days). They
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resemble the category of students who enter university without any real motivation, probably under the pressure of

their family who believe in the usefulness of the degree to getting a job, but who give up along the way.

The ninth group consists of students qualified at high schools different from liceo with at most a medium mark

(<=0.775), enrolled immediately after school into Mathematics-Physics-Natural Sciences, Economics and Law.

They could be those students who enter college with a weak background and do not perform at the level required

to meet the Faculty standards and decide to leave, in fact half of them drop out.

Another group, the third, associated to a high risk of graduation (60%) consists of students enrolled immediately

after school with the highest marks at Faculties Mathematics-Physics-Natural Sciences, Economics and Law. Their

colleagues of the same Faculties and same age, but graduated at liceo with low-medium marks, compose the fourth

group which rises above the others for the longest stay at MIB, 50% of them do not complete degree programmes

within normal time and takes more than 3.64 years. Another node (the sixth), corresponding to a medium risk of

drop out (46%) combined with a slightly lower percentage of graduated students (36%), refers to the group of male

students over 19 years old, enrolled immediately after school into Educational Science, Sociology and Psychology

Faculties. They could be those students who prefer to reconcile work with study, the programmes of these Faculties

are in fact suitable also to part-time students.

Table 3. Description of the groups identified by the classification tree

Group Description
N.
students

Chance of
Graduation Drop out Risk Outcome

Mean
LoS

Median
LoS

Variation
Coefficient
LoS

1 Age>19; Med 623 75.80% 19.40% DEGREE 1031.53 1163.00 0.44

2

Age<=19;

Fac: Ed, Stat, Soc, Psy, Med 4686 71.10% 17.40% DEGREE 1230.65 1231.50 0.45

3

Age<=19

Fac: MPN, Ec, Law

Mark >0.755

3457 60.50% 21.40% DEGREE 1195.67 1189.00 0.51

4

Age<=19

0.635<Mark<=0.755

Fac: MPN, Ec, Law

High School: Liceo

1223 49.10% 26.10% DEGREE 1245.10 1358.00 0.56

5

Age>19

Fac: Ed, Soc ,Psy

Enrolment: Immediately

Gender: Female

668 44.60% 32.30% DEGREE 1229.69 1320.00/ 0.57

6

Age>19

Fac: Ed, Soc, Psy

Enrolment: Immediately

Gender: Male

360 36.40% 46.10% DROP OUT 1068.93 1183.00 0.67

7

Age<=19

Mark<=0.635

Fac: MPN, Ec, Law

High School: Liceo

496 29.20% 39.30% DROP OUT 1177.41 1311.00 0.68

8

Age>19

Fac: Ed, Soc, Psy

Enrolment: Later

2421 28.70% 52.60% DROP OUT 1019.69 980.00 0.76

9

Age<=19

Mark<=0.755

Fac: MPN, Ec, Law

High School: Prof/Tech

1758 23.90% 53.10% DROP OUT 991.84 763.00 0.80

10
Age>19

Fac: MPN, Ec, Law, Stat
4377 14.70% 67.2% DROP OUT 775.16 362.00 0.96

Table 4 reports the percentage of students in each group who enter university and go on to complete degree pro-

grammes within normal time (in corso) or take at least 4 or more years to finish or dropping out (fuoricorso).

Table 4. Rates of in corso and fuoricorso students by groups

Groups Total

Graduation

1 2 3 4 5 6 7 8 9 10
In corso 86.2% 74.5% 64.8% 42.8% 59.1% 51.1% 23.4% 53.3% 31.4% 36.8% 49.3%

Fuori corso 13.8% 25.5% 35.2% 57.2% 40.9% 48.9% 76.6% 46.7% 68.6% 63.2% 50.7%

Total 472 3333 2093 601 298 131 145 696 420 642 8831
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Students belonging to the first group are considerably more likely to graduate within three regular years. Most of

students in the second and third groups complete their degree in a timely manner. The percentage of students who

graduate in corso is higher for group five than for group six even if the graduation rate is in the opposite order (see

Table 3). The other groups can be characterized by high drop out rates and low graduation rates, having also a high

rate of fuoricorso students.

3.3 The Survival and Hazard Functions for the 10 Groups of Students

To complete the explorative study of the length of stay at MIB, the empirical survival and hazard functions for the

ten groups of students can be determined.

Figure 4. Empirical survival curves for the ten groups of students

Figure 4 displays the empirical survival curves for each group according to the product limit estimator. The shape

of the curves seems quite similar: in the first academic year, a steep decline appears overall due to the high rate of

drop outs, followed by a stationary trend in the next two years where a reduced number of drop outs and transfers

usually registered. Starting from the end of the third year, there is a gradual decrease of the survival probability of

students completing their degree.

Figure 5. Empirical hazard functions for the ten groups of students
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Although the general trend of the survival curves is common to all the groups, the plotted functions do not overlap

and the log-rank test confirms that a significant difference exists among them (Chisq=538, df=9, p-value=0.0001).

In particular, the empirical survival curve of the first group stands out from all the other groups. It shows a sudden

decline around the end of the third academic year, where most students take the degree. The curve of the second

group, instead, dominates the other curves until the graduation time occurs, as the drop out/transfer rate registered

for this group of students in the first three academic years is the smallest.

The performance of students decreases as the group number rises.

An overall inspection of Figure 5 shows that the higher the number of group the higher the risk of drop out at the

beginning of the academic career, moreover, the first groups are characterized by a greater risk of completing the

degree programme then the latest groups. This seems reasonable to expect given that groups one and two have the

highest percentage of students completing within three years, therefore the risk of completing should be greater.

Likewise, it is in the earlier period of study that you would expect students to be most indecisive of their course

choice and most likely to drop out.

4. Fit of the Coxian Phase-Type Distribution

Tables 5a and 5b report the fit of the Coxian phase type distribution parameters using the EM-algorithm (Asmussen

et al., 1996) adjusted for censored data. From inspection of the results, it is apparent that a 19 phase Coxian phase-

type distribution is the most suitable for all the data (Note: We use a Chi-square test for nested model where

the Loglikelihood for 19 phases was -136603.4351 and the Loglikelihood for 20 phases was -136602.9433, p-

value=0.3884) together. However, it is important to note that some of the parameters μi associated with phase i
in Table 5a are equal to zero. This would suggest that no one is observed leaving this phase which can therefore

be aggregated with the neighbouring phase. Hereafter, the term stage will indicate a set of sequential phases with

estimates of μi approaching to zero aggregated together with the closest phase associated to a strictly positive μi.

In effect, the phases with small values of μi parameters are redundant and only the most dominant phases with

the largest μi values are meaningful. This will also prevent an over-fitted model as reported in earlier literature

(Marshall et al., 2012). In each stage we calculated the probability of leaving university due to degree, or drop out,

or transfer. Actually, in each of the estimated phases where μ̂i = 0 it is possible to leave the process of study, but

the probability is so small that it is more likely for students to stay in the process than leave.

Table 5a. Results of fitting Coxian phase-type distribution

Phase i Stage λ̂i μ̂i πi

1

Explorative

0.0179 0 0.0003

2 0.0177 0 0.0000

3 0.0177 0 0.0000

4 0.0121 0.0056 0.3183

5

Intermediate

0.0143 0 0.0000

6 0.0143 0 0.0000

7 0.0143 0 0.0000

8 0.0143 0 0.0000

9 0.0132 0.0010 0.0488

10

Outcome

0.0116 0 0.0000

11 0.0116 0 0.0000

12 0.0116 0 0.0000

13 0.0116 0 0.0000

14 0.0116 0 0.0000

15 0.0116 0 0.0000

16 0.0116 0 0.0000

17 0.0116 0 0.0000

18 0.0030 0.0086 0.4682

19 Tardive - 0.0003 0.1644
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Table 5b. Average and interval of length of stay at each stage

Stage k Number of students
(leaving at the stage)

Lower bound
LoS

Upper bound
LoS Average of LoS

1 6394 0 464 217.53

2 980 465 732 584.98

3 9366 733 1916 1326.26

4 3299 1917 2190 2161.23

The length of stay of all the surveyed students at MIB is analysed and found to be most suitably represented by

a 4 phase Coxian distribution. The estimated parameters indicate four positive absorption probabilities (Note:

Actually the first value of πi is positive but strongly close to zero and it is ignored). So, the career of students

seems to go through four sequential stages which we name explorative, intermediate, outcome and tardive. The

four stages appear to represent student behaviour appropriately. At the beginning of a university course (the first

explorative stage), we imagine an explorative stage in which the students face a new form of study; some of which

realize that they cannot perform at the level required to meet the faculty standards and are discouraged to continue.

So, the impact of the new environment results in a peak of students leaving (the drop out students). The second

intermediate stage relates to students who have previously been unsure of their career path and after an initial

attempt to go on, decide not to pursue their studies further where they either drop out or transfer, other students

rest “in progress” towards a degree, proceeding step by step. The third stage, the outcome stage, comprises of the

motivated students who complete their degree, in a timely manner however there will also be some students who

are ‘resting in progress’. The final stage (the fourth, tardive stage) are those students, with the longest length of

stay at university (fuoricorso or censored data) taking six or more years to complete their degrees.

In particular,

• The explorative stage has length of stay between 17 and 464 days. The mean time to departure from MIB is 218

days, that is, less than three quarters of the first academic year. Among students leaving university at this stage,

88% gives up studying completely, while the remaining 12% decide to transfer to another university.

• The intermediate stage has length of stay interval between 465 and 732 days. Here we see the group of students

who have been in doubt with a mean stage of 585 days (about one and half years) on whether keep up the pace

of study. Unfortunately, 92% of students who leave university during this stage are drop out students while 8% of

them choose to transfer. Only 2 students take the degree in this stage (formally they graduated in the first degree

session, on June).

• The outcome stage has length of stay between 733 and 1916 days. This comprises strongly motivated students

who complete their degree. The average time it takes students to earn the degree in this phase is 1236 days

corresponding to about three academic years. In particular, 87 out of 100 students will exit their academic career

at this stage and graduate within the regular time, the other students drop out.

• The tardive stage has length of stay varying between 1917 and 2190 days. This final stage is regarded as the tail

period where fuoricorso students graduate or remain still enrolled after six years (censored LoS). Eighty percent

of students complete their degree while 20% percent remain enroled up to the end of the period. Students leaving

at this stage belong to the group of those who wish to graduate but they succeed only after a very long stay at

university. The average time to degree is equal to 2161 days, about six years, so twice the regular duration of a

degree programme. Understanding the factors that are influential to such a long degree completion time is one of

the most crucial issues for the university managers.

Table 5b reports the students leaving the university, the interval and the average LoS for each stage. So, for

example, 6394 students leave during the explorative stage within 464 days and their career lasts on average 217.53

days.

In describing the stages, we focused on students who left the system, but of course there are all the motivated

students who rest in progress toward a degree and proceed through these sequential stages increasing their abilities

(and their human capital) by attending courses and passing exams.

Figure 6 displays how the estimated Coxian phase-type distribution fits the empirical distribution of the lengths-

of-stay at MIB university. The fitted density seems to meet the characteristic shape with two peaks, the former due

to the high drop out rate and the latter related to students graduating with a degree.
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Figure 6. Empirical and estimated distribution of the length of stay at MIB university (on the complete sample of

students)

At this point, we investigate the fit of a Coxian phase-type distribution to model the length of stay at MIB for each

group of student. Table 7 reports the results of the fitting procedure. The estimated phases (first row) are then

aggregated to form stages considering the positive values of μi. The likelihood statistic and p-values show that

there is no significant improvement in fit by adding one more phase to the distribution. The final rows indicate

the bounds (in days) of the intervals of the length of stay of students leaving at every stage of the distribution. So,

for example, the LoS of students in the 10th group are divided into 3 intervals (delimiting the 3 stages): 0-412,

413-745, 746-2190 (days).

At first glance, the results make it clear that the number of stages is quite different within the different groups. Only

the distribution for the second group has the 4 stages detected in the distribution fitted on the complete sample of

students. Moreover, for students in groups 3 to 6, the intermediate stage seems not to be relevant.

A case which deserves attention is the first group, in such a case a remarkable high number of phases are registered

and the algorithm for parameter estimation appears to have difficulty in reaching convergence. It is possible

that a more suitable mixed model (continuous-discrete) for the student performances of this group can avoid the

convergence difficulty. This problem needs further investigation.

A comparison between the empirical and estimated distributions for each group is shown in Figure 7. The Coxian

phase-type distributions differ according to the different student groups but almost all the fitted densities seem to

suitably represent the empirical trends, even if for some groups the fitting is substantially better than for other

groups.

Table 7. Results of fitted Coxian distribution to the length of stay in the 10 groups of students

Groups
1 2 3 4 5 6 7 8 9 10

# Phases 32 22 14 12 11 11 13 12 10 12

Log likelihood -4338.0 -32799.4 -23787.2 -8225.2 -4356.1 -2461.9 -3085.9 -15865.1 -11295.5 -28277.6

Test Statistics 4.57 1.22 1.21 3.82 0.84 0.92 2.45 4.88 3.13 3.90

p-value 0.05 0.27 0.27 0.07 0.33 0.31 0.15 0.04 0.10 0.07

#μi > 0

(n. of stages)
3* 4 2* 2 2 2 3 3 3* 3*

up. bound 1 382 464 585 663 568 606 403 460 417 412

up. bound 2 732 653 2190 2190 2190 2190 866 706 732 745

up. bound 3 2190 1889 - - - - 2190 2190 2190 2190

up. bound 4 - 2190 - - - - - - - -

Description: the* indicates that actually one more value of μi is positive but strongly close to zero and it is ignored.

The upper bound (up. bound in the table) of the intervals of LoS at each stage is indicated, the first lower bound is

zero.
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Recall that the groups are ordered according to the chance of graduation, so the later groups involve students

whose performance is poor and are more likely to drop out than their colleagues of the first groups with a marked

propensity towards study. In Figure 7, the higher the number of group, the better the fit of the Coxian phase-type

model, thus the use of the Coxian phase-type distribution seems to be more appropriate for modeling the MIB of

students who perform worse and have very long lengths of stay. This agrees with previous research where Coxian

phase-type distributions are used to represent survival or length of stay of elderly patients in hospital. There is more

heterogeneity in the earlier stages of survival which is to be expected as there is a bigger case mix of individuals

present in the first phases. In fact Faddy and McClean (1999) and Marshall et al. (2003) both highlight that the first

phase includes elderly patients who either leave the system quite quickly due to having minor problems and thus

return home or who have critical health problems and die within a short period of time in hospital. The approach is

good at representing the very long stay patients who are consuming large amounts of hospital resources by staying

in hospital for a long period of time. Likewise, the research presented in this paper is primarily concerned with

those students who have very long stays at University and do not complete their course within six years of stay.

Figure 7. The empirical and estimated density distributions for the ten groups

As expected, at first sight, comparing the Coxian phase-type distributions in succession from the first to the latest

ones, it appears clear that the second peak in the distributions, relates to lengths of stay of graduated students,
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gradually tailing off as the number of group increases, while the peak in the initial stage caused by the dropping

out students rises. Thus, the distributions are initially (for the first groups) bimodal and then tend to become highly

skewed with only one large peak at the explorative stage (for the last groups).

