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Abstract 
The variations of the Face-centered Central Composite Design under partial replications of design points are 
studied. The experimental conditions include replicating the cube points while the star points and center point are 
held fixed or not replicated, replicating the star points while the cube points and the center point are held fixed or 
not replicated and replicating the center point while the cube points and the star points are held fixed or not 
replicated. As a measure of goodness of the designs, D- and G-efficiency criteria are utilized. Results show that 
for the two- and three-variable quadratic models considered, the Face-centered Central Composite Design 
comprising of two cube portions, one star portion and a center point performed better than other variations under 
D-optimality criterion as well as G-optimality criterion. When compared with the traditional method of 
replicating the center point, the two cube portions, one star portion and a center point variation was relatively 
better in terms of design efficiency. 
Keywords: Replication, cube points, star points, center point, D-efficiency, G-efficiency 
1. Introduction  
Unreplicated designs are very widely used in experimental situations. However, fitting full model for 
unreplicated designs results in zero degrees of freedom for error and hence tests about main and interaction 
effects of factors cannot be carried out. This constitutes a potential problem in statistical testing (Farrukh, 2014). 
Two common approaches to this problem require either pooling high-order interactions, assumed to be negligible, 
to estimate the error or replicating one or more experimental runs. Generally, replication of design points offers 
an independent and more precise estimate of experimental error. 
In model building, designs with factors that are set at two levels implicitly assume that the effect of the factors 
on the response variable is linear and one would usually anticipate fitting the first-order model. When it is 
suspected that the relationship between the factors in the design and the response variable is not linear, there is 
the need to include one or more experimental runs. The first-order models with the presence of interaction terms 
are capable of representing some curvature in the response function. However, in some cases, the curvature in 
the response function is not adequately modeled and therefore the need to consider the second-order model for 
better representation.  
Central Composite Designs (CCDs) originally proposed by Box & Wilson (1951) have been the practically used 
designs for estimating second-order response surfaces. They are so advantageous in Response Surface 
Methodology (RSM) for building models of the response variables without needing to carry out complete 
three-level factorial experiments. Applications of Central Composite Designs can be seen in various fields of study 
including biological, chemical, pharmaceutical fields. The CCD is particularly useful in the determination of 
optimum values of influential parameters of a response variable (see e.g. Alalayah et al. (2010)). A review of some 
aspects of Central Composite Designs in spherical region is presented in Chigbu et al. (2009).  
A CCD consists of three distinct sets of experimental runs: 

i. A set of factorial or fractional factorial design (cube portion) in the factors studied and each having two 
levels; 

ii. A set of axial points (star portion); 
iii. A set of center points. 
In augmenting Central Composite Designs, the common practice has been the replication of only the center point 
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for estimation of the experimental error, improvement of the precision of the experiments and to maintain 
minimum number of design runs which an experimenter can afford. Two ways of replicating design are the 
DESIGNREP procedure which involves replicating the entire design and the POINTREP procedure which 
involves replicating each point in the design. When it is not possible to replicate the full design, the experimenter 
can obtain an estimate of pure error by replicating only some of the points in the design. One challenge of partial 
replications of design points is that the experimenter faces the problem of choosing the points to be replicated 
and the points not to be replicated in the design. Authors including Cochran and Cox (1957), Montgomery (1997) 
and Atkinson and Donev (1992) have discussed extensively the analysis of such replicated experiments.  
Quite recently, many experimenters have focused on the effect of replicating the non-center points as against the 
usual replication of the center point in exploring response surfaces. Chigbu and Ohaegbulem (2011) considered the 
preference of replicating factorial runs to axial runs in restricted second-order designs. They observed in general 
that under orthogonality and rotatability restrictions, the replicated cubes plus one star variation was better than the 
one cube plus replicated star variation in the sense of D-optimality. The number of experimental runs employed 
was N = 2k + 2k + where is the number of cubes,  is the number of stars and  is the number of 
center point. Although allowing for partial replication of the cubes and the stars, every point in the cube as well as 
the star was utilized. Ukaegbu and Chigbu (2014) considered the performance of the partially replicated cube and 
star portions of orthogonal Central Composite Designs in spherical regions. One particular focus was the 
replication of the cube and star portions without replicating the center point in k-factor experiment. Also, the 
performance of the Central Composite Designs with respect to stability, small predictive variance and prediction 
capability was studied using graphical techniques and single-value optimality criteria. Results indicate that 
replicating the star portions of the Central Composite Designs considerably reduces the prediction variance and 
thus improves G-efficiency than replicating the cube portion. 
Oyejola and Nwanya (2015) considered the performance of five varieties of Central Composite Design when the 
axial portions are replicated and the center point increased one and three times. Ahn (2015) devised a new CCD 
called the CCD-R for experiments not just at the center but also at non-center points. The flexibility of the CCD-R 
is seen in the existence of a myriad of perfectly orthogonal and nearly rotatable designs. Ahn (2015) considered 
that when a two-level full or fractional experiment is conducted, a few center runs would be adequate to detect the 
quadratic effects over the region of exploration. However, in situations where the parameters of quadratic model 
are to be separately estimated, more runs at some more design points are needed. In addressing this problem, the 
augmentation of the two-level full or fractional factorial design with a center and 2k axial points was proposed, 
where k is the number of independent factors in the experiment. 
In this work, the effect of partially replicating the factorial points and the star points of the Face-centered Central 
Composite Designs with respect to replicating the center point on response surface designs is investigated. This 
requires  
i. Constructing partially replicated exact designs for two and three variable quadratic models. 
ii. Assessing the goodness of the designs using two single-value criteria, namely D- and G-efficiency criteria. 
For two input variables (i.e. k = 2), the Face-centered Central Composite Design consists of nc center points, four 
factorial points and four axial points. For three input variables (i.e. k = 3), the Face-centered Central Composite 
Design consists of nc center points, eight factorial points and six axial points. The axial points are parallel to each 
variable axis on a circle of radius, α = 1.0 and origin at the center point. The designated α is the radius which 
determines the geometry and defines a square for two input variables and a cube for three input variables. 
According to Montgomery (1997) and Zahran (2002). Face-centered Central Composite Design is the most 
useful cuboidal region in practice because it requires only three levels of each factor.  
Draper and Guttman (1988) observed that the adequacy of an experimental design can be determined from the 
information matrix. Some criteria that are based on the information matrix include A-, D-, E-, G- and 
I-optimality criteria. Rady et al. (2009) gave a concise survey on the optimality criteria with particular attention 
on relationships among the several optimality criteria. Following the definitions of Atkinson and Donev (1992), 
A-optimality criterion seeks to minimize the trace of the variance-covariance matrix. This criterion results in 
minimizing the average variance of the estimated regression coefficients. D-optimality criterion maximizes the 
amount of information in an experimental design. As assessed by the information matrix, D-optimality criterion 
maximizes the determinant of information matrix of the design and equivalently minimizes the determinant of 
the variance-covariance matrix. Hence for a specified model, a D-optimal design minimizes the variances of 
parameter estimates as well as the covariances between parameter estimates. On the other hand, G-optimality 
criterion minimizes the maximium variance of prediction over the design space. 
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A number of standard measures have been proposed in the literature to summarize the efficiency of a design. Some 
of these measures can be seen in Atkinson and Donev (1992), Wong (1994) and Chukwu and Yakubu (2012). To 
assess the goodness of designs, two single-value efficiency criteria, namely, the D- and G-efficiencies are 
commonly employed. As in the literature on optimal designs, efficiency values lie between zero and one, a 
design having efficiency value of 1.0 implies that the design is 100% efficient. Hence in comparing designs, a 
design with a higher efficiency value would be preferred. According to Atkinson and Donev (1992), D-efficiency 
of an arbitrary design, , over an optimal design,  is defined as  

Deff =  ξ
ξ

 . 

The G-efficiency of an arbitrary design, ξ , is defined as 

Geff = ξ
ξ

 = 
ξ

 ; 

Where ξ  is the maximum variance of predicted response associated with ξ  and ξ  is the maximum 
variance of predicted response associated with ξ . 

Here, p is the number of model parameters and N is the number of requested runs. The D-efficiency can be 
interpreted as the relative number of runs (in percent) that would be required by an orthogonal design to achieve 
the same value of the determinant |XTX|. In practice, an orthogonal design may not be possible in many cases; 
hence orthogonality becomes only a theoretical "yard-stick." Therefore, one should use D-efficiency measure 
rather as a relative indicator of efficiency to compare other designs. D-efficiency measure relates to D-optimality 
criterion as G-efficiency measure relates to the G-optimality criterion, which concentrates on minimizing the 
maximum value of the standard error of the predicted response.  
2. Method 
In this work, the variation of the Central Composite Design (CCD) is studied when 
(i)  The cube points are replicated while the star points and center point are held fixed or not replicated; 
(ii)  The star points are replicated while the cube points and the center point are held fixed or not replicated; 
(iii) The center point is replicated while the cube points and the star points are held fixed or not replicated. 
Efficiencies of the constructed designs are assessed using D- and G- efficiency criteria.  
In studying the partial replication of Central Composite Design, the second-order polynomial model in equation 
(1) is employed. 

y = β0 +  +  +  + ε        (1) 

This model can be rewritten as 

Y = Xβ + ε          (2) 

Where 
Y is the Nx1 vector of observed values 
X is the design matrix 
β is the px1 vector of unknown parameters which are estimated on the basis of N uncorrelated observations. 
ε is the random additive error associated with Y and is independently and identically distributed with zero mean 
and constant variance. 
To explore the Face-centered Central Composite Design with partial replication of the cube or the factorial 
points, we observe that the -variable second-order full model has p model parameters given by 

p =           (3) 

The factorial portion of the Central Composite Design comprises of experimental runs of the 2k factorial design. 
For  = 2, the experimental runs are 
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V =   

For  = 3, the experimental runs are 

V =   

The star portion of the Central Composite Design comprises of the experimental runs  

S =  

For  = 2, this becomes 

S =   

For  = 3, 

S =  

The center portion of the Central Composite Design comprises of the experimental run 
C = . 

For  = 2, this becomes 

C =  

For  = 3, it becomes 

C = . 
The information matrix of a CCD shall be expressed in terms of the number of cube points, star points and center 
point. Thus, the number of experimental runs is given by N = n12k +  + n22  + + n0 where n1 is the 
number of cube portions, n2 is the number of star portions, n0 is the number of center points,  refers to the 
number of cube points in the cube portion of the CCD and  refers to the number of star points in the star 
portion of the CCD. For the purpose of this work n1 and n2 are set at unity, V+  implies taking the cube 
portion and additional  distinct cube points from the available  cube points, S+  implies taking the 
star portion and additional  distinct star points from the available  star points and C+2 implies taking the 
center point and additional two center points.  
For k = 2, the various variations or experimental conditions to study in replicating the vertex points while the star 
points and center point are held fixed or not replicated are as tabulated in Table 1. 
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Table 1. Variations for replicating the vertex points (k = 2) 
Experimental Condition Design Size N 

Vertex Star Center  
V+4C4 S C 13 
V+4C3 S C 12 
V+4C2 S C 11 
V+4C1 S C 10 

In replicating the star points while the vertex points and center point are held fixed or not replicated, the various 
variations or experimental conditions to study are as tabulated in Table 2. 
 
Table 2. Variations for replicating the star points (k = 2) 

Experimental Condition Design Size N 
Vertex Star Center  

V S+4C4 C 13 
V S+4C3 C 12 
V S+4C2 C 11 
V S+4C1 C 10 

In replicating the center point while the vertex points and star points are held fixed or not replicated, the various 
variations or experimental conditions to study are as tabulated in Table 3 
 
Table 3. Variations for replicating the center point (k = 2) 

Experimental Condition Design Size N 
Vertex Star Center  

V S C+4 13 
V S C+3 12 
V S C+2 11 
V S C+1 10 

For k = 3, the various variations or experimental conditions to study in replicating the vertex points while the star 
points and center point are held fixed or not replicated are as tabulated in Table 4. 
 
Table 4. Variations for replicating the vertex points (k = 3) 

Experimental Condition Design Size N 
Vertex Star Center  
V+8C8 S C 23 
V+8C7 S C 22 
V+8C6 S C 21 
V+8C5 S C 20 
V+8C4 S C 19 
V+8C3 S C 18 
V+8C2 S C 17 
V+8C1 S C 16 

In replicating the star points while the vertex points and center point are held fixed or not replicated, the various 
variations or experimental conditions to study are as tabulated in Table 5 
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Table 5. Variations for replicating the star points (k = 3) 
 

In replicating the center point while the vertex points and star points are held fixed or not replicated, the various 
variations or experimental conditions to study are as tabulated in Table 6 
Table 6. Variations for replicating the star points (k = 3) 

 
 
 
 
 
 
 
 
 
For each experimental condition, an N-point design shall be chosen to maximize the determinant of information 
matrix. Onukogu and Iwundu (2007), Madukaife and Oladugba (2010) and Iwundu and Albert-Udochukwuka 
(2014) have provided helpful rules for selecting design points to maximize the determinant of information 
matrix. 
Let  

 =  

be an N-point design measure depending on k-variable quadratic model, having p-parameters. The Nxp design 
matrix  

X =  

gives the values of independent variables that are used in the statistical models and further contains the column 
of 1’s that represent the intercept term as well as the columns for the products and powers associated with other 
model terms. The pxp information matrix, M, associated with  is obtained from  and normalized as 

 , where the notation, (.)T represents transpose. The criterion that allows maximization of determinant of 

information matix of a design is the D-optimality criterion.  

Let , , ... ,  be m design measures defined on the design region of the Face-centered Central Composite 
Design and having non-singular information matrices M1, M2, ... , Mm,  respectively. The design measure  is 
preferred, in terms of D-optimality criterion, to the design measures , ...,  iff the determinant 

Det (M1) = max {Det (M1), Det (M2), ... , Det (Mm)}. 

Experimental Condition Design Size N 
Vertex Star Center  

V S+8C8 C 23 
V S+8C7 C 22 
V S+8C6 C 21 
V S+8C5 C 20 
V S+8C4 C 19 
V S+8C3 C 18 
V S+8C2 C 17 
V S+8C1 C 16 

Experimental Condition Design Size N 
Vertex Star Center  

V S C+8 23 
V S C+7 22 
V S C+6 21 
V S C+5 20 
V S C+4 19 
V S C+3 18 
V S C+2 17 
V S C+1 16 
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Also let  =  ; i = 1, 2, ... , N be the ith row of the design matrix X, associated with the 
design point . The variance of prediction, V{y( )}, at the ith design point  = 

 is  

V{y( )} =  M-1 T 

The criterion that allows minimization of the maximum predictive variance is the G-optimality criterion. 
Suppose 

V1 = V{y( )} is the maximum variance of prediction associated with the design measure ,  
V2 = V{y( )} is the maximum variance of prediction associated with the design measure ,  
 

Vm = V{y( )} is the maximum variance of prediction associated with the design measure .  

The design measure  is preferred in terms of G-optimality criterion to the design measures , ... ,  iff  

V{y( )}= min { V{y( )}, V{y( )}, ... , V{y( )}}. 
3. Results 
Using the second-order polynomial model in equation (1), the partial replications of the factorial points and the 
star points with respect to replicating the center point are investigated with the following results.  
3.1 Two-Factor Partially Replicated Central Composite Design  
In exploring the two-factor Face-centered Central Composite Design with partial replication of the cube or 
factorial points, it is observed that the two-variable second-order full polynomial model has six model 
parameters. For the Face-centered Central Composite Design in two variables, there are basically nine design 
points or experimental runs. The cube points otherwise called vertex or factorial points  

 

are denoted V.   
The axial or star points  

 

are denoted S.  
The center point, , is denoted C.  

Case I: Replicating the vertex points while the star points and center point are held fixed or not 
replicated. 
Using the experimental conditions in Table 1, partially replicated exact designs of size N = 13, 12, 11, 10 are 
constructed. 
The design measure for N = 13 is 

 =  
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For the six parameter model, the design matrix is 

X =  

The corresponding information matrix is  

 

The determinant value of the information matrix is  
Det M = 0.01127 

The variance of prediction at each design point of  is, respectively 
V1 = 5.7544 
V2= 5.7544 
V3= 5.7544 
V4= 5.7544 
V5= 5.7544 
V6= 5.7544 
V7= 5.7544 
V8= 5.7544 
V9= 8.1824 
V10= 6.2706 
V11= 6.2706 
V12= 6.2706 
V13= 6.8824 

The maximum predictive variance is 8.1824. 
The design measure for N = 12 is 
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For the six parameter model, the design matrix is 

X =   

The associated information matrix is  

 

The determinant value of the information matrix is  

Det M = 0.0102 

The variance of prediction at each design point is, respectively 
V1= 9.5303 
V2 = 5.3129 
V3= 5.3129 
V4= 5.3509 
V5= 5.3129 
V6= 5.3509 
V7= 5.3129 
V8= 5.1488 
V9= 5.8955 
V10= 5.1488 
V11= 5.8955 
V12= 6.4274 

The maximum predictive variance is 9.5303. 
The design measure for N = 11 is 

 

For the six parameter model, the design matrix is 
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X =  

The associated information matrix is 

M =  

The determinant value of the information matrix is 
Det M = 0.00954. 

The variance of prediction at each design point is, respectively 
V1 = 4.9063 
V2 = 4.9063 
V3 = 8.7396 
V4 = 8.7396 
V5 = 4.9063 
V6 =4.9063 
V7 = 5.5000 
V8 = 5.9583 
V9 = 5.7396 
V10 =5.7396 
V11 = 5.9583 

The maximum predictive variance is 8.7396. 
For N = 10 

=  

For the six parameter model, the design matrix is 

X =  
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The associated information matrix is 

M =  

The determinant value of the information matrix is 
Det M = 0.00936 

The variance of prediction at each design point is, respectively 
V1 = 4.4615 
V2 = 8.0513 
V3 = 7.9487 
V4 = 8.0513 
V5 = 4.4615 
V6 = 5.2821 
V7 = 5.4872 
V8 = 5.4872 
V9 =5.2821 

V10 = 5.4872 
The maximum predictive variance is 8.0513. 
Case II: Replicating the star points while the vertex points and center point are held fixed or not 
replicated. 
Using the experimental conditions in Table 2, partially replicated exact designs of size N = 13, 12, 11, 10 are 
constructed. 
The design measures for the respective N-point exact designs are; 

 =  
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=  

For case II, the associated maximum determinant values and maximum variances of prediction are as tabulated 
in Table 7. 
Table 7. Maximum determinant value and maximum predictive variances for Case II, k = 2 

Design Size 
N 

Maximum determinant value of 
information matrix 

Maximum variance of 
prediction 

13 0.005940 9.2857 
12 0.006344 9.0405 
11 0.00705 8.67307 
10 0.00806 7.9762 

Case III: Replicating the center point while the vertex points and star points are held fixed or not 
replicated. 
Using the experimental conditions in Table 3, partially replicated exact designs of size N = 13, 12, 11, 10 are 
constructed. 
The design measures for the respective N-point exact designs are; 

 =  
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and 

=  

For Case III, the associated maximum determinant values and maximum variances of prediction are as tabulated 
in Table 8. 
Table 8. Maximum determinant value and maximum predictive variances for Case III, k = 2 

Design Size 
N 

Maximum determinant value of 
information matrix 

Maximum variance of 
prediction 

13 0.00346 10.2730 
12 0.00634 9.5000 
11 0.00618 8.7325 
10 0.00806 7.9762 

3.2 Three-Factor Partially Replicated Central Composite Design  
In exploring the three-factor partially replicated Central Composite Design, it is observed that the three-variable 
second-order full polynomial model has ten model parameters. For the Face-centered Central Composite Design 
in three variables, the eight factorial points  

 are denoted V.   

The six axial or star points  

 are denoted S.  

The center point  is denoted C.  
Case I: Replicating the vertex points while the star points and center points are held fixed or not 
replicated. 
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Using the experimental conditions in Table 4, we construct partially-replicated exact designs of size N = 23, 
22, … , 16. 
The design measure for N = 23 is 

=  

For the ten parameter model, the design matrix is 
 

 
 
 

X = 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

         

 
1 0 0 0 0 0 0 0 0 0 
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The associated information matrix is 

 
The determinant of information matrix is 

Det M = 0.0004106 
The variance of prediction at each design point is, respectively 

V1 = 9.5672 
V2 =9.5672 
V3 = 9.5672 
V4 = 9.5672 
V5 = 9.5672 
V6 = 9.5672 
V7 = 9.5672 
V8 = 9.5672 
V9 = 9.5672 
V10 = 9.5672 
V11 = 9.5672 
V12 = 9.5672 
V13= 9.5672 
V14 = 9.5672 
V15= 9.5672 
V16 = 9.5672 
V17= 11.7441 
V18 = 11.7441 
V19= 11.7441 
V20 = 11.7441 
V21= 11.7441 
V22 = 11.7441 
V23= 6.4607 

The maximum variance of prediction is 11.7441 
The results for N = 22, 21, ... , 16 are as tabulated in Table 9. 

Table 9. Maximum determinant values and maximum predictive variances for Case I, k = 3 

Design Size N Maximum determinant value 
of information matrix 

Maximum variance of 
prediction 

23 0.00041 11.7441 
22 0.00037 15.6689 
21 0.00034 15.2767 
20 0.00032 14.8206 
19 0.00031 14.2856 
18 0.00029 14.0184 
17 0.00029 13.3526 
16 0.00031 12.6714 

 

 1 0 0 0 0 0 0 0.7826 0.7826 0.7826 
 0 0.7826 0 0 0 0 0 0 0 0 
 0 0 0.7826 0 0 0 0 0 0 0 
 0 0 0 0.7826 0 0 0 0 0 0 
M = 0 0 0 0 0.6956 0 0 0 0 0 
 0 0 0 0 0 0.6956 0 0 0 0 
 0 0 0 0 0 0 0.6956 0 0 0 
 0.7826 0 0 0 0 0 0 0.7826 0.6956 0.6956 
 0.7826 0 0 0 0 0 0 0.6956 0.7826 0.6956 
 0.7826 0 0 0 0 0 0 0.6956 0.6956 0.7826 
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Case II: Replicating the star points while the vertex points and center point are held fixed or not 
replicated. 
Using the experimental conditions in Table 5, partially replicated exact designs of size N = 21, 20, ... , 16 are 
constructed. As with Case I, the best N-point exact design is obtained and the process continues. The required 
computations yield the results for N = 21, 20, ... , 16 as tabulated in Table 10. 
 
Table 10. Maximum determinant values and maximum predictive variances for Case II, k = 3 

Design Size N Maximum determinant value 
of information matrix 

Maximum variance of 
prediction 

21 0.0001187 15.9089 
20 0.0001465 15.1729 
19 0.0001662 14.6312 
18 0.0001938 14.0591 
17 0.0002211 13.2672 
16 0.0002608 12.6742 

 
Case III: Replicating the center point while the vertex points and star points are held fixed or not 
replicated. 
Using the experimental conditions in Table 6, partially replicated exact designs of size N = 23, 22, ... , 16 are 
constructed. As with Cases I and II, the best N-point exact design is obtained and the process continues. The 
required computations yield the results for N = 23, 22, ... , 16 as tabulated in Table 11. 
 
Table 11. Maximum determinant values and maximum predictive variances for Case III, k = 3 

Design Size N Maximum determinant value 
of information matrix 

Maximum variance of 
prediction 

23 0.0000147 18.2263 
22 0.0000209 17.4382 
21 0.0000302 16.6506 
20 0.0000440 15.8636 
19 0.0000648 15.0776 
18 0.0000964 14.2929 
17 0.0000144 13.5102 
16 0.0000216 12.7310 

In assessing the goodness of the constructed optimal exact designs we compute the D-efficiency and 
G-efficiency values as tabulated in Tables 12 and 13 for k = 2 and k = 3, respectively. 
Table 12. Optimal values and D- and G-efficiency values (k = 2) 

Experimental Condition Design 
Size N 

Determinant of 
Information 

matrix  

Maximum 
variance 
of prediction 

D-efficiency G-efficiency 
 

Vertex 
point 

 
Star 
point 

 
Center 
point 

V+4C4 S C 13 0.0113 6.8824 1.0000 
0.9831 
0.9715 
0.9698 
0.8974 
0.9072 
0.9255 
0.9460 
0.8226 
0.8609 
0.9048 
0.9460 

1.0000 
0.7222 
0.7875 
0.8548 
0.7412 
0.6637 
0.7935 
0.8629 
0.6700 
0.7245 
0.7881 
0.8629 

V+4C3 S C 12 0.0102 9.5303 
V+4C2 S C 11 0.0095 8.7396 
V+4C1 S C 10 0.0094 8.0513 

V S+4C4 C 13 0.0059 9.2857 
V S+4C3 C 12  9.0405 
V S+4C2 C 11  8.6731 
V S+4C1 C 10  7.9762 
V S C+4 13  10.2730 
V S C+3 12  9.5000 
V S C+2 11  8.7325 
V S C+1 10  7.9762 
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Table 13. Optimal values and D- and G-efficiency values (k = 3) 
Experimental Condition Design 

Size N 
Determinant of 

Information 
matrix  

Maximum 
variance of 
prediction 

D-efficiency G- 
efficiency  

Vertex 
point 

 
Star 
point 

 
Center 
point 

V+8C8 S C 23 0.0004106 11.7441 1.0000 
0.9907 
0.9827 
0.9761 
0.9715 
0.9681 
0.9673 
0.9695 
0.8833 
0.9021 
0.9135 
0.9277 
0.9400 
0.9556 
0.7168 
0.7425 
0.7703 
0.7998 
0.8314 
0.8651 
0.9005 
0.9378 

1.0000 
0.7495 
0.7688 
0.7924 
0.8221 
0.8378 
0.8795 
0.9268 
0.7382 
0.7740 
0.8027 
0.8353 
0.8805 
0.9266 
0.6443 
0.6735 
0.7053 
0.7403 
0.7789 
0.8217 
0.8693 
0.9225 

V+8C7 S C 22 0.0003740 15.6689 
V+8C6 S C 21 0.0003447 15.2767 
V+8C5 S C 20 0.0003225 14.8206 
V+8C4 S C 19 0.0003075 14.2856 
V+8C3 S C 18  14.0184 
V+8C2 S C 17  13.3526 
V+8C1 S C 16  12.6714 

V S+6C6 C 21  15.9089 
V S+6C5 C 20  15.1729 
V 
V 

    V 
V 
V 
V 
V 
V 
V 
V 
V 
V 

S+6C4 C 19  14.6312 
S+6C3 
S+6C2 
S+6C1 

S 
S 
S 
S 
S 
S 
S 
S 

C 
C 
C 

C+8 
C+7 
C+6 
C+5 
C+4 
C+3 
C+2 
C+1 

18 
17 
16 
23 
22 
21 
20 
19 
18 

  17 
16 

0.0001938 
0.0002211 
0.0002608 
0.0000147 
0.0000209 

 
 
 
 
 
 

14.0591 
13.3375 
12.6742 
18.2263 
17.4382 
16.6506 
15.8636 
15.0776 
14.2929 
13.5102 
12.7310 

 
4. Discussion 
In addressing the problem of partially replicated cube, star and center runs for estimation of error degrees of 
freedom in Response Surface Methodology, emphasis should not be on the replication of only center point as the 
replication of non-center points performs credibly well. Design optimality plays a major role in the choice of 
experimental designs. As observed in the study on the effects of partially replicating the factorial points and the 
star points of the Face-centered Central Composite Designs with respect to replicating the center points, 
replicating the cube points offered better designs as measured by the D- and G-efficiency values than replicating 
the center point. This signifies the preference of replicating non-center points, particularly the cube points.  
Specifically, for two-variable quadratic model, the D-optimal exact design was observed under the experimental 
condition (V+4C4)+S+C, which implies the replication of cube points. This design also had the minimum 
maximum variance of prediction over all designs considered. In comparison with designs under the varying 
experimental conditions, the design comprising of two cube portions, one star portion and one center point was 
more efficient in terms of D- and G-efficiencies. The implication is that replicating cube points allows more 
precise estimate of model parameters as the variances of the model parameters are minimized and the 
covariances between the model parameters are minimized. Furthermore, replicating cube points allows 
minimization of the maximum variance of prediction over the design space. 
For three-variable quadratic model, the design comprising of two cube portions, one star portion and a center 
point performed better than other combinations in terms of D-optimality criterion as well as G-optimality 
criterion. The D- and G-optimal exact designs were observed using the design comprising of two cube portions, 
one star portion and a center point. This again implies the preference of replicating the cube points. The design 
comprising of two cube portions, one star portion and a center point had the maximum determinant value of 
information matrix as well as the minimum maximum variance of prediction over all designs considered. Again, 
replicating cube points allowed a more precise estimate of model parameters as the variances of the model 
parameters are minimized and the covariances between the model parameters are minimized. As with the 
two-variable model, replicating cube points allowed minimization of the maximum variance of prediction over 
the design space. 
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For cases under study, the best D-efficiency value was associated with replicating the cube points and the best 
D-efficiency value was associated with replicating the cube points. In fact, the lowest D-efficiency value 
associated with replicating the cube points was still better than the highest D-efficiency value associated with 
replicating the center point. This was generally true for G-efficiency. For each quadratic model considered, the 
efficiencies of the designs were computed relative to the best design within a class of designs. Specifically, the 
best D-optimal design for two-variable quadratic model was obtained and the D-efficiencies of other designs 
were computed relative to this best D-optimal design. Similarly, the best G-optimal design for two-variable 
quadratic model was obtained and the G-efficiencies of other designs were computed relative to this best 
G-optimal design. As with the two-variable quadratic model, the efficiencies of the designs for the three-variable 
quadratic model were computed relative to the best design within a class of designs. Hence, the best D-optimal 
design for three-variable quadratic model was obtained and the D-efficiencies of the other designs were 
computed relative to this best D-optimal design. Similarly, the best G-optimal design for three-variable quadratic 
model was obtained and the G-efficiencies of the design were computed relative to this best G-optimal design.  
Although there was no consideration on A-efficiency criterion, designs that were D- and G-efficient also 
maximized the trace of the information matrix thereby minimizing the trace of the variance-covariance matrix. 
This shows that by replicating the cube points, the average variance of parameter estimates are minimized. For 
two- and three-variable quadratic models considered, the design comprising of two cube portions, one star 
portion and a center point, that maximized the determinant of information matrix as well as minimizing the 
maximum variance of prediction also maximized the trace of the information matrix with trace value of 4.6922 
for the two-variable model and trace value of 7.7824 for the three-variable model. In partial replication of design 
points, complete replication of cube portion offered better designs as measured by the efficiency values than 
replicating some design points of the cube portion.  
5. Conclusion 
The effects of partially replicating the non-center points, with respect to replicating the center point of the 
Face-centered Central Composite Designs were considered using two- and three-variable quadratic models. As a 
measure of goodness of the designs, D- and G-efficiency single-value criteria were utilized. In all cases 
considered, the experimental designs associated with replicating only the center point were not as efficient as 
replicating the cube points in terms of D- and G-efficiency. We recommend that emphasis should shift away 
from replication of only center points when using response surface designs in optimizing response variables, as 
non-center points perform credibly well. However, the concepts of rotatability and orthogonality of the designs 
should be imposed. 
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Abstract

This paper presents a SAS macro to estimate adaptive spatial sampling, which has been used to survey rare species.

This technique is computationally difficult because of use of algorithms with GIS features such the creation of a

grid, points inside polygons and contiguity. The results indicates that the SAS macro that was developed was

capable of incorporating these GIS features, as well as estimating the parameters of the adaptive spatial sampling.

Keywords: adaptive sampling, spatial sampling, grid, SAS

1. Introduction

The purpose of sampling is to obtain information based on the results of a sample. According to Cochran (1977),

sampling theory was developed to achieve the most efficient sampling, that is, to produce more accurate estimates

with the lowest possible cost. Thus, the basic problem of any sampling procedure is to obtain reliable estimates of

some characteristic of the population of interest, based on only part of this population.

A procedure that has been studied and tested in surveys of populations of rare species that display aggregated

pattern distribution is adaptive sampling. In this kind of sampling, the selection of sampling units depends on

observations made during the survey because if a criterion is met, the close sample is added to the initial sample.

Thus, this type of sampling has advantages such as more extensive use of the sample and greater sampling intensity

depending on the observations made during the survey; in addition, it can help find the local maximum (Thompson

and Seber, 1996).

The adaptive sampling literature includes the following: algorithms that address the effects of mutations on the

properties of folding RNA, the purpose of which is to decipher the principles of conduction and molecular evo-

lution for the design of new molecules, in other words, these algorithms are for unbiased adaptive sampling that

allows RNAmutants to sample regions of the mutational landscape that have not been fully addressed by previ-

ous techniques (Waldispühl and Ponty, 2011); designs for clinical study that focus on adaptation projects for two

stage sample size re-estimation (Chang, 2008, 2009); mining applications that have a large amount of data, where

random sampling may not be applicable due to the diffculty of determining an appropriate sample size (Domingo

et al., 2002); and, finally, cases where the available algorithms for mining information on a large database are

prohibitive due to computational constraints (time and memory) (Satyanarayana and Davidson, 2005).

In the case presented by Thompson (1990), another kind of adaptive sampling was considered, where the spatial

distribution of aggregate data influences the formation of the sample selection of the data into clusters. This sample

design, in which the procedure for the selection of units can be added to the initial sample based on an area and its

spatial distribution, will be referred to from now on as adaptive spatial sampling.

Thus, adaptive spatial sampling provides a viable solution to the longstanding problem of estimating the abundance

of rare populations and it has gained rapid acceptance in the natural and social sciences (Seber, 1986; Ramsey and

Seber, 1992; Brown, 1994, 1996; Khan and Muttlak, 2002; Stein and Ettema, 2003; Sengupta and Sengupta, 2011;

Jain and Chang, 2004; Thompson, 2011; Yu et al., 2012). However, adaptive procedures are more complicated to

design and analyze, and computational implementations are few as a results of the complexity of the algorithms

for spatial analysis (Thompson, 2011).

This implementation requires at least three steps: the development of a computational design for a regular grid; the

selection of specific areas of the grid to identify which part of the grid the data are in; and identifying the neighbors

of the selected areas: upper, lower, right and left. Thus, the objective of this work is to implement computationally

adaptive spatial sampling in SAS software.
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2. A Basic Outline of Adaptive Spatial Sampling

It has been observed that adaptive spatial sampling is performed in cluster sampling, because the data to be analyzed

are divided into distinct subpopulations and have the geographical coordinates of a given area. Thus, the process

of adaptive spatial sampling involves selecting certain areas, recording their geographical coordinates and defining

the areas in which the data are located. Usually, these data are grouped in a particular area as shown in Figure 1(a),

which characterize the clusters.

The first step is to draw a grid based on the geographical coordinates of the area to be analyzed, as shown in Figure

1(b). Then, some areas of the grid are selected by Simple Random Sampling (S RS ) and it is determined whether

there are data points within these areas, as shown in the blue areas of Figure 1(c). Next, the neighbors of these

selected units are identified successively - top, bottom, right and left - until the selection criterion of the adaptive

spatial sampling is exhausted. This adaptive spatial sampling is represented by one population sample (n) of the

regular grid, as in Figure 1(d).

Figure 1. Steps of adaptive spatial cluster sampling

In summary, adaptive cluster sampling or simply adaptive spatial sampling refers to designs in which an initial set

of units is selected by some probability sampling procedure and, whenever the variable of interest of a selected unit

satisfies a given criterion, additional units in the neighborhood of that unit are added to the sample (Thompson,

1990). In the models considered in this paper, the initial sample can be selected by Simple Random Sampling with

replacement S RS R or without replacement S RS WR.

2.1 Estimators

Classical estimators for the population mean are biased under an adaptive sampling design, in contrast with S RS .

In this section two unbiased estimators for the population mean under an adaptive spatial sampling design will be

addressed.

2.1.1 Estimators Using Initial Intersection Probabilities

This section shows an estimator based on a modification of a Horvitz-Thompson estimator (Thompson, 1990) and

it is compared to the sample mean of the initial sample, given by

y =
1

n1

n1∑
i=1

yi (1)

where yi is the variable in study of the unit i and n1 is the initial sample size.

When an initial sample n1 of units is selected by a S RS WR, these units in the first sample are distinguished not as

a result of replacement. However, the data itself may contain repeated observations if more than one unit in the

cluster is selected in the initial sample. The unit i will be included in the final sample if any unit of Ai (including i
itself), where Ai is a neighborhood of the point i, is selected as part of the initial sample, or if any unit of a network

of which unit i is an edge unit is selected, where an edge unit is a neighborhood of the point i but without sample

points.

Let mi denote the number of units in Ai; N is the population size; and ai, the total number of units in the network

(neighbors of the selected grid: upper, lower, right and left), of which unit i is an edge unit. Note that if the unit
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satisfies the criterion C, i.e., some data point is found inside the selected grid, then ai = 0, but if the unit i does not

satisfy this condition, then mi = 1. The selection probability of unit i in either n1 observations is pi =
mi+ai

N . The

probability that unit i is included in the sample is given by (Thompson, 1990):

Πi = P(Ii = 1) = 1 −
[(

N − mi − ai

n1

)
/

(
N
n1

)]
(2)

When the selection of the initial sample is taken by S RS R, repeated observations in the data can occur either

because of possible repeated selections in the initial sample or the initial selection of more than one unit in the

cluster. In this sample design, selection probability of unit i in either n1 observation is pi =
mi+ai

N , and the probability

of inclusion is given by (Thompson, 1990):

αi = 1 − (1 − pi)
n1 = 1 −

(
1 − mi + ai

N

)n
(3)

If the values of Πi are known for all sample units, one can use the Horvitz-Thompson estimator given by μ̂HT =
1
N

∑n
i=1

yi
Πi

. However, although the values of mi in Equation (2) for all units in the sample are known, only a few

values of ai are known. This means that i is a unit of edge somewhere in a cluster belonging to the sample, and

thus, all clusters that this unit is related to do not need to be sampled. Thus, the value of ai is unknown. To solve

this problem, (Thompson, 1990) adopted the practice of dropping the value of ai in Equation (2) and considering

only the partial inclusion probability. Thus,

Π′i = 1 −
[(

N − mi

n1

)
/

(
N
n1

)]
(4)

This probabilityΠ′i is now considered for n1 networks instead of n1 clusters and can be understood as the probability

of the sample initial intercept Ai, the network for the unit i, to be used in the estimator. Thus, one obtains an

unbiased estimator of the population mean based on the initial intersection probabilities as the following:

μ̂ =
1

N

N∑
i=1

yiI′i
Π′i

(5)

where I′i takes the value 1 (with probability Π′i) if the initial sample intersects Ai, and 0 otherwise. In addition

μ̂HT =
1

N

n∑
i=1

yi

Πi
=

1

N

N∑
i=1

yiIi

Πi
(6)

where y1 . . . yn represent the n distinct values of units in the final sample and Ii has the value 1 when the unit is

included in the sample and 0 otherwise.

Using the properties of mathematical expectation it turns out that the estimator of Equation (5) is unbiased,

E[̂μ] = E

⎡⎢⎢⎢⎢⎢⎣ 1

N

N∑
i=1

YiI′i
Π′i

⎤⎥⎥⎥⎥⎥⎦ = 1

N

N∑
i=1

YiE(I′i )
Π′i

=
1

N

N∑
i=1

YiΠ
′
i

Π′i
=

1

N

N∑
i=1

Yi = μ (7)

The classical estimator of the population mean under adaptive spatial sampling design is a biased estimator as

follows:

E[y] = E

⎡⎢⎢⎢⎢⎢⎣ 1

n1

n1∑
i=1

yi

⎤⎥⎥⎥⎥⎥⎦ = E
(∑N

i=1 yiI′i
)

n1

=

∑N
i=1 YiE(I′i )

n1

=
Π′i Nμ

n1

� μ (8)

To facilitate the analysis of Equation (5) it is more convenient to rewrite it in terms of distinct networks because

the probability of intersection Π′i is the same (also called αk) for each unit i in the kth network. Thus,

αk = 1 −
[(

N − xk

n1

)
/

(
N
n1

)]
(9)
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Similar to the equations of the probability of inclusion and as p jk is the probability that kth and jth networks do

not intersect, so

p jk = P(J j � 1 ∩ Jk � 1) =

(
N − x j − xk

n1

)
/

(
N
n1

)
(10)

where x j is the number of units in the k-th network and Jk is the initial sample intersect of the kth network and

takes the value 1 (with probability αk) and 0 otherwise.

Using Equations (9) and (10) we obtain α jk (the probability of intersection of the kth and jth networks) as

α jk = α j + αk − (1 − pjk)

= 1 −
[(

N − x j

n1

)]
/

(
N
n1

)
+ 1 −

[(
N − xk

n1

)
/

(
N
n1

)]
−

[
1 −

(
N − x j − xk

n1

)
/

(
N
n1

)]

= 1 −
(

N−x j
n1

)
(

N
n1

) + 1 −
(

N−xk
n1

)
(

N
n1

) − 1 +

(
N−x j−xk

n1

)
(

N
n1

)
= 1 −

[(
N − x j

n1

)
+

(
N − xk

n1

)
−

(
N − x j − xk

n1

)]
/

(
N
n1

)
(11)

Therewith,

μ̂ =
1

N

K∑
k=1

y∗k J′k
αk
=

1

N

K∑
k=1

y∗k
αk

(12)

where y∗k is the sum of the y-values for kth network, K is the total number of distinct networks in the population,

and k is the number of distinct networks in the sample.

Let zk = y∗k/αk, y∗k =
∑N

i=1 yi ΠK = αk and Π jk. From the properties of mathematical expectation, variance,

covariance and the definitions above, one can obtain the expected value and the variance of Equation (5) by the

following:

E[̂μ] =
1

N

K∑
k=1

zkE(Jk) =
1

N

K∑
k=1

zkαk =
1

N

K∑
k=1

y∗k =
1

N

N∑
i=1

y∗i = y =
τ

N
= μ (13)

var[̂μ] = var

⎡⎢⎢⎢⎢⎢⎣ 1

N

K∑
k=1

zk Jk

⎤⎥⎥⎥⎥⎥⎦ = 1

N2

⎡⎢⎢⎢⎢⎢⎢⎣
K∑

k=1

zk Jk +

K∑
j=1

∑
j�k

cov
(
z jJ jzk Jk

)⎤⎥⎥⎥⎥⎥⎥⎦
=

1

N2

⎡⎢⎢⎢⎢⎢⎢⎣
K∑

j=1

z2
jΠ j(1 − Πk) +

K∑
j=1

∑
j�k

z jzkΠ jk − ΠiΠk

⎤⎥⎥⎥⎥⎥⎥⎦
=

1

N2

⎡⎢⎢⎢⎢⎢⎢⎣
K∑

j=1

K∑
k=1

z jzk(Π jk − Π jΠk)

⎤⎥⎥⎥⎥⎥⎥⎦
=

1

N2

⎡⎢⎢⎢⎢⎢⎢⎣
K∑

j=1

K∑
k=1

y∗jy
∗
k

(
α jk − α jαk

α jαk

)⎤⎥⎥⎥⎥⎥⎥⎦ (14)

and an unbiased estimator of the variance of Equation (14) is:
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v̂ar[̂μ] =

K∑
j=1

K∑
k=1

z jzk J jJk

(
Π jk − Π jΠk

Πi j

)

=
1

N2

⎡⎢⎢⎢⎢⎢⎢⎣
K∑

j=1

K∑
k=1

y∗jy
∗
k

(
α jk − α jαk

α jkα jαk

)
J jJk

⎤⎥⎥⎥⎥⎥⎥⎦
=

1

N2

⎡⎢⎢⎢⎢⎢⎢⎣
K∑

j=1

K∑
k=1

y∗jy
∗
k

(
α jk

α jkα jαk
− 1

α jk

)⎤⎥⎥⎥⎥⎥⎥⎦
=

1

N2

⎡⎢⎢⎢⎢⎢⎢⎣
K∑

j=1

K∑
k=1

y∗jy
∗
k

α jk

(
α jk

α jαk
− 1

)⎤⎥⎥⎥⎥⎥⎥⎦ (15)

Another known estimator for adaptive spatial cluster sampling is one that uses the expected number of initial

intersection as follows.

2.1.2 Estimators Using the Expected Number of Initial Intersection

The estimator given by Equation (5) can be rewritten as:

μ̃ =
1

N

N∑
i=1

yi
fi

E[ fi]
(16)

where fi represents the number of units in the initial sample that fall in network Ai, which includes the unit i; N
is the number of regular grids. If during the estimation process the units edge of clusters is ignored, fi would be

interpreted as the number of times the ith unit of the final sample appears in the estimator. Then one realizes that

fi = 0 if no units in the initial sample intersect Ai.

