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Abstract

The paper gives a description of estimation for the reliability function of weighted Weibull distribution. The maximum
likelihood estimators for the unknown parameters are obtained. Nonparametric methods such as empirical method, kernel
density estimator and a modified shrinkage estimator are provided. The Markov chain Monte Carlo method is used
to compute the Bayes estimators assuming gamma and Jeffrey priors. The performance of the maximum likelihood,
nonparametric methods and Bayesian estimators is assessed through a real data set.

Keywords: Weighted Weibull distribution, Empirical Estimator, Kernel Density Estimator, Modified Shrinkage Estima-
tor, and Markov chain Monte Carlo.

1. Introduction

The Weibull distribution has been used very extensively as a model in reliability and survival analysis. The distribution
provides much wider applications as compared with those provided by the exponential distribution. The Weibull distribu-
tion can also be used as an alternative to other distributions used in reliability engineering and life testing such as gamma
and lognormal distributions. Following the method of Azzalini (1985), Gupta and Kundu (2009) proposed a weighted
exponential distribution which can also be used as an alternative to gamma and Weibull distributions. Using the same
idea, Shahbaz et al. (2010) proposed the weighted Weibull distribution.

Suppose two random variables X1 and X2 are independently identically distributed as Weibull random variable with
distribution function F(x) = 1 − e−λxβ and density function f (x) = λβxβ−1e−λxβ , where β is the shape parameter and λ is
the scale parameter. The density function of the weighted Weibull distribution is given by

f (x) =
α + 1
α

λβxβ−1e−λxβ (1 − e−αλxβ ), x > 0, α, β, λ > 0. (1)

The reliability, or survival function associated with (1) is

F̄(x) = 1 −
{
α + 1
α

[
1 − exp

{
−λxβ

} ]
− 1
α

[
1 − exp

{
−(1 + α)λxβ

} ]}
. (2)

It should be mentioned that for β = 1, the distribution f (x) given by (1) is reduced to the weighted exponential distribution
of Gupta and Kundu (2009). The hazard rate has decreasing trend when β < 1 and increasing trend for values of β > 1.

The model can be considered as another useful two-parameter generalization of the Weibull distribution. This lifetime
distribution can model various shapes of failure rates and hence various shapes of aging criteria. In the work of Shahbaz
et al. (2010) some properties such as reliability function, hazard function and moment generating function are discussed.
Also, estimation of the unknown parameters of the weighted Weibull is discussed, but making comparisons basing on
different methods of estimation has not been performed. The main goal of this paper is to estimate the parameters using
maximum likelihood and Bayesian method and then make use of the estimated parameters to estimate the reliability
function. For the same purpose, some nonparametric methods like empirical method, kernel density estimator and a
modified shrinkage estimator are used.

The rest of the paper is organized as follows. In Section 2, the maximum likelihood estimators (MLEs) are obtained.
In Section 4, we obtain Bayes estimators using the symmetric and asymmetric balanced loss functions. In Section 5,
the MCMC methods are used to accomplish some complex calculations, and, therefore, comparisons are made between
Bayesian and maximum likelihood estimators via Monte Carlo simulation study.
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2. Methods of Estimation

In this section, we consider the estimation problem of the weighted Weibull distribution. We discuss the maximum
likelihood estimators, empirical method, kernel density estimator and modified shrinkage estimators.

2.1 Maximum Likelihood Estimator

Suppose that X is a random variable distributed according to weighted Weibull distribution, X ∼ WW(α, β, λ). Suppose
further that x1 < x2 < · · · < xn denote the observed failure times of the experimental units and θ = (α, β, λ). The likelihood
function is given by

L(x| θ) =
(
α + 1
α

)n

(βλ)n
n∏

i=1

xβ−1
i exp

−λ n∑
i=1

xβi

 n∏
i=1

(
1 − exp

{
−αλxβi

})
. (3)

The log-likelihood function of the WW(α, β, λ) is given by

log L(x; θ) = −n log(α) + n log(α + 1) + n log(β) + n log(λ) + (β − 1)
n∑

i=1

log(xi)

−λ
n∑

i=1

xβi +
n∑

i=1

log
(
1 − exp

{
−αλxβi

})
. (4)

The MLEs of (α, β, λ), say (α̂ML, β̂ML, λ̂ML), are obtained as the solution of the Fishers score function. Setting the equations
to zero and solving for α, β and λ leads to the MLEs.

∂ log L
∂α

= − n
α
+

n
α + 1

+

n∑
i=1

λxβi exp
{
−αλxβi

}
1 − exp

{
−αλxβi

} = 0.

∂ log L
∂β

=
n
β
+

n∑
i=1

log(xi) − λ
n∑

i=1

xβi log(xi) +
n∑

i=1

αλxβi log(xi) exp
{
−αλxβi

}
1 − exp

{
−αλxβi

} = 0.

∂ log L
∂λ

=
n
λ
−

n∑
i=1

xβi +
n∑

i=1

αxi exp
{
−αλxβi

}
1 − exp

{
−αλxβi

} = 0.

Usual algebraic solution for the above equations is not working due to the properties of transcendental equation. There-
fore, we propose to use numerical methods to compute the MLEs. We have used nlm() function of R package. The
corresponding “ML plug-in estimation” of F̄, say ˆ̄F, is given by

ˆ̄FML(x) =
α̂ML + 1
α̂ML

[
1 − exp

{
−λ̂MLxβ̂ML

} ]
− 1
α̂ML

[
1 − exp

{
−(1 + α̂ML)λ̂MLxβ̂ML

} ]
. (5)

2.2 Kernel Density Estimator

Here we attempt to estimate the density directly from the data without assuming a particular form for the underlying
distribution. Let X1, X2, · · · , Xn denote a sample of size n from a random variable with density f . The kernel density
estimate of f at the point x is given by

f̂h(x) =
n∑

i=1

K
( x − Xi

h

)
, (6)

where the kernel K satisfies
∫

K(x)dx = 1 and the smoothing parameter h is known as the bandwidth. In practice, the
kernel K is generally chosen to be a unimodal probability density symmetric about zero. In this case, any function K
having the following assumptions can be used as a kernel:∫

K(y)dy = 1,
∫

yK(y)dy = 0, and
∫

y2K(y)dy = µ2(K) < ∞.

2
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The Gaussian kernel is a popular choice for K. The selection of smoothing parameter, or bandwidth h, for the kernel
density is very crucial because it effects on the shape of the corresponding estimator. If the bandwidth is small, we will
get an under smoothed estimator, with high variability. On the other hand, if the value of h is big, the resulting estimator
will be over smooth. We will use the optimal bandwidth to estimate h, which can be given as (see e.g. Marron and Chung
2001)

ĥopt = 1.06 min
{
σ,

Q
1.349

}
n−1/5, (7)

where σ is the standard deviation and Q provide the interquartile range of X.

When the data are complete (uncensored), a kernel estimate (KE) for the survival function associated with (6) is given by

ˆ̄Fh(x) =
1
nh

n∑
i=1

∫ ∞

x
K

( t − Xi

h

)
dt. (8)

2.3 Empirical Estimator

We consider nonparametric estimation method which is based on the empirical distribution function (EDF). The EDF is a
step function with jumps at the order statistics (X1, X2, . . . , Xn) and defined as

Fn(x) =
number of observations ≤ x

n
=

1
n

n∑
i=1

I(Xi ≤ x),

where I is an indicator function. By Glivenko-Cantelli theorem the EDF, Fn(x) converges to F(x) as x→ ∞ almost surely,
supx |Fn(x)−F(x)| → 0. The reliability function is estimated as the proportion of observations surviving longer than x i.e.

ˆ̄Fn(x) =
1
n

n∑
i=1

I(Xi > x). (9)

Note that the most common way to estimate the reliability function nonparametrically is the Kaplan-Meier (K-M) method.
However, if there is no censoring, as in our present case, the K-M estimate coincides with the empirical survival function.

2.4 Modified Shrinkage Estimator

Jani (1991) suggested a class of shrinkage estimators for the scale parameter of the exponential distribution. The estimator
of θ, say Tp, is as follows:

Tp = θ0

{
1 +W

(
θ0

x̄

)p}
, (10)

where x̄ is the sample mean, p is a non-zero real number and W is constant such that the mean square error of Tp is at
minimum. The constant W can be estimated by Ŵ where

Ŵ =
( x̄ − θ0

x̄

) ( x̄
θ0

)p+1 √
n − p

np
√

n − 2p
. (11)

This shrinkage technique can be adopted and used to present a shrinkage estimator for the reliability function.

ˆ̄F p(x) = ˆ̄Fh(x)

1 +W1

 ˆ̄Fh(x)
ˆ̄Fn(x)

p , (12)

where ˆ̄Fh(x) is defined as given in relation (8) and it is considered to be an initial value for the reliability function, and
ˆ̄Fn(x) is the empirical reliability.

Ŵ1 =

 ˆ̄Fn(x) − ˆ̄Fh(x)
ˆ̄Fn(x)

  ˆ̄Fn(x)
ˆ̄Fh(x)

p+1 √
n − p

np
√

n − 2p
. (13)

It is obvious that for different values of p one can obtain many more shrinkage estimators. Also, it should be mentioned
here that the class of shrinkage estimators given by (12) is not unique.

3
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3. Bayesian Approaches

The posterior expectations involve integrals which sometimes can not be obtained in closed forms. To treat this problem
we employ the MCMC technique to compute the Bayes estimates for the involved parameters.

3.1 Gamma Prior

Bayesian approach requires to specify the prior probability distribution of the unknown parameters. We assume that α, β
and λ have independent gamma prior distributions, i.e.

π1(α) ∝ αa1−1e−b1α,
π2(β) ∝ βa2−1e−b2β,
π3(λ) ∝ λa3−1e−b3λ.

(14)

The hyper parameters a1, a2, a3, b1, b2 and b3 are assumed to be known and non-negative. Then the joint prior distribution
of α, β and λ can be written as

πG(α, β, λ) ∝ αa1−1βa2−1λa3−1e−(b1α+b2β+b3λ). (15)

Based on the prior distributions given by (15), the joint density function of the sample observations and the parameters α,
β and λ becomes

L(x;α, β, λ) ∝ αa1−1βa2−1λa3−1
(
α + 1
α

)n

(βλ)n
n∏

i=1

xβ−1
i

× exp

−λ n∑
i=1

xβi − (b1α + b2β + b3λ)


×

n∏
i=1

(
1 − exp

{
−αλxβi

})
. (16)

The joint posterior density function of α, β and λ, given the data can be obtained from

πG(α, β, λ| x) =
L(x|α, β, λ)πG(α, β, λ| a, b)∫

L(x|α, β, λ)πG(α, β, λ| a, b) dαdβdλ
. (17)

The Bayes estimators under the squared error loss function (SELF) is the posterior mean, θ̂ = Eπ(θ|data)(θ). It is not
possible to compute (17) analytically and therefore the Bayes estimates of the parameters under the SELF. For this reason,
we propose to use Metropolis-Hastings algorithm, one of the MCMC methods, to obtain samples from the posterior
distribution and then to compute the Bayes estimates of α, β and λ.

3.2 Jeffreys Prior

A well-known prior to represent a situation where no much information about the parameters was proposed by Jeffreys
(1967). This prior, denoted by πJ(α, β, λ), is derived from the Fisher information matrix I(α, β, λ) given as

πJ(α, β, λ) ∝
√

det I(α, β, λ).

The joint posterior density function of α, β and λ, given the data can be obtained from

πJ(α, β, λ| x) =
L(x|α, β, λ)πJ(α, β, λ| a, b)∫

L(x|α, β, λ)πJ(α, β, λ| a, b) dαdβdλ
. (18)

Also, it is not possible to compute (18) analytically and therefore the Bayes estimates of the parameters under the SELF.
Thus, we use Metropolis-Hastings algorithm to obtain samples from the posterior distribution and then to compute the
Bayes estimates of α, β and λ.

4. Simulation and Data Analysis

Instead of drawing direct samples from Bayesian posterior distribution, which is not often an easy task, one may use the
Metropolis-Hastings algorithm, a general term of Markov chain simulation methods. This method is an extension of the
usual rejection-acceptance sampling method. For a comprehensive treatment on MCMC methods, Metropolis-Hastings
algorithm, one may refer to the book by Robert and Casella (2005), Hastings (1970) and Cowles and Carlin (1995). The
algorithm is proposed as follows (See Al-Zahrani Gindwan 2014):

4
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Table 1. The estimates of the parameters α, β and λ for Guinea pigs data.

Estimates Statistics
Method α̂ β̂ λ̂ Dn W2

n
MLE 3.51900 1.15289 0.00578 0.1252 0.3018
BGP 3.39660 1.24232 0.00784 0.3608 3.3907
BJP 3.66899 1.06389 0.01206 0.1988 0.5404

Step 1. Draw starting points θ0 = (α0, β0, λ0) at timestep i = 0, for which f (θ0|data) > 0, from a prior distribution
π(θ).

Step 2. At iteration i, draw a proposal θ∗ from a jumping distribution Ji(θ∗|θ(i−1)), where Ji is symmetric.

Step 3. Generate a sample u from the uniform distribution U(0, 1) and take z = log u.

Step 4. Compute an acceptance ratio ρ, where

ρ = log
[
π(θ∗|data)Ji(θ(i−1)|θ∗)
π(θ(i−1)|data)Ji(θ∗|θ(i−1))

]
.

Step 5. If z < ρ accept θ∗ as θ(i) with probability min(ρ, 1), otherwise, θ(i) = θ(i−1).

Step 6. Repeat steps 2-5 N times to get sequence of the parameter θ = (α, β, λ) from π(θ|data), with optional
burn-in.

Step 7. The Bayes estimates of θ = (α, β, λ), say θ̂ = (α̂, β̂, λ̂) are taken as the mean of the generated values of θ.

At the length of 40,000, we produce the Markov chain with different initial points of the involving parameters. The
convergence is adjusted by drawing trace and ergodic mean plots. It is noted that the Markov chains converge after
approximately 2000 observations. Therefore, burn-in of 5000 samples is quite enough to eliminate the effect of initial
values. In order to minimize the auto correlation among the generated deviates, we take samples of size 3500 from the
posterior with thin = 10, and starting from 3501.

The data set consists of survival times of guinea pigs injected with different amount of tubercle bacilli and was studied by
Bjerkedal (1960). Guinea pigs are known to have high susceptibility of human tuberculosis, which is one of the reasons
for choosing this species. We consider only the study in which animals in a single cage are under the same regimen. The
data represents the survival times of Guinea pigs in days. The data are given as follows: 12, 15, 22, 24, 24, 32, 32, 33, 34,
38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58, 59, 60, 60, 60, 60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76,
76, 81, 83, 84, 85, 87, 91, 95, 96, 98, 99, 109, 110, 121, 127, 129, 131, 143, 146, 146, 175, 175, 211, 233, 258, 258, 263,
297, 341, 341, 376.

The estimates of the parameters, maximum likelihood estimator (MLE), Bayes with gamma prior (BGP) and Bayes with
Jeffreys prior (BJP), are given in Table 1. Also, the Kolmogorov-Smirnov Dn and Cramér-von Mises W2

n tests statistics
are computed and given in Table 1. The results show that the test statistics take the smallest values for the data set under
MLEs with regard to the Baysian methods. The plug-in MLE, empirical method (EM), kernel estimator (KE), modified
shrinkage estimator (MSE) and the plug-in Bayes estimators are given in Table 2 and shown in Figure 1. The findings
show that all the methods of estimation considered in this example are precisely estimating the parameters and their
performance are quite similar. The Bayes estimator with gamma prior reaches 0, as the value of X gets larger, faster than
those obtained by the Jeffreys prior, nonparametric estimators and MLEs.

5. Concluding Remarks

In this paper we have provided the maximum likelihood plug-in estimator, empirical estimator, kernel density estimator
and a modified shrinkage estimator for the weighted Weibull distribution. The Markov chain Monte Carlo method is used
to compute the Bayes estimators assuming the prior distribution of the parameters are gamma and Jeffreys priors. To
assess the performance of the obtained estimators we analyzed a real data set.

5
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Table 2. The plug-in MLE, empirical method (EM), kernel estimator (KE), modified shrinkage estimator (MSE) and the
plug-in Bayes estimators

Non-parametric Estimators Bayes (MCMC)
MLE EM KE MSE Gamma Jeffreys

0.980626 0.986111 0.835457 0.852625 0.951788 0.950535
0.969219 0.972222 0.826638 0.843500 0.923247 0.926407
0.934172 0.958333 0.800774 0.816551 0.839636 0.860746
0.922351 0.930556 0.791919 0.807345 0.812895 0.840514
0.922351 0.930556 0.791919 0.807345 0.812895 0.840514
0.869238 0.902778 0.749439 0.763607 0.701237 0.757327
0.869238 0.902778 0.749439 0.763607 0.701237 0.757327
0.862091 0.888889 0.743306 0.757354 0.687200 0.746899
0.854857 0.875000 0.750874 0.763172 0.673219 0.736500
0.825210 0.847222 0.723724 0.735726 0.618177 0.695357
0.825210 0.847222 0.723724 0.735726 0.618177 0.695357
0.787044 0.833333 0.685653 0.697644 0.552317 0.645422
0.779323 0.819444 0.677510 0.689551 0.539633 0.635682
0.748311 0.805556 0.643316 0.655733 0.490731 0.597665
0.717308 0.791667 0.606825 0.619892 0.444938 0.561260
0.709587 0.777778 0.597402 0.610669 0.433991 0.552422
0.701885 0.750000 0.587876 0.601360 0.423248 0.543691
0.701885 0.750000 0.587876 0.601360 0.423248 0.543691
0.694205 0.736111 0.578259 0.591971 0.412708 0.535069
0.686550 0.722222 0.582449 0.594760 0.402370 0.526555
0.678922 0.708333 0.572679 0.585244 0.392235 0.518150
0.671324 0.680556 0.562851 0.575679 0.382302 0.509855
0.671324 0.680556 0.562851 0.575679 0.382302 0.509855
0.663759 0.666667 0.552974 0.566076 0.372569 0.501668
0.656228 0.611111 0.543062 0.556445 0.363036 0.493591
0.656228 0.611111 0.543062 0.556445 0.363036 0.493591
0.656228 0.611111 0.543062 0.556445 0.363036 0.493591
0.656228 0.611111 0.543062 0.556445 0.363036 0.493591
0.648735 0.597222 0.533125 0.546798 0.353701 0.485623
0.641280 0.583333 0.523176 0.537144 0.344563 0.477764
0.633867 0.569444 0.513228 0.527496 0.335619 0.470014
0.619170 0.541667 0.493381 0.508257 0.318308 0.454837
0.619170 0.541667 0.493381 0.508257 0.318308 0.454837
0.604657 0.527778 0.473678 0.489168 0.301750 0.440087
0.597473 0.513889 0.463911 0.479706 0.293748 0.432871
0.583257 0.486111 0.444598 0.460996 0.278285 0.418753

6
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Table 2 Continued. The plug-in MLE, empirical method (EM), kernel estimator (KE), modified shrinkage estimator
(MSE) and the plug-in Bayes estimators

Non-parametric Estimators Bayes (MCMC)
MLE EM KE MSE Gamma Jeffreys

0.583257 0.486111 0.444598 0.460996 0.278285 0.418753
0.569251 0.472222 0.425651 0.442634 0.263525 0.405049
0.562328 0.458333 0.416339 0.433605 0.256403 0.398349
0.548650 0.444444 0.398083 0.415890 0.242658 0.385250
0.541896 0.416667 0.389154 0.407218 0.236030 0.378848
0.541896 0.416667 0.389154 0.407218 0.236030 0.378848
0.508994 0.402778 0.374538 0.390439 0.205223 0.348282
0.496247 0.388889 0.358720 0.374985 0.193935 0.336707
0.489964 0.375000 0.351069 0.367495 0.188502 0.331055
0.483741 0.361111 0.343592 0.360166 0.183206 0.325492
0.471476 0.347222 0.343053 0.358241 0.173011 0.314627
0.447675 0.333333 0.316303 0.331840 0.154141 0.293913
0.424844 0.319444 0.292284 0.307961 0.137156 0.274492
0.419286 0.305556 0.286687 0.302369 0.133185 0.269831
0.408352 0.291667 0.275957 0.291615 0.125556 0.260734
0.402974 0.277778 0.270818 0.286447 0.121894 0.256295
0.352404 0.263889 0.226609 0.241486 0.090304 0.215709
0.347661 0.250000 0.222805 0.237571 0.087602 0.212008
0.299064 0.236111 0.200144 0.211843 0.062446 0.175134
0.275188 0.222222 0.183280 0.194149 0.051752 0.157720
0.267619 0.208333 0.178023 0.188619 0.048587 0.152297
0.260238 0.194444 0.172932 0.183257 0.045605 0.147056
0.219711 0.180556 0.145704 0.154457 0.031035 0.119099
0.210528 0.152778 0.139790 0.148155 0.028153 0.112963
0.210528 0.152778 0.139790 0.148155 0.028153 0.112963
0.138373 0.125000 0.127518 0.128802 0.010712 0.067509
0.138373 0.125000 0.127518 0.128802 0.010712 0.067509
0.080947 0.111111 0.116906 0.112653 0.003055 0.035361
0.057915 0.097222 0.102398 0.097137 0.001382 0.023733
0.039354 0.069444 0.078970 0.074285 0.000549 0.015041
0.039354 0.069444 0.078970 0.074285 0.000549 0.015041
0.036401 0.055556 0.073904 0.069469 0.000455 0.013725
0.021295 0.041667 0.049460 0.046129 0.000124 0.007343
0.010493 0.013889 0.027447 0.025442 0.000022 0.003247
0.010493 0.013889 0.027447 0.025442 0.000022 0.003247
0.005915 0.000000 0.007929 0.007691 0.000005 0.001688
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Abstract

In some survival studies part of the population may be no longer subject to the event of interest. The called cure rate
models take this fact into account. They have been extensively studied for several authors who have proposed extensions
and applications in real lifetime data. Classic large sample tests are usually considered in these applications, especially
the likelihood ratio. Recently a new test called gradient test has been proposed. The gradient statistic shares the same
asymptotic properties with the classic likelihood ratio and does not involve knowledge of the information matrix, which
can be an advantage in survival models. Some simulation studies have been carried out to explore the behavior of the
gradient test in finite samples and compare it with the classic tests in different models. However little is known about the
properties of these large sample tests in finite sample for cure rate models. In this work we performed a simulation study
based on the promotion time model with Weibull distribution, to assess the performance of likelihood ratio and gradient
tests in finite samples. An application is presented to illustrate the results.

Keywords: Survival analysis, Unified model, Promotion time model, Gradient statistic.

1. Introduction

Cure rate models have been extensively studied in the literature for data sets where the event of interest may not occur for
part of the population studied. That is, part of the population studied will never experience the event of interest, being that
recurrence of a disease, product consumption or many other situations. An early approach developed in Boag (1949) and
Berkson and Gage (1952), considers a mixture of two distributions, one representing the survival time of the individuals
in risk, and a degenerated one, allowing infinite time for some fraction of population considered cured. This model is
known as the standard mixture model and the book by Maller and Zhou (1996) presents an up to date review of the main
results on the subject.

Alternatively Yakovlev et al. (1993) and Chen et al. (1999) introduce a class of models involving a competitive risk type
structure. Applications to cancer clinical trials have been specially successful. They are used for modeling time-to-event
data for several types of cancer, including breast cancer, leukemia, prostate cancer and many others. Such models have
been discussed in the statistical literature by many authors. In Tsodikov et al. (2003) this model is refered as bounded
cumulative hazard model. They provided an overview of the development of this cure rate model from both the frequentist
and Bayesian perspectives. In Yin and Ibrahim (2005) this model is refered as promotion time model. A unified approach
that includes standard mixture model and promotion time model as special cases, is pursued in Rodrigues et al. (2009).

In the present paper, the interest lies in testing hypotheses. The commonly used large sample tests are based on the
likelihood ratio statistics (Wilks, 1938), Wald (Wald, 1943) or Rao score (Rao, 1948) tests. Particularly, the likelihood
ratio is usually considered in applications to test parameters in cure rate survival models. There are hardly any works
about finite-sample performance of likelihood ratio under this models. We can mention just Sposto et al. (1992), which
present a small (100 samples) and restrict simulation study to compared the likelihood ratio, Wald, and score tests based
on a mixture model. Although it is known the liberal tendency of the likelihood ratio test when the sample is not large,
they found that the tests keep their asymptotic properties even in small samples, for some specific situations.

Recently the gradient test was proposed in Terrell (2002). As well as the usual classical statistics, the gradient statistic
has asymptotically chi-square distribution. This new statistic was obtained from Rao score and Wald modified statistics
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(Hayakawa and Puri, 1985). A comparison of local power properties of the gradient test with classical tests was studied
in Lemonte and Ferrari (2012) and no uniform superiority was found. Some simulation studies have been conducted
(Lemonte and Ferrari, 2011a, 2012; Ferrari and Pinheiro, 2014) in order to explore the characteristics of this new statistic
and compare the competing tests to different models. Because statistical gradient do not need the computation of the
information matrix (neither observed nor expected), it may be advantageous in problems involving censored samples,
which are often observed in survival studies. Among the studies that consider the statistical gradient in survival models
with censored data, we can cite Lemonte and Ferrari (2011b), that consider samples with right censoring of type II to test
hypotheses about the two parameters of the Birnbaum-Saunders distribution, and Medeiros et al. (2014) that compare the
performance of the gradient and likelihood ratio tests in accelerated failure time models under random censoring. The
book by (Lemonte, 2016) provides a broad survey about results of gradient test in literature. There are no studies involving
the gradient test with cure fraction, with or without the presence of covariates. In this paper we study the performance
of the likelihood ratio and the gradient tests via simulation study, to test coefficients related to cure rate parameter in the
Weibull promotion time cure model.

The paper is organized as follows. The unified approach for cure rate model is described in detail in Section 2. Section
3 briefly describes the likelihood ratio and gradient tests, and presents the resulting tests to the model based on marginal
likelihood obtained after eliminating the latent variables. Section 4 presents a simulation study. In Section 5 we illustrate
our results with a real data set about the time to pediatric leukemia recurrence. Some conclusions are reported in Section
6 and some basic results are presented in an Appendix.

2. Cure Fraction Model: Unified Approach

Survival models with cure fraction are models that consider cured (or immune) a fraction of the population. The occur-
rence of a high percentage of censoring at the end of the study in a sufficient follow-up time is an indication of cure fraction
in population (Maller and Zhou, 1996). Considering the unified model, suppose we have n individuals and that for each
individual (i = 1, . . . , n) it is associated a (latent) random variable Mi, representing the number of causes or risk factors
competing for the occurrence of the event of interest, with probability function pθ(m) = Pθ(Mi = m). Given Mi = m,
suppose also that the random variables Zi1,Zi2, . . . ,Zim, are independent and identically distributed (i.i.d.), representing
(unobserved) time-to-event for the i-th individual, due to j-th cause ( j = 1, . . . , Mi), with common distribution function
F(z|λ) and a survival function S (z|λ) = 1 − F(z|λ), where λ is a vector of parameters and limt 7→∞ S (t|λ) = 0. Let Ti be an
observable random variable representing the time until the occurrence of the event, defined as Ti = min{Zi0,Zi1, . . . , ZiMi }
where the sequence Zi1,Zi2, . . . does not depend on Mi. Besides, Zi0 is set so that P(Zi0 = ∞) = 1. This assumption
permits the occurrence of an infinite lifetime in the immune individuals, because when Mi = 0 there are no causes or risks
for the occurrence of the event.

The common survival function for Ti is given by

S p(t) = P(Ti > t) = P(Ti > t,Mi = 0) + P(Ti > t,Mi ≥ 1)
= P(Ti > t|Mi = 0)Pθ(Mi = 0) + P(Ti > t|Mi ≥ 1)Pθ(Mi ≥ 1)

= pθ(0) +
∞∑

m=1

pθ(m)S (t|λ)m, (1)

since P(Ti > t|Mi = 0) = 1 and Pθ(Mi = 0) = pθ(0).

Hence S p(t) is an improper survival function, i.e., limt 7→∞ S p(t) > 0. This survival function can be interpreted as an infinite
linear combination of Lehmann type II distributions (Rodrigues et al., 2011; Alexandre et al., 2012). The proportion of
cured individuals (cure fraction) is given by limt 7→∞ S p(t) = pθ(0). From (1) we can obtain the sub-density function for
the random variables Ti as

fp(t) = f (t|λ)
∞∑

m=1

mpθ(m) [S (t|λ)]m−1.

2.1 Likelihood for Unified Model

Furthermore, consider that for i = 1, . . . , n, Yi = min{Ti,Ci} is the observable lifetime for individual i, where Ci is right
censoring time (random and uninformative) independent of Ti, and let δi be the censoring indicator, with δi = 1 if Ti ≤ Ci

and δi = 0 if Ti > Ci. Also consider xi = (xi1, xi2, . . . , xip)⊤ the vector of associated covariates.

To simplify notation, we define the n-dimensional vectors of observations y = (y1, y2, . . . , yn)⊤, δ = (δ1, δ2, . . . , δn)⊤ and
m = (m1,m2, . . . ,mn)⊤ and the covariate matrix X = (x1, x2, . . . , xn)⊤ of dimension n × p. Hence, the complete data set is
denoted byDc = (n, y, δ,m,X) and the data without the latent variables is denoted byD = (n, y, δ, X). The covariates can
be included in the model through some relation θi ≡ θ(x⊤i β), where β = (β1, ..., βp)⊤ is the vector of regression coefficients.
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Thus, the vector of unknown parameters in the model is given by ϕ =
(
β⊤, λ⊤

)⊤ and, to use a better notation, we consider
pθi (mi) = p(mi|β, xi). After some algebraic manipulations it can be shown that the likelihood for the complete data Dc is
given by

L (ϕ;Dc) =
n∏

i=1

[
mi f (yi|λ)

]δi
[
S (yi|λ)

]mi−δi p(mi|β, xi). (2)

Note that the likelihood (2) is not observable, since it depends on the latent variables. In practice, a marginal likelihood
is used. It is obtained by summing overall possible values for the variables Mi, i = 1, . . . , n, and given below in (3). For
details see Appendix.

L∗(ϕ;D) =
n∏

i=1

[
fp(yi|ϕ)

]δi
[
S p(yi|ϕ)

]1−δi
. (3)

Therefore, the logarithm of the marginal likelihood function is given for

ℓ∗(ϕ;D) =
n∑

i=1

δi log[ fp(yi|ϕ)] + (1 − δi) log[S p(yi|ϕ)]. (4)

3. Likelihood Ratio and Gradient Tests

Let ℓ(ϕ) = log L(ϕ) be a log-likelihood function of ϕ a p-vector of unkown parameter, and define U(ϕ) =
∂

∂ϕ
ℓ(ϕ) as the

score function. Considering the partition ϕ = (ϕ1,ϕ2)⊤, where the dimensions of ϕ1 and ϕ2, are q and p − q respectively,
we have a corresponding partition U(ϕ) = (Uϕ1 (ϕ),Uϕ2 (ϕ))⊤. The likelihood (S LR) and gradient (S G) statistics for testing
the composite hypothesis

H0 : ϕ1 = ϕ10 against H1 : ϕ1 , ϕ10 (5)

are respectively given by

S LR = 2
[
ℓ
(
ϕ̂1, ϕ̂2

)
− ℓ

(
ϕ10, ϕ̃2

)]
and S G = U⊤ϕ1

(ϕ̃)(ϕ̂1 − ϕ10),

where ϕ10 is a specified vector, ϕ̂ = (ϕ̂1, ϕ̂2)
⊤

is the (unrestricted) maximum likelihood estimators of ϕ and ϕ̃ = (ϕ̃1, ϕ̃2)
⊤

denote the (restricted) maximum likelihood estimators of ϕ under H0 hypothesis. Asymptotically, S LR and S G have
a central chi-square distribution with q degrees of freedom under H0, and general conditions of regularity. The null
hypothesis is rejected for a fixed nominal level α, if the test statistic exceeds the upper 100(1 − α)% quantile of the
chi-square distribution.