In the first 4 plots, students are likely to enter the absorbing state either for dropping out and for graduation. Plots

relative to all the groups from the 5th to the 10th instead show that most of the students reach the absorbing state

in the first explorative stage, a high rate of enrolled students never finish their degree. This represents the very

challenge of university leaders who need to ensure policies and practices to prevent this academic failure.

The percentage of students who graduated is substantially higher for the first three groups of students, the corre-

sponding plots exhibit the largest peak of the density at the outcome stage. In the third group, for example, students

with a good background at school who decide to enroll straight into the academic programmes of Mathematics-

Physics-Natural Sciences, Economics and Law are more likely to complete their degree. The Coxian phase-type

distribution captures this performance. On the other hand, the over 19 year old students in the eight group, en-

roled in Education, Sociology and Psychology Faculties at least one year after the high school, do not overcome

the initial difficulties and most give up in the first two years (approximately 460 days). The Coxian phase-type

distribution is able to represent this empirical mode in the explorative stage (see Figure 9).

Figure 8. The empirical and estimated survivals for the ten groups

For the first group the fitted distribution does not capture the extremely high second peak of the empirical distri-
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bution due to the fixed graduation dates where graduation falls on fixed days in the academic year. An alternative

representation is to consider a mixture of Coxian phase-type distributions. However, doing so does not improve the

fit any further than what is presented in this paper. This aspect will undergo further investigation and we restrict

the focus of this paper on the extremely long stay students.

Figure 9. The empirical and estimated hazard for the ten groups

Fitting the Coxian phase-type models enables us to offer possible insights on estimating the risk of leaving uni-

versity due to drop out or graduation reasons according to the group to which the student belongs. The Coxian

phase-type distribution also provides the estimates of the probability to “survive” in the university system towards

the degree and distinguish between different groups of students depending on the survival probability they have.

Survival and hazard functions are estimated using the Coxian phase-type densities of each group, and are compared

with the empirical curves determined by the non-parametric Kaplan-Meier procedure in Figures 8 and 9, respec-

tively. The estimated functions approximate the empirical curves well, where the fitted results for the densities

represent the highest ranked groups most appropriately (Figure 7). In particular, the estimated survival functions

overlap the empirical ones for all of the later groups (particularly for groups 7-10).

5. Conclusion

The work presented in this paper introduces an innovative application of the Coxian phase-type distribution to the

University student progression and drop out phenomena. There are two models considered. The first, introduces a
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classification tree to divide the students into different profiles of stay according to their characteristics known on

enrolment of their course. This produced ten groups of student with differing characteristics across the groups and

time at university represented using different Coxian phase-type distributions. A new student, upon identifying

the group to which he/she belongs, can gain valuable perspective on his/her probability of finishing the studies or

dropping out, and on how long it should take him/her to complete or give up. Within the fitted Coxian phase-type

distributions, each phase represents a specific stage in academic career or behaviour. These issues are also of

interest in assessing efficiency at the system and institutional level. This enhances the use of the Coxian models

that would offer university leaders possible insights into the actual needs of change in management and lead

universities to develop effective retention programmes and initiatives aimed at reducing drop outs and reducing

the times taken to complete a degree. Upon developing a model for the ten different student groups, the Coxian

phase-type distribution was fitted again separately for each group of student. This provides further refinement of

the student length of stay by modeling each student group as a sequence of phases in a separate Coxian phase-type

distribution. In doing so, an improvement in survival predictions can be made to the student stay.

This second model follows a similar format to that by Harper et al. (2012) and Marshall et al. (2012) who introduce

the Discrete Conditional Phase-type distribution using a classification tree to model patient characteristics on ad-

mission to hospital as the first component in the model which is conditioned on the second component, the patient

length of stay in hospital represented by a Coxian phase-type distribution. Such an approach is very applicable to

student time at University and consistent with previous research. This paper extends that work to another appli-

cation area and in doing so is able to use the fitted Coxian phase-type distribution to define four stages of student

behaviour in University. Linked with these stages different student characteristics and associated likely result for

that student in terms of graduating on time or dropping out. Student progression at an University is a concern for

many countries particularly the costs incurred and the stress to the student. As further work, it is planned that the

models presented in this paper will be applied to student data for other countries. One particular example that will

be considered is the application of the model for University students in Greece. Another possible extension to this

work is to incorporate the costs into the model.
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Abstract

This paper presents asymptotically optimal prediction intervals and prediction regions. The prediction intervals are

for a future response Yf given a p×1 vector x f of predictors when the regression model has the form Yi = m(xi)+ei

where m is a function of xi and the errors ei are iid from a continuous unimodal distribution. The prediction

intervals have coverage near or higher than the nominal coverage for many techniques even for moderate sample

size n, say n > 10(model degrees of freedom). The prediction regions are for a future vector of measurements

x f from a multivariate distribution. The nonparametric prediction region developed in this paper has correct

asymptotic coverage if the data x1, ..., xn are iid from a distribution with a nonsingular covariance matrix. For many

distributions, this prediction region appears to have good coverage for n > 20p, and this region is asymptotically

optimal on a large class of elliptically contoured distributions. Hence the prediction intervals and regions perform

well for moderate sample sizes as well as asymptotically.

Keywords: additive models, nonlinear regression, prediction intervals, prediction regions, regression

1. Introduction

This paper presents asymptotically optimal prediction intervals and prediction regions. The prediction regions

are for a future vector of measurements x f from a multivariate distribution, and are asymptotically optimal on a

large class of elliptically contoured distributions. Regression is the study of the conditional distribution Y |x of the

response Y given the p × 1 vector of predictors x. The prediction intervals are for a future response Yf given a

vector x f of predictors when the regression model has the form

Yi = m(xi) + ei (1)

for i = 1, ..., n where m is a function of xi and the errors ei are iid from a continuous unimodal distribution. Many

of the most important regression models have this form, including the multiple linear regression model and many

time series, nonlinear, nonparametric and semiparametric models. If m̂ is an estimator of m, then the ith residual is

ri = Yi − m̂(xi) = Yi − Ŷi.

Olive (2007) showed how to form asymptotically optimal prediction intervals for model (1), but for many regres-

sion models and estimators, large n is needed for the intervals to perform well. Prediction intervals derived for

multiple linear regression did perform well. This paper derives asymptotically optimal prediction intervals that

perform well for many models for moderate n.

A large sample 100(1 − δ)% prediction interval (PI) has the form (L̂n, Ûn) where P(L̂n < Yf < Ûn)
P→ 1 − δ as the

sample size n → ∞. Following Olive (2007), let ξδ be the δ percentile of the error e, i.e., P(e ≤ ξδ) = δ. Let ξ̂δ be

the sample δ percentile of the residuals. Consider predicting a future observation Yf given a vector of predictors

x f where (Yf , x f ) comes from the same population as the past data (Yi, xi) for i = 1, ..., n. Let 1 − δ2 − δ1 = 1 − δ
with 0 < δ < 1 and δ1 < 1 − δ2 where 0 < δi < 1. Then P[Yf ∈ (m(x f ) + ξδ1 ,m(x f ) + ξ1−δ2 )] = 1 − δ.
Assume that m̂ is consistent: m̂(x)

P→ m(x) as n → ∞. Then ri = Yi − m̂(xi)
P→ Yi − m(xi) = ei and, under “mild”
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regularity conditions, ξ̂δ
P→ ξδ. If an

P→ 1 and bn
P→ 1, then

(L̂n, Ûn) = (m̂(x f ) + anξ̂δ1 , m̂(x f ) + bnξ̂1−δ2 ) (2)

is a large sample 100(1 − δ)% PI for Yf .

According to regression folklore, the percentiles of the residuals are consistent estimators, ξ̂δ
P→ ξδ, under “mild”

regularity conditions, and this consistency is the basis for using QQ plots. The folklore is true for linear models:

sufficient conditions are β̂
P→ β and the xi are bounded in probability. See Olive and Hawkins (2003), Welsh (1986)

and Rousseeuw and Leroy (1987, p. 128).

Consider the multiple linear regression model Y = Xβ + e where Y is an n × 1 vector of dependent variables, X
is an n × p matrix of predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1 vector of unknown

iid zero mean errors ei with variance σ2. Let the hat matrix H = X(XT X)−1XT . Let hi = hii be the ith diagonal

element of H for i = 1, ..., n. Then hi is called the ith leverage and hi = xT
i (XT X)−1xi. Suppose new data is to be

collected with predictor vector x f . Then the leverage of x f is h f = xT
f (XT X)−1x f .

For the multiple linear regression model, let ξ̂δ be the sample quantile of the residuals. Following Olive (2007), let

an = bn =

(
1 +

15

n

) √
n

n − p

√
(1 + h f ). (3)

Then a large sample semiparametric 100(1 − δ)% PI for Yf is

(Ŷ f + anξ̂δ/2, Ŷ f + anξ̂1−δ/2). (4)

A PI is asymptotically optimal if it has the shortest asymptotic length that gives the desired asymptotic coverage.

The PI (4) is asymptotically optimal on a large class of unimodal continuous symmetric error distributions. For

more general distributions, an asymptotically optimal PI can be created by applying the shorth(c) estimator to

the residuals where c = �n(1 − δ)� and �x� is the smallest integer ≥ x, e.g., �7.7� = 8. See Grübel (1988). That

is, let r(1), ..., r(n) be the order statistics of the residuals. Compute r(c) − r(1), r(c+1) − r(2), ..., r(n) − r(n−c+1). Let

(r(d), r(d+c−1)) = (ξ̃δ1 , ξ̃1−δ2 ) correspond to the interval with the smallest length. Following Olive (2007), a 100

(1 − δ)% PI for Yf is

(Ŷ f + anξ̃δ1 , Ŷ f + anξ̃1−δ2 ) (5)

where an is given by (3). This prediction interval performs well for moderate n for multiple linear regression and

several estimators, including least squares.

A problem with prediction intervals is choosing an and bn so that the intervals have short length and coverage close

to or higher than the nominal coverage for a wide variety of regression models when n is moderate. Section 2.1

shows how to modify (4) and (5) to achieve these goals while Section 2.2 covers prediction regions for a future

vector of measurements x f . Examples and simulations are in Section 3.

2. Method

The idea for finding the asymptotically optimal prediction intervals and regions is simple. Find the target popula-

tion 100(1 − δ)% covering region. For small n, the coverage of the training data will be higher than that for the

future case to be predicted. In simulations for a large group of models and distributions, the undercoverage could

be as high as min(0.05, δ/2). Let qn = min(1 − δ + 0.05, 1 − δ + p/n) for δ > 0.1 and

qn = min(1 − δ/2, 1 − δ + 10δp/n), otherwise. (6)

If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Then use the prediction interval or region that covers

100qn% of the training data. The coverage of the training data is 100qn% and converges to 100(1− δ)% as n→ ∞,

even if the model assumptions fail to hold.

2.1 Asymptotically Optimal Prediction Intervals

The technique used to produce asymptotically optimal PIs that perform well for moderate samples is simple. Find

Ŷ f and the residuals from the regression model. Since the leverage of xi is closely related to the Mahalanobis

distance of xi from the sample mean x of the n predictor vectors, leverage and extrapolation are useful for a wide
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range of regression models. For a wide range of regression models, extrapolation occurs if h f > 2p/n: if x f is too

far from the data x1, ..., xn, then the model may not hold and prediction can be arbitrarily bad. This result suggests

replacing (3) by

an = bn =

(
1 +

15

n

) √
n + 2p
n − p

. (7)

Let δn = 1 − qn where qn is given by (6). Then

(L̂n, Ûn) = (m̂(x f ) + bnξ̂δn/2, m̂(x f ) + bnξ̂1−δn/2) (8)

is a large sample 100(1 − δ)% PI for Yf that is similar to (2) and (4).

Let c = �nqn�. Compute r(c) − r(1), r(c+1) − r(2), ..., r(n) − r(n−c+1). Let (r(d), r(d+c−1)) = (ξ̃δ1 , ξ̃1−δ2 ) correspond to the

interval with the smallest length. Then the asymptotically optimal 100 (1 − δ)% large sample PI for Yf is

(m̂(x f ) + bnξ̃δ1 , m̂(x f ) + bnξ̃1−δ2 ), (9)

and is similar to (5).

To see that the PI (9) is asymptotically optimal, assume that the sample percentiles of the residuals converge to the

population percentiles of the iid unimodal errors: ξ̂δ
P→ ξδ. Also assume that the population shorth (ξδ1 , ξ1−δ2 ) is

unique and has length L. Since bn → 1, m̂(x f )
P→ m(x f ), and qn = 1 − δ for large enough n, it is enough to show

that the shorth of the residuals converges to the population shorth of the ei: (ξ̃δ1 , ξ̃1−δ2 )
P→ (ξδ1 , ξ1−δ2 ). Let Ln be the

length of (ξ̃δ1 , ξ̃1−δ2 ). Let 0 < τ < 1 and 0 < ε < L be arbitrary. Assume n is large enough so that qn = 1 − δ. Then

P(Ln > L + ε) → 0 since (ξ̂δ1 , ξ̂1−δ2 ) covers 100 (1 − δ)% of the data and Ln = ξ̃1−δ2 − ξ̃δ1 ≤ ξ̂1−δ2 − ξ̂δ1
P→ L as

n → ∞ since the sample percentiles are consistent and the shorth is the smallest interval covering 100 (1 − δ)%
of the data. If P(Ln < L − ε) > τ eventually, then the shorth is an interval covering 100 (1 − δ)% of the cases

that is shorter than the population shorth with positive probability τ. Hence at least one of ξ̂1−δ2 or ξ̂δ1 would

not converge, a contradiction. Since ε and τ were arbitrary, Ln
P→ L. If P(ξ̃δ1 < ξδ1 − ε) > τ eventually, then

P(ξ̃1−δ2 < ξ1−δ2 − ε/2) > τ eventually since Ln = ξ̃1−δ2 − ξ̃δ1
P→ L = ξ1−δ2 −ξδ1 . But such an interval (of length going

to L in probability with left endpoint less than ξδ1 − ε and right endpoint less than ξ1−δ2 − ε/2) contains more than

100(1 − δ)% of the cases with probability going to one since the population shorth is the unique shortest interval

covering 100(1− δ)% of the mass. Hence there is an interval covering 100(1− δ)% of the cases that is shorter than

the shorth, with probability going to one, a contradiction. The case P(ξ̃δ1 > ξδ1 + ε) > τ can be handled similarly.

Since ε and τ were arbitrary, ξ̃δ1
P→ ξδ1 . The proof that ξ̃1−δ2

P→ ξ1−δ2 is similar.

The above results show that PI (9) and the shorth of the residuals behave well when the sample percentiles are

consistent. Even if these assumptions do not hold, the PI covers 100qn% of the training data, and often the

coverage of the future case will be close to 100(1 − δ) if the future case Yf is similar to the training data.

For asymptotic optimality, can not have extrapolation. Also, even if the coverage converges to the nominal cover-

age, the length of the PI need not be asymptotically shortest unless the highest 1−δ density region of the probability

density function of the iid errors is an interval. The highest density region is an interval for unimodal distributions,

but need not be an interval for multimodal distributions for all δ. Also see Cai, Tian, Solomon and Wei (2008).