The estimator in Equation (16) is unbiased because

E
[̃
μ
]
= E

⎡⎢⎢⎢⎢⎢⎣ 1

N

N∑
i=1

yi
fi

E[ fi]

⎤⎥⎥⎥⎥⎥⎦ = 1

N

N∑
i=1

E(yi)
E[ fi]
E[ fi]

=
1

N

N∑
i=1

Yi = μ (17)

Because mi is the number of units on the network to which i belongs, using the Horvitz-Thompson estimator,

another unbiased estimator can be found: As fi units are selected from mi units in Ai, fi follows a hypergeometric

distribution with the following parameters: (N,mi, n1) (Thompson, 1991). Thus, E[ fi] =
n1mi

N and substituting the

expected value in Equation (16) we obtain the following:

μ̃ =
1

N

N∑
i=1

yi
fi

n1mi
N
=

N
N

N∑
i=1

yi fi
n1mi

=
1

n1

N∑
i=1

yi fi
mi

(18)

To find the variance of the estimator of Equation (18), the approach in terms of n1 networks being connected is

used, although this is not necessarily distinct. Because mi has the same value for all units in Ai and wi is the average

of mi observations Ai (Thompson, 1990), then

μ̃ =
1

n1

n1∑
i=1

1

mi

∑
jεAi

y j =
1

n1

n1∑
i=1

wi = w (19)

Thus, μ̃ is the sample mean obtained by taking a selection of an S RS of size n1 of a population of wi values rather

then yi values. Because wi = vk is the same for each unit in the kth network, where vk is the mean of the y-values

in βk, there are xk units in the kth network and BK is a set of units in the kth network; thus,

E(̃μ) = E(w) = E

⎡⎢⎢⎢⎢⎢⎣ 1

N

N∑
i=1

wi

⎤⎥⎥⎥⎥⎥⎦ = 1

N

K∑
k=1

xkvk =
1

N

K∑
k=1

∑
iεBk

yi = μ (20)
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From the equations of cluster sampling in two stages, we obtain an unbiased estimator of this variance:

var[̃μ] = var

⎡⎢⎢⎢⎢⎢⎣ 1

N

N∑
i=1

wi

⎤⎥⎥⎥⎥⎥⎦ = N − n1

Nn1(N − 1)

N∑
i=1

(wi − μ)2 =
σ2

n1

(
1 − n

N

)
(21)

where σ2 = 1
N−1

∑N
i=1(wi − μ)2.

v̂ar[̃μ] =
N − n1

Nn1(n1 − 1)

n1∑
i=1

(wi − μ̃)2 (22)

As in some populations a priori information may be known; i.e., where aggregations occur, one can use the tech-

nique to reduce the stratified sample variance estimators. To do this, we can use stratified adaptive spatial sampling,

where the population is divided into strata and the number of units are sampled for each stratum that is used.

3. Stratified Adaptive Spatial Cluster Sampling

In the case of adaptive spatial sampling techniques, one must also know the geographic coordinates of the selected

area. Thereafter, one stratifies the area using a priori information and draws the grid throughout the selected area

(including stratified areas) through their respective locations as indicated in Figure 2 (a). After that, a sample is

selected using S RS, as in Figure 2 (b). Then, the units of interest are identified, as in Figure 2 (c). Finally, one

successively adds the neighbors of selected areas - upper, lower, right and left - until the selection criterion of the

adaptive sample is exhausted, as in Figure 2 (d).

Figure 2. Steps of stratified adaptive spatial cluster sampling

In the estimators to be considered, the initial sample can also be selected by S RS R or S RS WR. The next section

will show three unbiased estimators for this kind of sampling.

3.1 Estimators

Suppose that the population total of N units is partitioned into L stratum, with nh units in the hth stratum (h =
1, 2, . . . , L). Define unit (h, i) as the ith unit in the hth stratum with associated y-value yhi. This process begins

with a S RS of nh units that is taken from stratum L, and we now define n0 =
∑L

h=1 nh to be the initial total sample

size. From this, the clusters begin to have neighbors added according to the condition set C (Thompson and Seber,

1996).

3.1.1 Estimators Using Initial Intersection Probabilities

Using the full adaptive sample, the first estimator we can consider is given by (5) based on the initial intersection

probabilities, we obtain

μ̂st =
1

N

K∑
k=1

y∗k Jk

αk
(23)

where the K distinct networks are labeled (1, 2, . . . , k) without regard for stratum boundaries, Jk equals 1 (with

probability αk) if the initial sample size n0 intersects network k, and 0 otherwise and, finally, y∗k is the sum of the

y-values for the network k.

To derive αk it is necessary to consider the probabilities of intersecting network k with the initial samples in each

strata. Therefore, we define xhk as the number of units in stratum h that lie in network k. This number assumes the
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value 0 if the network k lies totally outside stratum h. If the network straddles a boundary, we ignore the network

units that lie outside stratum h in the definition of xhk. Thus, with this definition of xhk, we obtain

αk = 1 −
⎡⎢⎢⎢⎢⎢⎢⎣

L∏
h=1

(
Nh−xhk

nh

)
(

Nh
nh

)
⎤⎥⎥⎥⎥⎥⎥⎦ (24)

The variance of the estimator of the unbiased average, defined as the probability of the initial sample intercede

network in k and k′, is obtained in the following way:

αkk′ = 1 − (1 − αk) − (1 − αk′ ) +

⎡⎢⎢⎢⎢⎢⎢⎣
L∏

h=1

(
Nh−xhk−xhk′

nh

)
(

Nh
nh

)
⎤⎥⎥⎥⎥⎥⎥⎦ (25)

Because αkk = αk and from the variance properties, it follows that

var[̂μst] =
1

N2

K∑
k=1

K∑
k′=1

y∗ky∗k′
(
αkk′ − αkαk′

αkαk′

)
(26)

and an unbiased estimator for this variance is given by

v̂ar[̂μst] =
1

N2

K∑
k=1

K∑
k′=1

y∗ky∗k′
(
αkk′ − αkαk′

αkk′αkαk′

)
IkIk′ (27)

Another estimator for this kind of sampling is to use the expected number of the initial intersection, which will be

explained in the next section.

3.1.2 Estimators Using the Expected Number of the Initial Intersection

Let Ahi, the network that contains the unit (h, i), uhi, and Aghi be part of Ahi stratum g. Suppose that fghi is the

number of units from the initial sample in stratum g that fall in Aghi, and let mghi be the number of units in Aghi.

Then, the number of units of an initial sample n0 units is Ahi given by (Thompson and Seber, 1996),

f.hi =

L∑
g=1

fghi (28)

From Equation (16) one obtains the estimator for the mean

μ̃st =
1

N

L∑
h=1

Nh∑
i=1

yhi
f.hi

E[ f.hi]
(29)

As in Equation (7) and from the properties of expectation and variance, this estimator is unbiased.

As with fi in Equation (16), fghi follows a hypergeometric distribution with parameters (Ng, mghi, ng). Therefore,

it is known that E[ fghi] =
ngmghi

Ng
and E[ f f .hi] =

∑L
i=1

ng

Ng
mghi (Thompson, 1991). Thus,

μ̃st =
1

N

L∑
h=1

yhi
f.hi∑L

i=1
ng

Ng
mghi

=
1

N

L∑
h=1

Nh∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎝yhi

L∑
g=1

fghi/

L∑
g=1

ng

Ng
mghi

⎞⎟⎟⎟⎟⎟⎟⎠ (30)

where fghi represents the number of units in the initial sample that is at the intersection of stratum g with the

network drive to which the unit uhi belongs.

If there is a match to add the same neighbors, we obtain an estimator of the independent stratum combined with the

estimator with weights, providing an estimator of the population mean as Equation E[yst] = E
(∑L

h=1
Nh
N yh

)
. This

characteristic aggregation of equal neighbors generates a loss of efficiency, a more efficient system would allow

groups to overlap the boundaries of the strata (Thompson, 1991).
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So, to find the variance estimator of the mean, we use Equation (19) to rewrite μ̃st in terms of the weights of the

sample means. For this, relate the observations to the intercept of the initial sample networks. Thus, the term yhi f.hi

means that Ahi is intersected fhi times by the initial sample, so that μ̃st represents a weighted sum of all units in all

the networks corresponding to the initial sample, with some networks being repeated. Because the weight E[ f.hi]

is the same for each unit in Ahi, we have

μ̃st =
1

N

L∑
h=1

nh∑
i=1

1

E[ f.hi]

∑
(h′,i′)εAhi

yh′i′ =
1

N

L∑
h=1

nh∑
i=1

Yhi

E[ f.hi]
(31)

where Yhi is the sum of yth observations in Ahi.

Let wh =
∑nh

i=1
whi
nh

and whi =
nhYhi

NhE[ f .hi] ; then, another way to rewrite Equation (31) is

μ̃st =

L∑
h=1

Nh

N
wh =

1

N

L∑
h=1

Nh

nh

nh∑
i=1

whi (32)

where whi =
Yhi∑
g mghi

; when nh
Nh

have the same value for all strata. Thus, Equation (32) represents a stratified sample

mean from a stratified random sampling without replacement, with the interest of whi variable.

So, the variance estimator for the mean is given by

var[̃μst] =
1

N2

L∑
h=1

Nh(Nh − nh)
σ2

h

nh
(33)

where σ2
h represents the stratum population variance, that is,

σ2
h =

1

Nh − 1

Nh∑
i=1

(whi −Wh)2 (34)

where Wh =
∑nh

i=1
whi

nh
is the stratum population mean.

An unbiased estimator of variance of the mean (33) can be obtained by replacing σ2
h by sample variance, s2

h =
1

nh−1

∑nh
i=1

(whi − wh)2.

3.1.3 Estimators that Ignore Units Added through Crossing Boundaries

According to Thompson (1991), the estimator that ignores units added through crossing stratum boundaries is

given by the following:

μ
′′
st =

L∑
h=1

Nh

N
μ̃h =

1

N

L∑
h=1

Nh∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎝yhi

L∑
g=1

Ng

ng
fghi/

L∑
g=1

mghi

⎞⎟⎟⎟⎟⎟⎟⎠ (35)

where μ̃h =
∑nh

i=1

w
′′
hi

nh
and w

′′
hi is the total of the y-values in the intersection of the stratum h with Ahi divided by the

number of units in the intersection; i.e., this value represents the network mean for that part of the network Ahi in

stratum h.

The mathematical expectation of μ
′′
st is given by

E[μ
′′
st] =

L∑
h=1

Nh

N
μh =

1

N

L∑
h=1

Nh∑
i=1

yhi = μ (36)

The variance var[μ
′′
st] is given by

var[̃μ
′′
st] =

1

N2

L∑
h=1

Nh(Nh − nh)
σ2

nh
(37)

where the stratum population variance is σ2
h =

1
Nh−1

∑Nh
i=1

(w
′′
hi − Wh)2 and the stratum population mean is Wh =∑Nh

i=1
whi
Nh

. The sample estimate is given by (32) replacing σ2
h by s2

h =
1

nh−1

∑nh
i=1

(whi − wh)2.
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4. SAS Macros

The SAS Macros basically use the IML Procedure and GMAP and SQL Procedures. The computational imple-

mentation of adaptive spatial sampling requires four steps: 1) development of the computational design of regular

grids (Figure 3(a)); 2) selection of specific areas of the grid, that is, identifying a sample and determining in which

part of the grid the data are located (Figure 3(b)); 3) identification of the neighbors of the selected areas: upper,

lower, right and left (Figure 3(c)(d)); 4) calculation of the parameters.

Figure 3. Steps of adaptive spatial sampling

4.1 Drawing a Regular Grid

To create regular grids it is necessary to create four points with coordinates entered clockwise (lines of Table 1) or

counterclockwise.

Table 1. Coordinates of a square

Reference Values Points
1 (Min, Min) (0,0)

2 (Min, Max) (0,1)

3 (Max, Max) (1,1)

4 (Max, Min) (1,0)

In the case of a square, beginning with the clockwise points, i.e., the reference points in the following order: 1, 2,

3, 4, the polygon appears to be like Figure 4 (Square). If that order is not followed, the result is a distorted polygon,

as shown in Figure 4 (Distorted Polygon).

Figure 4. Square and distorted polygon.

As one wishes to draw a grid on a field of study, it is necessary to know the upper and lower boundaries of

the region, i.e., the minimum and maximum coordinates of the y axis (latitude) and minimum and maximum

coordinates of the x axis (longitude). The definition of the size of each polygon is given by %grid macro:

%grid(minx =, maxx =, miny =, maxy =, dim =, anno =, printN = YES );
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where the parameters are: MINX = the minimum value of the x coordinate; MAXX= the maximum value of the

x coordinate. Similarly, for the y coordinates we have: MINY= and MAXY=. Another parameter of this macro

is the size of the square drawn given by DIM= (for instance, if DIM= 20, 202 = 400 squares will be created).

Finally, the last two parameters, ANNO= and PRINTN = YES, indicate the dataset with the location of samples

and whether the numbering of each square will be printed using the command YES(Figure 5 (a)) or NO (Figure 5

(b)), respectively.

Figure 5. Regular grid for N = 400.

Next, we define the element, id to the coordinates of the square. Thus, the first square has the points (0, 0), (0, 1), (1, 0), (1, 1),

id = 1 and so on. This is achieved by joining the table with the coordinates with the table set out below:

data id&dim;

do id=1 to &dim*&dim;

do i=1 to 4;

output;

end;

end;

run;

This numbering starts from a unit numeric value and goes to the value of N to count the vertical direction, starting

from left to right. In the case of Figure 5, it is found that the size of the square is N = 20 × 20 = 400, varying the

id from 1 to 400.

The next step is to make the selection of specific areas of the grid; i.e., the grids are drawn by S RS , and if there

are samples inside a grid, it is selected by its neighbors.

4.2 Selection of Specific Areas of the Grid

The samples to be drawn in adaptive spatial sampling correspond to the polygons of the grid. This selection can be

done by a generator corresponding to the number of grid squares of random numbers. In SAS, this can be done by

PROC SURVEYSELECT, where a S RS is obtained with a seed value of size n given by the variable SEED. The

parameter OUT indicates where the sample will be stored.

proc surveyselect data=&data sampsize=&n out=&saida seed=&seed noprint;

run;

The identification of the neighbors of the selected areas in the next section involves three concepts: check point

inside the polygon; definition of the neighbors; and identification of neighboring polygons.
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4.3 Identification of the Neighbors

The selection of neighbors is the trickiest and the most important part of the adaptive spatial sampling technique,

as it is from the selected grids that the process of adapting the sample areas begins.

4.3.1 Checking if the Point is Inside the Polygon

The determination of points inside the polygon is shown in Figure 6. The main idea consists in making a radius

from the selected point p to infinity in any direction and computing the amount of times that this line passed through

the edges of the polygon. Thus, if the number of crossings is odd, the point is inside the polygon (Kunigami, 2010).

Figure 6. Point inside polygon.

The selection of these points within the regular grid is done by %ginside macro.

%ginside(map = , id = , where = , data = , out = );

where the elements of the macro are: MAP = dataset containing the coordinates of the study area; ID= name of

the ID variable that defines the polygon; WHERE = selecting a specific point to check if it is inside the polygon;

DATA = dataset containing the points to be checked if they are inside the polygon; OUT = dataset in which the

points inside the polygons will be stored.

4.3.2 Definition of the Neighbors

The definition of the neighbors is as follows: The neighborhood is a set of squares that are added to the same

sample if the grid satisfies the same condition of containing elements of interest in the selected square. We define

the neighborhood of type ROOK as the polygons that share more than one point in common, in this case the square:

up, down, right and left, as shown in Figure 3(c), and the neighborhood of type QUEEN as the polygons that share

at least one point in common, i.e., the neighborhood ROOK adding the corners.

The %neighborhood macro is given by:

%neighborhood(id = , pt = , map = , anno = , out = , type = ROOK );

where the parameters are: ID= name of the ID variable that defines the polygon; PT= ID of the grid in which the

neighbors will be defined; MAP= the dataset containing the coordinates of the study area; ANNO= the dataset

containing the coordinates of the samples; OUT= the dataset in which the neighbors will be stored; TYPE=
indicates that the pattern of selection of the neighbors is of type ROOK (default) or QUEEN.

4.3.3 Identifying Neighboring Polygons

The identification of neighboring polygons is generated by combining the identification of neighbors with the

points inside the polygon; this is the final sample of adaptive spatial sampling.

Finally, given the base with the selected units and their respective score points, the next step is to compute the

estimators presented in Section 2.

4.4 Estimators of Adaptive Spatial Sampling

In this section the formulas for the estimators of Section 2 were implemented. Thus, for adaptive spatial sampling

we have implemented the estimator of the mean (u1), Equation (19), the estimator of the variance of the estimator
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of the mean (varu1), Equation (21) the estimator of the total (Totu1) given by multiplying the number of grids by

the estimator u1, i.e., Totu1 = NN× u1, and the estimator of the variance of Totu1, named TotVaru1.

The %as macro computes the estimators and automatically uses the macros presented previously.

%as(data = , n = , sample = , out = , strata = , seed = , map = , id = ,

anno = , typen = ROOK , printN = YES );

where the parameters are the same as those presented earlier, and n= the sample size and SAMPLE= a dataset

containing a predefined sample.

5. Illustration

5.1 An Example of Adaptive Spatial Cluster Sampling

Thompson (1990) presents an example of how adaptive spatial sampling works and compares the results obtained

from the S RS estimator and from S RS with adaptive spatial sampling, which is given by changing the denominator

of Equation (19) to the denominator of Equation (8). This example could represent a reserve of animals that are

grouped (as herds of elephants) or deposits of minerals (such as gold, diamond, iron) spread over large areas.

Initially, a regular grid is drawn on the area to be sampled, and then, n units (squares) are selected by the S RS
method. In this example, the initial sample consists of 10 units (total squares on the grid in red) selected in a total

of N = 400 units (representing the total number of regular square grids, where each side has a length of 20, or

20 × 20 = 400), with a total of 190 points (Figure 7 (c)).

Selecting the neighbors (by the ROOK methodology) of the initial units containing at least one unit in the initial

sample, we obtain the final sample, as shown in Figure 7(d). The upper unit has an element that intersects with the

network m1 = 6 units, containing a total of y∗
1
= 36 units of interest. Another point in which there is unity within

the polygon that intersects the network m2 = 11 units and contains y∗2 = 107 units. For the other 8 units of the

initial sample, the values are yi = 0 and mi = 1.

There are also 20 edge units that are not used in calculating the estimates; these are selected for adaptive selection,

but they do not contain units of interest. In Figure 7(d) networks within the two groups that are described as being

adaptively added are in the color red.

Figure 7. Example of adaptive cluster sampling.

For w1 =
36
6
= 6 objects per unit, for w2 =

107
11
= 9.727 and for the remaining wi = 0, one can calculates the values

for the mean estimators, μ̃, and from the total of the adaptive sampling:

μ̃ =
1

10

[
36

6
+

107

11
+

(
0

1

)
+ . . . +

(
0

1

)]
= 1.573

Nμ̃ = 400 × 1.573 = 629

v̂ar[̃μ] =
(400 − 10)

400(10)(10 − 1)
[(6 − 1.573)2 + . . . + (0 − 1.573)2] = 1.147

N2v̂ar[̃μ] = 4002 × 1.147 = 183, 520

For S RS , where N is the total number of square areas selected and n is the number of selected squares of the initial
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sample, one obtains the values for the estimators of the mean y and for the total Ny:

y =
11 + 1

10
= 1.2

Ny = 400 · 1.2 = 480

v̂ar[y] = 1.165

N2v̂ar[y] = 186, 506

For the 45 units, which includes the 25 edge units of the final sample, the values for the estimators of the average

yAD for adaptive S RS are calculated; that is, the amount of S RS Equation in Equation (19) is used. Thus,

yAD =
143

45
= 3.178

NyAD = 400 × 3.178 = 1, 271

v̂ar[yAD] = 1.004

N2v̂ar[yAD] = 4002 · 1.004 = 160, 687

Table 2 presents the estimates found and it appears that the variance, mean and total sampling of the adaptive S RS
is the lowest compared to the others. However, their estimated average is higher, because there is a bias when

using the estimator of S RS in this sample. Comparing the ratio of the variances yAD and μ̃, we observe that there

is a reduction of 13% in this value. Thus, given that it has a total of 190 points and the actual population mean is

μ = 190
400
= 0.475, adaptive spatial sampling in this case was very close to the S RS ; however as will be seen later,

adaptive spatial sampling varies much less when N varies.

The computational output of the program implemented in SAS software for this example is given in Figure 8 (the

results are the same as in Thompson (1990)). Thus, there is the number of observations (n = 10), population size

(N = 400), the estimators for the mean and total and their respective variances in the three cases analyzed: adaptive

spatial cluster sampling, S RS and adaptive S RS sampling (biased).

Figure 8. Output of adaptive spatial cluster sampling.
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Table 2. Table of comparison of the estimators of adaptive sampling, S RS and adaptive S RS

Estimator μ̃ y yAD
Mean 1.57 1.20 3.17

Total 629 480 1,271

Variance of the mean 1.147 1.165 1.004

Variance of the total 183,520 186,506 160,687

5.2 Comparison between Different Population Sizes

In this section, interference variation for the total areas (grids) in the estimates will be checked, i.e., the variation

in N. Thus we have simulated different sizes of squares and the initial samples were set to have the same sample as

the sample (Thompson, 1990). Thus, we obtained the results in Table 3, with the respective values of the estimators

of the mean and their estimated variances.

Figure 9. Analysis of the mean when the population size increases (ROOK).

Figure 9 shows how the estimated average is influenced in the case of population variation. We can see that adap-

tive spatial cluster sampling (solid green line) had the lowest average interference with the change in population,

undergoing a decrease with an increase in the size of the regular grid, except when N = 7. S RS (blue dotted line)

underwent a large change throughout the process. In addition, adaptive S RS sampling - S RS AD (dashed red line)

- shows a decrease with a slight increase when N = 8.
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Table 3. Comparison between the estimators of Mean: adaptive sampling, S RS , adaptive S RS (ROOK)

Matrix N μ v̂ar(μ) y v̂ar(y) yAD v̂ar(yAD)

4x4 16 2.82 1.35 7.60 10.30 11.87 0

5x5 25 3.08 3.43 11.60 42.33 10.00 6.06

6x6 36 3.48 5.99 12.60 62.66 8.26 6.64

7x7 49 5.36 11.57 3.30 3.89 5.96 5.50

8x8 64 3.40 4.70 4.00 7.52 6.78 4.28

9x9 81 3.72 5.41 10.40 47.76 5.93 3.88

10x10 100 3.58 5.13 0.80 0.27 4.76 4.01

11x11 121 2.72 3.01 5.40 13.54 4.61 2.50

12x12 144 2.98 3.85 1.80 1.42 4.61 3.13

13x13 169 2.73 3.10 9.00 36.88 4.76 4.51

14x14 196 2.13 2.31 1.90 1.95 4.08 1.83

15x15 225 2.73 3.22 4.80 10.82 4.20 1.77

16x16 256 2.09 1.91 6.90 22.69 3.67 1.71

17x17 289 1.79 1.44 5.00 15.55 3.49 1.42

18x18 324 1.79 1.45 1.30 0.73 3.40 1.06

19x19 361 2.06 2.03 4.00 7.69 3.76 1.21

20x20 400 1.57 1.15 1.20 1.16 3.18 1.00

Figure 10 represents how the estimate of the variance of the average is influenced in the case of variation in the

population. It is apparent that the variance in adaptive sampling is less affected by population size, having a range

of 0 to 15, while S RS ranges from 10 to 75 and S RS AD from 0 to 15.

Figure 10. Analysis of the variance when the population size increases (ROOK).

Similarly, we obtain the results in Table 4 for the estimators of the Total. Figure 11 shows the behavior of the

total estimator when the population size varies. For this case, the estimator of the total adaptive sampling - Nμ - is
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the one with less variation when compared with the other two (Ny and NyAD). The variation of the estimator Ny
increases when the population increases.

Table 4. Comparison between the estimators of the total: adaptive sampling, S RS , adaptive S RS (ROOK)

Matrix N Nμ N2v̂ar(μ) Ny N2v̂ar(y) NyAD N2v̂ar(yAD)

4x4 16 45.20 345.46 121.60 2,637.23 190.00 0

5x5 25 77.02 2,143.20 290.00 26,460.00 250.00 3,786.84

6x6 36 125.28 7,765.19 453.60 81,207.36 297.40 8,605.68

7x7 49 262.97 27,775.32 161.70 9,344.79 291.96 13,224.14

8x8 64 217.60 19,232.25 256.00 30,796.80 434.29 17,532.08

9x9 81 301.72 35,516.02 842.40 313,391.16 480.94 25,485.92

10x10 100 358.33 51,362.50 80.00 2,760.00 476.00 40,096.05

11x11 121 330.16 44,136.80 653.40 198,241.56 558.16 36,596.89

12x12 144 429.60 79,976.56 259.20 29,501.44 664.25 64,971.73

13x13 169 461.13 88,303.16 1,521.00 1,053,343.20 805.57 128,886.39

14x14 196 417.20 89,039.35 372.40 74,896.83 800.80 70,609.67

15x15 225 613.93 162,971.10 1,080.0 548,035.00 946.32 89,533.50

16x16 256 534.75 125,050.12 1,766.40 1,486,863.40 938.67 111,878.68

17x17 289 517.31 120,309.52 1,445.00 1,299,055.00 1,007.97 118,269.46

18x18 324 579.96 151,800.29 421.20 76,980.24 1,103.14 111,112.35

19x19 361 742.75 265,244.93 1,444.00 1,002,424.80 1,358.50 157,809.51

20x20 400 629.09 183,534.21 480.00 186,506.67 1,271.11 160,687.90

Figure 11. Analysis of the total when the population size increases (ROOK).

Figure 12 represents how the estimator of the variance in the estimator of the total changes with the variation in

the population. We can observed that the estimator N2v̂ar(μ) and N2v̂ar(yAD) are closer and N2v̂ar(y) has large

variation throughout the process.
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Figure 12. Analysis of the variance of the total when the population size increases (ROOK).

Figure 13 represents how the estimator of the variance in the estimator of the total changes with the variation in

the population, with the largest values of N2v̂ar(y) removed. Notably, the variance is not constant as in Figure 12,

showing disorganized growth for S RS and similar growth in the other two cases.

Figure 13. Analysis of the variance of the total when the population size increases (ROOK).
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5.3 Stratified Adaptive Spatial Cluster Sampling

Thompson (1990) shows an example of how the stratified adaptive spatial cluster sampling technique works and

compares the obtained results when considering whether the boundaries are present between the stratum. Initially,

a regular grid is drawn on top of the area to be surveyed, and then, n units (squares) are selected by the S RS
method.

Figure 13. Stratified adaptive spatial cluster sampling.

The number of objects found in the analyzed area in Figure 14 (a) is 397 elements, within a total of N = 400

squares. Thus, it follows that the population mean is μ = 397
400
= 0.9925. For this example, the region was divided

into two strata, where for S RS , an initial n = 10 elements was selected with stratified adaptive spatial cluster

sampling with equal sizes in each stratum. In stratum 1, we see a total of N = 200 squares and n = 5 elements for

the initial sampling units, whereas in stratum 2, the others are N = 200 squares and n = 5, the total for the area.

As an example of adaptive spatial cluster sampling, the unit satisfies the condition if in each selected square one or

more elements of interest is found. Because this condition is verified, it selects its neighbors. The neighborhood

of each unit includes all adjacent units. Thus, a neighborhood can be analyzed in two ways: ignoring the existing

boundary between strata to select the neighbors of a unit, or considering this limit.

In the first case, a unit to be selected as an element and that is in the square that has contact with the division of

the stratum will have four neighbors - top, bottom, right and left - regardless of whether it is in a different stratum.

Thus, the value of w′hi for the estimator μ̃′, which ignores the limits of the strata, is zero for all units that do not

satisfy the condition.

The first network intersect stratum 1, given in Figure 14 (d), and has a value of w′11 =
96
6
= 16. For the second

network of intersection, the value is given by w′12 =
78
5
= 15.6, based only on the units of stratum 1. Thus, there

is no intersection in stratum 2. Therefore, the estimate of the mean of the population and the estimated variance of

μ̃′, given by Equations (35) and (37), respectively, is:

μ̃” =
1

400

[
200

5
(16 + 15.6 + 0 + 0 + 0) +

200

5
(0 + 0 + 0 + 0 + 0)

]
= 3.16

v̂ar(̃μ”) =
1

4002

[
200(200 − 5)(74.9)

5
+ 0

]
= 3.65

where 74.9 is the variance of the five numbers (16; 15.6; 0; 0; 0).

In the second case, a unit to be selected as an element and that is in the square that has contact with the division

of the stratum will have three neighbors: top, bottom, right (or left), depending on whether this is in a different

stratum. Thus, to calculate the estimator μ̃ (32), it is used for the same stratum nh
Nh

.

This obtains the variables whi, i.e., w11 =
96
6
= 16 for the first network and w12 =

192
11
= 17.45 for the second. The

estimate for the mean and its variance given by Equations (32) and (33), respectively, is:

μ̃ =
1

400

[
200

5
(16 + 17.45 + 0 + 0 + 0) + 0

]
= 3.35

v̂ar(̃μ) =
1

4002

[
200(200 − 5)(84.2)

5
+ 0

]
= 4.10
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where 84.2 is the variance given by the five values of w1i.

Table 5 presents the calculated estimates and Figure 15 shows the output of SAS; it appears that there is no

significant difference between the estimators of the mean and variance of the estimated average if the boundaries

of the strata are considered.

Table 5. Comparison between the estimators of stratified adaptive spatial cluster sampling.

Estimators No crossing Crossing
stratum boundaries stratum boundaries

Estimators of the mean 3.16 3.35

Variance estimate of the mean 3.65 4.10

Figure 15. Output of the stratified adaptive spatial cluster sampling.

6. Final Remarks

This study shows that adaptive spatial cluster sampling suffers less variation between S RS and adaptive S RS ,

which demonstrates that it is a biased estimate. In Section 5, a comparison between different population sizes

indicated that adaptive spatial sampling by cluster suffers less variation in the estimators than the other two samples.

Stratified adaptive spatial cluster sampling showed no significant difference between the estimators of the mean,

or the estimated average, regardless of whether we consider the limits of the strata variances.

In conclusion, it follows that the computational algorithm for adaptive spatial sampling in this work is important,

as this new technique has a variety of applications and users thus far do not have a computational tool to use it.
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Abstract 
The paper reports on the comparison of models of measurement with constrained and free factor loadings as part 
of confirmatory factor analysis in a simulation study. The comparison was conducted in order to find out whether 
constrained factor loadings that cause a reduced degree of adaptability to specificities of data mean a 
disadvantage in comparison to factor loadings that are freely estimated. Furthermore, the way of conducting the 
link transformation, the sample size and the number of variables were varied. The simulated data were 
dichotomous and constructed to conform to one underlying source of responding. The investigation of model fit 
and accuracy in estimating factor loadings yielded similar results for constrained and free factor loadings in 
confirmatory factor analysis. Furthermore, there were effects due to the type of link transformation and sample 
size. 
Keywords: binary data, confirmatory factor analysis, link function, probability-based covariances, simulation, 
tetrachoric correlations        
1. Introduction 
The item discriminability is a characteristic of the model of measurement and reflects the relationship between 
the item and the corresponding latent attribute (Lucke, 2005). The model of measurement can show free or 
constrained discriminability. The shift from free discriminability to constrained discriminability reduces the 
adaptability to the specificities of data. Constrained discriminability characterizes the Rasch (1960) model and 
the corresponding one-parameter model (Birnbaum, 1968), the Rasch model-based linear logistic test model 
(Scheiblechner, 1972) and the tau-equivalent model (Lord & Novick, 1968). Despite the lack of discriminability, 
the Rasch model and the corresponding one-parameter model have so far played a major role in research and 
application guided by item-response theory (IRT), while the consideration of the linear logistic test model has 
been more or less restricted to investigations of specific effects, as for example the effects of the item position, 
learning and fatigue (Kubinger, 2008). These models are contrasted by the tau-equivalent model of measurement 
that can be employed for investigations in the framework of factor analysis. This model appears to originate 
from the relaxation of some constraints of the stricter parallel model of measurement, and the further relaxation 
of constraints leads to the less strict congeneric model of measurement (Graham, 2006). 
It is the tau-equivalent model of measurement that is in the focus of the present investigation. The extended 
version of this model relates the p�1 vector of observations y to the p�1 vector of intercepts μ , the product of 
the p�q matrix of factor loadings �� and the q�1 vector of latent variables (i.e., latent factors) η and the p�1 
vector of error components ε : 
                                      εΛημy ��� .                                    (1) 

Since the tau-equivalent model of measurement is usually considered with respect to data that give rise to the 
expectation of one underlying source of responding, � is replaced by the p�1 vector �:  

                                       ελημy ��� .                                   (2) 
The special properties that distinguish this model of measurement from other models are equally sized factor 
loadings �1, …, �p: 
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                                        p�� ���1                                    (3) 
and error components �1, …,�p that may differ from each other. 
The measurement model shows constrained discriminability because of the restriction represented by Equation 3. 
In an application it can be realized in two ways: on one hand, the variance of the latent variable is set equal to one 
while the factor loadings are estimated under the restriction that they show equal sizes; on the other hand, the factor 
loadings are set equal to one while the variance of the latent variable is estimated. 
One reason for the wide disregard of the tau-equivalent model as compared to the other models that also apply to 
dichotomous data is the lack of a link transformation. This transformation establishes a relationship between 
observed and latent scores with respect to scale and distribution. Such a transformation is characteristic of the 
generalized linear model (McCullagh & Nelder, 1985; Nelder & Wedderburn, 1972; Skrondal & Rabe-Hesketh, 
2004). The Rasch model includes such a transformation. It is accomplished by means of the logit as link function. 
The same function also applies to the linear logistic test model. Since the original tau-equivalent model does not 
comprise a link function, its application for investigating dichotomous data can be questioned (Schweizer, 2012). 
The measurement model must be complemented by a way of conducting the link transformation in order to 
overcome the differences between the categorical and continuous scales and the associated distributions. The 
first way is characterized by the combination of the tau-equivalent model of measurement as core part of 
confirmatory factor analysis with tetrachoric correlations as input (Muthen, 1984, 1993). In this case the 
computation of tetrachoric correlations includes the shift from the categorical scale to the continuous scale and 
from the binomial distribution to the normal distribution (Pearson, 1900). It is accomplished by means of 
thresholds that refer to the normal distribution function. The second way is due to the opportunity to modify the 
model of measurement in such a way that a link transformation is conducted additionally (Schweizer, 2013; 
Schweizer & Reiss, 2014; Schweizer, Ren, & Wang, 2015). In this case probability-based covariances that are 
also known as a pre-stage reached in computing the Phi coefficient (McDonald & Ahlawat, 1974) are 
recommended as input to confirmatory factor analysis in order to achieve interval scale. Their use presupposes a 
sample size of at least 200. Furthermore, weights reflecting the distributional differences between the 
dichotomous and continuous scores are included into the measurement model. The weights wi that are assigned 
to the main diagonal of the p�p diagonal matrix W moderate the relationships between the observed and latent 
variables in such a way that there is an adjustment of the distributional differences between the variables 
regarding the variances and covariances: 

                                    � 	 εηWλμy ��� .                                   (4) 
The weights transform the tau-equivalent model into a weighted tau-equivalent model. 
However, even in the presence of an appropriate link transformation researchers and practitioners may suspect a 
low degree of efficiency and avoid using the tau-equivalent model of measurement because of its reduced 
adaptability to the specificities of data. There are a number of properties of data that potentially exert an 
influence on model fit (Tanaka, 1993), and these properties may be demanding to the adaptability of the model. 
Some properties appear to be especially important. First there is the correctness of the model with respect to the 
data at hand. The tau-equivalent model can be expected to perform well in correct models and to show a higher 
degree of sensitivity for incorrect models than the more popular congeneric model (Jöreskog, 1971). 
Second the appropriateness of the construct representation that, in the absence of specific construct facets, 
pertains to the number of variables is important (Hogarty, Hines, Kromrey, Ferron, & Mumford, 2005; 
MacCallum, Widaman, Zhang, & Hong, 1999). To some degree the number of necessary variables depends on 
the response format. If the response format includes two categories only, usually a larger number of variables is 
necessary than in the multi-category case. 
Third there is the sample size that is known to exert influence on model fit and is commonly varied in simulation 
studies (Bandalos & Gagné, 2012; Finney & DiStefano, 2013). The sample size must be large enough to achieve 
stable parameter estimates. The larger the size of the sample drawn from the population, the better is the chance 
to attain stable estimates. However, there is also a downside of a large sample size. The downside is the effect on 
the sensitivity of the chi-square statistic (Bergh, 2015) that plays a major role in the evaluation of model fit and 
contributes to several other fit statistics. In large samples the sensitivity of the chi-square statistic is usually so 
high that even a minor deviation of the model from data leads to the indication of model misfit. 
In the following sections of this manuscript a simulation study is reported. It investigates whether constrained 
discriminability means an impairment of model fit and accuracy in parameter estimation (i.e., factor loadings) as 
compared to free discriminability if the data are dichotomous and the model is correct. In order to identify effects 
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of potentially moderating factors, the type of the link transformation, the sample size and the number of variables 
are additionally considered. 
2. The Simulation Study 
The major objective of the simulation study was to compare models of measurement with either constrained or 
free discriminability regarding model fit and accuracy in parameter estimation under the condition that the data 
are dichotomous and the model is correct. It required confirmatory factor analysis of simulated data on the basis 
of models of measurement with constrained and free factor loadings. The second objective was to investigate 
whether the result regarding the first objective depended on the type of link transformation. The possibility of a 
moderating effect of sample size on the result regarding the first objective constituted the third objective. Finally 
there was the objective to find out whether the number of variables servings as indicators to the latent variable 
exerted an influence on the comparison of constrained and free discriminability. 
The four objectives defined the characteristics of the data that had to be generated. The first objective demanded 
that the data showed a one-dimensional structure that could potentially be identified by means of a one-factor 
model. Such a structure could be generated by means of a uniform pattern representing the relationships among 
random variables (Jöreskog & Sörbom, 2001, p. 159). According to the first and second objectives the data had 
to be dichotomous on one hand and to be related to continuous latent scores on the other hand. This combination 
of properties suggested the following theoretical background: originally continuous data did undergo 
dichotomization in the process of the assessment of a latent construct. Since dichotomization was likely to create 
different degrees of easiness or difficulty and since a broad range of easiness or difficulty was found to be quite 
demanding to data analysis including a link transformation (Schweizer, 2013), such a range was considered as a 
good precondition for the projected comparisons and investigations. For detecting a possible effect of the sample 
size, as was necessary according to the third objective, three different sample sizes were generated: N = 300, 
1000 and 2000. Furthermore, the fourth objective required different numbers of variables for representing the 
latent variable. In accordance to the practices of scale construction six variables were considered to be close to 
the lower limit whereas twelve variables were accepted as good. 
2.1 Data Generation and Analysis  
Two uniform patterns establishing relationships among six or twelve variables respectively served the 
construction of the simulated data. These patterns were correlation matrices including the number .32 as 
off-diagonal elements. This number was expected to give rise to completely standardized factor loadings of .57 
(Note. The expected size was .5656 that was selected because it could be expected to create a small degree of 
variability when rounding the estimated factor loadings. Such variability should prevent excessively high values 
in using Hartley’s Fmax test; for more details see below). 
In the first step continuous random data following the normal distribution were generated: X ~ N(0,1). The 
random data were arranged as matrices showing the following combinations of numbers of rows and columns: 
300 x 12, 1000 x 12, 2000 x 12, 300 x 6, 1000 x 6 and 2000 x 6. Since 200 replications were considered 
sufficient for the cells of a design (Bandalos & Gagné, 2012), this number of matrices was generated for each 
combination. In the second step the continuous random data were recombined by means of weights computed for 
the two uniform patterns. These weights were achieved by means of a procedure described by Jöreskog and 
Sörbom (2001, p. 159). In the third step the continuous data were transformed into dichotomous data: Y ~ 
Bin(2,p). In order to arrive at a broad range of easiness or difficulty, different proportions were selected for the 
columns of the matrices. 
The transformation of continuous into dichotomous data in the third step was conducted according to the 
following proportions: .900, .827, .755, .682, .609, .536, .464, .391, .318, .245, .173 and .100 (i.e., number of 
selected events / number of all events) for matrices including twelve columns. In the first column of a matrix the 
10 percent smaller numbers were transformed into zeros and the 90 percent larger numbers into ones. In the 
second column zeros replaced the 17.3 percent smaller numbers whereas the other numbers were changed into 
ones. The third to twelfth columns were processed in the same way in considering the other proportions of the 
list in corresponding order. In the matrices including six columns the proportions for splits 
were: .900, .740, .580, .420, .260 and .100. Subsequently, the dichotomous data served the computation of 
tetrachoric correlations and probability-based covariances. Additionally customary covariances were computed 
from the continuous data. 
The objectives of the study required the consideration of four methods of conducting confirmatory factor 
analysis. These methods differed in characteristics of the model of measurement and the type of input matrix. 
The first method combined the congeneric model of measurement (Jöreskog, 1971) and tetrachoric correlations 
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as input (TetCon). The combination of the congeneric model comprising weights and probability-based 
covariances as input gave rise to the second method. The second model was addressed as weighted congeneric 
model (PbCWCon). Free factor loadings meaning free discriminability characterized the models of measurement 
of the first and second methods. The other methods differed from the described methods by using constrained 
factor loadings instead of free ones. Because of the assumed uniformity of the relationships among the variables 
induced by the uniform patterns, equal-sized constraints were necessary. The modification gave rise to the third 
method characterized by the constrained model of measurement and tetrachoric correlations as input (TetTau) 
and the fourth method that also included weighted and constrained factor loadings and probability-based 
covariances as input (PbCWTau). 
Since all the methods included provisions regarding deviations from the normal distributions, the parameter 
estimation was conducted by means of the maximum likelihood method. The following fit indexes were 
considered in the evaluation of the results: chi-square, degrees of freedom, normed chi-square, RMSEA, SRMR, 
CFI, TLI and GFI. Cut-offs provided by Kline (2005) and Hu and Bentler (1999) served the evaluation of the 
results (RMSEA ≤ .06, SRMR ≤ .08, CFI ≥ .95, TLI ≥ .95, GFI ≥ .90). Because of the known dependence of 
chi-square on sample size two different cut-offs regarding normed chi-square were taken into consideration (2 
for N = 300 and 5 for N = 1000 and larger). Means and standard deviations were computed for each set of 200 
matrices. In order to facilitate the reading of the tables and the aggregation of the results, the superscript “M” 
was added to a mean if this mean proved to be good in comparison to the corresponding cut-off. If additionally 
the confidence interval meaning 95 percent of the distribution of the observed results was beyond the cut-off in 
the range of good results, it was replaced by the superscript “CI”. For arriving at conclusions extending to 
different methods and data characteristics, the “M”s and “CI”s were counted in giving the weight 1.0 to each “M” 
and 2.0 to each “CI”. Finally the counts were used for comparisons. 
The accuracy of the completely standardized factor loadings was not only important regarding freely estimated 
factor loadings but also constrained ones because the average size of factor loadings varied as a result of 
parameter estimation and because of the item-specific contributions of error in standardization. Two aspects 
marked the investigation of the completely standardized factor loadings. First, the absence of the dependence on 
the item marginal (Kubinger, 2003; Torgerson, 1958) was checked. Dependence on the item marginal was 
obvious from a systematic deviation of the observed factor loadings from the expected factor loadings. In the 
simulated data equal sizes of the completely standardized factor loadings signified the absence of this kind of 
dependence. This check was conducted by means of Hartley’s Fmax test. Since the same size was expected for 
each completely standardized factor loading, the variances of these factor loadings obtained in investigating 
dichotomous data at the level of the means were compared with those achieved in investigating continuous data 
at the level of the means. In this check the Fmax statistic served more as a descriptive statistic than a significance 
test. Since the variability of the means observed in continuous data that served as denominator of Fmax was 
extremely small, it appeared to be overly sensitive to deviations. Second, the general size of the completely 
standardized factor loadings was checked. 
2.2 The Results of Investigating Model-data Fit  
In this section the results regarding model-data fit are presented. At first the results of investigating the covarian 
ce matrices computed from continuous data following the normal distribution by means of the congeneric model  
 
Table 1. Means and Standard Deviations (in Parentheses) of the Fit Results for the Continuous Date in Different 
Sample Sizes (NP = 300, 1000, 2000) and Numbers of Variables (NV = 6, 12) Based on 200 Matrices  

Input  NV NP  
2 df Normed
2 RMSEA SRMR CFI TLI GFI 

Covariance 12 300 54.0 (10.3) 54 1.0CI(0.2) .012CI(0.02) .033CI(0.00) 1.00CI(0.00) 1.00CI(0.01) 0.97CI(0.01) 

Covariance 12 1000 53.4 (10.9) 54 1.0CI(0.2) .012CI(0.02) .018CI(0.00) 1.00CI(0.00) 1.00CI(0.00) 0.99CI(0.00) 

Covariance 12 2000 54.8 (10.9) 54 1.0CI(0.2) .004CI(0.01) .013CI(0.00) 1.00CI(0.00) 1.00CI(0.00) 1.00CI(0.00) 

Covariance 6 300 9.1(4.8) 9 1.0CI(0.5) .016CI(0.01) .025CI(0.01) 1.00CI(0.01) 1.00CI(0.02) 0.99CI(0.01) 

Covariance 6 1000 9.2 (4.5) 9 1.0CI(0.5) .008CI(0.01) .014CI(0.01) 1.00CI(0.00) 1.00CI(0.00) 1.00CI(0.00) 

Covariance 6 2000 8.9 (4.0) 9 1.0CI(0.4) .006CI(0.01) .010CI(0.00) 1.00CI(0.00) 1.00CI(0.00) 1.00CI(0.00) 
Note. CI The 95 percent confidence interval indicates good fit. M The mean indicates good fit. 
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of measurement are presented. They serve as a comparison level for the results obtained from dichotomous data, 
especially for gaining variances that are necessary for computing the Fmax statistic. 
The results presented in the upper half of Table 1 stem from matrices including 12 columns and the results of the 
lower half from matrices including 6 columns. The numbers that are not in parentheses are means and the 
numbers written in parentheses are standard deviations. All fit statistics obtained in investigating the continuous 
data and presented in this Table revealed that there was an overall good model-data fit. In all cases the 
confidence interval was completely below or above the corresponding cut-off. Furthermore, the sample size 
showed virtually no influence on model-data fit. Even the chi-square statistic did not display an influence of the 
sample size. Only the chi-squares observed in matrices including either 6 or 12 columns differed from each other. 
Matrices including twelve columns led to the larger chi-squares. 
Table 2 provides the results observed in using the four methods described in the method section for investigating 
the matrices of dichotomous data comprising the larger number of columns (NV = 12). 
 