3.1 Tests for Weibull Promotion Time Model

When each random variable Mi follows a Poisson distribution with parameter θ, the unified model comes down to promo-
tion time model (Yakovlev et al., 1993; Chen et al., 1999). From (1) we have

S p(t) = exp {−θ[1 − S (t|λ)]} ,

thus the cure fraction induced by this model is pθ(0) = exp (−θ), and the probability density function is

fp(t) = θ f (t) exp (−θF(t|λ)) .

At the promotion time Weibull model, it is assumed that failure times of susceptible individuals follow a Weibull distribu-
tion. Here we use the parametrization for Weibull given in Fonseca et al. (2011), where the probability density function
and survival are given by

f (t) = ρtρ−1 exp (γ − tρeγ) and S (t) = exp (−tρeγ) ,

where ρ > 0 and γ ∈ ℜ. Thus the functions S p(t) and fp(t) are given by

S p(t) = exp
{−θ [1 − exp (−tρeγ)

]}
(6)

and

fp(t) = θρtρ−1 exp (γ − tρeγ) exp
{−θ [1 − exp (−tρeγ)

]}
. (7)
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Now, consider the existence of heterogeneity in the population so that each random variable Mi follows a Poisson distri-
bution with parameter θi. The relation often used between the parameter θi and the covariates in the promotion time model
is given by θi = exp

(
x⊤i β

)
, where β and xi are defined as before. In this case the cure fraction is related to the covariates

through the expression

p(0|β, xi) = exp
[
− exp

(
x⊤i β

)]
. (8)

Considering a sample of n individuals and denoting by ϕ =
(
β⊤, λ⊤

)⊤, the parameter vector where λ is the vector of
parameter of Weibull model. The logarithm of the marginal likelihood function for this model is obtained substituting (6)
and (7) in (4) and including covariates through the relation given above, then we have

ℓ∗(ϕ;D) =
n∑

i=1

δi

[
x⊤i β + γ + log

(
ρyρ−1

i

)
− yρi eγ

]
−

n∑
i=1

exp
(
x⊤i β

) [
1 − exp

(
−yρi eγ

)]
. (9)

For computational reasons, we consider in (9) a reparametrization ρ = eρ
∗

, obtaining ρ∗ ∈ ℜ. Denoting λ⊤ = (γ, ρ∗) and
through the derivative with respect to the parameter vector ϕ, we get the score vector, which can be written as

U(ϕ) =

n∑
i=1

Xisi(ϕ), (10)

where Xi is the matrix

 xi 0 0
0 1 0
0 0 1


(p+2)×3

and si(ϕ) is the vector (si1(ϕ), si2(ϕ), si3(ϕ))⊤ with

si1(ϕ) = δi − θi

[
1 − exp

(
−yeρ

∗

i eγ
)]
,

si2(ϕ) = δi

[
1 + eρ

∗
log(yi)

(
1 − yeρ

∗

i eγ
)]
− θi exp

(
ρ∗ + γ − yeρ

∗

i eγ
)

yeρ
∗

i log(yi)

and si3(ϕ) = δi

(
1 − yeρ

∗

i eγ
)
− θi exp

(
γ − yeρ

∗

i eγ
)

yeρ
∗

i .

Now consider we want to test only a partition ϕ1 with dimension q of the vector ϕ. The likelihood ratio and gradient
statistics for testing the composite hypothesis, as in (5) and considering ϕ10 = 0, are given by

S RV = 2
[
ℓ(ϕ̂) − ℓ(ϕ̃)

]
and S G = U⊤ϕ1

(ϕ̃)ϕ̂1,

where ϕ̂ =
(
ϕ̂1, ϕ̂2

)⊤
and ϕ̃ =

(
0, ϕ̃2

)⊤
are, respectively, the unrestricted and the restricted maximum likelihood estimator

of ϕ = (ϕ1,ϕ2)⊤, under the null hypothesis.

4. Simulation Study

A simulation study was conducted to investigate the finite sample performance of the likelihood ratio and gradien-
t tests to test parameters for a survival model with cure fraction. The simulation results are based on R software
(R Development Core Team, 2010) which use the routine optim to maximize the likelihood function through the opti-
mization algorithms BFGS (Broyden, Fletcher, Goldfarb and Shanno). The model considered was the Weibull promotion
time. Relating the reparametrization used in (10) for ρ = eρ

∗
, with the default in the software R for parameters of Weibull

distribution we found ρ∗ = log(a) and γ = −a log(b), where a > 0 and b > 0 are shape and scale parameters, respectively.

To assess the effect of number of nuisance parameters in performance of tests, we consider cases with three, four and five
covariates (p = 3, p = 4 and p = 5), generated from Bernoulli distributions. That is, for l = 1, . . . , p, each covariate
xl is drawn from a Bernoulli (νl) where the probabilities of success ν1, . . . , ν5 are set as 0.49, 0.50, 0.51, 0.52 and 0.53,
respectively. We consider samples of size n = 30 and 100. For each individual, values for M were generated as a random
sample of Poisson distribution with mean θi = exp

(
x⊤i β

)
. The values used for the vector β were chosen so that, when

combined with the covariates, the average of cure fractions pθi (0) = exp(−θi), i = 1, . . . , n, were around 10%, 20% or
30%. The values specified for the vector β are given in Table 1.
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Table 1. Values of β = (β1, . . . , βp) used in the simulations, for p = 3, p = 4 and p = 5, according to the cure fraction proportions
(%c. f .), the number of tested parameters (q) and the sample size (n).

n q %c. f . (β1, β2, β3) (β1, β2, β3, β4) (β1, β2, β3, β4, β5)

30

1
10 (0, 0.01, 0.90) (0, 0.20, 0.40, 0.69) (0, 0.20, 0.30, 0.50, 0.40)
20 (0, 0.30, 0.36) (0, 0.14, 0.30, 0.20) (0, 0.10, 0.19, 0.31, 0.10)
30 (0, 0.10, 0.14) (0, 0.07, 0.09, 0.10) (0, 0.09, 0.065, 0.05, 0.09)

2
10 (0, 0, 0.90) (0, 0, 0.50, 0.69) (0, 0, 0.40, 0.50, 0.40)
20 (0, 0, 0.50) (0, 0, 0.44, 0.10) (0, 0, 0.25, 0.30, 0.10)
30 (0, 0, 0.19) (0, 0, 0.12, 0.11) (0, 0, 0.08, 0.09, 0.10)

100

1
10 (0, 0.70, 0.75) (0, 0.50, 0.60, 0.51) (0, 0.50, 0.40, 0.30, 0.30)
20 (0, 0.35, 0.40) (0, 0.31, 0.30, 0.21) (0, 0.191, 0.31, 0.20, 0.10)
30 (0, 0.135, 0.15) (0, 0.10, 0.11, 0.10) (0, 0.07, 0.075, 0.081, 0.091)

2
10 (0, 0, 1.55) (0, 0, 0.85, 0.80) (0, 0, 0.51, 0.55, 0.60)
20 (0, 0, 0.68) (0, 0, 0.40, 0.45) (0, 0, 0.16, 0.20, 0.50)
30 (0, 0, 0.249) (0, 0, 0.11, 0.23) (0, 0, 0.09, 0.145, 0.09)

For the i-th immune individual, (Mi = mi > 0), random samples Zik ∼ Weibull(a, b) of size mi were generated with
parameters a = 2 and b = 4. Hence, the failure time are denoted by ti = min{Zik, k = 1, . . . ,mi}, i = 1, . . . , n. Random
censoring were generated from independent Uniform(0, u) random variable, where the value of u affects inversely the
proportion of censoring in the sample. In order to evaluate separately the effect of increasing the censoring proportion
among cured and not cured on the performance of tests, we consider here the censoring proportion with respect to all units
under risk, that is, susceptible to the event occurrence.

We also considered three nominal levels (α = 1%, 5% and 10%). The tests were performed and the values of the statistics
were compared with the respective quantiles of the chi-square distribution, i.e., 6.635, 3.841 and 2.706 to test the null
hypothesis H00 : β1 = 0 (q = 1) or 9.210, 5.991 and 4.605 to test the hypothesis H01 : β1 = β2 = 0 (q = 2).

Under each combination of parameter configuration we ran 10,000 simulations, and calculated the proportion of times
that the hypotheses H00 and H01 were rejected .

4.1 Results

In Tables 2 and 3 we have estimated null rejection rates of the likelihood ratio and the gradient tests based of the null
hypothesis H00 : β1 = 0 (q = 1) and H01 : β1 = β2 = 0 (q = 2) in each considered situation, for samples of size
n = 30 and 100, respectively. It shows that for all considered cases, the null rejection rates of the tests exceed the
corresponding nominal level. This is in agreement with liberal characteristic of the likelihood ratio test in small samples
and shows the same trend of the gradient test.

For n = 30 the tests get worse (rejection rate gets away from nominal level) when p (number of parameters) increases,
and when we increase the number of tested parameters (q = 1 to q = 2). This fact is accentuated especially when we have
30% of censoring. For n = 100, there are not significative change in the performance of tests with increasing of p, or q,
even in the presence of censoring. In general, we note that with the increase of sample size the tests become better (the
null rejection rates approach the nominal level), regardless of the existence of cure fraction.

When we compare the performance of the likelihood ratio and gradient tests, we noticed they have equivalent results in
almost all cases. There are just slight differences when the sample is very small (n = 30). Specifically, the gradient
statistic presents mild advantage in some cases with uncensored samples while the likelihood ratio statistic is a little better
in cases with censorship where the dimension of the vector parameters tested is lower.

We now consider a brief simulation study to investigate the finite-sample power properties of the tests. To make power
comparisons, we must ensure that the test has the same (correct) size under the null hypothesis. As we have seen in
our simulations that the likelihood ratio and gradient tests have different sizes, we used 100,000 Monte Carlo simulated
samples, drawn under the null hypothesis, to estimate the correct critical value of each test for the fixed nominal level.
Here we considered the tests for n = 30, p = 3, q = 1, 30% of censoring and 30% cure fraction under null hypothesis. We
computed the rejection rates under the alternative hypothesis H01 : β1 = w, for values of w belonging to the set [−3, 3].
As a result (Figure 1) we see that no test seems uniformly more powerful than the other.
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Table 2. Null rejection rates of the likelihood ratio (S LR) and the gradient (S G) tests based of the null hypothesis H00 : β1 = 0 (q = 1)
and H01 : β1 = β2 = 0 (q = 2) for n = 30, according to the number of parameters (p), number of tested parameters (q), censoring
proportions (%cens) and cure fraction proportions (%c. f .).

case
(

p
q

)
%cens. %c. f .

n = 30
α = 1% α = 5% α = 10%

S LR S G S LR S G S LR S G

1
2
3
4
5
6

(
p = 3
q = 1

) 0
10 1.85 1.84 7.37 7.20 13.80 13.45
20 1.67 1.71 6.78 6.77 12.43 12.35
30 1.81 1.92 7.10 7.23 12.97 13.07

30
10 2.39 2.36 8.42 8.17 14.61 14.60
20 1.99 2.26 8.10 8.14 14.58 14.63
30 2.02 2.58 7.87 7.97 13.48 13.81

7
8
9
10
11
12

(
p = 4
q = 1

) 0
10 2.29 2.21 7.77 7.48 14.06 13.75
20 1.81 1.78 7.22 7.22 13.12 12.98
30 1.68 1.82 7.30 7.44 13.70 13.97

30
10 2.85 2.71 9.02 8.87 15.64 15.35
20 2.49 2.51 8.56 8.76 14.95 14.91
30 2.42 2.80 8.80 9.12 15.11 15.25

13
14
15
16
17
18

(
p = 5
q = 1

) 0
10 2.51 2.46 9.20 8.99 15.83 15.54
20 2.53 2.55 8.94 8.88 14.98 15.02
30 2.45 2.56 8.38 8.63 15.05 15.17

30
10 2.98 2.79 9.80 9.87 16.55 16.50
20 3.06 3.26 10.04 10.04 17.17 17.12
30 3.09 3.44 10.18 10.44 16.84 16.86

19
20
21
22
23
24

(
p = 3
q = 2

) 0
10 1.57 1.53 7.24 7.08 13.82 13.42
20 1.70 1.84 7.29 7.50 13.24 13.22
30 1.94 2.06 7.41 7.67 13.46 13.58

30
10 2.03 2.12 8.27 8.36 14.72 14.83
20 2.21 2.34 7.75 8.03 14.10 14.24
30 1.90 2.46 7.58 7.91 14.34 14.89

25
26
27
28
29
30

(
p = 4
q = 2

) 0
10 2.66 2.56 8.95 8.86 16.07 15.80
20 2.16 2.24 8.46 8.50 14.75 14.74
30 2.10 2.29 7.86 8.26 14.47 14.68

30
10 2.71 2.83 9.46 9.32 16.64 16.33
20 2.62 2.83 9.31 9.66 16.12 16.36
30 2.65 3.23 8.99 9.66 16.07 16.70

31
32
33
34
35
36

(
p = 5
q = 2

) 0
10 2.88 2.87 9.58 9.54 16.34 16.43
20 2.64 2.77 9.53 9.56 16.52 16.45
30 2.54 2.77 9.40 9.63 16.28 16.38

30
10 3.43 3.51 11.21 11.21 18.35 18.23
20 3.83 4.24 11.41 11.88 18.37 18.77
30 3.36 4.07 11.18 11.99 18.32 19.11
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Table 3. Null rejection rates of the likelihood ratio (S LR) and the gradient (S G) tests based of the null hypothesis H00 : β1 = 0 (q = 1)
and H01 : β1 = β2 = 0 (q = 2) for n = 100, according to the number of parameters (p), number of tested parameters (q), censoring
proportions (%cens) and cure fraction proportions (%c. f .).

case
(

p
q

)
%cens. %c. f .

n = 100
α = 1% α = 5% α = 10%

S LR S G S LR S G S LR S G

1
2
3
4
5
6

(
p = 3
q = 1

) 0
10 1.32 1.30 5.63 5.65 10.88 10.87
20 1.20 1.21 5.31 5.33 11.02 10.98
30 1.33 1.36 5.84 5.85 10.57 10.66

30
10 1.42 1.41 5.73 5.76 10.97 10.93
20 1.27 1.27 5.68 5.68 10.85 10.93
30 1.06 1.09 5.83 5.78 11.09 11.25

7
8
9
10
11
12

(
p = 4
q = 1

) 0
10 1.16 1.17 5.81 5.73 10.99 11.05
20 1.19 1.17 5.74 5.80 10.92 10.95
30 1.24 1.28 5.59 5.59 10.72 10.76

30
10 1.43 1.45 6.20 6.23 11.86 11.77
20 1.29 1.29 5.90 5.85 11.34 11.36
30 1.19 1.28 5.70 5.69 10.88 10.85

13
14
15
16
17
18

(
p = 5
q = 1

) 0
10 1.43 1.36 5.96 5.94 11.38 11.31
20 1.37 1.34 6.24 6.14 11.71 11.76
30 1.16 1.17 5.77 5.77 11.16 11.21

30
10 1.53 1.51 6.46 6.44 11.97 11.98
20 1.27 1.27 6.05 6.07 11.90 11.95
30 1.39 1.40 5.94 6.04 11.15 11.19

19
20
21
22
23
24

(
p = 3
q = 2

) 0
10 1.15 1.14 5.60 5.52 10.93 10.83
20 1.30 1.28 5.67 5.63 10.83 10.85
30 1.11 1.14 5.23 5.23 10.57 10.67

30
10 1.34 1.31 6.48 6.37 12.00 11.97
20 1.14 1.14 5.67 5.79 11.12 11.20
30 1.38 1.42 5.67 5.81 10.83 10.98

25
26
27
28
29
30

(
p = 4
q = 2

) 0
10 1.19 1.19 6.06 5.99 11.36 11.23
20 1.27 1.33 5.81 5.79 11.37 11.29
30 1.23 1.20 5.38 5.43 10.58 10.61

30
10 1.15 1.18 5.93 5.92 11.77 11.79
20 1.19 1.23 5.80 5.89 11.34 11.53
30 1.33 1.38 6.13 6.23 11.60 11.73

31
32
33
34
35
36

(
p = 5
q = 2

) 0
10 1.41 1.37 6.01 5.92 11.51 11.45
20 1.18 1.18 6.38 6.30 11.50 11.57
30 1.56 1.56 6.22 6.35 11.81 11.88

30
10 1.46 1.53 6.58 6.63 12.32 12.39
20 1.41 1.43 6.41 6.43 12.38 12.47
30 1.42 1.51 6.60 6.60 11.28 11.33
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Figure 1. Power of likelihood and gradient tests for n = 30, p = 3, q = 1, 30% of censoring and 30% cure fraction under
null hypothesis.

5. Application

To illustrate the model and the tests presented in this paper, we made an application in a data set about time of relapse
free survival of 103 Brazilian children under 15 years, with acute lymphoblastic leukemia (ALL). These children were
followed from 1988 to 1992 in some health institutions organized within a cooperative group for the treatment of acute
leukemia in the state of Minas Gerais, Brazil.

These data are available in Colosimo and Giolo (2006). Viana et al. (1994) had described the study and analyzed the
data using the Cox regression model (Cox, 1972), in order to evaluate the effect of factors on the hazard of recurrence in
previously treated children.

At the end of the study, 39 children experienced the event and 64 censored (62% of censorship). Kaplan-Meier estimates
of the survival function are shown in Figure 2, and show that in the last year of follow-up, the estimated survival curve
apparently stabilizes at some positive value. Although follow-up seems insufficient to notice the occurrence of cured
in study, there is a vast literature in the medical area about long-term survivors of pediatric leukemia (see for example
Sala et al. (2004), Pui et al. (2003) and Neglia et al. (1991)).

Figure 2. Kaplan-Meier estimates to of the data related to survival to acute lymphoblastic leukemia treatment.

To investigate the differences between subgroups in the data with respect to proportion of individuals who are long-term
survivors, we consider a cure rate model associated with 5 factors of 2 levels: number of white cell count at diagnosis
(White = 1 if this number is greater than 75, 000 by mm3 and White = 0 otherwise); standardized age (Age = 1 if the
index is greater than −2 and Age = 0 otherwise); standard weight for age and sex (Weight = 1 if the index is greater than
−2 and Weight = 0 otherwise); positive periodic acid Schiff (PAS ) reaction in the lymphoblasts (Pas = 1 for more than
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5% of Pas positive marrow lymphoblasts and Pas = 0 otherwise) and cytoplasmic vacuolation (Vac = 1 if more than
10% of vacuolated blasts were present, and Vac = 0 otherwise).

We consider that the lifetimes for susceptible individuals Zil, follow a Weibull(ρ, γ) distributions, i = 1, . . . , 103 and
l = 1, . . . , Mi.

Table 4. Estimates and tests for data on pediatric leukemia

Effect Estimate(Se) S LR p-value S G p-value df

White 1.211 (0.390) 8.676 0.003 8.676 0.004 1
Age 0.735 (0.371) 3.626 0.057 3.459 0.063 1
Weight -0.767(0.341) 4.136 0.042 3.496 0.062 1
Pas -1.062 (0.460) 6.491 0.011 7.073 0.008 1
Vac 1.391 (0.420) 9.072 0.003 8.087 0.004 1
ρ 0.343 (0.137) - - - - -
γ -1.256 (0.312) - - - - -

We fit this model and apply the likelihood ratio and gradient tests to evaluate the effect of each factor in the cure rate.
The results are shown in Table 4. At the 5% significance level, we note that for both tests the factors White, Pas and Vac
are significant to explain the cure fraction. For the Age factor, the p-values obtained for the two tests are slightly greater
than 5% so this is not significant at this level. However for the Weight factor there is a divergence between the tests: the
likelihood ratio test indicates that the Weight factor is significant (p-value = 0.0419) while the gradient test concludes that
it is not significant (p-value = 0.0616). One might argue that, according to the simulation results (see the most similar case
in Table 3, line 18) the calculated p-values will always underestimate the true p-values (which would be calculated from
the exact statistics distributions). This behavior can lead to undue rejection of hypotheses. Thus, based on this argument
we do not reject the null hypothesis and we assume that the Weight factor is not significant in this model.

Thus, the results of fit for the final model are given in Table 5.

Table 5. Estimates for final model - pediatric leukemia data.

Effect Estimate Se S LR p-value S G p-value df

White 1.063 0.346 8.088 0.004 7.353 0.007 1
Vac 1.219 0.403 7.542 0.006 6.746 0.009 1
Pas -1.052 0.455 6.583 0.010 7.196 0.007 1
ρ 0.234 0.135 - - - - -
γ -1.691 0.295 - - - - -

From (8), we can calculate the cure rate for each combination of factors with the expression (11). The results are given in
Table 6.

exp
[ − exp(1.063Whitei + 1.219Vaci − 1.052Pasi)

]
. (11)

Table 6. Cure rate for pediatric leukemia data.

White Vac Pas cure rate
(%)

< 75000
< 15% < 5% 36,788

≥ 5% 70,525

≥ 15% < 5% 3,389
≥ 5% 30,671

≥ 75000
< 15% < 5% 5,533

≥ 5% 36,395

≥ 15% < 5% < 0, 001
≥ 5% 3,269
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Thus in this study the group with the highest estimated cure rate (70.5%) is formed by children with lower white cell
count at diagnosis (White = 0), with negative cytoplasmic vacuolation (Vac = 0) and PAS positive reaction (Pas = 1).

Note that although Viana et al. (1994) found that malnutrition (measured through the Weight) is the most significant
adverse factor affecting time to remission, here we find that it is not significant to explain cure rate. In fact, according
to Sala et al. (2004) there is no consensus about the relationship between poor nutritional status and the poor prospect
for survival. Besides, covariates do not need exert the same effects on the cure fraction and the time to remission for
susceptible individuals.

6. Concluding Remarks

In this work we compare via simulation, the perfomance of likelihood ratio and gradient tests to test regression coefficients
related with cure fraction in Weibull promotion time model. We note that null rejection rates of the tests exceed the
corresponding nominal level for small and moderate samples. This well-known liberal tendency of the likelihood ratio test,
was also observed to the gradient test, which showed similar size distortions. Additionally, we note that this size distortion
increases with the presence of censorship and with the increases of number of tested parameter as well as with the number
of the nuisance parameters. This oversized behavior of the tests indicates that the true distributions of the likelihood ratio
and gradient statistic have heavier right tail than the chi-square in small and moderate-sized samples. In applications
this can lead to undue rejection of hypotheses since the calculated p-values (based in chi-square approximation) will in
general underestimate the true p-values. The power simulation study suggest that no test seems uniformly most powerful
than other when we use estimated correct critical values. Overall, we understand that the gradient statistic is equivalent to
the likelihood ratio one, to test coefficients of this model.

Although the Wald and score tests shares the same asymptotic properties with the likelihood ratio and Gradient tests, they
were not included in our simulation study because they require the computation of the Fisher information matrix, which
cannot be obtained for the cure fractions models considered here. One could argue that the Fisher information should be
replaced by the observed information matrix. We noticed, however, that in small and moderate-sized samples the observed
information produced negative standard errors for a non-negligible proportion of the simulated censored samples. This is
a problem to be investigated in a future study.

Due to the size distortions of the tests in small samples, an important subject of study is to obtain inferential improve-
ments, like the Bartlett correction (Bartlett , 1937) or the Skovgaard’s adjustment (Skovgaard , 1996). However the
presence of censorship and cure fraction in cure rate models can make cumbersome or impossible the analytic derivation
of corrections. Thus, another topic for future research will be investigate the use of a bootstrap Bartlett adjustment for
the log-likelihood ratio statistic (Rocke , 1989) and bootstrap adjustment for gradient statistic. Furthermore we wish to
study associated tests to models with cure rate in the presence of covariates associated with the lifetime of susceptible
individuals.

7. Appendix

Complete and Marginal Likelihood

Here we present details to obtain the likelihood for the complete data (2) and the marginal likelihood function given in (3).
We consider the same notations used in Section 2.1 but, for simplicity, we get xi = 1 (no covariates and θi = θ). Besides,
for a single individual i, we denote the complete data by Dci = (yi, δi,mi) and the data without the latent variables by
Di = (yi, δi) .

The likelihood for the complete dataDc can be represented as follows

L (ϕ;Dc) =

n∏
i=1

L(ϕ;Dci ) =
n∏

i=1

L(λ;Di|Mi = mi)pθ(mi).

Based on classical results in survival analysis, it can be shown that the conditional likelihood function of (Yi, δi) given the
latent variable Mi, for a single individual i, is given by

L(λ;Di|Mi = mi) =
[
fp(t; λ|mi)

]δi
[
S p(t; λ|mi)

]1−δi
. (12)

Now, the conditional survival and density functions of Ti given the latent variable Mi can be obtained, respectively, as
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follows

S p(yi|λ,m) = P(Ti > yi|Mi = mi) = P(min
{
Zi0,Zi1, . . . ,Zimi

}
> yi)

= P(Zi0 > yi,Zi1 > yi, . . . , Zimi > yi)
= P(Zi0 > yi)︸       ︷︷       ︸

1

P(Zi1 > yi) . . . P(Zimi > yi) = [S (yi; λ)]mi ,

and
fp(yi|λ,mi) = −

d
dt

S (yi; λ) = mi[S (yi; λ)]mi−1 f (yi; λ).

Using the above results in (12), we get

L(λ;Di|Mi = mi) =
[
mi(S (yi; λ))mi−1 f (yi; λ)

]δi [
(S (yi; λ))mi

]1−δi

=
[
mi f (yi; λ)

]δi
[
S (yi; λ)

]mi−δi . (13)

Thus, the likelihood for the complete data is

L (ϕ;Dc) =
n∏

i=1

[
mi f (yi|λ)

]δi
[
S (yi|λ)

]mi−δi pθ(mi). (14)

The likelihood with respect to the marginal distribution of the (Yi, δi), denoted by L∗, can be obtained by summing overall
possible values for the variables Mi, that is

L∗(ϕ;Di) =

∞∑
mi=0

L(ϕ;Dci ) =
∞∑

mi=0

[
mi f (yi; λ)

]δi
[
S (yi; λ)

]mi−δi pθ(mi). (15)

Considering separately the cases δi = 0 and δi = 1, we have

L∗(ϕ;Di) =

{ ∑∞
mi=0 [S (yi; λ)]mi pθ(mi) if δi = 0∑∞
mi=0 mi f (yi; λ)

[
S (yi; λ)

]mi−1 if δi = 1

=

{
S p(yi; λ, θ) if δi = 0
fp(yi; λ, θ) if δi = 1

=
[
fp(yi; λ, θ)

]δi
[
S p(yi; λ, θ)

]1−δi
. (16)

Thus, the total marginal likelihood is given by

L∗(ϕ;D) =

n∏
i=1

L∗(ϕ;Di) =
n∏

i=1

[
fp(yi; λ, θ)

]δi
[
S p(yi; λ, θ)

]1−δi
. (17)
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Abstract 

The equiradial designs are studied as alternative second-order N-point spherical Response Surface Methodology designs 

in two variables, for design radius ρ = 1.0. These designs are seen comparable with the standard second-order response 

surface methodology designs, namely the Central Composite Designs. The D-efficiencies of the equiradial designs are 

evaluated with respect to the spherical Central Composite Designs. Furthermore, D-efficiencies of the equiradial 

designs are evaluated with respect to the D-optimal exact designs defined on the design regions of the Circumscribed 

Central Composite Design, the Inscribed Central Composite Design and the Face-centered Central Composite Design. 

The D-efficiency values reveal that the alternative second-order N-point spherical equiradial designs are better than the 

Inscribed Central Composite Design though inferior to the Circumscribed Central Composite Design with efficiency 

values less than 50% in all cases studied. Also, D-efficiency values reveal that the alternative second-order N-point 

spherical equiradial designs are better than the N-point D-optimal exact designs defined on the design region supported 

by the design points of the Inscribed Central Composite Design. However, the N-point spherical equiradial designs are 

inferior to the N-point D-optimal exact designs defined on the design region supported by the design points of the 

Circumscribed Central Composite Design and those of the Face-centered Central Composite Design, with worse cases 

with respect to the design region of the Circumscribed Central Composite Design. 

Keyword: Equiradial designs, Second-Order Response Surface Methodology Designs, Central Composite Designs, 

D-efficiency 

1. Introduction 

Central Composite Designs (CCDs) play a vital role in modelling second-order response functions in the presence of 

curvature. They are particularly useful at the second phase of process optimization. However, some spherical designs 

exist and can serve reasonably well when the standard Central Composite Designs are unavailable and/or cannot be 

employed. One such class of spherical designs is the class of equiradial designs, which according to Myer etal. (2009) 

are some special and interesting two-factor designs for modelling second-order response functions. As the name implies, 

equiradial designs are designs on a common sphere and are rotatable. The class of equiradial designs begins with a 

pentagon of equally spaced points on the sphere with design matrix expressed as 

                       

{                                  };                  

where    and    represent the two controllable variables, ρ is the radius of the design and    represents the number 

of points on the sphere. In addition to the    radial points of the design,  𝑐 center points shall be added to the design. 

As indicated in Myer etal. (2009), the value of   is assumed equal to zero since   has no effect on the information 

matrix, 𝑋𝑇𝑋, of the design. Thus the equiradial designs are such that the information matrix is invariant to design 

rotation. 

Many works have been done using second-order response surface models and designs. They include the construction of 

efficient and optimal experimental designs for second-order response surface models (see for example Onukogu and 

Iwundu (2007)). Concerns about optimality of designs have been investigated for second-order models (see for example 

Dette and Grigoriev (2014)). Optimal choices of design points have been addressed by a number of researchers 

including Chigbu and Nduka (2006) and Iwundu (2015). Lucas (1976) compared the performances of several types of 

second-order response surface designs in symmetric regions on the basis of D- and G-optimality criteria. Graphical 

methods have been employed in studying the response variance property of second-order response surface designs as 
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seen in Myer etal.(1992), Giovannitti-Jensen and Myers (1989), Zahran etal (2003). Chigbu etal. (2009) compared the 

prediction variances of some Central Composite Designs in spherical regions with radius α = √𝑘 where k is the 

number of model controllable variables. Their results showed that Central Composite Designs, Small Composite 

Designs and Minimum-run resolution (MinRes) V designs are not uniformly superior under G- and I-optimality criteria 

as well using Variance Dispersion graphs. Iwundu and Otaru (2014) considered imposing D-Optimality criterion on the 

design regions supported by points of the Central Composite Designs. For the second order polynomial model used, 

results showed that the D-optimal designs defined over the rotatable Circumscribed Central Composite Design region 

had better determinant values than those defined over the Face-centered Central Composite Design region and the 

Inscribed Central Composite Design region.  

Ukaegbu and Chigbu (2015) considered the prediction capabilities of partially replicated rotatable Central Composite 

Designs. Their results showed that the replicated cube designs with higher replications are more efficient and have 

better prediction capabilities than the replicated star designs. Iwundu (2015) studied the optimal partially replicated 

cube, star and center runs on design region supported by points of the Face-centered Central Composite Design, using 

quadratic models. With variations involving replicating the cube points while the star points and center point are held 

fixed, replicating the star points while the cube points and the center point are held fixed and replicating the center point 

while the cube points and the star points are held fixed, results showed that for the quadratic models considered, the 

Face-centered Central Composite Design comprising of two cube portions, one star portion and a center point 

performed better than other variations under D- and G-optimality criteria. When compared with the traditional method 

of replicating only the center point, the variation involving two cube portions, one star portion and a center point was 

relatively better in terms of design efficiencies. Oyejola and Nwanya (2015) studied the performance of five varieties of 

Central Composite Design when the axial portions are replicated and the center point increased one and three times. An 

excellent review of literature on some earlier works involving Central Composite Designs in spherical regions have 

been documented by Chigbu etal.(2009).  