Notice that the technique computes a PI for coverage qn ≥ 1 − δ which converges to the nominal coverage 1 − δ
as n → ∞. Suppose n ≤ 20p. Then the nominal 95% PI uses qn = 0.975 while the nominal 50% PI uses

qn = 0.55. Prediction distributions depend both on the error distribution and on the variability of the estimator m̂.

This variability is typically unknown but converges to 0 as n→ ∞. Also, residuals tend to underestimate the errors

for small n. For small n, ignoring estimator variability and using qn = 1 − δ resulted in undercoverage as high as

min(0.05, δ/2). Letting the “coverage” qn decrease to the nominal coverage 1 − δ inflates the length of the PI for

small n, compensating for the unknown variability of m̂.

The geometry of the “asymptotically optimal prediction region” is simple. The region is the area between two

parallel lines with unit slope. Consider a plot of m(xi) versus Yi on the vertical axis. The identity line with zero

intercept and unit slope is E(Yi) = m(xi). Let (Li,Ui) be the asymptotically optimal population 95% prediction

interval containing m(xi). For example, if the errors are iid N(0, σ2), then Yi|m(xi) ∼ N(m(xi), σ
2), and (Li,Ui) =
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(m(xi) − 1.96σ,m(xi) + 1.96σ). Then the upper line has unit slope and passes through (m(xi),Ui) while the lower

line has unit slope and passes through (m(xi), Li).

The geometry of the “prediction region” for PI (9) is a natural sample analog of the population “asymptotically

optimal prediction region”. A response plot of Ŷi = m̂(xi) versus Yi has identity line Ê(Yi) = m̂(xi). The region

corresponding to pointwise prediction intervals is between two lines with unit slope passing through the points

(m̂(xi), Ûi) and (m̂(xi), L̂i), respectively, where (L̂i, Ûi) is the asymptotically optimal prediction interval (9) for Yf

if x f = xi. For the multiple linear regression model, expect the points in the response plot to scatter in an evenly

populated band for n > 5p. Other regression models, such as additive models, may need a much larger sample size

n. See Section 3.1 for an example and simulations.

2.2 Prediction Regions

Asymptotically optimal prediction regions use ideas similar to those in the previous subsection. Some notation is

needed. Let the ith case xi be a p × 1 random vector, and suppose the n cases are collected in an n × p matrix X
with rows xT

1
, ..., xT

n .

The classical estimator (x,S) of multivariate location and dispersion is the sample mean and sample covariance

matrix where

x =
1

n

n∑
i=1

xi and S =
1

n − 1

n∑
i=1

(xi − x)(xi − x)T. (10)

Some important joint distributions for x are completely specified by a p × 1 population location vector μ and a

p× p symmetric positive definite population dispersion matrix Σ. An important model is the elliptically contoured

ECp(μ,Σ, g) distribution with probability density function f (z) = kp|Σ|−1/2g[(z − μ)TΣ−1(z − μ)] where kp > 0 is

some constant and g is some known function. The multivariate normal (MVN) Np(μ,Σ) distribution is a special

case.

Let the p× 1 column vector T (X) be a multivariate location estimator, and let the p× p symmetric positive definite

matrix C(X) be a dispersion estimator. Then the ith squared sample Mahalanobis distance is the scalar

D2
i = D2

i (T (X),C(X)) = (xi − T (X))T C−1(X)(xi − T (X)) (11)

for each observation xi. Notice that the Euclidean distance of xi from the estimate of center T (X) is Di(T (X), Ip)

where Ip is the p× p identity matrix. Often the data X will be suppressed. Then the classical Mahalanobis distance

uses (T,C) = (x,S). Following Johnson (1987, pp. 107-108), the population squared Mahalanobis distance

U ≡ D2(μ,Σ) = (x − μ)TΣ−1(x − μ), (12)

and for elliptically contoured distributions, U has probability density function (pdf)

h(u) =
πp/2

Γ(p/2)
kpup/2−1g(u). (13)

The volume of the hyperellipsoid

{z : (z − x)T S−1(z − x) ≤ h2} is equal to
2πp/2

pΓ(p/2)
hp

√
det(S), (14)

see Johnson and Wichern (1988, pp. 103-104).

Note that if (T,C) is a
√

n consistent estimator of (μ, d Σ), then

D2(T,C) = (x − T )T C−1(x − T ) = (x − μ + μ − T )T [C−1 − d−1Σ−1 + d−1Σ−1](x − μ + μ − T )

= d−1D2(μ,Σ) + OP(n−1/2).

Thus the sample percentiles of D2
i (T,C) are consistent estimators of the percentiles of d−1D2(μ,Σ). For multivariate

normal data, D2(μ,Σ) ∼ χ2
p.

Suppose (T,C) = (xM , b SM) is the sample mean and scaled sample covariance matrix applied to some subset of

the data. For h > 0, the hyperellipsoid

{z : (z − T )T C−1(z − T ) ≤ h2} = {z : D2
z ≤ h2} = {z : Dz ≤ h} (15)
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has volume equal to
2πp/2

pΓ(p/2)
hp

√
det(C) =

2πp/2

pΓ(p/2)
hpbp/2

√
det(SM) (16)

by (14). A future observation (random vector) x f is in region (15) if Dx f ≤ h.

A large sample (1 − δ)100% prediction region is a setAn such that P(x f ∈ An)
P→ 1 − δ. Let qn be given by (6).

If (T,C) is a consistent estimator of (μ, dΣ), then (15) is a large sample (1 − δ)100% prediction region if h = D(up)

where D(up) is the qnth sample quantile of the Di. If x1, ..., xn and x f are iid, then region (15) is asymptotically

optimal on a large class of elliptically contoured distributions in that its volume converges in probability to the

volume of the minimum volume covering region {z : (z − μ)TΣ−1(z − μ) ≤ u1−δ} where P(U ≤ u1−δ) = 1 − δ
and U has pdf given by (13). The classical parametric multivariate normal large sample prediction region uses

Dx f (x,S) ≤
√
χ2

p,1−δ.

Notice that for the data x1, ..., xn, if C−1 exists, then 100qn% of the n cases are in the prediction region, and

qn → 1−δ even if (T,C) is not a good estimator. Hence the coverage qn of the data is robust to model assumptions.

Of course the volume of the prediction region could be large if a poor estimator (T,C) is used or if the xi do not

come from an elliptically contoured distribution. Also notice that qn = 1 − δ/2 or qn = 1 − δ + 0.05 for n ≤ 20p
and qn → 1 − δ as n → ∞. If qn ≡ 1 − δ, then (15) is a large sample prediction region, but taking qn given by

(6) improves the finite sample performance of the region. Taking qn ≡ 1 − δ does not take into account variability

of (T,C), and for small n the resulting prediction region tended to have undercoverage as high as min(0.05, α/2).

Using (6) helped reduce undercoverage for small n due to the unknown variability of (T,C).

The Olive and Hawkins (2010) RMVN estimator (TRMVN ,CRMVN) is an easily computed
√

n consistent estimator

of (μ, cΣ) under regularity conditions (E1) that include a large class of elliptically contoured distributions, and

c = 1 for the Np(μ,Σ) distribution. Also see Zhang, Olive and Ye (2012). The RMVN estimator also gives a useful

estimate of (μ,Σ) for Np(μ,Σ) data even when certain types of outliers are present.

Three new prediction regions will be considered. The nonparametric region uses the classical estimator (T,C) =

(x,S) and h = D(up). The semiparametric region uses (T,C) = (TRMVN ,CRMVN) and h = D(up). The parametric

MVN region uses (T,C) = (TRMVN ,CRMVN) and h2 = χ2
p,qn

where P(W ≤ χ2
p,qn

) = qn if W ∼ χ2
p. All three regions

are asymptotically optimal for Np(μ,Σ) distributions with nonsingular Σ. The first two regions are asymptotically

optimal for a large class of elliptically contoured distributions. For distributions with nonsingular covariance matrix

cXΣ, the nonparametric region is a large sample (1 − δ)100% prediction region, but regions with smaller volume

may exist. See Section 3.2 for examples and simulations.

3. Results

3.1 Regression

Figure 1. Pointwise prediction interval bands for Ozone data

Example 1 Chambers and Hastie (1993, pp. 251, 516) examine an environmental study that measured the four

variables Y = ozone concentration, x1 = solar radiation, x2 = temperature, and x3 = wind speed for n = 111
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consecutive days. Figure 1 shows the response plot made in Splus with the pointwise large sample 95% PI bands

for the additive model Y = m(x) + e where the additive predictor m(x) = α +
∑3

j=1 S j(x j) for some functions S j

to be estimated. Here m̂(x) = estimated additive predictor (EAP). Note that the plotted points scatter about the

identity line in a roughly evenly populated band, and that 3 of the 111 PIs (9) corresponding to the observed data

do not contain Y .

A small simulation study compares the PI lengths and coverages for sample sizes n = 50, 100 and 1000 for PIs (8)

and (9). Values for PI (8) were denoted by scov and slen while values for PI (9) were denoted by ocov and olen.

The five error distributions in the simulation were 1) N(0,1), 2) t3, 3) exponential(1) −1, 4) uniform(−1, 1) and 5)

0.9N(0, 1) + 0.1N(0, 100). The value n = ∞ gives the asymptotic coverages and lengths and does not depend on

the model. So these values are same for multiple linear and nonlinear regression as well as additive models.

Software for the simulations is described in Section 4. The multiple linear regression model with E(Yi) = 1 +

xi1 + · · · + xi7 was used. The vectors (x1, ..., x7)T were iid N7(0, I7) where Ip is the p × p identity matrix. Another

regression model was Yi = m(xi)+ ei, E(Yi) = m(xi) = β1xi1 + β2x2
i1 + β3xi2 + β4x2

i2 + β5xi3 + β6x2
i3. This model was

fit as an additive model in x1, x2, and x3. The model was also fit with nonlinear regression where the mean function

is known up to the six parameters, although then the second order multiple linear regression model is appropriate.

For the additive model, the additive predictor m(xi) = α +
∑3

j=1 S j(xi j). Both the nonlinear regression and additive

model had the same mean function m(xi) = xi1 + x2
i1. Thus β = (1, 1, 0, 0, 0, 0)T , α = 0, S 1(xi1) = xi1 + x2

i1,

S 2(xi2) = 0 and S 3(xi3) = 0. For these two models, the vectors (x1, x2, x3)T were iid N3(0, I3).

The Olive (2007) PIs (4) and (5) are tailored for multiple linear regression but are liberal (too short) for moderate

n for many other techniques. The new PIs (8) and (9) are meant to have coverage near or higher than the nominal

coverage for moderate n and for a wide variety of techniques and are longer than PIs (4) and (5). For multiple

linear regression, the new PIs (8) and (9) were conservative (too long with roughly 98% coverage for the 95% PI

and 70% or 60% coverage for the 50% PI) for n = 50 and 100 compared to (4) and (5) for least squares, least

absolute deviations L1 and an M-estimator using the Splus functions l1fit and rreg. See MathSoft (1999, pp.

293-295).

Table 1. PIs for additive models

error 95% PI 95% PI 50% PI 50% PI

type n slen olen scov ocov slen olen scov ocov

1 50 5.126 4.998 0.959 0.950 1.862 1.674 0.596 0.520

1 100 4.691 4.515 0.968 0.957 1.662 1.528 0.570 0.516

1 1000 3.994 3.944 0.954 0.949 1.379 1.351 0.514 0.505

1 ∞ 3.920 3.920 0.95 0.950 1.349 1.349 0.50 0.50

2 50 9.444 8.630 0.951 0.943 2.385 2.153 0.576 0.512

2 100 8.245 7.596 0.962 0.954 2.042 1.878 0.577 0.532

2 1000 6.523 6.388 0.950 0.946 1.584 1.553 0.499 0.489

2 ∞ 6.365 6.365 0.950 0.950 1.530 1.530 0.50 0.50

3 50 5.186 4.823 0.958 0.948 1.573 1.275 0.611 0.526

3 100 4.677 4.156 0.967 0.955 1.382 1.063 0.603 0.533

3 1000 3.771 3.227 0.954 0.952 1.112 0.774 0.509 0.512

3 ∞ 3.664 2.996 0.950 0.950 1.099 0.693 0.50 0.50

4 50 2.634 2.598 0.961 0.958 1.237 1.087 0.593 0.506

4 100 2.318 2.272 0.972 0.968 1.155 1.028 0.561 0.480

4 1000 1.936 1.926 0.959 0.954 1.014 0.969 0.499 0.486

4 ∞ 1.900 1.900 0.950 0.950 1.00 1.00 0.50 0.50

5 50 19.689 17.747 0.944 0.935 2.976 2.693 0.608 0.548

5 100 18.754 16.230 0.955 0.946 2.352 2.164 0.580 0.534

5 1000 13.855 12.930 0.946 0.943 1.602 1.569 0.510 0.504

5 ∞ 13.490 13.490 0.950 0.950 1.507 1.507 0.50 0.50

The PIs (8) and (9) for nonlinear regression and additive models appear to have coverage near the nominal values

in the simulations. For n = 50 and 100, the PIs for nonlinear regression were usually roughly 10% longer than

those for additive models. The PIs for the additive model were computed using the R function gam. See Hastie

95



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 2, No. 1; 2013

and Tibshirani (1990) and Wood (2006). The PI (8) is not asymptotically optimal with error type 3. It is not

known whether m̂ is a consistent estimator of m, but the prediction intervals appear to have the correct asymptotic

coverage and length. Some consistency results for the additive model and models of the form Y = m(x) + e where

m is smooth are given in Müller, Schick and Wefelmeyer (2012) and Wang, Liu, Liang and Carroll (2011).

The simulation used 5000 runs and gave the proportion p̂ of runs where Yf fell within the nominal 100(1 − δ)%
PI. The count mp̂ has a binomial(m = 5000, p = 1 − τn) distribution where 1 − τn converges to the asymptotic

coverage (1 − τ). The standard error for the proportion is
√

p̂(1 − p̂)/5000 = 0.0031 and 0.0071 for p = 0.05 and

0.5, respectively. Hence an observed coverage p̂ ∈ (.941, .959) for 95% and p̂ ∈ (.479, .521) for 50% PIs suggests

that there is no reason to doubt that the PI has the nominal coverage.

Table 1 shows that for n = 1000, the coverages and lengths are near the asymptotic n = ∞ values. For the 95%

PI (9), the coverages were in or near (.94, .96) while the 50% PI (9) was sometimes slightly conservative. The

coverage for the 50% PI (8) was near 60% for n = 50. PI (9) is recommended since its asymptotic optimality does

not depend on the symmetry of the error distribution.

3.2 Prediction Regions

Rousseeuw and Van Driessen (1999) introduce the DD plot of the classical Mahalanobis distances MD versus the

robust distances RD. Olive (2002) shows that if consistent estimators are used and n is large, then the plotted points

will follow the identity line with unit slope and zero intercept if the data distribution is multivariate normal, and

the plotted points will follow some other line through the origin if the data distribution is from a large class of

elliptically contoured distributions but not multivariate normal.