Table 2. Means and Standard Deviations (in Parentheses) of the Fit Results Obtained for Binary Data in 
Considering Different Parameters Types (PType), Link Types (LType) and Sample Sizes (NP = 300, 1000, 2000) 
Based on 200 Matrices Including 12 Columns 

PType LType  NP  � 
2 df Normed
2  RMSEA SRMR CFI TLI GFI 

Free1 TCorr3 300  343.3(198.2) 54 6.4 (3.7) .124 (0.05) .080M(0.02) 0.77 (0.17) 0.72 (0.21) 0.85  (0.08) 

  1000  418.4(293.5) 54 7.7 (5.4) .078 (0.02) .047CI(0.01) 0.94 (0.05) 0.93 (0.06) 0.94M(0.04) 

  2000  346.3(163.6) 54 6.4 (3.0) .051M(0.01) .031CI(0.00) 0.98CI(0.01) 0.97M(0.02) 0.97CI(0.01) 

 WCov4 300  71.2 (12.5) 54 1.3CI(0.2) .016CI(0.01) .025CI(0.00) 0.99CI(0.02) 0.99CI(0.02) 0.99CI(0.01) 

  1000  71.2 (13.8) 54 1.3CI(0.3) .016CI(0.01) .025CI(0.00) 0.99CI(0.01) 0.99CI(0.01) 0.99CI(0.01) 

  2000  78.3 (14.6) 54 1.5CI(0.3) .014CI(0.01) .019CI(0.00) 0.99CI(0.00) 0.99CI(0.00) 0.99CI(0.00) 

Fixed2 TCorr3 300  334.9(154.5) 65 5.2 (2.4) .111 (0.04) .097(0.02) 0.75 (0.18) 0.75 (0.18) 0.85  (0.06) 

  1000  418.3(212.3) 65 6.4 (3.3) .072 (0.02) .058CI(0.01) 0.94 (0.05) 0.93 (0.05) 0.94  (0.03) 

  2000  369.1(144.6) 65 5.7 (2.2) .048M(0.01) .039CI(0.01) 0.98CI(0.01)  0.98CI(0.01) 0.97CI(0.01) 

 WCov4 300  72.5 (13.5) 65 1.1CI(0.2) .018CI(0.01) .057CI(0.01) 0.98M(0.02) 0.99CI(0.02) 0.96CI(0.01) 

  1000  94.9 (15.1) 65 1.5CI(0.2) .021CI(0.01) .039CI(0.00) 0.98CI(0.01) 0.98CI(0.01) 0.98CI(0.00) 

  2000  128.1 (17.6) 65 2.0CI(0.3) .022CI(0.00) .034CI(0.00) 0.98CI(0.00) 0.98CI(0.00) 0.99CI(0.00) 
Note. 1 Free factor loadings. 2 Constrained factor loadings. 3 Tetrachoric correlations. 4 Weights and 
probability-based covariances. CI The 95 percent confidence interval indicates good fit. M The mean indicates 
good fit. 
 
The first to sixth rows include results due to free factor loadings (TetCon, PbCWCon) and the seventh to twelfth 
rows contain results achieved by means of constrained factor loadings (TetTau, PbCWTau). The results of the 
second set of rows virtually mirrored the results of the first set of rows. The counting of the weighted “M”s and 
“CI”s of the first and second sets led to scores of 48 and 46 for free and constrained factor loadings respectively. 
These numbers indicated that there was virtually no effect due to the type of factor loadings. In contrast, the 
results that were specific for the types of link transformation suggested dissimilarity. The majority of the results 
based on tetrachoric correlations (TetCon, TetTau) reported in the first to third and seventh to ninth rows 
indicated a bad model-data fit whereas the link transformation by weights and probability-based correlations 
(PbCWCon, PbCWTau) reported in the fourth to sixth and tenth to twelfth rows signified good degrees of model 
fit. The corresponding overall scores were 23 and 71. There was also an effect of the sample size. The scores for 
the sample sizes of 300, 1000 and 2000 were 24, 29 and 41 respectively. According to these scores the increase 
in sample size improved the model fit. 
Furthermore, matrices comprising the smaller number of columns (NV = 6) were also investigated in order to 
find out whether the number of variables was important regarding model fit. The investigation of the matrices 
comprising 6 columns yielded the results of Table 3. 
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Table 3. Means and Standard Deviations (in Parentheses) of the Fit Results Obtained for Binary Data in 
Considering Different Parameters Types (PType), Link Types (LType) and Sample Sizes (NP = 300, 1000, 2000) 
Based on 200 Matrices Including 6 Columns 

PType LType NP  � 
2 df Normed
2 RMSEA SRMR CFI TLI GFI 

Free1 TCorr3 300  129.1(101.2) 9 14.3(11.2) .192 (0.08) .115M(0.07) 0.80 (0.13) 0.66 (0.22) 0.88 (0.08) 

  1000  83.6  (91.1) 9 9.3 (10.1) .082 (0.04) .040CI(0.02) 0.96 (0.04) 0.93 (0.07) 0.97M(0.03) 

  2000  75.2  (48.1) 9 8.4 (5.3) .057M(0.02) .027CI(0.01) 0.98CI(0.01) 0.96M(0.02) 0.99CI(0.01) 

 WCov4 300  9.4  (4.6) 9 1.0CI(0.5) .017CI(0.02) .032CI(0.01) 0.98CI(0.02) 1.00CI(0.03) 0.99CI(0.01) 

  1000  11.5  (5.5) 9 1.3CI(0.6) .014CI(0.01) .019CI(0.00) 0.99CI(0.01) 0.99CI(0.01) 1.00CI(0.00) 

  2000  14.2  (6.9) 9 1.5CI(0.8) .015CI(0.01) .015CI(0.00) 0.99CI(0.00) 0.99CI(0.01) 1.00CI(0.00) 

Fixed2 TCorr3 300  187.5(138.0) 14 13.4 (9.9) .185 (0.09) .132 (0.05) 0.59 (0.32) 0.53 (0.44) 0.84 (0.10) 

  1000  135.6(218.1) 14 9.7 (15.6) .079 (0.05) .061M(0.03) 0.93 (0.11) 0.93 (0.11) 0.96M(0.05) 

  2000  93.6  (50.6) 14 6.7 (3.6) .051M(0.02) .040CI(0.01) 0.97CI(0.02) 0.97CI(0.02)  0.98CI(0.01) 

 WCov4 300  17.4(6.2) 14 1.2CI(0.4) .025CI(0.02) .053CI(0.01) 0.96M(0.04) 0.97M(0.06) 0.98CI(0.01) 

  1000  25.3(7.2) 14 1.8CI(0.5) .027CI(0.01) .037CI(0.01) 0.97CI(0.02) 0.97CI(0.02) 0.99CI(0.00) 

  2000  39.7(10.6) 14 2.8CI(0.8) .029CI(0.01) .033CI(0.00) 0.97CI(0.01) 0.96CI(0.01) 0.99CI(0.00) 

Note. 1 Free factor loadings. 2 Constrained factor loadings. 3 Tetrachoric correlations. 4 Weights and 
probability-based covariances. CI The 95 percent confidence interval indicates good fit. M The mean indicates 
good fit. 
 
This Table shows the same structure as Table 2. The results reported in this Table proved to be very similar to the 
results reported in Table 2. For example, the overall score of Table 2 was 94 and of this Table 93. Only the 
chi-squares included in the two Tables differed from each other considerably. However, this kind of difference 
was not unexpected and not considered as a problem regarding model fit. 
Because of the high degree of similarity of results of the two Tables the final evaluation extended to the results of 
both Tables. First the scores characterizing free and constrained factor loadings (96 and 91) were compared by 
means of the chi-square test. The difference was not substantial (
2 = 0.13, df = 1, n.s.). Second the two ways of 
conducting the link transformation that yielded scores of 141 and 46 were compared and found to differ from 
each other (
2 = 48.26, df = 1, p < .05). Third there were the three sample sizes giving rise to the scores of 47, 58 
and 82. The chi-square test indicated a significant difference (
2 = 10.27, df = 2, p < .05). Fourth the scores 
characterizing the different numbers of variables were compared. They did not differ from each other (
2 = 0.005, 
df = 1, n.s.). Because of the substantial differences regarding the ways of conducting the link transformation and 
the sample sizes the two types of factor loadings were also compared separately for each way of conducting the 
link transformation and for each sample size. In none of these comparisons a significant difference was observed 
(regarding the ways of conducting the link transformation: p = .77, p = .80; different sample sizes: p = .47, p 
= .79, p =.82). 
In sum, constrained and free factor loadings as the two types of discriminability in confirmatory factor analysis 
do not differ from each other regarding model fit if the model is correct. Furthermore, the way of conducting the 
link transformation and the sample size influence model fit whereas the number of variables does not. 
2.3 The Results of Investigating Accuracy in Parameter Estimation  
In this section the results of investigating the accuracy of the completely standardized factor loadings are 
reported. The means and standard deviations of the completely standardized factor loadings achieved in 
investigating the covariance matrices computed from continuous data are presented in Table 4. 
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Table 4. Means and Standard Deviations (in Parentheses) of the Completely Standardized Factor Loadings 
Obtained for the Covariance Matrices (Mat) Computed from Continuous Data in Different Sample Sizes (NP = 
300, 1000, 2000) and Matrices Including 6 or 12 Columns Based on 200 Matrices 
Matrix type NP  Position of factor loading    
  1 2 3 4 5 6 7 8 9 10 11 12 
Covariance 300 .56(.05) .56(.04) .57(.05) .57(.04) .56(.05) .56(.04) .56(.05) .57(.04) .57(.05) .56(.04) .57(.05) .56(.04) 
Covariance 1000 .57(.02) .56(.02) .57(.02) .56(.03) .57(.03) .57(.02) .56(.02) .56(.03) .57(.02) .56(.03) .57(.02) .56(.02) 
Covariance 2000 .56(.02) .57(.02) .56(.02) .57(.02) .57(.02) .57(.02) .57(.02) .57(.02) .57(.02) .57(.02) .57(.02) .57(.02) 
Covariance 300 .56(.05) .55(.05) .57(.05) .57(.05) .56(.05) .56(.05)       
Covariance 1000 .57(.03) .56(.03) .57(.03) .57(.03) .57(.03) .57(.03)       
Covariance 2000 .56(.02) .56(.02) .56(.02) .57(.02) .57(.02) .57(.02)       
The means varied between .55 and .57. This kind of variation was expected because of the necessity of rounding 
parameter estimates. The sample size did not show any influence on the variability of the means nor did the 
number of variables. However, a decrease of the standard deviation of the individual results from 0.05 (N = 300) 
to 0.02 (N = 2000) was observed when the sample size increased. 
The results obtained in investigating the completely standardized factor loadings computed for the matrices of 
binary data including 12 columns are presented in Table 5. The first to third rows of this Table provide the 
completely standardized factor loadings for the tetrachoric correlations in combination with the congeneric model 
of measurement (TetCon). In the sample size of 300 the mean factor loadings varied between .49 and .57, in 1000 
between .56 and .59 and in 2000 between .56 and .57. Furthermore, the Fmax test results indicated deviations from 
the expected equality of the completely standardized factor loadings for the smaller sample sizes (N = 300: 
Fmax(2,11) = 167.37, p < .05; N = 1000: Fmax(2,11) = 22.79, p < .05; N = 2000: Fmax(2,11) = 1.15, n.s.). 
Quite different results were observed for the tetrachoric correlations in combination with the model including 
constrained factor loadings (TetTau) (see the fourth to sixth rows of Table 5). The mean factor loadings varied 
between .53 and .54 when the sample size was 300. In the other sample sizes the mean factor loading was 
always .57. The Fmax statistic indicated a large deviation from the expected equality only for the sample size of 
300 (N = 300: Fmax(2,11) = 133.37, p < .05; N = 1000: Fmax(2,11) = 0.00, n.s.; N = 2000: Fmax(2,11) = 0.00, n.s.). 
The completely standardized factor loadings obtained on the basis of probability-based covariances by means of 
the congeneric model (PbCWCon) are reported in the seventh to ninth rows of Table 5. In the sample sizes of 
300 and 1000 the means varied between .56 and .58 and in the sample size of 2000 between .57 and .58. 
Investigating the dependence on the item marginal revealed significant deviations (N = 300: Fmax(2,11) = 9.06, p 
< .05; N = 1000: Fmax(2,11) = 5.13, p < .05; N = 2000: Fmax(2,11) = 3.71, p= .05). In the case of the sample size 
of 2000 the ratio was only marginally significant, and in the other cases the Fmax values were considerably 
smaller than the Fmax values found for tetrachoric correlations. 
 
Table 5. Means and Standard Deviations (in Parentheses) of the Completely Standardized Factor Loadings 
Computed from Binary Data in Different Sample Sizes (NP= 300, 1000, 2000) and Matrices Including 12 
Columns Based on 200 Matrices in Considering Different Parameters Types (PType) and Link Types (LType) 
PType/ NP Position of factor loading    
LType  1 2 3 4 5 6 7 8 9 10 11 12 
Free1 / 300 .57(.16) .53(.15) .51(.12) .50(.12) .50(.11) .49(.10) .50(.11) .49(.11) .49(.11) .50(.12) .54(.14) .56(.16) 
TCorr3  1000 .59(.08) .56(.05) .57(.05) .56(.04) .56(.04) .56(.04) .56(.04) .56(.04) .56(.04) .57(.05) .56(.05) .59(.08) 
 2000 .57(.04) .57(.04) .56(.03) .56(.03) .56(.03) .57(.03) .56(.03) .57(.03) .57(.03) .57(.03) .57(.03) .57(.04) 
Fixed2/ 300 .54(.08) .53(.08) .53(.08) .53(.08) .53(.08) .53(.07) .53(.07) .53(.07) .53(.07) .53(.07) .53(.07) .53(.07) 
TCorr3 1000 .57(.05) .57(.04) .57(.04) .57(.04) .57(.04) .57(.04) .57(.04) .57(.04) .57(.04) .57(.04) .57(.04) .57(.05) 
 2000 .57(.02) .57(.01) .57(.01) .57(.01) .57(.01) .57(.01) .57(.01) .57(.01) .57(.01) .57(.01) .57(.01) .57(.02) 
Free1 / 300 .56(.09) .57(.08) .57(.07) .58(.06) .58(.07) .58(.06) .58(.07) .58(.07) .57(.07) .57(.07) .58(.08) .57(.09) 
WCov4 1000 .57(.05) .56(.04) .57(.04) .58(.03) .58(.03) .58(.04) .58(.04) .58(.03) .58(.04) .58(.04) .57(.04) .57(.04) 
 2000 .57(.03) .57(.03) .57(.03) .57(.03) .58(.02) .58(.03) .58(.02) .58(.03) .57(.03) .57(.03) .57(.03) .57(.03) 
Fixed2/ 300 .57(.02) .58(.02) .58(.02) .59(.02) .59(.02) .59(.02) .59(.02) .59(.02) .59(.02) .58(.02) .58(.02) .57(.02) 
WCov4 1000 .57(.01) .58(.01) .58(.01) .59(.01) .59(.01) .59(.01) .59(.01) .59(.01) .59(.01) .58(.01) .58(.01) .57(.01) 
 2000 .57(.01) .58(.01) .58(.01) .58(.01) .59(.01) .59(.01) .59(.01) .59(.01) .58(.01) .58(.01) .58(.01) .57(.01) 
Note. 1 Free factor loadings. 2 Constrained factor loadings. 3 Tetrachoric correlations. 4 Weights and 
probability-based covariances. 
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Finally, there were the results achieved in investigating probability-based covariances in considering the model 
with constrained factor loadings (PbCWTau) (see the tenth to twelfth rows of Table 5). There was variation of 
the means between .57 and .59 in all sample sizes. Furthermore, the investigations of the equality of the factor 
loadings by means of the Fmax test revealed substantial differences for all sample sizes (N = 300: Fmax(2,11) = 
7.69, p < .05; N = 1000: Fmax(2,11) = 7.29, p < .05; N = 2000: Fmax(2,11) = 7.19, p < .05). Given the 
significance of the Fmax values, again it needs to be highlighted that these Fmax values were small in comparison 
to the values observed for tetrachoric correlations computed from the smaller datasets. 
Next the degree of correspondence of the overall observed and expected sizes of the mean factor loadings was 
evaluated in considering the different sample sizes. The tetrachoric correlations in combination with the 
congeneric model of measurement (TetCon) led to the mean factor loadings of .52, .57 and .57 (SD = 0.12, 0.05, 
0.03) for the sample sizes of 300, 1000 and 2000. The replacement of the congeneric model by the model with 
constrained factor loadings (TetTau) yielded mean factor loadings of .53, .57 and .57 (SD = 0.07, 0.04, 0.01) for 
the sample sizes of 300, 1000 and 2000. The investigation of probability-based covariances in considering the 
congeneric model (PbCWCon) yielded mean factor loadings of .57 (SD = 0.07, 0.04, 0.03). These covariances in 
combination with the model including constrained factor loadings (PbCWTau) led to mean results of .58 (SD = 
0.02, 0.01, 0.01) for all the sample sizes. 
The matrices with 6 columns were investigated in exactly the same way as the matrices with 12 columns. The 
results of these investigations are included in Table 6. The results of the first to third rows were obtained using 
tetrachoric correlations in combination with the congeneric model of measurement (TetCon). In the sample size 
of 300 the results are based on 72 percent of the 200 matrices only. The other matrices were eliminated since the 
completely standardized factor loadings were either larger than 1.0 or smaller than -1.0. In the remaining 
matrices the mean factor loadings varied between .52 and .61. In the sample size of 1000 the means were 
between .55 and .60 and in 2000 between .56 and .57. Furthermore, the Fmax test results indicated deviations 
from the expected equality of the completely standardized factor loadings for the smaller sample sizes (N = 300: 
Fmax(2,5) = 221.71, p < .05; N = 1000: Fmax(2,5) = 94.87, p < .05; N = 2000: Fmax(2,5) = 3.38, n.s.). 
 
Table 6. Means and Standard Deviations (in Parentheses) of the Completely Standardized Factor Loadings 
Computed from Binary Data in Different Sample Sizes (NP = 300, 1000, 2000) and Matrices Including 6 
Columns Based on 200 Matrices in Considering Different Parameters Types (PType) and Link Types (LType) 
PType/ NP  Position of factor loading   

LType   1  2  3  4  5  6 

Free1 / 3005  .61(.21)  .53(.13)  .52(.13)  .52(.14)  .52(.14)  .59(.20) 
TCorr3 1000  .60(.12)  .55(.07)  .55(.07)  .55(.07)  .55(.08)  .60(.10) 

 2000  .57(.05)  .56(.04)  .56(.04)  .57(.04)  .57(.04)  .57(.06) 

Fixed2 / 300  .61(.09)  .58(.06)  .58(.06)  .58(.06)  .58(.06)  .60(.08) 
TCorr3 1000  .58(.04)  .57(.03)  .57(.03)  .57(.03)  .57(.03)  .58(.03) 

 2000  .57(.02)  .57(.02)  .57(.02)  .57(.02)  .57(.02)  .57(.02) 

Free1 / 300  .55(.11)  .56(.09)  .58(.08)  .58(.09)  .57(.09)  .56(.11) 
WCov4 1000  .57(.06)  .57(.05)  .58(.04)  .58(.05)  .57(.05)  .57(.05) 

 2000  .56(.03)  .56(.03)  .58(.03)  .58(.03)  .57(.03)  .57(.04) 

Fixed2 / 300  .55(.03)  .56(.03)  .56(.03)  .56(.03)  .56(.03)  .55(.03) 
WCov4 1000  .55(.02)  .56(.02)  .57(.02)  .57(.02)  .56(.02)  .55(.02) 

 2000  .55(.01)  .56(.01)  .56(.01)  .56(.01)  .56(.01)  .55(.01) 
Note. 1 Free factor loadings. 2 Constrained factor loadings. 3 Tetrachoric correlations. 4 Weights and 
probability-based covariances. 5 Datasets with factor loading >1.0 or < -1.0 were excluded leading to a reduction 
by 28 percent. 
 
The replacement of the congeneric model by the model with constrained factor loadings (TetTau) led to quite 
different results (see the second part of Table 6). The mean factor loadings varied between .58 and .61 when the 
sample size was 300 and between .57 and .58 when the sample size was 1000. In the other sample size the mean 
was always .57. It indicated a deviation from the expected equality for the smallest sample size only (N = 300: 
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Fmax(2,5) = 22.72, p < .05; N = 1000: Fmax(2,5) = 1.11, n.s.; N = 2000: Fmax(2,5) = 0.00, n.s.). Furthermore, the 
lack of variance in the sample size of 2000 signified that there was no deviation from the equality in size. 
The investigation of the completely standardized factor loadings achieved for probability-based covariances and 
the congeneric model (PbCWCon) led to the results reported in the third part of Table 6. In the sample sizes of 
300 there was variation between .55 and .58, in the sample size of 1000 between .57 and .58 and in the sample 
size of 2000 between .56 and .58. The investigation of the dependence on the item marginal revealed two 
substantial deviations (N = 300: Fmax(2,5) = 63.13, p < .05; N = 1000: Fmax(2,5) = 4.23, n.s., N = 2000: Fmax(2,5) 
= 14.10, p < .05). 
The investigation of probability-based covariances in considering the model with constrained factor loading 
(PbCWTau) yielded the results reported in the last part of Table 6. There was variation of the mean factor 
loadings between .55 and .56 in sample sizes of 300 and 2000 and between .55 and .57 in the sample size of 
1000. Furthermore, the investigation of the equality of the factor loadings by means of the Fmax test revealed no 
substantial deviation from the expected equal sizes (N = 300: Fmax(2,5) = 3.45, n.s.; N = 1000: Fmax(2,5) = 2,96, 
n.s.; N = 2000: Fmax(2,5) = 2.80, n.s.). 
Finally, there were the results of investigating the correspondence of the observed and expected sizes across 
different sample sizes. The tetrachoric correlations in combination with the congeneric model of measurement 
(TetCon) led to the mean factor loadings of .55, .57 and .57 (SD = 0.16, 0.09, 0.04) for the sample sizes of 300, 
1000 and 2000 respectively. The replacement of the congeneric model by the model with constrained factor 
loadings (TetTau) yielded mean factor loadings of .59, .57 and .57 (SD = 0.07, 0.03, 0.02) for the sample sizes of 
300, 1000 and 2000 respectively. In probability-based covariances in combination with the congeneric model 
(PbCWCon) all mean factor loadings were .57 (SD = 0.09, 0.05, 0.03). These covariances in combination with 
the model with constrained factor loadings (PbCWTau) led to .56 (SD = 0.03, 0.02, 0.01) for all sample sizes. 
In sum, according to the results presented in the Tables 5 and 6 the constrained factor loadings showed 
consistency instead of variability in seven out of twelve cases whereas the free factor loadings in only three out 
of twelve cases. In six out of twelve cases the link transformation by means of tetrachoric correlations led to 
consistent factor loadings; otherwise consistency was found in four out of twelve cases. Regarding sample size 
there was mainly variability in the smallest sample size and mostly consistency in the largest one. 
Most of the mean factor loadings were quite close to the expected factor loadings. Only the mean factor loadings 
computed for the smallest sample size and on the basis of tetrachoric correlations showed major deviations from 
the expected value. Furthermore, it needs to be highlighted that there were considerable differences regarding 
variability. In most cases constrained factor loadings were associated with smaller standard deviations than free 
factor loadings. Furthermore, the standard deviations of factor loadings due to weights and probability-based 
covariances were smaller than those of factor loadings based on tetrachoric correlations. 
3. Discussion 
Regarding the main objective that is the comparison of constrained and free discriminability realized as 
constrained and free factor loadings in confirmatory factor analysis, the outcomes of the simulation study 
suggest no difference. Constrained and free discriminability do not differ according to the degrees of model fit, 
and the result of the investigation of the parameter estimates is also suggestive of similarity instead of difference. 
In a way these results are surprising since free factor loadings mean a high degree of adaptability to specificities 
of data whereas the other type of factor loadings does not (Graham, 2006). The reason for the good performance 
despite constrained discriminability is presumably the correctness of the model. In correct models the kind of 
discriminability does not count. The difference between high and low adaptability to specificities of data is 
presumably important if the model is only partly correct. Consequently, constrained discriminability is more than 
just an option that is useful for overcoming estimation problems, as has been suggested (Millsap, 2001). 
Furthermore, constrained discriminability already proved useful in research using models designed to represent 
precise structural expectations (Schweizer, 2006a, 2006b, 2008, 2009). 
The comparison of the results observed for different sample sizes reveals differences between the two ways of 
conducting the link transformation. The effect of the sample size is minor when the transformation employs 
weights in combination with probability-based covariances. But it is large for the transformation by means of 
tetrachoric correlations. Presumably the use of robust maximum likelihood estimation (Bryant & Satorra, 2012; 
Satorra & Bentler, 1994) would have improved the results, as is recommended by Finney and DiStefano (2013). 
However, there is also reason for abstaining from robust estimation. The first reason is that the theoretical 
foundation of tetrachoric correlation is so conclusive that insufficiency is not expected. Another reason is 
provided by the results of the simulation study for the largest sample size that are really good. 
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Finally, there are the results of investigating the possible dependence on the item marginals (Kubinger, 2003; 
Torgerson, 1958) by means of the Fmax test. These results are important since the absence of dependence on the 
item marginals is indicative of the appropriateness of the link transformation. Without a link transformation the 
factor loadings of very easy and very difficult items are likely to differ considerably from those of the other items 
and give rise to a large variance. On the other hand a large variance assigned to the numerator of the Fmax test 
leads to a large Fmax value that means significance. However, significance needs to be interpreted with caution 
since the variance of the denominator of the Fmax test that is computed from continuous data is very small. 
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Abstract

Doubt, choice and probability.

Bayesian probability computation is the most significant approach in complex maths interesting for all logicians

to understand. And its computation and reasoning set us new priorities in further attempts to develop a more

human-type reasoning, where ’possible’ and ’probable’ scales are matched and sorted out on subjective basis.

We use Bayesian computation models, Finetti’s principle of free observation, dynamic probability, complex num-

ber equations, and other formal-logical principles in order to base our own modeling and sub-branching.

We aim to understand relation of the computation frequency in probability inference and in imaginary probability

computation. And how the Bayesian inference principle could be disturbed by the possibilities of artificial ’doubt’

of imaginary probability. We try to define the common patterns of complex number behavior in probability mod-

eling, and the modeling of such probability in i numbers, so we could say one day that the probability of having a

cancer is 1.99 in for 100, and the hypothetical probability of it is none (0).

The same subjective manner same subjective manner of a culprit who prefers an idea, or an image over logic,

undertaking it as a guidance for his actions; a magnificent specter of a writer, a diamond of an artist and all those

things which lure them all to the same jail of a culprit - the split of decision.

Keywords: Bayesian inference, imaginary number probability, Bayes theorem, conditional probability, imaginary

probability, concurrent probability, inference

1. Imaginary Number Probability

1.1 Abstract Understanding

We understand imaginary unit of i as of any possible data that isn’t included in factual observation by Bayesian

inference, while the i2, the imaginary number, or the ’non-existent’ number is opposite - it is a possibility that

could have happened but never ’will’ or ’would’ have.

Bayesian inference may not stipulate whether the iP(A|B) is possible in equation, therefore, we have to expand the

probability course in terms of abstract conditioning in the (A|B) probability in where certain occasion may bring

out hypothetical conditions of X1,2,3,....n.

Condition 1→ Supplication = Value of Condition 1

So the condition of (A|B) would be evaluated by iP(A|B) as a valid one, and not only from numerical standpoint,

but from the ’imaginary probability’, from the cognitive ’intuition’ if we may say so.

1.2 The Hypothesis of Imaginary Inference

We understand Bayesian inference in the complexity of statistical circumspection in decimal numbers of data

withdrawal, but not as a dynamic variation of matching between the:

• most probable

• least probable

• possibly probable options,
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Figure 1

which are presumably superficial levels and would rather delay inference.

That’s why we combine the principles of P(A|B) inference into its possible ’imaginary’ variances and ’imaginary’

observations of i.

Hypothesis→ proposition→ observation→ inference

Therefore, we have to simulate active inference-probability models on how a certain imaginary conclusion or value

is possible in mathematical variation of computational logic.

1.3 Bayes’ and de Finneti’s Observations in Boolean Variances

According to the principles of De Finetti, we suppose factual changes in Xi = 1 by observation, (Finetti’s ex-

changeability, more in Diaconis Persi (1977)), which comprises the premise for dynamic data observation in i
number system.

And that is why we have to prove logically the free state observation of i number in X1...Xn in Bayes’ conditional

probability and applicably in P(A|B) observation.

In order to gain the probability of assumption or the ’imaginary probability’, simultaneously with the Bayesian

inference process, we have to distinguish:

• precedent

• hypothesis

• type of data

See more on active observation in Robert F. Nau (2001).

2. Application of iP Probability in Complex Numbers

In order to predict the value, or the location, of any ’imaginary observation’ we have to refer to the existing data,

or to the existing precedent which we store in variances (v).

From the hypothesis to random observation we stipulate certain variances (v) into the frequency of them being

hypothetical|probable and hypothetical|improbable in subjective inference. Hence, we stipulate an (iv) variance

with the frequency (w) of logical requests (queries) in Bayesian P(A|B)
wi .

Respectively to the logic of computational differentiation there may be different values of inference: Xn ⊂ Yn ⊂
Zn � 0 in (x1, x2,.xn), and as for the calculus differentiations we may provide the f(x)=dx/dy differentiation in i;
thus providing the ’unknown’ integer into a

∏
of P(A)n or P(B)n in Boolean x,y data type.

We have to determine the velocity and the proportion of certain probability in iP in contra-pose to Bayesian

analysis, in order to make conditional probability less systematic and more dynamic for random observation.

For example:

We have 3 doors and 2 of them are closed, what is the probability of the 3rd door being open?

We would say 1/3, or 0.3, or (10%), however it may be different from the cognitive standpoint. So, we have to

presume reasonable factors over statistical, thence constructing stereotypical behavior in iP(A|B):
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Figure 2

The factual probability that the door is open is 90%, ’because Terrence said so’.

Here occurs: ”(B)=What if he lied?” and ”(A)=We trust Terrence”.

In either ’A’ or ’B’ options there would always be a variation of A1.2.3.4.5...n and B1.2.3.4.5...n.

We have to choose the iP(A|B) counter-argument supplication of P(A|B), in our example of 0.3i we stem out:

1

3
=

1(B)

3(A)
= 0.3(10%);

1

3
=

1(Bi)
3(A)

= 0.9(90%)

In where we take (A) as a factual info (’there are 3 doors’), and (B)n as a probable outcome.

Perhaps, we would understand such ’reverse’ from B to Bi(B → Bi), and from 0.03(10%) to 0.9(90%) in the

following supposition:

We suppose (B)i as an x (a possible state of observation), and infer as (B)i = xin:

x
3
· 100

3
=

100x
9

We get roughly 9 actual variances in 100x’s in observations. The further clarification may be related to the factual

data observation of the factual P(A|B), in order to get matched with the iP(A|B).

For example, in iP(A|B)→ P(A|B), regardless of its frequency (w), we may logically presume the closest value of

its probability.

2.1 The i2 Compromise of the i Value

Theorem 1 The i2 = −1 value while in x � 0, may be compromised - reversed.

Proof. If we depict the i2 in x tangent, we would depict it in both numerical values: positive and negative, proving

that imaginary number exists in whole numbers, hence it’s real.

While having negative value in i2
√−1

√−1, we always yield minus, unless we specify it in:

(−√x)i2 =
√

x

In where we have to find the positive x out of the negative value:

√
x√
x2
=

1√
x

(1)

√
x2

√
i2
=
√

x2 = x (2)

√−1

x−1
= ix (3)
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Therefore, we would yield a supposition of i2 = x, and x
i2 = y: (-1).

We may produce its results in (1) and (-1) for algebra and logic; in x (+), y(-) in trigonometry; and in P(A)=1,

P(B)=-1 in Bayesian inference.

2.2 We Combine and Transfer i2 Into i

If in P(A|B)
Xn we set negative value collocation with positive ones in:

P(A|B)v =
i(−i)

x
=

1

x
(4)

X =
P(A|B)

P(A)
(5)

iP(A|B) =
i(i2)

x − i
(6)

X =
P(A|B)

P(B)
(7)

In where iP yields no productive result in i, therefore, needs to be regarded only hypothetically (least probable) or

transferred into the P.

From here we try to achieve the similarity to the Bayesian probability model, only adding the i (sub)processing to

it.

In i =
√−1, we compose:

iP→ P =
√−1 =

1

x
(8)

1

x
=

P(A|B)P(A)

(x)
(9)

iP = P(Bi) (10)

P→ iP =
P(A|B)(A)

P(Bi)P(A)
(11)

We gain such order of alignment of i2 into i and vice versa. We do so in order to:

• avoid inapplicability of computation due to negative/non-existent value of it.

• have a substantiation of logical order.

• have comparison in the same system of C number (existing numbers).

• compare the inference difference in computational logic between P(A|B) and iP(A|B).

• manipulate further algebraic actions with the different constants, not only with P(A|B), but with other models

as well.

• sustain the role of i2 in probabilistic models. Make it plausible, make it existent, to make it real and rational

at the same time.

• and finally, we transfer a negative number of i2 into the i number, which is imaginary but existent (!), hence

compatible with Bayesian analysis computation.

2.3 Dynamic State Observation

We know that we’re containing the layer of the i2 into the computable value in dynamics, we may presume the

negative value of i in C computation of
√−1 = ix

n , so it would be a platform for C equations, where we presume the

i derivative of (A)|(B), whereas (A)=1, (the factual probability) in opposite to (B)=-1 of nonexistent probability:

• (A)=1; in iP

• (B)=-1; in iP
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in C computation:

i2 =
−1

x
→ (B) (12)

−1

xi2
=

1

x
→ (A) (13)

Lemma 1 If we presume an ’imaginary’ dynamic state observation in i
1x , then we would yield an ix probabilistic

reasoning in iP(A|B) of Xn computation.

Proof In i(x)
0.3
=

i(x)
3

, where x is the state of observation, could be drawn out as in the following (the ’3 doors’

example):
(ix) · (0.3)

(100%) · (3)
= 9 (14)

Hence, we proportion the bundle of the ’3 doors’ to the average index of 0.3 in proportion to the 100% of its

credibility.

And thus, the negative value of i shifts the observation of x in (ix → Xn), where we have only 9 variances of

imaginary probability instead of∞. So, we bind it into stereotypical reasoning.

WE HAVE 3 DOORS, ONE OF THEM IS ’X’. WE YIELD 9 PROBABILITIES ON WHY IT

COULD BE OPEN, AND ONLY 1 ON WHY IT COULD BE SHUT.

3. Inference Programming

3.1 The Limitation of P(A|B) in P[X,Y,Z]

A practical solution in i2 → i transfer in computation may lead us into tremendous suppositions of ’intuition

thinking’ and AI automated inferences.

Nevertheless, the intuition levels of Bayesian inference may be expressed in mathematical limitations of [X, Y,

Z] variables, accorded by the mathematical value of x (random observation, also Finetti) in i2 and i of iP(P(A|B).

Hence, may be principled in:
N∑

i=1

Xi → E[Xn], N → Nx,y ,z . (15)

Where the frequency (w) of iX may be reducible in i(P(A|B) in order to make the latter more intuitively limited,

N∑
iX=x(w)

Xi → iX[ixw], N → Nx,y ,z . (16)

N∑
i=1

Xi → E[Xn], N → Nx,y ,z . (17)

Whereas in iX = x(w) we may have [X,Y,Z] variables only, in where the reducibility of Xi is the reducibility of a

variable, but not a state of observation x.

Another example of it exists in the P(Yn, X1) in Carbonari A. and Giretti A. (2014), in where the static Y is

observed by the dynamic y, and the comprehension of P(X|Y) simply goes by the
∑

of variable in P(A|B).

However, even such distant observation is processed via the given data of P(X|Y) in where only X and Y observe

each over, and in where it is hard to grasp intuiting levels.

Eventually, we could limit ourselves to the existing conclusion of:

P→ ∞

But we may also have to understand it in:

P→ Nx,y ,z .
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And we’d rather proceed to the stochastic modeling in Bayesian inference computation, instead of calculating

infinite maths in maths. So, we pre-set:

P(X|A)

P(Y |B)

P(Z|v)

3.2 The iP(A|X)(B|Y) in Stochastic Computation

If we know that its inference reducible in Bayes’ conclusion (as well as in HMM) and multiplied via free-state

observation (Finetti) wouldn’t that logically preclude that there is a certain probability (Bayes’) and at the same

time uncertain variation of it (Finneti), hence no probability at all?

There wouldn’t, unless we specify the free variance v in a certain probability P(A|B) of an uncertain data iPn/iPx
in it.

It’s presumed, as soon as, any physical observation is already bound into [X, Y, Z] variances of multiple observa-

tions of x.

Confusing or not, the goal is to establish the iP and P probabilities in decimal and whole number computations.

And we still have to deal with negative value of i = i − 1 in it.

Is it anyhow possible to presume that P=-1? Perhaps in binomial equation of it:

n∑
k=−1

= 1→ P(A|X)i(B|Y)

P(B)
(18)

n∑
k

= −1→ P(A|X)(B|Y)

P(B)i
(19)

In the following we try to elaborate the computational indexi, whereas we set:

IF, P = i2,T HEN : P =′ −1′ (20)

P(A|B)

(A|B)i
= − 1,OR′1′ (21)

IN(A) = 100, (B) = 40; (Ai) = 80, (Bi) = 20. (22)

IF′1′,T HEN : P(A|X)→ P(A)

(B)
(23)

P(A|X) =
100

40
= 2.5; (24)

IF′1′,T HEN : iP(A|X)→ P(A)(Bi)

(B)
(25)

(100) · (80)

40
= 2.0; (26)

IF′ − 1′, T HEN : P(A|X)→ (B)

(A)
(27)

40

100
= 0.4; (28)

IF′ − 1′,T HEN : iP(A|X)→ (B)(Ai)

(A)
; (29)

(40) · (80)

100
= 3.2. (30)

In where the portability of P(A)n varies both in 2.5/2.0i and in P(A)n−1 in 0.4/3.2i; whereas we consider the

probability of 3.2i for iP(A)n more likable than 2.5 and 2.0i, because 3.2i as close to 2.5 as possible (the 0.4 is the

least probable).

3.3 Index Proof in iP(A|X)(B|Y)
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Figure 3

If we stipulate an average coefficient in A/Ai from the given data of P(A)n (2.5) and iP(A)−1 in (3.2i) on the same

matter:
P(A)(iP(A|X)

iP

in multiplication of:

2.5 · 3.2.
100(%)

= 0.08

while in:
2.5 · 2

100(%)
= 0.05

2.5 · 0.4
100(%)

= 0.01

There is a chance of imaginary probability to take place over the factual one.

The similar applies to (B)|(Bi) in:

P(B)(iP(B|Y)

iP

in where you may be given different data, but a similar decimal outcome.

Another step, is to initiate both probabilities in i and i2 as in P(A|B)n−1 and P(A|B)n of (A|X)(B|Y) and formulate

them in:

iP(A|X) =
P(B)i(P(A)

P(B)

iP(B|Y) =
P(A)i(P(B)

P(A)

and for the separate coefficients in A/Ai and B/Bi:

indexA/Ai =
P(A)(iP(A|X)

iP

indexB/Bi =
P(B)(iP(B|Y)

iP

3.4 Stochastic Reasoning and the i Index

If there is any data given to us by P(A|B) computation would that rouse any inference in data non-existent, in cases

of artificial doubt, inference or recollection?

We may always differentiate (A) on (B) and (B) on (A), but we wouldn’t ever get as close as possible to the

probabilistic reasoning, unless we require a mathematical product to do so:

57



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 4, No. 4; 2015

���������	
� ���������	�

�������

�����

����	�� ����	��

Figure 4

n∏
k=1

= 1→ P(A|X)(B|Y)i (31)

n∏
k

= −1→ iP
(
Y |i2

)
(X|A) (32)

Determining the two fields of probability (X|A)(Y |B), we may use them in a more dynamic way:

k∑
k=1

= 1→ P :
(A|X)(B|Y)

P(B)v
(33)

k∑
k

= −1→ P :
(A|X)i(B|Y)i

(A|X)v
(34)

In Paisley J. and Jordan M. (2012) this concept reviewed as the stochastic search in programming.

The other practical and foreseeable possibilities of iP in computability are traced in Claret G. and Sriram K. (2013)

models, in where the sequential Bayesian inference in programming is a subset of R numbers.

MatrixA
MatrixB

→ Variation→ Observation→ In f erence

3.5 Inference and the Frequency

In conditional probability modeling we may express the variance/var/(v) in mathematical frequency (w), so, that

would yield progression in Logn−1, the linear computation.

As we understand the linear inference, handled by the inference-algorithm, it’s quicker than the random observa-

tion.

However, we may consider the following computational pacing similar to the real-time (w) progression of the

free-bound variable in Bayesian type probability:

sn
n=1 →

P (A|X) (B|Y)

wLog − 1
(35)

sn
n=1 →

P
(
A|X1

) (
B|Y−1

)
P(B)wLogxn

(36)

We may consider a time-out in real-time (A|B) inference if only there is any limited data in P(A|B) on the other

hand; then the iP would be hypothetically infinite for computation, but it shall be confound in the spectrum of

[X,Y,Z] instead.

sn
n=1 →

∫
B

n
y
|An

x
(37)
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Composing of x ∈ y, z and y ∈ z, we may further consider the frequency of Bayesian probability in its imaginary

unit as following:

P(A|B)→
P (A|X)

(
B|Y−1

)
P(A|Z)

P(B|Y)Log − 1
(38)

3.6 Measure-theoretic in iP Programming

Concerning the time-frequency relation in negative value of i2, expressed through binomial fraction either via

integer frequency, we stipulate it as following: ∫
dxn

Logn
(39)

S →
∫

dx2

Log − 1
(40)

Theorem 2 The frequency (w) reducible to the extent of negative number in P(|B) conditioning, and yields a specific
result of preference (choice) between probable results.

Proof. We consider an iP inference in iP(w)
P(w)

frequency, and the ix
x derivatives in Bayesian probability, in where we

set X(1)|Y(−1)|Z(log1) in order to yield iP in both results: in x > 1 and in y < 1, whereas X ∈ Z ≥ Y .

From the existing model of Pr
∫

[X ∈ A] we would try to construe its specifications in log value for our P → iP
negation:

Pr
∫

[X ∈ A] =

∫ −1

X
P(B) =

∫
[log − 1] =

∫
A
[A|B]log − 1

Specifying that the A|B ∈ i, we would later on proceed at any computation of Bayesian inference.

3.7 Time Reducibility in iP

In the timing of the reducibility of variances, we understand the iP inference as imaginative, hence, existent only

at particular time (t) and in a particular point of data of A| or B|. In where we compile a nonlinear shift of (t)-time

and (v)-variance in bound of (A|B): ∫ ∫ ∫
AvXn

t ∈ A(ZY)

3.8 Inference, Time, Probability

Timing recurrent, the solid statement is given, a mind is the inference, a blast is the movement of variances vn:∫ ∫ ∫
AvXn1

(B|X)Yv

The system of it simplified to the existent presence of science:

Πn

∫ ∫ ∫
Av|Xn1

(B|X)(B|Yvn)(log − 1)
(41)

Πn

∫
v

S X → R→ i
v

(42)

The R → i reducibility is the reducibility of time. We contemplate not the data but the time. Therefore, it is a

question of a philosophy to proceed further on, while us consider the logical order of it.