Spherical designs are useful in constructing rotatable designs in the field of combinatorics. However, it is important to 

obtain designs that reflect other important properties. The notions of design optimality and efficiency are paramount in 

assessing the quality of experimental designs. In particular, the D-optimality and D-efficiency play major roles in design 

optimality. They have been most studied and are also available in most statistical software. Atkinson and Donev (1992) 

gave various properties of the D-optimality and D-efficiency of designs under varying design conditions. It is worth 

noting that second-order models serve importantly in process optimization and are very reliable low-order 

approximating polynomials to the true unknown response functions relating a response with several controllable 

variables which may be natural or coded. The second-order response surface model in two controllable variables, 

   and       is given as 

𝑦           𝛽0 + 𝛽   + 𝛽    + 𝛽       + 𝛽    
  + 𝛽    

  + 𝜖           1.1 

and written in matrix notation as 

Y = Xβ + 𝜖                  1.2  

where 

Y is the Nx1 vector of observed values. 

X is the Nxp design matrix 

β is the px1 vector of unknown model parameters which are estimated on the basis of N uncorrelated observations. 

𝜖 is the random additive error associated with Y and is independently and identically distributed with zero mean and 

constant variance.  

2. Methodology 

For the importance of second-order Response Surface Methodology designs, we consider in this work the equiradial 

designs which are alternative second-order spherical Response Surface Methodology designs in two variables. The 

interest here is in comparing the efficiency of the equiradial designs with respect to the standard spherical Central 

Composite Designs. In particular interest is in how the equiradial designs compare with the Circumscribed and 

Inscribed Central Composite designs, which are both spherical and rotatable. We shall further consider the efficiencies 

of equiradial designs with respect to the D-optimal exact designs of Iwundu and Otaru (2014) which were defined on 

the design regions supported by design points of the Circumscribed Central Composite Design, the Inscribed Central 

Composite Design and the Face-centered Central Composite Design. The efficiency of a design provides a measure of 
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the optimality of the design. In comparing two designs, the relative efficiency is seen as the ratio of their separate 

efficiencies. 

We shall employ the D-efficiency criterion as the test criterion. This criterion has been extensively used as a single 

numerical measure of the efficiency of designs. The D-efficiency criterion aims at minimizing the variance-covariance 

matrix associated with the parameter estimates of the model used. By definition, the D-efficiency of a design 𝜉    is 

given as 

 𝐷𝑒𝑓𝑓  = 100 x (det𝑀(𝜉   ))
1
𝑝        2.1 

and the D-efficiency of a design 𝜉    relative to the design 𝜉    is given as  

𝐷𝑒𝑓𝑓  = (
det𝑀(𝜉 1 )

det𝑀(𝜉 2 )
)

1
𝑝

         2.2 

where 𝑀 .   is the information matrix of the design and 𝑝 is the number of model parameters. For an N-point design, 

say 𝜉𝑁 , the information matrix of the design 𝜉𝑁 is  𝑋𝑇𝑋 and normalized as 
𝑋𝑇𝑋

𝑁
 to remove the effect of changing 

design sizes. The (Nxp) matrix, 𝑋, is the design matrix whose columns are built from the model and the design 𝜉𝑁 and 

 .  𝑇 represents transpose. Among other things, D-efficiency values depend on the number of points in the design and 

the number of controllable variables in the model. In comparing designs, the best design is one with the largest 

D-efficiency value. In terms of relative efficiency, the ratio in equation 2.2 exceeds unity if the design 𝜉    is better 

than the design 𝜉   .  

In comparing the N-point equiradial designs with the Circumscribed Central Composite designs, the 9-point 

Circumscribed Central Composite design comprising of the factorial points { (1,1), (1,-1), (-1,1), (-1,-1)}, the axial 

points {(1.414,0), (-1.414,0), (0,1.414), (0,-1.414)} and the center point {(0,0)} shall be employed. Similarly, in 

comparing the N-point equiradial designs with the Inscribed Central Composite Designs, the 9-point Inscribed Central 

Composite design comprising of the factorial points { (0.7,0.7), (0.7,-0.7), (-0.7,0.7), (-0.7,-0.7)}, the axial points {(1,0), 

(-1,0), (0,1), (0,-1)} and the center point {(0,0)} shall be employed. For comparisons with the D-optimal exact designs, 

the N-point designs generated by Iwundu and Otaru (2014) shall be employed correspondingly with the N-point 

equiradial designs.  

3. Results 

The design measures associated with the N-point equiradial designs for ρ = 1,    = 5, 6, ⋯ , 11 and  𝑐 = 1 are as 

follows; 

𝜉6 = 

(

  
 

  
 .3    .95
  .8    .59
  .8   .59
 .3   .95
  )

  
 

 

𝜉7 = 

(

 
 
 
 

         
    .5      .87
  .5      .87
       
  .5     .87
     .5     .87
               )

 
 
 
 

 

𝜉8 = 

(

 
 
 
 
 

     
 .6     .78
  .      .97
  .9     .43
  .9   .43
  .    .97
  .6      .78
         )
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𝜉9 = 

(

 
 
 
 
 
 

    
 .7     .7 
  

  .7  .7 
   

  .7   .7 
   

 .7       .7 
  )

 
 
 
 
 
 

 

𝜉 0 = 

(

 
 
 
 
 
 
 

       
 .77      .64
 . 7      .98
  .5  .87
  .94  .34
  .94   .34
  .5   .87
 . 7   .98
 .77   .64

        )

 
 
 
 
 
 
 

 

𝜉   = 

(

 
 
 
 
 
 
 
 

  
 .8     .59
 .3     .95
  .3  .95
  .8  .59
   

  .8   .59
  .3   .95
 .3   .95
 .8      .59
  )

 
 
 
 
 
 
 
 

 

𝜉   = 

(

 
 
 
 
 
 
 
 
 

      
 .84        .54
 .4        .9 
  . 4     .99
  .65     .76
  .96     . 8
  .96   . 8
  .65   .76
  . 4   .99
 .4   .9 
 .84   .54
     )

 
 
 
 
 
 
 
 
 

 

For the bivariate quadratic model in equation 1.1, the normalized information matrices and the associated determinant 

values corresponding to the equiradial designs are, respectively, as follows; 

 

 

𝑀 𝜉6  =    

 

 

 

 det 𝑀 𝜉6  =  2.639818966x  −4 

1 0 0 0 0.4174 0.4168 

0 0.4174 0 0 -0.0005 -0.0007 

0 0 0.4168 -0.0007 0 0 

0 0 -0.0007 0.105 0 0 

0.4174 -0.0005 0 0 0.3132 0.105 

0.4168 -0.0007 0 0 0.105 0.3118 
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𝑀 𝜉7  =   

 

 

 

det 𝑀 𝜉7  = 2.67816305x  −4 

 

 

𝑀 𝜉8  =  

  

 

 

det 𝑀 𝜉8  = 2.37557395x  −4 

 

 

 

𝑀 𝜉9  =  

 

 

det 𝑀 𝜉9  = 2.4889799568x  −4 

 

 

 

𝑀 𝜉 0  =  

 

 

det 𝑀 𝜉 0  = 2.298611217x  −4 

  

1 0 0 0 0.4285 0.4325 

0 0.4285 0 0 0 0 

0 0 0.4285 0 0 0 

0 0 0 0.1081 0 0 

0.4285 0 0 0 0.3214 0.1081 

0.4325 0 0 0 0.1081 0.3273 

1 0 0 0 0.4357 0.4357 

0 0.4357 0 0 -0.0003 0.00095 

0 0 0.4335 0.00095 0 0 

0 0 0.00095 0.1072 0 0 

0.4357 -0.0003 0 0 0.3265 0.1072 

0.4335 0.00095 0 0 0.1072 0.3224 

1 0 0 0 0.4462 0.4462 

0 0.4462 0 0 0 0 

0 0 0.4462 0 0 0 

0 0 0 0.1129 0 0 

0.4462 0 0 0 0.3351 0.1129 

0.4462 0 0 0 0.1129 0.3351 

1 0 0 0 0.451 0.4485 

0 0.451 0 0 0.0011 -0.001 

0 0 0.4485 -0.001 0 0 

0 0 -0.001 0.1123 0 0 

0.451 0.0011 0 0 0.3391 0.1123 

0.4485 -0.001 0 0 0.1123 0.3352 
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𝑀 𝜉    = 

 

 

det 𝑀 𝜉    = 2.224863024x  −4 

 

 

 

𝑀 𝜉    = 

 

 

det 𝑀 𝜉    = 2.149505806x  −4. 

These designs are compared with the Circumscribed Central Composite design and the Inscribed Central Composite 

design whose design points have been listed in Section 2. The respective normalized information matrices 𝑀  and 𝑀  

together with the determinant values are as listed below, where 𝑀  represents the normalized information matrix 

associated with the Circumscribed Central Composite design and 𝑀  represents the normalized information matrix 

associated with the Inscribed Central Composite design. 

 

 

 

𝑀    

 

 

det 𝑀  = 6.158433838x  −4 

 

 

 

𝑀    

 

 

det 𝑀  =  2.224059802x  −4. 

1 0 0 0 0.4553 0.4547 

0 0.4553 0 0 0 0 

0 0 0.4547 0 0 0 

0 0 0 0.1145 0 0 

0.4553 0 0 0 0.3417 0.1145 

0.4547 0 0 0 0.1145 0.3402 

1 0 0 0 0.4594 0.4761 

0 0.4562 0 0 -0.003 -0.016 

0 0 0.4593 -0.0005 0.00089 0.0047 

0 0 -0.0005 0.1134 -0.0008 -0.004 

0.4594 -0.003 0.00089 -0.0008 0.3484 0.1297 

0.4761 -0.016 0.0047 -0.004 0.1297 0.3512 

0.9999 0 0 0 0.8887 0.8887 

0 0.8887 0 0 0 0 

0 0 0.8887 0 0 0 

0 0 0 0.4444 0 0 

0.8887 0 0 0 1.3327 0.4444 

0.8887 0 0 0 0.4444 1.3327 

0.9999 0 0 0 0.44 0.44 

0 0.44 0 0 0 0 

0 0 0.44 0 0 0 

0 0 0 0.1067 0 0 

0.44 0 0 0 0.3289 0.1067 

0.44 0 0 0 0.1067 0.3289 
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The D-efficiency values of the N-point equiradial designs relative to the Circumscribed Central Composite design and 

the Inscribed Central Composite design are as in Table 1. 
 

Table 1. D-Efficiency values of equiradial designs relative to the Circumscribed and the Inscribed Central Composite 

designs 

Design 

size N 

D-Efficiency values of equiradial designs 

relative to the Circumscribed Central 

Composite design 

D-Efficiency values of equiradial designs 

relative to the Inscribed Central 

Composite design 

6 0.4030426836 1.028974504 

7 0.4040125476 1.031450583 

8 0.3960196875 1.011044681 

9 0.3991096601 1.018933432 

10 0.3938518937 1.005510269 

11 0.3917171302 1.001832841 

12 0.3984739855 0.994333398 

 

The equiradial designs are further compared with D-optimal exact designs whose design points are as in Iwundu and 

Otaru (2014). The D-efficiency values of the N-point equiradial designs relative to the N-point D-optimal exact designs 

defined on the design regions supported by design points of the Circumscribed Central Composite design, the Inscribed 

Central Composite design and the Face-centered Central Composite design are as in Tables 2-4. Each table comprises 

the design size N, the determinant values of the normalized information matrices associated with the equiradial designs, 

the determinant values of the normalized information matrices associated with the D-optimal exact designs as well as 

the D-efficiency values. 

Table 2. D-Efficiency values of equiradial designs relative to the D-optimal exact designs defined on the design regions 

supported by points of the Circumscribed Central Composite Design  

Design size N Determinant value (equiradial design) Determinant value 

(D-optimal exact design) 

D-Efficiency value 

6 2.639818966x  −4 3.1947x  −  0.4496321364 

7 2.67816305x  −4 3.837429233x  −  0.4371523047 

8 2.37557395x  −4 4.6828x  −  0.4145184104 

9 2.488979568x  −4 6.1584x  −  0.3991096601 

10 2.298611217x  −4 6.545687882x  −  0.3898687014 

11 2.224863024x  −4 6.004443063x  −  0.3933734922 

12 2.149505806x  −4 5.782736734x  −  0.3935810684 

Table 3. D-Efficiency values of equiradial designs relative to the D-optimal exact designs defined on the design regions 

supported by points of the Inscribed Central Composite Design  

Design size N Determinant value (equiradial design) Determinant value 

(D-optimal exact design) 

D-Efficiency value 

6 2.639818966x  −4 1.166000031x  −4 1.145897918 

7 2.67816305x  −4 1.384704002x  −4 1.116211976 

8 2.37557395x  −4 2.224059802x  −4 1.018933432 

9 2.488979568x  −4 1.713104121x  −4 1.056000521 

10 2.298611217x  −4 2.362949253x  −4 0.9954096679 

11 2.224863024x  −4 2.174265558x  −4 1.003841429 

12 2.149505806x  −4 2.090927535x  −4 1.004615652 
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Table 4. D-Efficiency values of equiradial designs relative to the D-optimal exact designs defined on the design region 

supported by points of the Face-centered Central Composite Design  

Design size N Determinant value (equiradial design) Determinant value 

(D-optimal exact design) 

D-Efficiency value 

6 2.639818966x  −4 5.486968437x  −  0.6030781776 

7 2.67816305x  −4 8.159865377x  −  0.5658382953 

8 2.37557395x  −4 8.7890625x  −  0.5478197267 

9 2.488979568x  −4 9.754610572x  −  0.5425859777 

10 2.298611217x  −4 9.360x  −  0.5391359338 

11 2.224863024x  −4 9.5374x  −  0.5345383641 

12 2.149505806x  −4 1.0154x  −  0.5259570053 

 

3. Discussion of Results 

The equiradial designs have been examined as alternative spherical designs to the rotatable Central Composite Designs 

(CCDs) and the D-optimal exact designs in modelling second-order response functions. These designs are seen 

comparable with the standard second-order Response Surface Methodology designs. The equiradial designs which are 

simple to construct seem to show some appealing optimality properties. A careful look at the D-efficiency values makes 

it interesting to note that equiradial designs are not generally inferior designs. In fact, they appear more optimal than 

some frequently used second-order Response Surface Methodology designs. In particular, the study revealed that 

equiradial designs perform generally better than the Inscribed Central Composite designs and the D-optimal exact 

designs defined on the design region supported by the design points of the Inscribed Central Composite design for the 

design sizes considered. Besides N = 12, the equiradial designs were better than the Inscribed Central Composite design 

under the D-efficiency criterion. Additionally, each N-point equiradial design was better than the corresponding N-Point 

D-optimal exact design defined on the design region supported by the design points of the Inscribed Central Composite 

design, except for N=10 which gave relative efficiency value of 0.9954096679. However, it is clear from the relative 

efficiency value that the 10-point equiradial design is as good the 10-point D-optimal exact design. 

It is further observed that the equiradial designs are not as credible as the Circumscribed Central Composite design in 

terms of D-efficiency. This was seen in the relative efficiency values being less than 50% in all cases considered. The 

observation is not different for N-Point D-optimal exact designs defined on the design region supported by the design 

points of the Circumscribed Central Composite design. However, when compared with the D-optimal exact designs 

defined on the design region supported by the design points of the Face-centered Central Composite design, the 

equiradial designs were not too inferior as the relative efficiency values exceeded 50% in all cases considered.  

Although the equiradial designs could serve as alternatives to the standard Response Surface Methodology designs, they 

should be used with caution especially when design optimality is paramount. 

References 

Atkinson, A. C., & Donev, A. N. (1992). Optimum Experimental Designs, Oxford: Oxford University Press. 

Chigbu, P. E., & Nduka, U.C. (2006). On The Optimal Choice Of The Cube And Star Replications In Restricted 

Second-Order Designs. United Nations Educational, Scientific and Cultural Organization and International Atomic 

Energy Agency: The Abdus Salam International Centre For Theoretical Physics, Trieste, Italy. Available at: 

http://www.ictp.it/~pub−off 

Chigbu, P. E., Ukaegbu, E. C., & Nwanya, J. C. (2009). On comparing the prediction variances of some Central 

Composite Designs in Spherical regions: A Review. STATISTICA, anno LXIX, n, 4. 

Dette, H., & Grigoriev, Y. (2014). Construction of efficient and optimal experimentl design for response surface models. 

The annals of statistics, 42(4), 1635-1656. http://dx.doi.org/10.1214/14-AOS1241 

Giovannitti-Jensen, A., & Myers, R. H. (1989). Graphical Assessment of the Prediction Capability of Response Surface 

Designs, Technometrics, 31(2), 159-171. 

Iwundu, M. P. (2015). Optimal Partially Replicated Cube, Star and Center Runs in Face-centered Central Composite 

Designs. International Journal of Statistics and Probability, 4(4). http://dx.doi.org/10.5539/ijsp.v4n4p1 

Iwundu, M. P., & Otaru, O. A. P. (2014). Imposing D-optimality criterion on the design regions of the Central 



 

 

www.ccsenet.org/ijsp                  International Journal of Statistics and Probability                 Vol. 5, No. 4; 2016 

30 

Composite Designs (CCD). Scientia Africana, 13(1), 109-119.  

Lucas, J. M. (1976). Response surface design is the best: A performance comparison of several types of quadratic 

response surface designs in symmetric regions. Technometrics, 18, 411-417. 

Myers, R. H., Vinning, G. G., Giovannitti-Jensen, A. & Myers, S. L. (1992). Variance Dispersion properties of 

Second-order response surface designs. Journal of Quality technology, 24, 1-11. 

Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2009). Response Surface Methodology: Process and 

Product Optimization using designed experiments. 3
rd

 Edition. John Wiley & Sons, Inc. New Jersey. 

Onukogu, I. B., & Iwundu, M. P. (2007). A Combinatorial Procedure for Constructing D-Optimal Designs. Statistica, 

67(4), 415-423. 

Oyejola, B. A., & Nwanya, J. C. (2015). Selecting the right central composite design. Journal of Statistics and 

Applications, 5(1), 21-30. 

Ukaegbu, E. C., & Chigbu, P. E. (2015). Graphical Evaluation of the Prediction Capabilities of Partially Replicated 

Orthogonal Central Composite Designs. Quality and Reliability Engineering International, 31, 707 – 717. 

Zahran, A., Anderson-Cook, C. M., & Myers, R. H. (2003). Fraction of Design Space to Assess the Prediction 

Capability of Response Surface Designs. Journal of Quality Technology, 35, 377-386. 

 

Copyrights 

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 

 



International Journal of Statistics and Probability; Vol. 5, No. 4; July 2016
ISSN 1927-7032 E-ISSN 1927-7040

Published by Canadian Center of Science and Education

Collapsed Double Symmetry Model and Its Decomposition for
Square Contingency Tables

Kouji Yamamoto1, Yuya Matsuda2 & Sadao Tomizawa2

1 Department of Clinical Epidemiology and Biostatistics, Graduate School of Medicine, Osaka University
2 Department of Information Sciences, Faculty of Science and Technology, Tokyo University of Science

Correspondence: Kouji Yamamoto, Department of Clinical Epidemiology and Biostatistics, Graduate School of Medicine,
Osaka University, 2-2, Yamadaoka, Suita, Osaka, Japan. Tel: 81-6-6210-8373. E-mail: yamamoto-k@stat.med.osaka-
u.ac.jp

Received: February 16, 2016 Accepted: March 3, 2016 Online Published: June 11, 2016

doi:10.5539/ijsp.v5n4p31 URL: http://dx.doi.org/10.5539/ijsp.v5n4p31

Abstract

For a square contingency table with ordinal categories, there may be a case that one wants to analyze several collapsed
tables obtained by combining some adjacent categories of the original table. This paper proposes some new models which
indicate double symmetry, quasi double symmetry and marginal double symmetry for the collapsed square tables. It also
gives a decomposition of the double symmetry model for collapsed tables. Two kinds of occupational mobility data are
analyzed using new models.

Keywords: Collapsed table, decomposition, double symmetry, marginal double symmetry, quasi double symmetry

1. Introduction

Consider square contingency tables having same ordinal row and column classifications, for instance, as Tables 1a and
2a. For these data, a lot of observations tend to fall in (or near) the main diagonal cells. Thus for such data, in many
cases, the independence between the row and column variables does not hold. So, we are interested in symmetry instead
of independence. Bowker (1948) proposed the symmetry (S) model, which indicates that the probabilities are symmetric
with respect to the main diagonal of the table. Wall and Lienert (1976) proposed the point-symmetry (PS) model, which
indicates that the probabilities are symmetric with respect to the center point in the table. Tomizawa (1985) proposed the
double symmetry (DS) model such that both S and PS models hold. For other models of symmetry, see, for example,
Caussinus (1965), Bishop, Fienberg and Holland (1975, Chap.8), Agresti (2013, Chap.11), and Tahata and Tomizawa
(2014).

Table 1. Occupational status for Japanese father-daughter pairs; from Hashimoto (2003, p.144).

(a) Original table

Daughter’s class
Father’s class (1) (2) (3) (4) (5) Total
(1) 10 5 38 14 1 68
(2) 2 22 74 31 6 135
(3) 5 8 112 20 9 154
(4) 5 11 94 44 11 165
(5) 9 15 147 26 70 267
Total 31 61 465 135 97 789

(1) Capitalist, (2) New middle, (3) Working, (4) Self-employed and (5) Farming.

(b) Collapsed table (T (1,4) table)

Daughter’s class
Father’s class High Middle Low Total
High 10 57 1 68
Middle 12 416 26 454
Low 9 188 70 267
Total 31 661 97 789
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(c) Collapsed table (T (2,3) table)

Daughter’s class
Father’s class High Middle Low Total
High 39 112 52 203
Middle 13 112 29 154
Low 40 241 151 432
Total 92 465 232 789

Table 2. The social status of occupations for the husband’s father and the wife’s father; from Katz (1978). (The upper and
lower parenthesized values are the MLEs of expected frequencies under the CoDS and CoMDS models, respectively.)

(a) Original table

Husband’s father’s status
Wife’s father’s status (1) (2) (3) (4) Total
(1) 44 17 4 12 77

(38.00) (22.87) (5.38) (12.50) (78.75)
(38.47) (20.15) (4.74) (15.65) (79.01)

(2) 10 3 6 2 21
(7.24) (3.00) (6.00) (2.35) (18.59)
(7.69) (3.00) (6.00) (2.17) (18.86)

(3) 29 7 22 22 80
(21.01) (7.00) (22.00) (25.90) (75.91)
(22.30) (7.00) (22.00) (23.82) (75.12)

(4) 13 8 21 32 74
(12.50) (7.79) (20.46) (38.00) (78.75)
(10.55) (8.58) (22.51) (37.37) (79.01)

Total 96 35 53 68 252
(78.75) (40.66) (53.84) (78.75) (252.00)
(79.01) (38.73) (55.25) (79.01) (252.00)

(1) Professional, technical, kindred white-collar managers, officials, (2) Clerical and sales white collar workers, (3)
Craftsmen (blue collar workers), (4) Operatives, service workers, laborers excepting farm workers (blue collar workers)

(b) Collapsed table (T (1,3) table)

Husband’s father’s status
Wife’s father’s status High Middle Low Total
High 44 21 12 77

(38.00) (28.25) (12.50) (78.75)
(38.47) (24.89) (15.65) (79.01)

Middle 39 38 24 101
(28.25) (38.00) (28.25) (94.50)
(29.99) (38.00) (25.99) (93.98)

Low 13 29 32 74
(12.50) (28.25) (38.00) (78.75)
(10.55) (31.09) (37.37) (79.01)

Total 96 88 68 252
(78.75) (94.50) (78.75) (252.00)
(79.01) (93.98) (79.01) (252.00)

For analyzing the data in Tables 1a and 2a, in some cases, we would like to divide the occupational status into a simple
categories, for example, “High”, “Middle” and “Low”. Table 1b is the collapsed table with “High” category which is
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“(1) capitalist” in Table 1a, “Middle” category obtained by combining “(2) new middle”, “(3) working” and “(4) self-
employed” categories in Table 1a, and “Low” category being “(5) farming” in Table 1a. In other words, Table 1b is
obtained by collapsing Table 1a into the 3 × 3 table by using cut points after the first and fourth rows and after the first
and fourth columns. Yamamoto, Tahata and Tomizawa (2012) proposed some S models for collapsed square contingency
tables, for example, the collapsed quasi-symmetry model. Yamamoto, Murakami and Tomizawa (2013) proposed some
PS models for collapsed square contingency tables, for example, the collapsed quasi point-symmetry model.

Tomizawa (1985) gave the theorem that the DS model holds if and only if both the quasi double symmetry (QDS) and
marginal double symmetry (MDS) models hold. See Appendix for the DS, QDS and MDS models.

In the present paper, Section 2 proposes some new models for the collapsed tables and gives the decomposition for the
new model. These proposed models are totally different from existing models. Section 3 describes the goodness-of-fit
test, and analyzes the data in Tables 1a and 2a using new models. Section 4 provides remarks.

2. New Models and Decomposition

Consider the r × r contingency table having ordered categories. Let pi j denote the probability that an observation will fall
in the (i, j)th cell of the r × r table (i = 1, . . . , r; j = 1, . . . , r).

We consider the [(r − 1)/2] ways of collapsing an r × r table into a 3 × 3 table by using cut points after the hth and
h′(= r − h)th rows and columns for h = 1, ..., [(r − 1)/2], where

[
r − 1

2

]
=


r − 2

2
(when r is even),

r − 1
2

(when r is odd).

We would like to refer to such a collapsed 3 × 3 table as the T (h,h′) table (h = 1, ..., [(r − 1)/2]). The G(h,h′)
kl denotes the

cumulative probability in the collapsed T (h,h′) table (k = 1, 2, 3; l = 1, 2, 3; h = 1, ..., [(r − 1)/2]); i.e.,

G(h,h′)
11 =

h∑
i=1

h∑
j=1

pi j, G(h,h′)
12 =

h∑
i=1

h′∑
j=h+1

pi j, G(h,h′)
13 =

h∑
i=1

r∑
j=h′+1

pi j,

G(h,h′)
21 =

h′∑
i=h+1

h∑
j=1

pi j, G(h,h′)
22 =

h′∑
i=h+1

h′∑
j=h+1

pi j, G(h,h′)
23 =

h′∑
i=h+1

r∑
j=h′+1

pi j,

G(h,h′)
31 =

r∑
i=h′+1

h∑
j=1

pi j, G(h,h′)
32 =

r∑
i=h′+1

h′∑
j=h+1

pi j, G(h,h′)
33 =

r∑
i=h′+1

r∑
j=h′+1

pi j.

We propose the collapsed double symmetry (CoDS), collapsed quasi double symmetry (CoQDS) and collapsed marginal
double symmetry (CoMDS) models.

First, we propose the CoDS model defined by

G(h,h′)
kl = G(h,h′)

lk = G(h,h′)
k∗l∗ = G(h,h′)

l∗k∗

for k = 1, 2, 3; l = 1, 2, 3, and h = 1, . . . , [(r − 1)/2], where k∗ = 4 − k and l∗ = 4 − l. This model indicates both S and PS
models hold in each collapsed T (h,h′) table (h = 1, ..., [(r − 1)/2]), namely, a structure of DS in each collapsed T (h,h′) table.
We point out that the CoDS model is totally different from the DS model, because the CoDS model indicates that there
are DS structures in all collapsed tables. We note that the CoDS model holds if the DS model holds, but the converse does
not necessarily hold.

Consider collapsing the r categories of an original table with ordered categories into 3 categories (say, groups A, B and
C), by using cut points h and h′. The CoDS model describes that for each collapsed T (h,h′) table (h = 1, ..., [(r − 1)/2]), (i)
the probability that both of the row and column values of an observation are in group A equals to the probability that both
of the row and column values of it are in group C, (ii) the probability that the row and column values are in groups A and
B, respectively, equals to the probability that the row and column values are in groups B and A, respectively, and it also
equals to the probability that the row and column values are in groups C and B, respectively, and moreover it equals to the
probability that the row and column values are in groups B and C, respectively, and (iii) the probability that the row and
column values are in groups A and C, respectively, equals to the probability that the row and column values are in groups
C and A, respectively.
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Next, we propose the CoQDS model defined by

G(h,h′)
kl = µ(h)α(h)

k β(h)
l ψ(h)

kl ,

for k = 1, 2, 3; l = 1, 2, 3, and h = 1, . . . , [(r − 1)/2], where

ψ(h)
kl = ψ

(h)
lk = ψ

(h)
k∗l∗ = ψ

(h)
l∗k∗ .

Note that a special case of the CoQDS model obtained by putting {α(h)
k = β

(h)
k } and {α(h)

k = α
(h)
k∗ } is the CoDS model. Also

noting that the CoQDS model is identical to the collapsed quasi point-symmetry model in Yamamoto et al. (2013) because
the QDS model is identical to the quasi point-symmetry model only when the square contingency table is the 3 × 3 table.
For the quasi point-symmetry model, see Yamamoto et al. (2013).

Finally, we propose the CoMDS model defined by

G(h,h′)
k· = G(h,h′)

k∗· = G(h,h′)
·k = G(h,h′)

·k∗ ,

for k = 1, 2, 3, and h = 1, . . . , [(r − 1)/2], where

G(h,h′)
k· =

3∑
t=1

G(h,h′)
kt , G(h,h′)

·k =

3∑
s=1

G(h,h′)
sk .

This model states that there is a structure of MDS in each collapsed T (h,h′) table (h = 1, ..., [(r − 1)/2]). So, the CoMDS
model is different from the MDS model. The MDS indicates that the row and column marginal distribution are symmetric
and point-symmetric with respect to the midpoint of the row and column categories. Note that the CoMDS model holds
if the MDS model holds, but the converse holds only when r is odd.

In a similar manner to the explanation of the CoDS model, the CoMDS model indicates that for each collapsed T (h,h′)

table (h = 1, ..., [(r − 1)/2]), (i) the probability that the row value is in group A equals to the probability that the row
value is in group C, and it is also equal to the probability that the column value is in group A, and moreover it is equal
to the probability that the column value is in group C, and (ii) the probability that the row value is in group B equals to
the probability that the column value is in group B; namely, for the original table, the probability that the row variable is
h or below is equal to the probability that it is h′ or above (h = 1, ..., [(r − 1)/2]), and it is also equal to the probability
that the column variable is h or below, and moreover it is equal to the probability that the column variable is h′ or above
(h = 1, ..., [(r − 1)/2]).

Applying the decomposition theorem of the DS model in Tomizawa (1985) (described in Section 1) for collapsed 3 × 3
table, we can obtain the following theorem:

Theorem 1 The CoDS model holds if and only if both the CoQDS and CoMDS models hold.

3. Analysis of Data

3.1 Goodness-of-fit Test

Assume that a random sample of fixed size n is cross-classified according to the categorical variables. The distribution of
the cell counts {ni j} is then the multinomial distribution specified by the sample size n and the population cell probabilities
{pi j}. We can obtain the maximum likelihood estimates (MLEs) of expected frequencies under the models by using the
Newton-Raphson method in the log-likelihood equation. The likelihood-ratio approach to testing models leads to the test
statistic

G2 = 2
r∑

i=1

r∑
j=1

ni jlog
(

ni j

m̂i j

)
,

where m̂i j is the MLE of expected frequency mi j under the model. The number of degrees of freedom for the CoDS model
is 5(r−2)/2 when r is even and 5(r−1)/2 when r is odd, that for the CoQDS model is r−2 when r is even and r−1 when
r is odd, and that for the CoMDS model is 3(r−2)/2 when r is even and 3(r−1)/2 when r is odd. Note that the number of
degrees of freedom for the CoDS model is equal to the sum of that for the CoQDS model and that of the CoMDS model.

3.2 Analysis of Data in Table 1

Consider the data in Table 1a, taken from Hashimoto (2003, p.144), which describes the cross-classification for father’s
and his daughter’s occupational status categories in Japan. Table 1b is obtained by collapsing Table 1a into the 3× 3 table
by using cut points after the first and fourth rows and columns. Table 1c is obtained by collapsing Table 1a into the 3 × 3
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table by using cut points after the second and third rows and columns. Table 3 gives the values of the goodness-of-fit test
statistic G2 for the models applied to the data in Table 1a. We see from Table 3 that each of CoQDS and QDS models fits
the data in Table 1a well although each of CoDS, CoMDS, DS and MDS models fits those data poorly.