Example 2 Buxton (1920) gives five measurements on 87 men: height, head length, nasal height, bigonal breadth
and cephalic index. The 5 outliers have heights that were recorded to be about 19mm and head lengths recorded as

the heights. The DD plot of the classical Mahalanobis distances MD versus the RMVN distances RD can be used

to visualize the prediction regions. Figure 2 shows the DD plot where points to the left of the vertical line are in

the nonparametric large sample 90% prediction region. Points below the horizontal line are in the semiparametric

region. The horizontal line at RD = 3.33 corresponding to the parametric MVN 90% region is obscured by the

identity line. This region contains 78 of the cases. Since n = 87, the nonparametric and semiparametric regions

used the 95th quantile. Since there were 5 outliers, this quantile was a linear combination of the largest clean

distance and the smallest outlier distance. The semiparametric 90% region blows up unless the outlier proportion

is small.

Figure 3 shows the DD plot and 3 prediction regions after the 5 outliers were removed. The classical and robust

distances cluster about the identity line and the three regions are similar, with the parametric MVN region cutoff

again at 3.33, slightly below the semiparametric region cutoff of 3.44.

Figure 2. Prediction regions for Buxton data
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Figure 3. Prediction regions for Buxton data without outliers

Example 3 Cook and Weisberg (1999, pp. 351, 433, 447) give a data set on 82 mussels sampled off the coast of

New Zealand. The variables are X1 = log(S ), X2 = log(M), X3 = L, X4 = log(W), and X5 = height where S is the

shell mass, M is the muscle mass in grams, L is the length L, W is the shell width and H is the height of the shell

in mm. Figure 4 shows a DD plot of the data with multivariate prediction regions added. This plot suggests that

the data may come from an elliptically contoured distribution that is not multivariate normal. The semiparametric

and nonparametric 90% prediction regions consist of the cases below the RD = 5.86 line and to the left of the

MD = 4.41 line. These two lines intersect on a line through the origin that is followed by the plotted points. The

parametric MVN prediction region is given by the points below the RD = 3.33 line and does not contain enough

cases. Points to the left of a vertical line MD = 3.33 would give a modified classical MVN prediction region.

Parametric prediction regions for multivariate normal data tend to have severe undercoverage if the data is not

multivariate normal. This undercoverage problem becomes worse as p increases, since if the cutoff h is too small,

then the volume of the prediction region depends on hp by (14).

Figure 4. DD plot of the Mussels data

Simulations for the prediction regions used x = Aw where A = diag(
√

1,
√

2, ...,
√

p), w ∼ Np(0, Ip), w ∼
LN(0, Ip) where the marginals are iid lognormal(0,1), or w ∼ MVTp(1), a multivariate t distribution with 1 degree

of freedom so the marginals are iid Cauchy(0,1). All simulations used 5000 runs and δ = 0.1.

97



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 2, No. 1; 2013

Table 2. Coverages for 90% Prediction Regions

w dist n p ncov scov mcov voln volm

MVN 600 30 0.906 0.919 0.902 0.503 0.512

MVN 1500 30 0.899 0.899 0.900 1.014 1.027

LN 1000 10 0.903 0.906 0.567 0.659 0+

MVT(1) 1000 10 0.914 0.914 0.541 22634.3 0+

For large n, the semiparametric and nonparametric regions are likely to have coverage near 0.90 because the

coverage on the training sample is slightly larger than 0.9 and x f comes from the same distribution as the xi. For

n = 10p and 2 ≤ p ≤ 40, the semiparametric region had coverage near 0.9. The ratio of the volumes

hp
i

√
det(Ci)

hp
2

√
det(C2)

was recorded where i = 1 was the nonparametric region, i = 2 was the semiparametric region, and i = 3 was the

parametric MVN region. The volume ratio converges in probability to 1 for Np(μ,Σ) data, and the ratio converges

to 1 for i = 1 on a large class of elliptically contoured distributions. The parametric MVN region often had

coverage much lower than 0.9 with a volume ratio near 0, recorded as 0+. The volume ratio tends to be tiny when

the coverage is much less than the nominal value 0.9. For 10p ≤ n ≤ 20p, the nonparametric region often had

good coverage and volume ratio near 0.5.

Simulations and Table 2 suggest that for Np(μ,Σ) data, the coverages (ncov, scov and mcov) for the 3 regions are

near 90% for n = 20p and that the volume ratios voln and volm are near 1 for n = 50p. With fewer than 5000 runs,

this result held for 2 ≤ p ≤ 80. For the non-elliptically contoured LN data, the nonparametric region had voln well

under 1, but the volume ratio blew up for w ∼ MVTp(1).

4. Discussion

4.1 General Comments

There are not many practical competitors for the new prediction intervals and regions. Parametric prediction inter-

vals and regions usually assume normality and tend to have severe undercoverage when the normality assumption

does not hold. For confidence intervals and testing, misspecification of normality is sometimes not too important

if the estimators are asymptotically normal, but for parametric prediction intervals and regions, correct specifica-

tion of the parametric model is important. For example, do not use a parametric prediction region based on the

multivariate normal distribution if the plotted points in the DD plot fail to cover the identity line.

Another competitor for regression is bootstrap prediction intervals. These PIs take hundreds of times longer to

compute than PI (9), and convergence problems are greatly multiplied for models such as nonlinear regression

models. Also bootstrap PIs may not be valid if a fixed number B of bootstrap samples are used. Di Bucchianico,

Einmahl and Mushkudiani (2001) use the minimum volume ellipsoid (MVE) estimator to cover m out of n cases

to produce MVE tolerance regions, but the technique can only be used on tiny data sets.

The location model is a special case of both the regression model (1) and of the multivariate location and dispersion

model. Let an =

(
1 +

15

n

) √
n + 1

n − 1
. Let c = �n(1 − δ)�. Let shorth(c) = (Y(d),Y(d+c−1)). Let MED(n) be the sample

median. If Y1, ..., Yn are iid, then the recommended large sample 100(1 − δ)% PI for Yf is the closed interval

[Ln,Un] = [(1−an)MED(n)+anY(d), (1−an)MED(n)+anY(d+c−1)]. This PI is (5) using the least absolute deviations

estimator, but with a closed interval.

Simulations were done in Splus and R. See R Development Core Team (2008). The Buxton data and programs in

the collection of functions rpack.txt are available at (www.math.siu.edu/olive/ol-bookp.htm). For multiple linear

regression, the function pisim simulates PIs (4) and (5) while the Splus function pisim4 simulates PIs (8) and

(9) using OLS, L1 and M-estimators. The function pisim3 was used to create Table 1 while pisim5 uses nls

to simulate PIs for nonlinear regression. Care is needed when using pisim5 since for some versions of R/Splus,

the nls function will fail to converge for some runs. Using nruns = 500 is less likely to cause an error than

nruns=5000. The function predsim was used for Table 2. The function ddplot4 was used to produce Figures 2, 3

and 4. The function lpisim simulates the PI for the location model while covrmvn computes the RMVN estimator.
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4.2 Conclusions

Parametric prediction intervals and regions are notorious for severe undercoverage. The new techniques are de-

signed to have good coverage at the training data, even if the model assumptions fail to hold. The Olive (2007)

PIs (4) and (5) are tailored for multiple linear regression but are too short for many other techniques for moderate

n. PIs (8) and (9) are generally longer than PIs (4) and (5) and have coverage near or higher than the nominal

value for many techniques even for moderate n, say n > 10 (model degrees of freedom). PIs (8) and (9) are quite

conservative for multiple linear regression for moderate n. These PIs are useful since the error distribution does

not need to be known.

The new nonparametric and semiparametric prediction regions appear to have good coverage for n > 20p and may

be the first easily computed prediction regions that are effective when the underlying multivariate distribution is

unknown.

For the prediction regions, use the DD plot to check the multivariate normality assumption and to check for the

presence of outliers. If n > 20p and the plotted points cluster tightly about a line through the origin, then the

nonparametric and semiparametric prediction regions may have good coverage. For regression with additive errors,

if n is large and the plotted points cluster about the identity line in the response plot, then the new prediction

intervals may have good coverage.
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Abstract

We propose a flexible linear calibration model with errors from RS (Ramberg & Schmeiser, 1974) generalized

lambda distribution (GλD). We demonstrate the derivation of the maximum likelihood estimates of RS GλD pa-

rameters and examine the estimation performance using a simulation study for sample sizes ranging from 30 to

200. The use of RS GλD calibration model not only provides statistical modeller with a richer range of distribu-

tional shapes, but can also provide more precise parameter estimates compared to the standard Normal calibration

model or skewed Normal calibration model proposed by Figueiredoa, Bolfarinea, Sandovala and Limab (2010).

Keywords: generalized lambda distribution, linear calibration model, skew normal distribution, maximum likeli-

hood estimation

1. Introduction

The statistical calibration model is a reverse regression technique, where we use the response variable to predict the

corresponding explanatory variable. There are number of applications of this technique in science. For example,

we may use radiometric dating to ascertain the age of a tree and further verify our result using tree rings. Our

aim, however, is to use radiometric dating to estimate age of new trees, and the problem is whether we should

minimize errors in the observation or minimize errors in age determination. There are many similar problems in

substance concentration determination in biology and chemistry, physical quantities determination in physics and

blood pressure/cholsterol level measurement in medicine. The literature on calibration problem has a long history,

and one of the earliest works can be found in Eisenhart (1939).

The usual calibration experiment is a two stage process involving two random variables X and Y. The first stage is

known as the calibration trial, where we observe the n values of the response variable y1, · · · , yn from a given set of

explanatory values x1, · · · , xn and we can estimate the link function between X and Y. The second stage is known

as the calibration experiment, where we observe k ≥ 1 value(s) of the response variable Y as y01, · · · , y0k which

are mapped from some unknown value x0 from the explanatory variable X.We can express these two stages by the

following equations.

yi = α + βxi + εi, i = 1, · · · , n;

y0 j = α + βx0 + ε0 j, j = 1, · · · , k, (1.1)

We usually assume that the errors ε1, · · · , εn, ε01, · · · , ε0k are i.i.d and Normally distributed with mean 0 and vari-

ance σ2. Also, x1, · · · , xn are known and α, β, x0 and σ2 are unknown parameters which we need to estimate.

As an extension to Normal distribution, Azzalini (1985) introduced the skewed Normal distribution. The skewed

Normal distribution is defined as

g(x; ξ, ω, λ) =
2

ω
φ
( x − ξ
ω

)
Φ

(
λ
( x − ξ
ω

))
, (1.2)

where φ(·) and Φ(·) are the p.d.f. and c.d.f. of a standard normal distribution respectively. Specially, when ξ =
0 and ω = 1, we obtain the standard skewed Normal distribution.
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Based on (1.2), Figueiredoa et al. (2010) defined a skew-normal calibration model by assuming that εi and ε0 j are

i.i.d. and follow a skewed Normal distribution with ξ = 0 denoted by S N(0, ω, λ). This gives us the following

calibration model:

yi|xi ∼ S N(α + βxi;ω; λ), i = 1. · · · , n,
y0 j|x0 ∼ S N(α + βxi;ω; λ), j = 1, · · · , k. (1.3)

In (1.3), the conditional distribution of yi given xi and y0 j given x0 are governed by skewed Normal distributions.

This skewed Normal calibration model allows the modeller to cope with some degree of skewness in the error dis-

tribution. However, this is still limited as the skewed Normal distribution have limited range of shapes. The skewed

Normal distribution still cannot handle heavy tailed, U shape, uniform, triangular or exponential upward/downward

patterns. These shapes however, can be captured using GλD (generalized lambda distributions), and we propose a

further extension to the calibration model by using RS GλD.

Our article is organized as follows. In Section 2, we introduce the GλD family. In Section 3, we outline the RS

GλD calibration model and discuss possible ways to estimate parameters of the model using maximum likelihood

estimation. In Section 4, we demonstrate the estimation performance of our proposed model across a range of

different sample sizes from 30 to 200. As a further test to our proposed model to the literature, we compare the

performance of RS GλD calibration model against Normal and skewed Normal calibration model with respect to

a real life dataset used by Figueiredoa et al. (2010) in Section 5. A discussion of our proposed method is given in

Section 6.

2. Generalized Lambda Distributions

The RS GλD (Ramberg & Schmeiser, 1974) is an extension of Tukey’s lambda distribution. It is defined by its

inverse distribution function:

F−1(u) = λ1 +
uλ3 − (1 − u)λ4

λ2

0 ≤ u ≤ 1 (2.1)

From (2.1), λ1, λ2, λ3, λ4 are respectively the location, inverse scale and shape 1 and shape 2 parameters. Karian

and Dudewicz (2000) noted that GλD is defined only if
λ2

λ3uλ3−1 + λ4(1 − u)λ4−1
≥ 0 for 0 ≤ u ≤ 1. The conditions

for which RS GλD is a valid p.d.f. are set out in Karian and Dudewicz (2000) and these are also programmed in

GLDEX package in R (Su, 2010, 2007a).

Freimer, Kollia, Mudholkar and Lin (1988) describe another distribution known as FKML GλD. The FKML GλD
can be written as:

F−1(u) = λ1 +

uλ3−1
λ3
− (1−u)λ4−1

λ4

λ2

0 ≤ u ≤ 1 (2.2)

Under (2.2), λ1, λ2, λ3, λ4 are respectively the location, inverse scale and shape 1 and shape 2 parameters.

The fundamental motivation for the development of FKML GλD is that the distribution is defined over all λ3 and

λ4 (Freimer et al., 1988). The only restriction on FKML GλD is λ2 > 0. This is more convenient to deal with

computationally than RS GλD and hence it is sometimes the preferred GλD for some researchers.

We restrict our attention in this article to the more difficult problem of fitting RS GλD calibration model to data.

Without loss of generality, the method we outlined below can be easily adapted to build FKML GλD calibration

model.

3. Statistical Model

3.1 GλD Based Calibration Model

We consider the following usual calibration model:

yi = α + βxi + εi, i = 1, · · · , n, (3.1)

y0 j = α + βx0 + ε j, j = 1, · · · , k. (3.2)

We assume that εi and ε j are i.i.d. GλD(0, λ2, λ3, λ4). In general, we consider x1, · · · , xn to be known and fixed

and α, β, λ2, λ3 and λ4 are parameters we need to estimate. Our GλD calibration model takes the following form:

yi|xi ∼ GλD(α + βxi, λ2, λ3, λ4), (3.3)
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y0 j|x0 ∼ GλD(α + βx0, λ2, λ3, λ4). (3.4)

Consequently, the likelihood function for RS GλD is:

L(θ, y, y0) =

n∏
i=1

λ2

λ3zλ3−1
i + λ4(1 − zi)λ4−1

·
k∏

j=1

λ2

λ3zλ3−1
j + λ4(1 − z j)λ4−1

, (3.5)

where

yi = (α + βxi) +
zλ3

i − (1 − zi)
λ4

λ2

,

y0 j = (α + βx0) +
zλ3

j − (1 − z j)
λ4

λ2

,

and 0 ≤ zi, z j ≤ 1, θ = (α, β, x0, λ2, λ3, λ4).

3.2 Estimation of Parameters

From (3.5), we obtain the following log likelihood function:

log L(θ, y, y0) =
n∑

i=1

log ( f1(θ, yi)) +

k∑
j=1

log
(

f2(θ, y0 j)
)

(3.6)

where

f1(θ, yi) =
λ2

λ3zλ3−1
i + λ4(1 − zi)λ4−1

,

f2(θ, y0 j) =
λ2

λ3zλ3−1
j + λ4(1 − z j)λ4−1

Taking the derivative of (3.6), we obtain the following:

∂ log L(θ)

∂θ
=

n∑
i=1

1

f1

∂ f1
∂θ
+

k∑
j=1

1

f2

∂ f2
∂θ
, (3.7)

where θ = (α, β, x0, λ2, λ3, λ4).