4. The Time Occurrence and the Variances

4.1 Getting an Average Index

We review variances (v), time (t) and the frequency (w) in derivatives of Xn of computational data, and bound

variables of [X,Y,Z] in certain logical calculations, and we presume the probability in i in conditioning of time to

it.
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We structure our hypothesis in P(A|B) reducibility to [X,Y,Z] in Bayesian network, time frequency and time re-

ducibility to certain extent.

The imaginary probability variance considered to be a pooled variance of P(A|X)(B|Y) that is to be matched further

on by the CPU or by the time-out command.

If there is a certain imaginary probability occurs in processing as of the ’3 door’ example, there might be consid-

eration of timing (tv) in: ∫
v

S X → R→ i
v

so that the N number of the occurrence would ignite the actual value of probability.

Lemma 2 For example, if we know that the probability of having cancer is 90% (A) and not having it 10% (B),
then it would be only a generalized data, while having it in time occurrence may presume such data as subjective,
’connected’ to the observer.

Proof. An average index multiplied by occurrences per time may have a statistical probability for subjective pref-

erence in counterpoint to the factual data.

Then what occurrence of (A) may be allowed for the observer of computation? If 90% of it is the value of

conclusion, then we have to consider the average time occurrence of such probability:

iPt =
(A)

tv

Variances 3 types of cancer. We stipulate imaginary time occurrence in:

iPt =
(A)

tv
(43)

iPt =
A
tv
=

iPt(B)

A
(44)

From the given table we fit the data:
90

2 · 6 = 7.5 (45)

(May get 75% of chances to ’occurring/not occurring’ at the moment of contemplation in iPt (A).

7.5 · 10

90
= 8.3 (46)

(May get as 83% of occurrence including the probability (B)) Finally we get 90% by Bayesian inference vs 83%

of imaginary probability.

If we calculate probability by Bayes’ principle, we still have to proceed on which data we choose for. There may

be several results, and only one that fits best for the observer may be valid.

4.2 Linear and Non-linear Understanding of Time in iP

In both, linear and non-linear computations we set Xi Yi, so the variance of them would be in a proper time-set,

whereas in ”density function” explained in Noack B. and Klumpp V. (2008) we would yield:

P :=

n∑
i=1

αi fi|
n∑

i=1

αi = 1, αi ≥ 0

In analogy to the model above, we chase parallel in:

P =
n∑

i=1

fnαn|
n∑

i=1

fi = αi ≤ 0 (47)

In where fi.... fn construe [X, Y, Z] derivatives pertinent to its iPt (time) only in α, whereas α = Y |(B), or any other

R number.
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Figure 5

Therefore, we apply the principle of XiYi /per time, and define the (B) (e.g. bias) from i2 → i and to natural

numbers. Because in C numbers of any automatic equation it’s the value of C = 0 or C � 0 that signifies the value

probability.

P =
n∑

i=1

∫
fn
αi
=

∫
fnαi

iPt
(48)

Where basically proceed into relation of f ai with iPt, which was explained previously in iPt
v .

4.3 Further i Integration into Bayesian Conditioning

The i number integration in C number derivatives in the following example of: 3.0 + 4.0i = 3.0 + 4.0 * Complex I 1,

would specify the i as a part of computational integer in Bayesian logic, hence the adaptability to its programming

in probability reasoning:
P(B|A)

iP(B|A)

We file ’Condition 1’ of P(A) P(B) into imaginary inference of iP(A)iP(B) in the spectral alignment (Fig. 5), then

we parse the derivatives and proceed them onto separate computations.

Such schematic conditioning of binomial probability is mutually exclusive, and the conditional probability of

iP(B|A) would draw the nearest inference possible for its further computation in P(B|A)n−1.

Such interweaving, we believe, would select and predict the nominal/previous computation value in order to qualify

the difference of it.

Nevertheless, we find that the ’imaginary probability’ of P(A|Bi) reduces computation to an independent cognition

of i = 1, or to i2 = −1. And whether any supposition in any P(A|Bi) is ’FALSE’ or ’TRUE’, it is for Bayesian

inference computation to consider for.

5. Results

1. We prove that the time occurrence and variance of P(A|B) at the moment of contemplation could be more

narrowed via iPt = A
tv =

iPt(B)
A , which signifies certain relativity of Bayesian inference even by standards of

automated equations.

2. The bound limitation of [X, Y, Z] variance should construct the time (t) value into a time preference of the

observer, in where we set
∫ ∫ ∫

AvXn
t∈A(Z,Y)

, which is computable. Therefore, the bound set of [X, Y, Z] in such

inference is undeniable.

3. Imaginary unit of i2 may be transferable into i(B)(A), and may be computable as i in transfer of i2 → i,
which leads us to believe that negative number is negative only abstractly, nevertheless, could be reversed

and applied into positive value i→ R.

4. The data proof and data analysis is comparative and interchangeable, as soon as it goes by non-accordance

and exclusion in iP → P =
√−1 = 1

x = p(A) when its algebraically possible to shift from negative into

positive.

1See more examples in: No Author, The GNU C Library, 20.9 Complex Numbers
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5. The computation of P(A|B) → P(A|X)(B|Y−1)P(A|Z)

P(B|Y)Log−1
in computational programming may be possible in logical

terms only.

6. The main computation of stochastic modeling applies to the free bound observation in:

iP(A|X) =
P(B)i(P(A)

P(B)

in where we yield similar to Markov decimal data but in parallel of 2 or more possibilities in average index

per item, A or Ai, and we get the both results in positive and negative values (R).

7. The average index in:

indexA/Ai =
P(A)(iP(A|X)

iP
and

indexB/Bi =
P(B)(iP(B|Y)

iP

apply as contra-arguments of the Bayesian probability and permit i number probability to coexist with the

factual one in R. We presume that in some instances the iP even may take over the factual P, if it’s in the

average index ≥ over it.

5.1 Tables and Figures

An example of iP and P in differentiation.

Condition Result index Computation set Computation ratio

iP(A|B) (0.4) Xn−1
Xn−1

tv
P(A|B) (0.5) Xn

Xn
P(B)

6. Discussion

If we reflect upon the current state of Bayesian inference which coexists in parallel with the statistical conclusion,

we would stumble upon an artificial psychology of an actual and subjective choice selection.

Thence, we would never understand the difference between the human imagination and just ’imagining’ the prob-

ability, unless we define imaginary integer as a ’possibility’ index. Which is by far would yield less rational, but

nevertheless, existent and accountable probability.

While having an artificial doubt or any other non-factual, hypothetical model, why would a machine collect such

’trifle’ alongside with the factual data? Why would we complicate, if we may produce the result regardless of it

and make it linear?

And it’s the same question of independent cognition. The fact of ’A’ shall be compared to the possibility of ’B’,

the solidity of ’1’ shall be juxtaposed to ’-1’. A solid statement of A shall be shattered onto any forms of i (’B’,

’-1’, etc) in order to re-solidify ’A’ into a precedent, into a pattern of self-learning by ’imaginary mistakes’.

The deviation of a culprit is the teacher, and if we sift his doubts and strays through the solid logic of comparison,

then we would reap the real diamonds.
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Abstract

Researchers in many fields including biomedical often make statistical inferences involving the analysis of count

data that exhibit a substantially large proportion of zeros. Subjects in such research are broadly categorized into

low-risk group that produces only zero counts and high-risk group leading to counts that can be modeled by

a standard Poisson regression model. The aim of this study is to estimate the model parameters in presence

of covariates, some of which may not have significant effects on the magnitude of the counts in presence of a

large proportion of zeros. The estimation procedures we propose for the study are the pretest, shrinkage, and

penalty when some of the covariates may be subject to certain restrictions. Properties of the pretest and shrinkage

estimators are discussed in terms of the asymptotic distributional biases and risks. We show that if the dimension

of parameters exceeds two, the risk of the shrinkage estimator is strictly less than that of the maximum likelihood

estimator, and the risk of the pretest estimator depends on the validity of the restrictions on parameters. A Monte

Carlo simulation study shows that the mean squared errors (MSE) of shrinkage estimator are comparable to the

MSE of the penalty estimators and in particular it performs better than the penalty estimators when the dimension

of the restricted parameter space is large. For illustrative purposes, the methods are applied to a real life data set

Keywords: adaptive LASSO, asymptotic bias and risk, LASSO, likelihood ratio test, shrinkage and pretest esti-

mators, zero-inflated data.

1. Introduction

Data with large number of zeros are often encountered in many studies including medical and public health. Failure

to account for the extra zeros may result in biased parameter estimation and misleading inference. In recent years

the regression method for modelling such data has become very popular. It is based on the assumption that the

response is generated by a mixture of a degenerate distribution at zero and a standard Poisson distribution. For

example, the National Medical Expenditure Survey data contain an excessive number of zeros in the hospital

admission, and the probability mass at point zero exceeds that allowed under a standard parametric family of

distributions. We will analyze this survey data in Section 5 where the number of hospital admission ranges from

0 to 8, and 80.4% of the respondents have no hospital admission, which presents possible zero-inflation. The

zero-inflated Poisson regression (ZIPR) model can be used to analyze this data which assumes that the population

of respondents can be divided into two subpopulations. The first of which generates counts (number of hospital

admissions) that follow a Poisson distribution with the usual parameter, λ and the second subpopulation generates

only the zeros (no hospital admission) with probability, p that follows binomial distribution with logit model.

The ZIPR models were first introduced by Mullahy (1986) in the econometric literature. Their use has become

very broad since the publication of the pioneering work by Lambert (1992) in which manufacturing defects were

considered. Ridout et al. (1998) cited examples of data with too many zeros from various disciplines including

medicine, agriculture, and the use of recreational facilities. Hall (2000) considered ZIPR and zero-inflated binomial

models with random intercept, and provided an EM algorithm for model estimation. Hinde & Demetrio (1998)

reviewed the literature of ZIPR model and cited examples from agriculture, econometrics, manufacturing, road

safety, species abundance, and medical sciences. Jansakul & Hinde (2002) extended the van den Broek (1995)

score test to the more general situation where the zero probability is allowed to depend on covariates. Feng & Zhu

(2011) studied a semiparametric ZIP mixture model, and a Monte Carlo EM algorithm was provided for model

estimation. For other aspects of ZIPR models, see among others, Dietz & Bohning (2000) and Ridout et al. (2001).
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The motivation of the present paper comes from the need to be able to identify the significant covariates of the

ZIPR model in presence of a higher proportion of zeros in the response variable. With this motivation, we consider

an unrestricted model that includes all covariates and possible extraneous variables and a restricted model that

includes some covariates of concern while leaving out extraneous variables. One way to deal with this framework

is to use the pretest procedures that test whether the coefficients of the extraneous variables are zero and then

estimate the parameters in the model that include coefficients that are rejected by the test. Another approach is to

use Stein type shrinkage estimators where the estimated regression coefficient vector is shrunk in the direction of

linear restriction among the parameters. Sapra (2003) considered the pretest method to estimate the parameters of

the Poisson regression model. For the properties of pretest and shrinkage estimation strategies for parametric and

semiparametric linear models, see Nkurunziza (2013), Hossain et al. (2012), and Liang & Song (2009), among

others.

This paper also studies the penalty estimators such as, least absolute shrinkage and selection operator (LASSO) and

adaptive LASSO and compares their performances in terms of biases and mean squared errors with the shrinkage

and pretest estimators through a simulation study. The LASSO was developed by Tibshirani (1996) for simulta-

neous variable selection and parameter estimation. Unlike LASSO, the adaptive LASSO proposed in Zou (2006)

permits different weights for different parameters. The adaptive LASSO has been shown to have the oracle prop-

erty, that is, consistency in variable selection and asymptotic normality. Hossain & Ahmed (2012) considered the

shrinkage and penalty methods for estimating the Poisson regression model when some of the covariates may be

inactive for the response. Zeng et al. (2014) proposed a variable selection approach for ZIPR models via adaptive

LASSO.

The rest of this paper is organized as follows. The model and suggested estimators are introduced in Section

2. The asymptotic properties of the proposed estimators and their asymptotic distributional biases and risks are

presented in Section 3. The results of a simulation study are reported in Section 4. Application to real life data and

a comparison of our methods are described in Section 5. Finally, concluding remarks are given in Section 6.

2. Models and the Proposed Estimators

2.1 Models and Estimation Method

Suppose that the counts, Yi, i = 1, 2, · · · , n are generated independently according to a zero-inflated Poisson

distribution. The zeros are assumed to arise in two distinct underlying processes. The first process occurs with

probability pi and produces only zeros, while the second process occurs with probability 1 − pi and leads to a

standard Poisson model with parameter λi and hence a chance of further zeros. In general, the inevitable zeros

from the first process are called structural zeros and those from the Poisson process are called sampling zeros,

see for example, Ridout et al. (1998) and Jansakul & Hinde (2002). These two processes give rise to a simple

two-component mixture distribution with probability mass function

Pr(Y = yi) =

⎧⎪⎪⎨⎪⎪⎩pi + (1 − pi)exp(−λi), yi = 0

(1 − pi)
exp(−λi)λ

yi

yi!
, yi ≥ 1, 0 ≤ pi ≤ 1

(1)

and E(Yi) = (1 − pi)λi, var(Yi) = λi +
(

pi
1−pi

)
λ2

i . The ZIPR model reduces to a Poisson regression model when

pi = 0, and exhibits overdispersion when pi > 0. Lambert (1992) incorporated covariates using a log link for λi

and logit link for pi.

log(λi) = x�i β and log

(
pi

1 − pi

)
= z�i γ, (2)

where xi = (xi1, xi2, · · · , xip)� and zi = (zi1, zi2, · · · , ziq)� are the covariate vectors, and β and γ are the p × 1

and q × 1 vectors of unknown regression parameters. Let us assume θ = (β�,γ�)�. The covariates that affect

the Poisson parameter of the first process may or may not be the same that affect the probability of the second

process. When the covariates are the same and λi and pi are not functionally related, then xi = zi and in that case

the ZIPR involves twice as many parameters as the Poisson regression. In model (2), we are interested in testing

the following hypothesis:

H0 : Hθ = h versus HA : Hθ � h,

where H is an r × (p + q) matrix of full rank and h is a r × 1 vector of constant terms.
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For a random sample, y = (y1, y2, · · · , yn), the log-likelihood function is given by

� = �(λ, p; y) =

n∑
i=1

{
I(yi=0)ln[pi + (1 − pi)exp(−λi)] + I(yi>0)[ln(1 − pi) − λi + yilnλi − ln(yi!)]

}

=

n∑
i=1

{
I(yi=0)ln[exp(z�i γ) + exp(−exp(x�i β))]

+ I(yi>0)[yix�i β − exp(x�i β) − ln(yi!)]
}
−

n∑
i=1

ln(1 + exp(z�i γ)). (3)

where I(·) is an indicator function, which is equal to 1 if the event is true and 0 otherwise.

The log-likelihood function (3) of the ZIPR model is quite complicated, especially as the first term involves both

β and γ. Also, the responses are from a mixture distribution that includes both sets of the parameters pi and λi.

The computation thus becomes quite challenging in terms of the variance-covariance matrix and accuracy when

using the Newton-Raphson algorithm. And it is due to the additional number of parameters to be estimated for the

proposed model from the complicated nature of the likelihood function (3). To avoid this complication, we use the

EM algorithm to maximize the log-likelihood function, see, Hall (2000) and Lambert (1992).

The EM algorithm is based on a latent variable Ui, where we observe Ui as 1, when Yi is from the perfect, zero state

(or first process) and Ui as 0, when Yi is from the Poisson state (or second process). To formulate the log-likelihood

for the complete data, we use the conditional probability:

Pr (Yi = yi,Ui = ui|xi, zi,β,γ)

= Pr (Yi = yi|Ui = ui, xi, zi,β,γ) × Pr (Ui = ui|xi, zi,β,γ)

=

(
exp(z�i γ)

1 + exp(z�i γ)

)ui (exp(yix�i β − exp(x�i β))

yi!(1 + exp(z�i γ))

)1−ui

Thus, the complete log-likelihood based on (Y,U) is

Lc(β,γ; U, xi, zi) = ln

⎡⎢⎢⎢⎢⎢⎣ n∏
i=1

Pr (Yi = yi,Ui = ui|xi, zi,β,γ)

⎤⎥⎥⎥⎥⎥⎦
=

n∑
i=1

{ui z�i γ − uiln(1 + exp(z�i γ))}

+

n∑
i=1

(1 − ui)
[
(yix�i β − exp(x�i β) − ln(yi!) − ln(1 + exp(z�i γ)))

]

= Lc1(γ; U, xi, zi) + Lc2(β; U, xi, zi) −
n∑

i=1

(1 − ui)ln(yi!)), (4)

where Lc1 =
∑n

i=1{ui z�i γ − ln(1 + exp(z�i γ))}, Lc2 =
∑n

i=1(1 − ui)(yix�i β − exp(x�i β)), and U = {ui; i = 1, 2, · · · , n}.
To implement the EM algorithm, we first initialize (β,γ) by letting Ui = I(yi=0). In the E-step, we use the initial

values of (β,γ) to calculate the expectation of Ui, and use it as the estimator of Ui. In the M-step, we use the

estimate Ui to maximize Lc(β,γ; U, xi, zi), which gives the unrestricted maximum likelihood estimator for β and

γ. The iteration (k + 1) of the EM algorithm requires the following steps.

E-Step: Estimate U(l)
i by using the means given γ(l) and β(l),

U(l)
i = E(Ui|yi, γ

(l),β(l))

= E(Ui = 1|yi, γ
(l),β(l))

=
Pr(Yi = yi|Ui = 1)Pr(Ui = 1)

Pr(Yi = yi|Ui = 1)Pr(Ui = 1) + Pr(Yi = yi|Ui = 0)Pr(Ui = 0)

=
[
1 + exp(−exp(x�i β

(l)) − z�i γ
(l))

]−1
, if yi = 0, and 0, if yi ≥ 1.
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M-Step: Given Ui = U(l)
i , maximize Lc1(γ; U(l), xi, zi) and Lc2(β; U(l), xi, zi) with respect to γ and β, respectively:

γ(l+1) = argmin
γ

{
−Lc1(γ; U(l), yi, xi, zi)

}
(5)

β(l+1) = argmin
β

{
−Lc2(β; U(l), yi, xi, zi)

}
(6)

The iteration stops when (5) and (6) converge simutaneously. The final estimate θ̂ = (β̂�, γ̂�)� is known as the

unrestricted maximum likelihood estimator (UMLE).

Let I(β,γ) be the information matrix of the estimator θ̂. If 1
n I(β,γ) has a positive definite limit satisfying some

regularity conditions, as in the work of McCullagh (1983), the quantity
√

n
(
θ̂ − θ

)
is asymptotically normally

distributed with mean vector 0 and information matrix I−1
(β,γ)

(Lambert, 1992). The matrix I(β,γ) can be partitioned

as (
Iβ,β Iβ,γ
Iγ,β Iγ,γ

)
,

where the elements Iβ,β, Iβ,γ = I�γ,β, and Iγ,γ are, respectively,

−E

[
∂2l
∂β∂β�

]
,−E

[
∂2l
∂β∂γ

]
, and − E

[
∂2l
∂γ∂γ�

]

with

∂2l
∂β j∂βk

=

n∑
i=1

{
I(yi=0)

[−exp(−λi)[(1 − λi)pi + (1 − pi)exp(−λi)](1 − pi)λi

[pi + (1 − pi)exp(−λi)]2

]

+ I(yi>0)(−λi)
}

xi jx jk,

∂2l
∂β j∂γr

=
∂2l
∂γ j∂βr

=

n∑
i=1

{
I(yi=0)

[
λiexp(−λi)

[pi + (1 − pi)exp(−λi)]2

]}
xi jzir,

∂2l
∂γr∂γs

=

n∑
i=1

{
I(yi=0)

[ −(1 − exp(−λi))
2

[pi + (1 − pi)exp(−λi)]2

]
+ I(yi>0)

[ −1

(1 − pi)2

]}
zirzis,

where j, k = 1, 2, · · · , p and r, s = 1, 2, · · · , q.

Suppose now that our interest centers in estimating the parameters β and γ from (4) under the linear restriction

Hθ = h. The steps of the EM-algorithm for estimating the parameters using log-likelihood (4) under the above

restriction are the same. We simply replace θ(l+1) = (β(l+1),γ(l+1)) by θ(l+1)
c = (β(l+1)

c ,γ(l+1)
c ) in the M-step. The

resulting estimator, θ̃ = (β̃�, γ̃�)� is known the restricted maximum likelihood estimator (RMLE).

The likelihood ratio test statistic can be used to test H0 : Hθ = h vs. Ha : Hθ � h. If θ̃ maximizes the log

likelihood of the ZIPR model under H0 of dimension k − r, where k = p + q and θ̂ maximizes the log likelihood of

the ZIPR model under a nested alternative hypothesis HA of dimension k, then the test statistic Dn is

Dn = 2[l(θ̂) − l(θ̃]

=
(
Hθ̂ − h

)�
[Hvar(θ̂)H�]−1

(
Hθ̂ − h

)
+ op(1) (7)

Under H0 and suitable regularity conditions, Dn is asymptotically distributed as chi-square with r degrees of

freedom (Lambert, 1992). So that a likelihood ratio test can be performed using approximate critical values from

the chi-square distribution.

2.2 The Pretest and Shrinkage Estimators

The pretest and shrinkage estimators are based on the test statistic Dn of (7) for testing H0 : Hθ = h. Specifically,

the pretest estimator (PT) of θ is defined as

θ̂PT = θ̂ − (θ̂ − θ̃)I(Dn ≤ χ2
r,α),

where I(A) is an indicator function of a set A, and χ2
r,α is the α-level critical value of the approximate distribution

of Dn under H0. From the above definition, one can see that if the data yield Dn < χ
2
r,α, then θ̂PT = θ̃, otherwise
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θ̂PT = θ̂. So the PT is indeed a simple mixture of the UMLE and RMLE estimators. In an ordinary two-step

procedure, one would test the hypothesis H0 : Hθ = h first, then based on the test result decide which estimator

should be adopted. The PT simply combines these two steps to form a single one. That is, testing and estimation

are done simultaneously. For details, see Hossain et al. (2009) and Ahmed at al. (2006), and others.

Because of extreme choices for either the UMLE or RMLE, the pretest procedures are not admissible for some

models, even though they may improve upon the UMLE, a well-documented fact in the literature (Judge & Bock,

1978). This motivates us to define a shrinkage estimator, which is a smoothed version of θ̂PT :

θ̂S E = θ̃ +
(
1 − (r − 2)D−1

n

)
(θ̂ − θ̃), r ≥ 3. (8)

This estimator is a weighted average of UMLE θ̂ and RMLE θ̃, where the weights are a function of the test statistic

for testing H0 : Hθ = h.

We note that when the test statistic Dn is very small in comparison with r − 2, i.e., when the ratio (r − 2)/Dn is

greater than one in absolute value, the shrinkage estimator θ̂S E tends to shrink θ̂ overly towards θ̃ and reversing the

sign of θ̂. Replacing
(
1 − (r − 2)D−1

n

)
by

(
1 − (r − 2)D−1

n

)
+

in (8), where (x)+ = x1(x≥0), the positive-part shrinkage

estimator, θ̂PS E rectifies this problem. For details, see, Ahmed & Fallahpour (2012).

2.3 Penalty Estimators: LASSO and Adaptive LASSO

Let θ be the parameter of interest and �(θ) be the log-likelihood function of the ZIPR, then the LASSO estimator

(Tibshirani, 1996) is given by

θ̂lasso(τ) = argmin
θ

⎧⎪⎪⎪⎨⎪⎪⎪⎩−�(θ) + τ
p+q∑
g=1

|θg|
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

where τ ≥ 0 is a penalization parameter controlling the amount of shrinkage on the regression coefficients. How-

ever, the LASSO applies same penalty to all the coefficients, which over-penalizes the important ones and accord-

ingly results in biased estimators (Zou, 2006).

The adaptive LASSO (ALASSO) (Zou, 2006) offers an effective way to minimize this bias. It has been shown that

the ALASSO enjoys the oracle property that is, the ALASSO is consistent in variable selection, and its estimators

are asymptotically normal and unbiased. More explicitly, it assigns a higher weight to the small coefficients and

lower weight to the large coefficients. The adaptive lasso estimator is defined as

θ̂alasso(τ) = argmin
θ

⎧⎪⎪⎪⎨⎪⎪⎪⎩−�(θ) + τ
p+q∑
g=1

wg|θg|
⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (9)

where w = (w1,w2, · · · ,wp+q) are adaptive weights, which are usually set to ŵ = 1/|θ̂|, here θ̂ are the maximum

likelihood estimators. The ALASSO estimator can be obtained by minimizing penalized log-likelihood function.

First, we expand the likelihood function based on a Taylor series expansion at θ̂:

�(θ) ≈ �(θ̂) + (θ − θ̂)��′(θ̂) + 1

2
(θ − θ̂)��′′(θ̂)(θ − θ̂), (10)

where �′ and �′′ are the first and second derivatives, respectively. Since �(θ̂) is constant and �′(θ̂) = 0, so the

penalized log-likelihood function is equivalent to

1

2
(θ − θ̂)�

[
−�′′(θ̂)

]
(θ − θ̂) +

p+q∑
g=1

|θg|. (11)

Let Σ̂ be the estimated variance-covariance matrix of θ̂, which can be obtained from one of many statistical pack-

ages. And it provides an estimate of the Hessian matrix �′′, given as �′′ = −Iθ̂ = −Σ̂−1. Here we use the R statistical

package pscl (Jackman, 2012) in order to calculate Σ̂. Then we construct a pseudo-data set as

X∗ = Σ̂−1/2,Y∗ = Σ̂−1/2θ̂.
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The order of the square matrix X∗ is p + q + 2 and Y∗ is a vector corresponding to X∗. The ALASSO estimator (9)

can now be re-written as

θ̂alasso(τ) ≈ argmin
θ

⎧⎪⎪⎪⎨⎪⎪⎪⎩1

2
(Y∗ − X∗θ)�(Y∗ − X∗θ) + τ

p+q∑
g=1

wg|θg|
⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (12)

The estimator in equation (12) is similar to the least squares estimator with adaptive LASSO penalization (Zou,

2006). Various efficient algorithms, such as the least angle regression algorithm (Efron et al., 2004), the predictor-

corrector algorithm (Park & Haste, 2007), and the coordinate descent algorithm (Friedman et al., 2010) can be used

to conduct the minimization of Equation (12). Here we adopt the predictor-corrector algorithm which computes

solutions along the entire penalization path of the coefficient estimates as τ varies. Starting at τ = τmax, where

τmax is the largest τ that makes all the coefficients of θ̂(τ) nonzero. This algorithm computes a series of solutions,

each time estimating the coefficients with a smaller τ. The penalization parameter τ is selected using k-fold cross

validation. For each fold, we obtain a series of models based on Schwarz’s Bayesian criterion, commonly referred

to as Bayesian information criterion corresponding to the values of τ and compute the right side of (12) using the

omitted fold. Then we choose the value of τ for which the average cross-validation in the right side of (12) is

minimized.

In the case of pretest and shrinkage estimators, it is possible to determine theoretically when they have smaller

asymptotic risks than the unrestricted MLE. Similar results are not available for LASSO and adaptive LASSO

estimators.

3. Asymptotic Results

In this section we study the asymptotic behavior of the proposed estimators and develop the results in terms of θ̂∗,
which could be any one of the estimators considered in this paper: θ̂, θ̃, θ̂PT , θ̂S E , and θ̂PS E . In order to proceed with

the asymptotic results, we first partition θ = (θ�1 , θ
�
2 )�, where θ2 is the coefficient vector of the inactive covariates

for the ZIPR model. The main focus here is to evaluate the performance of these estimators when θ2 is close to the

null vector. To derive any meaningful results we consider a sequence of local alternatives

Kn : Hθ = h +
ω√

n
, (13)

where ω = (ω1, ω2, · · · , ωr)
� ∈ �r is a given vector of real numbers. In this framework, θ= (θ�1 , 0

�)�, and the

quantity ω√
n is the magnitude of the distance between the true model and the restricted model. For any fixed ω, this

distance shrinks as the sample size increases.

To study the asymptotic risks (ADR) of the estimators, we define a quadratic loss function by using a positive

definite matrix W, namely

L(θ̂∗; W) =
[√

n(θ̂∗ − θ)
]′

W
[√

n(θ̂∗ − θ)
]
,

where θ̂∗ is any one of the estimators. The usual quadratic loss is defined when W is chosen as I, the identity

matrix. A general W gives a loss function that weighs differently for different θ’s.

If V is the asymptotic variance-covariance matrix of θ̂∗, the ADR of
√

n(θ̂∗ − θ) is given by tr(WV). We assume

that the cumulative distribution function of θ̂∗ under Kn exists and can be denoted as

F(x) = lim
n→∞ P

[√
n(θ̂∗ − θ) ≤ x|Kn

]
,

where F(x) is a nondegenerate distribution function. The ADR of θ̂∗ is then defined as

R(θ̂∗; W) =

∫
· · ·

∫
x′Wx dF(x)

= trace(WV), (14)

where V =
∫ · · · ∫ xx′dG(x) is the dispersion matrix for the distribution function F(x).

The shrinkage estimators are, in general biased, the bias, however is accompanied by a reduction in variance. The

asymptotic distributional bias (ADB) of an estimator θ̂∗ is defined as

ADB(θ∗) = lim
n→∞ E

{
n

1
2 (θ̂∗ − θ)

}
.
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Under the local alternatives (13), the following theorems help the derivation and numerical computation of the

ADB and the ADR of the estimators.

Theorem 3.1 If Iβ,γ is nonsingular and Δ = ω�(HI−1
β,γH�)−1ω, then under the local alternatives Kn in (13) and

regularity conditions, we have as n→ ∞

1.
√

n(Hθ̂ − h)
L−→ N(ω,HI−1

β,γH�).

2. The test statistic Dn in (7) converges to a non-central chi-squared distribution χ2
r (Δ) with r degrees of free-

dom and non-centrality parameter Δ.

For a concise statement of the results, we use the following notations:

ζ = I−1H�(HI−1H�)−1

gr+i(Δ) = Hr+i(r − 2,Δ), h j,r+i(Δ) = E
(
χ
−2 j
r+i (Δ)

)
k j,r+i(Δ) = Hr+i(r − 2,Δ) + (r − 2) jE

(
χ
−2 j
r+i (Δ)I(χ2

r+i)(Δ) < r − 2
)
, and

Oj,r+i(Δ) = E
(
(1 − (r − 2)E(χ

−2 j
r+i (Δ)))2I(χ2

r+i)(Δ) < r − 2
)

where i = 2, 4, j = 1, 2 and for simplicity we assume that Iβ,γ = I. Here Hr+2(·,Δ) is the distribution function of

the χ2
r (Δ) distribution.

Theorem 3.2 Using the definition of ADB and Theorem 3.1, the ADBs of the estimators are,

ADB(θ̂) = 0, ADB(θ̃) = −ζω, ADB(θ̂PT ) = −ζωgr+2(Δ)

ADB(θ̂S E) = −(r − 2)ζωh1,r+2(Δ), ADB(θ̂PS E) = ADB(θ̂S E) − ζωk1,r+2(Δ).

The outline of the proof is similar to that of Theorem 3.1 of Ahmed & Fallahpour (2012).

Clearly, the bias of the estimators is a function of Δ. Therefore, for bias comparisons, it suffices to compare

the scalar factor Δ only. It is clear that the ADB of RMLE is an unbounded function of Δ. The ADB(θ̂S E) and

ADB(θ̂PS E) start from the origin, and as Δ increases, they increase to a maximum and then decrease to 0. Note

that, h1,r+2(Δ) is a decreasing log-convex function of Δ and the ADB of θ̂PT is a function of Δ and α. For a fixed α,

ADB(θ̂PT ) starts at zero, increases to a point, then decreases gradually to zero.

Theorem 3.3 Under the local alternatives Kn in (13) and the assumptions of Theorem 3.1, the ADRs of the estima-
tor are

ADR(θ̂; W) = tr(W I−1)

ADR(θ̃; W) = ADR(θ̂; W) − tr(WζHI−1) + ω�(ζ�Wζ)ω
ADR(θ̂PT ; W) = ADR(θ̂; W) − gr+2(Δ)tr(WζHI−1) + ω�(ζ�Wζ)ω(2gr+2(Δ) − gr+4(Δ))

ADR(θ̂S E ; W) = ADR(θ̂; W) + ((r − 2)2h2,r+2(Δ) − 2(r − 2)h1,r+2(Δ))tr(WζHI−1)

+ ω�(ζ�Wζ)ω((r − 2)2h2,r+4(Δ) + 2(r − 2)h1,r+2(Δ) − 2(r − 2)h1,r+2(Δ))

ADR(θ̂PS E ; W) = ADR(θ̂S E ; W) − O1,r+2(Δ)tr(WζHI−1) − O1,r+4(Δ)ω�(ζ�Wζ)ω

+
1

2
(3gr+2(Δ) + k1,r+2(Δ))ω�(ζ�Wζ)ω.

The outline of the proof is similar to that of Theorem 3.2 of Ahmed & Fallahpour (2012).

By comparing the ADRs of the estimators, we see that, as Δmoves away from 0, the risk of θ̃ becomes unbounded.

That is, the RMLE θ̃ dominates the unrestricted estimator at and near Δ = 0. The risk of θ̂PS E is asymptotically

superior to θ̂S E for all values of Δ, with strict inequality holds for some Δ. Thus, not only does θ̂PS E confirm the

inadmissibility of θ̂S E , but it also provides a simple superior estimator. Further, the largest risk improvement of

θ̂PS E over θ̂S E is at and near the null hypothesis. Also, by comparing the ADRs of θ̂S E , θ̂PS E , and θ̂, it can be easily

shown that, under certain conditions ADR(θ̂PS E ,W) ≤ ADR(θ̂S E ,W) ≤ ADR(θ̂; W) for all Δ ≥ 0. For a given α,

PT is not uniformly better than the unrestricted estimator near the null hypothesis. One may determine an α such

that PT has a minimum guaranteed risk. For any given H, I, and h, the relative efficiency (inverse of risk) of PT
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to UMLE is a function of α and λ. If the minimum efficiency required is RE0, then we can choose α by solving

the equation min
λ
{Relative Efficiency(α,Δ)} = RE0. The exact solution may not be available, but one can use a

numerical method to search for the minimum.

In order to explain and quantify the properties of the theoretical results, we conduct a simulation study to compare

the performance of the suggested estimators.

4. Simulation Studies

The zero-inflated count responses are generated from the following mixture of two models:

log(λi) = x�i β and log

(
pi

1 − pi

)
= z�i γ,

where xi are generated from a multivariate normal distribution Np(0,Σ), with elementsσi j = ρ
|i− j| (i, j = 1, 2, · · · , 20)

and zi are generated from uniform, and Poisson distributions. We consider the correlation, ρ = 0.50 among the

covariates, and sample sizes n = 150 and 350. For small samples, say n = 50, the likelihood function does not

converge. The estimations of the variance-covariance matrix as well as the regression coefficients in such cases

are unstable for the ZIPR model. We tried different sample sizes. In order for the likelihood function to converge,

it needed a minimum sample of size 150. We set α = 0.05 for the pretest method. Our objective is to test the

hypothesis

H0 : θ2 = 0 versus HA : θ2 � 0.

We set the true values of θ = (θ�1 , θ
�
2 )� = {(β1,γ1)�, (β2,γ2)�} as:

θ = ((1.1,−0.36,−0.36, 1.08, 0.92)�,−0.2�), b�),

where b = θ2 = (β2,γ2) is a zero vector with different lengths. The number of replications is set to 1, 000 for all

cases. We define the distance between the simulation model and the restricted model by

Δ = ||θ − θ(0)||2,
where θ(0) = (θ�

1
, 0�)�, is a 6 × 1 true parameter vector in the simulation model and || · || is the Euclidian norm.

Samples are generated using Δ between 0 and 1.

Based on the simulated data, we estimate the mean squared errors (MSE) of all the estimators studied in this paper.

We calculate the simulated mean squared error (SMSE) by using the the empirical formula

S MS E(θ∗) =
p+q∑
i=1

(θ∗i − θi)2,

where θ̂∗ as before denotes any one of the estimators θ̂, θ̃, θ̂PT , θ̂S E , θ̂PS E , θ̂lasso, and θ̂alasso . The simulated

relative efficiency (SRE) between two estimators is defined as S RE(θ̂, θ̂∗) = S MS E(θ̂)/S MS E(θ̂∗), where θ̂ is the

unrestricted estimator, treated as benchmark. A value of S RE(θ̂, θ̂∗) greater than one indicates that θ̂∗ performs

better than θ̂, and vice versa. Table 1 and Figure 1 give results for Δ ≥ 0 and (k1, r)=(6, 3), (6, 6), (6, 11), (6, 14),

where k = p + q = (k1, r). All analyses are performed using the statistical software R.

We observe from Table 1 and Figure 1 that when Δ = 0, the RMLE outperforms all other estimators for both the

cases considered. As Δ moves away from 0, the RMLE becomes unbounded. That is, the SRE curve for RMLE

with respect to UMLE sharply decays and that it goes below the horizontal line when Δ > 0. The positive-shrinkage

estimator converges to 1 at a slower rate as Δ moves away from 0. This indicates that in the event of imprecise

auxiliary information about the regression parameters, the PSE has the smallest risk among all other estimators

for a range of Δ irrespective of the value of ρ. Pretest estimator dominates the shrinkage estimators when the

restriction is nearly correct. Otherwise, it becomes unbounded at a faster rate than the RMLE. However, with the

increase in Δ, the SRE of PT approaches 1 at some point from below. This suggests that neither PT nor RMLE is

uniformly better when Δ > 0.

The simulated relative efficiency of the shrinkage estimator typically lies above that of the UMLE, and is nearly as

good as the RMLE at and near the null hypothesis Δ = 0. This improvement relative to the RMLE is substantial

for the increasing number of inactive covariates. Some readers may be surprised by the strong performance of
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Figure 1. Simulated Relative efficiencies with respect to θ̂ of the estimators for Δ ≥ 0. Here k1 = 6, r = 2, 10, 18;

n = 150 for the first column (Figures a-c); k1 = 6, r = 2, 10, 18; n = 350 for the second column (Figures d-e).
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the shrinkage estimators relative to the UMLE. However, this is precisely the lesson of Theorems 3.2 and 3.3.

Shrinkage strictly improves the asymptotic risk, and the improvement can be especially strong in high-dimensional

cases. This holds true for other n and r values.

For the LASSO and adaptive LASSO estimators, we use the local quadratic approximation algorithm of Ulbricht

(2010) for finding the entire solution path. We also use a k-fold cross validation procedure in order to choose the

value of the penalization parameter τ that achieves the lowest BIC score. Table 1 shows that when r < 6, the

LASSO and adaptive LASSO estimators are better than the PSE while it performs well for r ≥ 6. The PSE is

preferable in the presence of many inactive predictors in the model.

Table 1. Simulated relative efficiency of RE, SE, PSE, LASSO, and adaptive LASSO with respect to θ̂ when the

restricted parameter space Hθ = h is correct (Δ = 0).

n=150

Method p2 = 3 p2 = 6 p2 = 11 p2 = 14

RE 3.58 3.70 4.08 4.11

PT 2.31 2.62 3.11 3.02

SE 1.39 1.93 2.76 2.87

PSE 1.47 2.23 2.87 3.07

LASSO 1.48 1.86 2.51 2.75

ALASSO 1.51 1.95 2.61 2.83

n=350

RE 2.71 2.30 2.77 3.17

PT 2.14 2.04 2.11 2.59

SE 1.27 1.62 2.06 2.43

PSE 1.41 1.79 2.23 2.67

LASSO 1.43 1.53 1.63 1.67

ALASSO 1.49 1.60 1.72 1.81

5. Application to Real Life Data

The data are from the National Medical Expenditure Survey (NMES) conducted in 1987 and 1988 to provide a

comprehensive picture of how Americans use and pay for health services. It includes 4406 respondents aged 66 or

older and covered by Medicare program. Details of the data can be found in Deb & Trivedi (1997). In this example,

the number of hospital stays (hosp) is used as the response variable and the covariates are self-perceived health

status (poorhlth and exclhlth), number of chronic conditions (numchron), gender (male), age, number of years of

education (school), family income (faminc), and private insurance indicator (privins). Approximately 80% of the

responses are equal to zero, which corresponds to patients with zero day stay in the hospital. We first look at the

count portion of the data, which refers to the respondents who have stayed at least one day in the hospital. On

the other hand, if we look at the logistic portion (i.e. inflation part) of the data, which predict whether outcome is

positive or zero. All covariates are included in both portions of the model to predict the number of hospital stays.

To assess the effect of covariates on the hosp on each portion, ZIPR model is fitted. The AIC and BIC criteria for

the mixture model (Wang et al., 1996) show that poorhlth, exclhlth and numchron are the important factors for

the Poisson part and poorhlth, numchron, age, and male are the important factors for the logistic part of the ZIPR

model. So the other six covariates in the Poisson part and five covariates in the logistic part are not significantly

related to the response hosp. In this example, our hypothesis is Hθ = 0 where H is a 7×18 matrix and θ is a 18×1

vector of covatiates.

We apply the bootstrap method (see, Jung et al., 2005) to examine the performance of the proposed estimation

strategies for estimating the coefficients of the other seven covariates. We draw 1000 bootstrap samples of size

n = 2000 by drawing 2000 rows with replacement from the data matrix (yi, xi j) and compute the point estimates,

standard errors, and relative efficiencies of the proposed estimators. Here, the empirical distribution function F̂
based on original 4406 individuals is regarded as the true distribution, and the coefficients of the ZIPR closest to

F̂ are regarded as true parameter values. The results given in Table 2 reveal that the restricted, pretest, shrinkage,

positive shrinkage, LASSO, and adaptive LASSO estimators are superior to the maximum likelihood estimator,

which is in agreement with our simulation results.
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Table 2. Estimate (first row) and standard error (second row) for poorhlth (β1), exclhlth (β2), numchron (β3) of the

Poisson part and poorhlth (γ1), numchron (γ2), age (γ3), and male (γ4) of logistic part on the number of hospital

stays. The SRE column gives the relative efficiency based on bootstrap simulation of the estimators with respect

to UMLE.

Estimators β1 β2 β3 γ1 γ2 γ3 γ4 SRE

UMLE -0.99 -0.313 0.123 -0.637 -0.302 -0.446 -0.381 1.000

0.502 0.125 0.048 0.256 0.095 0.153 0.246

RMLE -0.715 -0.335 0.118 -0.555 -0.297 -0.375 -0.286 1.444

0.186 0.127 0.042 0.230 0.079 0.086 0.107

PT -0.882 -0.321 0.122 -0.609 -0.301 -0.421 -0.354 1.194

0.448 0.126 0.046 0.255 0.090 0.131 0.214

SE -0.861 -0.323 0.121 -0.601 -0.300 -0.414 -0.342 1.226

0.334 0.124 0.045 0.243 0.086 0.117 0.182

PSE -0.863 -0.322 0.121 -0.602 -0.300 -0.415 -0.343 1.226

0.332 0.124 0.044 0.244 0.086 0.117 0.182

LASSO -0.543 -0.190 0.121 -0.435 -0.254 -0.069 -0.417 1.178

0.267 0.128 0.057 0.291 0.106 0.089 0.099

ALASSO -0.473 -0.197 0.121 -0.439 -0.257 -0.068 -0.445 1.221

0.231 0.136 0.058 0.248 0.106 0.073 0.098

6. Conclusion

In this paper, we have introduced the pretest, shrinkage, LASSO, and ALASSO estimators for zero-inflated Poisson

regression model when it is suspected that some of the regression coefficients may be restricted to a subspace. We

have presented ADB and ADR expressions of the pretest and shrinkage estimators. We conducted a Monte Carlo

simulation experiment to examine the performance of the proposed estimators which showed that the RMLE

outperforms the usual UMLE at or near the restriction. However, as we deviate from the the restriction, risk of

the RMLE becomes unbounded. And near the restriction, the risk of the pretest estimator is less than that of the

UMLE. As Δ, the distance between the simulated and restricted models increases, the risk of the pretest estimator

crosses the risk of the UMLE, reaching a maximum, and then decreasing monotonically to the risk of the ULME.

Furthermore, the shrinkage estimators with data based weights perform well if the restriction is true. In fact, the

shrinkage estimators outperform the UMLE in the entire parameter space when the number of inactive parameter

is greater than two. In addition, the performance of the shrinkage estimators improve relative to the UMLE when

the number of inactive covariates increases. The penalty estimators are preferable when there are fewer inactive

covariates. Thus in presence of many inactive covariates, the shrinkage estimators are attractive alternatives to

penalty estimators.

Finally, we applied the proposed strategies to a real life data set to evaluate the relative performance of the proposed

estimators. The results are consistent with our analytical and simulated findings. The theoretical and numerical

results of zero-inflated Poisson can be extended to the entire class of generalized linear models. We are currently

working on this project.