Since the CoDS model fits the data in Table 1a very poorly, we shall explore a reason of the poor fit of the CoDS model
by considering the decomposition of the CoDS model. From Theorem 1, we can see that the lack of structure of the CoDS
model is caused by the influence of the lack of structure of CoMDS model rather than the CoQDS model.

3.3 Analysis of Data in Table 2

Consider the data in Table 2a, taken from Katz (1978), which describes the cross-classification of the social status of
occupations for the husband’s father and the wife’s father. Table 2b is obtained by collapsing Table 2a into the 3 × 3 table
by using cut points after the first and third rows and columns. We see from Table 3 that each of CoDS, CoQDS, and
CoMDS models fits the data in Table 2a well although each of DS, QDS, and MDS models fits those data poorly.

Table 3. Likelihood ratio chi-squared statistic G2 values for models applied to Tables 1a and 2a.

Table 1a Table 2a
Models Degree of freedom G2 Degree of freedom G2

CoDS 10 463.34* 5 8.33
CoQDS 4 6.77 2 1.78
CoMDS 6 445.18* 3 6.44
DS 16 476.87* 10 62.07*
QDS 10 11.04 5 12.75*
MDS 6 445.18* 5 47.14*

* means significant at the 0.05 level.

We denote the MLE of nG(h,h′)
kl by M̂(h,h′)

kl where n = 252 (sample size). Under the CoDS model, we obtain

M̂(1,3)
11 = M̂(1,3)

33 = 38.00, M̂(1,3)
12 = M̂(1,3)

21 = M̂(1,3)
32 = M̂(1,3)

23 = 28.25,

and
M̂(1,3)

13 = M̂(1,3)
31 = 12.50.

Namely, (i) the probability that the status for the wife’s father and the husband’s father are both “High” is estimated to be
equal to the probability that those are both “Low”, (ii) the probability that wife’s father’s status is “High” and husband’s
father’s status is “Middle” is estimated to be equal to the probability that wife’s father’s status is “Middle” and husband’s
father’s status is “High”, to the probability that wife’s father’s status is “Low” and husband’s father’s status is “Middle”,
and to the probability that wife’s father’s status is “Middle” and husband’s father’s status is “Low”, and (iii) the probability
that wife’s father’s status is “High” and husband’s father’s status is “Low” is estimated to be equal to the probability that
wife’s father’s status is “Low” and husband’s father’s status is “High”.

Under the CoMDS model, we obtain

M̂(1,3)
1· = M̂(1,3)

·1 = M̂(1,3)
3· = M̂(1,3)

·3 = 79.01, M̂(1,3)
2· = M̂(1,3)

·2 = 93.98,

where

M̂(h,h′)
k· =

3∑
t=1

M̂(h,h′)
kt , M̂(h,h′)

·l =

3∑
s=1

M̂(h,h′)
sl .

Namely, (i) the probability that wife’s father’s status is “High” is estimated to be equal to the probability that wife’s
father’s status is “Low”, to the probability that husband’s father’s status is “High”, and to the probability that husband’s
father’s status is “Low”, and (ii) the probability that wife’s father’s status is “Middle” is estimated to be equal to the
probability that husband’s father’s status is “Middle”.

4. Remarks

For the analysis of square contingency tables having same ordered row and column classifications, there may be a case
that one wants to divide the categories having more than 3 categories into the simpler 3 categories. Then the CoDS,
CoQDS and CoMDS models would be useful for seeing the structures of various DS for the [(r − 1)/2] ways of collapsed
3 × 3 tables.
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Each of the DS and MDS models is invariant under the combining of adjacent categories as T (h,h′) tables (h = 1, . . . , [(r −
1)/2]). Thus, if the DS model (or the MDS model) holds for an original r×r table, then the DS model (or the MDS model)
holds for all the collapsed square tables, i.e., the CoDS model (or the CoMDS model) holds; but the converse does not
always hold.

However, the QDS model is not invariant under combining of adjacent categories as T (h,h′) tables. Therefore, when QDS
model holds for an original r × r table, it is not guaranteed that then the QDS model holds for all the collapsed square
tables.

Each of proposed models should be applied for the data on an ordinal scale because each model is not invariant under the
arbitrary same permutation of the categories of rows and columns.
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Appendix

For the r × r contingency table with the cell probabilities {pi j}, the DS, QDS, and MDS models in Tomizawa (1985) are
defined as follows. The DS model is

pi j = p ji = pi∗ j∗ = p j∗i∗ (i = 1, . . . , r; j = 1, . . . , r),

where i∗ = r + 1 − i and j∗ = r + 1 − j. The QDS model is

pi j = µαiβ jψi j (i = 1, . . . , r; j = 1, . . . , r),

where
ψi j = ψ ji = ψi∗ j∗ = ψ j∗i∗ .

The MDS model is
pi· = p·i = pi∗· = p·i∗ (i = 1, . . . , r),

where

pi· =
r∑

t=1

pit, p·i =
r∑

s=1

psi.
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Abstract

For square contingency tables with ordered categories, this article proposes new models which indicate that in addition to
the structure of asymmetry of the probabilities with respect to the main diagonal of the table, the expected frequency has
an exponential form along every subdiagonal of the table. Also it gives the new three kinds of decompositions using the
proposed model and proves the orthogonality of the test statistics.

Keywords: conditional symmetry, diagonal exponent symmetry, ordered category, orthogonal decomposition, square
contingency table

1. Introduction

Consider an R × R square contingency table with the same row and column classifications. We may be interested in
symmetry or asymmetry about the main diagonal of the table rather than independence. Let pi j denote the probability that
an observation will fall in the ith row and jth column of the table (i = 1, . . . ,R; j = 1, . . . ,R). Caussinus (1965) considered
the quasi-symmetry (QS) model defined by

pi j = αiβ jψi j (i = 1, . . . ,R; j = 1, . . . ,R),

where ψi j = ψ ji. The QS model with {αi = βi} is the symmetry (S) model (see, Bowker, 1948; Martin & Pardo, 2010;
Kolassa & Bhagavatula, 2012). The conditional symmetry (CS) model is defined by

pi j =

{
γψi j (i < j),
ψi j (i ≥ j),

where ψi j = ψ ji; see McCullagh (1978). The CS model states that pi j (i < j) is γ times higher than p ji. The CS model
with γ = 1 is the S model.

The global symmetry (GS) model is defined by ∑∑
i< j

pi j =
∑∑

i< j

p ji;

see Read (1977). The GS model states that the probability that an observation will fall in one of the upper-right triangle
cells above the main diagonal of the table is equal to the probability that it falls in one of the lower-left triangle cells below
the main diagonal. Read (1977) gave the theorem that the S model holds if and only if both the CS and GS models hold.

Tomizawa (1992) considered the diagonal exponent symmetry (DES) model defined by

pi j =

{
δi+ jd| j−i| (i , j),
ψii (i = j).

The DES model states that in addition to the structure of the S model, pi+1, j+1 (i , j) is δ2 times higher than pi j; in other
words, for fixed distance k (k = 1, . . . ,R − 2) from the main diagonal of the table, pi,i+k increase (decrease) exponentially
along every subdiagonal of the table as the value i increase (i = 1, . . . ,R − k).

Iki, Yamamoto & Tomizawa (2014) considered the quasi-diagonal exponent symmetry (QDES) model defined by

pi j =

{
αiβ jd| j−i| (i , j),
ψii (i = j).
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The QDES model with α = β is the DES model. The QDES model states that in addition to the structure of the QS model
(instead of the S model), the expected frequency has an exponential form along every subdiagonal of the table. Under the
QDES model, we see the structure of pi j/p ji = (β/α) j−i (i < j).

Let X and Y denote the row and column variables, respectively. We define the mean equality (ME) model as E(X) = E(Y).
Iki et al. (2014) gave the theorem that the DES model holds if and only if both the QDES and ME models hold. Other
symmetry and asymmetry models have been described in Tahata & Tomizawa (2014).

We are interested in considering new models which indicate that in addition to the structure of the CS model (instead of
the S model), the expected frequency has an exponential form along every subdiagonal of the table. The present paper
proposes two new models and gives the new three kinds of decompositions of the DES model.

2. New Models

Consider a model defined by

pi j =

{
δi+ jd j−i (i , j),
ψii (i = j),

where d j−i = γdi− j (i < j). This model states that in addition to the structure of the CS model, pi+1, j+1 (i , j) is δ2 times
higher than pi j. Thus we shall refer to this model as the diagonal exponent conditional symmetry (DECS) model. Under
the DECS model, we see the structure of pi j/p ji = γ (i < j). The DECS model with γ = 1 is the DES model.

Next, consider a model defined by

pi j =

{
αiβ jd j−i (i , j),
ψii (i = j),

where d j−i = γdi− j (i < j). We shall refer to this model as the quasi-diagonal exponent conditional symmetry (QDECS)
model. Under the QDECS model, we see the structure of pi j/p ji = γ(β/α) j−i (i < j). The QDECS model with γ = 1 is
the QDES model. Also, QDECS model with α = β is the DECS model.

Figure 1 shows the relationships among the models. In figure, A→ B indicates that model A implies model B.
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Figure 1. Relationships among models.

3. Decompositions and Orthogonality of Test Statistics

We obtain the new three kinds of decompositions of the DES model as follows:

Theorem 1 The DES model holds if and only if all the QDECS, GS and ME models hold.

Theorem 2 The DES model holds if and only if both the DECS and GS models hold.

Theorem 3 The DES model holds if and only if both the DECS and ME models hold.

The proofs of these theorems are given in Appendix 1.

Consider the model that has the structure of both the GS and ME models. We shall refer to this model as the GSME
model. From Theorem 1, we can obtain the following the corollary:

Corollary 1 The DES model holds if and only if the QDECS and GSME models hold.

Let ni j denote the observed frequency in the (i, j)th cell of the table (i = 1, . . . ,R; j = 1, . . . ,R) with n =
∑∑

ni j, and
let mi j denote the corresponding expected frequency. Assume that {ni j} have a multinomial distribution. The maximum
likelihood estimates (MLEs) of {mi j} under the DECS and QDECS models could be obtained using iterative procedures;
for example, see Darroch & Ratcliff (1972). The MLEs of {mi j} under the GSME model could be obtained using Newton-
Raphson method to the log-likelihood equations.
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Let G2(M) denote the likelihood ratio chi-squared statistic for testing goodness-of-fit of model M. The numbers of degrees
of freedom (df) for the DECS and QDECS models are R2 − 2R − 1 and R2 − 2R − 2, respectively.

The orthogonality (asymptotic separability or independence) of the test statistics for goodness-of-fit of two models is
discussed by, e.g., Darroch & Silvey (1963) and Read (1977). We obtain the following theorems for the orthogonality.

Theorem 4 The test statistic G2(DES ) is asymptotically equivalent to the sum of G2(QDECS ) and G2(GS ME).

Theorem 5 The test statistic G2(DES ) is asymptotically equivalent to the sum of G2(DECS ) and G2(GS ).

The proof of Theorem 4 is given in Appendix 2. We shall omit the proof of Theorem 5 because it is obtained in a similar
way to the proof of Theorem 4.

4. An Example

Consider the data in Table 1 taken from Agresti (2002, p. 462). These data are insomniac patient’s reported time (in
minutes) to fall asleep after going to bed. The response is the patient’s reported time at baseline (before treatment) and
following two weeks of treatment (hypnotic drug).

Table 1. Insomniac patient’s reported time (in minutes) to fall asleep after going to bed; from Agresti (2002, p. 462). (The
upper and lower parenthesized values are MLEs of expected frequencies under the DECS model and the special DECS
model with δ = 1, respectively.)

Follow-up
Initial < 20 20-30 30-60 > 60 Total
< 20 7 4 1 0 12

(7.00) (1.81) (1.69) (0.94)
(7.00) (1.88) (1.72) (0.94)

20-30 11 5 2 2 20
(15.58) (5.00) (1.87) (1.75)
(16.12) (5.00) (1.88) (1.72)

30-60 13 23 3 1 40
(14.53) (16.12) (3.00) (1.94)
(14.78) (16.12) (3.00) (1.88)

> 60 9 17 13 8 47
(8.06) (15.03) (16.67) (8.00)
(8.06) (14.78) (16.12) (8.00)

Total 40 49 19 11 119

We see from Table 2 that the CS, DECS and QDECS models fit these data well, although the other models fit poorly. Since
the DECS model is a special case of the QDECS model, we shall test the hypothesis that the DECS model holds (i.e., the
hypothesis of α = β) assuming that the QDECS model holds. Since G2(DECS |QDECS ) = G2(DECS )−G2(QDECS ) =
1.54 with 1 df being the difference between the numbers of df for the DECS and the QDECS models, this hypothesis is
accepted at the 0.05 significance level. Similarly, the hypothesis that the DECS model holds assuming that the CS model
holds is accepted for these data. Therefore, the DECS model would be preferable to the CS and QDECS models.

Under the DECS model, the MLEs of parameters of γ and δ are γ̂ = 0.116 and δ̂ = 1.017. Since δ̂ is close to 1, we are
now interested in a special DECS model obtained by putting δ = 1. For this model we obtain the likelihood ratio statistic
G2(DECS with δ = 1) = 10.30 with 8 df. Thus the special DECS model with δ = 1 also fits these data well. Moreover,
we shall test the hypothesis that the special DECS model with δ = 1 holds (i.e., the hypothesis of δ = 1) assuming that
the DECS model holds for these data. Since G2(DECS with δ = 1|DECS) = G2(DECS with δ = 1) −G2(DECS) = 0.05
with 1 df, this hypothesis is accepted at the 0.05 significance level. Therefore the special DECS model with δ = 1 may be
preferable to the DECS model.

Under the special DECS model with δ = 1, the MLE of parameter γ is γ̂ = 0.116. Thus, under the special DECS model
with δ = 1, the probability that a patient’s reported time at baseline and his or her reported time at following two weeks of
treatment are i and j (i > j), respectively, is estimated to be γ̂−1 = 8.621 times higher than the probability that those are j
and i, respectively. Thus, since γ̂−1 > 1, the patient’s reported time at following two weeks of treatment is faster than the
patient’s reported time at baseline. Also under this model, the probability that a patient’s reported time at baseline and his
or her reported time at following two weeks of treatment are i + 1 and j + 1, respectively, is estimated to be equal to the
probability that those are i and j, respectively.
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We see from Table 2 and Theorem 1 that the poor fit of the DES model is caused by the influence of the lack of structure
of the GS and ME models rather than the QDECS model. Similarly, from Theorem 2, the poor fit of the DES model is
caused by the influence of the lack of structure of the GS model rather than the DECS model. Also, from Theorem 3,
the poor fit of the DES model is caused by the influence of the lack of structure of the ME model rather than the DECS
model.

Table 2. Likelihood ratio chi-squared values G2 for models applied to Table 1.
Applied models df G2

S 6 74.55∗

CS 5 5.62
DES 8 79.18∗

DECS 7 10.25
QDECS 6 8.71

GS 1 68.93∗

ME 1 66.64∗

GSME 2 71.19∗

∗ means significant at the 0.05 level.

5. Concluding Remarks

We have proposed the DECS and QDECS models, and given the three kinds of decompositions of the DES model. These
decompositions may be useful for seeing the reason for the poor fit of the DES model.

The G2(DES ) is asymptotically equivalent to the sum of values G2(QDECS ) and G2(GS ME) as described by Theorem
4. However, we point out that for the decomposition in Theorem 1, the G2(DES ) is not asymptotically equivalent to the
sum of values G2(QDECS ), G2(GS ) and G2(ME) because the sum of values G2(GS ) and G2(ME) is not asymptotically
equivalent to the G2(GS ME).
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Appendix 1

Proof of Theorem 1. If the DES model holds, then the QDECS, GS and ME models hold. Assuming that all the QDECS,
GS and ME models hold, then we shall show that the DES model holds. Since the QDECS model holds, we have

pst − pts = (γθt−s − 1)pts (s < t), (A.1)

where θ = β/α. Since (A.1) and the GS model hold, we see∑∑
s<t

(γθt−s − 1)pts = 0,

namely,

R−1∑
k=1

R−k∑
s=1

(γθk − 1)ps+k,s = 0. (A.2)

From (A.2), we see

γ =

∑R−1
ℓ=1

∑R−ℓ
t=1 pt+ℓ,t∑R−1

k=1
∑R−k

s=1 ps+k,sθk
. (A.3)

The ME model can be expressed as

R−1∑
i=1

G1(i) =

R−1∑
i=1

G2(i), (A.4)

where

G1(i) =

i∑
s=1

R∑
t=i+1

pst, G2(i) =

i∑
s=1

R∑
t=i+1

pts.
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From (A.1) and (A.4), we see
R−1∑
i=1

i∑
s=1

R∑
t=i+1

(γθt−s − 1)pts = 0,

namely,

R−1∑
k=1

R−k∑
s=1

k(γθk − 1)ps+k,s = 0. (A.5)

From (A.5), we see

γ =

∑R−1
ℓ=1

∑R−ℓ
t=1 ℓpt+ℓ,t∑R−1

k=1
∑R−k

s=1 kps+k,sθk
. (A.6)

From (A.3) and (A.6), we obtain(R−1∑
ℓ=1

R−ℓ∑
t=1

pt+ℓ,t

)(R−1∑
k=1

R−k∑
s=1

kps+k,sθ
k
)
−

(R−1∑
ℓ=1

R−ℓ∑
t=1

ℓpt+ℓ,t

)(R−1∑
k=1

R−k∑
s=1

ps+k,sθ
k
)
= 0,

namely,

R−1∑
k=1

R−1∑
ℓ=1

R−k∑
s=1

R−ℓ∑
t=1

(k − ℓ)ps+k,s pt+ℓ,tθ
k = 0. (A.7)

The equation (A.7) is also expressed as

(θ − 1)
R−1∑
m=2

(
θm−1

R−1∑
g=m

R−g∑
s=1

R−1∑
ℓ=1

R−ℓ∑
t=1

(g − ℓ)ps+g,s pt+ℓ,t

)
= 0. (A.8)

In addition,

R−1∑
g=m

R−g∑
s=1

R−1∑
ℓ=1

R−ℓ∑
t=1

(g − ℓ)ps+g,s pt+ℓ,t =

R−1∑
g=m

m−1∑
ℓ=1

R−g∑
s=1

R−ℓ∑
t=1

(g − ℓ)ps+g,s pt+ℓ,t +

R−1∑
g=m

R−1∑
ℓ=m

R−g∑
s=1

R−ℓ∑
t=1

(g − ℓ)ps+g,s pt+ℓ,t. (A.9)

The first term on the right-hand side of (A.9) is positive and the second term equals zero. Thus (A.9) is positive. Therefore,
noting that θ > 0, from (A.8) we obtain θ = 1, i.e., α = β. Thus, from (A.2) we obtain γ = 1. Namely, the DES model
holds. The proof is complicated.

Proof of Theorem 2. If the DES model holds, then the DECS and GS models hold. Assuming that both the DECS and GS
models hold, then we shall show that the DES model holds. Since the DECS and GS models hold, we see∑∑

s<t

pst −
∑∑

s<t

pts =
∑∑

s<t

δs+tdt−s −
∑∑

s<t

δs+tds−t

=
∑∑

s<t

δs+tγds−t −
∑∑

s<t

δs+tds−t

= (γ − 1)
∑∑

s<t

δs+tds−t

= 0.

Thus, we obtain γ = 1. Namely, the DES model holds. The proof is complicated.

Proof of Theorem 3. If the DES model holds, then the DECS and ME models hold. Assuming that both the DECS and
ME models hold, then we shall show that the DES model holds. Since the DECS and ME models hold, we see

R−1∑
i=1

i∑
s=1

R∑
t=i+1

pst −
R−1∑
i=1

i∑
s=1

R∑
t=i+1

pts =

R−1∑
i=1

i∑
s=1

R∑
t=i+1

δs+tdt−s −
R−1∑
i=1

i∑
s=1

R∑
t=i+1

δs+tds−t

=

R−1∑
i=1

i∑
s=1

R∑
t=i+1

δs+tγds−t −
R−1∑
i=1

i∑
s=1

R∑
t=i+1

δs+tds−t

= (γ − 1)
R−1∑
i=1

i∑
s=1

R∑
t=i+1

δs+tds−t

= 0.
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Thus, we obtain γ = 1. Namely, the DES model holds. The proof is complicated.

Appendix 2

Proof of Theorem 4. The QDECS model is expressed as

log pi j =


γ∗ + iα∗ + jβ∗ + d∗i− j (i < j),

iα∗ + jβ∗ + d∗j−i (i > j),
ψ∗ii (i = j).

(A.10)

Let

p = (p11, . . . , p1R, p21, . . . , p2R, . . . , pR1, . . . , pRR)t,

β = (γ∗, α∗, β∗, ϕ)t,

where “t” denotes the transpose, and

ϕ = (d∗−1, d
∗
−2, . . . , d

∗
−(R−1), ψ

∗
11, ψ

∗
22, . . . , ψ

∗
RR),

is the 1 × (2R − 1) vector. The QDECS model is expressed as

log p = Xβ = (X0, X1, X2, X3)β,

where X is the R2 × L matrix with L = 2R + 2, X0 = (v1, . . . , vR)t (the R2 × 1 vector), X1 = JR ⊗ 1R (the R2 × 1 vector),
X2 = 1R ⊗ JR (the R2 × 1 vector), and X3 is the R2 × (2R− 1) matrix of 1 or 0 elements determined from (A.10); and where
vp is the 1 × R vector of 0 for the first p elements or 1 for the others, 1s is the s × 1 vector of 1 elements, JR = (1, . . . ,R)t

and ⊗ denotes the Kronecker product. The matrix X is full column rank which is L. In a similar manner to Haber (1985),
we denote the linear space spanned by the columns of the matrix X by S (X) with the dimension L.

Let U be an R2 × l1, where l1 = R2 − L = R2 − 2R − 2, full column rank matrix such that the linear space spanned by the
columns of U, i.e., S (U), is the orthogonal complement of S (X). Thus, U tX = Ol1,L, where Os,t is the s × t zero matrix.
Therefore the QDECS model is expressed as

h1(p) = 0l1 ,

where 0s is the s × 1 zero vector, and h1(p) = U t log p. The GSME model is expressed as

h2(p) = 0l2 ,

where l2 = 2 and h2(p) = W p with

W =
(

(2X0 − 1R2 + w1 + w2 + · · · + wR)t

(X2 − X1)t

)
; the 2 × R2 matrix,

where wi (i = 1, . . . ,R) is the R2 × 1 vector, being one of column vectors in X3 shouldering ψ∗ii. Note that X312R−1 = 1R2 .
Thus W t belongs to S (X), i.e., S (W t) ⊂ S (X). Hence WU = Ol2,l1 . From Corollary 1, the DES model is expressed as

h3(p) = 0l3 ,

where l3 = l1 + l2 = R2 − 2R, and h3 = (ht
1, h

t
2)t.

Let Hs(p) (s = 1, 2, 3) denote the ls × R2 matrix of partial derivative of hs(p) with respect to p, i.e., Hs(p) = ∂hs(p)/∂pt.
Let Σ(p) = diag(p) − ppt, where diag(p) denotes a diagonal matrix with ith component of p as ith diagonal component.
Let p̂ denote p with {pi j} replaced by { p̂i j = ni j/n}. Then

√
n( p̂ − p) has asymptotically a normal distribution with mean

0R2 and covariance matrix Σ(p). Using the delta method,
√

n(h3( p̂)− h3(p)) has asymptotically a normal distribution with
mean 0l3 and covariance matrix

H3(p)Σ(p)H3(p)t =

[
H1(p)Σ(p)H1(p)t H1(p)Σ(p)H2(p)t

H2(p)Σ(p)H1(p)t H2(p)Σ(p)H2(p)t

]
.

Since H1(p)p = U t1R2 = 0l1 , H1(p)diag(p) = U t and H2(p) = W, we see

H1(p)Σ(p)H2(p)t = U tW t = Ol1,l2 .
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Thus, we obtain ∆3(p) = ∆1(p) + ∆2(p), where

∆s(p) = hs(p)t[Hs(p)Σ(p)Hs(p)t]−1hs(p). (A.11)

Under each hs(p) = 0ls (s = 1, 2, 3), the Wald statistic Ws = n∆s(p̂) has asymptotically a chi-squared distribution with ls

degrees of freedom. From (A.11), we see that W3 = W1 +W2. From the asymptotic equivalence of the Wald statistic and
likelihood ratio statistic, we obtain Theorem 4.
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Abstract

Suppose a single server has K channels, each of which performs a different task. Customers arrive to the server via
a nonhomogenous Poisson process with intensity λ(t) and select 0 to K tasks for the server to perform. Each channel
services the tasks in its queue independently, and the customer’s job is complete when the last task selected is complete.
The stress to the server is a constant multiple η of the number of tasks selected by each customer, and thus the stress
added to the server by each customer is random. Under this model, we provide the survival function for such a server in
both the case of independently selected channels and correlated channels. A numerical comparison of expected lifetimes
for various arrival rates is given, and the relationship between the dependency of channel selection and expected server
lifetime is presented.

Keywords: cluster server, correlated Bernoulli variables, reliability, dynamic server lifetime

1. Introduction

Many single-server queuing models assume each arrival brings one task that must be completed by the server (Gross &
Shortle, 2008; Tang, 1997). Common examples include a cashier’s register, a hostess stand at a restaurant, or a basic web
server. Of particular interest is the reliability of such queuing servers under workload or stress. In particular, Cha and Lee
(2011) formulated a dynamic reliability model for a web server wherein customers arrive via a nonhomogenous Poisson
process {N(t), t ≥ 0}, the service times are i.i.d. with general distribution G(w), and each task brought by a customer
increases the stochastic hazard function by a constant η for the duration of its time in the system. (Cha and Lee, 2011).

Traylor (2015) provided a generalization to the model of Cha and Lee that relaxed the constant stress assumption and
allowed for the job stresses to be i.i.d. with probability distribution H . It is assumed that the set of arrival times T =
{T j}N(t)

j=1 are mutually independent. The service times W j, j = 1, ...,N(t) remain i.i.d. and mutually independent of the set
of arrival times. It is also assumed that the job stressesH j, j = 1, ...,N(t) are mutually independent of all arrival times and
service times. Under these conditions, Traylor provides the survival function for such a server in the following theorem.

Theorem 1. Suppose that jobs arrive to a server according to a nonhomogenous Poisson process {N(t), t ≥ 0} with
intensity function λ(t) ≥ 0 Let the arrival times {T j}N(t)

j=1 be independent, and let the service times {W j}N(t)
j=1

i.i.d.˜ gW (w) be

mutually independent of all arrival times. Assume the random job stressesH j
i.i.d.˜ H , j = 1, ...,N(t). Then

S Y (t) = F̄0(t) exp
(
−EH

[
H

∫ t

0
e−Hwm(t − w)ḠW (w)dw

])
(1)

where F̄0(t) = exp
(
−

∫ t
0 r0(s)ds

)
, Ḡw(w) = 1 −G(w), m(t) ≡ E[N(t)] =

∫ t
0 λ(x)dx. and r0(s) is the hazard function of the

idle server at time s.

Suppose now that this single server is partitioned into K channels, with each channel assigned to a different possible task
a customer may choose. Customers may choose 0 to K tasks for the server to complete, and the customer is fully serviced
when the last task is complete. The choice of such tasks may be correlated or uncorrelated. We propose a generalization
to the random stress model of Traylor (2015) that gives the survival function for such a “clustered-task” server in both the
correlated and independent cases. This provides a highly general reliability model for a variety of server types in many
different industries. It also allows for a correlated multi-server system to be analyzed in a simple manner.

The paper is organized as follows. Section 2 gives a general description of the server model and its assumptions. Section
3 examines the reliability of the server when the channel selection is independent; correlated channels are discussed in
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section 4. Section 5 provides some numerical illustrations of the effect of channel selection dependency on the expected
lifetime of the server, and Section 6 gives the conclusion.

Customer 1

Customer 2
Customer 3

Task 1 Task 2 Task 3 Task 4

λ(t)

Figure 1. Illustration of Clustered Tasks in a Multichannel Server

2. Model Description

Suppose a server has multiple channels Q1, ...,QK , but each channel serves a different type of task. A customer arrives to
the server and may select any number from 0 to K tasks for the server to perform. Said customer will select each possible
task j with probability p j. Figure 1 illustrates an example of such a situation in which three customers visit the server and
each customer picks a different number and set of tasks at random. A customer is considered fully serviced (i.e. the job is
complete) upon completion of the last task belonging to that particular customer.

2.1 Model Assumptions

The following mathematical assumptions are made for the multichannel server with clustered tasks:

(i) Customers arrive to the server with K channels via a nonhomogenous Poisson process (NHPP) with intensity λ(t).

(ii) The breakdown rate of the idle server is given by r0(t).

(iii) Each channel corresponds to a different task the server can perform.

(iv) The selection of each task is a Bernoulli random variable with probability pk. Thus the number of tasks selected by
each customer is a binomial random variable.

(v) The workload stress to the server is a constant multiple η of the number of tasks requested by the customer, i.e. the
additional stress is given by ηN, where N is the number of tasks requested.

(vi) The distribution of each channel’s service time is given by Gi(w), i = 1, ...,K. Since the customer’s service is not
complete until all requested tasks have finished, the service life distribution for the customers is therefore given by
maxi Gi(w).

Under these assumptions, this model is a special interpretation of the random stress environment developed in Traylor
(2015). In this case, the random workload stress is ηN, where N is a binomial random variable, and the service life
distribution GW (w) = max

i
Gi(w), which may be easily obtained through the mathematical properties of order statistics.

Two variations are considered in this section: independent channels and correlated channels.