Theoretically, the MLE of θ is the solution of (3.7) when it is set to be equal to 0. The derivatives
∂ f1
∂θ and

∂ f2
∂θ are

given below.

∂ f1
∂λ2

=
∂ f1
∂zi
· ∂zi

∂yi
· ∂yi

∂λ2

=

⎛⎜⎜⎜⎜⎜⎝λ2

−λ3(λ3 − 1)zλ3−2
i + λ4(λ4 − 1)(1 − zi)

λ4−2

(λ3zλ3−1
i + λ4(1 − zi)λ4−1)2

⎞⎟⎟⎟⎟⎟⎠ · ⎛⎜⎜⎜⎜⎜⎝ λ2

λ3zλ3−1
i + λ4(1 − zi)λ4−1

⎞⎟⎟⎟⎟⎟⎠ · ⎛⎜⎜⎜⎜⎜⎝− zλ3

i − (1 − zi)
λ4

λ2
2

⎞⎟⎟⎟⎟⎟⎠
=

[λ3(λ3 − 1)zλ3−2
i − λ4(λ4 − 1)(1 − zi)

λ4−2](zλ3

i − (1 − zi)
λ4 )

(λ3zλ3−1
i + λ4(1 − zi)λ4−1)3

∂ f1
∂λ3

= (−λ2)
[λ3(λ3 − 1)zλ3−2

i − λ4(λ4 − 1)(1 − zi)
λ4−2](zλ3

i log zi)

(λ3zλ3−1
i + λ4(1 − zi)λ4−1)3

∂ f1
∂λ4

= λ2

[λ3(λ3 − 1)zλ3−2
i − λ4(λ4 − 1)(1 − zi)

λ4−2]((1 − zi)
λ3 log(1 − zi))

(λ3zλ3−1
i + λ4(1 − zi)λ4−1)3

∂ f1
∂α
= (−λ2

2)
[λ3(λ3 − 1)zλ3−2

i − λ4(λ4 − 1)(1 − zi)
λ4−2]

(λ3zλ3−1
i + λ4(1 − zi)λ4−1)3

∂ f1
∂β
= (−λ2

2)
[λ3(λ3 − 1)zλ3−2

i − λ4(λ4 − 1)(1 − zi)
λ4−2] · xi

(λ3zλ3−1
i + λ4(1 − zi)λ4−1)3

∂ f2
∂λ2

=
[λ3(λ3 − 1)zλ3−2

j − λ4(λ4 − 1)(1 − z j)
λ4−2](zλ3

j − (1 − z j)
λ4 )

(λ3zλ3−1
i + λ4(1 − z j)λ4−1)3
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∂ f2
∂λ3

= (−λ2)
[λ3(λ3 − 1)zλ3−2

j − λ4(λ4 − 1)(1 − z j)
λ4−2](zλ3

j log z j)

(λ3zλ3−1
i + λ4(1 − zi)λ4−1)3

∂ f1
∂λ4

= λ2

[λ3(λ3 − 1)zλ3−2
j − λ4(λ4 − 1)(1 − z j)

λ4−2]((1 − z j)
λ3 log(1 − z j))

(λ3zλ3−1
j + λ4(1 − z j)λ4−1)3

∂ f2
∂α
= (−λ2

2)
[λ3(λ3 − 1)zλ3−2

j − λ4(λ4 − 1)(1 − z j)
λ4−2]

(λ3zλ3−1
j + λ4(1 − z j)λ4−1)3

∂ f2
∂β
= (−λ2

2)
[λ3(λ3 − 1)zλ3−2

j − λ4(λ4 − 1)(1 − z j)
λ4−2] · x0

(λ3zλ3−1
j + λ4(1 − z j)λ4−1)3

∂ f2
∂x0

= (−λ2
2)

[λ3(λ3 − 1)zλ3−2
j − λ4(λ4 − 1)(1 − z j)

λ4−2] · β
(λ3zλ3−1

j + λ4(1 − z j)λ4−1)3

It is difficult to obtain the exact solutions of setting (3.7) to zero using the above formulations, owing to the fact

that RS GλD is defined by its inverse quantile function and there is a high degree of complexity involved in

solving the above equations. As an alternative, we carry out the maximum likelihood estimation by maximising

(3.6) directly using Nelder-Mead optimisation algorithm as is customary done for maximum likelihood estimation

problems involving GλD (see Su, 2010, 2007a, 2007b). This is a preferred and more reliable method of estimation

as opposed to trying to satisfy the exact conditions to which all of the above equations equal to zero. The GLDEX

package in R (Su, 2010, 2007a) facilitates the Nelder-Mead optimisation algorithm for GλD.

Our algorithm is as follows:

1) Generate a set of initial values for α, β, x0, λ2, λ3, λ4. There are a number of strategies that can be used to

determine the best set of initial values. One strategy is to generate initial values α, β, x0 using Normal or skewed

Normal calibration model and then generate some low discrepancy quasi random numbers for λ2, λ3, λ4 over a

range of values and select the set of initial values that maximises (3.6). Alternatively all initial values can be

randomly generated using low discrepancy quasi random numbers.

2) Set λ1 = α + βx0.

3) Check that GλD(λ1, λ2, λ3, λ4) is a valid statistical distribution, this can be done using GLDEX package in R.

4) Check the minimal support of GλD(λ1, λ2, λ3, λ4) is lower or equal to the lowest value of y0. Similarly, check

that the maximum support of GλD(λ1, λ2, λ3, λ4) is greater or equal to the largest value of y0. This is to ensure that

the fitted GλD will span the entire dataset. If these conditons are not met, choose another set of initial values and

repeat from 2).

5) Conduct Nelder Mead optimisation by maximising (3.6) directly using the above initial values to obtain the

required estimates.

4. Simulations

We conduct simulations to illustrate the performance of our RS GλD calibration model for sample size n =
30, 50, 100 and 200 with α = 3, β = 1.5, x0 = 15 or 40, λ3 = 10, λ4 = 1, and λ2 = 2, 5, 10. We further gen-

erate x1, x2, · · · , xn from Uni f orm(10, 30), and we set k = 1. We use the true parameters as our initial values to

kick start the optimisation process to obtain our MLE estimate for x0.

We repeat this process 1000 times, which give us 1000 x̂0m estimates of x0. The mean x̂0,Bias(x0) and MSE(x0) are

calculated as follows:

¯̂x0 =
1

1000

1000∑
m=1

x̂0m

Bias(x0) =
1

1000

1000∑
m=1

(x̂0m − x0)

MSE(x0) =
1

1000

1000∑
m=1

(x̂0m − x0)2
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The results of above simulations are shown in Tables 1 and 2. As expected, the MSE decreases as we increase the

sample size or increase the value of inverse scale parameter λ2. In terms of bias, we observe that the performance

appear to be fairly consistent across sample sizes, this gives confidence in the use of RS GλD calibration model

for smaller samples, even though there are are more parameters that need to be estimated from this model. There

also appears to be a tendency for RS GλD calibration model to slightly overestimate as nearly all the bias results

are positive. Increasing the shape parameter λ3 does not always result in increase in MSE, this is because the shape

parameter spaces of λ3 and λ4 for RS GλD are fairly complex.

Table 1. Simulations results with x0 = 15, α = 3, β = 1.5, λ4 = 1

λ2 = 2 λ2 = 5 λ2 = 10

n λ3 x̂0 Bias MSE x̂0 Bias MSE x̂0 Bias MSE

30 10 15.1105 0.1105 0.0263 15.0386 0.0386 0.0042 15.0178 0.0178 0.0010

50 10 15.0944 0.0944 0.0232 15.0352 0.0352 0.0040 15.0172 0.0172 0.0010

100 10 15.0994 0.0994 0.0184 15.0396 0.0396 0.0035 15.0185 0.0185 0.0008

200 10 15.1053 0.1053 0.0166 15.0340 0.0340 0.0030 15.0173 0.0173 0.0007

30 5 15.1430 0.1430 0.0292 15.0578 0.0578 0.0056 15.0285 0.0285 0.0012

50 5 15.1445 0.1445 0.0270 15.0530 0.0530 0.0047 15.0292 0.0292 0.0012

100 5 15.1381 0.1381 0.0214 15.0531 0.0531 0.0043 15.0264 0.0264 0.0010

200 5 15.1429 0.1429 0.0187 15.0534 0.0534 0.0038 15.0227 0.0227 0.0009

30 1 15.0271 0.0271 0.0244 15.0014 0.0014 0.0061 15.0040 0.0040 0.0017

50 1 15.0367 0.0367 0.0169 15.0030 0.0030 0.0048 14.9993 -0.0007 0.0014

100 1 15.0292 0.0292 0.0084 15.0093 0.0093 0.0030 15.0029 0.0029 0.0010

200 1 15.0262 0.0262 0.0052 15.0130 0.0130 0.0016 15.0022 0.0022 0.0007

Table 2. Simulations results with x0 = 40, α = 3, β = 1.5, λ4 = 1

λ2 = 2 λ2 = 5 λ2 = 10

n λ3 x̂0 Bias MSE x̂0 Bias MSE x̂0 Bias MSE

30 10 40.1070 0.1070 0.0259 40.0375 0.0375 0.0049 40.0189 0.0189 0.0012

50 10 40.1051 0.1051 0.0235 40.0388 0.0388 0.0039 40.0177 0.0177 0.0009

100 10 40.1077 0.1077 0.0205 40.0353 0.0353 0.0031 40.0188 0.0188 0.0008

200 10 40.1088 0.1088 0.0169 40.0387 0.0387 0.0028 40.0184 0.0184 0.0008

30 5 40.1339 0.1339 0.0319 40.0557 0.0557 0.0064 40.0288 0.0288 0.0014

50 5 40.1391 0.1391 0.0302 40.0554 0.0554 0.0046 40.0280 0.0280 0.0013

100 5 40.1405 0.1405 0.0232 40.0479 0.0479 0.0039 40.0264 0.0264 0.0010

200 5 40.1538 0.1538 0.0236 40.0474 0.0474 0.0035 40.0205 0.0205 0.0007

30 1 40.0331 0.0331 0.0290 39.9984 -0.0016 0.0058 40.0035 0.0035 0.0016

50 1 40.0348 0.0348 0.0159 40.0031 0.0031 0.0045 40.0022 0.0022 0.0013

100 1 40.0311 0.0311 0.0099 40.0078 0.0078 0.0024 39.9996 -0.0004 0.0009

200 1 40.0217 0.0217 0.0036 40.0114 0.0114 0.0017 40.0031 0.0031 0.0007

Table 3. Simulations results with x0 = 15, α = 3, β = 1.5, true error distribution GEV(0.1860, 0.4016, 0.1511) is

approximated by RS GλD with λ1 = 0, λ2 ≈ −0.0374, λ3 ≈ −0.0027, λ4 ≈ −0.0212

n x̂0 Bias MSE

30 15.3140 0.3140 0.2149

50 15.3269 0.3269 0.2154

100 15.2815 0.2815 0.1774

200 15.2860 0.2860 0.1689

We further considered using RS GλD to approximate generalized extreme value distribution (GEV) with location,

scale and shape parameters being 0.1860, 0.4016, 0.1511 respectively. We choose RS GλD with λ1 = 0, λ2 ≈
−0.0374, λ3 ≈ −0.0027, λ4 ≈ −0.0212 for this demonstration (Figure 1). We then generate simulated data based

on GEV and use our approximated RS GλD to estimate x0 with α = 3, β = 1.5 and repeat this over 1000 simulation

runs. The result of this simulation is given in Table 3. We observe that the RS GλD calibration model tends to

overestimate the true x0 by a small margin, but the bias appears to decrease as sample size increases.
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Figure 1. Approximating GEV using RS GλD

5. Application

We apply the RS GλD calibration model to a dataset which measures teenager testicular volume (ml3). This dataset

is from Chipkevitch, Nishimura, Tu and Galea-Rajas (1996) and consists of 42 observations. Figueiredoa et al.

(2010) considered two measurement methods from Chipkevitch et al. (1996): dimensional measurement with a

caliper (DM) and measurement by ultrasonography (US) and the data is given in Table 4. In their paper, Figueiredoa

et al. (2010) consider the x0 value of 16.4, which is observed twice by ultrasonography. They subsequently treated

this value as unknown, with corresponding y0 j values of y01 = 10.3 and y02 = 17.3. Then, they estimate x0 using

their skewed Normal calibration model and compared this with the standard Normal calibration model. We did the

same using the RS GλD calibration model and our results are shown in Table 5.

Table 4. Measurements obtained by dimensional measurement with a caliper (DM) and by ultrasonography (US)

from the right testis for 42 teenagers, in ml3

DM US DM US DM US DM US DM US DM US

5.9 5 17.3 16.4 7.2 6.7 4.8 5.7 17.3 17.6 5.9 5.3

6.8 7.4 7.9 10 16.3 20 3.1 2.6 4.4 4.1 16.3 18.8

5 5.7 11.4 12.7 12.2 13.9 4.4 6.1 4.1 2.7 10.3 9.4

6 6.2 11.1 10.2 10.8 9.1 8.8 10.4 15.3 16.5 13 14.1

7.9 9.1 3.9 4.5 8.4 9.3 13 14.8 4.5 5.6 22.1 20.9

10.3 16.4 9.7 11 10.6 11.5 8.2 9.6 11.3 9.2 9.7 9.7

19.8 15.7 8.8 8.5 11.6 13.7 2 3 6.1 5.4 8.1 8.9

Table 5. A comparison of linear calibration models

RS GλD model S N model Normal model

Parameter Estimate Stdev. Estimate Stdev. Estimate Stdev.

α 0.014 0.497 -0.69 - 0.32 0.56

β 0.855 0.035 0.86 0.07 0.92 0.05

σ - - 2.13 - 1.55 0.17

x0 12.128 0.963 12.66 1.81 14.58 1.24

λ - - 2.16 1.73 - -

λ2 0.146 0.355 - - - -

λ3 -0.030 0.061 - - - -

λ4 -0.162 0.184 - - - -

AIC 150.36 160.69 163.74

BIC 160.79 169.38 170.69

HQ 144.58 156.55 161.15

The theoretical derivation of the variability of our estimates under RS GλD is not readily tractable as in the cases

of skewed Normal and Normal distributions. As we need to numerically derive our calculations, small errors in
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numerical procedures could accumulate into large errors even if we could evaluate the exact theoretical solution.

As a workaround, we adopt the following procedure. Once we obtained the parameters of our model, α, β, x0, λ2,

λ3, λ4, we conduct simulations to estimate the variability of our estimate. We use our estimated parameters from

the RS GλD calibration model and xi (excluding xi = 16.4) from the original data to randomly generate y0 j and yi

according to (3.1) and (3.2). We then maximise the likelihood in (3.6) using Nelder Mead Simplex algorithm with

initial values being our original estimated parameters. We repeat the process 1000 times and calculate the sample

standard deviations of our estimated parameters.