In terms of recommendations, the shrinkage estimators should be used instead of the UMLE when the restriction

on regression coefficients agrees with the data. If we are uncertain of the quality of auxiliary information about the

covariates, we can still use the shrinkage estimation because it offers a lower or at best an equal risk relative to the

UMLE over the entire parameter space.
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Abstract

We consider statistical inference of the unknown parameters of a two-parameter bathtub-shaped distribution (Chen,

2000) [Stat. & Prob. Letters 49 (2000) 155-161]. The inference will be conducted for Type-II censored and pro-

gressively Type-II censored data using the maximum likelihood and Bayes techniques. There are no explicit

expressions for the estimators of the parameters. In the case of the maximum likelihood estimator (MLE), we

propose a simple fixed point algorithm to compute the MLE and construct different confidence intervals and con-

fidence regions of the unknown parameters. Bayes analyses of the unknown parameters are also discussed under

fairly general priors for the unknown parameters. We propose to use the Markov Chain Monte Carlo (MCMC) and

simulation-based technique to compute the Bayes estimates and the two-sided Bayesian probability intervals of

the parameters. Also, we use the rejection sampling algorithm to produce the exact Bayes estimates. The methods

developed will be applied in the analyses of two real data sets and a simulated data set. A Monte Carlo simulation

is used to compare the results from the MLE and Bayes techniques.

Keywords: maximum likelihood estimator, MCMC, rejection sampling, simulation-based.

1. Introduction

The cumulative distribution function (cdf) of the Weibull distribution with scale parameter α and shape parameter

β denoted by W(α, β) is

FW (x;α, β) = 1 − e−α xβ , x ≥ 0, α, β > 0. (1)

The hazard rate function of W(α, β), hW (x;α, β) = αβxβ−1, is increasing in x when β > 1, decreasing when β < 1

and constant when β = 1.

The two parameter Weibull distribution is a very popular distribution for modeling phenomenon with monotone

hazard rates. Its negatively and positively skewed density makes it an initial choice for modeling monotone hazard

rates. However, Weibull distribution does not provide a reasonable fit in modeling phenomenon with non-monotone

hazard rate such as the bathtub-shaped hazard rate. A distribution with a bathtub-shaped hazard rate provides an

appropriate conceptual model for some electronic and mechanical products as well as the lifetime of humans.

There is extensive literature on parametric probability distributions with bathtub-shaped hazard rate function (e.g.,

Smith and Bain (1975), Leemis (1986), Gaver and Acar (1979), Hjorth (1980), and Mudhilkar and Srivastava

(1993)). Among several extensions of the Weibull distribution, with 4 parameters, are the exponentiated gener-

alized exponential linear distribution (Sarhan et. al, 2013 ) and the exponentiated modified Weibull extension

distribution (Sarhan and Apaloo, 2013).

Chen (2000) revisited a two parameter distribution with the following survival function (sf)

S (x;α, β) = e
α
(
1−exβ

)
, x > 0, (2)

where α > 0 is a parameter which does not affect the shape of the failure rate function and β > 0 is the shape

parameter. The corresponding probability density function (pdf) is

f (x;α, β) = αβxβ−1exβe
α
(
1−exβ

)
, x > 0. (3)
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The corresponding hazard rate function (hrf) of this distribution is

h(x;α, β) = αβxβ−1exβ , x > 0. (4)

The hrf can be either (1) an exponentially increasing function when β ≥ 1; or (2) of bathtub-shape when β < 1. For

simplicity, we will refer to this distribution as TPBT(α, β). It has been observed in Nadarajah and Kotz (2007) and

Pham and Lai (2007), that TPBT(α, β) is a special case of the distribution considered by Gurvich et al. (1997) and

by Haynatzki et al. (2000). However, TPBT(α, β) has an advantage over all bathtub hazard shaped distributions

since it has only two parameters.

The TPBT(α, β) distribution has been considered for a type-II censored data (Chen, 2000), type-II right censored

data (Wu et al., 2004), for a progressively type-II censored data (Wu, 2008). In Chen (2000), exact onfidence

interval for β and exact joint confidence regions for (α, β) were presented while Wu et al. (2004) presents statistical

inference about the shape parameter. Sarhan et al. (2012) derived both the maximum likelihood estimates (MLE)

and Bayes estimates (BE) of the two unknown parameters using a complete sample. They applied the simulation-

based (SB) method, the Monte Carlo integration (MCI) technique and Lindley approximation (LA) method to

approximate the Bayes estimates of the parameters and reported that the SB method was the best among the three

methods used.

The aim of this paper is to discuss Bayes inferences of the TPBT distribution’s parameters using different tech-

niques when the data are complete, cenceored and progressively censored. We use Markov-Chain Monte-Carlo

(MCMC), rejection sampling (RS) algorithms and compare them with the SB algorithm.

The rest of the paper is organized as follows. In section 2 we present the censored data scheme and the maximum

likelihood estimation procedure. Confidence interval estimations are discussed in section 3. Bayes procedure is

discussed in section 4. Two approximation techniques (the RS and MCMC) are presented in section 5. Progres-

sively Type-II censored data is used in section 6. Two real and a simulated data sets are analyzed in section 7.

A large simulation study is provided in section 8 to compare the maximum likelihood technique with Bayesian

techniques. Concluding remarks are made in section 9.

2. Maximum Likelihood Estimation

In Type-II censored data, it is assumed that n independent and identical units are put on the life test at the same

time. The life test is terminated after a predetermined number of failures m results. For unit i, i = 1, 2, · · · , n, a

pair of two quantities (Xi, δi) is observed, where Xi represents the testing time of unit i and δi is a binary variable

that takes the value of 1 when unit i has failed at time Xi, or 0 if it is tested up to time Xi without failure (Xi is a

censored time).

In this section we use the maximum likelihood method to estimate the two unknown parameters α and β, using

Type-II censored data. Suppose (X1, δ1), (X2, δ2), . . . , (Xn, , δn) is a random sample from TPBT(α, β), then the

likelihood function of the observed data is

L = (αβ)m

⎡⎢⎢⎢⎢⎢⎣ n∏
i=1

xδii

⎤⎥⎥⎥⎥⎥⎦
β−1

e
∑n

i=1

{
δi xβi +α

(
1−exβi

)}
, (5)

where m =
∑n

i=1 δi. The log-likelihood function becomes

L = m(lnα + ln β) + (β − 1)

n∑
i=1

δi ln xi +

n∑
i=1

{
δi xβi + α

(
1 − exi

β
)}
. (6)

Taking derivatives with respect to α and β of (6), we obtain

∂L
∂α

=
m
α
+ n −

n∑
i=1

exβi , (7)

∂L
∂β

=
m
β
+

n∑
i=1

δi ln xi +

n∑
i=1

δi xβi ln xi − α
n∑

i=1

exi
β

xβi ln xi . (8)
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The second partial derivatives of L with respect to α and β are

L11 =
∂2L
∂α2
= − m
α2
,

L12 =
∂2L
∂αβ

= −
n∑

i=1

xβi exβi ln xi = L21 ,

L22 =
∂2L
∂β2
= −m
β2
+

n∑
i=1

δi xβi (ln xi)
2 − α

n∑
i=1

xβi
(
1 + xβi

)
(ln xi)

2 exβi .

The information function is a two-by-two symmetric matrix

I(α, β) =

[
I11(α, β) I12(α, β)
I21(α, β) I22(α, β)

]
= −

[ L11 L12

L21 L22

]
. (9)

For a relative maximum of L, which occurs at the MLE of the parameters α̂ and β̂, the matrix I(α̂, β̂) must be

positive definite.

Setting the right hand side of (7) to zero and solving for α, we get

α̂(β) =
m∑n

i=1 exβi − n
, (10)

Substituting (10) into the right side of (8) and setting it equal to zero, we get the following non-linear equation in β

m
β
+

n∑
i=1

δi ln xi +

n∑
i=1

δi xβi ln xi −
m

∑n
i=1 exi

β

xβi ln xi∑n
i=1 exβi − n

= 0 . (11)

The MLE of β, β̂, is the solution of (11) in β. A closed-form solution of (11) does not exist, so a numerical

technique, e.g Newton-Raphson method, should be used to find β̂ for any given data set. Once we get β̂, we can

use (10) to get α̂ = α̂(β̂).

3. Confidence Intervals (CIs)

We can use different techniques to approximate (1 − ϑ)100% confidence intervals of the two parameters α and β.
In the following, we describe two of such techniques.

3.1 Likelihood Intervals

A 100p% likelihood interval (LI), p ∈ (0, 1), for a parameter θ is the range of all values of θ for which the relative

likelihood function, R(θ) = L(θ)

L(θ̂)
, is greater than or equal to p, for more details we refer to Kalbfleisch (1985). For

simplicity, we can take the natural logarithm of R(θ), therefore the 100p% LI of θ becomes the range of all values

of θ which satisfy that r(θ) ≥ ln p. Here, r(θ) is the log-relative likelihood function, given by r(θ) = L(θ) − L(θ̂).
To determine the 100p% LI for θ, we can either use the the graph of r(θ) against θ or use the Newton-Raphson

Method to get the bounds of the LI by solving r(θ) − ln p = 0.

When θ is a vector of two unknown parameters, say θ = (α, β)
′
, as in the case studied here, the 100p% likelihood

region is the set of parameter values (α, β) such that r(α, β) ≥ ln p, where r(α, β) is the joint log-relative likelihood

function of α and β, r(α, β), given by

r(α, β) = L(α, β) − L(α̂, β̂). (12)

Substituting from (6) into (12), we get

r(α, β) = m(lnα + ln β) + (β − 1)K0 + K1(β) − αK2(β) − L(α̂, β̂), (13)

where K0 =
∑n

i=1 δi ln xi, K1(β) =
∑n

i=1 δi xβi and K2(β) =
∑n

i=1 exβi − n. The 100p% likelihood contour is boundary

of 100p% likelihood region, which is formed by the curve r(α, β) = ln p. The 100p% likelihood region for (α, β)
is an approximate 100(1 − ϑ)% confidence region when p = e−χ2

1
(ϑ)/2, where χ2

1(ϑ) is the upper ϑ quantile of the

chi square distribution with one degree of freedom.

Another way to get the 100p% LI is to use the maximum log-relative likelihood function of β, which is given by

rmax(β) = m[ln(mβ) − 1] − ln(K2(β)) + (β − 1)K0 + K1(β) − L(α̂, β̂). (14)
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A 100p% LI for β, say [β1, β2], is the set of all β values such that

rmax(β) ≥ ln p . (15)

Inequality (15) has no closed form solution in β, therefore a numerical method, such as Newton-Raphson, should

be used to get [β1, β2]. Using [β1, β2], we can derive a 100p% LI for α as

m∑n
i=1 exβ2i − n

≤ α ≤ m∑n
i=1 exβ1i − n

. (16)

3.2 Large-sample Intervals

The MLE of the parameters α and β are asymptotically normally distributed with means equal to the true values of

α and β and variances given by the inverse of the information matrix. In particular,(
α̂

β̂

)
∼ N2

((
α
β

)
, Î−1

)
, (17)

where Î−1 is the inverse of I(α̂, β), with main diagonal elements Î11 and Î22 given by

Î11 =
Î22

Î11Î22 − Î2
12

and Î22 =
Î11

Î11Î22 − Î2
12

.

Using (17), large-sample (1 − ϑ)100% confidence intervals for α and β are

α̂ ± Zϑ/2
√
Î11 and β̂ ± Zϑ/2

√
Î22 ,

where Zϑ/2 is the upper ϑ/2 quantile of the standard normal distribution.

4. Bayes Inferences

To make Bayes inferences about the parameters α and β, we assume that α and β are independent random variables

having gamma prior distributions with parameters (a1, a2) and (b1, b2), respectively. Using the results in Sarhan et

al. (2012), we can get the posterior joint pdf of (α, β), the marginal posterior distributions of α and β, the Bayes

point estimates of α and β and the corresponding minimum Bayes risks, and the two-sided Bayesian probability

intervals for α and β, by replacing Px =
∏n

i=1 xi and K1(β) =
∑n

i=1 xβi by Px =
∏n

i=1 xδii and K1(β) =
∑n

i=1 δi x
β
i ,

respectively, and using the same K2(β) =
∑n

i=1

(
exβi − 1

)
. The posterior density of (α, β) is

π(α, β|data) =
1

I(0,0)

αm+a1−1βm+b1−1 e−[a2+K2(β)]α−b2β+K1(β)+(β−1)
∑n

i=1 δi ln xi , (18)

where

I(0,0) = Γ(m + a1)

∫ ∞

0

βm+b1−1[
a2 + K2(β)

]m+a1
e−b2β+K1(β)+(β−1)

∑n
i=1 δi ln xi dβ , (19)

K1(β) =
∑n

i=1 δi xβi and K2(β) = −n +
∑n

i=1 exβi .

As it is stated in Sarhan et al. (2012), all Bayes results have no analytic solutions in the general case. Therefore,

numerical approximations and/or simulation techniques should be used.

5. Approximation to Bayes Estimates

Sarhan et al. (2012) used (i) Simulation-based method (SB); (ii) Monte-Carlo integration (MCI) method; and (iii)

Lindley approximation method (LA), to make Bayes inferences about the two parameters and they concluded,

based on a simulation study, that SB method provides better estimates than the other two methods. In this paper we

use rejection sampling (RS) algorithm and Markov Chain Monte Carlo (MCMC) techniques to perform Bayesian

inferences about the model parameters and compare it with SB method.

5.1 Rejection Sampling (RS)

The rejection sampling technique is used to produce simulated independent samples from a given density function.

For more details about the RS, we refer the readers to Albert (2009) and Gelman et al. (2014). Suppose we want
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to sample from the density p(θ|data), which is not an easy function to simulate from. The rejection sampling

requires a positive function g(θ) defined for all θ for which p(θ|data) > 0 such that: (1) we can draw from a

probability density function proportional to g; (2) it is not required that g(θ) be a density function, but must have

a finite integral; (3) p(θ|data) < Cg(θ) for all θ, where C > 1 is an appropriate bound on
p(θ|data)

g(θ)
. The functions

p(θ|data) and g(θ) are called the target and proposal functions, respectively. In our case here, the target function is

the posterior density (18). The main task in the rejection sampling is to find a suitable proposal density g(θ) and

constant value C that satisfy the above restriction.

The following is the RS algorithm to simulate draws from (18):

1. Simulate θ = (α, β) from the proposal g(θ).

2. Simulate U from a uniform distribution on the unit interval.

3. If U ≤ π(θ|data)
Cg(θ)

, then accept θ as a draw from (18).

4. Repeat steps 1-3 N times.

The main advantage of the RS algorithm is the accepted θ has the correct posterior distribution.

The main problem with this process is that C is generally large in high-dimensional spaces and since P(accept) ∝ 1
C ,

many samples will get rejected.

5.2 Markov Chain Monte Carlo (MCMC)

Since early 1990s, Markov Chain Monte Carlo (MCMC) techniques have been used extensively because of their

generality and flexibility along with the massive development of computing facilities. It has become one of the

main computational tools in modern Bayesian statistical inference. Metropolis et al. (1953) developed a simple

version of MCMC, known as the Metropolis-Hastings algorithm (MHA). A generalization of the MHA was pro-

posed by Hastings (1970). A comprehensive theoretical exposition of this algorithm is given by Tierney (1994)

and an excellent tutorial of this topic is provided by Chib and Greenberg (1995).

MCMC methods enable quantitative scientists to use highly complicated models and estimate the corresponding

posterior distributions with accuracy. For extensive details of the use of MCMC methods, we refer readers to Gilks

et al. (1996) and Chen et al. (2000). In this paper, we use the Metropolis-Hastings algorithm (MHA) to generate

samples from the posterior distribution π(θ|data) in (18).

The MHA can be described by the following iterative steps:

1. Set initial values θ(0) =
(
α(0), β(0)

)′
.

2. For t = 1, · · · , T repeat the following steps:

i. Set θ = θ(t−1).

ii. Generate a new candidate θ∗ from a proposal distribution q(θ∗|θ).
iii. Calculate

κ = min

{
1,
π(θ∗|data)

π(θ|data)

}

iv. Set θ(t) = θ∗ with probability κ; or otherwise set θ(t) = θ.

The MHA converges to its equilibrium distribution regardless of the proposal distribution q. Neverthless, in prac-

tice, choice of the proposal is important since a poor choice considerably delays the convergence towards the

equilibrium distribution. An efficient proposal, for the underlying model, is the bivariate normal with mean of the

MLE of θ and covariance matrix of the Fisher-information matrix evaluated at the MLE of θ (Lecam, 1986).

6. Progressive Type-II Censored Data

In this section, we use progressive type-II censored data from TPBT distribution to make inference about the

distribution parameters using Bayes technique. In this data, it is assumed that n independent and identical units

are placed on a life test simultaneously with m failures to be observed. When the first failure occurs, r1 survived

units are randomly removed from the test. At the second failure, r2 survived units are randomly removed. The test
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stops at the occurrence of m-th failure and the remaining rm = n−∑m−1
i=1 ri −m survived units are all removed. The

likelihood function in this case is

L = αmβm

⎛⎜⎜⎜⎜⎜⎝ m∏
i=1

xi

⎞⎟⎟⎟⎟⎟⎠
β−1

exp

⎧⎪⎪⎨⎪⎪⎩
m∑

i=1

xβi + α
m∑

i=1

(ri + 1)
(
1 − exβi

)⎫⎪⎪⎬⎪⎪⎭ .
The log-likelihood function is

L = m lnα + m ln β + (β − 1)

m∑
i=1

ln xi +

m∑
i=1

xβi + α
m∑

i=1

(ri + 1)
(
1 − exβi

)
.

Wu (2008) obtained the MLE of the parameters α and β and discussed their confidence intervals and joint confi-

dence region using a progressively type-II censored sample. Wu (2008) addressed that the exact confidence interval

and the exact confidence region are obtained, but (i) numerical approximation is used to get the confidence interval

of β and no confidence interval of α was discussed, and (ii) the confidence limits for β, which are needed to get the

confidence region for (α, β), are obtained numerically.

In this paper we discuss the likelihood intervals for both α and β, the likelihood region for (α, β), and Bayes anal-

ysis of the two parameters α and β using progressively type-II censored sample. Using all results in the previous

sections, we can get the corresponding results for maximum likelihood (such as the likelihood intervals and likeli-

hood region) and Bayes techniques (point estimate and two-sided Bayesian intervals) using a progressively type-II

censored sample by replacing Px =
∏n

i=1 xδii , K1(β) =
∑n

i=1 δi x
β
i , and K2(β) =

∑n
i=1

(
exβi − 1

)
by Px =

∏m
i=1 xi,

K1(β) =
∑m

i=1 xβi , and K2(β) =
∑m

i=1(ri + 1)
(
exβi − 1

)
, respectively. Notice that K0 = ln Px.

7. Applications

In this section, two applications are discussed and one illustrative example. All the computations were done

using Matlab 7.11.0 (R2010) programming language, except for RS we used R programming language. In all

calculations, the values of M and T for SB and MCMC are 20000 and N = 10000 for RS, also since we do not

have any prior information, we assume a1 = a2 = b1 = b2 = 0.001. Although these values of the prior parameters

imply improper priors on α and β, but the corresponding joint posterior is proper.

Application 1: Serum data

In this application, the data set refers to the serum-reversal time (days) of 148 children contaminated with HIV from

vertical transmission at the university hospital of the Ribeiro Preto School of Medicine (Hospital das Clnicas da

Faculdade de Medicina de Ribeiro Preto) from 1986 to 2001 (Silva, 2004) . For more details, we refer the readers

to Perdon (2006). We start with the TPBT(α, β) and W(α, β) distributions for fitting and classical inferences. Then,

we will focus on the Bayesian inference of the TPBT(α, β) model.

It is assumed that the lifetimes are independent and identically distributed, and also independent from the censoring

mechanism. Also, we assumed that the lifetimes follow either Weibull or TPBT model. In order to assess which

model is more appropriate to fit this data set, we plot the scaled TTT-transform (Figure 1.a), the parametric hazard

function (Figure 1.b), the empirical and estimated survival functions of the TPBT(α, β) and W(α, β) distributions

(Figure 2). Figure 1.a shows that the scaled TTT-plot for the data set has first a convex shape and then a concave

shape which indicates a bathtub-shaped hrf. Figure 1.b shows that the TPBT model has a bathtub hrf while Weibul

has an increasing hrf. Therefore, the TPBT model would be an appropriate model for the fitting of this data. The

MLEs of the model parameters and the corresponding values of the L (the log-likelihood function), AIC (Akaike

Information Criterion), K-S (Kolmogorov-Smirnov) test statistic and the corresponding p-value are given in Table

1. These results show that the AIC of the TPBT is smaller than that for Weibull which indicates that the TPBT

model is more appropriate to fit this data than the Weibull. Furthermore, based on the K-S test the Weibull model

is rejected at any significance level greater than 0.025 while the TPBT is not rejected.

Table 1. MLEs of the parameters, the corresponding L, AIC, K-S and p-value.

Model (α̂, β̂) L AIC K-S p-value

TPBT (4.6334 × 10−5, 0.4009) -392.0392 788.0784 0.1420 0.1373

Weibull (1.7946 × 10−8, 3.1133) -401.9936 807.9873 0.1821 0.0250

To show that there is a unique maximum value for the likelihood function of β, for every model, the plot of the

profile log-likelihood function of β, Lβ(β), for each model is provided in Figure 3. Also, the plot of log-relative
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Figure 1. a) The Scaled TTT-Transform and b) the parametric hazard functions.

likelihood function of β, r(β), for each model which can be used to decide on the plausible values of β, is provided

in Figure 3.

Table 2 shows the 14.7% LI and 95% asymptotic CI for the TPBT and Weibull model parameters. The LI and

asymptotic CI are not very similar simply because the relative log-likelihood functions of the parameters are not

symmetric. The widths of the LI and Asymptotic interval for α in the TPBT model are 17.26×10−5 and 2.37×10−5

and for β are 0.0504 and 0.0087 respectively. These indicate that the asymptotic interval is more precise than the

LI for both parameters.

Table 2. Confidence intervals.

Parameter LI Asymptotic

TPBT

α
[
9.9023 × 10−6, 1.8252 × 10−4

] [
3.6282 × 10−5, 5.995 × 10−5

]
β [0.3752, 0.4256] [0.3964, 0.4051]

Weibull

α [3.7929 × 10−10, 4.5676 × 10−7] [1.4057 × 10−8, 2.291 × 10−8]

β [2.5465, 3.7855] [3.0707, 3.1560]

We used the three Bayesian techniques RS, MCMC and SB to estimate the TPBT parameters. The point estimates

and the Bayesian intervals with the corresponding widths are shown in Table 3. The acceptance rates for SB,

MCMC and RS are 21.288%, 64.905% and 50.66%, respectively. Figure 4 displays the simulated draws from the

joint posterior distribution along with the contours of the likelihood function from the MCMC and SB procedures

and the simulated draws using the RS algorithm on the contour plot of the posterior density. These plots show: (1) a

good agreement between the likelihood function and the simulated draws from the MCMC; (2) the simulated draws

from the SB are not well distributed within the likelihood contours; (3) the draws from the posterior distribution

using the RS are well distributed on the contours of the exact posterior density. To compare the performance of

the MCMC and SB to RS, we plotted the marginal posterior density functions using the three methods in Figure

5. From Figure 5, one can see that: (1) MCMC gives better estimate of the posterior densities than the SB; (2)

SB provides an approximation to the posterior density with very small spread which explains why the interval

estimates using SB are narrower than those obtained from RS and MCMC; (3) the posterior distribution of α is

right skewed, while that of β is approximately symmetric.
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models.

Table 3. Bayesian results for the TPBT model.

Method Parameter Point estimate Bayesian interval Width

SB α 4.624×10−5 (3.559×10−5, 5.803×10−5) 2.245×10−5

β 0.40094 (0.4001, 0.4017) 0.0070

MCMC α 5.333×10−5 (1.711×10−5, 1.253×10−4) 1.082×10−4

β 0.4006 (0.3835, 0.4177) 0.0341

RS α 4.717 × 10−5 (1.331 × 10−5, 1.598 × 10−4) 1.4648 × 10−4

β 0.3998 (0.3780, 0.4207) 0.0427
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Figure 4. The 100p% likelihood contours along with the simulated draws of (α, β) from MCMC (top left) and

SB (top right) and the simulated draws from the posterior density on contour plot of (α, β) using RS (bottom) for

serum data.

7.2 Application 2: Aarset Data

Aarset data set consists of the failure times of 50 devices put on a life test. This data set was originally analyzed

by Aarset (1987). Ng (2005) simulated progressively Type-II censored data based on the Aarset data as x = (0.1,
0.2, 1, 1, 1, 1, 1, 2, 3, 6, 7, 11, 18, 18, 18, 18, 21, 32, 36, 45, 47, 50, 55, 60, 63, 63, 67, 67, 75, 79, 82, 84, 84, 85,

86) and r = (0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0). Wu (2008)

assumed that the data have the TPBT(α, β) distribution and obtained the MLE of the two parameters α and β, the

95% CI for only β (as shown in Table ??) and a 95% confidence region for (α, β). The 95% confidence region is

(Wu; 2008)

0.2147 < β < 0.4772,
46.2248

2
∑m

i=1(ri + 1)
(
exβi − 1

) < α < 90.0941

2
∑m

i=1(ri + 1)
(
exβi − 1

)
We obtained the MLE and the corresponding standard error (se), likelihood intervals, likelihood regions and asymp-

totic confidence intervals for the TPBT distribution parameters. The inverse of the information matrix using the

complete data and progressively Type-II censored data, respectively, are

[
6.51965 × 10−5 −1.5925 × 10−4

−1.5925 × 10−4 4.39656 × 10−4

]
and

[
1.67091 × 10−4 −2.93646 × 10−4

−2.93646 × 10−4 6.21791 × 10−4

]

Also, we computed Bayes estimates and the two sided Bayesian intervals and their widths, using SB, MCMC and

RS techniques, for the complete and progressively Type-II Aarset data as shown in Table 4. Figure 6 displays the

simulated draws from the joint posterior distribution, using the MCMC procedure, on the contours of the likelihood

function and the 14.7% likelihood region of (α, β) and the simulated draws from the posterior density, using RS,

on the contour plot of (α, β), based on the complete and progressively Type-II censored Aarset data. We did not

include the plot of the simulated draws obtained from SB in Figure 6 because, as we noticed in the first example,

it does not provide representative samples.

Based on the results in Table 4 and plots in Figure 6, we can conclude that: (1) Bayesian intervals are more

precise than the asymptotic and likelihood intervals; (2) MCMC gives more reasonable approximations to the
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Figure 5. The marginal posterior density function using the three methods for serum data.

Bayes estimates than the SB; and (3) As expected, the complete version of the data gives more precise results than

the progressively Type-II censored version.

Table 4. MLE and Bayes results for the Aarset data.

Complete Progressively censored

MLE Point estimate(se) α: 0.019381(0.008074435) 0.0315359(0.01292637)

β: 0.347272(0.02096798) 0.310619 (0.02493574)

95% CI α: [0.0035553, 0.0352065] [0.00620065, 0.0568711]

(width) 0.0316512 0.05067045

β: [0.3061760, 0.3883690] [0.261746, 0.359492]

(width) 0.082193 0.097746

14.7% LI α: [0.0085446, 0.0397264] [0.0142684, 0.061713]

(width) 0.0311818 0.0474446

β: [0.3049220, 0.3870650] [0.260251, 0.357761]

(width) 0.082143 0.09751

Bayes

SB Point estimate α: 0.0194307 0.0316467

β: 0.347281 0.310603

95%TBPI α: [0.01548, 0.0238742] [0.0246732, 0.0395873]

(width) 0.0083942 0.0149141

β: [0.344872, 0.349751] [0.306733, 0.31445]

(width) 0.004879 0.007717

MCMC Point estimate α: 0.0201862 0.0327917

β: 0.346937 0.310308

95%TBPI α: [0.0110438, 0.0336883] [0.0177349, 0.0540883]

(width) 0.0226445 0.0363534

β: [0.319192, 0.375192] [0.277445, 0.344355]

(width) 0.056 0.06691

RS Point estimate α: 0.01956508 0.0348011

β: 0.34516 0.3072039

95%TBPI α: [0.009702193, 0.03812835] [0.01600871, 0.06126564]

(width) 0.02842616 0.04525693

β: [0.3103567, 0.3787636] [0.2620167, 0.3467852]

(width) 0.0684069 0.08476856
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Figure 6. The 100p% likelihood contours along with the simulated draws of (α, β) from MCMC (top row) and the

simulated draws from the posterior distribution of (α, β) on the contour plot using RS (bottom row) for complete

(left column) and progressively censored (right column) Aarset data.

7.3 Simulated Data

To compare our proposed technique with technique in Wu (2008), we use the same simulated data in Wu (2008).

Wu (2008) generated a progressively Type-II censored sample with n = 15 from the TPBT distribution with

α = 0.02 and β = 0.5, with censoring scheme r = (1,0,2,0,0,0,1,0,1,0) and got the observations x = (0.78, 3.15,

5.15, 6.69, 7.09, 7.40, 14.28, 15.72, 15.92, 22.59). Wu (2008) calculated the 95% CI for β as given in table ??, and

the 95% confidence region as

0.2299 < β < 0.7075,
8.5737

2
∑10

i=1(ri + 1)
(
exβi − 1

) < α < 36.7141

2
∑10

i=1(ri + 1)
(
exβi − 1

)
Table 5 shows the results obtained from the maximum likelihood and Bayes techniques. Based on the percentage

errors, MCMC gives better estimation than both SB and RS algorithms for this simulated data set. The inverse of

the information matrix is

Î−1 =

[
3.2484 × 10−4 −1.00961 × 10−3

1.00961 × 10−3 3.8504 × 10−3

]

Figure 7 displays The likelihood contours, the 95% confidence region along with the simulated draws from the

posterior distribution using MCMC and SB, contour plot of the parameters (α, β) of the posterior density and

of the transformed parameters (lnα, β). The contour plot of (α, β) shows the skewness in the posterior density,

especially towards when α gets larger. This is why we consider the transformation (lnα, β). The skewness has

been reduced and the distribution becomes more symmetric as shown in the bottom right plot in Figure 7. We also

plot the simulated draws from the RS on the contour plot of the log posterior density in Figure 7. As expected,

most of the draws fall within the contour of the exact posterior density.
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Figure 7. The 100p% likelihood contours, 95% confidence region along with the simulated draws of (α, β) using

MCMC (top left) and SB (top right), contour plot of (α, β) (bottom left) and of (logα, β) (bottom right) along with

simulated draws from the posterior density using RS for the progressively censored simulated data.

Table 5. Point estimates and the corresponding percentage errors and interval estimates of the parameters for the
simulated data.

Method Statistic α β

MLE Point Estimate 0.0245174 0.494714

Percentage Error 22.5869 1.05723

Wu’s 95% CI – [0.2551, 0.6785]

width – 0.423366

Approximate 95% CI (0, 0.0598424] [0.373095, 0.616333]

0.0598424 0.243238

14.7% LI [0.00564596, 0.076716] [0.361701, 0.605369]

width 0.07107004 0.243668

Bayes

SB Point Estimate 0.0243745 0.494892

Percentage Error 21.8725 1.0216

95% TBPI [0.0114819, 0.0387302] [0.48498, 0.514757]

width 0.0272483 0.029777

MCMC Point Estimate 0.0229747 0.500086

Percentage Error 14.8737 0.0172637

95% TBPI [0.00728443, 0.0627655] [0.417348, 0.57805]

width 0.05548107 0.160702

RS Point Estimate 0.01653803 0.4907907

Percentage Error 17.3099 1.84186

95% TBPI [0.003723937, 0.0628734] [0.3717111, 0.6053621]

width 0.05914946 0.233651

8. Simulation Studies

To evaluate the performance of maximum likelihood and Bayes procedures (using the SB, MCMC and RS tech-

niques) based on the sample and the censored sizes, a large simulation study using Monte Carlo method is carried

88



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 4, No. 4; 2015

out according to the following scheme:

1. Specify the sample size n.

2. Specify the censored size n − m as a percentage of n.

3. Generate a random sample with sizes n and m from TPBT(α, β).

4. Compute MLEs of α and β.

5. Compute the Fisher information matrix at the MLE’s of α and β.

6. Compute Bayes estimates of α and β using SB, MCMC, and RS methods.

7. Compute the squared deviation of the point estimate of each parameter using each of the four procedures

from the corresponding true value.

8. Repeat Steps 3-7 1000 times.

9. Calculate the average of the point estimates of every parameter and the mean squared error (MSE) associated

with each estimate for the two parameters using the four techniques.

10. Steps 2-9 are performed when n − m = 0%, 10%, 20%, · · · , 70% of n.

11. Steps 1-10 are performed when n = 10, 15, 20, · · · , 55.

12. Steps 1-11 are carried out when α = 0.1 and β = 0.5.

Table 6 presents the average estimates (first row) and the corresponding MSE (second row) corresponding to every

parameter at different set of values of (n,m).

Based on the simulation results, one can conclude that: (1) the MSE decreases when n increases for all cases at

every level of censoring, (2) the MSE increases when the percentage of censorship increases mainly for large n, (3)

there is no significant difference in the values of the MSE corresponding to the three techniques. However, based

on the MSE, (i) the MCMC generally provides better approximations than SB; (ii) RS produces 75.62% better

estimations than MCMC.

9. Conclusion

This paper extends the work of Sarhan et al. (2012) which considered a two parameter bathtub shaped distribu-

tion that was revisited by Chen (2000). We provide statistical inference of the two parameters using maximum

likelihood and Bayesian methods. For Bayesian, the simulation based, Markov Chain Monte Carlo and rejection

sampling techniques are applied. The specific interest is in the MCMC and RS methods. The estimation techniques

were applied to two real data sets and a simulated data set. In addition, the estimation methods were compared by

a Monte Carlo simulation.

For the two real data sets, the Bayesian estimates of the parameters from the MCMC and RS methods were not very

similar to those obtained by the SB method. The widths of the Bayesian intervals for the parameters constructed

by the MCMC and RS methods were larger. In each parameter case, the widths of the MCMC and RS intervals are

about 5 times larger than the SB interval widths. The main reason was that the updates from the SB algorithm are

not representative.

Several phenomena can be observed from the results from the Monte Carlo simulation. First the mean squared

error decreases as the sample size increases for fixed level of the number of units censored. For a fixed value of the

sample size beyond some threshold value, the mean squared error increases with increasing level of units censored.

The RS method gives better approximations of the point estimates of the parameters as the corresponding mean

squared errors are generally smaller than those from the other methods.
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Table 6. The mean estimated values and corresponding MSE using MLE and Bayes technique methods.

n m MLE Bayes SB Bayes MCMC Bayes RS

α β α β α β α β

10 10 0.0965938 0.543229 0.0977269 0.54325 0.104814 0.539614 0.108399602 0.537720715

0.00352657 0.0101639 0.00359058 0.0101641 0.00378798 0.00975912 0.003634698 0.010989128

9 0.088357 0.544541 0.0894954 0.544532 0.0966724 0.540575 0.101505992 0.526144192

0.00330554 0.0116283 0.00336196 0.011625 0.00342947 0.0112017 0.003590120 0.009536702

8 0.0796068 0.54592 0.0807074 0.54594 0.0878191 0.541141 0.096275747 0.515060776

0.00343309 0.0132877 0.00346612 0.0132822 0.00339047 0.0127352 0.003175031 0.007210631

7 0.0688228 0.547092 0.0699216 0.547092 0.0768808 0.542017 0.086356682 0.516791911

0.00313645 0.0139212 0.00313905 0.0139168 0.00290339 0.0133409 0.002287333 0.013380657

6 0.0620851 0.54514 0.0632252 0.545137 0.07002 0.539505 0.070573258 0.516746353

0.00355225 0.0174726 0.00354032 0.017462 0.0032198 0.0167929 0.001879280 0.007272028

5 0.0538699 0.544946 0.0550502 0.544956 0.0615898 0.538361 0.055949112 0.550375269

0.00384942 0.0219228 0.00381704 0.0219072 0.00337681 0.0210178 0.003134624 0.017955789

4 0.0438866 0.546227 0.0450433 0.546268 0.0513286 0.53851 0.048060585 0.535066812

0.00449851 0.0254716 0.00444282 0.0254549 0.00388854 0.0245151 0.003836292 0.020156080

3 0.032328 0.55412 0.0335084 0.554039 0.039321 0.544672 0.032985715 0.546116807

0.00536857 0.0309052 0.00527079 0.0309288 0.00460875 0.0295594 0.004838608 0.015649686

15 15 0.100184 0.525084 0.100935 0.525087 0.10605 0.522522 0.103980542 0.529920484

0.00225603 0.00528135 0.00228534 0.0052806 0.00240274 0.00511315 0.002617119 0.007763336

14 0.0909943 0.530283 0.0917494 0.530284 0.0968113 0.527427 0.104149751 0.516204702

0.00209798 0.00640082 0.00211125 0.00640029 0.00213668 0.00618487 0.002845662 0.006203468

12 0.0783714 0.531331 0.0791134 0.531331 0.0840893 0.528149 0.089883498 0.513820595

0.00226732 0.00719851 0.00226286 0.00719396 0.00216391 0.00694955 0.001684704 0.005211331

11 0.0721472 0.526631 0.0729103 0.526627 0.077784 0.523216 0.079724604 0.502702003

0.00225351 0.00698954 0.00224076 0.00698635 0.00206838 0.00676461 0.001860149 0.008583772

9 0.0615553 0.529293 0.0623289 0.529297 0.067142 0.525219 0.066779047 0.516578941

0.00283782 0.00997 0.00281112 0.00996494 0.0025335 0.00964735 0.002150986 0.006713115

8 0.0554091 0.528275 0.0561979 0.528268 0.0609722 0.523734 0.061997086 0.510289929

0.00310942 0.0113079 0.003071 0.0112997 0.00273604 0.0109581 0.002573363 0.008069084

6 0.0405175 0.533492 0.0412645 0.533493 0.0457878 0.527877 0.048064553 0.508517583

0.00429142 0.0135554 0.00423043 0.0135447 0.00377333 0.0130829 0.003283371 0.008654256

5 0.0367048 0.530218 0.0375033 0.530232 0.0419314 0.523801 0.030302738 0.535244630

0.00475745 0.0183476 0.00468999 0.0183348 0.00420218 0.0177115 0.005154421 0.014734452

20 20 0.100025 0.520083 0.100546 0.520087 0.104492 0.518093 0.110610084 0.506698229

0.002008 0.00397173 0.00202168 0.00397055 0.002108 0.00388291 0.002264086 0.003449096

18 0.0901603 0.517461 0.0907292 0.517449 0.094601 0.515299 0.097528212 0.510816129

0.00160633 0.00389142 0.00160836 0.00389002 0.00160002 0.00379748 0.001500577 0.004353692

16 0.0780805 0.521752 0.0786473 0.521749 0.0823812 0.519374 0.089504714 0.505521191

0.00181521 0.0048663 0.00180555 0.00486482 0.00170788 0.00474747 0.001520748 0.004244547

14 0.0688834 0.523839 0.0694442 0.523841 0.0731434 0.521107 0.075618078 0.511536977

0.00213282 0.00606386 0.00211471 0.00606354 0.00194819 0.00591089 0.001764872 0.005174954

12 0.0585814 0.522823 0.0591269 0.52282 0.0628395 0.519677 0.068418164 0.507210644

0.00260232 0.00624033 0.00257161 0.00623965 0.00232439 0.00607496 0.001996491 0.005806728

10 0.0516951 0.518968 0.0522706 0.518957 0.0559389 0.515271 0.058972871 0.504314342

0.00318661 0.00813416 0.00314724 0.00813041 0.00284923 0.00792296 0.002485735 0.007082680

8 0.0416027 0.520105 0.0422094 0.520129 0.0457422 0.515628 0.049264789 0.502262124

0.00398774 0.00939556 0.00393447 0.00939277 0.0035661 0.00914802 0.003227021 0.009296318

6 0.0311785 0.524733 0.0317564 0.524733 0.0351537 0.519104 0.038595322 0.496787510

6 0.00515314 0.0132197 0.00508979 0.0132057 0.00466518 0.0128178 0.004166036 0.010517184

25 25 0.0979555 0.517154 0.0983677 0.517147 0.101477 0.515601 0.103888994 0.510443337

0.00143602 0.00309556 0.00144151 0.00309435 0.00147783 0.00302777 0.001439089 0.002989788

23 0.0911666 0.516757 0.0915688 0.516752 0.0947404 0.515049 0.093075773 0.511015683

0.00142217 0.00355025 0.00142239 0.00354986 0.00141908 0.00348646 0.001348822 0.003458540

20 0.0779644 0.518965 0.0783778 0.518969 0.0814824 0.516957 0.086790467 0.506201220

0.00154373 0.0037997 0.00153332 0.00379991 0.00144077 0.00370779 0.001188499 0.003196711

18 0.0688486 0.523022 0.0692769 0.523026 0.0722687 0.520835 0.079904018 0.504490909

0.00185523 0.00435935 0.00183745 0.00435874 0.0016931 0.00423545 0.001366548 0.003535451

15 0.0599343 0.517435 0.0603883 0.517439 0.063386 0.514951 0.067194003 0.504849203

0.00236278 0.00506006 0.00233574 0.0050565 0.00213315 0.00494708 0.001843134 0.004277783

13 0.0519465 0.51907 0.0524132 0.519074 0.0553559 0.516249 0.056684709 0.497956849

0.00299153 0.00608319 0.0029569 0.00608104 0.00271389 0.00595449 0.002489124 0.005447762

10 0.0417998 0.516557 0.0422673 0.516556 0.0451913 0.512843 0.047737408 0.496585558

0.0038927 0.00714924 0.00384858 0.00714308 0.00354092 0.00697894 0.003186006 0.006461775

8 0.0333519 0.518054 0.0338114 0.518048 0.0366399 0.513668 0.039214367 0.495359818

0.00483082 0.0095539 0.00477984 0.00955074 0.00443303 0.00931808 0.004065767 0.007788294

30 30 0.0972154 0.515079 0.0975349 0.515085 0.10021 0.513688 0.1060592628 0.506283227

0.00111359 0.00245533 0.00111618 0.00245524 0.00113271 0.00240554 0.0012332344 0.002325400

27 0.0887368 0.51338 0.0890602 0.51338 0.0916946 0.511908 0.0953604072 0.505068810

0.00111084 0.00256706 0.0011075 0.00256683 0.00108281 0.00253086 0.0011058401 0.002363809

24 0.0807674 0.511062 0.0811108 0.511066 0.0838238 0.509323 0.0850070459 0.505923054

0.00121665 0.00264025 0.00120795 0.00263942 0.00113795 0.00259585 0.0010669811 0.002755070

21 0.0704814 0.51272 0.070829 0.512721 0.0734354 0.510873 0.0763238677 0.502793470

0.00163933 0.0035076 0.00162409 0.00350678 0.00150204 0.00345702 0.0013449374 0.003226490

18 0.0602792 0.513873 0.0606465 0.51387 0.0632074 0.511759 0.0665972335 0.501458937

0.00220679 0.00399115 0.0021832 0.00398996 0.0020086 0.00391676 0.0017751811 0.003921401

15 0.0505121 0.514852 0.0508903 0.514848 0.0533945 0.512296 0.0570783302 0.499624204

0.00296213 0.00494479 0.00293033 0.00494297 0.00270905 0.00483695 0.0024065128 0.004355206

12 0.0411194 0.511906 0.0415022 0.511914 0.044003 0.508708 0.0473113451 0.495747118

0.0038711 0.0059779 0.00383284 0.00597479 0.00356323 0.00586353 0.0031819949 0.005362933

9 0.0319218 0.510458 0.0323116 0.510445 0.0347173 0.506466 0.0357581412 0.499010244

0.00495134 0.00796539 0.0049055 0.0079599 0.00460138 0.00782591 0.0044219334 0.007251997

35 35 0.10033 0.510093 0.100576 0.510096 0.102921 0.508967 0.1050598843 0.504776950

0.00102623 0.00204779 0.00102869 0.00204781 0.00105844 0.00202386 0.0009980059 0.001837138

32 0.0920323 0.510244 0.0922977 0.510249 0.0946753 0.508911 0.0957556311 0.505687660

0.00101627 0.00226071 0.00101504 0.00226079 0.00100571 0.00223067 0.0009993649 0.002263441

28 0.0805466 0.509987 0.0808194 0.509989 0.0831057 0.508521 0.0860528455 0.501269403

0.00113601 0.00245633 0.0011274 0.00245604 0.00106022 0.00241068 0.0009560736 0.002318271

25 0.0710553 0.511721 0.071354 0.511728 0.0736569 0.510039 0.0765145830 0.498257832

0.00147962 0.00273333 0.00146566 0.00273284 0.00135798 0.00268661 0.0012302975 0.002742438

21 0.0604706 0.510207 0.0607729 0.510205 0.0630212 0.508302 0.0650159865 0.501368529

0.00208918 0.00321931 0.00206922 0.00321875 0.00191287 0.00317459 0.0017600030 0.002939498