3. Independent Channels
Suppose the selection probabilities for each task in the server are identical, that is, p1 = p2 = . . . = pK = p. Then

N ∼ Bin(K, p). Using Theorem 1, the survival function of the multichannel server is given in the following theorem:

Theorem 2 (Survival Function of Multichannel Server with Clustered Tasks and Independent Channels). Suppose condi-
tions (i)-(vi) above are satisfied. In addition, assume p1 = p2 = . . . = pK = p. Then the survival function of the server is
given by

S Y (t) = F̄0(t) exp
(
−Kη

[
e−ηt

(
1 − p + pe−ηt

)K−1 − p(1 − p)K−1
] ∫ t

0
m(t − w)ḠW (w)dw

)
where m(x) =

∫ x
0 λ(s)ds, F̄0(t) = e−

∫ t
0 r0(s)ds, ḠW (w) = 1 −GW (w), and GW (w) = max

i
Gi(w).
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Proof. Since p1 = . . . = pK = p, the number of tasks selected by any particular customer N ∼ Bin(K, p). Then the
random stress distributionH is given byH = ηN. Thus

S Y (t) = F̄0(t) exp
(
−EH

[
H

∫ t

0
e−Hwm(t − w)ḠW (w)dw

])
In this case,

E
[
H

∫ t

0
e−Hwm(t − w)ḠW (w)dw

]
= E

[
ηN

∫ t

0
e−ηNwm(t − w)ḠW (w)dw

]
=

K∑
n=0

[
ηn

∫ t

0
e−ηnwm(t − w)ḠW (w)dw

]
· P(N = n)

=

K∑
n=0

[
ηn

∫ t

0
e−ηnwm(t − w)ḠW (w)dw

] (
K
n

)
pn(1 − p)K−n

= η

∫ t

0
m(t − w)ḠW (w)

 K∑
n=0

ne−ηnw
(
K
n

)
pn(1 − p)K−n

 dw

Now,

K∑
n=0

ne−ηnw
(
K
n

)
pn(1 − p)K−n =

K∑
n=0

K!
(K − n)!n!

ne−ηnw pn(1 − p)K−n

=

K∑
n=0

K(K − 1)!
(n − 1)!(K − 1 − (n − 1))!

e−ηnw pn(1 − p)K−n

=

K∑
n=0

K
(
K − 1
n − 1

)
e−ηnw pn(1 − p)K−n

Making a change of indices, let j = n − 1. Then

K∑
n=0

K
(
K − 1
n − 1

)
e−ηnw pn(1 − p)K−n = K

K−1∑
j=0

(
K − 1

j

)
p j+1(1 − p)K−( j+1)e−η( j+1)w

Note the above resembles a scaled and shifted moment generating function of a binomial random variable. Let X ∼
Bin(K − 1, p). Then

K
K−1∑
j=0

(
K − 1

j

)
p j+1(1 − p)K−( j+1)e−η( j+1)w = K

(
E

[
e−η(X+1)t

]
− P(X = 0)

)
= K

(
e−ηtE

[
e−ηXt − p(1 − p)K−1

])
= K

(
e−ηt

[
1 − p + pe−ηt

]K−1 − p(1 − p)K−1
)

Thus,

S Y (t) = F̄0(t) exp
(
−Kη

[
e−ηt

(
1 − p + pe−ηt

)K−1 − p(1 − p)K−1
] ∫ t

0
m(t − w)ḠW (w)dw

)
�

4. Correlated Channels

Now suppose the server tasks are correlated, in that the selection of one particular task may affect the selection of any
or all of the other tasks. Thus the channels are a sequence of dependent Bernoulli random variables. Based on ideas
from random graphs of Korzeniowski (2003), the construction of dependent Bernoulli random variables was given in
Korzeniowski (2013), and is briefly summarized below.
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4.1 Dependent Bernoulli Random Variables and the Generalized Binomial Distribution

Korzeniowski (2013) constructed a sequence of dependent Bernoulli random variables using a binary tree that distributes
probability mass over dyadic partitions of [0,1]. Let 0 ≤ δ ≤ 1, 0 < p < 1, and q = 1 − p. Then define the following
quantities:

q+ := q + δp p+ := p + δq

q− := q(1 − δ) p− := p(1 − δ)
(2)

The quantities in (2) satisfy the following conditions:

q+ + p− = q− + p+ = q + p = 1
qq+ + pq− = q, qp− + pp+ = 1

(3)

 

  

    

1

1

11 0

0

0

ǫ1

ǫ2

p

p
+

q
−

q

p
−

q
+

 

 

 

Figure 2. Construction of Dependent Bernoulli Random Variables

Figure 2 shows the construction of the dependent Bernoulli random variables. The following examples using coin flips
illustrate the effect of the dependency coefficient δ:

Example 1 (δ = 1). For δ = 1, q+ = q + p = 1, q− = 0, p+ = p + q = 1, and p− = 0. Supposing the first coin flip ε1 = 1.
Then every successive εi will also be 1. Similarly if ε1 = 0. Thus the result of the first coin flip completely determines the
outcomes of all the rest.

Example 2 (δ = 0). For δ = 0, q+ = q− = q, and p+ = p− = p. Thus, the first coin flip (and all subsequent ones) have no
effect on the ones that follow.

Example 3 (δ = 1
4 ). Suppose p = q = 1

2 . Then p+ = q+ = 5
8 , and p− = q− = 3

8 . Then the subsequent outcomes εi, i ≥ 2
are more likely to match the outcomes of ε1 than not.

Now suppose p = 1
4 , q =

3
4 . Then p+ = 7

16 ,p− = 3
16 , q

+ = 13
16 , and q− = 9

16 . In this example of an unfair coin,
the dependency coefficient δ still attempts to skew the results following the first coin flip in favor of the outcome of ε1.
However, the dependency here heightens the effect of ε1 = 0 on subsequent flips, and cannot overcome the discrepancy
between the probability of success and failure to skew εi, i ≥ 2 in favor of a 1 following the outcome of ε1 = 1.

Using these dependent Bernoulli random variables, Korzeniowski (2013) derived a Generalized Binomial Distribution for
identically distributed but dependent Bernoulli random variables.

Generalized Binomial Distribution
Let X =

∑n
i=1 εi, where εi, i = 1, ..., n are identically distributed Bernoulli random variables with probability of success p

and dependency coefficient δ. Then

P(X = k) = q
(
n − 1

k

)
(p−)k(q+)n−1−k + p

(
n − 1
k − 1

)
(p+)k−1(q−)n−1−(k−1), k = 0, 1, ..., n (4)

4.2 Survival Function of Correlated Channels in a Cluster Server
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Suppose the selection of tasks may be modeled by the dependent Bernoulli random variables given in the previous sec-
tion. That is, suppose the customer selects Tasks 1,...,K in sequence, and the selection or rejection of Task 1 affects all
subsequent tasks by a dependency coefficient δ. From Korzeniowski (2013), the correlation between task selections εi, ε j

is given by

ρ = Cor(εi, ε j) =

δ, i = 1; j = 2, ...,K
δ2, i , j; i, j ≥ 2

(5)

This illustrates the dependency of Tasks 2,. . .,K on the outcome of Task 1, and notes that while Tasks 2,. . .,K are still
correlated with each other, the dependency is much lower. In a similar fashion to the independent channel server, the
survival function is derived.

Theorem 3. Suppose conditions (i)-(vi) above are satisfied. In addition, suppose the selection of channels 1, . . . ,K are
determined by identically distributed Bernoulli random variables with dependency coefficient δ as defined in Korzeniowski
(2013). Then the survival function of the server is given by

S Y (t) = F̄0(t) exp
(
−η

∫ t

0
m(t − w)ḠW (w)S (w)dw

)
(6)

where m(x) =
∫ x

0 λ(s)ds, and

S (w) =
K∑

n=0

e−ηnw
K−n−1∑

j=0

(
K − 1

n − 1, j,K − 1 − n − j

)
pK−1− j(1 − p) j+1δK−1−n− j(1 − δ)n

+

K∑
n=0

ne−ηnw
n−1∑
i=0

(
K − 1

K − 1 − n, i, n − 1 − i

)
pi+1(1 − p)K−nδn−1− j(1 − δ)K−n− j

Proof. By Theorem 1,

S Y (t) = F̄0(t) exp
(
−E

[
H

∫ t

0
e−Hwm(t − w)ḠW (w)dw

])
Similar to the proof of Theorem 2, H = ηX, where this time X has the generalized binomial distribution given in (4).
Then

E
[
H

∫ t

0
e−Hwm(t − w)ḠW (w)dw

]
=

K∑
x=0

[
ηx

∫ t

0
e−ηxwm(t − w)ḠW (w)dw

]
P(X = x)

=

K∑
x=0

ηx
[∫ t

0
e−ηxwm(t − w)ḠW (w)dw

] [
q
(
K − 1

x

)
(p−)x(q+)K−1−x

]

+

K∑
x=0

ηx
[∫ t

0
e−ηxwm(t − w)ḠW (w)dw

] [
p
(
K − 1
x − 1

)
(p+)x−1(q−)K−x

]
= η

∫ t

0
m(t − w)ḠW (w)(S1(w) +S2(w))dw

where S1(w) =
∑K

x=0 xe−ηxwq
(

K−1
x

)
(p−)x(q+)K−1−x

and S2(w) =
∑K

x=0 xe−ηxw p
(

K−1
x−1

)
(p+)x−1(q−)K−x. Using the definitions given in (2),

S1(w) =
K∑

x=0

xe−ηxw(1 − p)
(
K − 1

x

)
(p − δp)x(1 − p + δp)K−1−n

=

K∑
x=0

xe−ηxw(1 − p)
(
K − 1

x

)
px(1 − δ)x

K−1−x∑
j=0

(
K − 1 − x

j

)
(1 − p) j(δp)K−1−x− j
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Now, x
(

K−1
x

)(
K−1−x

j

)
=

(K−1)!
(x−1)! j!(K−1−x− j)! =

(
K−1

x−1, j,K−1−x− j

)
. Then

S1(w) =
K∑

x=0

e−ηxw
K−x−1∑

j=0

(
K − 1

x − 1, j,K − 1 − x − j

)
(1 − p) j+1(1 − δ)xδK−1−x− j pK−1− j

Similarly,

S2(w) =
K∑

x=0

xe−ηxw p
(
K − 1
x − 1

)
(p + δ(1 − p))x−1((1 − p)(1 − δ))K−x

=

K∑
x=0

xe−ηxw p(1 − δ)K−x(1 − p)K−x
x−1∑
i=0

(
x − 1

i

)
pi(1 − δ)iδx−1−i

=

K∑
x=0

xe−ηxw
x−1∑
i=0

x
(

K − 1
K − 1 − x, i, x − 1 − i

)
pi+1δx−1−i(1 − δ)K−x+i(1 − p)K−x

Clearly S (w) = S1(w) +S2(w) �

5. Numerical Illustrations

5.1 Expected Server Lifetime

Figure 3. Expected Server Lifetime for Various Selection Probabilities
and Dependency Coefficients

To measure the effects of the probability of task selection p and the dependency coefficient δ, we look at the expected
server lifetime, given by E[Y] =

∫ ∞
0 S Y (t) as a function of the arrival rate λ. Figure 3 shows the expected server lifetime

for K = 3 channels under two different selection probabilities (p = 0.1, 0.9) and dependency coefficients (δ = 0, 1). In
addition, η = r0 = 1. Mathematica was used for calculations.

For δ = 0, p = p+ = p− and q = q+ = q−, and hence the channels are uncorrelated and the selection of tasks 1, ...,K are
independent Bernoulli random variables. When δ = 1, the selection decision made at channel 1 completely determines
the subsequent task selections. Thus, when δ = 1 and p = 0.1, it is highly likely that the first task will not be selected and
thus no others will be selected. This results in a server that is expected to remain fairly idle, even as the arrival intensity
increases. Thus, the expected lifetime changes very little compared to a completely idle server (λ = 0).

On the opposite end, for p = 0.9, δ = 1, we again have a perfectly correlated set of channels, but the selection probability
for Task 1 is very high. Thus, 0.9λ customers per unit time will select all tasks, and 0.1λ customers per unit time will
select no tasks. This will result in a high server workload, and the expected lifetime decreases sharply with increasing λ.
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Figure 4. Expected Server Lifetime for p = 0.5 and
Various Dependency Coefficients

Figure 4 compares the effect of the dependency coefficient δ when the selection probability of Task 1 is p = 0.5. A
completely correlated system with p = 0.5 has a significantly longer expected lifetime for a given arrival rate λ than
independent channels.

6. Conclusion

This paper provides a reliability model for a multichannel clustered-task server under very general assumptions. Requests
arrive via a nonhomogenous Poisson process and consist of the random selection of 0 to K tasks in sequence. A request is
considered serviced when the last task in that request is completed. Since each channel has a generic service distribution
Gi(w), the service distribution of the requests is given by maxi Gi(w). The stress to the server brought by each request is a
constant multiple η of the number of tasks selected, and thus is random with either a binomial distribution or a generalized
binomial distribution. The survival function in both cases was formulated, and a numerical comparison of the correlated
and uncorrelated cases was done using the expected server lifetime as a metric.
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Abstract

We present a direct calculation for determining the probability that a rare genetic variant is the cause of an observed
disease, under appropriate assumptions, in terms of the joint prevalence of the disease and of rare variants. Our calcula-
tion provides a resolution of the so-called “variant of unknown (or uncertain) significance” problem, which has plagued
medical genetics researchers.

Keywords: genetic variant, rare variant, pathogenicity, variant of unknown significance, genetic probability

1. Introduction

It frequently arises in medical genetics that a patient has a particular disease, and also has a genetic variant which may or
may not be the cause of that disease. The variant is said to be of unknown or uncertain significance if its disease-causing
probability cannot be determined, and this is a common challenge (see e.g. Richards et al. (2008), Cheon, Mozersky, and
Cook-Deegan (2014), Domcheck and Weber (2008), and the references therein). The problem is put succinctly in the
patient guide by Ambry Genetics (2015), which states, “Variants of unknown significance are DNA changes with too little
information known to classify as either pathogenic or benign, and it is unknown whether they contribute to a medical
condition.”

Assessing whether or not the genetic variant did indeed cause the disease is important not only for future medical research
and prevention, but also as a practical guide to whether or not the patient’s family members are also at risk. However, in
the case of a rare variant with little or no previous information available, it is unclear how this assessment should be made.

In this paper, we present a direct calculation for determining the probability that a rare genetic variant is indeed the
cause of an observed disease. Our calculation requires one assumption, namely the natural-seeming “Variant Fraction
Assumption” that in the absence of any other evidence, the probability that a newly observed rare genetic variant of a
gene causes a specified disease is equal to the fraction of all previously-observed rare variants of that gene which did
cause that disease (see Section 4.3 for details). With this one assumption, we are able to compute the desired probability
purely in terms of the disease’s prevalence in the population, and the fraction of rare variants in the general population
and in the diseased population. Our results are described below.

2. Formal Set-Up

To set up our probability model, we make the following assumptions and notations:

• A certain disease D has a known prevalence p in the general population.

• Among the healthy population, a certain known fraction q have some distinct rare variant of a certain gene G.

• Among patients with the disease D, a certain fraction r ≥ q have some distinct rare variant of the gene G.

• Some subset S of the rare variants of G always cause the disease D, i.e. the probability of disease given a rare variant
in S is 1.

• Rare variants of G which are not in S have no effect on D, i.e. the probability of disease given a rare variant not in
S is the same as for patients without a rare variant.

• A new patient X is found to have a never-before-seen variant V of the gene G.
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The question is, given all of the above, if X gets the disease D, then what is the probability that the genetic variant V was
actually a cause of the disease D in X? That is, we wish to compute the conditional probability

P(V ∈ S | X has the disease D) ,

i.e. the probability that X’s variant V is in fact a cause of the disease D in X, given that X has the variant V and also has
the disease D. We describe our calculation of this and related probabilities below.

We first note that since the genetic variant V has never been seen before, it is impossible compute its probabilities without
making some additional assumption. Thus, we also make the Variant Fraction Assumption that in the absence of any other
evidence, the probability that a newly observed genetic variant of a gene G is a cause of D, is equal to the fraction of all
of the previously-observed rare variants of G which were indeed found to cause D. For a more precise statement of this
assumption, see Section 4.3 below.

Remark. In fact, the assumption that r ≥ q follows directly from the other assumptions; see Appendix A2.

3. Main Result

Our main results are as follows. (Below, “unconditional probability” means the probability without conditioning on
whether or not X has the disease D. Also, we write “V is the sole cause of D” to mean that V caused D, and furthermore
patient X would not have gotten D in the hypothetical case that they instead did not have the rare variant V.)

Theorem 1. For the above set-up, for a patient X having a rare variant V of gene G, under the Variant Fraction Assump-
tion, we have the following probabilities, where y = (r − q)/(1 − q), z = p(1 − y)/(1 − py), w = py / [pr + (1 − p)q], and
u = (1 − z)w.
(a) The unconditional probability that the variant V is a cause of the disease D is given by:

P(V ∈ S ) = w .

(b) The unconditional probability that patient X will get disease D is given by:

P(X gets D) = z + u .

(c) Conditional on patient X getting the disease D, the conditional probability that the variant V was the sole cause of D
is given by:

P(X′s disease D was caused solely by V | X has D) =
u

z + u
.

(d) Conditional on patient X getting the disease D, the conditional probability that the variant V is a cause of D is given
by:

P(V ∈ S | X gets D) =
w

z + u
=

r − q
r(1 − q)

.

Theorem 1 thus gives precise probabilities for the relevant possibilities related to patient X and disease D and rare genetic
variant V. In particular, Theorem 1(d) gives a precise estimate of the probability, given that patient X has disease D and
has the rare genetic variant V, that V is in fact a cause of the disease D.

Theorem 1 is proved in the next section. We first consider some numerical examples.

For example, if p = 1/4, 000 is the prevalence of the disease in the general population, and q = 2% = 0.02 is prevalence
of some rare variant of G in the healthy population, and r = 40% = 0.4 is the prevalence of some rare variant of G in
patients with the disease, then conditional on X getting the disease, the probability that the variant V is a cause of the
disease works out to: P(V ∈ S | X gets D) = 0.9699815 � 97.0%, or about 97 percent (i.e., nearly certain).

Or, if p = 1/400 and q = 0.01 and r = 0.4, then P(V ∈ S | X gets D) � 98.5%.

By contrast, if p = 1/50 and q = 0.1 and r = 0.2, then P(V ∈ S | X gets D) � 58.1%, which is much smaller.

Or, if p = 1/400 and q = 0.1 and r = 0.15, then P(V ∈ S | X gets D) � 39.5%.

A plot of other values of P(V ∈ S | X gets D) is presented in Figure 1 as a function of r, with q = 0.1 fixed.

Probabilities for other parameter values can be computed using the above formulae, or using our simple javascript online
calculator available at: www.probability.ca/pathprob
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Figure 1. Disease cause probabilities as a function of r, with q = 0.1 fixed.

As a further check, we note that the formula in Theorem 1(d) gives answers which make sense even for certain extreme
parameter values. For example, if r = 1 (i.e., 100%), then it is computed that the formula gives a value of 1. This makes
sense, since if r = 1, then by the definition of r, every diseased patient has a rare variant of G, which means that the
disease can only be caused by a rare variant of G, so that V must indeed cause D.

Or, if q = 0, then again it is computed that the formula gives a value of 1. This also makes sense, since if q = 0, then by
the definition of q, no healthy patients have rare variants of G, which means that rare variants of G always cause D, so
again V must indeed cause D.

By contrast, if r = q, then it is computed that the formula gives a value of 0. This again makes sense, since if the rate of
rare variants of G is the same for diseased and healthy patients, then the rare variants of G do not cause any additional
disease at all, so none of them cause D.

As a final comment, we note that since u = (1 − z)w, the formula in Theorem 1(c) is smaller than that in Theorem 1(d) by
a factor of (1 − z). This is due to the possibility that V ∈ S but X still “would” have gotten D by chance alone, i.e. that V
does indeed cause D, but X would have gotten D even in the absence of V (e.g. from a variant of some other gene besides
G). Now, usually z will be very small, so the answers in (c) and (d) will be very similar, though not identical.

4. Proof of Theorem 1

In this section, we prove Theorem 1 using a sequence of probability calculations. We break up our argument into several
steps.

4.1 Preliminary Population Prevalence Calculations

We first note that our assumption above that rare variants of G which are not in S have no effect on D, can be written more
formally as

P(X has D | X has a rare variant V < S ) = P(X has D | X has no rare variant) .

From this it follows (see Appendix A1) that

P(X has rare variant V < S | X has D, and no variant in S ) = P(X has some rare variant | X does not have D) .
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We next calculate two population fractions that will be important in our solution.

First, we write y for the fraction of diseased patients who have a rare variant of G which is in S, i.e. which does cause D.
(Thus, y is close to r, but slightly less since even among diseased patients without a variant in S, a fraction q of them will
still happen to have a rare variant not in S by chance alone, just like for the healthy population.)

In terms of y, the set of all diseased patients can be divided into three groups: a fraction y with a rare variant of G which
is in S, a fraction (1 − y)q with a rare variant of G which is not in S, and a fraction (1 − y)(1 − q) with no rare variant of G
at all. Hence, the fraction of diseased patients with some rare variant of G is equal to y + (1 − y)q.

On the other hand, we know that the overall fraction of diseased patients with some rare variant of G is equal to r. For
this to hold, we must have y + (1 − y)q = r. Solving for y, we obtain that y = (r − q)/(1 − q).

Then, since a fraction p of the population is diseased, and a fraction y of diseased patients have a variant in S, it follows
that the fraction of the total population who have a rare variant in S is equal to the product py. And, the fraction who do
not have a rare variant in S is equal to 1 − py.

Next, we write z for the prevalence of the disease D among all people who specifically do not have a variant in S. Then
the fraction of people who have D but do not have a variant in S is equal to (1 − py)z. And, the fraction of people with a
variant in S (who therefore have D) is equal to py. So, the total fraction of the population who have the disease D is equal
to (1 − py)z + py.

On the other hand, we know that the overall prevalence of the disease is equal to p. For this to hold, we must have
p = py + (1 − py)z. Solving for z, we compute that z = p(1 − y)/(1 − py).

4.2 The Prior Probability of Disease

Prior to diagnosis, what was the prior probability that a given patient X, who has some rare variant V, would get the
disease D? That is, what is the conditional probability that X gets D, conditioning (throughout) on the fact that X has a
rare variant V?

To answer this question, let I be the indicator function of the subset S, so I(V)=1 if V ∈ S, otherwise I(V)=0. We know
that the prior probability of X getting the disease D is equal to 1 (i.e., 100%) if I(V)=1, or is equal to z if I(V)=0. So, if
we knew I(V), i.e. if we knew whether or not V causes D, then could write this as:

P(X gets D | I(V)) = z + (1 − z) × I(V) .

In fact we do not know I(V), i.e. it could equal either 1 or 0. So, instead, we use the Law of Total Expectation (that the
expected value of a conditional probability is the unconditional probability). This shows that:

P(X gets D) = E
[
P(X gets D | I(V))

]
= z + (1 − z) × E[I(V)]

= z + (1 − z) × P[I(V) = 1] = z + (1 − z) × P(V ∈ S ) .

This gives a formula for the prior probability that X would get D, in terms of the probability P(V ∈ S ) that V is in S.
However, we do not know P(V ∈ S ), so it must be estimated.

4.3 The Variant Fraction Assumption

To continue, we need to obtain an estimate for P(V ∈ S ), the unconditional probability (in the absence of any other
evidence) that the newly observed variant V of G is in fact a cause of the disease D. Now, since V was never before seen,
there is no way to directly calculate this probability. Instead, as mentioned above, we use the Variant Fraction Assumption
that in the absence of any other evidence, the probability that a newly observed genetic variant of a gene G is a cause of
D, is equal to the fraction of all of the previously-observed rare variants of G which were indeed found to cause D. That
is, we assume that

P(V ∈ S ) =
fraction of the population with a disease-causing rare variant of G

fraction of the population with any rare variant of G
.

This assumption appears to be quite reasonable, in the absence of any other prior information about the new variant V. In
any case, some such assumption must be made, otherwise no probabilities associated with V can possibly be computed.
But under this one assumption, all of the remaining probability calculations can be completed.

4.4 Estimating the Variant Probability

Using the above Variant Fraction Assumption, we are able to compute the desired probability P(V ∈ S ). To do this, we
need to compute the fraction of all of G’s rare variants which are in S. We proceed as follows.
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Since a fraction p of the population is diseased, and since a fraction r of them have some rare variant of G, it follows that
the fraction of the population who are diseased and have some rare variant of G is pr. Similarly, since y is the fraction of
diseased patients who have a variant in S, it follows that the fraction of the population who are diseased and have a rare
variant in S is py. Also, the fraction of the population who are healthy and have some rare variant of G is (1 − p)q.

That is, a fraction pr+ (1− p)q of the population has a rare variant, and a fraction py of the population has a rare variant in
S. So, assuming these rare variants are all distinct, the fraction of all the rare variants of G in the entire population which
are in S is equal to py/[pr + (1 − p)q].

We then estimate the probability P(V ∈ S ) by the above fraction of all the rare variants of G which are in S, i.e. by

P(V ∈ S ) ≈ py / [pr + (1 − p)q] =: w

where w = py / [pr + (1 − p)q], as claimed in Theorem 1(a).

Now, since we earlier derived the prior-to-diagnosis probability P(X gets D) = z+ (1− z)×P(V ∈ S ), it then follows from
the above estimate that

P(X gets D) = z + (1 − z) × w =: z + u

where u = (1 − z)w, as claimed in Theorem 1(b).

4.5 The Cause Probability

The above formula for P(X gets D) can be interpreted as follows: Patient X can get the disease D either without any
influence at all from the gene G (with probability z), or caused by the variant V of G (with probability f ).

Under this interpretation, given that X does in fact have the disease D, the conditional probability that the disease D in X
was caused by the genetic variant V, and would not otherwise have arisen, is given by the second probability divided by
the sum of the two probabilities, i.e. by:

P(X’s disease D was caused solely by V | X has D) =
u

z + u
,

as claimed in Theorem 1(c).

This formula thus gives an estimate of the probability, given that patient X has disease D, that the disease was caused
solely by their rare genetic variant V of the gene G. This is similar to, but not quite the same as, our desired conditional
probability, as we now explain.

4.6 Computing the Conditional Probability

Putting the previous equations together, we can compute the required conditional probability, as follows:

P(V ∈ S | X gets D) =
P(V ∈ S , and X gets D)

P(X gets D)

=
P(V ∈ S )

P(X gets D)
=

w
z + u

.

This gives our first formula claimed in Theorem 1(d).

Finally, through careful algebraic simplification, it is verified directly that in fact w
z+u =

r−q
r(1−q) (which, surprisingly, does

not depend on p), thus giving the second formula claimed in Theorem 1(d).

Remark. The above equations can be combined as follows. We have that

u
z + u

= P( D was caused solely by V | X gets D)

= P(D was caused solely by V) / P(X gets D)

= P(D was caused solely by V | V in S ) P(V in S | X gets D)

= P(D was caused solely by V | V in S )
w

z + u
,

whence
P(D was caused solely by V | V in S) =

u
w
=

(1 − z)w
w

= 1 − z .
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Taking the complementary event,

P(X would have gotten D even without having V | V in S) = z ,

which makes sense since z is the prevalence of the disease in people who do not have a rare variant, corresponding to the
appropriate hypothetical.

Final Remark. After originally completing this research, we became aware of the related recent paper by Ruklisa, Ware,
Walsh, Balding, and Cook (2015). That paper mostly focuses on specific probability estimates for specific diseases and
specific genetic variants. However, it does begin with what they call the “prior odds of pathogenicity”, which appears to
correspond to odds for the event P(V ∈ S | X gets D) considered in Theorem 1(d) above. For that case, they assert that the
odds “might be assumed to be” given by

Burden of rare variants in cases − Burden of rare variants in controls
Burden of rare variants in controls

.

In our notation, this appears to correspond to asserting that

P(V ∈ S | X gets D)
1 − P(V ∈ S | X gets D)

=
r − q

q
,

or equivalently that

P(V ∈ S | X gets D) =
r−q

q

1 + r−q
q

=
r − q

r
.

This last expression is fairly similar to the final formula in our Theorem 1(d), but it differs by a factor of 1 − q. It appears
that the reason for this discrepency is their assertion that “it is reasonable to assume that the burden of benign rare variants
in cases is equal to the burden of rare variants in controls”, which apparently corresponds to assuming that

P(Rare variant not in S | Diseased) = P(Rare variant not in S | Not diseased) ,

which is different from what we believe (for more see Appendix A3).

Appendix: Additional Probability Calculations

We here provide a few additional probability calculations, to further clarify some of the material in the main text. For
these calculations, define a through f to be the proportions of the total population in each of the six categories implied by
the following Table:

Diseased Not diseased
Rare variant in S a d

Rare variant not in S b e
No rare variant c f

A1. We first show that the assumption

P(X has D | X has a rare variant V < S) = P(X has D | X has no rare variant) (∗) .

implies the condition that

P(X has rare variant V < S | X has D, and no variant in S) = P(X has some rare variant | X does not have D) . (∗∗)

In terms of the above Table, condition (∗) is equivalent to saying that b/(b+e) = c/(c+ f ), i.e. that b/e = c/ f . Meanwhile,
condition (∗∗) is equivalent to saying that b/(b + c) = (d + e)/(d + e + f ). On the other hand, our assumption that variants
in S always cause the disease D implies that d = 0. Hence, if b/e = c/ f , then (d + e)/(d + e + f ) = e/(e + f ) = b/(b + c),
thus establishing (∗∗).
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A2. We here show that the assumption r ≥ q actually follows from our other assumptions. Indeed, in terms of the above
Table, using as above that d = 0 and e/(e + f ) = b/(b + c), we have that

q = P(Rare variant | Not Diseased) =
d + e

d + e + f
=

e
e + f

=
b

b + c
.

Also
r = P(Rare variant | Diseased) =

a + b
a + b + c

.

The result then follows since

r − q =
a + b

a + b + c
− b

b + c
=

(ab + ac + b2 + bc) − (ab + b2 + bc)
(a + b + c)(b + c)

=
ac

(a + b + c)(b + c)
≥ 0 .

A3. Finally, we consider the quantities which arise in the reference Ruklisa et al. (2015), as discussed in our Final
Remark above, namely

P(Rare variant not in S | Diseased) (&)

and
P(Rare variant not in S | Not diseased) . (&&)

In our notation, (&&) = P(Rare variant not in S | Not diseased) = q which, in terms of the above Table, is equal to
e/(e + f ). By contrast, (&) = P(Rare variant not in S | Diseased) = b/(a + b + c). Hence, assuming (∗), we have
(&) = b/(a + b + c) ≤ b/(b + c) = e/(e + f ) = (&&). Furthermore, we have non-zero equality only when a = 0, which
corresponds to no variants in S, i.e. to the gene G having no effect whatsoever on the disease D. Otherwise, a > 0, and
hence (&) < (&&) (assuming b > 0), leading to a different result from that of Ruklisa et al.
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Abstract  

In the domain of the logic of certainty we examine the objective notions of the subjective probability with the clear aim 

of identifying their fundamental characteristics before the assignment, by the individual, of the probabilistic evaluation. 

Probability is an additional and subjective notion that one applies within the range of possibility, thus giving rise to 

those gradations, more or less probable, that are meaningless in the logic of certainty. Each criterion for evaluations 

under conditions of uncertainty is a device or instrument for obtaining a measurement; it furnishes an operational 

definition of probability or prevision P and together with the corresponding conditions of coherence can be taken as a 

foundation for the entire theory of probability. When we examine these criteria and their corresponding conditions of 

coherence we show the inevitable dichotomy between the subjective or psychological or empirical aspect of probability 

and the objective or logical or geometrical one.  

Keywords: random entity, coherence, convex hull, barycenter, vector space, metric. 

1. Introduction  

According to the subjectivistic conception of probability, the concept of probability and the foundations of probability 

theory have a psychological value: such a theory is rigidly deduced and reconstructed on the sole basis of a 

psychological interpretation and formulation because the mathematical principles are always the same from whatever 

point of view one starts (de Finetti, 1931b). In analyzing the objective meaning of the notion of coherence, it is 

necessary to point out in which way some probability evaluations may be incoherent or intrinsically contradictory and 

the rules of probabilistic logic, as those of formal logic in the field of propositions, are essential in order to teach us how 

to reason in the field of probability evaluations. Since all probability evaluations have and can have only an essentially 

and exclusively psychological value, it is necessary to separate what in a problem is logical from what is essentially of a 

merely empirical value and nature. So, one will be able to say whether every other problem is logically determined or 

undetermined (de Finetti, 1930a, 1930b). Evidently, this separation is fundamental in order to be able to deepen the 

criticism of principles of any mathematical theory and, in particular, of probability theory (de Finetti, 1931a). 

Probability, as an individual’s psychological perception, is subject to certain laws. If an event has an objective 

probability, all the individuals who will conform their psychological position to it, can be said to be judging correctly, 

while the others to be wrong. Apart from this, the laws are the same for everybody and, in particular, hold for objective 

probabilities, so it is not true that if everything is subjective, everything must be arbitrary and no law can be valid. 