Table 5 lists the estimated parameters and their standard deviations from RS GλD, skewed Normal and Normal

calibration models. We compute the Akaike, Bayesian and Hannan-Quinn information criterion (AIC, BIC, and

HQ) to allow model selection between three models. All three criterion favors the RS GλD calibration model. In

addition, the RS GλD model is much more efficient compared to the other models, with the smallest variability in

its parameter estimates.

6. Concluding Remarks

We propose a new calibration model with RS GλD errors, which is an extremely flexible model that can cope with

a wide range of different error distributions. Our method also lends to the development of FKML GλD calibration

model, which may have better properties with regard to numerical convergence. Our simulations studies suggest

our proposed model perform well for small sample sizes across a range of inverse scale and shape parameters of

RS GλD. We further demonstrate that the RS GλD calibration model can outperform skewed Normal or Normal

calibration model, with lower AIC, BIC and HQ information criterion and lower variability in our parameter

estimates in the context of a real life data. These simulation results are promising and future statistical models

should aim to develop statistical technique that are tailored to data, rather than requiring empirical data to satisfy

a particular statistical model. One possible extension of our model is the development of a mixture RS GλD
calibration model, which would extend the flexibility of our model even further but also present a very challenging

problem for data with small samples.
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Abstract

For square contingency tables with ordered categories, Yamamoto et al. (2007) considered a measure to repre-

sent the degree of departure from extended marginal homogeneity. It attains the maximum value when one of

two symmetric cumulative probabilities is zero. The present paper proposes an improved measure so that the de-

gree of departure from extended marginal homogeneity can attain the maximum value even when the cumulative

probabilities are not zeros. An example is given.

Keywords: marginal homogeneity, measure, Patil-Taillie diversity index, Shannon entropy

1. Introduction

For the R × R square contingency table, let πi j denote the probability that an observation will fall in cell (i, j)
(i = 1, . . . ,R; j = 1, . . . ,R). The marginal homogeneity (MH) model is defined by

πi· = π·i (i = 1, . . . ,R),

where πi· =
∑R

k=1 πik and π·i =
∑R

k=1 πki (Stuart, 1955; Bishop et al., 1975, p. 294). Let

H1(i) =

i∑
s=1

R∑
t=i+1

πst, H2(i) =

R∑
s=i+1

i∑
t=1

πst,

for i = 1, . . . ,R − 1. This model may be expressed as

H1(i) = H2(i) (i = 1, . . . ,R − 1).

This states that the cumulative probability that an observation will fall in row category i or below and column

category i + 1 or above is equal to the cumulative probability that the observation falls in column category i or

below and row category i + 1 or above for i = 1, . . . ,R − 1.

Tomizawa (1984, 1995) considered the extended marginal homogeneity (EMH) model which is expressed as

H1(i) = δH2(i) (i = 1, . . . ,R − 1).

When δ = 1, this is the MH model. Let

H1 =

R−1∑
i=1

H1(i), H2 =

R−1∑
i=1

H2(i).

Assume that {H1(i) + H2(i) > 0}, H1 > 0, and H2 > 0. The EMH model may also be expressed as

Q1(i) = Q2(i) (i = 1, . . . ,R − 1),
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where

Q1(i) =
H∗1(i)

H∗
1(i) + H∗

2(i)
, Q2(i) =

H∗2(i)

H∗
1(i) + H∗

2(i)
,

H∗1(i) =
H1(i)

H1

, H∗2(i) =
H2(i)

H2

.

This indicates that there is a structure of symmetry between {Q1(i),Q2(i)}. Yamamoto et al. (2007) considered

a measure to represent the degree of departure from EMH, using Patil and Taillie (1982) diversity index. The

measure ranges between 0 and 1, and the degree of departure from EMH is maximum when Q1(i) = 0 or Q2(i) = 0

for all i = 1, . . . ,R − 1. [Note that for measures for other models, e.g., the symmetry model (Bowker, 1948) and

the MH model, see (e.g., Tomizawa et al., 2001; Tahata et al., 2006; Tahata et al., 2009)].

However, for analyzing square contingency tables, all Q1(i) and Q2(i) (i = 1, . . . ,R − 1) are positive in many cases.

Thus, then Yamamoto et al. (2007) measure cannot attain the maximum value. So, we are now interested in a

measure to represent the degree of departure from EMH such that it can attain the maximum value even when each

of {Q1(i)} and {Q2(i)} is not zero.

For square contingency tables with ordered categories, the present paper proposes such a measure on EMH when

all cumulative probabilities are positive.

2. New Measure

Let

Ei =
H∗1(i) + H∗2(i)

2
(i = 1, . . . ,R − 1).

For a specified d with 0.5 < d ≤ 1 and 1 − d ≤ Q1(i) ≤ d (i = 1, . . . ,R − 1), define the new measure as, for λ(> −1)

fixed,

Ω =
1

K

⎛⎜⎜⎜⎜⎜⎜⎝1 − λ2λ

2λ − 1

R−1∑
i=1

EiWi

⎞⎟⎟⎟⎟⎟⎟⎠ ,
where

K = 1 − λ2λ

2λ − 1
L,

L =
1

λ

(
1 − dλ+1 − (1 − d)λ+1

)
,

Wi =
1

λ

(
1 − Qλ+1

1(i) − Qλ+1
2(i)

)
,

and the value at λ = 0 is taken to be continuous limit as λ→ 0. Thus, when λ = 0,

Ω =
1

K

⎛⎜⎜⎜⎜⎜⎜⎝1 − 1

log 2

R−1∑
i=1

EiWi

⎞⎟⎟⎟⎟⎟⎟⎠ ,
where

K = 1 − 1

log 2
L,

L = −dlogd − (1 − d)log(1 − d),

Wi = −Q1(i)logQ1(i) − Q2(i)logQ2(i).

Note that Wi is Patil-Taillie diversity index including Shannon entropy (when λ = 0). A value of d is chosen by the

user such that 1−d ≤ Q1(i) ≤ d for any i = 1, . . . ,R−1. When d = 1, the measure Ω is identical to Yamamoto et al.

(2007) measure. [Although the detail is omitted, note thatΩ can also be expressed by using the power-divergence.]

Then, we can obtain the following theorem:

Theorem 1 For each λ and a fixed d,

(i) 0 ≤ Ω ≤ 1,

(ii) Ω = 0 if and only if the EMH model holds,
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(iii) Ω = 1 if and only if the degree of departure from EMH is the largest in the sense that Q1(i) = d or Q2(i) = d
for all i = 1, . . . ,R − 1.

Proof. When d = 1, for each λ, the minimum value of Wi is 0 when Q1(i) = 0 or Q2(i) = 0 for all i = 1, . . . ,R − 1,

and the maximum value of it is (2λ − 1)/(λ2λ) (if λ � 0) or log 2 (if λ = 0), when Q1(i) = Q2(i) = 1/2 for all

i = 1, . . . ,R − 1. When d � 1, the minimum value of it is L, which is not equal to 0, and the maximum value of it

is the same as d = 1. Thus, the measure Ω lies between 0 and 1. So the proof is completed.

We note that the measure Ω is the modified measure of Yamamoto et al. (2007) by using a coefficient 1/K.

Consider the artificial 4 × 4 table data in Table 1a on cell probabilities {pi j}. Then, we see the degree of departure

from EMH by using the existing measure Ω with d = 1 (i.e., Yamamoto et al. measure) and the measure Ω with

d < 1 (in this case we set d= 0.9). We see from Table 1b that the true value of Ω with d = 1 is 0.531 (when λ = 0),

and that of Ω with d = 0.9 is 1 (when λ = 0). Thus, we can see that the new measure Ω with d < 1 attains the

maximum value 1, though all cumulative probabilities are positive.

Table 1. (a) An artificial 4 × 4 table data on cell probabilities {pi j}, and (b) the values of measure Ω with d = 1

(existing measure) and Ω with d = 0.9 (new measure) applied to Table 1a

(a) Artificial data

(1) (2) (3) (4)

(1) 0.2 0.00025 0.00025 0.0005

(2) 0.003 0.2 0.089 0.00025

(3) 0.003 0.001 0.2 0.00825

(4) 0.003 0.003 0.075 0.2135

(b) Value of the existing measure and new measure

Existing measure New measure

0.531 1

3. Asymptotic Variance for Estimated Measure

Let ni j denote the observed frequency in cell (i, j) (i = 1, . . . ,R; j = 1, . . . ,R). Assuming a multinomial distribution,

the estimated measure Ω̂ is given by Ω with {πi j} replaced by {π̂i j}, where π̂i j = ni j/n and n =
∑∑

ni j. Using the

delta method, Ω̂ has asymptotically (as n→ ∞) a normal distribution with mean Ω and variance

σ2 =
1

nK2

R−1∑
k=1

R∑
l=k+1

[
πkl(v1(kl))

2 + πlk(v2(kl))
2
]
,

where for λ � 0,

vs(kl) =
2λ

2(2λ − 1)Hs

⎡⎢⎢⎢⎢⎢⎢⎣ l−1∑
i=k

τs(i) − (l − k)

R−1∑
i=1

H∗s(i)τs(i)

⎤⎥⎥⎥⎥⎥⎥⎦ (s = 1, 2),

with

τ1(i) = (Q1(i))
λ + λ

{
(Q1(i))

λ − (Q2(i))
λ
}

Q2(i),

τ2(i) = (Q2(i))
λ + λ

{
(Q2(i))

λ − (Q1(i))
λ
}

Q1(i),

and for λ = 0,

vs(kl) =
1

2Hs(log 2)

⎡⎢⎢⎢⎢⎢⎢⎣ l−1∑
i=k

log Qs(i) − (l − k)

R−1∑
i=1

H∗s(i) log Qs(i)

⎤⎥⎥⎥⎥⎥⎥⎦ (s = 1, 2).

Let σ̂2 denote σ2 with {πi j} replaced by {π̂i j}. Using these, the approximate confidence interval for the measure Ω

is obtained as follows:

Ω̂ ± Zα/2
σ̂√

n
,
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where Zα/2 is the (1 − α/2) percentile of the standard normal distribution.

4. An Example

Consider the data in Table 2, taken from Hattori et al. (2002, p. 244). These data describe the cross-classification

of father’s and son’s occupational status categories in Japan which were examined in 1955 and in 1975.

Table 2. Occupational status for Japanese father-son pairs (from Hattori et al., 2002, p. 244)

(a) Examined in 1955

Son’s status

Father’s status (1) (2) (3) (4) Total

(1) 59 41 18 13 131

(2) 45 136 70 27 278

(3) 25 75 236 43 379

(4) 62 131 212 686 1091

Total 191 383 536 769 1879

(b) Examined in 1975

Son’s status

Father’s status (1) (2) (3) (4) Total

(1) 127 101 54 12 294

(2) 86 207 125 13 431

(3) 78 124 310 24 536

(4) 109 206 437 325 1077

Total 400 638 926 374 2338

Note: (1) is Upper White-collar; (2) Lower White-collar; (3) Blue-collar and (4) Farming.

It seems natural to assume that all cumulative probabilities are positive because any observations can fall in all

cells of the table. Therefore, it may not be appropriate to use the measure Ω with d = 1 because there is not a

structure of cumulative probabilities such that Ω with d = 1 attains the maximum value 1. So we should use Ω

with d < 1 (for example, d = 0.99) so that the measure can attain the maximum value 1.

Since the confidence intervals for Ω with d = 0.99 applied to the data in each of Tables 2a and 2b, do not include

zero for all λ (see Table 3), these would indicate that there is not a structure of EMH in neither of tables.

Table 3. When d = 0.99, the estimate of Ω, estimated approximate standard error (S.E.) for Ω̂, and approximate

95% confidence interval (C.I.) for Ω, applied to Tables 2a and 2b

λ Ω̂ S.E. C.I.

−0.5 0.023 0.007 (0.010, 0.036)

0.0 0.033 0.009 (0.014, 0.051)

0.5 0.039 0.011 (0.018, 0.061)

For Table 2a 1.0 0.043 0.012 (0.019, 0.067)

1.5 0.044 0.012 (0.020, 0.068)

2.0 0.043 0.012 (0.019, 0.067)

2.5 0.041 0.012 (0.018, 0.063)

−0.5 0.105 0.012 (0.080, 0.129)

0.0 0.141 0.016 (0.110, 0.172)

0.5 0.165 0.017 (0.131, 0.199)

For Table 2b 1.0 0.177 0.018 (0.141, 0.213)

1.5 0.180 0.018 (0.144, 0.216)

2.0 0.177 0.018 (0.141, 0.213)

2.5 0.170 0.018 (0.135, 0.205)

Moreover, we compare the degree of departure from EMH in Tables 2a and 2b using the confidence intervals for

Ω. For any λ, the values in the confidence interval for Ω applied to the data in Table 2b are greater than those
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applied to the data in Table 2a. In addition, the values in the confidence interval do not overlap for Table 2a and

for Table 2b. Thus, the degree of departure from EMH is greater for Table 2b than for Table 2a.

5. Concluding Remarks

We have proposed Ω which is an improvement of Yamamoto et al. (2007) measure (i.e., Ω with d = 1) to represent

the degree of departure from EMH. For analyzing the data of square table such that all cumulative probabilities

are positive, it may not be adequate to use the measure Ω with d = 1 because then the measure cannot attain the

maximum value 1. For such data, it would be natural to use the measure Ω with d < 1 because then the measure

can attain maximum value 1 even when all cumulative probabilities are positive.

The analyst may also be interested in how the value of d is determined. However it seems difficult to discuss this.

The measure Ω depends on the value of a fixed d. Also, the value of Ω increases as the value of d decreases. But

when we compare several tables, the result of comparisons is invariant without depending on the value of d. For

analyzing a square table data, we note that if 1−d ≤ Q1(i) ≤ d is not satisfied for all i = 1, . . . ,R−1, the measure Ω

cannot be used for the given data. Thus, the analyst must set the value of d carefully, so as to satisfy the condition

1−d ≤ Q1(i) ≤ d for all i = 1, . . . ,R−1. Therefore we recommend a value being close to 1 (for example, d = 0.99)

as the value of d.
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Abstract

In order to better understand the thinking of students’ learning to make informal statistical inferences, this research

examined the thinking of senior secondary school students (age 17) engaged in the task of using observed data

to make point estimates of a population parameter within a computer-based simulation. Following the “Growing

Samples” instructional model, the point estimation activity involved sampling and estimating across three tasks

with different sample sizes. This research study aimed to trace the evolution of the students’ thinking, with partic-

ular attention to use of the statistical concepts in making informal inferences from sampling. The students in this

study were observed to rely primarily on mathematical thinking, which, perhaps, inhibited their ability to construct

meanings about the basic statistical concepts underpinning sampling when performing point estimates. At times in

the process students were seen to shift between mathematical thinking, statistical thinking, and thinking about the

context, but the mathematical thinking seemed to dominate their attempts to create estimates. These research find-

ings are useful for informing the teaching of point estimation of a population parameter to school-aged students.

The research findings also stress the need for teachers to rethink the relationship between statistical thinking and

mathematical thinking in order to promote statistical thinking in relevant learning situations for their students.