18 0.0529151 0.509529 0.0532462 0.509529 0.0554463 0.507349 0.0582921469 0.496170424

18 0.0027137 0.00414855 0.0026869 0.00414556 0.00250154 0.00409144 0.0022509046 0.003775513

14 0.0410745 0.510033 0.0414086 0.510038 0.0435476 0.507386 0.0462818421 0.496623113

0.00380462 0.0046829 0.0037698 0.00468083 0.00353613 0.0046115 0.0032510249 0.004686905

11 0.0330037 0.5108 0.0333461 0.510807 0.0354775 0.507396 0.0347878456 0.490382611

0.00476481 0.00637757 0.00472357 0.00637076 0.00445849 0.0062901 0.0045029202 0.006254630

40 40 0.099592 0.50994 0.0998086 0.509943 0.101859 0.508928 0.1027110237 0.505816211

0.000915641 0.00173877 0.000916745 0.00173886 0.000938836 0.00171816 0.0008710900 0.001739452

36 0.0896171 0.511357 0.0898316 0.511361 0.0919229 0.510193 0.0936502366 0.504116166

0.00092654 0.00210103 0.000924203 0.00210072 0.000903531 0.00206905 0.0007803555 0.001802891

32 0.0796949 0.510414 0.0799226 0.510421 0.0819627 0.509117 0.0843232337 0.503439167

0.00108337 0.00226917 0.00107639 0.00226871 0.00101375 0.00224361 0.0009535063 0.001986631

28 0.070364 0.510544 0.0706078 0.510542 0.0726423 0.509069 0.0743081046 0.502956681

0.00145944 0.00241471 0.00144698 0.00241445 0.00134653 0.00238228 0.0012230970 0.002212039
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n m MLE Bayes SB Bayes MCMC Bayes RS

α β α β α β α β
24 0.0589237 0.511938 0.0591778 0.511944 0.0611501 0.510222 0.0637834036 0.503850526

0.00212529 0.0028013 0.00210674 0.00280073 0.00196249 0.0027554 0.0017856161 0.002760099

20 0.0508943 0.508294 0.0511654 0.508289 0.0531312 0.506295 0.0545042108 0.500074972

0.00276204 0.00325971 0.00273818 0.00325978 0.00255928 0.00322043 0.0024751614 0.003288732

16 0.0407576 0.51077 0.0410403 0.510777 0.0429512 0.508298 0.0448721380 0.498912840

0.00381568 0.00453387 0.0037857 0.00453127 0.00357632 0.00446909 0.0033527216 0.004070938

12 0.0313449 0.507069 0.0316441 0.507074 0.0335126 0.503964 0.0350569184 0.494194384

0.00493557 0.00519936 0.00489815 0.00519722 0.0046553 0.00512012 0.0044477989 0.005417482

45 45 0.099404 0.509762 0.0995777 0.509761 0.101452 0.508819 0.1034950866 0.504796789

0.000700984 0.00147888 0.000701514 0.00147869 0.000715174 0.00145551 0.0007970579 0.001383290

41 0.0905794 0.508827 0.0907641 0.50883 0.0925778 0.507828 0.0919737663 0.503814669

0.000774688 0.00169698 0.000772756 0.00169676 0.000753132 0.0016712 0.0007955076 0.001582602

36 0.0804721 0.507271 0.0806633 0.507273 0.0824927 0.506152 0.0847056266 0.501305058

0.00100127 0.00193854 0.00099529 0.00193842 0.000939194 0.00191766 0.0008736683 0.001776347

32 0.071167 0.507539 0.0713656 0.507544 0.0732112 0.506228 0.0011178763 0.002072463

0.00131079 0.00204462 0.0013009 0.00204486 0.00121075 0.00202527 0.0758102308 0.502013931

27 0.0596875 0.510219 0.0599065 0.510229 0.0616798 0.50867 0.0638147000 0.504241774

0.00202708 0.00241344 0.00201171 0.00241312 0.00188221 0.00237689 0.0017339790 0.002463779

23 0.0525129 0.506082 0.0527449 0.506091 0.0545259 0.504284 0.0532987239 0.498539769

0.0026475 0.00300329 0.00262761 0.00300276 0.00247301 0.00297257 0.0025246835 0.002869696

18 0.0396012 0.512335 0.0398377 0.512338 0.0415572 0.510104 0.0453582536 0.493997303

0.00391486 0.00394246 0.00388864 0.00394025 0.00369323 0.00386819 0.0032401918 0.003322612

14 0.0311549 0.511945 0.0314102 0.511951 0.0330341 0.509314 0.0361276242 0.493710912

0.00492781 0.00473281 0.0048952 0.00472983 0.00468179 0.00464864 0.0042821305 0.004457198

50 50 0.0995724 0.508182 0.0997171 0.508187 0.101381 0.50738 0.1035335180 0.503039498

0.000655787 0.00136083 0.000656443 0.00136084 0.000665895 0.00134662 0.0007241307 0.001301183

45 0.0904489 0.507345 0.090604 0.507347 0.092247 0.506425 0.0943669027 0.501332417

0.000714751 0.00148269 0.000712485 0.00148247 0.00069268 0.00146682 0.0006399489 0.001346615

40 0.0781412 0.510993 0.0782879 0.510994 0.0799672 0.509953 0.0832603379 0.504195263

0.000971694 0.00179197 0.000966141 0.00179182 0.000907772 0.0017728 0.0007927074 0.001652673

35 0.069269 0.509038 0.0694478 0.509039 0.0710814 0.507872 0.0751999064 0.499655530

0.00135772 0.00186597 0.001348 0.00186576 0.00126008 0.0018419 0.0011150765 0.001811460

30 0.0591685 0.509075 0.0593578 0.509078 0.060997 0.507634 0.0655125831 0.497755539

0.00201064 0.00215451 0.00199666 0.00215454 0.00187466 0.00212469 0.0015827993 0.001960856

25 0.0503399 0.507663 0.0505373 0.507669 0.0521508 0.506057 0.0547102650 0.499009974

0.00275415 0.00260065 0.00273601 0.00259974 0.00258774 0.00256945 0.0023687057 0.002506362

20 0.0399768 0.511354 0.040192 0.511351 0.0417161 0.509403 0.0439064657 0.498555889

0.00384476 0.00348622 0.00382065 0.00348563 0.00364728 0.00343041 0.0033724790 0.003115709

15 0.0308155 0.506553 0.0310507 0.506561 0.032579 0.503916 0.0343540871 0.496051442

0.00496856 0.00451572 0.0049381 0.00451354 0.00473602 0.00445921 0.0044776877 0.004107279

55 55 0.0999156 0.507076 0.100043 0.50708 0.101586 0.506317 0.1025671133 0.504709426

0.000605656 0.00118931 0.000606407 0.00118933 0.000618069 0.0011795 0.0006159297 0.001119474

50 0.0896197 0.508431 0.0897495 0.508432 0.0912528 0.507659 0.0941894391 0.502748280

0.000657108 0.00131065 0.000655005 0.00131069 0.000636228 0.00130038 0.0005941511 0.001231337

44 0.0790223 0.508002 0.0791718 0.508003 0.0806547 0.507122 0.0830742540 0.502139363

0.000896261 0.00149798 0.00089051 0.00149778 0.000839479 0.00148533 0.0007791093 0.001454397

39 0.0713882 0.507398 0.0715437 0.507401 0.0730488 0.506403 0.0735465362 0.500035985

0.00119633 0.00167253 0.00118811 0.00167254 0.00111315 0.00165792 0.0011417480 0.001741524

33 0.0596584 0.507667 0.0598219 0.507673 0.0612978 0.506414 0.0646420676 0.498748827

0.00193851 0.00197268 0.00192602 0.00197214 0.0018161 0.00194866 0.0016278846 0.002142306

28 0.0510951 0.507843 0.0512697 0.507851 0.0527337 0.506403 0.0543184546 0.500949336

0.00265338 0.00216282 0.00263717 0.00216224 0.00250405 0.00213783 0.0023899234 0.002317586

22 0.0405079 0.506676 0.0407017 0.506683 0.0421262 0.504859 0.0438771961 0.497455014

0.00374537 0.00289383 0.00372366 0.00289281 0.00356261 0.00285924 0.0033688235 0.002975789

17 0.0311658 0.510179 0.0313687 0.510182 0.0327539 0.507893 0.0333519673 0.493075804

0.00489078 0.00388375 0.00486439 0.00388256 0.00468169 0.00382626 0.0045952979 0.004124284
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Abstract 
Experiments have shown that, even one to three day old babies are able to distinguish between known faces 
(Chiara, Viola, Macchi, Cassia, & Leo, 2006). So how hard could it be for a computer? It has been established 
that face recognition is a dedicated process in the brain (Marque´s, 2010). Thus the idea of imitating this skill 
inherent in human beings by machines can be very rewarding though the idea of developing an intelligent and 
self-learning system may require supply of sufficient information to the machine. This study proposes 
multivariate statistical evaluation of the recognition performance of Principal Component Analysis and Singular 
Value Decomposition (PCA/SVD) and a Whitened Principal Component Analysis and Singular Value 
Decomposition algorithms (Whitened PCA/SVD) under varying environmental constraints. The Repeated 
Measures Design, Paired Comparison test, Box’s M test and Profile Analysis were used for performance 
evaluation of the algorithms on the merit of efficiency and consistency in recognizing face images with variable 
facial expressions. The study results showed that, PCA/SVD is consistent and computationally efficient when 
compared to Whitened PCA/SVD. 
Keywords: Principal Component Analysis, Singular Value Decomposition, whitening, multivariate, repeated 
measures design, Paired Comparison, Box’s M and profile analysis. 
1. Introduction 
Face recognition is an easy task for humans. Although the ability to infer the intelligence or character from facial 
appearance is suspect, the human ability to recognize faces is remarkable (Turk & Pentland, 1991). According to 
Rahman (2013), the intricacy of a face features originate from continuous changes in the facial features that take 
place over time. Regardless of these changes, we are able to recognize a person very easily.  
In recent years, face recognition techniques have gained significant attention from researchers partly because 
face recognition is non-invasive with a sense of primary identification. One of the main driving factors for face 
recognition is the ever growing number of applications that an efficient and resilient recognition technique 
addresses; for example, security systems based on biometric data, criminal identification, missing children 
identification, passport/driver license, voter identification and user-friendly human-machine interfaces. An 
example of the later category is smart rooms, which use cameras and microphones arrays to detect the presence 
of humans, decide on their identity and then react according to the predefined set of preferences for each person.  
Currently, all face recognition techniques work in either of the two ways. One is local face recognition system 
which uses facial features (nose, mouth, eyes) of a face. That is to consider the fiducial points in the face to 
associate the face with a person. The local-feature method computes the descriptor from parts of the face and 
gathers information into one descriptor. Some local-feature methods are, Local Feature Analysis (LFA), Garbor 
Features, Elastic Bunch Graph Matching (EBGM) and Local Binary Pattern Feature Agrawal et al., (2014). 
The second approach or global face recognition system uses the whole face to identify a person. The principle of 
whole face method is to construct a subspace using Principal Component Analysis (PCA), Linear Discriminant 
Analysis (LDA), Independent Component Analysis (ICA), Random Projection (RP), or Non-negative Matrix 
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Factorization (NMF). These are all dimensionality reduction algorithms that seek to reduce the large dimensional 
face image data to small dimension for matching.  
Viola and Jones (2001) proposed a multi-stage classification procedure for face recognition that reduces the 
processing time substantially while achieving almost the same accuracy as compared to a much slower and more 
complex single stage classifier. Lienhart and Maydt (2002) extends their rapid object detection framework in two 
important ways: Firstly, their basic and over-complete set of haar-like feature was extended by an efficient set of 
45° rotated features, which added additional domain-knowledge to the learning framework. Secondly, they 
derive a new post optimization procedure for a given boosted classifier that improves its performance 
significantly. Zhang, Ding and Liu (2015), also proposed an improved approach of PCA based on facial 
expression recognition algorithm using Fast Fourier Transform (FFT) during the preprocessing stage. They 
combined the amplitude spectrum of one image with phase spectrum of another image as a mixed image.  
An important goal in image recognition is the ability to rate face recognition algorithms on the merit of 
efficiency and consistency in recognizing face images under variable environmental constraints. Until now, a 
face recognition algorithm’s rate, runtime, sensitivity and descriptive statistics are the basic means of rating face 
recognition algorithms’ performance. Delac and Grgic (2005) used some descriptive statistics to measure 
performance of face recognition algorithms. In their paper, they introduced measures of central tendencies, 
measures of dispersion, skewness and kurtosis of some template-based recognition algorithms and subsequently 
analysed the probability distribution of these algorithms. Beveridge et al., (2001) also investigated only Principal 
Component Analysis (PCA) and Linear Discriminant Analysis (LDA) in not as much detail using descriptive 
statistics. 
This work focuses on statistical evaluation of the recognition performance of PCA/SVD and Whitened 
PCA/SVD under variable environmental constraints (variable facial expressions). This research explores and 
compares techniques for automatically recognizing facial actions in sequence of images or detecting 
an ”unknown” human face in input imagery and recognizing the faces under various environmental constraints. 
This paper uses more intrinsic statistical methods (Multivariate methods) to assess the performance of face 
recognition algorithms under variable environmental constraints. The research methods, results, discussion and 
conclusions are presented in subsequent sections. 
2. Methods  
2.1 Data Acquisition 
A real time face image database is created for the purpose of benchmarking the face recognition system. Two 
hundred and ninety four (42 individuals) labeled frontal facial images were randomly acquired from Cohn 
Kanade, Japanese Female Facial Expressions database (JAFFE) at labeled faces in the wild and some local 
Ghanaian students facial database. Of Two hundred and ninety four images, one hundred and eighty two facial 
images from 26 individuals were collected from the Cohn-Kanade AU-Coded Facial Expression Database along 
the seven universally accepted principal emotions (Neutral, Angry, Happy, Fear, Disgust, Sad, and Surprise). 
Subjects in the available portion of the database were 26 university students enrolled in introductory psychology 
classes. They ranged in age from 18 to 30 years. Forty two (6 individuals) images were also from the Local 
Ghanaian database. In the creation of the database, the observation room was equipped with a chair for the 
subject and one canon camera. Only image data from the frontal camera were captured. Subjects were instructed 
by an experimenter to perform a series of 7 facial displays that included single action units. Subject began and 
ended each display from a neutral face. Before performing each display, an experimenter described and modeled 
the desired display. Six of the displays were based on descriptions of prototypic basic emotions (happy, surprise, 
anger, fear, disgust, and sadness). Image sequences from neutral to target display were digitized into 256 by 256 
or with 8-bit precision for grayscale values. Seventy frontal face images (10 individuals) were also collected 
from Japanese Female Facial Expressions database (JAFFE) along the principal emotional constraints. All three 
databases were combined in the study. This helped to evaluate the face recognition algorithms on large and 
different databases. The new created GFD accounted for the originality of the study database. The study database 
was divided into two subsets, training database and testing database. The training database comprised all 42 
neutral poses and testing database comprised the remaining 210 expressions (Angry, Disgust, Fear, Happy, Sad 
and Surprise). Figure 1 shows a section of the study database.  
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Figure 1. Sample of Research Database 

2.2 Recognition Procedure 
The study focused on running PCA/SVD and Whitened PCA/SVD recognition algorithms on a created face 
database. The research evaluated the recognition performance of the algorithms and subsequently compared their 
results on the created face database.  
Face image data were passed to face recognition modules as input for the system. The face images passed were 
transformed into operationally compatible format (resizing images into uniform dimension). The data type of the 
image samples were also changed into double precision and passed for preprocessing. The entire recognition 
exercise comprises a preprocessing stage, feature extraction stage and recognition stage. The adopted 
preprocessing procedures are basically, mean centering and whitening. This is to help reduce the noise level and 
make the estimation process simpler and better conditioned. 
The selected template based algorithms were used to train the created image database. In the extraction unit, 
unique face image features were extracted and stored for recognition. The obtained facial features were passed to 
the classifier unit for classification of a given face query with the knowledge created for the available database. 
For the implementation of the facial recognition, a real time database was created. For the implementation of the 
proposed recognition design, the database samples were trained for the knowledge creation and classification. In 
the course of the training phase, when a new facial image was added to the system, the features were calculated 
according to a particular recognition algorithm’s procedure and aligned for the dataset information. The test face 
weight and the known weight in the database are compared by finding the norm of the difference between the 
test and known weights. A maximum and minimum difference signifies poor and close match respectively. 
Figure 2 is a design of the entire face recognition process. 
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Figure 2. Research Design 

2.3 Preprocessing of Frontal Face Image 
Before applying any template-based algorithm on image data to be trained, it is useful to do some preprocessing. 
In this work, preprocessing is basically, Mean Centering and Whitening. This as indicated earlier on, is to help 
reduce the noise level and make the estimation process simpler and better conditioned. 
As an illustration of preprocessing, Figure 3 shows six images selected from Japanese Female Face Expression 
database (JAFFE).  

 

Figure 3. Six selected images from JAFFE 

Define the image matrix,  as; 

 

  

Where, 
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.
 

Now from equation  clearly,  is a column vector of dimension  and can be written as; 
 

          
where  replaces the position wise. 
The preprocessing steps are based on the sample  whose elements are the vectorised 
form of the individual images in the study. 
2.3.1 Centering 
This is a simple preprocessing step, executed by subtracting the mean,  

 of the data  , from the data. 

 

                                                      (3.0) 

 

where    
Define  as a constant column vector of order with all elements same as   
The centered mean is denoted by,  with 
 

                         ,                              (4.0) 

Applying equation (4.0) to the images in Figure 2, the generated mean centered images are shown in Figure 4. 

 

 

 

 

Figure 4. Six mean centered images from JAFFE 

2.3.2 Whitening 
Whitening is a preprocessing technique that removes the noise factors in the observed image data,  so as to 
obtain a new image,  with uncorrelated components but equal unit variance. This is to say, the covariance of  

 is the identity matrix, . A simple way to whiten images is to find the eigenvectors and eigenvalues of the 
observed images through eigenvalue decomposition (for symmetric image matrix) or singular value 
decomposition (for asymmetric image matrix) of the covariance matrix. Suppose the covariance matrix,  is 
given by; 

               (5.0) 

Define matrix   where  is the  eigenvector of the 
covariance matrix .  Let   be the diagonal matrix whose entries 

 are the eigenvalues corresponding to the eigenvectors   The 
whitened images are given by; 
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                          (6.0) 
The covariance matrix  of  is given by; 

                       (7.0) 

Figure 5 shows the whitened outcome of the six images shown in Figure 3. 

 

Figure 5. Whitened images 

The whitened matrix, , built from the eigenvalue decomposition of the covariance matrix  of the zero-mean 
observation, , creates a set of uncorrelated unit image variables. 
2.4 Singular Value Decomposition (SVD) 
Singular Value Decomposition (SVD) transforms correlated variables into a set of uncorrelated ones that better 
expose the various relationships among the original data items, while at the same time, identifying and 
ordering the dimensions along which data points  exhibit the most variation. Once SVD has identified the 
most variation, it is possib le  to find the best approximation of the original data points using fewer 
dimensions (Baker, 2005). Hence, SVD can be seen as a method for  data reduction or dimensionality 
reduction. Consider an arbitrary real  matrix  , then  there are orthogonal matrices  and 

and a diagonal matrix , such that,   , where  is an  matrix,  is an  
matrix and  is an  diagonal matrix with diagonal entries ,  and  

 . In practice, the components of  are unknown and are to be estimated. The columns 
of  and  are called the singular vectors corresponding to the positive values (singular values) in the 
diagonal matrix . When these are used to represent vectors in the domain and range of transformation, the 
transformation simply dilates and contracts some components according to the magnitude o f  the singular 
values and possibly discards values and appends zeros as needed to account for a change in dimension.  It 
is therefore clear that SVD tells how to choose orthonormal bases so that the transformation is represented by 
a matrix with the simplest possible form. 
2.5 Principal Component Analysis (PCA) 
PCA is concerned with elucidating the covariance structure of a set of variables. It seeks to find a set of basis 
images which are uncorrelated, that is, they cannot be linearly predicted from each other and also yield 
projection directions that maximize the total scatter across all classes or across all face images. According to 
Barlett et al., (2002), PCA can thus be seen as partially implementing Barlow’s ideas: Dependencies that 
sho w up in the joint distribution of pixels are separated out into marginal distribution of PCA coefficients. 
Most of the successful representations for face recognition, such as eigenface and local feature analysis are 
based on PCA. 
2.6 Feature Extraction 
Having these algorithms in mind, it is now time to seek a set of  orthonormal vectors,  which best describes 
the distribution of the data. The vector  is chosen such that 

 

is maximum subject to the orthonormality constraints. 
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The vectors  and scalars  are the eigenvectors and eigenvalues respectively of the covariance matrix .  
The size of  ( )  could be enormous and determining the eigenvectors and eigenvalues is an 
intractable task for typical image sizes. A known theorem in linear algebra states that the  vectors  and 
the scalars can be obtained by solving for the eigenvalues of  respectively. 

                             (8. 0) 

This means that t h e  first  eigenvectors,  and eigenvalues, of  are given by  
and   respectively. needs to be normalized in order to be equal to . 

Hence,  where  and  are the columns from  and  respectively.The principal 

components of the trained image set are determined by computing; 

   (9.0) 

where  
The large correlated image dimensions are finally reduced to uncorrelated smaller intrinsic dimensions which 
display important characteristics of the image set. An unknown input face is passed through the steps below 
before identification. 
Following the steps in the feature extraction stage, a new face from the test image database is transformed into 
its eigenface components. First the input image is compared with the mean image (trained images mean) in 
memory and their difference is multiplied with each eigenvector from . Each value represents a weight and is 
saved on a vector . This is done by looking for the face class that minimizes the Euclidean; . 
Figure 6 is a flow diagram of the study algorithms. 

 

Figure 6. Flow diagram of study algorithms. 
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2.7 Results and Discussion 
This section presents the statistical procedures used to evaluate the fore-mentioned recognition algorithms. The 
results of running these statistical tests on the study dataset are also presented and discussed. 
2.7.1 Statistical Evaluation of the Face Recognition Algorithms 
The recognition algorithms under study are PCA and SVD with Mean Centering as the preprocessing step 
(Algorithm 1) and PCA and SVD with Mean Centering and Whitening as the preprocessing step (Algorithm 2). 
From the study database, 6-variates are collected per each algorithm from the Euclidean distance between the 
universally accepted principal emotions (Angry, Disgust, Fear, Happy, Sad and Surprise) and their neutral pose. 
(see appendix 2.0 for data).  
In assessing multivariate normality, a chi-square plot of the datasets (Algorithm specific) is done by plotting the 
generalized squared distances of the datasets against the chi-square quantiles.  

 

Figure 7. Chi-square plot of Algorithm 1 

 

Figure 8. Chi-square plot of Algorithm 2 

Figure 7 and Figure 8 show the chi-square plots of the datasets from the study algorithm 1 and Algorithm 2 
respectively. The correlation, , values are  and  for algorithm 1 and algorithm 2 respectively 
are close to . These satisfy the assumption of a unit slope of the chi-square plot. Multivariate normality exists 
and hence can be assumed in subsequent statistical test that will be performed on the datasets. 
2.7.2 Repeated Measures Design 
The purpose of the test is to determine whether for each of the recognition algorithms under study, there exist 
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significant differences between the average distances of the various poses from their neutral pose. 
Using the 6-variate dataset from Algorithm 1, we have; 

 

 

 

Hence, the ; 

 

 

Now,

 

 

Reject if; 

 

 There is therefore enough evidence at  level of significance to reject  and conclude 
on . This means there exist significant difference in the average distances of the various constraints 
from their neutral pose when Algorithm 1 is used for recognition.  
Using the 6-variate dataset from Algorithm 2, we have; 

 

 

Hence, the ; 
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Now, 

 

 

 There is therefore enough evidence at  level of significance to reject  and conclude 
on . This means there exist significant difference in the average distances of the various constraints 
from their neutral pose when Algorithm 2 is used for recognition. The  simultaneous confidence intervals 
for the estimates of the mean differences are shown in . 
 
Table 1. Simultaneous Confidence Intervals. 

  Algorithm 1 Algorithm 2 
Constraints    Lower Upper   Lower  Upper 
Angry vs Disgust −810.2300 2818.0636 −922.7925 1803.2427 
Angry vs Fear −949.4138 2759.3435 −1805.9279 2143.9577 
Angry vs Happy −537.6334 2904.1299 −1114.9863 3184.0031 
Angry vs Sad −879.9624 3053.6657 −828.3633 2582.9919 
Angry vs Surprise −1874.7483 1714.1202 −3145.0346 351.933 
Disgust vs Fear −1489.3901 1291.4861 −2150.1650 1607.7446 
Disgust vs Happy −925.4309 1284.0937 −1321.6768 2510.2434 
Disgust vs Sad −1201.0698 1366.9394 −1083.5872 1957.7656 
Disgust vs Surprise −2317.2119 148.7501 −3780.7245 106.9097 
Fear  vs  Happy −1290.6203 1847.1871 −739.2223 2470.2092 
Fear  vs  Sad −855.2611 1219.0347 −1109.0879 2525.6867 
Fear  vs  Surprise −2024.8504 54.2926 −3808.7245 677.593 
Happy vs Sad −1633.8636 1441.0704 −2038.4331 1724.045 
Happy vs Surprise −2469.2859 −57.8386 −4401.5625 −460.5558 
Sad vs Surprise −2298.1676 −36.1638 −3745.1675 −802.5626 

 
2.6.2 Paired Comparisons 
Measurements are often recorded under different sets of experimental conditions to see whether the responses 
differ significantly over these sets. In the case of this study, the Euclidean norms of various poses (Angry, 
Disgust, Fear, Happy, Sad and Surprise) along with their neutral pose are recorded by using two different 
recognition algorithms. Specifically for this study, 42 individuals were tested on the different recognition 
algorithms. The paired responses are analyzed by computing their differences, thereby eliminating much of the 
influence of extraneous unit to unit variation. 
The multivariate case is motivated for 6 constraints, 2 algorithms and 42 experimental units.  The paired 
differences random variables are; 

for  
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and   

 

 

In addition,  are independent individuals, . Given the observed difference, 
 

 

 

 

. This assertion of equal mean difference between the algorithms is not tenable at  level of 
significance. It can be concluded that, there exist significant difference in the average distances of both 
algorithms with respect to the study constraints (pose-wise).  

The Bonferroni  simultaneous confidence intervals for the individual mean difference is given by;

 ,  where  is the  element of ,  is the  diagonal of  and 

 is the upper  percentile of the t-distribution.  

These confidence intervals will reveal specifically which constraints have significant differences in Euclidean 
distances when the different face recognition algorithms are used. Table 2 below shows the confidence intervals 
of estimates for the average of the difference in distances. 
 
Table 2. Bonferroni Simultaneous Confidence Intervals 

Constraints Average differences     Lower   Upper 
Angry poses  2764.2480 971.3904 
Disgust poses  4086.8883 605.0192 
Fear poses  3750.5892 988.0069 
Happy poses   4025.6741 158.8898 
Sad poses  4628.7849 1491.8397 
Surprise poses   3673.1152 395.0652 

This means for the two algorithms (Algorithm 1 and Algorithm 2) under study, there exist significant difference 
in their poses (Disgust, Fear, Happy, Sad and Surprise) recognition except their recognition of the angry pose. 

 means, there is no significant difference in the average recognition distance 
on Angry pose between Algorithm 1 and Algorithm 2. It can therefore be inferred that, at 5% level of 
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significance, both algorithms have significantly different average recognition distances for all poses except angry 
pose. 

2.7.3 Test of Equality of Covariance Matrices (Box’s M-Test) 

This test will be used as a measure of consistency between the recognition algorithms. The test will reveal 
whether the variations i n  distances across algorithms in recognizing face images in the study database are 
equal or significantly different. The most consistent algorithm should have lower variation in recognition 
distances. The Box's test is based on the approximation to the sampling distribution of  

,  

From the data,  

 

 

 
where  is the number of constraints.  
Now, 

 
 

 

 

, hence the assertion of equality of covariance is not tenable at 5% level of significance. 
We can therefore conclude that, the covariance of Algorithm 1 and Algorithm 2 are not equal. This means, the 
variations in the Algorithm 1 and Algorithm 2 recognition distances are significantly different. 
2.7.4 Profile Analysis 
For small sample size, profile analysis depends on the normality assumption (Johnson, & Wichern, 2007). The 
datasets under study are multivariate normal; hence this assumption of normality is satisfied. Profile analysis 
also works on the premise of equality of covariance matrices. Here, the pooled covariance is then used as the 
common covariance for the populations under study. The Box’s M test revealed that, the  covariance matrices 
of the algorithms under study are unequal. According Mettle, Yeboah and Asiedu (2014), the profile analysis 
is still feasible when the assertion of equality of covariance matrix is not tenable. That is, profile analysis can 
continue when unequal covariance exist. In this case the separate covariance matrices are used in the 
computation. 
Now from the study datasets, 
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The sample sizes,  

 

 

 

 

10.459 > 2.451 and the assertion of parallel profiles is not tenable at 5% significance level. It can therefore be 
concluded that, the profiles of Algorithm 1 and Algorithm 2 are not parallel. This also implies that, the profiles 
are not coincident and subsequently not level. Figure 9 shows a mean plot of the recognition algorithms. 

 
Figure 9. Mean plot of recognition distances. 

2.7.5 Levene’s Test of Equality of Variance 
The goal of this test i s  to determine whether the Algorithms under study have equal variance in their 
recognition of the study constraints. The test is quite sensitive to the underlying assumption that the, samples 
been tested should come from a normal population. 
In this study, two independent normal populations each from the different study algorithms are collected. For 
example, angry pose data from algorithm 1 tested against angry pose data from algorithm 2.  

Let  (individuals) and  (poses) be the datasets from algorithm 1 and 
 (individuals) and    (poses) be the datasets from algorithm 2. Now 

consider two independent normal populations   and , with unknown variance. 

With samples of size , from Algorithm 1,  from Algorithm 2 and their respective sample 
variance  and . 

A   confidence interval is given by; 
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The estimates of the ratio of variance are given by; 

 

The 95% confidence intervals for the estimates of the ratio of variances are shown in Table 3 below.  

Table 3. Confidence interval for the ration of variance 

Constraints Ratio of Variances Lower Upper 
Angry poses 1.6142 0.8676 3.0029 
Disgust poses 0.4141 0.2226 0.7704 
Fear poses 0.1479 0.0795 0.2752 
Happy poses 0.4697 0.2525 0.8738 
Sad poses 0.2283 0.1227 0.4247 
Surprise poses 0.2274 0.1222 0.4230 

  
Clearly from Table 3, the confidence interval for angry poses  contains 1 and hence the 
assertion of equality of variance of the two algorithms is tenable at 5% significance level. The remaining 
constraints (Disgust, Fear, Happy, Sad and Surprise) have confidence intervals that do not contain 1. Here, 
assertion of equality of variance is not tenable. This means the variances of the recognition distances for these 
poses are not equal. Now considering the constraint for which equality of variance is not tenable (Disgust, Fear, 
Happy, Surprise and Sad), estimate of the ratio of variance are given as 0.42141, 0.1479, 0.4697, 0.2283 and 
0.2274 respectively. All these ratios are less than 1 and hence we can reach the conclusion that, the variations in 
Algorithm 2 are greater than that of Algorithm 1 in the recognition of these constraints. Subsequently, Algorithm 
1 is considered as comparatively consistent in the recognition of Disgust, Fear, Happy, Sad and Surprise poses. 
3. Conclusion 
The runtime of Algorithm 1 and Algorithm 2 in the recognition of the 252 images is 70.470 seconds and 191.79 
seconds respectively. The time used by algorithm 2 in the whitening process accounts for the differences in the 
algorithms’ runtime (speed). The recognition rates of Algorithm 1 and Algorithm 2 are 92.86% and 88.10% 
respectively. It is evident from the above statistical methods that, the algorithms considered are significantly 
different in recognizing all poses except the angry pose. Although both algorithms are equally consistent in 
recognizing angry pose, Algorithm 1 (PCA with SVD and mean centering as preprocessing step) is 
comparatively efficient (from recognition rate) and consistent (from variation) in recognizing all other 
constraints under study. Algorithm 1 is therefore adjudged as comparatively better in recognizing face images 
under the variable environmental constraints. 
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Appendix 
 

Appendix 1.0 
This section contains the entire study database collected along the various environmental constraints. The six 
constraints (Angry, Disgust, Fear, Happy, Sad and Surprise) were used for testing the algorithms whereas the 
neutral expressions were trained and knowledge captured in memory for recognition. 
 

 
Appendix 1.0a: Cohn Kanade Face Expression database w i t h  the various study constraints. 
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Appendix 1.0a: Cohn Kanade Face Expression database with the various study constraints. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix 1.0a: Cohn Kanade Face Expression database with the various study constraints. 
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Appendix 1.0b:  Ghanaian Face Expression database with the various study constraints. 

 

 
Appendix 1.0c: JAFFE database with the various study constraints. 
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Appendix 2.0  
This section contains the multivariate data from each of the study algorithms. Here the data been presented 
are the absolute deviations from the variates means. 

Appendix 2.0a: Multivariate data from Algorithm 1 
 

Indiv. Angry Disgust Fear Happy Sad Surprise 
1 3517.1 3312.4 3138.9 382.56 3200.9 3416.7 
2 3648.5 3188.9 1369.8 1270 977.53 1200.8 
3 1066.7 2292.3 944.91 1754.1 153.65 503.84 
4 1887.2 1565.2 1968.2 650.66 1592.4 3163.7 
5 1310 1786.4 714.62 1555.7 1041.4 19.272 
6 3344 2233.9 396.92 3125.5 1639.3 457.94 
7 2026 3846 2079.9 2066.4 3774.7 1257.6 
8 3938.2 1352.1 287.93 603.52 2255.8 2297.1 
9 4511.8 2741.5 2001.4 612.89 343.57 555.98 
10 3911.8 2740.3 431.02 1892.2 1288.2 3438.5 
11 4061.4 3992.9 2417.5 3841.7 3093.6 3190.7 
12 1007.3 311.05 1354.2 2343.1 60.553 4302.2 
13 641.44 1039.4 1502.3 2711.9 20.156 439.59 
14 4498.9 213.6 1725.3 381.99 3122.7 389.05 
15 1291.7 649.23 2096 2441.9 2137.4 1073.8 
16 604.4 662.43 2188.9 450.77 38.288 150.02 
17 1592.4 726.54 972.45 3186.6 2050.1 1685.6 
18 2443.2 2156.4 968.9 2.4806 1099.1 1322.6 
19 2367.3 2632.2 1758.5 3362.8 602.98 2763.2 
20 4202.9 1733.3 2035.5 802.91 3368.7 2945.4 

 
Appendix 2.0a: Multivariate data from Algorithm 1  

Indiv. Angry Disgust Fear Happy Sad Surprise 
21 2649.6 2807.1 2181.8 388.48 2203 1093.8 
22 435.71 1929.4 115.94 1088.9 1845.6 5610.8 
23 974.95 1838.1 21.981 2655.7 3448.7 713.35 
24 2468.7 2045.5 3403 961.96 1571.8 2048.3 
25 3914.6 2149 2617.9 2952 1991.8 2543.7 
26 1960.6 832.35 986.1 1915.1 716.68 1099.8 
27 8971.9 2449.4 249.59 878.3 3907 517.22 
28 13519 10854 421.22 14982 1501.9 6786.5 
29 4172.6 2069.4 2502.5 1358.1 900.82 1927.7 
30 16692 703.38 4804.2 2626.1 751.38 2277 
31 497.09 3554.5 537.24 1834.1 3030.6 978.56 
32 577.03 1869.1 6.0795 1428.3 342.6 487.2 
33 1877 2814.1 3018.8 2190.9 430.11 2250.2 
34 1876.8 3680.2 3528.1 2197.5 1940.2 2460.5 
35 540.55 977.6 3713.8 1454.1 4722.7 3596.4 
36 598.35 1004.1 247.22 1411.1 662 1216.5 
37 2560.7 1592.4 365.71 657.07 2981.1 1623.5 
38 4335.3 6486.2 2552.9 1564.1 4242.9 680.9 
39 3086.1 9049.1 1717.6 3712.9 3998.4 1340.5 
40 490.52 239.92 1581.3 296.72 2493.8 1591.7 
41 312.47 1362.2 2670.1 4459.2 2594.1 180.96 
42 7593.3 3786.5 2211.3 6672.8 7580.7 4450.4 
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Appendix 2.0b: Multivariate data from Algorithm 2  
Indiv. Angry Disgust Fear Happy Sad Surprise 
1 3929.3 1918 2907.8 984.55 1742 2248.9 
2 1637 4053.6 921.14 152.62 122.54 114.62 
3 2989.6 945.27 1693.9 84.026 3856.2 3642.9 
4 1741.7 1329 2337.7 272.14 2404.7 4884.5 
5 5219 7353.3 5542.9 7505.9 6778.4 4785 
6 4900.5 4418.6 1258.3 7069.3 2382.7 1736 
7 2098.5 6856.2 64.71 749.39 4640.6 1429.5 
8 8407.7 7262.5 1341.1 2030 8003.2 7156 
9 3915.7 5193.4 5625.6 6103.2 5826 4427 
10 3906.4 1869 2432.6 42.758 254.16 1532.7 
11 7144.2 7174.7 7001.7 7722.8 7771.1 6110.5 
12 177.04 562.65 1252.1 1229.1 884.5 3956.1 
13 4545.3 6205.1 3990.9 1141.5 8371.8 5793.5 
14 6672.5 5363.1 2682 3198.5 5694.5 2677.7 
15 1094.5 3998.4 3502.7 2484.9 1843 2839.9 
16 4918.5 5932.7 1625.5 3949.6 4863 2854.8 
17 2627.6 4213.1 2539.8 751.27 6783 352.22 
18 12174 14077 3140.7 8239 10686 17268 
19 3018.2 1995.5 2996.9 1304.1 4832 2564.1 
20 1505.1 2684.6 977.25 4505.3 1772.7 1420.1 

 
Appendix 2.0b: Multivariate data from Algorithm 2  

Indiv. Angry Disgust Fear Happy Sad Surprise 
21 6934.2 10366 8812.9 3080.2 5346.2 907.24 
22 5300.4 11536 13774 8873.7 9510.6 2815.2 
23 3083.1 10613 5415.7 11820 14835 11604 
24 3338.9 3070.3 3024.4 1157.2 1415.9 574.77 
25 7904.7 5899.9 7441.7 7210 7234.5 5957 
26 5393.3 2711 3402.5 6448.5 2097.5 2860.9 
27 5950.3 6829.8 1126.5 951.82 5932.9 5839.2 
28 1158 881.27 1109.7 5.1759 1951.9 1178.9 
29 9067.7 8645.5 9289.1 9909.8 8146.8 6254 
30 330.9 6931.3 8995.5 13328 1857.6 2752.8 
31 3205.9 3275.2 8366.8 7883.2 7951.6 4761.1 
32 3818 4746.1 8554.9 3525.5 9534 4869.3 
33 3071.8 6427.1 3628.7 6806.8 7390.1 2400.4 
34 3422.8 4109.7 2993.2 3249.8 3521.3 1940.9 
35 2826.6 703.15 20.182 2048 373.76 864.58 
36 1199.3 719.29 6833.2 9573.9 6802.5 9171.2 
37 6985.2 7310.3 4305.4 7072.3 7992.7 5140.8 
38 737.83 119.12 4402.5 931.8 1390.3 3810.9 
39 4518.2 6239.7 3104.1 4036.8 4293.3 2421 
40 304.12 25.3 1876.7 4268.7 6646.2 6396.3 
41 4235.9 4675.4 5187.6 2814.8 5867.4 2581.4 
42 4217 2560.2 3816.8 4485.8 4647.4 2584.2 
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Abstract

A five-parameter distribution, called the exponentiated Burr XII Poisson distribution, is defined and studied. The

model has as special sub-models some important lifetime distributions discussed in the literature, such as the

logistic, log-logistic, Weibull, Burr XII and exponentiated Burr XII distributions, among several others. We derive

the ordinary and incomplete moments, generating and quantile functions, Bonferroni and Lorenz curves, mean

deviations, reliability and two types of entropy. The order statistics and their moments are investigated. The method

of maximum likelihood is proposed for estimating the model parameters. We obtain the observed information

matrix. An application to a real data set demonstrates that the new distribution can provide a better fit than other

classical lifetime models. We hope that this generalization may attract wider applications in reliability, biology

and survival analysis.

Keywords: Beta distribution, Burr XII distribution, Maximum likelihood, Observed information matrix, Weibull

distribution

1. Introduction

The statistics literature has numerous distributions for modeling lifetime data. But many if not most of these

distributions lack motivation from a lifetime context. For example, there is not apparent physical motivation for

the gamma distribution. It only has a more general mathematical form than the exponential distribution with one

additional parameter, so it has nicer properties and provides better fits. The same arguments apply to the BXII

distribution, among others.

Zimmer et al. (1998) introduced the three parameter Burr XII (BXII) distribution with cumulative distribution

function (cdf) and probability density function (pdf) (for x > 0) given by

G(x; s, k, c) = 1 −
[
1 +

( x
s

)c]−k
(1)

and

g(x; s, k, c) = c k s−c xc−1
[
1 +

( x
s

)c]−k−1

, (2)

respectively, where k > 0 and c > 0 are shape parameters and s > 0 is a scale parameter. If c > 1, the density

function is unimodal with mode at x = s [(c − 1)/(ck + 1)]1/c and is L-shaped if c = 1. If q < c k, the qth moment

about zero is μ′q = sq k B(k − q c−1, 1+ q c−1), where B(p, q) = Γ(p) Γ(q)/Γ(p+ q) and Γ(p) =
∫ ∞

0
xp−1 e−x dx is the

gamma function.

The BXII distribution, having as sub-models the logistic and Weibull distributions, is a very popular distribution

for modeling lifetime data and phenomenon with monotone failure rates. When modeling monotone hazard rates,

the Weibull model may be an initial choice because of its negatively and positively skewed density shapes.

Nevertheless, it does not furnish a reasonable parametric fit for non-monotone failure rates such as the bathtub

shaped and unimodal failure rates that are common in reliability and biological studies.
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Several other authors including El-Bassiouny and Abdo (2010), Jayakumar and Mathew (2008), Brito et al. (2014)

and Ramos et al. (2015) proposed and developed the structural properties of various generalized Burr XII distri-

butions.

The cdf and the reliability function of the three-parameter BXII distribution can be expressed in closed-form, thus

simplifying the computation of the percentiles and the likelihood function for censored data. This distribution has

algebraic tails that are effective for modeling failures occurring with lesser frequency than with those models based

on exponential tails. Hence, it represents an adequate distribution for modeling failure time data (Zimmer et al.,
1998). Shao (2004) discussed maximum likelihood estimation of its parameters and Shao et al. (2004) studied

models for extremes based on the BXII distribution with application to flood frequency analysis. According to

Soliman (2005), this model generalizes a large number of distributions. Its versatility and flexibility turns it quite

attractive as a tentative model for lifetime data.

For an arbitrary baseline cdf G(x), a random variable is said to have the exponentiated-G (“Exp-G” for short) dis-

tribution with parameter a > 0, say X ∼ Exp-G(a), if its pdf and cdf are Ha(x) = Ga(x) and ha(x) = aGa−1(x) g(x),

respectively. Thus, the cdf and pdf of the exponentiated Burr XII (Exp-BXII) distribution is given by

Gα(x; s, k, c) =

{
1 −

[
1 +

( x
s

)c]−k}α
(3)

and

gα(x; s, k, c) = k c s−c α xc−1
[
1 +

( x
s

)c]−k−1
{

1 −
[
1 +

( x
s

)c]−k}α−1

, (4)

respectively.

We provide four motivations for the proposed lifetime model called the exponentiated BXII Poisson (Exp-BXIIP)

distribution. The first is based on failures of a system. Suppose that a system has N serial sub-systems functioning

independently at a give time, where N is a truncated Poisson random variable with probability mass function (pmf)

Pr(N = n) =
1

(eλ − 1)

λn

n!
(5)

for n = 1, 2, . . . Let X denote the time of failure of the first out of the N functioning systems defined by the

independent random variables Y1 ∼ Exp-BXII(α), . . . , YN ∼ Exp-BXII(α) given by the cdf (3). Then, X =
min(Y1, . . . , YN). So, the conditional cdf of X (for x > 0) given N is

F(x|N) = 1 − Pr(X > x|N) = 1 − Pr(Y1 > x, . . . ,YN > x)

= 1 − PrN(Y1 > x) = 1 − [1 − Pr(Y1 ≤ x)]N

= 1 −
{

1 −
[
1 −

[
1 +

( x
s

)c]−k]α}N

,

where s, k, c, α, λ > 0. Hence, the unconditional cdf of X is

F(x) =
1

(eλ − 1)

∞∑
n=1

{
1 −

[
1 −

(
1 −

[
1 +

( x
s

)c]−k)α]n}
λn

n!