Essentially, it needs to characterize the whole of the formally admissible opinions, without bothering if reasons exist of 

any other type which might cause someone to consider any one of them more or less right. In fact, such reasons are 

beyond the merely logical or objective aspect of the problem which only mathematics can and must deal with: thus a 

clear separation of the two phases, the formal phase and the practical or empirical phase, appears appropriate and 

inevitable. The formal phase, that is to say, the characterization of the not incoherent opinions, is to be dealt with 

mathematically; the practical or empirical phase, that is to say, the choice of one among such possible opinions, has to 

be left to good sense and judgement of every single individual. The only difference between those who follow the 

subjectivistic conception and those who follow the objectivistic one is that while such a choice is free and arbitrary for 

the former, it can be right in only one way for the latter. Therefore, the subjectivistic approach takes into consideration, 

along with the objectively right evaluation of probability, all those evaluations which are not contradictory by 

themselves, although wrong according to the objectivistic viewpoint. A person who does not share the subjectivistic 
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viewpoint believes in the existence of an objective value of probability which cannot be maintained except for a certain 

more or less limited field; it would only be to events of a certain type, more or less schematic and artificial, that he will 

assign an objective probability, while in practical life he would be incessantly guided to think or say that a certain event 

appears more or less easily, is more or less probable or verisimilar and on such judgements he will found his decisions, 

also in areas which, according to his way of thinking, would be precluded from probability theory. Clearly, in order to 

justify conceptually such judgements, it needs to conform to the subjectivistic viewpoint whose validity field is not 

subject to any restriction (de Finetti & Minisola, 1961; de Finetti & Emanuelli, 1967a; de Finetti, 1955, 1963, 1969, 

1970).  

2. Logic of Certainty  

When a given individual, according to his state of information, defines a set more or less large of possible alternatives, 

of which one and only one is necessarily true, he finds himself into the domain of the logic of certainty. We denote by 𝒮 

the abstract space of alternatives and by 𝒬, subset of 𝒮, the space of the only alternatives possible for a certain 

individual; in fact, it may be convenient to think of 𝒬 as embedded in a larger and more manageable space 𝒮. However, 

his information as well as his knowledge could also allow him to eliminate a part of the alternatives that can be 

imagined because he believes that they are impossible; vice versa, all the others will be possible. After all, a rather crude 

analysis can be made if all the possible alternatives are collected in order to obtain an unique and certain alternative. 

The possibility, unlike probability, has no gradations, thus the domain of the logic of certainty is objective; it is equally 

possible, for a given individual at a certain time, that the next FIFA world cup is won by a very weak national football 

team, that the next President of the Italian Republic is a woman, that the unemployment rate falls by three percentage 

points at the end of next year in Italy. Into the domain of the logic of certainty, only true and false exist as final and 

certain answers and certain and impossible and possible as options with regard to the temporary knowledge of any 

individual; into this domain we study the objective notions of subjective probability with the clear aim of identifying 

their fundamental characteristics before the assignment, by the individual, of the probabilistic evaluation. Probability is 

an additional and subjective notion that one applies within the range of possibility, thus giving rise to those gradations, 

more or less probable, that are meaningless in the logic of certainty. The field of the logic of certainty is objective 

because the elements of 𝒬 do not depend on the individual’s opinions but only on his degree of ignorance (de Finetti, 

1967b, 1970).  

3. Events and Random Numbers 

An event E is a statement which we do not know yet to be true or false; the event which is certain and the one which is 

impossible can be taken as a limit case. The statements of which we can say if they are true or false on the basis of an 

ascertainment well determined and always possible, at least conceptually, have objective meaning. Such objective 

statements are said propositions if one is thinking more in terms of the expressions in which they are formulated or, 

equally, events if one is thinking more in terms of the situations and circumstances to which their being true or false 

corresponds (de Finetti 1954). For any individual who does not know with certainty the value of a number X, which is 

random in a non-redundant usage for him, there are two or more than two, a finite or infinite number, possible values for 

X, where the set of these values is I(X): in any case, only one is the true value of each random number (de Finetti, 1970).  

Remark 1 Events are also questions whose wordings, unambiguous and exhaustive, have the aim of removing any 

opportunity to complaining in case that a bet is based upon them: they admit two answers, yes = 1 or no = 0, true = 1 or 

false = 0, where such answers are always alternative. Also the random numbers can be identified by questions whose 

wordings are indisputably clear and complete; unlike events, they contain two or more than two answers which consist 

only of numbers, only one of which is the one that actually occurs.  

Remark 2 For the representation of random numbers it is useful to think of a set 𝒮, whose subset 𝒬 is constituted by the 

only possible alternatives for a certain individual at a given time. Sometimes, 𝒮 can coincide with a manifold less 

extensive of the linear ambit or linear space 𝒜 in which 𝒮 is contained: in the case of two random numbers, 𝒮 can coincide 

with a curve of the Cartesian plane 𝒜, otherwise, if the numbers are three, 𝒮 can coincide with a surface of the 

three-dimensional space 𝒜. Then, the possible points of 𝒬 would be positioned on the curve of the Cartesian plane or on 

the surface of the three-dimensional space and such points may be all the points or a part or a few points of 𝒮 according to 

the individual’s knowledge at a given time and the existence of other restrictions and conditions. We could have 𝒜 =    

or 𝒜 =    under one-to-one correspondence between the points of the two-dimensional or three-dimensional space and 

the ordered lists of two or three real numbers. If    and    are equipped with a scalar product positive-definite, they 

would be Euclidean spaces or metric spaces. However, since every vector space may be considered as an affine space 

over itself, 𝒜 could also be an affine space and this, theoretically, would be the best thing by virtue of the fact that the 

affine properties are more general than the metric ones. The affine properties are the basis of essential concepts of 

probability theory and only they make sense, being independent of the choice of a coordinate system; however, the 
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importance of the metric properties appears in order to represent analytical conditions of coherence (de Finetti, 1931b, 

1954, 1970).  

Remark 3 The space of alternatives 𝒮 of a random number X coincides with the real line x on which it is possible to 

consider 𝒬, subset of 𝒮, which consists of the only possible values or points for a certain individual. Every point of the 

real line is assumed to correspond to a real number and every real number to a point of it, so the real line is a vector 

space of dimension 1 over the field   of real numbers, that is to say, over itself: there is an one-to-one correspondence 

between points on the real line and real numbers. The set   of real numbers is a Euclidean space because it has a 

standard scalar product which is simply ordinary multiplication of real numbers and the standard norm on it is simply 

the absolute value function. Every real number of the x-axis is a point of 𝒮. Since every possible value of X is a random 

event, all the possible values of X are events, all together and implicitly considered into 𝒬. In conformity with the 

possible values of X which constitute the set 𝒬, X can belong to a half-line, X ≥ x, or to an interval,    ≤ X ≤   , or to 

an arbitrary set, X ∈ ℐ.  

Remark 4 If we consider two random numbers, X and Y, 𝒮 coincides with the Cartesian plane whose element, in 

general, is (x, y). For (X, Y), 𝒬 consists of pairs of possible values for X and Y. If we consider three random numbers, X, 

Y and Z, 𝒮 coincides with the ordinary space whose element, in general, is (x, y, z) and if we consider more than three 

random numbers, the only restriction for 𝒮 is that it is not visually intuitive to go beyond the third dimension.  

4. Random Entities  

Random points, random vectors, random matrices, random sets and random functions are random entities. An objective 

scheme of representation for random entities is given by the set 𝒮 of “points” whose elements can be a finite or infinite 

number. Such points are not geometric points, but they are simply elements of 𝒮, that is to say, they may be points in 

two-dimensional Euclidean space or in three-dimensional Euclidean space, vectors, matrices, sets of points and functions 

if 𝒮 is, respectively, a set of points or vectors or matrices or sets of points or functions. Clearly, we need to consider each 

“point” of 𝒬 or 𝒮 like a random event which is, a posteriori, true or false: among such “points”, there is a very important 

“point” representing the alternative which, a posteriori, will really occur. It is, a priori, uncertain and for this reason it 

constitutes the essence of every problem concerning the alternatives 𝒬 which are contained in 𝒮 in which 𝒬 is embedded.  

Remark 5 On a plane the point which would be hit in firing at a target is a random point, with the geometric 

representation of this problem which is independent of any coordinate system. Similarly, in ordinary space the point 

where, at a precise moment, a stolen car is, such a car being equipped with a satellite alarm, is random. When the theft 

occurs, this alarm sends to a control center a radio signal through which it is possible to determine the exact position of the 

vehicle. The space of alternatives 𝒮, corresponding to the usual physical space extended in length, width and height and in 

which bodies move or place themselves, provides an immediate geometric image which does not depend on coordinates.  

Remark 6 A vector is an ordered list of n real numbers, (  , …,  n) ∈  n, where n is a non-negative integer: real 

numbers   , …,  n are called scalar components in the n-dimensional Euclidean space, with the number  i which is 

the i-th scalar component of (  , …,  n). Thus, the list of known unit prices of ten articles which are for sale in a given 

department store is the decuple (p , …, p 0). Given n, for a certain individual, a vector is random when he does not 

know all scalar components of the finite ordered list of n real numbers, such a list being the true vector. For the same 

individual, different n-tuples of  n, which constitute 𝒬, are possible. The space of alternatives 𝒮 is a vector space over 

the field   of real numbers because it coincides with all the n-tuples of  n. Evidently, each n-tuple of  n, belonging to 

𝒮, is a point of 𝒮.  

Remark 7 A matrix (aij) m × n, with m, n ≥ 1, is a rectangular array of mn numbers, (aij)  = (

a  ⋯ a n
⋮ ⋱ ⋮

am ⋯ amn

), whose 

elements are arranged in m rows and n columns. The numbers of every row could represent known unit prices of n 

given articles which are for sale in m different department stores. The whole of all rectangular arrays of mn real 

numbers is a vector space over the field   and an isomorphism exists between it and  mn because every array of mn 

numbers can be arranged into a row vector or column vector of  mn. For a certain individual, a matrix which has 

predetermined rows and columns is random when he does not know the real numbers of every row or column of the true 

matrix. For the same individual, possible matrices which constitute 𝒬 and all those of the vector space 𝒮 over   have 

the same predetermined number of rows and columns. Clearly, each matrix of 𝒮 is a “point” of 𝒮.  

Remark 8 Random curves and random sets on surfaces are random sets which give a non-linear structure to 𝒮. The 

unknown path of an airplane, from takeoff to landing, is a random curve: every trajectory can be thought of as a set 
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which consists of infinite points and it is a “point” of 𝒮. On the other hand, if a given individual does not know the part 

of the Italian territory, viewable via satellite map, on which rain fell in the last twelve hours starting from a certain 

instant, we have a random set on surface: each part of the Italian territory is a set of infinite points and it is a “point” of 

𝒮. Moreover, among the different parts of the Italian territory which constitute the abstract space of alternatives 𝒮, there 

are both the empty part, that corresponds to the alternative according to which rain did not fall on the Italian territory in 

the last twelve hours, and the total part, that corresponds to the alternative according to which rain fell on the whole 

Italian territory in the last twelve hours.  

Remark 9 For a certain individual, a function Y(t), with the variable t which is time, is random when its behavior is 

unknown to him, for which it can be said that chance exists instant by instant. If one knows the values of Y(t) because they 

have been calculated at any number of instants t = t1, …, tn, however large the finite n, the value of Y(t) at a different 

instant t will still be uncertain. Every measurable function, where its values are Y(t1), …, Y(tn), is a “point” of 𝒮. When we 

ask whether or not the numerical values of a function Y(t) of the set 𝓢 at given instants fall inside fixed sets ah ≤ Y(th) ≤ 

bh (h = 1, …, n) defined by two freely determined coordinates, random events given by a1 ≤ Y(t1) ≤ b1, …, an ≤ Y(tn) ≤ 

bn can be true or false according to whether they occur or not inside intervals [a1, b1], …, [an, bn]. 

Evidently, each problem concerning the possible alternatives of 𝒬 is usefully visualized by means of 𝒮 whose nature is 

always and unequivocally objective (de Finetti, 1970).  

5. Arithmetic and Boolean Operations  

Putting the logical values true and false equal to the idempotent numbers 1 and 0 for which we have 1n = 1, 0n = 0, 

an event E is always a random number which can admit these two numbers, called indicators of E. Arithmetic and 

Boolean operations must be unified by applying arithmetic operations even to events and Boolean operations even to 

random numbers. For events, the arithmetic product is the same as the logical product ∧, the arithmetic sum is the 

number of successes Y = E  + … + En and complementation is negation, that is to say, E̅ = 1 − E. Obviously, Y can 

yield a result outside the {0, 1} set. The logical sum ∨ can be expressed by A ∨ B = 1 − (1 − A)(1 − B), where we 

must consider A ∨ B = (A̅  ∧  B̅̅̅ ̅̅ ̅̅ ̅̅ ), with A and B which are random events. In   we can make the following definitions: a 

∨ b = max (a, b), a ∧ b = min (a, b) and a̅ = 1 − a, where a and b are real numbers; then, in case a and b have as 

values 1 or 0, the logical product, the logical sum and the negation are recovered. Moreover, it needs to unify the 

notation for the probability of an event E and for the mathematical expectation or prevision of a random number X; in 

fact, it is adopted P(E) for probability of E and P(X) for prevision of X, where P is linear, that is, additive and 

homogeneous.  

6. Logic of Uncertainty  

The subjectivistic conception of probability, through psychological analysis, vivifies notions that are mathematically 

correct but that is not sufficient to consider from the formal point of view. In fact, the instrument really propulsive of 

scientific thinking is not classical logic or, in the specific instance, logic of certainty that, as such, involves no affective 

demonstration, no judgement by anyone, but is probability and probability calculus. Therefore, when we consider any 

problem concerning the assignment of probability among possible cases and how to define it and to express it 

quantitatively, we find ourselves into the field, personal and subjective, of logic of uncertainty, clearly distinct and 

separate from that one of logic of certainty (de Finetti, 1931a). Indeed, when we say that we are not satisfied of logic of 

certainty, we mean that we are not satisfied of agnostic and undifferentiated attitude towards uncertainty. For all those 

things which, not being known to us with certainty, are uncertain or possible, any individual feels a more or less strong 

propensity to expect that some cases possible are true rather than others, to believe that the answer to a given question is 

no rather than yes, to estimate that the unknown value of a certain quantity is small rather than large. Evidently, these 

attitudes express, in the domain of uncertainty, different degrees of subjective probability, each of which is assigned to one 

of the possible alternatives identified by a given individual on the basis of his knowledge. So, to find oneself into the field 

of logic of prevision means to examine carefully desires or hopes that certain alternatives occur, anxieties and fears 

regarding the occurrence of unfavourable alternatives and to weigh up the pros and cons of each choice trying to reason 

about it in order to distribute, among all the possible alternatives and in the way which will appear most appropriate, one’s 

own sensations of probability (de Finetti & Minisola 1961; de Finetti, 1955, 1963, 1969).  

Remark 10 When a particular individual chooses to be guided only by the logic of certainty, after having distinguished 

a set more or less large of possible alternatives in the way which seems to him most effective, he has to stop because the 

question is closed. Remaining within the logic of certainty, the only thing that he could make is a prophecy, that is to 

say, among the cases that he believes possible, he might venture to guess the alternative that, according to him, will 

occur, transforming in this way, but unreasonably, the uncertainty in illusory certainty (de Finetti, 1967b, 1970).  

Remark 11 The space of n random numbers coincides with the n-dimensional vector space 𝒜 after the introduction of a 

coordinate system   , …,  n in 𝒜; by virtue of the fact that each event is a random number, a set of n possible events 
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E , …, En is embedded in 𝒜. From such a set other events, called constituents, are originated: they are identified 
by particular ordered lists of n numbers (  , …,  n), with  i = 0 or  i = 1, i = 1, …, n, each of which is a possible point 

of 𝒬 contained in the vector space 𝒜. Such considerations make clear, from the point of view of the logic of certainty, why 

the probability of an event is automatically incorporated in the prevision of a random number. In fact, going beyond the 

domain of the logic of certainty, we enter into the field of the logic of uncertainty and in the event that X is a random 

number, P(X) is the prevision of X: if I(X) = {  , …,  n}, when we assign to each value  i of X the probability pi (i 

= 1, …, n), with 0 ≤ pi ≤ 1 and ∑pi = 1, it turns out to be P(X) =   p  + … +  npn. The prevision of X coincides 

with the probability of an event E when and only when X, admitting only two possible values, 1 and 0, is an event, thus 

prevision and probability are two different words that express the same concept extra-logical, subjective and personal 

(de Finetti & Emanuelli, 1967a).  

Remark 12 The die symmetry and the knowledge of an observed frequency are elements which any individual carefully 

examines to express his opinion from which the subjective probability is originated. According to the subjectivistic 

conception, the only probability that exists in any case is the subjective probability. It must be understood as the degree of 

belief of a certain individual in the occurrence of a specific event; anyway, probability of an event E is not an intrinsic 

characteristic of E because it depends on the information that the individual making the probabilistic evaluation has, so it 

is always subordinate to his present state of knowledge which can change for the possible attainment of new essential 

information and for the passage of time (de Finetti, 1963).  

Remark 13 A probabilistic evaluation, known over a set of whatever events, always expresses the opinion of a given 

individual, real or hypothetical; the only admissible restriction is that this opinion is coherent, consequently, if it is not 

coherent it should be corrected by the individual in order to make it coherent (de Finetti, 1930a, 1930b). 

7. Objective Statements and Subjective Evaluations  

We reason in accordance with probability theory, although without awareness and in a rather approximate way, when 

we incessantly make our forecasts and assumptions which constitute the usual object of our thinking in all the practical 

circumstances of life, more than the much rarer judgements which are logically certain. In fact, we reason in all the 

circumstances of life, where we base ourselves on probabilities, by applying without awareness the two fundamental 

theorems of probability calculus, the theorem of total probability and the theorem of composite probability: our way of 

thinking is not forced by logical requirements but is only suggested by psychological motives when we judge on the 

probability that it will rain or not in order to decide to take or not the umbrella, on the probability for an individual to 

arrive in time at the postal office on foot in order to decide to go by bus or taxi or not, on the probability that different 

performances which have been announced for tonight are more or less interesting to decide whether to go and where 

and so on. Regarding these examples, nobody can certainly think that they are cases of objective probability because it 

is not be able to solve such problems. Instead, according to the subjectivistic viewpoint, every question has an exact and 

satisfactory answer, because it is always based on the psychological degree of confidence of a certain individual in 

relation to a certain assumption. In all cases, including the gambling games or statistics or molecular physics cases or 

any other case whose objective probability coincides with the subjective one, it is evidently only a matter of a pure 

psychological feeling. Anyway, the theorems of probability theory are always valid, thus justifying one of our most 

important empirical ways of reasoning. 

Hence, any statement of probability calculus has an objective or logical meaning unlike probability evaluations whose 

meaning can only be empirical. For example, we consider a deck of Italian playing cards which consists of 40 cards 

divided into 4 suits; in particular, Neapolitan playing cards are divided into swords, cups, coins and clubs, whose 3 face 

cards per suit are knave or fante in Italian, knight or cavallo in Italian, king or re in Italian. Thus, if we suppose that the 

probability of drawing a fante or cavallo or re is P(E ) = P(E ) = P(E ) = 1 10⁄ , then we conclude that the probability of 

E, where E consists in drawing a face card, is given by P(E) = P(E ) + P(E ) + P(E ) =  10⁄ : we make a purely logical 

reasoning because it is logically true that the three considered events are mutually exclusive and under such a condition 

it is logically certain that the theorem of total probability is valid. However, probability evaluations have an empirical or 

subjective meaning: if the probability of drawing a fante is 1 10⁄  for us, we always express a subjective opinion. In 

accordance with the subjectivistic viewpoint, we do not believe that the probability of any event E, P(E), with 0 ≤ P(E) 

≤ 1, is objectively determined because we consider, on the contrary, all the functions P as formally admissible laws 

when they are not in conflict with theorems of probability calculus. Evidently, the choice of one of these functions is 

left to each individual who chooses according to his subjective opinion. Regarding the previous example, we consider 

admissible all the    functions P for which it turns out to be P(E ) = x, P(E ) = y, P(E ) = z, P(E) = x + y + z, with x, 

y, z ≥ 0 and x + y + z ≤ 1. The choice of functions for which we have P(E ) = P(E ) = P(E ) = 1 10⁄ , although 

suggested by spontaneous and universally approved remarks, is a very particular case and it is not forced by logical 

requirements of which mathematics can or must be interested. Obviously, recognizing if certain premises are sufficient 

or not in order to involve a certain conclusion becomes very difficult when the problem under consideration is not as 
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simple as in the previous example. However, such a problem is never solved when there is not a clear separation 

between all that is logical or objective and all that is empirical or subjective (de Finetti, 1930a, 1930b).  

8. Criteria for the Probabilistic Evaluations  

It is representative of one of the primary necessities of science the fact that it must not run the risk of taking as notions 

illusory combinations of terms of a metaphysical nature, but it must work with concepts of verified validity in a 

practical meaning. Therefore, its definitions must be operational, that is to say, must reduce a scientific concept not 

simply to sentences having only an apparent meaning, but to real experiences which are at least theoretically possible. 

Thus, the criteria which may be used to reveal concretely P(X) or, in particular, P(E) according to the opinion of a 

certain individual are two and entirely equivalent: they are based upon the identification of the practical consequences 

that a given individual knows to accept and accepts when he expresses his evaluation of P(X) or P(E) and, if coherently 

applied, lead to the same P(X) = x̅ in the event that X is estimated or to the same P(E) = p in the case that E is 

evaluated. If X is evaluated, both criteria contain the random magnitude X − x̅, expressed by the difference between the 

real value X and the one chosen by a certain individual at his own will, P(X) = x̅. The first criterion provides that, after 

the subjective choice of x̅, the individual is obliged to accept any bet unilaterally determined by an opponent, whose 

gain is c(X − x̅), with c any betting amount, positive or negative, equally determined by the opponent; in particular, if c 

= 1, the gain of the bet is (X − x̅), while if c = − 1, it is (x̅ − X). On the contrary, the second criterion provides that, 

after choosing x̅, the individual must suffer the penalty (X − x̅)2, positively proportional to the square of the difference 

between X and x̅ (de Finetti, 1970). In particular, if an event E is evaluated, both criteria contain the magnitude E − p 

given by the difference between the real value E, 1 or 0 according to whether E occurs or does not occur, and the one 

chosen by a certain individual according to his subjective opinion, P(E) = p. The first criterion provides that, after the 

choice of p by a determined individual, he is obliged to accept any bet unilaterally determined by an opponent, whose 

gain is c(E − p), where c is any betting amount, positive or negative, established by the opponent; in particular, if c = 1 , 

the gain is (E − p), while if c = − 1, it is given by (p − E). On the contrary, the second criterion provides that, after the 

subjective choice of p, the individual must suffer the penalty (E − p)2. Evidently, in order to measure subjective 

probabilities, that is to say, to translate our degree of uncertainty, regarding judgements, into numerical determinations, 

the degree of confidence that we have in the occurrence of events is expressed by the conditions at which one would bet. 

There is a difference between judging if a bet is fair and judging how convenient it is for a certain individual, at a 

certain time, under certain circumstances, to accept it; moreover, the convenience will be judged differently, depending 

on the character of the individual and his love of risk. In other words, there is an essential difference between the case of 

one occasional and well defined betting and the abnormal case of an individual who would consistently and 

interminably be driven to betting.  

9. Necessary and Sufficient Conditions of Coherence  

The choice of P(X) or P(E), even if it is subjective, should not be contradictory and takes place within the set of 

coherent previsions of X or in that one of coherent probabilities of E; both the sets contain values objectively admissible 

which are independent of the personal views of any individual and also of the judgements about others’ opinions. The 

necessary and sufficient conditions for coherence are two and completely equivalent, one for each evaluation criterion 

(de Finetti, 1970).  

Regarding the first definition of coherence, it is assumed that the individual who subjectively evaluates P(Xi) or P(Ei), 

with i = 1, …, n, does not want to make bets on Xi or Ei that give him an inevitable loss, therefore a set of his 

previsions or probabilities is not intrinsically contradictory when and only when, among the linear combinations of bets 

that he is obliged to accept, there are not combinations with gains all uniformly negative. Analytically, this means that 

for the numerical values of the random magnitude Y = c1(X1 − x̅1) + … + cn(Xn − x̅n) or the random magnitude Y = 

c1(E1 − p
1
) + … + cn(En − p

n
) must not be, objectively, that sup I(Y) is negative; conversely, we have that inf I(Y) 

cannot be positive. Even if the bets are an infinite number, Y is always linear combination of a finite number of them. 

Regarding the second definition of coherence, it is assumed that the individual who subjectively evaluates P(Xi) or 

P(Ei), with i = 1, …, n, does not prefer a given penalty if he can choose another penalty certainly smaller, therefore a set 

of his previsions or probabilities is coherent when and only when he could not choose them in order to make his penalty 

certainly and uniformly smaller. Analytically, this means that there are not any evaluations P*(Xi) or P*(Ei) that 

replaced with the evaluations P(Xi) or P(Ei) are such that for all the possible points, (X1, …, Xn) or (E1, …, En), the 

penalty L* = ∑ (Xii  − P*(Xi))
2 ⋅ (1/ki)

2 is uniformly smaller than the penalty L = ∑ (Xii  − P(Xi))
2 ⋅ (1/ki)

2 or the 

penalty L* = ∑ (Eii  − P*(Ei))
2 ⋅ (1/ki)

2 is uniformly smaller than L = ∑ (Eii  − P(Ei))
2 ⋅ (1/ki)

2, with k1, …, kn which 

are arbitrarily predetermined and homogeneous towards Xi or Ei.  

A prevision P is coherent if its use cannot lead to an inadmissible decision such that a different possible decision would 

have certainly led to better results, whatever happened. If the sets of possible values for X and Y are, respectively, I(X) 
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= {  , …,  n} and I(Y) = {y , …, yn}, when we assign the same weights pi (i = 1, …, n), where we have 0 ≤ pi ≤ 1 

and ∑pi = 1, to each  i and yi we will have P(X + Y) = P(X) + P(Y), that is to say, P is additive; a prevision P of 

the random number X must satisfy the inequality inf I(X) ≤ P(X) ≤ sup I(X), that is, P(X) must not be less than the 

lower bound of the set of possible values for X, which is inf I(X), nor greater than the upper bound, which is sup I(X). A 

prevision P of X must also be linear, that is, we have P(aX) = aP(X), for every real number a. In general, we have P(aX 

+ bY + cZ + …) = aP(X) + bP(Y) + cP(Z) + …, with a, b, c, … whatever real numbers, for any finite number of 

summands. So, coherence reduces to linearity, which contains additivity property, and convexity. Similarly, if E is an 

event, when we have 0 ≤ P(E) ≤ 1, its evaluation is coherent; if E , …, En are mutually exclusive events, their 

evaluations are coherent when we have P(E  + … + En) = P(E ) + … + P(En) (de Finetti, 1970).  

10. Geometric Interpretation of Conditions of Coherence  

Given in � n random numbers X1, …, Xn, with 𝒜 n-dimensional vector space having coordinate system x1, …, xn, 

every prevision, coherent or not, of each random number Xi is always a point (P(X1), …, P(Xn)) of 𝒜. In this space, 

moreover, the coordinates of the points 𝒬 of the set 𝒬 of possible points are identified by ordered lists (x1, …, xn) of n 

real numbers, with x1 that is a possible value of X1, …, xn that is a possible value of Xn. Thus, on the basis of the 

geometric interpretation of the necessary and sufficient conditions for coherence, the set 𝒫 of coherent previsions P is 

the closed convex hull of the set 𝒬 of the possible points Q of 𝓐 (de Finetti, 1970).  

Remark 14 The first condition of coherence involves that a point P of 𝒜, with coordinates (P(X1), …, P(Xn)), is an 

admissible prevision if and only if no hyperplane separates it from the set 𝒬 of the possible points 𝒬 of 𝒜: this 

characterizes the points of the convex hull, for which it is said that every linear equation between the numbers Xi, c1X1 

+ … + cnXn = c, must also apply to the previsions P(Xi), c1P(X1) + … + cnP(Xn) = c, as well as any inequation 

between them, c1X1 + … + cnXn ≥ c, must also be satisfied by the previsions, c1P(X1) + … + cnP(Xn) ≥ c.  

Remark 15 The vector space 𝒜 is Euclidean when it is provided with a scalar product positive-definite: by virtue of the 

metric ρ2 = ∑ (xi ki⁄ )i
2, it results L = (P − Q)2, that is to say, the penalty L coincides with the square of the distance 

between the prevision-point P and the outcome-point Q. Thus, regarding the second condition of coherence, the points 

of the convex hull also enjoy the property according to which P cannot be moved in such a way as to reduce its distance 

from all points Q. 

The points which are admissible in terms of coherence can be obtained as barycentres of, at most, n + 1 points Qj of 𝒬 

in the n-dimensional space or they are adherent points of 𝒬, but not belonging to 𝒬. More explicitly, every 

prevision-point P of 𝒫 is admissible in terms of coherence when it is a barycentre of possible points Q
j
 of 𝒬, with 

non-negative weights, summing to 1: however, if all the weights are concentrated at a unique point Q
j, also the possible 

points turn out to be coherent previsions (de Finetti, 1970).  

11. Conclusions  

Probability exists only in our own judgement because it is always the degree of belief of a given individual for the 

occurrence of a given event. Nevertheless, when it needs, any individual can assess the probability of an event on the 

basis of an observed frequency or dividing the number of favourable outcomes to it by the total number of possible 

outcomes which are equally possible. In fact, the subjectivistic theory is not in contrast with any other provided that 

such different interpretations accept the role of particular criteria for the evaluation of the probability and give up the 

pretence of leading to a definition of probability. Each criterion for subjective evaluations furnishes an operational 

definition of probability or prevision P and together with the corresponding conditions of coherence can be taken as a 

foundation for the entire theory of probability. When we study this we show the dichotomy between the subjective or 

psychological aspect of probability and the objective or logical or geometrical one. Analytically and objectively, the 

first definition of coherence is similar to the property of stable equilibrium of the barycentre, while the second definition 

is similar to the property of minimum of the moment of inertia which characterizes the barycentre once again. When the 

properties of the barycentre are not satisfied, the set of previsions of a given individual cannot be coherent. Given the 

probabilities of the possible values, finite in number, of X, its barycentre, which is P(X), can be expressed as a function 

of them; the prevision of X does not presuppose the introduction of the concept of continuous probability distribution 

that, extending to the general case the concept of mathematical expectation or mean value of X, requires the use of 

mathematical tools more advanced than necessary.  
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Abstract 

This paper studies the effectiveness of the Multivariate Kurtosis in comparing the Clayton Copula and the 

Farleigh-Gumbel-Morgenstern Copula in modeling when the actual populations follow either the bivariate exponential 

distribution or the bivariate normal distribution. The study shows that the Multivariate Kurtosis (as defined by Mardia) 

is a very effective tool in comparing Copulas and that Farleigh-Gumbel-Morgenstern Copula is slightly more accurate 

than the Clayton Copula for modeling.  

Keywords: Multivariate, Kurtosis, Copula   

1. Introduction 

The copulas are used as a general way of formulating a multivariate distribution in such a way that the dependence can 

be infused in a reasonable manner. This is based on the simple idea that the joint distribution can be represented as a 

transformation of the underlying marginal distributions (see Sklar 1959). There are several types of copulas and each 

differ according to the strength of the dependence and the direction of the association. Ali et al (1978) studied the use of 

Copulas to construct the bivariate logistic distribution.  Aas et al (2009) and Low et al (2013) investigated the 

applicability of paired (or “Vine”) Copulas in the context of finance and portfolio management. Schölzel,and 

Friederichs (2008) studied the use of Copulas in climatology. Heinen and Rengifo (2007), Nikoloulopoulos and Karlis 

(2009, 2010), Karlis and Pedeli (2013) constructed bivariate integer-valued autoregressive models based on Copulas. 

For further literature review, the interested readers are referred to Nelson (2006). Due to the availability of many Copula 

models and its applications in many subject fields, there is a lot of  interest in identifying the “best” Copula model. The 

question is “How do you compare these different Copula models ?”. Here in this paper, we want to compare two 

particular copulas namely; Clayton Copula, and Farleigh-Gumbel-Morgenstern Copula. The Clayton Copula belongs to 

the family of Archimedean Copulas while the Farleigh-Gumbel-Morgenstern Copula does belong to the 

non-Archimedean family. We consider these copulas in the context of modeling the bivariate exponential distribution 

and the bivariate normal distribution.   In order to compare these two Copulas, we use kurtosis as a tool. The kurtosis 

has been in use for a long time to study the „peakedness‟ of the probability distributions. In fact, it is used as a measure 

to identify the distributions. For example, for the normal distribution the kurtosis is 3, for the bivariate normal 

distribution the kurtosis is 8, for the exponential distribution the kurtosis is 9, and so on.  