Keywords: informal statistical inference, point estimates, population, samples, statistical thinking, mathematical

thinking

1. Introduction

A productive and authentic way of teaching the statistical reasoning necessary when working with samples is

to provide opportunities for school students to engage in activities that involve informal inferential reasoning

(Makar, Wells, & Allmond, 2011). Such activities also provide an important way for students to progress from

working with descriptive statistics to working with inferential statistics because they offer the opportunity to reason

informally. The word “informally” is used to “emphasize that we are not expecting students to rely on formal

statistical measures and procedures to formulate their inferences” (Makar, Bakker, & Ben-Zvi, 2011, p. 153).

Such Informal Inferential Reasoning (IIR) has been defined as the process of drawing generalised conclusions

from data, involving four critical principles: generalising beyond data (parameter estimates, conclusions, and

predictions); using data as evidence of the generalisation; articulating the degree of certainty (due to variability)

embedded in the generalisation (these three principles were articulated by Makar and Rubin, 2009); and comparing

datasets with a model such as ideal (targeted) distributions (proposed by Bakker, Kent, Derry, Noss, and Hoyles,

2008).

The research reported in this paper focuses on the first of these four principles, generalising beyond data, in partic-

ular estimating parameters. Estimating parameters is a process by which one makes inferences about a population

based on information gained from one (or more) sample(s). A sample is a representative part of a population

selected when sampling for the purpose of drawing inferences about unknown populations (e.g., estimating param-

eters or predicting).

2. Growing Samples

Recent research has sought to understand how better to approach the topic of making informal inferences about a

population based on information gained from one or more samples (Ben-Zvi et al., 2011, 2012; Prodromou, 2011).

The instructional idea of “Growing Samples”, suggested by Konold and Pollatsek (2002) and then developed by

Bakker (2004), plays a predominant role in providing a useful perspective of the role in shedding some light in the
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development of students’ informal inferential reasoning, and reasoning about sampling, samples, and variation.

Bakker helped eighth grade students who engaged with a sequence of “Growing Samples” activities to see stable

patterns generated by larger samples, thus students understood that larger samples are less variable and better

represent population. Bakker suggested that asking students to make conjectures about the growing samples builds

students’ reasoning about sampling in the context of variability and distribution. Research literature provides

evidence that the growing samples approach is helpful in supporting coherent reasoning, based exclusively on the

integration of key statistical concepts such as sampling, data, distribution, variability, and tendency (Ben-Zvi et al.,

2011, 2012; Prodromou, 2011).

Ben-Zvi (2006) found that the growing samples processes enhanced students’ sensitivity to uncertainty and varia-

tion in data, enabling students to know something about the population. Research studies by Ben-Zvi et al. (2011)

and Prodromou (2011, 2012), which were in line with the Growing Samples literature, showed that students de-

veloped inferential reasoning about sampling while working with TinkerPlots. The students in those studies not

only experienced the limitations of small samples when making inferences about a larger population, but also

experienced an emerging quantification of confidence in making such inferences, interconnections of concepts of

sampling, and informal statistical inference with key concepts such as spread, distribution, likelihood, randomness,

average, and graph interpretation.

When the students were encouraged to express their confidence about how certain they were about their inferences,

they tended to either express extreme confidence in knowing that something can be inferred from samples or

express that nothing could be concluded (i.e., complete certainty vs. extreme doubt; Ben-Zvi et al., 2012). The

growing samples task design provided students with opportunities to witness increasing evidence for (or against)

particular conjectures, thus develop a language to talk about “grey areas of this middle ground” (p. 923).The

research reported in this paper is based on the growing samples design of the investigations that support students’

informal inferential reasoning when estimating population parameters from samples.

3. Using Samples to Estimate Parameters as Part of Informal Inferential Reasoning

Parameters can be estimated by providing either a point estimate or an interval estimate. A point estimate involves

the use of sample data to calculate a single value (best known as a statistic) that can be used as a “best guess”

or “best estimate” of an unknown (fixed or random) population parameter. For example, a sample mean is a

point estimate used to estimate the population mean. An “interval estimate” involves the use of sample data

to calculate an interval of possible (or probable) values of an unknown population parameter within which a

population parameter lies. For example, 1< sample mean < 4 is an interval estimate within which the population

mean lies.

The student reasoning process that leads to informal statistical inferences (ISI) when estimating parameters can

help teachers to gain insights in student thinking and identify critical elements that support and nurture student

ISI such as estimating parameters. Statistical thinking is needed when students engage in informal inferential

reasoning and teachers need to be familiar with this type of thinking and to nurture it for students to be supported

in their informal inferential reasoning.

4. Tension between Statistical Thinking and Mathematical Thinking

Mathematics teachers need to be aware that the thinking a student requires to solve a statistical problem will differ

from the thinking required to solve most mathematical problems. If students are not equipped with sufficient

statistical thinking capabilities they may approach statistical problems using mathematical thinking. So how might

statistical thinking and mathematical thinking differ?

What is ‘thinking’? Generally speaking, thinking can be defined as “the process of considering or reasoning about

something” (Oxford University Press, 2012). While this definition provides a basic guide to the concept of thinking,

more detailed explanations have been provided that are discipline specific, of these the statistical and mathematical

thinking are of most interest. Before considering these in more detail, what of the distinction between thinking and

reasoning?

In statistics education some have described reasoning as a form of thinking with both reasoning and other forms

of thinking needed to be able to work on a task, while others have attempted to make a clear distinction reasoning

and thinking. A useful approach to distinguishing between reasoning and thinking is to consider the task being

undertaken and conceptualise thinking as knowing “when and how to apply knowledge and procedures”, and

reasoning as explaining “why results were produced or why a conclusion was justified” (delMas, 2004, p. 85).

114



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 2, No. 1; 2013

Thus examples of reasoning can be found in particular stages of a person’s thinking, such as where the person is

expected to imply, justify, or infer. Now back to the two types of thinking, mathematical and statistical.

What is mathematical thinking? Mason, Burton, and Stacey (2010) described four fundamental processes involved

in mathematical thinking: (MT1) specialising-considering special cases or examples; (MT2) generalising-looking

for patterns and relationships; (MT3) conjecturing-predicting relationships and results; and (MT4) convincing-

finding and communicating reasons why something is true. From the previous discussion it might be concluded

that convincing (MT4) is mathematical thinking that involves “reasoning”.

What is statistical thinking? In attempting to answer this question, a statistician and a mathematics educator (Wild

& Pfannkuch, 1999) worked together to build up four dimensions which contribute to the “rich complexity” of

statistical thinking: (ST1) the investigative cycle-continuously through the stages problem, plan, data, analysis and

conclusion; (ST2) types of thinking-recognition of need for data, transnumeration, consideration of variation, rea-

soning with distinctive set of statistical models, integrating the statistical and contextual information, knowledge,

and conceptions; (ST3) the interrogative cycle-continuously through the stages generate, seek, interpret, criticise

and judge; and (ST4) dispositions-including scepticism, imagination, curiosity and awareness, openness to ideas

that challenge preconceptions, a propensity to seek deeper meaning, being logical, engagement and perseverance.

Amongst the types of thinking skills (ST2), Wild and Pfannkuch recognised, in particular, the importance of

the raw materials on which statistical thinking works. These raw materials are statistical knowledge, context

knowledge, and the information in data. However, the thinking itself occurs by the synthesis of these elements.

In particular, one has to bring to bear all appropriate knowledge regarding the undertaken task, and then to build

connections amongst existing context-knowledge and the outcomes of statistical analyses. Wild and Pfannkuch

(1999) described the synthesis of context-knowledge and statistical knowledge as one that “traces the (usual)

evolution of an idea from the earliest inkling through to the formulation of a statistical question precise enough

to be answered by the collection of data, and then on to a plan of action” (p. 228). They also emphasize the

continual shuttling backwards and forwards between thinking in the context sphere and the statistical sphere. The

interplay between context and statistics is continuous until the questions in hand are satisfactorily answered. For

example, Wild and Pfannkuch (1999) explain how, in the analysis stage, context knowledge leads to questions that

require consultation of the observation data, which pushes learners into the statistical sphere of thinking, but then

characteristics of the data push learners back to the context sphere to answer basic questions like, “Why is this

happening?”, and “What does this mean?” (p. 228).

While there may be similarities between the mathematical thinking and statistical thinking, these two types of

thinking are dissimilar in two important elements: variation and context. All statistical thinking must be grounded

within a context (delMas, 2004), while mathematical thinking may or may not make use of contexts. All statistical

thinking involves some form of consideration of variation (Pfannkuch & Wild, 2004), which is very different from

the concept of variables dealt with in mathematical thinking. The fact that variation is an observable phenomena

and that it is always present (Wild & Pfannkuch, 1999) is of relevance to all aspects of statistical thinking.

To appreciate the tension between thinking mathematically or statistically, consider research reported by Lane-

Getaz (2006) where students engaged in simulation activities were good at “mathematically” calculating statistics

but once they were exposed to activities that allowed them to explore variation within distributions they were able

to produce explanations of their projects that demonstrated better statistical thinking.

Rather than promoting the differences between the two types of thinking, teachers who rethink the relationship

between statistical thinking and mathematical thinking can help their students to learn how to synthesize the two

types of thinking. This would help teachers to promote statistical thinking in relevant learning situations for their

students. To inform teachers in developing such support, the researcher became interested in what type of thinking

students will engage in when completing an activity that requires statistical thinking.

5. Aim

This exploratory research study examined how senior secondary school students construct meanings about basic

statistical concepts underpinning sampling when making informal inferences from data. The focus was on observ-

ing the development of students’ thinking as they construct meaning about the key statistical concepts of ‘sample’

and ‘sampling,’ while the students engaged in an informal statistical inference task that involved making point

estimates of a population parameter within a computer-based simulation. It was expected that some insights might

be gained into the conceptual struggle that takes place when 17-year-olds engage in inferential reasoning when

making point estimates of a population parameter.

115



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 2, No. 1; 2013

In this research a constructivist stance is used to search for nave conceptions that might serve as resources in

developing more sophisticated strategies. In addition, this might shed some light on the tension that a student may

experience when opting for thinking mathematically or statistically and how this tension can be resolved.

6. Point Estimation Activity

The point estimation activity, a computer simulation titled Murphy’s Dam was presented in a spreadsheet and

introduced the context of a dam containing three fish species (Bass, Perch, Trout; Figure 1). The spreadsheet

allowed students to simulate drawing a sample of fish from the dam and displayed the number and percentage of

each species of fish within the sample (Figure 2). The students were asked to provide the owner of the dam, Brian

Murphy, with advice about the percentage of each species of fish in his dam. To inform their advice, the students

were engaged in drawing “catch and release” samples of 20, 50, and then 100 fish from the dam (Tasks 1, 2, and

3, respectively). In each task students were requested to make estimates of the percentage of bass, perch and trout

in the dam after each sample was drawn.

Figure 1. Murphy’s dam scenario

Figure 2. Simulated sample of 20 fish

For each task students were required to draw ten separate samples from the dam and for each sample drawn record

the observed percentage for each species of fish caught and a point estimate of percentage of bass, perch and trout

(Figure 3).

Figure 3. Example of completed recording sheet (second iteration of Task 1)

When the three tasks were completed, the students were asked to reflect on the point estimation activities across the

three tasks, reason about their estimates by comparing the estimates, and attempt to estimate the actual percentage
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of each species of fish in the dam (In the simulation, the percentage of fish in the dam was set as 30% bass, 50%

perch and 20% trout).

The design of the point estimation activity evolved around the idea of growing samples, starting from a sample of

size 20, moving to about 50, then 100, and finally the entire population. Using a sequence of “growing sample”

activities was a pedagogical design conjecture to help students progressively develop their inferential reasoning

about samples, and their ability to make point estimates of parameters of the population.

7. Methodology

7.1 Participants

The point estimation activity was undertaken by three pairs of average-ability female students studying Mathe-

matics General (Year 11-age 17 years) in an Australian secondary school. Participation was voluntary; students

self-selected a partner; and the tasks were undertaken out of class time. The teacher made the final choice of which

students participated by recommending those who were able to better articulate their thinking. The choice of senior

secondary students was a curriculum-based decision because, in accordance with Australian curriculum guidelines

(Australian Curriculum, Assessment and Reporting Authority [ACARA], 2011), Year 11 students in this school

had been taught sampling prior to involvement in the research. The choice of average ability students was based

on the assumption that above-average ability students would construct the knowledge too quickly and possibly not

take the time to verbalise their thinking, while below-average ability students may not be able to articulate their

thinking.

The researcher was a participant observer, working with each pair of students as they completed the three tasks. The

researcher interacted with the students to probe for reasons that might help to explain their actions and therefore

provide some insight in their thinking.

7.2 Data Analysis

Student work with the simulation was recorded using Camtasia (2000) software. The data collected included audio

recordings of the student voices, video recordings of the screen activity, and worksheets completed by the students.

All the audio recordings were transcribed and screenshots of the simulation spreadsheet and student recording

sheets were included as needed to make sense of the transcription. The researchers discussed the data and chose

those sections of the transcript that most clearly demonstrated student thinking as they reasoned.

8. Findings

The findings are only reported for one pair of girls, Cathy and Liz (pseudonyms), because their articulation during

the three tasks gives the most informative illustration of their thinking. When the two girls first engaged with the

three tasks they simplified the required approach by estimating after all ten samples had been drawn rather than

after each sample. A second iteration of the three tasks was undertaken to achieve what was originally planned for

the point estimation activity, having the girls estimate after each sample was drawn. The findings are reported for

each of the two iterations separately.

8.1 First Iteration of the Three Tasks

When Cathy and Liz were engaged in Task 1 (drawing samples of size 20), they began working on separate

recording sheets (as instructed) but insisted on drawing all ten samples (contrary to instructions) from the dam

before estimating the percentage for each species of fish. They made two requests: (i) to share one recording sheet

rather than work on two separate sheets; and (ii) to record the number of fish as well as the percentage of fish for

each species. Both requests were allowed. When making their estimate (after the ten samples were drawn) they

insisted on trying to develop an algorithm to calculate the estimate. They took the average number (over the 10

samples) of bass caught (5) and divided this by the total number of fish caught (20) and converted it to a percentage

(25%). They repeated this process to calculate the percentage of Perch (50%) and the percentage of Trout (25%).

The working was done using a calculator. When they were asked to explain the algorithm they developed to make

the estimate they wrote “number of fish caught sample of fish x 100” (Algorithm A). Using an algorithm like this

is an example of mathematical thinking. They did not explain why they averaged the number of fish caught over

all ten samples and then calculated the percentage, rather than just averaging the percentages.

When Cathy and Liz engaged in Task 2 (drawing samples of size 50), they tried to apply algorithm A to calculate

the estimate of the percentage of bass. They drew the ten samples and performed their calculations, this time using

a spreadsheet. The average of the ten samples came out to 14.8 but they chose to use 14 instead of 14.8 in their
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algorithm. In addition, they said they did not “like” the answer they were getting to estimate the percentage of bass

because it was too small and they chose 20 instead. It is not clear how or why the girls chose 20% as their estimate.

No percentages were calculated for perch and trout and the girls did not explain why they did not estimate the

percentages of perch and trout.