=
1

(1 − e−λ)

{
1 − exp

{
−λ

[
1 −

(
1 +

( x
s

)c)−k]α}}
. (6)

Then,

F(x) =
1

(1 − e−λ)
{
1 − exp

[−λG(x)α
]}
, (7)

where G(x) = G(x; s, k, c) is given by (1). We refer to the distribution (6) as the Exp-BXIIP distribution. Proving

a new lifetime distribution is always precious for statisticians. The fact that the new model generalizes existing

commonly used distributions is also a positive point.
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The survival function associated with X becomes

S (x) = 1 − F(x) =
1

(1 − e−λ)

{
exp

{
−λ

[
1 −

(
1 +

( x
s

)c)−k]α}
− exp(−λ)

}
. (8)

The probability density function (pdf) corresponding to (6) is given by

f (x; s, k, c, α, λ) =
cks−c αλ

1 − e−λ
xc−1

[
1 +

( x
s

)c]−k−1 {
1 −

[
1 +

( x
s

)c]−k }α−1

× exp

{
−λ

[
1 −

(
1 +

( x
s

)c)−k ]α}
. (9)

Hereafter, a random variable X with density function (9) is denoted by X ∼ Exp-BXIIP(s, k, c, α, λ). Plots of the

density function of X for selected parameter values are displayed in Figure 1.
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Figure 1. Plots for the Exp-BXIIP density for some parameter values.
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The Exp-BXIIP hazard rate function (hrf) is given by

τ(x; s, k, c, α, λ) =
c k s−c αλ xc−1 [1 + ( x

s )c]−k−1 {1 − [1 + ( x
s )c]−k}α−1

exp{−λ[1 − (1 + ( x
s )c)−k]α} − exp(−λ)

× exp{−λ[1 − (1 + (
x
s

)c)−k]α}. (10)

Plots of the hazard rate functions for selected parameter values are displayed in Figure 2.
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Figure 2. The Exp-BXIIP hrf for some parameter values.

For a second motivation suppose that an ith system is made of α parallel components, so that the system will fail if

all of the components fail. Assume that the failure times of the components for the ith system, say Zi,1,Zi,2, . . . ,Zi,α,

are independent and identically BXII random variables with parameters s, k, c. Let Yi denote the failure time of the

ith system and that there is an unknown number N of independent systems. The cdf of the failure time X of the

first system out of the N functioning system is given by (6).

For the third motivation, we assume that N is the unknown number of carcinogenic cells for an individual left active

after the initial treatment has pmf (5) and that Yi is the time spent for the ith carcinogenic cell to produce a detectable
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cancer mass. Assuming that Y1, . . . , YN is a sequence of iid Exp-BXII random variables independent of N, the time

to relapse of cancer of a susceptible individual can be modeled by the Exp-BXIIP family of distributions.

Finally, the fourth motivation considers that the failure of a device occurs due to the presence of an unknown

number N of initial defects of the same kind, which can be identifiable only after causing failure and are repaired

perfectly. Define by Yi the time to the failure of the device due to the ith defect, for i ≥ 1. If we assume that

the Yi’s are iid Exp-BXII random variables independent of N having pmf (5), then the time to the first failure is

appropriately modeled by the Exp-BXIIP distribution. For reliability studies, the Exp-BXIIP models can arise in

series and parallel systems with identical components, which appear in many industrial applications and biological

organisms. These points indicate that the new family of distributions is well-motivated for industrial applications

and biological studies.

In this paper, we study some mathematical properties of the Exp-BXIIP model and illustrate its potentiality. In

Section 2, we demonstrate that the cdf and pdf of X can be expressed as a mixture of Exp-BXII densities. Explicit

expressions for the ordinary and incomplete moments are derived in Section 3. Generating and quantile functions

are derived in Section 4 and 5, respectively. In Section 6, mean deviations and reliability are derived. In Section 7,

we investigate the order statistics and some of their structural properties. Rényi and Shannon entropies are derived

in Section 8. Maximum likelihood estimation of the model parameters is performed and the observed information

matrix is determined in Section 9. In Section 10, we provide an application of the Exp-BXIIP to a real data set.

Finally, Section 11 ends with some concluding remarks.

2. Useful Expansions

Using the Taylor series

1 − e−z =

∞∑
k=1

(−1)k+1zk

k!
,

equation (6) can be expressed as

F(x) =
1

(1 − e−λ)

∞∑
j=0

(−1) jλ j+1

( j + 1)!

{
1 −

[
1 +

( x
s

)c]−k}( j+1)α

, (11)

and then

F(x) =

∞∑
j=0

ω j H( j+1)α(x; s, k, c), (12)

where ω j =
(−1) jλ j+1

( j+1)! (1−e−λ) and Hα(x; s, k, c) = Gα(x; s, k, c) is the Exp-BXII cdf. Clearly,
∑∞

j=1 wj = 1.

By differentiating (12), we can write

f (x) =

∞∑
j=0

ω j h( j+1)α(x; s, k, c), (13)

where h( j+1)α(x; s, k, c) denotes the Exp-BXII fdp with parameters s, k, c and power parameter ( j + 1)α. Equation

(13) reveals that the Exp-BXIIP density function is a mixture of Exp-BXII densities.

3. Properties

Some of the most important features and characteristics of a distribution can be studied through moments (e.g.,

tendency, dispersion, skewness and kurtosis).

Theorem 1 If X ∼ Exp-BXIIP(s, k, c, α, λ), we have the following approximations:

1.1 For α > 0 and λ > 0 real non-integers, we have the mixture representation

f (x) =

∞∑
r=0

vr g(x; s, k(r + 1), c), (14)

where g(x; s, k(r + 1), c) denotes the BXII density function with scale parameter s and shape parameters c
and k(r + 1), and the coefficients are given by

vr =
αλ

(r + 1)! (1 − e−λ)

∞∑
j=0

(−1) j+r λ j Γ[( j + 1)α]

j!Γ[( j + 1)α − r]
. (15)
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Clearly,
∑∞

r=0 vr = 1. Equation (14) reveals that the Exp-BXIIP density function is an infinite linear combina-
tion of BXII density functions. So, some structural properties of the Exp-BXIIP distribution can be obtained
from those of the BXII distribution.

1.2 For α > 0 and λ > 0 real non-integers, we obtain

F(x) =

∞∑
r=0

vr G(x; s, k(r + 1), c). (16)

1.3 If n < kc, the nth ordinary moment of the Exp-BXIIP distribution is given by

μ′n = E(Xn) = k sn
∞∑

r=0

vr B
[
k(r + 1) − n

c
,

n
c
+ 1

]
. (17)

Proof 1.1.

First, if z ∈ R, we have the power series

e−z =

∞∑
j=0

(−1) j

j!
z j. (18)

Second, if |z| < 1 and b is a nonnegative integer, the power series holds

(1 − z)b−1 =

∞∑
j=0

(−1) j Γ(b)

Γ(b − j) j!
z j. (19)

Using (18), the Exp-BXIIP density function (9) can be expressed as

f (x) =
cks−c αλ

(1 − e−λ)
xc−1

[
1 +

( x
s

)c]−k−1 ∞∑
j=0

[ (−1) j λ j

j!
(20)

×
{
1 −

[
1 +

( x
s

)c]−k }( j+1)α−1]
. (21)

Further, using (19), we obtain

f (x) =
ck(r + 1)s−c αλ

(1 − e−λ)
xc−1

∞∑
j,r=0

{ (−1) j+r λ j Γ[( j + 1)α]

j! (r + 1)! Γ[( j + 1)α − r]
(22)

×
[
1 +

( x
s

)c]−k(r+1)−1 }
.

Finally, we have

f (x) =

∞∑
r=0

vr g(x; s, k(r + 1), c),

where vr is given by (15) and g(x; s, k(r + 1), c) was defined before.

Proof 1.2.

Using Theorem 1.1 we obtain (16) by simple integration.

Proof 1.3.

The nth moment of X comes from Theorem 1.1

μ′n =
∞∑

r=0

vr E(Yr+1), (23)
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where Yr+1 ∼ BXII(s, k(r + 1), c). Using a result in Zimmer et al. (1998), we obtain for n < kc

μ′n = k sn
∞∑

r=0

vr B[k(r + 1) − nc−1, nc−1 + 1].

The central moments (μs) and cumulants (κs) of X can be determined from (17) as

μs =

p∑
k=0

(−1)k
(
s
k

)
μ′s1 μ

′
s−k and κs = μ

′
s −

s−1∑
k=1

(
s − 1

k − 1

)
κk μ

′
s−k,

respectively, where κ1 = μ
′
1
.

For lifetime models, it is usually of interest to compute the nth incomplete moment of X defined by mn(y) =∫ y
0

xn f (x)dx. The quantity mn(y) can be calculated from (14) as

mn(y) = k c
∞∑

r=0

(r + 1) vr

∫ y

0

xn−1
( x

s

)c
[
1 +

( x
s

)−k(r+1)−1
]

dx.

Setting t =
[
1 +

(
x
s

)c]−1
, we can write

mn(y) = k sn
∞∑

r=0

(r + 1) vr

∫ sc
sc+yc

0

tk(r+1)− n
c−1 (1 − t)

n
c dt

and then for n < kc

mn(y) = k sn
∞∑

r=0

(r + 1) vr B sc
sc+yc

(
k(r + 1) − n c−1, 1 + n c−1

)
, (24)

where Bz(a, b) =
∫ z

0
ta−1 (1 − t)b−1dt is the incomplete beta function.

4. Moment Generating Function

An explicit expression for M(t) can be obtained from equation (14) as an infinite weighted sum

M(t) =
∞∑

r=0

vr Mr+1(t), (25)

where Mr+1(t) is the moment generating function (mgf) of Yr+1 and vr is defined by (15). We provide a simple

representation for the mgf MBXII(t) of the BXII(s, k, c) distribution. We can write for t < 0

MBXII(t) = ck
∫ ∞

0

ey t yc−1(1 + yc)−(k+1)dy.

Now, we use the Meijer G-function defined by

Gm,n
p,q

(
x

∣∣∣∣∣∣ a1, . . . , ap

b1, . . . , bq

)
=

1

2πi

∫
L

m∏
j=1

Γ
(
b j + t

) n∏
j=1

Γ
(
1 − a j − t

)
p∏

j=n+1

Γ
(
a j + t

) p∏
j=m+1

Γ
(
1 − bj − t

) x−tdt,

where i =
√−1 is the complex unit and L denotes an integration path; see Section 9.3 in Gradshteyn and Ryzhik

(2000) for a description of this path. The Meijer G-function contains as particular cases many integrals with

elementary and special functions (Prudnikov et al., 1986).

We now assume that c = m/k, where m and k are positive integers. This condition is not restrictive since every

positive real number can be approximated by a rational number. Using the integral (38) given in Appendix A, we

conclude for t < 0 that

MBXII(t) = mI
(
−st,

m
k
− 1,

m
k
,−k − 1

)
. (26)
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Now, from equation (25), the mgf of the Exp-BXIIP(s, k, c, α, λ) distribution (for t < 0) follows as

M(t) = m
∞∑

r=0

vr I
(
−st,

m
k(r + 1)

− 1,
m

k(r + 1)
,−k(r + 1) − 1

)
. (27)

Equation (27) is the main result of this section. For the special cases c = 1 and c = 2, we can obtain simple

expressions for MBXII(t) and, consequently, for M(t) using equations (1) (on page 16) and (2) (on page 20) of the

book by Prudnikov et al. (1992). For c = 1 and t < 0, we have

MBXII(t) = k(−st)k e−st Γ(−k,−st),

where Γ(v, x) =
∫ ∞

x tv−1e−stdt is the complementary incomplete gamma function. For c = 2 and t < 0, we obtain

MBXII(t) = 1F2

(
1;

1

2
; 1 − k;

s2t2

4

)
+

st
2

B
(
2, k − 1

2

)
1F2

(
1;

3

2
; k +

7

2
;
−s2t2

4

)
+
Γ(−2k)

(−st)−2k ,

where

1F2(a, b; c; x) =

∞∑
k=0

(a)k

(b)k(c)k

xk

k!

is a generalized hypergeometric function and (a)k = a(a + 1) . . . (a + k − 1) denotes the ascending factorial.

5. Quantile Function

The Exp-BXIIP quantile function, say x = Q(u), can be obtained by inverting (6). We have

x = Q(u) = F−1(u) = s
{[

1 −
{
− λ−1 log

[
1 − u(1 − e−λ)

]} 1
α
] −1

k − 1

} 1
c

. (28)

The shortcomings of the classical kurtosis measure are well-known. For example, the moments of X in (9) are

valid only for n < kc. There are many heavy-tailed distributions for which this quantile is infinite. So, it becomes

uniformative precisely when it needs to be. Indeed, our motivation to use quantile-based measures stemmed from

the non-existence of classical kurtosis for many generalized distributions. The Bowley skewness (see Kenney and

Keeping, 1962) is based on quartiles

B =
Q(3/4) − 2Q(1/2) + Q(1/4)

Q(3/4) − Q(1/4)

whereas the Moors kurtosis (see Moors, 1998) is based on octiles

M =
Q(7/8) − Q(5/8) + Q(3/8) − Q(1/8)

Q(6/8) − Q(2/8)
,

where Q(·) denotes the Exp-BXIIP quantile function given by (28). Plots of the B and M functions for selected

parameter values are displayed in Figure 3.

6. Other Measures

In this section, we calculate the following measures: means deviations, Bonferroni and Lorenz curves and the

reliability of the Exp-BXIIP distribution.

6.1 Mean Deviations

Here, we determine the mean deviations and Bonferroni and Lorenz curves of X. The amount of scatter in a

population is evidently measured to some extent by the totality of deviations from the mean and median. These are

known as the mean deviation about the mean and the mean deviation about the median – defined by

δ1(X) = 2μ′1 F(μ′1) − 2m1(μ′1) and δ2(X) = μ′1 − 2m1(M),

respectively, where μ′1 = E(X), F(μ′1) is obtained from (6), the median M of X is calculated from the quantile

function (28) by M = Q(1/2) and m1(q) =
∫ q

0
x f (x)dx is the incomplete mean of X given by (24) with n = 1.
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Figure 3. Plots of the B and M functions for some parameter values

Setting u = yc, we can write from equation (14)

m1(q) = k s
∞∑

r=0

(r + 1) vr

∫ ∞

(q/s)c
u1/c (1 + u)−k(r+1)−1du,

where the integral can be calculated using Maple as

m1(q) = k s
∞∑

r=0

(r + 1) vr J
([q

s

]c
,

1

c
, k(r + 1) + 1

)
. (29)

Here,

J(q, r, k) =

∫ ∞

q
ur (1 + u)−kdu

= −
[

2F1

[
(k, r + 1); (2 + r);−q

]
qr+1

(r + 1)
+
πΓ(k − r − 1) csc(πr)

Γ(k)Γ(−r)

]
,

where csc(·) is the cosecant function and 2F1 is the hypergeometric function defined by

2F1(a, b; c; x) =

∞∑
k=0

(a)k (b)k

(c)k

xk

k!
.

Equation (29) is the main result of this section from which δ1(X) and δ2(X) are immediately determined. The mean

deviations can be used to plot Lorenz and Bonferroni curves in fields like economics, reliability, demography,

insurance and medicine. For a given probability π, they are defined by L(π) = m1(q)/μ′1 and B(π) = m1(q)/(π μ′1),

respectively, where q = Q(π) comes directly from (28).

6.2 Reliability

In reliability, the stress-strength model describes the life of a component which has a random strength X1 that

is subjected to a random stress X2. The component fails at the instant that the stress applied to it exceeds the

strength, and the component will function satisfactorily whenever X1 > X2. Hence, R = Pr(X2 < X1) is a

measure of component reliability. It has many applications especially in engineering concepts, economics and

physical science. We derive the reliability R when X1 and X2 have independent Exp-BXIIP(s, k1, c, α1, λ1) and

Exp-BXIIP(s, k2, c, α2, λ2) distributions with identical scale parameter s and shape parameter c. The reliability is

given by

R =
∫ ∞

0

f1(x)F2(x)dx.
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The cdf of X2 and density of X1 are obtained from Theorem 1

F2(x) =

∞∑
r=0

vr(α2, λ2) G(x; s, k2(r + 1), c)

and

f1(x) =

∞∑
q=0

vq(α1, λ1) g(x; s, k1(q + 1), c).

Hence,

R =
c k1

sc

∞∑
r,q=0

(q + 1) vq(α1, λ1) vr(α2, λ2) I(c, s, k1, k2, r, q),

where

I(c, s, k1, k2, r, q) =

∫ ∞

0

(
xc−1

[
1 +

( x
s

)c]−k1(q+1)−1

×
{
1 −

[
1 +

( x
s

)c]−k2(r+1)})
dx.

Setting u = 1 + (x/s)c, we have

I(c, s, k1, k2, r, q) =
ck2(r + 1) − 1

ck1(q + 1) + ck2(r + 1)
,

and then we obtain R.

7. Order Statistics

We now derive an explicit expression for the density of the ith order statistic Xi:n, say fi:n(x), in a random sample

of size n from the Exp-BXIIP distribution. It is well-known that

fi:n(x) =
1

B(i, n − i + 1)
f (x)F(x)i−1[1 − F(x)

]n−i
,

for i = 1, . . . , n. Using the binomial expansion in the last equation, we readily obtain

fi:n(x) =

n−i∑
l=0

(−1)l
(

n−i
l

)
f (x)

B(i, n − i + 1)
F(x)i+l−1. (30)

We use the identity for k, v positive integer

( ∞∑
k=0

ak xk
)v
=

∞∑
k=0

cv,k xk, (31)

where cv,0 = av
0

and

cv, j =
1

j a0

j∑
q=1

[
(vq − j + q) aq cv, j−q

]
. (32)

Then, we can write

Fv(x) =
1

(1 − e−λ)v

{
1 −

[
1 +

( x
s

)c]−k}vα
{ ∞∑

j=0

(−1) j λ j+1

( j + 1)!

×
{
1 −

[
1 +

( x
s

)c]−k} jα
}v

=
1

(1 − e−λ)v

{
1 −

[
1 +

( x
s

)c]−k}vα
∞∑
j=0

cv, j

{
1 −

[
1 +

( x
s

)c]−k} jα

=
1

(1 − e−λ)v

∞∑
j=0

cv, j

{
1 −

[
1 +

( x
s

)c]−k}( j+v)α
, (33)
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where cv, j is given in (32) and a j =
(−1) j λ j+1

( j+1)!
.

Setting v = i + l − 1 and substituting (20) and (33) into equation (30), the density fi:n(x) can be expressed as

fi:n(x) =
1

(1 − e−λ)i+l−1

n−i∑
l=0

∞∑
j=0

[ (−1)l
(

n−i
l

)
ci+l−1, j f (x)

B(i, n − i + 1)

×
{
1 −

[
1 +

( x
s

)c]−k}](i+ j+l−1)α

=
1

(1 − e−λ)i+l

n−i∑
l=0

∞∑
j,m=0

(−1)l+m
(

n−i
l

)
λm ci+l−1, j

m! B(i, n − i + 1)
c k s−c αλ xc−1

×
[
1 +

( x
s

)c]−k−1 {
1 −

[
1 +

( x
s

)c]−k}(i+ j+l+m)α−1

=
1

(1 − e−λ)i+l

n−i∑
l=0

∞∑
j,m=0

(−1)l+m
(

n−i
l

)
λm+1 ci+l−1, j

(i + j + l + m) m! B(i, n − i + 1)
c k s−c α

× (i + j + l + m) xc−1
[
1 +

( x
s

)c]−k−1 {
1 −

[
1 +

( x
s

)c]−k}(i+ j+l+m)α−1
.

Thus, fi:n(x) can be written as

fi:n(x) =

n−i∑
l=0

∞∑
j,m=0

δ j,l,m h(i+ j+l+m)α(x), (34)

where

δ j,l,m =
(−1)l+m

(
n−i

l

)
λm+1 ci+l−1, j

(i + j + l + m) m! (1 − e−λ)i+l B(i, n − i + 1)
,

and

h(i+ j+l+m)α(x) = c k s−c (i + j + l + m)α xc−1
[
1 +

( x
s

)c]−k−1

×
{
1 −

[
1 +

( x
s

)c]−k}(i+ j+l+m)α−1
.

Thus, from equation (34), the tth ordinary moment of the Exp-BXIIP order statistics is

E(Xt
i:n) =

n−i∑
l=0

∞∑
j,m=0

δ j,l,m E(Y(i+ j+l+m)α), (35)

where Y(i+ j+l+m)α ∼ Exp-BXII(s, k, c,Y(i+ j+l+m)α). Clearly, E(Xt
i,l) can be calculated directly from equation (23)

with the parameters of this Exp-BXII distribution.

An alternative expression to (35) can be derived using a result due to Barakat and Abdelkader (2004). We have

E(Xt
i:n) = t

n∑
p=n−i+1

(−1)p−n+i−1

(
p − 1

n − i

)(
n
p

) ∫ ∞

0

xt−1S (x)pdx, (36)

where S (x) = 1 − F(x) is the Exp-BXIIP survival function. Using the binomial expansion for [1 − F(x)]p in (36),

the last integral becomes

L =
∫ ∞

0

xt−1S (x)pdx =
p∑

l=0

(−1)l
(
p
l

) ∫ ∞

0

xt−1F(x)ldx. (37)

122



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 4, No. 4; 2015

Substituting (33) into equation (37), we can rewrite L as

L =
p∑

l=0

∞∑
j=0

(−1)l
(

p
l

)
cl, j

(1 − e−λ)l

∫ ∞

0

xt−1
{
1 −

[
1 +

( x
s

)c]−k}( j+l)α
dx,

where cl, j can be obtained from (32).

Using the power series expansion, we can write L as

L =
p∑

l=0

∞∑
j,m=0

(−1)l+m
(

p
l

)
cl, j Γ[( j + l)α + 1]

m! (1 − e−λ)l Γ[(j + l)α + 1 −m]

∫ ∞

0

xt−1
[
1 +

( x
s

)c]−km
dx.

Setting u = (x/s)c, we obtain

L =
p∑

l=0

∞∑
j,m=0

(−1)l+m
(

p
l

)
st cl, j Γ[( j + l)α + 1]

c m! (1 − e−λ)l Γ[(j + l)α + 1 −m]

[
Γ(km − t

c ) Γ( t
c )

Γ(km)

]
.

Finally, equation (36) reduces to

E(Xt
i:n) = t

n∑
p=n−i+1

(−1)p−n+i−1

(
p − 1

n − i

)(
n
p

) p∑
l=0

∞∑
j,m=0

(−1)l+m
(

p
l

)
st cl, j

c m! (1 − e−λ)l

×
[
Γ[( j + l)α + 1]Γ(km − t

c )Γ( t
c )

Γ[( j + l)α + 1 − m] Γ(km)

]
.

The L moments (Hosking, 1990) are expectations of certain linear combinations of order statistics and can be used

to calculate quantities analogous to standard deviation, skewness and kurtosis, termed the L scale, L skewness and

L kurtosis respectively. They are defined by

λr+1 = (r + 1)−1
r∑

k=0

(−1)k
(
r
k

)
E(Xr+1−k:r+1), r = 0, 1, . . .

The first four L-moments are: λ1 = E(X1:1), λ2 =
1
2
E(X2:2 −X1:2), λ3 =

1
3
E(X3:3 − 2X2:3 +X1:3) and λ4 =

1
4
E(X4:4 −

3X3:4 + 3X2:4 − X1:4). From equation (35) for the moments of the order statistics, we can obtain expansions for the

L-moments of the Exp-BXIIP distribution as linear functions of the means of suitable Exp-BXII distributions.

8. Rényi and Shannon Entropy

The entropy of a random variable X with density function f (x) is a measure of variation of the uncertainty. For any

real parameter ω > 0 and ω � 1, the Rényi entropy of the Exp-BXIIP distribution is given by

IR(γ) =
1

(1 − γ) log

∫ ∞

0

f γ(x)dx

=
1

(1 − γ) log

{[
c k s−c αλ

1 − e−λ

]γ ∞∑
j,r=0

(−1) j+rλ j γ j
(

( j+r)α−γ
r

)
j!

×
∫ ∞

0

x(c−1)γ
[
1 +

( x
s

)c]−k(r+γ)−γ
dx

}

=
1

(1 − γ) log

{[
c k s−c αλ

1 − e−λ

]γ s(c−1)γ+1

c

∞∑
j,r=0

(−1) j+rλ j γ j
(

( j+r)α−γ
r

)
j!

×
[Γ[ (c−1)γ+1

c ]Γ[
ck(r+γ)+γ−1

c ]

Γ[k(r + γ) + γ]

]}
.

The details of the proof are given in Appendix B.
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For the Shannon entropy, we have

E{− log[ f (X)]} = log(1 − e−λ) − log(α) − log(λ)

+ (α − 1)

∞∑
j,r=0

(r + 1) vr

( j + 1) ( j + r + 2)

+ λ

∞∑
j,r=0

(−1) j(r + 1) vr Γ(α + 1)

( j + r + 1) j! Γ(α − j)
− E{log[g(X; s, k, c)]},

where vr is defined in Theorem 1 and E{log[g(X; s, k, c)]} can be computed from (2) at least numerically. The

details of the proof are given in Appendix C.

9. Estimation

Let Xi be a random variable following (9) with the vector θ = (s, k, c, α, λ)T of parameters. The data encountered

in survival analysis and reliability studies are often censored. The censored log-likelihood l(θ) for the model

parameters is

l(θ) = log(c) + log(k) − c log(s) + log(α) + log(λ) − log(1 − e−λ)

+
(c − 1)

n

n∑
i=1

log(xi) +
k
n

n∑
i=1

log(qi,−1) +
(α − 1)

n

n∑
i=1

log(vi,1)

− λ

n

n∑
i=1

vi,α.

The score functions for the parameters s, k, c α and λ are given by

Us(θ) = −c
s
− kc

ns

n∑
i=1

ui qi,1 − ck(α − 1)

ns

n∑
i=1

ui qi,k+1

vi,1
,

Uk(θ) =
1

k
+

1

n

n∑
i=1

log(qi,−1) +
(α − 1)

n

n∑
i=1

qi,k log(qi,−1)

vi,1
,

Uc(θ) =
1

c
− log(s) +

1

n

n∑
i=1

log(xi) +
k
n

n∑
i=1

ui log(u1/c
i )

qi,−1

,

Uα(θ) =
1

α
+

1

n

n∑
i=1

log(vi,1) − λ
n

n∑
i=1

vi,α log(vi,1),

and

Uλ(θ) =
1

λ
− e−λ

1 − e−λ
−

n∑
i=1

vi,α,

where ui =
(

xi
s

)c
, qi,k =

[
1 +

(
xi
s

)c]−k
and vi,α =

{
1 −

[
1 +

(
xi
s

)c]−k}α
.

The maximum likelihood estimate (MLE) θ̂ of θ is obtained by solving the nonlinear likelihood equations Us(θ) =
0, Uk(θ) = 0, Uc(θ) = 0, Uα(θ) = 0 and Uλ(θ) = 0. These equations cannot be solved analytically and statistical

software can be used to solve them numerically. We can use iterative techniques such as a Newton-Raphson type

algorithm to obtain θ̂. The computations are performed using the software R version 3.0.0 (package bbmle).

For interval estimation of (s, k, c, α, λ) and hypothesis tests on these parameters, we obtain the observed information

matrix since its expectation requires numerical integration. The 5 × 5 observed information matrix J(θ) is

J(θ) = −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Uss Usk Usc Usα Usλ

. Ukk Ukc Ukα Ukλ

. . Ucc Ucα Ucλ

. . . Uαα Uαλ

. . . Uλλ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

124



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 4, No. 4; 2015

whose elements are given in Appendix D. The matrix J(θ) is useful to obtain approximate confidence intervals for

the parameters.

10. Application

In this section, we illustrate the usefulness of the Exp-BXIIP distribution applied to a real data set. These data on

failure times are reported in the book “Weibull Models by Murthy” et al. (2004, page 297). We also fit the density

functions of the Exponentiated Burr XII Poisson (Exp-BXIIP), Beta Burr XII (BBXII), Kumaraswamy Burr XII
(KwBXII) and McDonald Burr XII (McBXII) distributions given by

fExp-BXIIP(x; s, k, c, α, λ) =
c k s−c αλ

1 − e−λ
xc−1

[
1 +

( x
s

)c]−k−1{
1 −

[
1 +

( x
s
)c]−k

}α−1

× exp
{ − λ[1 − (

1 +
( x

s
)c
)−k]α}

,

fBBXII(x; s, k, c, a, b) =
c k s−c

B(a, b)
xc−1

[
1 +

( x
s

)c]−k b−1{
1 −

[
1 +

( x
s

)c]−k}a−1
,

fKwBXII(x; s, k, c, a, b) = a b c k s−c xc−1
[
1 +

( x
s

)c]−k−1{
1 −

[
1 +

( x
s

)c]−k}α−1

×
{

1 −
{
1 −

[
1 +

( x
s

)c]−k}a
}b−1

,

fMcBXIIP(x; s, k, c, a, b, α) =
c k s−c α

B(a, b)
xc−1

[
1 +

( x
s

)c]−k−1{
1 −

[
1 +

( x
s

)c]−k}aα−1

×
{

1 −
{
1 −

[
1 +

( x
s

)c]−k}α}b−1

,

respectively, where all parameters are positive.

Further, we apply the Cramér-von Mises (W∗) and Anderson-Darling (A∗) statistics described in details in Chen

and Balakrishnan (1995) to verify which distribution fits better to these data. In general, the smaller the values

of the statistics W∗ and A∗, the better the fit to the data. Let H(x; θ) be the cdf, where the form of H is known

but θ (a k-dimensional parameter vector, say) is unknown. To obtain the statistics W∗ and A∗, one can proceed as

follows: (i) Compute vi = H(xi; θ̂), where the xi’s are in ascending order; (ii) Compute yi = Φ
−1(vi), where Φ(·)

is the standard normal cdf and Φ−1(·) its inverse; (iii) Compute ui = Φ{(yi − ȳ)/sy}, where ȳ = n−1 ∑n
i=1 yi and

s2
y = (n− 1)−1 ∑n

i=1(yi − ȳ)2; (iv) Calculate W2 =
∑n

i=1{ui − (2i− 1)/(2n)}2 + 1/(12n) and A2 = −n− (1/n)
∑n

i=1{(2i−
1) log(ui)+(2n+1−2i) log(1−ui)}; (v) Modify W2 into W∗ = W2(1+0.5/n) and A2 into A∗ = A2(1+0.75/n+2.25/n2).

Table 1 and 2, respectively, lists the MLEs, their standard errors in parentheses and the statistics W∗ and A∗ and p-

values for the failure times data. They indicate that the Exp-BXIIP and McBXII distributions are the best models

to these data. Morever, the standard errors are much smaller compared with their estimates for the Exp-BXIIP

distribution.

Table 1. MLEs
Distribution Estimatives

Exp-BXIIP ŝ k̂ ĉ α̂ λ̂

14.8518 5.9646 5.3264 0.4471 22.7252

(0.0726) (0.2732) (0.0734) (0.0427) (5.9532)

KwBXII ŝ k̂ ĉ â b̂

5.7916 6.3749 7.0604 0.2510 1.4676

(1.3907) (5.8618) (0.0207) (0.0584) (0.9002)

McBXII ŝ k̂ ĉ â b̂ α̂

6.5058 6.7187 6.6588 0.5303 2.3546 0.5081

(0.0103) (6.6788) (0.0103) (0.6782) (1.8471) (0.6112)

BBXII ŝ k̂ ĉ â b̂

7.5361 6.5139 6.3234 0.2584 6.4360

(0.0553) (9.2920) (0.0599) (0.0357) (9.1064)
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Table 2. Measures W∗ and A∗

Distribution W∗ p-value A∗ p-value

Exp-BXIIP 0.05853 0.395 0.58938 0.124

KwBXII 0.09915 0.115 0.68478 0.074

McBXII 0.10423 0.098 0.95368 0.016

BBXII 0.13694 0.035 1.19636 0.004

More information is provided by a visual comparison of the fitted densities to the histogram of the data. The plots

of the fitted Exp-BXIIP, BBXII, KwBXII and McBXII density functions are displayed in Figure 4. These plots

indicate that the new distribution provides a good fit to these data and that it is also a very compettitive model to

other lifetime distributions.
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Figure 4. Fitted densities to the histogram of the current data.

11. Conclusions

We define and study a new five-parameter lifetime model called the exponentiated Burr XII Poisson distribution,

which extends some well-known lifetime distributions. Due to its flexibility in accommodating different forms of

the hazard rate function, it is an important model for modeling lifetime data. We provide a mathematical treatment

of the proposed distribution including a useful expansion for its density function. We derive explicit expressions

for the moments, generating and quantile functions, mean deviations, reliability and entropies, which hold in

generality for any parameter values. The model parameters are estimated by maximum likelihood. Additionally,

the observed information matrix is determined. In one application to a real data set, we illustrate the potentiality

of the new model.

Appendix A - Generating function

We have the following result which holds for m and k positive integers, μ > −1 and p > 0 (Prudnikov et al., 1992,
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page 21)

I
(
p, μ,

m
k
, ν

)
=

∫ ∞

0

exp(−px) xμ (1 + x
m
k )νdx

=
k−νmμ+

1
2

(2π)
(m−1)

2 Γ(−ν)pμ+1
×

Gk,k+m
k+m,k

(
mm

pm

∣∣∣∣∣∣ Δ(m,−μ),Δ(k, ν + 1)

Δ(k, 0)

)
, (38)

where Δ(k, a) = a
k ,

a+1
k , · · · , a+k

k .

Appendix B - Rényi entropy

The entropy of a random variable X with density function f (x) is a measure of variation of the uncertainty. For any

real parameter ω > 0 and ω � 1, the Rényi entropy is given by

IR(γ) =
1

(1 − γ) log

∫ ∞

0

f γ(x)dx,

where

f (x)γ =

[
c k s−c αλ

1 − e−λ

]γ
x(c−1)γ

[
1 +

( x
s

)c]−(k+1)γ {
1 −

[
1 +

( x
s

)c]−k}(α−1)γ

× exp

{
−λ γ

{
1 −

[
1 +

( x
s

)c]−k}α}

=

[
c k s−c αλ

1 − e−λ

]γ
x(c−1)γ

[
1 +

( x
s

)c]−(k+1)γ
∞∑
j=0

(−1) j λ j γ j

j!

×
{

1 −
[
1 +

( x
s

)c]−k
}( j+γ)α−γ

=

[
c k s−c αλ

1 − e−λ

]γ
x(c−1)γ

∞∑
j,r=0

(−1) j+r λ j γ j
(

( j+γ)α−γ)
r

)
j!

[
1 +

( x
s

)c]−k(r+γ)−γ
.

Thus,

IR(γ) =
1

(1 − γ) log

{[
c k s−c αλ

1 − e−λ

]γ ∞∑
j,r=0

(−1) j+rλ j γ j
(

( j+r)α−γ
r

)
j!

×
∫ ∞

0

x(c−1)γ
[
1 +

( x
s

)c]−k(r+γ)−γ
dx

}

=
1

(1 − γ) log

{[
c k s−c αλ

1 − e−λ

]γ s(c−1)γ+1

c

∞∑
j,r=0

(−1) j+rλ j γ j
(

( j+r)α−γ
r

)
j!

×
[Γ[ (c−1)γ+1

c ]Γ[
ck(r+γ)+γ−1

c ]

Γ[k(r + γ) + γ]

]}
.

Appendix C - Shannon entropy

The Shannon entropy of a random variable X with density function f (x) is a measure of variation of the uncertainty.

The Shannon entropy is given by

E{− log[ f (X)]} = log(1 − e−λ) − log(α) − log(λ) − (α − 1) E{log[G(X)]}
+ λ E[Gα(X)] − E{log[g(X)]}
= log(1 − e−λ) − log(α) − log(λ) + (α − 1)

∞∑
j,r=0

(r + 1) vr

( j + 1) ( j + r + 2)

+ λ

∞∑
j,r=0

(−1) j(r + 1) vr Γ(α + 1)

( j + r + 1) j! Γ(α − j)
− E{log[g(X)]}.
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We use the power series

Gα(X) =
{
1 −

[
1 +

( x
s

)c]−k}α
=

∞∑
j=0

(−1) j Γ(α + 1)

j! Γ(α − j)

[
1 +

( x
s

)c]− jk

and

log[G(X)] =

∞∑
j=0

(−1) j

j + 1

[
G(x) − 1

] j+1
=

∞∑
j=0

(−1) j

j + 1

{
−

[
1 +

( x
s

)c]−k} j+1

=

∞∑
j=0

(−1)2 j+1

j + 1

[
1 +

( x
s

)c]−k( j+1)
= −

∞∑
j=0

1

j + 1

[
1 +

( x
s

)c]−k( j+1)
.

Next, we have

E[Gα(X)] =

∞∑
r=0

vr

∫ ∞

0

Gα(x) g(x; s, k(r + 1), c)dx

= c k s−c Γ(α + 1)

∞∑
j,r=0

(−1) j (r + 1) vr

j! Γ(α − j)

∫ ∞

0

xc−1
[
1 +

( x
s

)c]−k( j+r+1)−1
dx

= c k s−c Γ(α + 1)

∞∑
j,r=0

(−1) j (r + 1) vr

j! Γ(α − j)
sc

c

∫ ∞

0

(
1 + u

)−k( j+r+1)−1dx

=

∞∑
j,r=0

(−1) j Γ(α + 1) (r + 1) vrΓ(α + 1)

( j + r + 1) j!Γ(α − j)

and

E{log[G(X)]} =
∞∑

r=0

vr

∫ ∞

0

log G(x) g(x; s, k(r + 1), c)dx

= −c k s−c
∞∑

j,r=0

(r + 1) vr

j + 1

∫ ∞

0

xc−1
[
1 +

( x
s

)c]−k( j+r+2)−1
dx

= −c k s−c
∞∑

j,r=0

(r + 1) vr

j + 1

sc

c

∫ ∞

0

(
1 + u

)−k( j+r+2)−1dx

= −
∞∑

j,r=0

(r + 1) vr

( j + 1)( j + r + 2)
.

Thus,

E{− log[ f (X)]} = log(1 − e−λ) − log(α) − log(λ) + (α − 1)

∞∑
j,r=0

(r + 1) vr

( j + 1) ( j + r + 2)

+ λ

∞∑
j,r=0

(−1) j(r + 1) vr Γ(α + 1)

( j + r + 1) j! Γ(α − j)
− E[log g(X)].

Appendix D - Information matrix

The elements of the observed information matrix J(θ) for the parameters (s, k, c, α, λ) are
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Uss(θ) =
c
s2
+

kc
ns2

n∑
i=1

u2
i (c + qi,−1)

qi,−2

+
kc(α − 1)

ns2

n∑
i=1

ui

[
c
(
1 + k ui qi,−k − qi,−k

)
− qi,−1(qi,−k − 1)

]
qi,−2 (qi,−k − 1)2

− kcαλ
ns2

n∑
i=1

ui vi,α

{
c
[
− k ui(qi,−k − α) + (qi−k − 1)

]
+ qi,−1(qi,−k − 1)

}
qi,−2 (qi,−k − 1)2

,

Usk(θ) = − c
ns2

n∑
i=1

xi u(c−1)/c
i

qi,−1

+
c(α − 1)

ns

n∑
i=1

ui

[
1 − qi,−k + k qi,−k log(qi,−1)

]
qi,−1 (qi,−k − 1)2

− cαλ
ns

n∑
i=1

ui vi,α

[
− k log(qi,−1)ui(qi,−k − α) + qi−k − 1

]
qi,−1 (qi,−k − 1)2

,

Usc(θ) = −1

s
− k

ns

n∑
i=1

ui

[
qi,−1 + c log(u1/c

i )
]

qi,−2

+
k(α − 1)

ns

n∑
i=1

ui

{
c log(u1/c

i )
[
1 + k ui qi,−k − qi,−k

]
− qi,−1(qi,−k − 1)

}
qi,−2 (qi,−k − 1)2

− kcαλ
ns

n∑
i=1

ui vi,α

{
log(u1/c

i )
[
k ui(qi,−k − α) − vi,1 − qi,−1(qi,−k − 1)

]}
qi,−2 (qi,−k − 1)2

,

Usα(θ) = − kc
ns2

n∑
i=1

xi u(c−1)/c
i qi,k+1

vi,1
+

kcλ
ns

n∑
i=1

ui vi,α

[
1 + α log(vi,1)

]
qi,−1 (qi,−k − 1)

,

Usλ(θ) =
kcα
ns

n∑
i=1

ui qi,k+1

vi,α−1

,

Ukk(θ) = − 1

k2
− (α − 1)

n

n∑
i=1

qi,−k log2(qi,−1)

(qi,−k − 1)2
+
αλ

n

n∑
i=1

vi,α (qi,−k − α) log2(qi,−1)

(qi,−k − 1)2
,

Ukc(θ) =
1

n

n∑
i=1

ui log(u1/c
i )

qi,−1

− (α − 1)

n

n∑
i=1

ui log(u1/c
i )

[
1 − qi,−k + k qi,−k log(qi,−1)

]
qi,−1 (qi,−k − 1)2

+
kαλ

n

n∑
i=1

ui log(u1/c
i ) vi,α log(qi,−1)

qi,−1 (qi,−k − 1)2
,

Ukα(θ) =
1

n

n∑
i=1

qi,k log(qi,−1)

vi,1
− λ

n

n∑
i=1

log(qi,−1) vi,α

[
1 + α log(vi,1)

]
qi,−k − 1

,
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Ukλ(θ) = −α
n

n∑
i=1

qi,k vi,α log(qi,−1),

Ucc(θ) = − 1

c2
+

k
n

n∑
i=1

ui log2(u1/c
i )

qi,−2

− k(α − 1)

n

n∑
i=1

ui log2(u1/c
i )

[
1 + k ui qi,−k − qi,−k

]
qi,−2 (qi,−k − 1)2

− kαλ
n

n∑
i=1

ui log2(u1/c
i ) vi,α

[
− k ui(qi,−k − α) + qi−k − 1

]
qi,−2 (qi,−k − 1)2

,

Ucα(θ) =
k
n

n∑
i=1

ui qi.k+1 log(u1/c
i )

vi,1
− kλ

n

n∑
i=1

ui log(u1/c
i ) vi,α

[
1 + α log(vi,1)

]
qi,−1 (qi,−k − 1)

,

Ucλ(θ) = −kα
n

n∑
i=1

ui qi,k+1 vi,α−1 log(u1/c
i ),

Uαα(θ) = − 1

α2
− λ

n

n∑
i=1

vi,α log2(vi,1),

Uαλ(θ) = −1

n

n∑
i=1

vi,α log(vi,1),

Uλλ(θ) = − 1

λ2
+

eλ

(eλ − 1)2
,

where ui, qi,k, vi,α are given in Section 9.
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Rényi, A. (1961). On measures of entropy and information. In: Proceedings of the 4th Berkeley Symposium on
Mathematical Statistics and Probability, Volume I, pp. 547–561. University of California Press: Berkeley.

Ristic, M. M., & Nadarajah, S. (2012). A new lifetime distribution. Journal of Statistical Computation and
Simulation, 81, 1-16.

Shao, Q. (2004a). Notes on maximum likelihood estimation for the three-parameter Burr XII distribution . Com-
putational Statistics and Data Analysis, 45, 675-687. http://dx.doi.org/10.1016/S0167-9473(02)00367-5

Shao, Q., Wong, H., & Xia, J. (2004b). Models for extremes using the extended three parameter Burr XII system

with application to flood frequency analysis. Hydrological Sciences Journal des Sciences Hydrologiques, 49,

685-702. http://dx.doi.org/10.1623/hysj.49.4.685.54425

Soliman, A. A. (2005). Estimation of Parameters of Life From Progressively Censored Data Using Burr-XII

Model. IEEE Transactions on Reliability, 54, 34-42. http://dx.doi.org/10.1109/TR.2004.842528

Zimmer, W. J., Keats, J. B., & Wang, F. K. (1998). The Burr XII distribution in reliability analysis. Journal of
Quality Technology, 30, 386-94.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution

license (http://creativecommons.org/licenses/by/3.0/).

131



International Journal of Statistics and Probability; Vol. 4, No. 4; 2015

ISSN 1927-7032 E-ISSN 1927-7040

Published by Canadian Center of Science and Education

The Transmuted Marshall-Olkin Fréchet Distribution:
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Abstract

This paper introduces a new four-parameter lifetime model, which extends the Marshall-Olkin Fréchet distribution

introduced by Krishna et al. (2013), called the transmuted Marshall-Olkin Fréchet distribution. Various structural

properties including ordinary and incomplete moments, quantile and generating function, Rényi and q-entropies

and order statistics are derived. The maximum likelihood method is used to estimate the model parameters. We

illustrate the superiority of the proposed distribution over other existing distributions in the literature in modeling

two real life data sets.

Keywords: Transmuted family, generating Function, Rényi Entropy, order Statistics, maximum Likelihood esti-

mation, Marshall-Olkin Fréchet distribution.