In multivariate statistical analysis, normality of the sample is assumed in many cases. Hence, assessing for multivariate 

normality is an important problem. Similarly, in actuarial models, the bivariate exponential distribution is important and 

so verification of bivariate exponential is equally important. For this purpose, we will use the bivariate kurtosis as 

defined in Mardia (1970). In fact, there are several definitions for the Multivariate kurtosis (See, Mardia (1970), 

Malkovich and Afifi (1973), Srivastava (1984), and Mardia (1970, 1974)). Mardia defined multivariate kurtosis as a 

natural extension of the univariate case. To assess the multivariate normality, multivariate kurtosis has been defined and 

its asymptotic distributions under the multivariate normality have been given in Mardia (1970). Furthermore, Srivastava 

(1984) has considered another definition by using principal component scores and has derived their asymptotic 

distributions under the null hypothesis. Recently, Miyagawa et al (2011) proposed a sample measure of multivariate 

kurtosis of the form containing Mardia (1970) and Srivastava (1984). According to Mardia (1970), the multivariate 

kurtosis can be defined as    
2

1

2 




 


   XXE where X  is the observation vector;   is the mean vector; 
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and  is the variance-covariance matrix. 

In this paper, we propose a method to compare the copulas by using the bivariate kurtosis. We compare the copula 

through numerical calculations and graphs. Moreover, we check the effectiveness of this approach by estimating the 

Euclidean distance between the Copula and the actual distribution. The multivariate kurtosis seems to be a good 

measure for comparing the Copulas. 

2. Methodology 

Copulas: 

According to the theory of probability, every joint probability distribution is a function of the marginal distributions (see 

Sklar (1959) for the details). Copula is a probability model that gives us a way to construct the joint distribution from 

the marginal distributions. In other words, the Copulas are mathematical models that approximate the multivariate 

distribution function. There are two families of Copula; Archimedean family of Copulas and the non-Archimedean 

family of Copulas. Each family consists of several kinds of Copulas.  Some of these Copulas are of the discrete type 

while others are of continuous type. 

Next, we present the definitions and the methodology necessary for the construction of the Copulas. 

Definition: 

A copula is a multivariate joint distribution defined on the k  dimensional unit cube  k1,0  such that every marginal 

distribution is uniform on the interval  1,0 . 

 

In other words,    1,01,0: 
k

C  is a k dimensional copula if 

 

(a).  uC = 0 whenever  ku 1,0  has at least one component equal to 0. 

(b).   iuuC   whenever  ku 1,0  has all the components equal to 1 except the 
thi one which is equal to iu . 

(c).  uC  is k increasing. 

3. Copula Construction 

Archimedean Copula: 

This is a family of copulas and the k dimensional Archimedean Copula is defined as follows. 

   







 




k

i

ik uuuuC
1

1

21 ,.......,,                               1.2  

where  is known as the generator function and iu  is the marginal distribution of the 
thi component.  

Any generator function which satisfies the following properties is the basis for a copula. 

  01  ,  limit    x  ,    0'  x  ,   0"  x                    0x  

Special Case: 

Clayton Copula 

Let the generator function    u  1u  where .1  One can show that the functional inverse, 

 u1  =   /1
1


 u . 

In the bivariate case, the Archimedean formulation yields the Clayton Copula as  

     /1

2121 1,


 uuuuC                              2.2  



 

 

www.ccsenet.org/ijsp                  International Journal of Statistics and Probability                 Vol. 5, No. 4; 2016 

69 

Non-Archimedian Copula: 

The non-Archimedian copulas do not possess a generator function. These copulas are distinctly different from the 

Archimedian copulas. 

Special Case: 

Farleigh-Gumbel-Morgenstern Copula: 

     212121 1.1.1.., uuuuuuC                                  3.2  

where is the dependence parameter and 1 . 

Modeling the Joint Distribution by Copulas: 

Let us suppose that the joint distribution of  YX ,  is  yxF ,  is unknown, but the marginal distributions are known. 

Note that  yxF ,  is the joint distribution. 

Let  XFu 11    and   YFu 22   where 1F  and 2F are the marginal distributions of X and Y respectively. 

Theorem #1 (Sklar): 

If X and Y are continuous random variables then there exists a continuous Copula  21 ,uuC  such that 

   yxFuuC ,, 21  . 

Theorem #2: 

The conditional distribution of Y given X  =  
 

1

21 ,

u

uuC




                                          4.2  

Note:  We will use the above results in Copula modeling. 

Our objective here is to see whether the Copula models nearly resemble the actual populations and to identify the 

populations as either as “normal” or “non-normal” based on the kurtosis. Towards this, we will consider the bivariate 

exponential and the bivariate normal populations in this paper. 

First, we will consider the bivariate exponential population. In other words, the bivariate observations  ii yx , follows 

the bivariate exponential distribution with the cumulative distribution function (cdf) given by 

            yxyxyx
eeeyxF

,min..... 21211,
 

                         5.2      

In the absence of any knowledge about the actual population distribution, we propose to use the Copulas to model this 

population distribution based on the marginal distributions. Here, we assume that the marginal distributions are known. 

Say, that for the X variable, its marginal distribution  xF1  is given by  xF1  = 
x

e
.11


 . Similarly, the 

marginal distribution of the Y variable is given by   y
eyF 2.

2 1


 . 

Modeling Clayton Copula: 

          
1

2121 1,



 uuuuC                                6.2  
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where 1u and 2u are the marginal distributions of X and Y respectively. 

In order to generate the Clayton Copula, we will use Theorem #2. 

For the Clayton Copula, 

         








1

1

21

1

.1 uuu
u

C
 = v   (say)                       7.2  

where v  is the conditional distribution of Y given X . So, v  is uniformly distributed between 0 and 1. 

This means that, 

    2u  yF2  = 
 









1

1

1 1.1




































 vu                               8.2        

So, 
 









1

1

1

.
111 2




































 vue

y
                                                       9.2  

and
 


































































1

1

1

2

111ln.
1

vuy                                                   10.2  

Also, note that 
x

eu 1.

1 1


  

This means that, 

           1

1

1ln.
1

ux 





                                    11.2   

Note that  is the dependence parameter and it can be estimated by using the relationship that Kendall‟s Tau, 

 2




 . By using equations  10.2  and  11.2  the Clayton copula based samples can be generated. 

Modeling Farleigh-Gumbel-Morgenstern Copula: 

     212121 1.1.1.., uuuuuuC                              12.2         

where is the dependence parameter and 1 . 

Note that    zuuuu
u

C





2

2

111

2

.21..                                                13.2  

where z represents the conditional distribution of X given .yY   

This yields the quadratic equation, 

      0..21.1..21. 12

2

12  zuuuu                           14.2  



 

 

www.ccsenet.org/ijsp                  International Journal of Statistics and Probability                 Vol. 5, No. 4; 2016 

71 

The solution is given by 

   
       

 2

2

2

22

1
.21..2

..21..4.21.1.21.1

u

zuuu
u









                 15.2  

Note that, 
x

eu
.

1
11


  and  
y

eu
.

2
21


                                                   16.2  

Now, let  2.21.1 uA    and      zuuB ..21..4.21.1 2

2

2    

This means, 

 














2

1.2
ln.

1

1 BA

A
x


 and  

 

2

21ln



u
y


                                              17.2  

Note that again  is the dependence parameter and it can be estimated by using the relationship that the Pearson 

Coefficient of Correlation
4


  . By using equation  17.2 , Farleigh-Gumbel-Morgenstern copula based samples 

can be generated. 

Next, in order to simulate the samples directly from the Bivariate Exponential distribution, we will do the following. 

Let us choose a value  such that    min 21 , . Next, simulate random observations 
~

U according to the 

exponential distribution with mean = 
  1

1
. Similarly, simulate random observations 

~

V according to the 

exponential distribution with mean = 
  2

1
. Also, we can simulate 

~

W according to an exponential distribution 

with mean = 


1
 . 

Now, let us define, 









~~~

,min WUX   and  









~~~

,min WVY  . We can easily show that 






 ~~

,YX  jointly 

follow the bivariate exponential distribution as given by  6.2 . We are interested in studying two things in this paper. 

(i).The suitability of the Copula models to study the covariance structure. 

(ii).The use of  kurtosis as a tool to check the validity of the Copula models.   

Kurtosis: 

Let us first introduce the notations that we will use in the context of kurtosis calculation. 

X  Mean of X   

Y  Mean of Y  

∑  = Covariance Matrix of  YX ,  

Next, we present Mardia‟s definition for Kurtosis for the multivariate situation.   
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Kurtosis (Mardia) 

The bivariate kurtosis,  is given by  

       2
1 ,,

T

YXYX YXYXE   
                        18.2  

Next, to derive the kurtosis, let us note that the inverse of the variance-covariance matrix is 

   ∑
1

= 








2221

1211

aa

aa
                                       19.2     

Then, one can easily show that  

         222

12

42

22

42

11 ...4.. YXYX YXEaYEaXEa    

         YXYX YXEaaYXEaa   ....4....2
3

1211

22

2211  

                          3

1222 ....4 YX YXEaa                             20.2  

Note that   122

11 1.


  Xa                                                               21.2  

                   122

22 1.


  Ya                                    22.2  

                 
 

YX

a




.

1.
12

12




                                     23.2  

where  is the correlation coefficient between X and Y . 

Next, we present the following results in order to evaluate the kurtosis. The proofs can be found in the Appendix. 

If the joint probability distribution is a bivariate normal then 

Result 1:     22

YX YXE    =   222222
...31.. YXYX    

Result 2:     YX YXE  
3

 = YX  ...3
3

 

Result 3:     33
...3 YXYX YXE    

Result 4: Kurtosis, 8 .  

If the joint distribution is bivariate exponential with the density function 

 
   

   

 




















yxe

yxe

yxe

yxf
y

xy

yx

,.

,..

,..

,
.

..

12

..

21

21

12

21













 

then the following results are true. 

Result 5:    
 







2121 ..
YX YXE  
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Result 6:     
 32121

2

2

2

1

22

..

.8

.

1
.









 YX YXE  

Result 7:     
   32121212

3

1

3

..

.6

..

.3
.














 YX YXE  

Result 8:    
   3212121

3

21

3

..

.6

..

.3
.














 YX YXE  

Result 9: Kurtosis, 
 

    
   321

22

2

2

2

1

2

21

2

2

.1

..3.21...2..8

1

.20
20
















  

Note that the kurtosis will be 20 when the components are independent. 

4. Results 

- Numerical Result: 

Kurtosis Calculation (Bivariate Exponential): 

The Kurtosis given by  20.2 is estimated for the data generated from the Morgenstern Copula and the Clayton Copula 

and in addition to the simulated data from the bivariate exponential distribution by using the following parameters. 

,4.01      3.02     ,     1.0    , 7.0  

       Kurtosis Estimate (simulated bivariate exponential) = 18.036 

       Kurtosis (Actual) = 21.086 

       Kurtosis Estimate (Morgenstern Copula) = 22.585 

       Average distance estimate (of Morgenstern Copula from actual Population) =5.631 

       Kurtosis Estimate (Clayton Copula) = 30.036 

       Average distance estimate (of Clayton Copula from actual Population) =5.927 

- Graphical Result (Bivariate Exponential):  

Here, we present the scatterplots based on the copulas. The blue dots in the scatterplot represent the data that was 

simulated from the bivariate exponential distribution with the sample size = 1000. The red dots in the scatterplot 

represent the data that was generated by using the Morgenstern Copula while the green dots represent the data generated 

from the Clayton Copula.  
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- Kurtosis Calculation (Bivariate Normal): 

The Kurtosis given by  20.2 is estimated for the data generated from the Morgenstern Copula and the Clayton Copula 

and in addition to the simulated data from the bivariate normal distribution by using the following parameters. 

      25.21  , 33.32  ,   175.0 , 25.21  , 33.32   

       Kurtosis Estimate (simulated bivariate normal) = 7.761 

       Kurtosis (Actual) = 8 

       Kurtosis Estimate (Morgenstern Copula) = 7.735 

       Average distance estimate (of Morgenstern Copula from actual Population) =0.515 

       Kurtosis Estimate (Clayton Copula) = 10.165 

       Average distance estimate (of Clayton Copula from actual Population) =5.637 

- Graphical Result (Bivariate Normal):  

Here, we again present the scatterplots based on the copulas. The blue dots in the scatterplot represent the data that was 

simulated from the bivariate normal distribution with the sample size = 1000. The red dots in the scatterplot represent 

the data that was generated by using the Morgenstern Copula while the green dots represent the data generated from the 

Clayton Copula.  

 

5. Discussion and Conclusion 

The Copulas allow us to model the multivariate distributions from the marginal distributions. There are many types of 

Copulas. The Farleigh-Gumbel-Morgenstern Copula is used in Actuarial models and also in Engineering related 

reliability studies. The Clayton Copula is used mostly in Finance and Marketing. This paper is focused on comparing 

the Farleigh-Gumbel-Morgenstern Copula with the Clayton Copula. Note that these two copulas belong to two different 

families with the Clayton Copula coming from the Archiemedian Family and the Farleigh-Gumbel-Morgenstern Copula 

from the Non-Archemedian Family. We chose the parameters so that the mean vector and the variance-covariance 

matrix would be the same for the bivariate exponential and the bivariate normal distributions. Note that from the 

numerical results, it is obvious that the Farleigh-Gumbel-Morgenstern Copula (or simply Morgenstern Copula) is 

slightly more accurate than the Clayton Copula for modeling both the bivariate exponential distribution and the 



 

 

www.ccsenet.org/ijsp                  International Journal of Statistics and Probability                 Vol. 5, No. 4; 2016 

75 

bivariate normal distribution. Also, the scatterplots seemed to support the numerical results based on the Kurtosis. 

Furthermore, from this paper it is evident that the multivariate kurtosis is a reasonable measure to compare these two 

Copulas. 
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Appendix: 

Result 1:      22

YX YXE    =   222222
...31.. YXYX    

Proof: Note that,         2
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.....1.\ Y

Y

X
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XXX YYYXE 









   

This implies that 
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Result 2:     33
...3. YXYX YXE    

Proof: Note that,    Y

Y

X
X YYXE 




  ..\    

This implies that 

         YXEYEYXE XYYX \..
33

   

=    
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Y YYE 




 ...

3
 

=  4
.. Y

Y

X YE 



   

= 
3

..3 YX   

Result 3:      YXYX YXE  ...3.
33

  

Proof: Follows from symmetry. 

Result 4: Kurtosis, 8 . 

Proof: Note that R.H.S of  15.2  can be written as 
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Result 5:    
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Result 6:     
2

2

2

1

22

.

1


  YX YXE +

 32121 ..

.8






 

Proof:    

Note that     
22

YX YXE        22222 ....2. YEYXEYXE XX    

   YXEYXE YXY ....4...2 2    

                               222
....2 XEYE YYX     

                                 222
....2 YXYX XE                                 1.A  

One can easily show that for the bivariate exponential density, 
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By substituting these equations in  1.A , we get Result 6.   

Result 7:     
   32121212
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 YX YXE  

Proof: 

Note that  
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By substituting the above equations, we get the result.     

Result 8:    
   3212121
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Proof: Follows by interchanging the variables X and .Y   

Result 9: Kurtosis, 
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Proof: Follows from combining all the previous results. 

 

Copyrights 

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 

 



International Journal of Statistics and Probability; Vol. 5, No. 4; July 2016
ISSN 1927-7032 E-ISSN 1927-7040

Published by Canadian Center of Science and Education

The Principle of Indifference Does Not Lead to Contradictions
Wolfgang Tschirk1

1 mathecampus, Vienna, Austria

Correspondence: Wolfgang Tschirk, mathecampus, Mariahilfer Straße 136, 1150 Wien, Austria. Tel: 43-680-126-8416.
E-mail: wolfgang.tschirk@mathecampus.at

Received: May 6, 2016 Accepted: May 20, 2016 Online Published: June 22, 2016

doi:10.5539/ijsp.v5n4p79 URL: http://dx.doi.org/10.5539/ijsp.v5n4p79

Abstract

The Principle of Indifference says that if there are a finite number of propositions and a state of knowledge according to
which none of the propositions is more plausible than any other, then, conditional on that knowledge, all of them have
the same probability. Most researchers reject the principle because there exist counterexamples believed to prove that it
leads to contradictions. We analyse three examples representative of the objections to the principle and show that, rather
than disproving it, they suffer from a common error in applying it. From this and the fact that the Principle of Indifference
complies with plausible reasoning we conclude that it does not lead to contradictions.

Keywords: Principle of Indifference, Principle of Insufficient Reason

1. Introduction

The Principle of Indifference, which dates back to Jakob Bernoulli, can be expressed as follows:

If, given some proposition C, one of the propositions A1, · · · , An must be true and the others must be false
and none of the Ai is more plausible than any other, then, conditional on C, all Ai have the same probability
p(Ai|C) = 1/n .

C is often referred to as someone’s (prior) knowledge, which may or may not contain reasons to favour some proposition
over some other. The rule became known as the Principle of Insufficient Reason. In 1921, Keynes introduced the term
Principle of Indifference (Keynes, 1921). Keynes raised doubt whether the principle was valid and presented counterex-
amples intended to prove that it leads to contradictions and is therefore invalid. Other authors have commented on these
examples and added their own.

Due to the presumed contradictions, most researchers have rejected and still reject the principle (Bartelborth, 2012;
Carnap, 1966; Howie, 2002; Robert, 2007; van Fraassen, 1989). However, in the 1950s, Jaynes derived it from a set
of desiderata for plausible reasoning (Jaynes 1958, 2003). In his probability theory, the principle is a proven theorem; it
cannot be contradictory there, unless the whole theory were contradictory. If it is not, it must be possible to eliminate the
contradictions on the ground of Jaynes’ desiderata. This is what we are going to undertake.

2. Counterexamples to the Principle

We start with three examples Keynes gave in order to demonstrate where the Principle of Indifference fails. For ease of
presentation, we adapt the wording without substantially altering the content.

1. The colour of the book: A person who knows nothing about the colour of a certain book must, according to the
Principle of Indifference, assign the proposition R := The book is red the same probability as its contrary R = The
book is not red, namely p(R) = 1/2 . For the same reason the person must assign the proposition B := The book
is blue the probability p(B) = 1/2 and the proposition G := The book is green the probability p(G) = 1/2 . But
now the proposition R ∨ B ∨ G = The book is red or blue or green would have the probability p(R ∨ B ∨ G) =
p(R) + p(B) + p(G) = 3/2 , which is impossible as probabilities do not exceed unity.

2. Sizes of countries: A person who knows nothing about the sizes of countries must, according to the Principle
of Indifference, assign the proposition E := England is bigger than France the same probability as its contrary
E = England is not bigger than France, namely p(E) = 1/2 . For the same reason the person must assign the
proposition B := The British Isles are bigger than France the probability p(B) = 1/2 . But this is impossible, since
England is only a part of the British Isles; the Isles must surpass France in size with higher probability than England
alone.
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3. Specific volume vs. specific density: A person who only knows that the specific volume of some substance lies
between 1 and 3 (measured in some unit) must, according to the Principle of Indifference, assign the propositions
V := The specific volume lies between 1 and 2 and its contrary V = The specific volume lies between 2 and 3
the probabilities p(V) = p(V) = 1/2 . The reciprocal of the specific volume is the specific density. The person
only knows that it lies between 1/3 and 1, and must therefore assign the proposition D := The specific density lies
between 1/3 and 2/3 the same probability as its contrary D = The specific density lies between 2/3 and 1, namely
p(D) = 1/2 . But this is impossible, since D says (though in other words) that the specific volume lies between 3/2
and 3 and must be more probable than V .

As far as we know, every serious objection to the Principle of Indifference is a modification of one of these examples,
corresponding to one of the following patterns:

1. The pattern of The colour of the book: If one out of two equally probable propositions (The book is red and The
book is not red) is dissected (as The book is not red is dissected into The book is blue, The book is green, and
maybe others, too), the resulting ones (The book is red, The book is blue, The book is green, etc.) cannot be equally
probable; yet the Principle of Indifference says they are equally probable.

2. The pattern of Sizes of countries: A proposition (England is bigger than France) cannot have the same probability
as an obviously more probable one (The British Isles are bigger than France); yet the Principle of Indifference says
it has the same probability.

3. The pattern of Specific volume vs. specific density: Uniform distribution on one scale (equal probabilities for
equally large intervals on the specific volume scale) leads to non-uniform distribution on a different scale (non-
equal probabilities for equally large intervals on the specific density scale); yet the Principle of Indifference requires
uniform distributions on both scales.

Among the objections that correspond to these patterns are: the partitioning incoherence of Laplace’s equiprobability
claimed by Robert (2007), corresponding to pattern 1; Carnap’s life on Mars (Carnap, 1966), corresponding to pattern 2;
Keynes’ urn with black and white balls (Keynes, 1921), van Fraassen’s cube factory (van Fraassen, 1989) and von Mises’
wine/water-paradox (Mikkelson, 2004), all corresponding to pattern 3.

At first sight, the examples seem to disprove the Principle of Indifference; however, we will find that they suffer from a
common error in applying it.

3. Desiderata for Plausible Reasoning

We base our analysis on Jaynes’ desiderata for plausible reasoning, i.e. for assigning degrees of plausibility to propositions
(in Jaynes’ terminology, such plausibility assignment is called a conclusion):

(I) Degrees of plausibility are represented by real numbers.

(II) Plausible reasoning qualitatively corresponds with common sense.

(IIIa) If a conclusion can be reasoned in more than one way, every way leads to the same result.

(IIIb) Every conclusion is based on all available knowledge.

(IIIc) Equivalent states of knowledge lead to equivalent conclusions.

Desideratum (I), together with the convention that a greater plausibility shall correspond to a greater number, guarantees
that 1) any two propositions A and B can be compared with respect to plausibility such that either A is more plausible
than B, or B is more plausible than A, or A and B are equally plausible, and 2) if A is more plausible than B, and B is more
plausible than C, then A is more plausible than C.

From desideratum (II), the following rule, which we call implication rule, can be derived:

If, given C, A implies B and B does not imply A, then, given C, B is more plausible than A.

It corresponds with common sense because, given C, B is true whenever A is true, but B can even be true when A is false.

Desiderata (IIIa)–(IIIc) ensure that reasoning is consistent.
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4. Analysis of the Counterexamples

4.1 Example 1: The colour of the book

We start the examination by asking for the knowledge based on which the probabilities are assigned. Let CR be some
knowledge according to which R is equally plausible as R; then, following the Principle of Indifference, the probability
of R, given CR, is 1/2 : p(R|CR) = 1/2 . Let CB be some knowledge which makes B equally plausible as B, and CG some
knowledge which makes G equally plausible as G, then p(B|CB) = 1/2 and p(G|CG) = 1/2 . Now each of the colours has
a probability of 1/2 to be the colour of the book, but these probabilities are conditional on different knowledge; and

p(R|CR) + p(B|CB) + p(G|CG) = 3/2

does not violate any rule of probability (as CR, CB and CG are different, the sum on the left side of the equation is not a
probability). This has already been observed by Jeffreys in his review of Keynes’ work (Jeffreys, 1922).

As long as CR, CB and CG are not identical, Example 1 does not disprove the Principle of Indifference. The principle
would fail only if there existed a state of knowledge which made R equally plausible as R and, at the same time, B equally
plausible as B and G equally plausible as G. Now we prove by contradiction that such knowledge cannot exist.

Assume that there exists some knowledge C according to which each of the propositions R, B and G is equally plausible as
its respective contrary. First we note that C allows red, blue and green to be possible colours of the book (if, for instance,
red were impossible, then R would be less plausible than R). Then, given C, R implies B but B does not imply R (a red
book is clearly non-blue, whereas a non-blue book does not have to be red); following the implication rule, B is more
plausible than R, conditional on C. Using Jaynes’ notation, where A|B stands for the plausibility of A, given B, we have
thus found

B|C > R|C .

An analogous reasoning shows that R is more plausible than B, conditional on C:

R|C > B|C .

Now remember that C is assumed to make R and R equally plausible:

R|C = R|C .

Putting these relations together, we arrive at

B|C > R|C = R|C > B|C ,

which contradicts the assumption that C makes B and B equally plausible. Therefore, a state of knowledge according to
which each of the propositions R, B and G were equally plausible as its respective contrary does not exist.

From the above follows that Example 1 does not disprove the Principle of Indifference; its paradox results from the
assumption of prior knowledge which cannot exist.

4.2 Example 2: Sizes of countries

As in Example 1, we start by asking for the knowledge based on which the probabilities are assigned. Let CE be some
knowledge according to which E is equally plausible as E; then p(E|CE) = 1/2 . Let CB be some knowledge which makes
B equally plausible as B; then p(B|CB) = 1/2 . We thus obtain

p(E|CE) = p(B|CB) ;

but although England is a part of the British Isles, this equality is not impossible since the probabilities are conditional on
different knowledge.

The Principle of Indifference would fail on Example 2 only if there existed a state of knowledge which contained the
information that England is a part of the British Isles and, at the same time, made E equally plausible as E and B equally
plausible as B. We prove by contradiction that such knowledge cannot exist.

Assume that there exists some knowledge C according to which England is a part of the British Isles and each of the
propositions E and B is equally plausible as its respective contrary. Then, given C, E implies B but B does not imply E
(if England is bigger than France, then the British Isles also are; however, from the premise that the British Isles are
bigger than France, one cannot conclude that England also is); following the implication rule, B is more plausible than E,
conditional on C:

B|C > E|C .
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On the other hand, given C, B implies E but E does not imply B (if the British Isles are not bigger than France, then
England is also not; however, from the premise that England is not bigger than France, one cannot conclude that the
British Isles are not); following the implication rule, E is more plausible than B, conditional on C:

E|C > B|C .

Now remember that C is assumed to make E and E equally plausible:

E|C = E|C .

Putting these relations together, we arrive at

B|C > E|C = E|C > B|C ,

which contradicts the assumption that C makes B and B equally plausible. Therefore, a state of knowledge according to
which England is a part of the British Isles and each of the propositions E and B were equally plausible as its respective
contrary does not exist.

It follows that Example 2 does not disprove the Principle of Indifference; its paradox results from the assumption of prior
knowledge which cannot exist.

4.3 Example 3: Specific volume vs. specific density

Again we ask for the knowledge based on which the probabilities are assigned. Let CV be some knowledge according to
which V is equally plausible as V; then p(V |CV ) = 1/2 . Let CD be some knowledge which makes D equally plausible
as D; then p(D|CD) = 1/2 . We thus obtain

p(V |CV ) = p(D|CD) ;

but although specific volume and specific density are reciprocals of each other, this equality is not impossible since the
probabilities are conditional on different knowledge.

The Principle of Indifference would fail on Example 3 only if there existed a state of knowledge which contained the
information that specific volume and specific density are reciprocals of each other and, at the same time, made V equally
plausible as V and D equally plausible as D. We prove by contradiction that such knowledge cannot exist.

Assume that there exists some knowledge C according to which specific volume and specific density are reciprocals of
each other and each of the propositions V and D is equally plausible as its respective contrary. Then, given C, V (The
specific volume lies between 2 and 3) implies D (equivalent to The specific volume lies between 3/2 and 3) but D does not
imply V; following the implication rule, D is more plausible than V , conditional on C:

D|C > V |C .

On the other hand, given C, D (The specific density lies between 2/3 and 1) implies V (equivalent to The specific density
lies between 1/2 and 1) but V does not imply D; following the implication rule, V is more plausible than D, conditional
on C:

V |C > D|C .

Now remember that C is assumed to make V and V equally plausible:

V |C = V |C .

Putting these relations together, we arrive at

D|C > V |C = V |C > D|C ,

which contradicts the assumption that C makes D and D equally plausible. Therefore, a state of knowledge according
to which specific volume and specific density are reciprocals of each other and each of the propositions V and D were
equally plausible as its respective contrary does not exist.

It follows that Example 3 does not disprove the Principle of Indifference; its paradox results from the assumption of prior
knowledge which cannot exist.

5. Results

We have analysed three examples representative of the objections to the Principle of Indifference and found that, rather
than disproving the principle, they suffer from a common error in applying it. The error can be described as follows: First,
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a state of knowledge is assumed which contains no reason to favour any proposition (out of a certain set of propositions)
over its contrary; second, based on this knowledge, each proposition is assigned a probability in accordance with the
Principle of Indifference; third, the probability assignment is shown to be contradictory and the contradiction is attributed
to the Principle of Indifference. However, as we have proven for each example, a state of knowledge which contains
no reason to favour any of said propositions over its contrary and, at the same time, renders the resulting probability
assignment inconsistent is impossible.

Therefore, none of the examples disproves the Principle of Indifference; the contradiction is always caused by the as-
sumption of prior knowledge which cannot exist.

6. Discussion and Conclusions

The Principle of Indifference is a proven theorem in a probability theory that emerged from a set of desiderata for plausible
reasoning. On the other hand, there exist counterexamples believed to show that it leads to contradictions. Being proven,
the principle cannot be contradictory, unless the whole theory were contradictory. If it is not, it must be possible to
eliminate the contradictions on the ground of the desiderata the theory is built upon.

Based on these desiderata, we have analysed three counterexamples and found that in none of them the principle fails.
Whenever a contradiction arises, it is caused by the erroneous assumption that there be no reason to favour any relevant
proposition over its contrary. In each of the examples we have found such reason; it has never been an empirical reason,
it was always a logical one: Whatever prior knowledge one has with respect to the colour of a certain book and whether
or not it contains reasons to favour or disfavour red, to favour or disfavour blue or to favour or disfavour green – it is
logically impossible that each of the propositions The book is red, The book is blue and The book is green be exactly as
plausible as its negation; and analogous arguments hold with respect to the other examples.

Some opponents to the Principle of Indifference consider only empirical knowledge as relevant knowledge. In his Sizes of
countries example, Keynes explicitely rejects a way out of the contradiction based on logic. However, the use of logical
evidence in plausibility assignments is mandatory because of two reasons: First, it is required by desideratum (IIIb);
second, consistent reasoning would be impossible if the rules of logic could be arbitrarily ignored, in particular, fulfillment
of the desiderata (IIIa) and (IIIc) would not be guaranteed.

As far as we know, every serious objection to the Principle of Indifference corresponds to the pattern of one of the
examples we have analysed. If this is true, then the principle does not lead to contradictions at all.
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Abstract

We consider a fractional 2m factorial design derived from a simple array (SA) such that the (ℓ+ 1)-factor and higher-order
interactions are assumed to be negligible, where 2ℓ ≤ m. Under these situations, if at least the main effect is estimable,
then a design is said to be of resolution R∗({1}|Ωℓ). In this paper, we give a necessary and sufficient condition for an SA to
be a balanced fractional 2m factorial design of resolution R∗({1}|Ωℓ) for ℓ = 2, 3, where the number of assemblies is less
than the number of non-negligible factorial effects. Such a design is concretely characterized by the suffixes of the indices
of an SA.