When Cathy and Liz engaged in Task 3 (drawing a sample of size 100), they realised that in the observed data for

each sample the percentage of each species of fish was equal to the number of fish caught. They again applied their

algorithm to calculate the estimates. They wrote out the estimate for bass, and then argued that the estimates for

the other two species of fish would simply equal the percentages they had drawn in their samples. As explained

above the girls developed an algorithm to form their estimates and their explanations were computational rather

than statistical in nature. The researchers decided to do a second iteration of the three tasks, this time insisting that

the girls estimate the percentage of each species of fish after each sample drawn as was planned in the original

task. The second iteration of the three tasks was performed two weeks after the first iteration.

8.2 Second Iteration of the Three Tasks

When Cathy and Liz engaged in Task 1 they experimented with a mathematical algorithm: “number of a species

of fish divided by percentage of a species of fish multiplied by 100” (Algorithm B). For example, after drawing

the first sample, they calculated 5 divided by 25 multiplied by 100 to give an estimate of 20 for the percentage of

bass. Similarly for perch, 9 divided by 45 multiplied by 100 gave 20, and even for trout they calculated 20 as the

estimate. Although they did not express surprise that all three estimates were the same, they did realise that the

three percentages should sum to 100 (conservation principle) and as the sum was only 60, they concluded that that

their algorithm did not work.

They then calculated the estimated percentage of each species using an alternate algorithm: “percentage of a

species of fish divided by the number of species of fish multiply by 100” (Algorithm C). This calculation resulted

in 50% as the estimate for each of bass, perch, and trout. This time they concluded that their algorithm did not

work because they calculated the same estimate, 50, for each species of fish.

Not satisfied with either attempt at estimation, they suggested drawing another sample of 20 fish so that they could

compare the new sample and the previous sample to observe any possible change. Cathy and Liz used the new and

previous observed percentage caught to produce a new estimate, which was not related to the previous estimate.

If the percentage of fish caught had gone up (down), then the estimated percentage of fish was set at 5% more

(less) than the caught amount (Algorithm D). This algorithm was used for both bass and perch. Then the estimated

percentage of trout was always calculated by adding the bass and perch estimates together and subtracting from

100. Algorithm D was the first attempt by the girls to provide estimates that in some way were linked to the

fluctuations (variations) between the samples drawn but made no use of the previous estimate to calculate a new

estimate. Obviously this algorithm only worked for the second or subsequent estimates, otherwise the change

direct, up or down, could not be determined. The increments were always only 5%, up or down, irrespective of the

size of the percentage of fish for the new and previous sample.

An example of the application of Algorithm D from the 8th estimates and 9th estimates of Task 2 (Figure 4)

follows. To find the 9th estimate for bass Cathy and Liz noticed that the 9th catch (observed percentage) for bass,

45, was larger than the 8th, 15, and so the 9th estimate for bass was the observed value (45) plus 5, giving 50

as the estimated percentage of bass. Similarly for the 9th estimate for perch, 40 (new observed percentage) was

less than 70 (previous observed percentage) and so 5 was subtracted from the observed percentage (40) to give

35 as the estimated percentage of perch. Finally, the 9th estimated percentage of trout was 15 was calculated as

100-(50+35). It should be noted that the 8th estimate (20 65 15) was not used at all by the students in producing the

9th estimate Although this application of Algorithm D has been explained using 8th and 9th catches, this algorithm

was applied for calculating the second and subsequent estimates.

When Cathy and Liz were engaged in drawing “catch and release” samples of size 50 (Task 2), from the dam and

estimating the percentage of bass, perch, and trout in the dam (see student recording sheet in Figure 5), they needed

to form an estimate for the first sample drawn because Algorithm D could not be applied. Cathy tried Algorithm

B, which resulted in 50 for each of the three percentage estimates, bass, perch, and trout. The girls realised that the

estimate cannot be 50 every time, concluding that the algorithm did not work.

They tried to find a number that went into 28, 50, and 22 (the percentages caught in the first sample drawn). They

concluded that 2 goes into 22, 50 and 28 and thus 2 was the number they could increase or decrease the observed

percentage by the work out the percentage estimate.

118



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 2, No. 1; 2013

Fish caught from the dam

Bass (%) Perch (%) Trout (%)

15 70 15

45 40 15

Estimates of fish in the dam
Bass (%) Perch (%) Trout (%)

20 65 15

50 35 15

Figure 4. Example of the application of Algorithm D to estimate the percentages of each species of fish

Figure 5. Student recording sheet for Task 2 in the second iteration. Each row represents a trial

The following comes from a point where they tried to make an estimate after the first sample was drawn.

1) Cathy: Maybe if we would work out like the next fish (draw another sample) because then we could see if there

is a pattern which might help with the formula.

2) Researcher: Remember that you need to make estimates after each sample was drawn.

3) Liz: maybe if we could work out how many fish equalled what percentages like we did for Task 1 (sample size

20). 1 fish equalled 5% and we will work things out.

4) Cathy: Well it’s always half. 1 fish equals 2%, 2 fish equals 4%, 4 fish equals 8%.

They had decided confidently that 2 was the number they could increase or decrease the observed percentage by

the work out the percentage estimate.

The girls used then a new algorithm (Algorithm E), without discussing this algorithm. They went down by 2 fish

for the Bass and so took away 4% from the “caught” percentage (28%) of Bass to give the “estimate” percentage

(24%) of Bass. They then added 4% to the percentage of Perch. Then they found the percentage of trout by adding

the percentage of bass and perch and subtracting the sum from 100%. They estimated [24, 54, 22] (See student

recording sheet in Figure 5).

The girls tried to use Algorithm D developed for Task 1 (sample size 20) to make the second and subsequent

estimates. However, when applying the algorithm this time the relevant change, either up or down, was only by

2% and not 5%. As before, the estimated percentage of trout was calculated using the conservation principle.

When Cathy and Liz were engaged in drawing “catch and release” samples of size 100 (Task 3), they applied

Algorithm E, for the first estimate (see student recording sheet in Figure 6). However, they went down by 1 fish

for the Bass and so took away 1% from the “caught” percentage (26%) of Bass to give the “estimate” percentage

(25%) of Bass. They then added 1% to the percentage (58%) of Perch to give the estimated percentage (59%).

Then they found the percentage of trout by adding the percentage of bass and perch and subtracting the sum from

100%.
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Figure 6. Student recording sheet for Task 3 in the second iteration

They drew three samples and made three estimates based on Algorithm D, to make the second and subsequent

estimates. They relevant change was either up or down, by 1%. Cathy pointed out that the algorithm was working

“even” when the number of fish caught was 100 because the number of fish equals the percentage and so 1 fish

equalled 1%. As before, the estimated percentage of trout was calculated using the conservation principle. They

then concluded that they did not need to draw any more samples because it was “easy” to estimate.

When the girls were asked to reflect on all the activities when they “caught and released” samples of sizes 20,

50 and 100 and attempt estimate the actual percentage of each species of fish in the dam. They averaged the

percentage of the fish caught when 100 fish caught from the dam. The researcher asked them to estimate the

percentage without using a formula. Then they looked at the range of the percentage caught for a particular species

across the three activities (see student recording sheets in Figure 3, Figure 5, and Figure 6), e.g., for bass 26 was

the least and 33 was the most and then they found the median “middle value” (33-26=7) and then halved it so that

the middle value was 3.5. They concluded that it could be 29 or 30 but then stayed with 30.

9. Summary

The conclusions drawn indicate when making point estimates of the percentage of bass, perch, and trout in the

dam, the two secondary students, Cathy and Liz, generally focused on whether the percentage of fish caught had

gone up (or down), then the estimated percentage of fish was set at 5% (samples of size 20), or 2% (samples of

size 50), or 1% (samples of size 100) more (less) than the caught amount.

A number of algorithms emerged and as part of this process the students tended to experiment with choosing a

“relevant” algorithm each time a new sample was drawn.

Despite the apparently arbitrary choice of the three following algorithms to forms estimates of the percentage of

bass, perch and trout in the dam:

(1) “number of fish caught divided by sample of fish multiplied by 100” (Algorithm A).

(2) “number of a species of fish divided by percentage of a species of fish multiplied by 100” (Algorithm B)

(3) “percentage of a species of fish divided by the number of species of fish multiply by 100” (Algorithm C).

When Cathy and Liz engaged in Task 2 (drawing sample of size 50) and Task 3 (drawing sample of size 100), they

tried to apply algorithm E to make the first estimate:

(4) “go down by 2 fish when drawing a sample of size 50 (or 1 fish drawing a sample of size 100) for the Bass and

so take away 2 · 2% = 4% (or 1%) from the “caught” percentage of Bass to give the “estimate” percentage of Bass.

They then added 4% to the percentage of Perch. Then they found the percentage of trout by adding the percentage

of bass and perch and subtracting the sum from 100%” (Algorithm E).

The girls tried to use Algorithm D to make the second and subsequent estimates:

(5) “the relevant change, either up or down, was by 5% (sample of size 20) or 2% (sample of size 50) or 1% (sample

of size 100). The estimated percentage of trout was calculated using the conservation principle” (Algorithm D).

Eventually, students appeared to settle on Algorithm E when making the first point estimates of a population

parameter and on algorithm D when making the second and subsequent estimates.

Whilst making the point estimates, the students demonstrated very little evidence of the notion of stabilizing the

values used for the points estimate as more information becomes available with each successive sample. So, despite

looking back to previous estimates to form the new estimate, there was no sense of refining previous estimates, just

a sense of using them as a basis for the new estimate.

In this paper, students’ engagement in the point estimation activity has been presented in which mathematical
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thinking dominates over statistical thinking.

Students did not construct any meanings about basic statistical concepts underpinning sampling in the context of

making informal inferences from data when performing point estimates.

10. Discussion

For the contribution to the topic of estimating parameters from samples when engaged in an informal statistical

inference task that involved making point estimates of a population parameter within a computer-based simulation,

the research findings are useful for informing the teaching of point estimation of a population parameter to school-

aged students. The type of thinking students engaged in when completing the point estimation activity that requires

statistical thinking became the focus of the research findings. One has to bring to bear all relevant knowledge on

the tasks in hand, and then to draw connections between existing context-knowledge, mathematical knowledge and

the previous estimates of parameters from samples. Wild and Pfannkuch (1999) developed a theoretical framework

that illustrates the Interplay between context and statistics and also emphasizes the continual shuttling backwards

and forwards between thinking in the context sphere and the statistical sphere.

In this study, the findings show that the students persistence to think mathematically rather than statistically prevent

them from constructing any meanings about basic statistical concepts underpinning sampling in the context of

making informal inferences from data when performing point estimates. The research findings stress the need to

rethink the relationship between statistical thinking and mathematical thinking.

The researcher considers that statistical knowledge, mathematical knowledge, and context knowledge are the raw

materials on which thinking works. The thinking required for estimating the percentage of the population parame-

ters is in fact a synthesis of these elements to produce implications, insights and conjectures. One cannot indulge

in statistical thinking without having some context knowledge and mathematical knowledge.

The researcher based on Wild’s and Pfannkuch’ (1999) constructed a new framework that illustrates the construc-

tion of students’ knowledge when engaged in an informal statistical inference task that involved making point

estimates of population parameters from samples within a computer-based simulation. Figure 7 illustrates the

continual shuttling backwards and forwards between thinking in the context sphere, the statistical sphere, and the

mathematical sphere.

Figure 7. Shuttling between spheres
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Figure 7 traces the evolution of an idea from the earliest inkling through to the formulation of a precise statistical

question that is to be answered following the different stages of the “growing samples” instructional idea. The

role of the context is crucial at the earliest stages of the statistical task because learners’ constructions of informal

statistical inference understandings are driven almost entirely by context knowledge.

For example, at the parameter estimating stage questions are suggested by context knowledge that require consult-

ing the samples drawn, which temporarily pushes learners into the mathematical sphere because learners are more

familiar with constructing and working using mathematical formulae. Features seen in samples propel learner

back to the context sphere to answer scaffolding questions: “Why is this happening?” and ”What does this mean?”

Such scaffolding questions are meant to push learners into the statistical sphere to help them construct statistical

concepts underpinning their activities. Statistical knowledge contributes more as the thinking crystallises.

In this study, students were not able to construct meanings about basic statistical concepts underpinning sampling

in the context of making informal inferences from data when performing point estimates because the scaffolding

questions did not push leaners into the statistical sphere.

It might be argued that students’ pursuit of mathematical thinking at the earliest stages of learning statistics has been

the root of all the problems that have been encountered by students being taught elementary statistical concepts. At

these earliest stages, the reduction of emphasis on mathematical thinking in statistical teaching is crucial because

the earliest stages are driven almost entirely by context knowledge and learners’ thinking is moving backwards

and forwards between thinking in the context sphere and the statistical sphere. The statistical concepts learners

construct and reason about are usually “informal” and embrace elements of “naivety”.

A fundamental change in teaching elementary statistics at school is required in order to allow and facilitate the

simplification of core statistical ideas. In particular, the key ideas of statistical inference can be developed without

relying on any mathematical models used by formal probability theory. Statistical thinking at elementary levels

can be developed relying on processes and not mathematics.

On the contrary, for constructing statistical knowledge beyond the elementary level, the use of mathematical for-

mulae of probability theory becomes increasingly important, as mathematics is critical for the development of

statistical methods.

The reader must consider the limitations of this research to elaborate the research questions. One limitation is that

the researcher only analysed the reasoning of one pair of students, and focused on the more interesting illustrations

of the emerging ideas. While the overall analysis of the other pairs of students followed the same broad strokes,

some interesting variations used by the students in their reasoning might justify further discussion, but are outside

the scope of this paper.

A second limitation is the interview technique used to ask students to explain their responses was not explicit

enough. Despite students being asked “why” they had formed the estimates the way they did and “why” they made

any changes to their estimates, they mostly gave superficial responses in their reasoning. More probing questions

were needed to direct the students to explain their reasoning and propel students back to the context sphere to

reflect on context knowledge.

10.1 Future Research

Despite the limitations of the study, it reveals some aspects of students’ reasoning while making point estimates.

Although some interesting point estimation algorithms emerged, little evidence of using the core concepts, sam-

pling, sample, and variation.

The results of this research provide a strong basis to help those teaching point estimation to secondary school

students better understand their students’ reasoning. As far as further research is concerned, in raising the notion

that there may be a better way to investigate statistical reasoning, especially as involved in the sampling process, it

is acknowledged that the focus should not be on mathematical approaches to estimation.

There is still more research that needs to be done in exploring students’ statistical reasoning when sampling and

making point estimates and many important research questions exist that the above research has not addressed.

There are two areas that should be the focus for future researchers. The first area is a need for research that also

studies students’ quantification of the level of confidence (Ben-Zvi et al., 2011; Prodromou, 2011) when engaged

in an informal statistical inference task that involved making point estimates of a population parameter within a

computer-based simulation.
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The estimation tasks used in the reported study could be expanded to include student expression of their level of

confidence in relation to their informal inferential reasoning while sampling. This could be achieved, for example,

by letting the students sample until they are confident that they have a “good” estimate (i.e., the students decide

when to stop sampling), rather than instructing them to do a specified number of trials.

The second area is a need to investigate the relationship between statistical thinking and mathematical thinking in

order to promote statistical thinking in relevant learning situations for students being the outcome of a balanced

synthesis of ideas and information from the context sphere, statistics sphere and mathematics sphere.
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