1. Introduction

Recently, there has been an increased interest in developing generalized continuous univariate distributions which

have been extensively used for analyzing and modeling data in many applied areas such as lifetime analysis, engi-

neering, economics, insurance and environmental sciences. However, these applied areas clearly require extended

forms of these probability distributions when the parent models do not provide adequate fits. So, several families

of distributions have been proposed by extending common families of continuous distributions. These generalized

distributions provide more flexibility by adding one or more parameters to the baseline model. One example is

the Marshal-Olkin-G (MO-G in short) family proposed by Marshal and Olkin (1997) by adding one parameter to

the reliability function (rf) G(x) = 1 − G(x), where G(x) is the baseline cumulative distribution function (cdf).

Using the MO-G family, Krishna et al. (2013) defined and studied the Marshall-Olkin Fréchet (MOFr) distribution

extending the Fréchet distribution.

The cdf of the MOFr is given (for x > 0) by

G (x, α, β, σ) =
e−(

σ
x )
β

α + (1 − α) e−( σx )
β
, (1)

where σ > 0 is a scale parameter and α and β are positive shape parameters.

The corresponding probability density function (pdf) is given by

g(x, α, β, σ) =
αβσβx−(β+1)e−(

σ
x )
β

(
α + (1 − α) e−( σx )

β
)2
. (2)

The Fréchet distribution is one of the important distributions in extreme value theory and has applications in life

testing, floods, rainfall, wind speeds, sea waves and track race records. Further details were explored by Kotz and

Nadarajah (2000). Many authors constructed generalizations of the Fréchet distribution. For example, Nadarajah

and Kotz (2003) studied the exponentiated Fréchet (EFr), Nadarajah and Gupta (2004) and Barreto-Souza et al.

132



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 4, No. 4; 2015

(2011) independently introduced the beta Fréchet (BFr), Mahmoud and Mandouh (2013) proposed the transmuted

Fréchet (TFr), Silva et al. (2013) proposed the gamma extended Fréchet (GEFr), Elbatal et al. (2014) studied the

transmuted exponentiated Fréchet (TEFr), Mead and Abd-Eltawab (2014) introduced the Kumaraswamy Fréchet

(Kw-Fr) and Afify et al. (2015) proposed the Weibull Fréchet (WFr) distributions.

In this paper, we define and study a new model by adding one parameter in equation (1) to provide more flexibility

to the generated model. In fact, based on the transmuted-G (T-G) family pioneered by Shaw and Buckley (2007),

we construct a new distribution called the transmuted Marshall-Olkin Fréchet (henceforth in short TMOFr) dis-

tribution and provide a comprehensive description of some of its mathematical properties. We hope that the new

model will attract wider applications in reliability, engineering and other areas of research.

Recently, many authors used the T-G family to propose new generalizations of some well- known distributions. For

example, Aryal and Tsokos (2009) defined the transmuted generalized extreme value, Aryal and Tsokos (2011)

proposed the transmuted Weibull, Khan and King (2013) introduced the transmuted modified Weibull, Afify et

al. (2014) defined the transmuted complementary Weibull geometric and Afify et al. (2015) proposed the trans-

muted Weibull Lomax distributions. For a detailed study on the general properties of the transmuted family of

distributions, the interested reader is referred to Bourguignon, Ghosh and Cordeiro (2015).

Consider a baseline cdf G (x) and pdf g (x). Then, the cdf and pdf of the T-G family of distributions are ,respectively,

defined by

F (x; λ) = G (x) [1 + λ − λG (x)] (3)

and

f (x; λ) = g (x) [1 + λ − 2λG (x)] , (4)

where |λ| ≤ 1.

Note that if λ = 0, equation (4) gives the baseline distribution. Further details can be found in Shaw and Buckley

(2007).

The rest of the paper is outlined as follows. In Section 2, we define the TMOFr distribution and give some plots for

its pdf and hazard rate function (hrf ). We derive useful mixture representations for the pdf and cdf in Section 3. We

provide in Section 4 some mathematical properties of the TMOFr distribution including, ordinary and incomplete

moments, moments of the residual life, reversed residual life, quantile and generating functions and Rényi and

q-entropies. In Section 5, the order statistics and their moments are determined. Certain characterizations are

presented in Section 6. The maximum likelihood estimates (MLEs) of the model parameters are obtained in

Section 7. In Section 8, the TMOFr distribution is applied to two real data sets to illustrate its potentiality. Finally,

in Section 9, we provide some concluding remarks.

2. The TMOFr Model

By inserting (1) into (3), we obtain the cdf of TMOFr (for x > 0)

F(x) =
e−(

σ
x )
β

α + (1 − α) e−( σx )
β

⎡⎢⎢⎢⎢⎢⎣1 + λ − λe−(
σ
x )
β

α + (1 − α) e−( σx )
β

⎤⎥⎥⎥⎥⎥⎦ , (5)

whereas its pdf can be expressed, from (1), (2) and (4) as

f (x) =
αβσβx−(β+1)e−(

σ
x )
β

[
α + (1 − α) e−( σx )

β
]2

⎡⎢⎢⎢⎢⎢⎣1 + λ − 2λe−(
σ
x )
β

α + (1 − α) e−( σx )
β

⎤⎥⎥⎥⎥⎥⎦ , (6)

where σ > 0 is a scale parameter, α and β are positive shape parameters and |λ| ≤ 1.

A physical interpretation of the cdf of TMOFr is possible if we take a system consisting of two independent

components functioning independently at a given time. So, if the two components are connected in parallel, the

overall system will have the TMOFr cdf with λ = −1.

The rf, hrf, reversed hazard rate function (rhrf) and Cumulative hazard rate function (chrf) are, respectively, given

by

R(x) =
α2 +

(
α − αλ − 2α2

)
e−(

σ
x )
β

+
(
α2 + αλ − α

)
e−2( σx )

β

[
α + (1 − α) e−( σx )

β
]2

,
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h(x) =
αβσβx−(β+1)e−(

σ
x )
β[

α + (1 − α) e−( σx )
β
] {
α (1 + λ) − [λ (α + 1) + α − 1] e−(

σ
x )
β
}

×
{
α2 +

[
α (1 − λ − 2α) +

(
α2 + αλ − α

)
e−(

σ
x )
β
]

e−(
σ
x )
β
}−1

,

r(x) =
αβσβx−(β+1)

{
α (1 + λ) − [λ (α + 1) + α − 1] e−(

σ
x )
β
}

[
α (1 + λ) − (αλ + α − 1) e−( σx )

β
] [
α + (1 − α) e−( σx )

β
]

and

H(x) = ln

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
[
α + (1 − α) e−(

σ
x )
β
]2

α2 +
(
α − αλ − 2α2

)
e−( σx )

β

+
(
α2 + αλ − α) e−2( σx )

β

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ .
Some of the plots of the pdf and hrf of TMOFr for different values of the parameters α, β, σ and λ are displayed

in Figures 1 and 2.

Figure 1. The pdf of TMOFr: (a) For α = 0.5 : β = λ = 0.5 and σ = 2 (thick line), β = 0.9, σ = 0.6 and

λ = −0.2(black line), β = 0.4, σ = 5 and λ = 1(dashed line) and β = 0.3, σ = 1.5 and λ = 0.5.

The TMOFr distribution shows flexible properties as it contains some well known distributions as special cases

such as MOFr, transmuted Fréchet (TFr), transmuted inverse exponential (TIE), transmuted inverse Rayleigh

(TIR), inverse exponential (IE) and inverse Rayleigh (IR) distributions among others. The flexibility of the TMOFr

is explained in Table 1 where it has eleven sub-models when their parameters are carefully chosen.
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Figure 2. The pdf of TMOFr: (dotted line) (b) For α = 1.5 and β = 2.5 : σ = 2.5 and λ = 0.1 (thick line), σ = 1.3
and λ = 0.9(black line), σ = 2.5 and λ = 0.7 (dashed line) and σ = 2 and λ = 0.6 (dotted line).

Table 1. Sub-models of the TMOFr

α β σ λ Reduced Model Author

α 1 σ λ TMOIE New

α 2 σ λ TMOIR New

α β σ 0 MOFr Krishna et al. (2013)

α 1 σ 0 MOIE –

α 2 σ 0 MOIR –

1 β σ λ TFr Mahmoud and Mandouh (2013)

1 1 σ λ TIE Oguntunde and Adejumo (2015)

1 2 σ λ TIR Ahmad et al. (2014)

1 β σ 0 Fr Fréchet (1924)

1 1 σ 0 IE Keller and Kamath (1982)

1 2 σ 0 IR Trayer (1964)

3. Mixture Representation

The pdf in (6) can be expressed as

f (x)
(1 + λ)αβσβx−(β+1)e−(

σ
x )
β

[
α + (1 − α) e−( σx )

β
]2

− 2λαβσβx−(β+1)e−2( σx )
β

[
α + (1 − α) e−( σx )

β
]3
.

Expansions for the density of TMOFr can be derived using the series expansion

(1 − z)−k =

∞∑
j=0

Γ (k + j)
j!Γ (k)

z j, |z| < 1, k > 0.
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Applying the above series expansion, the pdf of the TMOFr can be expressed in the mixture form

f (x) =

∞∑
k=0

[
υkhβ,σ(k+1)1/β (x) − ωkhβ,σ(k+2)1/β(x)

]
, (7)

where υk =
(1+λ)
α

(
1 − 1

α

)k
, ωk =

v(k+1)

α2

(
1 − 1

α

)k
and hβ,σ(δ)1/β(x) is the Fréchet (Fr) density with shape parameter β

and scale parameter σ (δ)1/β.

Since the density function TMOFr is expressed as a mixture of Fr densities, one may obtain some of its mathemat-

ical properties directly from the properties of the Fr distribution.

By integrating (7), we obtain

F (x) =

∞∑
k=0

[
υkHβ,σ(k+1)1/β (x) − ωkHβ,σ(k+2)1/β (x)

]
,

where Hβ,σ(δ)1/β(x) is the cdf of Fr distribution with shape parameter β and scale parameter σ (δ)1/β.

4. Mathematical Properties

Employing established algebraic expansions to determine some structural quantities of the TMOFr distribution can

be more efficient than computing those directly by numerical integration of its density function.

4.1 Moments

Henceforth, let Z be a random variable having the Fr distribution with scale σ > 0 and shape β > 0. Then, the pdf

of Z is given by

g(z; β, σ) = βσβz−(β+1)e−(
σ
z )
β

, z > 0.

For r < β, the rth ordinary and incomplete moments of Z are given by

μ′r,Z = σ
r Γ

(
1 − r
β

)
and ϕr,Z (t) = σr γ

(
1 − r
β
, (σ/t)β

)
,

respectively, where γ (s, t) =
∫ t

0
xs−1 e−xdx is the lower incomplete gamma function.

Then, the rth moment of X, say μ′r, can be expressed as

μ
′
r = E (Xr) =

∞∑
k=0

σr
[
υk (k + 1)r/β − ωk (k + 2)r/β

]
Γ

(
1 − r
β

)
. (8)

Using the relation between the central and non-central moments, we obtain the nth central moment of X, say μn,

as follows

μn =

n∑
r=0

∞∑
k=0

σr (−μ′1)n−r
[
υk (k + 1)r/β − ωk (k + 2)r/β

] (n
r

)
Γ

(
1 − r
β

)
.

The skewness and kurtosis measures can be determined from the central moments using established results.

4.2 Incomplete Moments

The main application of the first incomplete moment refers to the Bonferroni and Lorenz curves. These curves

are very useful in economics, reliability, demography, insurance and medicine. The answers to many important

questions in economics require more than just knowing the mean of the distribution, but its shape as well. This is

obvious not only in the study of econometrics but in other areas as well. The sth incomplete moments, say ϕs (t) ,
is given by

ϕs (t) =
∫ t

0

xs f (x) dx,

Using equation (7), we can write

ϕs (t) =
∞∑

k=0

[
υk

∫ t

0

xshβ,σ(k+1)1/β(x) − ωk

∫ t

0

xshβ,σ(k+2)1/β(x)

]
,
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and then using the lower incomplete gamma function, we obtain (for s < α)

ϕs (t) =
∞∑

k=0

υkσ
s (k + 1)s/β γ

(
1 − s
β
, (k + 1)

(
σ

t

)β)
−
∞∑

k=0

ωkσ
s (k + 2)s/β γ

(
1 − s
β
, (k + 2)

(
σ

t

)β)
,

where γ (a, z) is, the lower incomplete gamma function, defined in subsection 4.1.

The first incomplete moment of the TMOFr distribution can be obtained by setting s = 1 in the last equation.

Another application of the first incomplete moment is related to mean residual life and mean waiting time given

by m1 (t) = [1 − ϕ1 (t)]/R(t) − t and M1 (t) = t − [ϕ1 (t) /F (t)], respectively.

The amount of scattering in a population is evidently measured, to some extent, by the totality of deviations from

the mean and median. The mean deviations about the mean [δμ (X) = E(|X − μ′1|)] and about the median [δμ (X) =

E (|X − M|)] of X can be, used as measures of spread in a population, expressed by δμ (X) =
∫ ∞

0
|X − μ′1| f (x) dx =

2μ
′
1F(μ

′
1) − 2ϕ1(μ

′
1) and δM (X) =

∫ ∞
0
|X − M| f (x) dx = μ

′
1 − 2ϕ1 (M), respectively, where μ

′
1 = E (X) comes from

(8), F(μ
′
1) is simply calculated, ϕ1(μ

′
1) is the first incomplete moments and M is the median of X.

4.3 Residual Life Function

Several functions are defined related to the residual life. The failure rate function, mean residual life function and

the left censored mean function, also called vitality function. It is well known that these three functions uniquely

determine F(x), see Gupta (1975), Kotz and Shanbhag (1980) and Zoroa et al. (1990).

Moreover, the nth moment of the residual life, say mn(t) = E[(X − t)n | X > t], n = 1, 2,. . . , uniquely determine

F(x) (see Navarro et al., (1998). The nth moment of the residual life of X is given by

mn(t) =
1

R(t)

∫ ∞

t
(x − t)n f (x)dx.

Then, we can write (for r < β)

mn(t) =
1

R(t)

n∑
r=0

∞∑
n=0

(−t)n−r υkσ
r (k + 1)

r
β

(
n
r

) {
1 − γ

(
1 − r
β
, (k + 1)

(
σ

t

)β)}

− 1

R(t)

n∑
r=0

∞∑
n=0

(−t)n−r ωkσ
r (k + 2)

r
β

(
n
r

) {
1 − γ

(
1 − r
β
, (k + 2)

(
σ

t

)β)}
.

Another interesting function is the mean residual life (MRL) function or the life expectation at age x defined

by m1(x) = E [(X − x) | X > x], which represents the expected additional life length for a unit which is alive

at age x. The MRL of the TMOFr distribution can be obtained by setting n = 1 in the last equation. Guess

and Proschan (1988) derived an extensive coverage of possible applications of the MRL applications in survival

analysis, biomedical sciences, life insurance, maintenance and product quality control, economics, social studies

and demography (see, Lai and Xie, 2006).

4.4 Reversed Residual Life Function

The nth moment of the reversed residual life, say Mn(t) = E[(t − X)n | X ≤ t] for t > 0, n = 1, 2,. . . uniquely

determines F(x) (Navarro et al., 1998). We obtain

Mn(t) =
∫ t

0

(t − x)ndF(x).

Therefore, the nth moment of the reversed residual life of X given that r < β becomes

Mn(t) =
1

F(t)

n∑
r=0

∞∑
n=0

(−1)r tn−rυkσ
r (k + 1)

r
β

(
n
r

)
γ

(
1 − r
β
, (k + 1)

(
σ

t

)β)

− 1

F(t)

n∑
r=0

∞∑
n=0

(−1)r tn−rωkσ
r (k + 2)

r
β

(
n
r

)
γ

(
1 − r
β
, (k + 2)

(
σ

t

)β)
.
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The mean inactivity time (MIT) or mean waiting time (MWT), also called the mean reversed residual life function,

is defined by M1(t) = E[(t − X) | X ≤ t], and it represents the waiting time elapsed since the failure of an item on

condition that this failure had occurred in (0, x). The MRRL of X can be obtained by setting n = 1 in the above

equation. The properties of the mean inactivity time have been considered by many authors, see e.g., Kayid and

Ahmad (2004) and Ahmad et al. (2005).

4.5 Quantile and Generating Functions

The quantile function (qf) of X is the real solution of the equation F(xq) = q. Then by inverting (5), we obtain

xq = σ

⎡⎢⎢⎢⎢⎢⎣ln
⎛⎜⎜⎜⎜⎜⎝b + α

√
1 + λ(λ − 4q + 2)

2α2q

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦
−1/β

, 0 < q < 1,

where b = 2αq (α − 1) + α (λ + 1).

Simulating a TMOFr random variable is straightforward. If U is a uniform variate on the unit interval (0, 1), then

the random variable X = xq follows (6).

First, we provide the moment generating function (mgf) of the Fr model as discussed by Afify et al. (2015). We

can write the mgf of Z as

M(t; β, σ) = βσβ
∫ ∞

0

et/y y(β−1) e−(σy)βdy.

By expanding the first exponential and determining the integral, we obtain

M(t; β, σ) =

∞∑
m=0

σm tm

m!
Γ

(
β − m
β

)
.

Consider the Wright generalized hypergeometric function (Kilbas et al., 2006) defined by

pΨq

[ (
γ1, A1

)
, . . . ,

(
γp, Ap

)(
β1, B1

)
, . . . ,

(
βq, Bq

) ; x
]
=

∞∑
n=0

p∏
j=1

Γ
(
γ j + Aj n

)
q∏

j=1

Γ
(
β j + Bj n

) xn

n!
.

Then, we can write M(t; β, σ) as

M(t; β, σ) = 1Ψ0

[ (
1,−β−1

)
− ;σ t

]
.

Combining the last expression and (7), the mgf of X can be expressed as

MX (t) =

∞∑
k=0

υk 1Ψ0

[ (
1,−β−1

)
− ; σ (k + 1)1/β t

]
−
∞∑

k=0

ωk 1Ψ0

[ (
1,−β−1

)
− ; σ (k + 2)1/β t

]
.

4.6 Rényi and q-Entropies

The Rényi entropy of a random variable X represents a measure of variation of the uncertainty. The Rényi entropy

is defined by

Iγ (X) =
1

(γ − 1)
log

∫ ∞

−∞
f (x)γ dx, γ > 0 and γ � 1.

Then, using (6), we can write

f (x)γ =

(
αβσβ

)γ
x−γ(β+1)e−γ(

σ
x )
β

[
α + (1 − α) e−( σx )

β
]2γ

⎡⎢⎢⎢⎢⎢⎣1 + λ − 2λ
e−(

σ
x )
β

α + (1 − α) e−( σx )
β

⎤⎥⎥⎥⎥⎥⎦
γ

︸������������������������������������︷︷������������������������������������︸
A

.

Applying the generalized binomial expansion to the quantity A, we obtain

f (x)γ =
[
αβσβ (1 + λ)

]γ
x−γ(β+1)

∞∑
j=0

(−1) j Γ (γ + 1) d j

j!Γ (γ − j + 1)
× e−( j+γ)( σx )

β
[
α + (1 − α) e−(

σ
x )
β
]−(2γ+ j)

︸���������������������������︷︷���������������������������︸
B

,
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where d = 2λ/ (1 + λ).

Applying the series expansion defined in Section 3 to B, we can write

f (x)γ =
(
βσβ

)γ ∞∑
j,k=0

b j,k x−γ(β+1)e−(k+ j+γ)( σx )
β

,

where

b j,k =
(−1) j Γ (2γ + j + k)Γ (γ + 1) d j (1 + λ)γ

j!k!Γ (2γ + j) Γ (γ − j + 1)αγ+ j

(
1 − 1

α

)k

.

Then the Rényi entropy of X is given by

Iγ (X) =
1

(γ − 1)
log

⎡⎢⎢⎢⎢⎢⎢⎣(βσβ)γ
∞∑

j,k=0

b j,k

∫ ∞

−∞
x−γ(β+1)e−(k+ j+γ)( σx )

β

dx

⎤⎥⎥⎥⎥⎥⎥⎦ ,
and by making the substitution u = (σ/x)β, for γ (1 + β) > 1, we have that

Iγ (X) =
1

(γ − 1)
log

⎡⎢⎢⎢⎢⎢⎢⎣( βσ
)γ−1 ∞∑

j,k=0

b j,k (k + j + γ)−s Γ (s)

⎤⎥⎥⎥⎥⎥⎥⎦ ,
where s =

[
γ (1 + β) − 1

]
/β.

The q-entropy (for q > 0 and q � 1), say Hq(X), is given by

Hq (X) =
1

(q − 1)
log

{
1 −

∫ ∞

−∞
f (x)q dx

}
,

and then

Hq (X) =
1

(q − 1)
log

⎧⎪⎪⎪⎨⎪⎪⎪⎩1 −
⎡⎢⎢⎢⎢⎢⎢⎣( βσ

)q−1 ∞∑
j,k=0

b�j,k (k + j + q)−s� Γ
(
s�

)⎤⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

where s� =
[
q (1 + β) − 1

]
/β and

b�j,k =
(−1) j Γ (2q + j + k) Γ (q + 1) d j (1 + λ)q

j!k!Γ (2q + j) Γ (q − j + 1)αq+ j

(
1 − 1

α

)k

.

5. Order Statistics

The order statistics and their moments have great importance in many statistical problems and they have many

applications in reliability analysis and life testing. Let X1, . . . , Xn be a random sample of size n from the TMOFr(α,

β, σ, λ) with cdf (5) and pdf (6), respectively. Let X1:n, . . . , Xn:n be the corresponding order statistics. Then, the

pdf of rth order statistic, say Xr:n, 1 ≤ r ≤ n, denoted by fr:n (x), can be expressed as

fr:n (x) = Cr:n

αβσβx−(β+1)e−(
σ
x )
β
[
�1e−(

σ
x )
β − �3e−2( σx )

β
]r−1

[
α + (1 − α) e−( σx )

β
]3 [
α + (1 − α) e−( σx )

β
]2(r−1)

×

[
�1 − �2e−(

σ
x )
β
] [
α2 + �4e−(

σ
x )
β

+ �5e−2( σx )
β
]n−r

[
α + (1 − α) e−( σx )

β
]2(n−r)

,

where Cr:n =
n!

(r−1)!(n−r)!
, �1 = α (1 + λ), �2 = αλ+α+λ−1, �3 = αλ+α−1, �4 = α−αλ−2α2 and �5 = α

2+αλ−α.

The pdf fr:n (x), can also be expressed as

fr:n (x) =
f (x)

B (r, n − r + 1)

n−1∑
s=0

(−1)s
(
n − 1

s

)
Fs+r−1(x). (9)

Further, we can write

Fs+r−1(x) =

∞∑
i=0

(−λ)i
(
s + r − 1

i

)
(1 + λ)s+r−i−1 e−(s+r+i−1)( σx )

β

[
α + (1 − α) e−( σx )

β
]s+r+i−1

.
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Using equation (6) and the last equation and, after some simplification, we can write

f (x)Fs+r−1(x) = (1 + λ)
∞∑

i=0

diαβσ
βx−(β+1)e−(s+r+i)( σx )

β

[
α + (1 − α) e−( σx )

β
]s+r+i+1

− 2λ

∞∑
i=0

diαβσ
βx−(β+1)e−(s+r+i+1)( σx )

β

[
α + (1 − α) e−( σx )

β
]s+r+i+2

, (10)

where di = (−λ)i
(

s+r−1
i

)
(1 + λ)s+r−i−1.

By inserting (10) in equation (9) and, after some simplification, we obtain

fr:n (x) =

n−1∑
s=0

∞∑
i, j=0

ai, j hs+r+i+ j(x) −
n−1∑
s=0

∞∑
i, j=0

bi, j hs+r+i+ j+1(x), (11)

where

ai, j =
(−1)s Γ (s + r + i + j + 1) (1 + λ) di

(
1 − 1

α

) j

j!B (r, n − r + 1) Γ (s + r + i + 1) (s + r + i + j)αs+r+i

(
n − 1

s

)
,

bi, j =
(−1)s Γ (s + r + i + j + 2) 2λdi

(
1 − 1

α

) j

j!B (r, n − r + 1)Γ (s + r + i + 2) (s + r + i + j + 1)αs+r+i+1

(
n − 1

s

)

and hη(x) denotes to the Fr density with shape parameter β and scale parameter σ (η)1/β.

Equation (11) reveals that the pdf of the TMOFr order statistics is a mixture of Fr densities. So, some of their

mathematical properties can also be obtained from those of the Fr distribution. For example, the qth moment of

Xr:n can be expressed as

E
(
Xq

r:n

)
=

n−1∑
s=0

∞∑
i, j=0

ai, j E
(
Yq

s+r+i+ j

)
−

n−1∑
s=0

∞∑
i, j=0

bi, j E
(
Yq

s+r+i+ j+1

)
, (12)

where Yq
s+r+i+ j ∼Fr(σ (s + r + i + j)1/β , β).

The L-moments are analogous to the ordinary moments but can be estimated by linear combinations of order

statistics. Based upon the moments in equation (12), we can derive explicit expressions for the L-moments of X
as infinite weighted linear combinations of the means of suitable TMOFr distribution. They are linear functions of

expected order statistics defined by

λr =
1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
E (Xr−k:r) , r ≥ 1.

The first four L-moments are given by

λ1 = E (X1:1) , λ2 =
1

2
E (X2:2 − X1:2) , λ3 =

1

3
E (X3:3 − 2X2:3 + X1:3)

and

λ4 =
1

4
E (X4:4 − 3X3:4 + 3X2:4 − X1:4) .

6. Characterizations

The problem of characterizing a distribution is an important problem in various fields which has recently attracted

the attention of many researchers. These characterizations have been established in many different directions.

This section deals with various characterizations of TMOFr distribution. These characterizations are based on: (i)
a simple relationship between two truncated moments; (ii) the hazard function; (iii) a single function of the random

variable. It should be mentioned that for characterization (i) the cdf need no have a closed form. We believe, due

to the nature of the cdf of TMOFr, there may not be other possible characterizations than the ones presented in this

section.

6.1 Characterizations Based on Two Truncated Moments
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In this subsection we present characterizations of TMOFr distribution in terms of a simple relationship between two

truncated moments. Our first characterization result borrows from a theorem due to Glanzel (1987) see Theorem

A of Appendix A. We refer the interested reader to Glanzel (1987) for a proof of Theorem A. Note that the result

holds also when the interval H is not closed. Moreover, as mentioned above, it could be also applied when the cdf

F does not have a closed form. As shown in Afify et al. (2015), this characterization is stable in the sense of weak

convergence.

Proposition 6.1. Let X : Ω → (0,∞) be a continuous random variable and let h (x) =
[
1 + λ − λe−( σx )β

α+(1−α)e−( σx )β

]1−b

and g (x) = h (x)
[
α + (1 − α) e−(

σ
x )β

]−1
for x > 0. The random variable X belongs to TMOFr family (6) if and

only if the function η defined in Theorem A has the form

η (x) =
1

2

{
1 +

[
α + (1 − α) e−(

σ
x )β

]−1
}
, x > 0. (13)

Proof. Let X be a random variable with density (6), then

(1 − F (x)) E [h (x) | X ≥ x] =
1

1 − α
{[
α + (1 − α) e−(

σ
x )β

]−1 − 1
}
, x > 0,

and

(1 − F (x)) E
[
g (x) | X ≥ x

]
=

1

2 (1 − α)

{[
α + (1 − α) e−(

σ
x )β

]−2 − 1
}
, x > 0,

and finally

η (x) h (x) − g (x) =
1

2
h (x)

{
1 −

[
α + (1 − α) e−(

σ
x )β

]−1
}
> 0 for x > 0.

Conversely, if η is given as above, then

s′ (x) =
η′ (x) h (x)

η (x) h (x) − g (x)
=
− (1 − α) βσβe−(

σ
x )
β [
α + (1 − α) e−(

σ
x )β

]−2

xβ+1

{
1 −

[
α + (1 − α) e−( σx )β

]−1
} , x > 0,

and hence

s (x) = − ln
{{

1 −
[
α + (1 − α) e−(

σ
x )β

]−1
}}
, x > 0.

Now, in view of Theorem A, X has density (6).

Corollary 6.1. Let X : Ω → (0,∞) be a continuous random variable and let h (x) be as in Proposition 6.1. The

pdf of X is (6) if and only if there exist functions g and η defined in Theorem A satisfying the differential equation

η′ (x) h (x)

η (x) h (x) − g (x)
=
− (1 − α) βσβe−(

σ
x )
β [
α + (1 − α) e−(

σ
x )β

]−2

xβ+1

{
1 −

[
α + (1 − α) e−( σx )β

]−1
} , x > 0. (14)

The general solution of the differential equation in Corollary 6.1 is

η (x) =
{
1 −

[
α + (1 − α) e−(

σ
x )β

]−1
}−1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫

(1 − α) βσβx−(β+1)e−(
σ
x )
β

h (x)
[
α + (1 − α) e−( σx )β

]2
g (x) dx + D

⎫⎪⎪⎪⎬⎪⎪⎪⎭
where D is a constant. Note that a set of functions satisfying the differential equation (14) is given in Proposition

6.1 with D = 1
2
. However, it should be also noted that there are other triplets (h, g, η) satisfying the conditions of

Theorem A.
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6.2 Characterization Based on Hazard Function

It is known that the hazard function, hF , of a twice differentiable distribution function, F, satisfies the first order

differential equation

f ′(x)

f (x)
=

h′F(x)

hF(x)
− hF(x). (15)

For many univariate continuous distributions, this is the only characterization available in terms of the hazard

function. The following characterization establishes a non-trivial characterization for TMOFr distribution in terms

of the hazard function when α = 1, which is not of the trivial form given in (15). We assume, without loss of

generality, that σ = 1 in the following Proposition.

Proposition 6.2. Let X : Ω → (0,∞) be a continuous random variable. Then for α = 1, the pdf of X is (6) if and

only if its hazard function hF (x) satisfies the differential equation

h′F (x) + (β + 1) x−1hF (x) = βx−(β+1) d
dx

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e−(

σ
x )β

[
1 + λ − 2λe−(

σ
x )β

]
1 +

[
λe−( σx )β − (1 + λ)

]
e−( σx )β

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (16)

with the boundary condition limx→∞ hF (x) = 0.

Proof. If X has pdf (6), then clearly (16) holds. Now, if (16) holds, then

d
dx

{
xβ+1hF (x)

}
=

d
dx

⎧⎪⎪⎪⎨⎪⎪⎪⎩
βe−(

σ
x )β

[
1 + λ − 2λe−(

σ
x )β

]
1 +

[
λe−( σx )β − (1 + λ)

]
e−( σx )β

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,
or, equivalently,

hF (x) =
βx−(β+1)e−(

σ
x )β

[
1 + λ − 2λe−(

σ
x )β

]
1 +

[
λe−( σx )β − (1 + λ)

]
e−( σx )β

,

which is the hazard function of the TMOFr distribution.

6.3 Characterizations Based on a Single Function of the Random Variable

In this subsection we present a characterization result in terms of a function of the random variable X.

Proposition 6.3. Let X : Ω → (a, b) be a continuous random variable with cdf F and corresponding pdf f . Let

ψ (x) be a differentiable function greater than 1 on (a, b) such that limx→a+ ψ (x) = 1 and limx→b− ψ (x) = 1 + c.

Then, for 0 < c < 1,

E
[
ψ (X) | X ≤ x

]
= c + (1 − c)ψ (x) , (17)

if and only if

F (x) =

(
ψ (x) − 1

c

) 1−c
c

. (18)

Proof. If (17) holds, then

∫ x

a
ψ (u) f (u) du = {c + (1 − c)ψ (x)} F (x) .

Differentiating both sides of the above equation with respect to x and rearranging the terms, we arrive at
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f (x)

F (x)
=

1 − c
c

(
ψ′ (x)

ψ (x) − 1

)
. (19)

Integrating both sides of (19) from x to b and using the condition limx→b− ψ (x) = 1 + c, we arrive at (18).

Conversely, if (18) holds, then ψ (x) = 1 + c (F (x))
c

1−c and

E
[
ψ (X) | X ≤ x

]
=

∫ x
a

{
1 + c (F (u))

c
1−c

}
f (u) du

F (x)

=
F (x) + c (1 − c) (F (x))

1
1−c

F (x)

= 1 + c (1 − c) (F (x))
c

1−c

= 1 + (1 − c) (ψ (x) − 1)

= c + (1 − c)ψ (x) ,

which is (17).

Remark 6.1. Taking, e.g., (a, b) = (0,∞) and

ψ (x) = 1 + c

⎧⎪⎪⎨⎪⎪⎩ e−(
σ
x )β

α + (1 − α) e−( σx )β

⎡⎢⎢⎢⎢⎣1 + λ − λe−(
σ
x )β

α + (1 − α) e−( σx )β

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

c
1−c

.

Proposition 6.3 gives a characterization of TMOFr distribution.

7. Maximum Likelihood Estimation

Several approaches for parameter estimation were proposed in the literature but the maximum likelihood method is

the most commonly employed. The MLEs enjoy desirable properties and can be used when constructing confidence

intervals and regions and also in test statistics. The normal approximation for these estimators in large sample

distribution theory is easily handled either analytically or numerically. In this section, we consider the estimation

of the parameters of the TMOFr(α, β, σ, λ, x) distribution by maximum likelihood. Consider the random sample

x1, . . . , xn of size n from this distribution. The log-likelihood function for the parameter vector φ = (α, β, σ, λ)ᵀ,

say (φ), is given by

(φ) = n
(
logα + ln β − logσ

) − n∑
i=1

(
σ

xi

)β
+ (β + 1)

n∑
i=1

log

(
σ

xi

)

−3

n∑
i=1

log

⎡⎢⎢⎢⎢⎣α + (1 − α) e
−
(
σ
xi

)β⎤⎥⎥⎥⎥⎦ + n∑
i=1

log

⎡⎢⎢⎢⎢⎣α (λ + 1) − pe
−
(
σ
xi

)β⎤⎥⎥⎥⎥⎦ ,
where p = λ (α + 1)+α−1. The above equation can be maximized either directly by using the MATH-CAD program,

R (optim function), SAS (PROC NLMIXED) or by solving the nonlinear equations obtained by differentiating the log-

likelihood. Therefore, the corresponding score function, say U (φ) = ∂(φ)
∂φ

, is given by U (φ) =
(
∂(φ)
∂α
, ∂(φ)
∂β
, ∂(φ)
∂σ
, ∂(φ)
∂λ

)ᵀ
.

Then,

∂(φ)

∂α
=

n
α
−

n∑
i=1

3 − 3e
−
(
σ
xi

)β

α + (1 − α) e
−
(
σ
xi

)β +
n∑

i=1

1 + λ − (1 + λ) e
−
(
σ
xi

)β

α (λ + 1) − pe
−
(
σ
xi

)β ,

∂(φ)

∂β
=

n∑
i=1

⎡⎢⎢⎢⎢⎣1 − (
σ

xi

)β⎤⎥⎥⎥⎥⎦ log

(
σ

xi

)
+

n∑
i=1

p
(
σ
xi

)β
e
−
(
σ
xi

)β

α (λ + 1) − pe
−
(
σ
xi

)β log

(
σ

xi

)
+

n
β
+

n∑
i=1

3 (1 − α)
(
σ
xi

)β
e
−
(
σ
xi

)β

α + (1 − α) e
−
(
σ
xi

)β log

(
σ

xi

)
,
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∂(φ)

∂σ
=

1

σ

⎡⎢⎢⎢⎢⎢⎣n − β n∑
i=1

(
σ

xi

)β⎤⎥⎥⎥⎥⎥⎦ − βσ
n∑

i=1

p
(
σ
xi

)β
e
−
(
σ
xi

)β

α (λ + 1) − pe
−
(
σ
xi

)β + βσ
n∑

i=1

3 (1 − α) e
−
(
σ
xi

)β

α + (1 − α) e
−
(
σ
xi

)β
(
σ

xi

)β

and

∂(φ)

∂λ
=

n∑
i=1

α − (1 + α) e
−
(
σ
xi

)β

α (λ + 1) − pe
−
(
σ
xi

)β .

We can obtain the estimates of the unknown parameters by setting the score vector to zero, U(φ̂) = 0. Solving

these equations simultaneously gives the MLEs α̂, β̂, σ̂ and λ̂. If they can not be solved analytically and statistical

software can be used to solve them numerically by means of iterative techniques such as the Newton-Raphson

algorithm. For the TMOFr distribution all the second order derivatives exist.

For interval estimation of the model parameters, we require the 4 × 4 observed information matrix J(φ) = {Jrs}
for r, s = α, β, σ, λ. Under standard regularity conditions, the multivariate normal N4(0, J(φ̂)−1) distribution can

be used to construct approximate confidence intervals for the model parameters. Here, J(φ̂) is the total observed

information matrix evaluated at φ̂. Therefore, approximate 100(1 − ϕ)% confidence intervals for α, β, σ and λ can

be determined as:

α̂ ± z ϕ
2

√
Ĵαα, β̂ ± z ϕ

2

√
Ĵββ, σ̂ ± z ϕ

2

√
Ĵσσ and λ̂ ± z ϕ

2

√
Ĵλλ, where z ϕ

2
is the upper ϕth percentile of the

standard normal distribution.

8. Applications

In this section, We provide two applications to two real data sets to prove the flexibility of the TMOFr model. We

compare the fit of the TMOFr with competitve models namely: MOFr, BFr, GEFr, TFr and Fr distributions. The

pdfs of these distributions are, respectively, given by (for x > 0):

MOFr: f (x) = αβσβ x−(β+1) e−(
σ
x )
β
[
α + (1 − α) e−(

σ
x )
β
]−2

;

BFr: f (x) =
βσβ

B(a,b)
x−(β+1) e−a( σx )

β
[
1 − e−(

σ
x )
β
]b−1

;

GEFr: f (x) =
aβσβ

Γ(b)
x−(β+1) e−(

σ
x )
β
[
1 − e−(

σ
x )
β
]a−1 {

− log
[
1 − e−(

σ
x )
β
]a}b−1

;

TFr: f (x) = βσβx−(β+1) e−(
σ
x )
β
[
1 + λ − 2λ e−(

σ
x )
β
]

;

Fr: f (x) = βσβx−(β+1) e−(
σ
x )
β

.

The parameters of the above densities are all positive real numbers except for the TFr distribution for which |λ| ≤ 1.

The first data set refers to breaking stress of carbon fibres (in Gba) (Nichols and Padgett, 2006) and consists of

100 observations: 3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09,

1.87, 3.15, 4.90, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31,

2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91,

3.68, 1.84, 1.59, 3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2.00, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17,

1.69, 1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80, 1.57, 1.08, 2.03, 1.61, 2.12, 1.89, 2.88,

2.82, 2.05, 3.65. The second data set is obtained from Smith and Naylor (1987). The data are the strengths of 1.5
cm glass fibres, measured at the National Physical Laboratory, England. Unfortunately, the units of measurement

are not given in the paper. The data set consisting of 63 observations are: 0.55, 0.93,1.25, 1.36, 1.49, 1.52, 1.58,

1.61, 1.64, 1.68, 1.73, 1.81, 2 , 0.74, 1.04, 1.27, 1.39, 1.49, 1.53,1.59, 1. 61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77,

1.11, 1.28, 1.42, 1.5, 1.54, 1.6, 1.62, 1.66, 1.69,1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.5, 1.55, 1.61, 1.62, 1.66,

1.7, 1.77, 1.84, 0.84, 1.24, 1.3, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.7, 1.78, 1.89.

In order to compare the distributions, we consider the measures of goodness-of-fit including the Akaike information

criterion (AIC), Bayesian information criterion (BIC), Hannan-Quinn information criterion (HQIC) and consistent
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Akaike information criterion (CAIC). These measures of goodness-of-fit evaluated at the MLEs ,̂ wherêis the

maximized log-likelihood.

We also consider the Cramér–von Mises (W∗) and Anderson–Darling (A∗) statistics. The statistics W∗ and A∗ are

described in details in Chen and Balakrishnan (1995). In general, the smaller the values of these statistics, the

better the fit to the data.

In Table 2, we list the numerical values of the statistics W∗, A∗, AIC, BIC, HQIC and CAIC using the two real data

sets (DS), whereas the MLEs and their corresponding standard errors and the statistics of the model parameters are

shown in Table 3. These numerical results are obtained using the MATH-CAD program.

Table 2. The statistics W∗, A∗, AIC, BIC, HQIC and CAIC for the two data sets

DS Models W∗ A∗ AIC BIC HQIC CAIC
TMOFr 0.2376 1.26771 309.973 320.393 314.19 310.394

BFr 0.25137 1.39536 311.133 321.553 315.35 311.554

GEFr 0.25872 1.43853 311.96 332.381 316.178 312.381

I MOFr 0.59267 3.38252 351.328 359.143 354.491 351.578

TFr 0.55598 3.17823 350.475 358.29 353.638 350.725

Fr 0.54849 3.13643 348.308 353.519 350.417 348.432

TMOFr 0.56541 3.10166 56.46 65.032 59.831 57.149

MOFr 0.59607 3.2897 57.08 63.509 59.609 57.487

II BFr 0.76879 4.20206 68.63 77.202 72.002 69.32

GEFr 0.78121 4.27204 69.557 78.13 72.929 70.247

TFr 1.17022 6.45074 100.078 106.507 102.606 100.484

Fr 1.16252 6.40749 97.707 101.993 99.392 97.907

The figures in Table 2 indicate that the TMOFr model has the smallest values of the statistics W∗, A∗, AIC, BIC,

HQIC and CAIC except BIC and HQIC for the second data set. Hence, it can be chosen as the best model among

all fitted models. Based on these criteria in Table 2, we conclude that the TMOFr distribution provides a better fit

than the other models.

9. Concluding Remarks

In this paper, we propose a new four-parameter model, called the transmuted Marshall-Olkin Fréchet (TMOFr)

distribution, which extends the Marshall-Olkin Fréchet (MOFr) distribution introduced by Krishna et al. (2013).

In fact, the TMOFr distribution is motivated by the wide use of the Fréchet distribution in practice and also in

view of the fact that the generalization provides more flexibility to analyze real life data. We provide some of

its mathematical properties. The density function of TMOFr can be expressed as a mixture of Fréchet densities.

We derive explicit expressions for the ordinary and incomplete moments, residual life and reversed residual life

functions, quantile and generating functions, Rényi and q-entropies. We obtain the density function of order

statistics and their moments. We discuss the maximum likelihood estimation of the model parameters. Two

applications illustrate that the proposed distribution provides consistently better fit than other non-nested models.

Appendix A

Theorem A. Let (Ω,F ,P) be a given probability space and let H = [d, e] be an interval for some d < e (d = −∞,
e = ∞ might as well be allowed). Let X : Ω → H be a continuous random variable with the distribution function

F and let g and h be two real functions defined on H such that

E
[
g (X) | X ≥ x

]
= E [h (X) | X ≥ x] η (x) , x ∈ H,

is defined with some real function η. Assume that g, h ∈ C1 (H), η ∈ C2 (H) and F is twice continuously differen-

tiable and strictly monotone function on the set H. Finally, assume that the equation hη = g has no real solution in

the interior of H. Then F is uniquely determined by the functions g, h and η, particularly

F (x) =

∫ x

a
C

∣∣∣∣∣ η′ (u)

η (u) h (u) − g (u)

∣∣∣∣∣ exp (−s (u)) du,
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where the function s is a solution of the differential equation s′ = η′ h
η h − g and C is the normalization constant, such

that
∫

H dF = 1.

Table 3. MLEs and their standard errors (in parentheses) for the two data sets

DS Models E stimates

TMOFr(β, σ, α, λ) 3.3313 0.6496 101.923 0.2936

(0.206) (0.068) (47.625) (0.27)

BFr(β, σ, a, b) 0.4046 1.6097 22.0143 29.7617

(0.108) (2.498) (21.432) (17.479)

GEFr(β, σ, a, b) 0.4776 1.3692 27.6452 17.4581

I (0.133) (2.017) (14.136) (14.818)

MOFr(β, σ, α) 1.5796 2.3066 0.5988

(0.16) (0.489) (0.3091)

TFr(β, σ, λ) 1.7435 1.9315 0.0819

(0.076) (0.097) (0.198)

Fr(β, σ) 1.7766 1.8705

(0.113) (0.112)

TMOFr(β, σ, α, λ) 6.8744 0.65 376.268 0.1499

(0.596) (0.049) (246.832) (0.302)

MOFr(β, σ, α) 6.4655 0.6812 161.6114

(0.559) (0.045) (91.499)

BFr(β, σ, a, b) 0.6466 2.0518 15.0756 36.9397

II (0.163) (0.986) (12.057) (22.649)

GEFr(β, σ, a, b) 0.7421 1.6625 32.112 13.2688

(0.197) (0.952) (17.397) (9.967)

TFr(β, σ, λ) 2.7898 1.3068 0.1298

(0.165) (0.034) (0.208)

Fr(β, σ) 2.8876 1.2643

(0.234) (0.059)
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Fréchet, M. (1924). Sur la loi des erreurs d’observation, Bulletin de la Société Mathématique de Moscou, 33, p.
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