Keywords: association algebra, balanced fractional factorial design, estimable parametric function, factorial effect, reso-
lution, simple array

1. Introduction

As a generalization of an orthogonal array, the concept of a balanced array (BA) was first introduced by Chakravarti
(1956) as a partially BA. However it is a generalization of the BIB design rather than of the PBIB design. Thus Srivastava
and Chopra (1971) called it by BA. A BA of strength t, size N, m constraints, two symbols and index set {µ(t)

i | 0 ≤ i ≤ t} is
briefly written by BA(N,m, 2, t; {µ(t)

i }). In particular, a BA of strength t = m is called a simple array (SA) (see Shirakura,
1977), and it is written by SA(m; {λx}) for brevity, where λx = µ(m)

x . When t < m, a BA of strength t does not always
exist for given indices µ(t)

i . On the other hand, an SA always exists for any λx and any m. The existence conditions for
a BA of strength t were given by Srivastava (1972) for m = t + 1, t + 2, and Shirakura (1977) for m = t + 3. If the
variance-covariance matrix of the estimators of the factorial effects to be of interest is invariant under any permutation
on the factors, then a design is said to be balanced. Under certain conditions, a BA of strength 2ℓ turns out to be a
balanced fractional 2m factorial (2m-BFF) design of resolution 2ℓ + 1 (see for ℓ = 2, Srivastava, 1970, and for general
ℓ, Yamamoto et al., 1975), where 2ℓ ≤ m. The characteristic roots of the information matrix of a 2m-BFF design of
resolution V, i.e., ℓ = 2, were obtained by Srivastava and Chopra (1971). By using the triangular multidimensional
partially balanced (TMDPB) association scheme and its algebra, their results were generalized by Yamamoto et al. (1976)
and Hyodo (1992) for a resolution 2ℓ+1 design, where 2ℓ ≤ m and m < 2ℓ ≤ 2m, respectively. The concept of the MDPB
association scheme, which is a generalization of an ordinary association scheme (e.g., Bailey, 2004), was introduced by
Bose and Srivastava (1964). The existence conditions for a BA of strength 2ℓ to be a 2m-BFF design of resolution 2ℓ for
general ℓ were obtained by Shirakura (1975,1980). Some algebraic properties of the information matrix of a fractional 2m

factorial (2m-FF) design derived from an SA were investigated by Hyodo and Yamamoto (1988) and Hyodo (1989). As
the extension of the concept of resolution, Yamamoto and Hyodo (1984) discussed the extended concept of resolution for
2m fractions.

Definition 1.1. Under the assumption that the (ℓ + 1)-factor and higher-order interactions are negligible, if the p1-factor,
the p2-factor,· · · , and the pr-factor interactions are estimable, where 0 ≤ p1 < p2 < · · · < pr ≤ ℓ, and furthermore if the
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remaining interactions are not estimable (including the general mean and the main effect), then a design is said to be of
resolution R({p1, p2, · · · , pr}|Ωℓ), where Ωℓ = {0, 1, · · · , ℓ}. In particular, when pi = i − 1 (1 ≤ i ≤ r = ℓ + 1), it is of
resolution 2ℓ + 1, and when pi = i (1 ≤ i ≤ r = ℓ − 1) (or pi = i − 1 (1 ≤ i ≤ r = ℓ)), it is of resolution 2ℓ.

By relaxing the conditions of Definition 1.1, we give the following definition of resolution:

Definition 1.2. Under the same assumptions as Definition 1.1, if at least the p1-factor, the p2-factor,· · · , and the pr-
factor interactions are estimable, where 0 ≤ p1 < p2 < · · · < pr ≤ ℓ, then a design is said to be of resolution
R∗({p1, p2, · · · , pr}|Ωℓ).

Note that the set of resolution R({p1, p2, · · · , pr}|Ωℓ) designs is a subset of resolution R∗({p1, p2, · · · , pr}|Ωℓ) designs. For
example, a resolution R∗({1}|Ω3) design is of resolution R(ω|Ω3), where ω = {1}, {0, 1}, {1, 2}, {1, 3}, {0, 1, 2}, {0, 1, 3},
{1, 2, 3} or {0, 1, 2, 3}. Here when a design is derived from an SA, where the number of assemblies (or treatment combina-
tions) is less than the number of non-negligible factorial effects, there does not exist a resolution R({1, 2}|Ω3), R({1, 3}|Ω3),
R({0, 1, 3}|Ω3), R({1, 2, 3}|Ω3) or R({0, 1, 2, 3}|Ω3) design (see Table 4.1 in latter).

In a practical experiment, the most interesting factorial effect may be the main effect, next may be the two-factor inter-
action, and so on. Using the algebraic structure of the TMDPB association scheme and the matrix equations, Kuwada et
al. (2003) obtained a 2m-BFF design of resolution R∗({1}|Ω3). However their results are very complex. A necessary and
sufficient condition for an SA to be a 2m-BFF design of resolution 2ℓ + 1 for general ℓ has been obtained by Hyodo et al.
(2015), where 2ℓ ≤ m.

In this paper, we consider a 2m-BFF design derived from an SA such that the number of assemblies is less than the number
of factorial effects up to the ℓ-factor interaction, where ℓ = 2, 3. Under these situations, using the suffixes of the indices
λx of an SA, we give a necessary and sufficient condition for an SA to be a 2m-BFF design of resolution R∗({1}|Ω2), i.e.,
of resolution IV, and also we rewrite a necessary and sufficient condition for an SA to be a 2m-BFF design of resolution
R∗({1}|Ω3).

2. Preliminaries

We consider a 2m-FF design T with m factors and N assemblies, where 2ℓ ≤ m, and the (ℓ + 1)-factor and higher-order
interactions are assumed to be negligible. Then the linear model is given by y(T ) = ETΘ + eT , where y(T ) is an N × 1
observation vector, ET is the N × νℓ(m) design matrix, Θ′ = (θ′0; θ′1; · · · ; θ′ℓ), and eT is an N × 1 error vector with mean
0N and variance-covariance matrix σ2IN . Here θ0, θ1, · · · , and θℓ are the general mean, the vector of the main effect,· · · ,
and the vector of the ℓ-factor interaction, respectively, νℓ(m) =

(
m
0

)
+

(
m
1

)
+ · · · +

(
m
ℓ

)
, and Ip is the identity matrix of order

p. The normal equations for estimating Θ are given by MT Θ̂ = E′T y(T ), where MT = E′T ET is the information matrix of
order νℓ(m). If MT is non-singular, then T is of resolution 2ℓ + 1.

Let A(u,v)
α (= A(v,u)′

α ) (0 ≤ α ≤ u ≤ v ≤ ℓ) be the local association matrices of size
(

m
u

)
×

(
m
v

)
of the TMDPB association

scheme, and further let A#(u,v)
β (= A#(v,u)′

β ) (0 ≤ β ≤ u ≤ v ≤ ℓ) be the matrices of size
(

m
u

)
×

(
m
v

)
(see Yamamoto et al., 1976),

where the relation between A(u,v)
α and A#(u,v)

β is given by

A(u,v)
α =

u∑
β=0

z(u,v)
βα A#(u,v)

β for 0 ≤ α ≤ u ≤ v

and

A#(u,v)
β =

u∑
α=0

zβα(u,v)A
(u,v)
α for 0 ≤ β ≤ u ≤ v.

Here

z(u,v)
βα =

α∑
b=0

(−1)α−b
(
u − β

b

)(
u − b
u − α

)(
m − u − β + b

b

)√(
m − u − β

v − u

)(
v − β
v − u

)/(v − u + b
b

)
for u ≤ v (1)

and

zβα(u,v) =ϕβz
(u,v)
βα

/ {(m
u

)(
u
α

)(
m − u

v − u + α

)}
for u ≤ v
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(see Shirakura and Kuwada, 1976, and Yamamoto et al., 1976), where ϕβ =
(

m
β

)
−

(
m
β−1

)
. Then some properties of A#(u,v)

β

are cited in the following:

A#(u,w)
β A#(w,v)

γ = δβγA#(u,v)
β ,

u∑
β=0

A#(u,u)
β = I(m

u) (2)

and

rank{A#(u,v)
β } = ϕβ,

where δβγ is the Kronecker delta.

Let D(u,v)
α (= D(v,u)′

α ) (0 ≤ α ≤ u ≤ v ≤ ℓ) and D#(u,v)
β (= D#(v,u)′

β ) (0 ≤ β ≤ u ≤ v ≤ ℓ) be the matrices of order νℓ(m) such that

the (u + 1)-th row block and the (v + 1)-th column block of D(u,v)
α and D#(u,v)

β are given by A(u,v)
α and A#(u,v)

β , respectively,
and zero at elsewhere. Then the information matrix MT is given by

MT =

ℓ∑
β=0

ℓ−β∑
u=0

ℓ−β∑
v=0

κu,v
β D#(u+β,v+β)

β

(see Yamamoto et al., 1976), where T is a BA(N,m, 2, 2ℓ; {µ(2ℓ)
i }). Here the relation between κu,v

β and µ(2ℓ)
i is given by

κu,v
β

(
= κv,u

β

)
=

u+β∑
α=0

z(u+β,v+β)
βα γv−u+2α for 0 ≤ u ≤ v ≤ ℓ − β and 0 ≤ β ≤ ℓ, (3)

where

γ j =

2ℓ∑
i=0

j∑
p=0

(−1)p
(

j
p

)(
2ℓ − j

i − j + p

)
µ(2ℓ)

i for 0 ≤ j ≤ 2ℓ. (4)

The relation between the indices µ(2ℓ)
i of a BA of strength 2ℓ and λx of an SA is given by

µ(2ℓ)
i =

m∑
x=0

(
m − 2ℓ
x − i

)
λx for 0 ≤ i ≤ 2ℓ. (5)

Note that size N(=number of assemblies) of an SA(m; {λx}) is given by N =
∑m

x=0

(
m
x

)
λx. Furthermore MT is isomorphic

to the symmetric matrices ||κu,v
β ||(= Kβ, say) of order (ℓ − β + 1) , i.e., there exists an orthogonal matrix P of order νℓ(m)

such that
P′MT P = diag [K0; K1, · · · ,K1; K2, · · · ,K2; · · · ; Kℓ, · · · ,Kℓ] , (6)

where Kβ (0 ≤ β ≤ ℓ) are with multiplicities ϕβ. From (6), the following is immediately:

Lemma 2.1. Let T be an SA(m; {λx}). Then the information matrix MT is non-singular, i.e., T is of resolution 2ℓ + 1, if
and only if every Kβ (0 ≤ β ≤ ℓ) is non-singular, i.e., rank{Kβ} = ℓ − β + 1 for all β.

From (1), and (3) through (5), we have the following (see Hyodo and Yamamoto, 1988):

Lemma 2.2. Let T be an SA(m; {λx}). Then we have

κu,v
β =

m−β∑
x=β


2β

/√(
m − 2β

u

)
√

λx

u∑
p=0

(−1)p
(
x − β
u − p

)(
m − β − x

p

)
√(

m − 2β
x − β

)
×


2β

/√(
m − 2β

v

)
√

λx

v∑
q=0

(−1)q
(
x − β
v − q

)(
m − β − x

q

)
√(

m − 2β
x − β

)
for 0 ≤ u ≤ v ≤ ℓ − β, 0 ≤ β ≤ ℓ, and 2ℓ ≤ m.
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Let Fβ (0 ≤ β ≤ ℓ) be the (ℓ − β + 1) × (m − 2β + 1) matrices such that the column vector corresponding to the index
λx (x ∈ Vβ) is given by Fβ(x), where the (u + 1)-th row of Fβ(x) is given by√

λx

u∑
p=0

(−1)p
(
x − β
u − p

)(
m − β − x

p

)
for 0 ≤ u ≤ ℓ − β (7)

and Vβ = {x ∈ N0 | β ≤ x ≤ m − β}. Here N0 is a set of non-negative integers. The (u + 1)-th row and the (v + 1)-th column
of Kβ (0 ≤ u, v ≤ ℓ−β; 0 ≤ β ≤ ℓ) correspond to the (u+β)-factor interaction and the (v+β)-factor one, respectively. Thus
the (u + 1)-th row of Fβ corresponds to the (u + β)-factor interaction. Then from (7), we can easily obtain the following
theorem (e.g., Hyodo et al., 2015):

Theorem 2.1. Let T be an SA(m; {λx}), where 2ℓ ≤ m. Then the matrices Kβ (0 ≤ β ≤ ℓ) can be expressed as Kβ=

(DβFβΛβ)(DβFβΛβ)′, where Dβ and Λβ are the diagonal matrices such that the (u + 1)-th element (0 ≤ u ≤ ℓ − β) of Dβ

and the element of Λβ corresponding to λx are given by 2β
/√(

m−2β
u

)
and

√(
m−2β
x−β

)
, respectively.

It follows from Theorem 2.1 that rank{Kβ} = r-rank{Fβ}, where r-rank{A} denotes the row rank of a matrix A. In order to
obtain the rank of a matrix A, we sometimes apply the “elementary row operations” on it. In this case, we positively use
the notation “r-rank” instead of the rank. Let SVβ = {x ∈ Vβ | λx , 0} (0 ≤ β ≤ ℓ), and further let NSVβ be the cardinal
number of SVβ. Then the following is obtained (see Hyodo et al., 2015):

Theorem 2.2. Let T be an SA(m; {λx}), where 2ℓ ≤ m. Then it holds that r-rank{Fβ(x1, x2, · · · , xnβ )} = min(nβ, ℓ − β + 1)
for {x1, x2, · · · , xnβ } ⊂ SVβ (0 ≤ β ≤ ℓ), where Fβ(x1, x2, · · · , xnβ ) = (Fβ(x1), Fβ(x2), · · · , Fβ(xnβ)). Furthermore the first
min(nβ, ℓ − β + 1) rows of Fβ(x1, x2, · · · , xnβ ) are linearly independent.

The following is due to Ghosh and Kuwada (2001):

Lemma 2.3. Let K = ∥Ki j∥ and L = ∥Li j∥ (i, j = 1, 2, 3) be a positive semi-definite matrix of order n with rank{K} =

rank
{(

K11 K12
K21 K22

)}
= n1 + n2(≥ 1) and some matrix of order n such that L11 = In1 and L1 j = L′j1 = 0n1×n j ( j = 2, 3),

respectively, where Ki j and Li j are both of size ni × n j, and n1 + n2 + n3 = n. Then a matrix equation XK = L with
parameter matrix X of order n has a solution if and only if

(i) n3 = 0, where if n2 ≥ 1, then L22 is arbitrary, or

(ii) n3 ≥ 1, and moreover

(1) when n2 = 0, K33 = 0n3×n3 , and furthermore L33 = 0n3×n3 , or

(2) when n2 ≥ 1, there exists a matrix W of size n3 × n2 such that K3 j = WK2 j ( j = 1, 2, 3), and furthermore
Li3 = Li2W ′ (i = 2, 3), where Li2 are arbitrary.

Remark 2.1. In Lemma 2.3.(i) and (ii)(2), when n2 ≥ 1, without loss of generality, we can put L22 = In2 and L23 = L′32
(= W ′) (if n3 ≥ 1), and hence L33 = WW′. Furthermore we have W = K32K−1

22 .

Let T be an SA(m; {λx}), where 2ℓ ≤ m. Then a set of parametric functions HΘ is estimable if and only if there exists a
matrix X of order νℓ(m) such that XMT = H, where H and X are given by

H =
ℓ∑
β=0

ℓ−β∑
u=0

ℓ−β∑
v=0

hu,v
β D#(u+β,v+β)

β and X =
ℓ∑
β=0

ℓ−β∑
u=0

ℓ−β∑
v=0

χu,v
β D#(u+β,v+β)

β ,

where 2ℓ ≤ m. Thus there exist matrices Xβ such that XβKβ = Hβ for all β (0 ≤ β ≤ ℓ) if and only if T is of resolution
R∗({1}|Ωℓ), where

H0 =



h0,0
0 0 h0,2

0 · · · h0,ℓ
0

0 1 0 · · · 0
h2,0

0 0 h2,2
0 · · · h2,ℓ

0
...

...
...

. . .
...

hℓ,00 0 hℓ,20 · · · hℓ,ℓ0


, H1 =


1 0 · · · 0
0 h1,1

1 · · · h1,ℓ−1
1

...
...

. . .
...

0 hℓ−1,1
1 · · · hℓ−1,ℓ−1

1


and Hγ =


h0,0
γ · · · h0,ℓ−γ

γ

...
. . .

...

hℓ−γ,0γ · · · hℓ−γ,ℓ−γγ

 for γ ≥ 2.
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Let B = diag[B1, B2, B3],C′ = (C′1 C′2 C′3) and ∆ be a diagonal and non-singular matrix of order n(= n1+n2+n3), a matrix

of size n× p with r-rank{C} = r-rank
{(

C1
C2

)}
= n1 + n2, and a diagonal and non-singular matrix of order p, respectively,

where Bi and Ci (i = 1, 2, 3) are of order ni and of size ni × p, respectively. Then we have the following:

Lemma 2.4. Let Z = ||Zi j|| (i, j = 1, 2, 3) be a matrix of order n(= n1 + n2 + n3), where Zi j are of size ni × n j, and let
K(= ||Ki j||) = (BC∆)(BC∆)′ and Ki j = (BiCi∆)(B jC j∆)′, and further let L = ||Li j|| be a matrix given by Lemma 2.3. Then
a matrix equation ZK = L has a solution if and only if

(i) n3 = 0, where if n2 ≥ 1, then L22 is arbitrary, or

(ii) n3 ≥ 1, and moreover

(1) when n2 = 0, it holds C3 = 0n3×p, and furthermore L33 = 0n3×n3 , or

(2) when n2 ≥ 1, there exists a matrix W∗2
(
= C3C′2(C2C′2)−1) of size n3 × n2 such that C3 = W∗2C2, and furthermore

Li3 = Li2
(
B3W∗2 B−1

2
)′ (i = 2, 3), where Li2 are arbitrary.

Proof. (i) When n3 = 0, if n2 ≥ 1, then from Lemma 2.3.(i), we have the required result.

(ii)(1) When n3 ≥ 1 and n2 = 0, it follows from Lemma 2.3.(ii)(1) that K33 = (B3C3∆)(B3C3∆)′= B3C3∆∆
′C′3B′3 = 0n3×n3 ,

and hence C3∆∆
′C′3 = 0n3×n3 , which implies C3∆ = 0n3×p. Thus we get C3 = 0n3×p, and hence L33 = 0n3×n3 .

(2) When ni ≥ 1 (i = 2, 3), from Lemma 2.3.(ii)(2), there exists a matrix W2 of size n3 × n2 such that K3 j = W2K2 j

( j = 1, 2, 3). Since r-rank{C} = r-rank
{(

C1
C2

)}
= n1 + n2, there exists a matrix (W∗1 W∗2 ) of size n3 × (n1 + n2)

such that C3 = (W∗1 W∗2 )
(

C1
C2

)
, where W∗k (k = 1, 2) are of size n3 × nk. Then K3 j = (B3C3∆)(B jC j∆)′ =

{B3(W∗1 W∗2 )
(

C1
C2

)
∆}(B jC j∆)′ = B3{W∗1 B−1

1 (B1C1∆)}(B jC j∆)′ + B3{W∗2 B−1
2 (B2C2∆)}(B jC j∆)′ = B3W∗1 B−1

1 K1 j + B3W∗2

× B−1
2 K2 j = (B3W∗1 B−1

1 B3W∗2 B−1
2 )

(
K1 j

K2 j

)
. Thus we have (K31 K32) = (B3W∗1 B−1

1 B3W∗2 B−1
2 )

(
K11 K12
K21 K22

)
= (0n3×n1 W2)

(
K11 K12
K21 K22

)
. Since

(
K11 K12
K21 K22

)
is non-singular, we get B3W∗1 B−1

1 = 0n3×n1 , i.e., W∗1 = 0n3×n1 ,

and W2 = B3W∗2 B−1
2 .

From Lemma 2.3, the converse is obvious, and hence the required result is obtained.

Let T be an array obtained by interchanging all of symbols 0 and 1 of T , where T is an SA(m; {λx}). Then it can be easily
shown that T is also an SA(m; {λx}), where λx = λm−x for 0 ≤ x ≤ m (e.g., Shirakura and Kuwada, 1975). Note that
T is called a complementary SA (CSA) of T . Furthermore if T is of resolution R∗({1}|Ωℓ), then T is also of resolution
R∗({1}|Ωℓ).
If N ≥ νℓ(m), then there always exists a 2m-BFF design of resolution 2ℓ + 1 (see Hyodo et al., 2015). Thus in the rest of
this paper, we consider a 2m-BFF design of resolution R∗({1}|Ωℓ) derived from an SA with N < νℓ(m) for ℓ = 2, 3.

3. Resolution R∗({1}|Ω2) designs

We now consider case ℓ = 2. Then it follows from (7) that Fβ(x) (0 ≤ β ≤ 2) are given by

F0(x) =
√
λx

 1
2x − m{

(2x − m)2 − m
}
/2

 for x ∈ V0, (8a)

F1(x) =
√
λx

(
1

2x − m

)
for x ∈ V1 (8b)

and

F2(x) =
√
λx (1) for x ∈ V2. (8c)

Let
fβ(x; m) =

{
(2x − m)2 + (2β − m)

}
/2 for x ∈ Vβ (β = 0, 1). (9)

Then we have the following:
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Lemma 3.1. If fβ(x1; m) = fβ(x2; m) for {x1, x2} ⊂ Vβ (β = 0, 1), then x1 + x2 − m = 0.

Proof. If fβ(x1; m) = fβ(x2; m) for {x1, x2} ⊂ Vβ (β = 0, 1), i.e., {(2x1 − m)2 + (2β − m)}/2 = {(2x2 − m)2 + (2β − m)}/2,
then we have (2x1 − m)2 − (2x2 − m)2 = 4(x1 − x2)(x1 + x2 − m) = 0. Thus we get the required result.

The following is the main results of this section:

Theorem 3.1. Let T be an SA(m; {λx}), where SV0 = {x1, x2, · · · , xNSV0 }, N < ν2(m) and m ≥ 4. Then a necessary and
sufficient condition for T to be a 2m-BFF design of resolution R∗({1}|Ω2), i.e., of resolution IV, is that non-zero indices of
an SA satisfy the following:

(i) When NSV0 = 2, x1 = 1 and x2 = m − 1,

(ii) when NSV0 = 3,

(1) x1 = 0, x2 = 1 and x3 = m − 1, or its CSA, or

(2) x1 = 0, x2 = 2 and x3 = 4, where m = 4

and

(iii) when NSV0 = 4, x1 = 0, x2 = 1, x3 = m − 1 and x4 = m.

Proof. See Appendix.

From Theorems 2.1 and 2.2, Lemmas 2.3 and 2.4, and Remark 2.1, we have the following:

Theorem 3.2. If T is a 2m-BFF design of resolution R∗({1}|Ω2), i.e., of resolution IV, derived from an SA(m; {λx}), where
m ≥ 4 and N < ν2(m), and moreover

(i) when NSV0 = 2, A#(0,0)
0 θ0 +

[{
1
/√(

m
2

)}
f0(xi; m)

]
A#(0,2)

0 θ2 (i = 1, 2) and A#(1,1)
0 θ1 are estimable, where {x1, x2} = SV0

and f0(x; m) is given by (9), and furthermore if f0(xi; m) = 0 for all i, then A#(0,0)
0 θ0 is estimable and A#(2,2)

0 θ2 is not
estimable,

(ii) when NSV1 = 1, A#(1,1)
1 θ1 is estimable and A#(2,2)

1 θ2 is not estimable,

(iii) when NSV2 = 0, A#(2,2)
2 θ2 is not estimable

and

(iv) when NSVβ ≥ 3 − β (0 ≤ β ≤ 2), A#(u,u)
β θu (β ≤ u ≤ 2) are estimable.

Note from (2) that if A#(u,u)
β θu are estimable for all β (0 ≤ β ≤ u ≤ 2), then θu is estimable. The results of Theorem 3.1,

and estimable parametric functions and the resolution R(ω|Ω2) for each design are summarized in Table 3.1.

Let K(0)
β (0 ≤ β < ℓ) be the matrices of order (ℓ − β) obtained from Kβ by cutting off its last row and column, and further

let k1′
β =

(
κ0,0
β κ0,1

β · · · κ
0,ℓ−β
β

)
and k2′

β =
(
κ
ℓ−β,0
β κ

ℓ−β,1
β · · · κℓ−β,ℓ−ββ

)
. Then we have the following due to Shirakura (1980):

Proposition 3.1. A necessary and sufficient condition for a BA(N,m, 2, 2ℓ; {µ(2ℓ)
i }), T, say, to be a 2m-BFF design of

resolution 2ℓ is that T satisfies the following condition:

For r integers 0 ≤ β1 < β2 < · · · < βr ≤ ℓ with |Kβ j | = 0 and |Kα| , 0 (α , β j (1 ≤ j ≤ r); 0 ≤ α ≤ ℓ),

(i) when β1 = 0, there exists a scalar d such that k2
0 = dk1

0, |K
(0)
0 | , 0, κℓ−β j,ℓ−β j

β j
= 0 (1 ≤ β j ≤ ℓ) and |K(0)

β j
| , 0 (1 ≤ β j ≤

ℓ − 1)

and

(ii) when β1 ≥ 1, κℓ−β j,ℓ−β j

β j
= 0 (1 ≤ β j ≤ ℓ) and |K(0)

β j
| , 0 (1 ≤ β j ≤ ℓ − 1),

where |A| denotes the determinant of a matrix A.

In a theoretical sense, Proposition 3.1 above is a very useful result. However it is not always practical. Because the
elements κu,v

β of Kβ (0 ≤ u ≤ v ≤ ℓ − β; 0 ≤ β ≤ ℓ) are given by some linear combinations of the indices µ(2ℓ)
i of a BA

(or λx of an SA) (see (3) and (4)). Hence it is not always easy to obtain µ(2ℓ)
i (or λx) such that these indices satisfy some

conditions. As an example, we consider case ℓ = 2:
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Let T be an SA(m; {λx}), where m ≥ 4. Then from (3) through (5), we have

κ0,0
0 =

m∑
x=0

(
m
x

)
λx(= N),

κ0,1
0

(
= κ1,0

0

)
=

1
/√(

m
1

)
m∑

x=0

(2x − m)
(
m
x

)
λx,

κ0,2
0

(
= κ2,0

0

)
=

1/
2

√(
m
2

)
 m∑

x=0

{
(2x − m)2 − m

}(m
x

)
λx,

κ1,1
0 =

{
1
/(m

1

)} m∑
x=0

(2x − m)2
(
m
x

)
λx,

κ1,2
0

(
= κ2,1

0

)
=

1/
2

√(
m
1

)(
m
2

)
 m∑

x=0

(2x − m)
{
(2x − m)2 − m

}(m
x

)
λx,

κ2,2
0 =

[
1
/ {

4
(
m
2

)}] m∑
x=0

{
(2x − m)2 − m

}2
(
m
x

)
λx,

κ0,0
1 = 22

m−1∑
x=1

(
m − 2
x − 1

)
λx,

κ0,1
1

(
= κ1,0

1

)
=

22
/√(

m − 2
1

)
m−1∑
x=1

(2x − m)
(
m − 2
x − 1

)
λx,

κ1,1
1 =

{
22

/(m − 2
1

)} m−1∑
x=1

(2x − m)2
(
m − 2
x − 1

)
λx

and

κ0,0
2 =

m−2∑
x=2

(
m − 4
x − 2

)
λx.

Thus it can be easily shown that κ1,1
1 = 0 if and only if there exists λx∗ such that (2x∗ − m)2 = 0 for x∗ ∈ SV1, and κ0,0

2 = 0
if and only if λx∗∗ = 0 for any x∗∗ ∈ V2. However it is not so easy to obtain the indices λx such that k2′

0 (= (κ2,0
0 κ2,1

0 κ2,2
0 ))=

dk1′
0 (= d(κ0,0

0 κ0,1
0 κ0,2

0 )) for x ∈ SV0 and some d, that is to say, to obtain λx such that the system of the linear equations
κ2,u

0 = dκ0,u
0 (u = 0, 1, 2) satisfies for x ∈ SV0 and some d. On the other hand, the elements of Fβ (0 ≤ β ≤ 2) are given

by some polynomial of x of the indices λx of an SA (e.g., Hyodo et al., 2015) as seen from (8). In particular, the element
of the first row of Fβ is all one. Thus it follows from Theorem 2.2 and (8) that if r-rank{F0} = 2 < 3, then there exist
two indices λxi (i = 1, 2) such that xi ∈ SV0 and the elements of the last row of F0(x1, x2) are the same constants, i.e.,
f0(x1; m) = f0(x2; m), where f0(x; m) is given by (9). Next if r-rank{F1} = 1 < 2, then there exists an index λx∗ such that
x∗ ∈ SV1 and the last row of F1(x∗) is 0, i.e., 2x∗ − m = 0, and if r-rank{F2} = 0 < 1, then F2(x∗∗) = 0 for any x∗∗ ∈ V2,
i.e., λx∗∗ = 0. Thus in order to obtain the indices λx of an SA such that they satisfy some conditions, the matrices Fβ and
Theorem 2.2 are very powerful.
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4. Resolution R∗({1}|Ω3) designs

In this section, we consider case ℓ = 3. By use of the properties of the TMDPB association algebra and the matrix
equations, a necessary and sufficient condition for an SA to be a 2m-BFF design of resolution R∗({1}|Ω3) was already given
by Kuwada et al. (2003). However their results are very complex. On the other hand, the elements of Fβ (0 ≤ β ≤ 3)
considered here are given by some polynomial of x of the indexes λx of an SA as in (10) below, and they are very simple.
Thus using these matrices Fβ and Theorem 2.2, we shall rewrite the existence conditions for a 2m-BFF design of resolution
R∗({1}|Ω3) with N < ν3(m).

From (7), Fβ(x) (0 ≤ β ≤ 3) are given by

F0(x) =
√
λx


1

2x − m{
(2x − m)2 − m

}
/2

(2x − m)
{
(2x − m)2 − (3m − 2)

}
/6

 for x ∈ V0, (10a)

F1(x) =
√
λx

 1
2x − m{

(2x − m)2 − (m − 2)
}
/2

 for x ∈ V1, (10b)

F2(x) =
√
λx

(
1

2x − m

)
for x ∈ V2 (10c)

and

F3(x) =
√
λx (1) for x ∈ V3. (10d)

Let
g(x; m) = (2x − m)

{
(2x − m)2 − (3m − 2)

}
/6 for x ∈ V0 and m ≥ 6. (11)

Then we have the following:

Lemma 4.1. (I)(i) If d02 = f0(xi; m) and d03 = g(xi; m) (i = 1, 2) for {x1, x2} ⊂ V0 and m ≥ 6, where d0k (k = 2, 3) are
constants, and f0(x; m) and g(x; m) are given by (9) and (11), respectively, then

(1) when m = 3t2 + 2t + 1 (t ≥ 1), we get xp = t(3t − 1)/2(≥ 1) and xq = (t + 1)(3t + 2)/2(≥ 5) for {p, q} = {1, 2}
and

(2) when m = 3t2 + 4t + 2 (t ≥ 1), we get xp = t(3t + 1)/2(≥ 2) and xq = (t + 1)(3t + 4)/2(≥ 7) for {p, q} = {1, 2}.
Here in (1) and (2) just above, we have d02 = m − 1 and d03 = 0.

(ii) If d0 + f0(xi; m)d2 = g(xi; m) (i = 1, 2, 3) for {x1, x2, x3} ⊂ V0 and m ≥ 6, where dk (k = 0, 2) are constants, then
xp+xq−m , 0 for some {p, q} ⊂ {1, 2, 3} and (2x1−m)(2x2−m)+(2x2−m)(2x3−m)+(2x3−m)(2x1−m)+(3m−2) = 0.
Here

d0 = −
[
(2xp − m)2(2xq − m)2 − m

{
4(xp − xq)2 − (3m − 2)

} − 2(2xp − m)(2xq − m)
]
/{12(xp + xq − m)}

and

d2 =
{
(2xp − m)2 + (2xp − m)(2xq − m) + (2xq − m)2 − (3m − 2)

}
/{6(xp + xq − m)}.

(II)(i) There does not exist a integer x∗1 ∈ V1 such that 2x∗1 −m = 0 and f1(x∗1; m) = 0 for m ≥ 6, where f1(x∗; m) is given
by (9).

(ii) If (2x∗j − m)d∗ = f1(x∗j ; m) ( j = 1, 2) for {x∗1, x∗2} ⊂ V1 and m ≥ 6, where d∗ is a constant, then (2x∗1 − m)(2x∗2 − m) +
(m − 2) = 0. Here d∗ = x∗1 + x∗2 − m.

Proof. (I)(i) If d02 = f0(xi; m) (i = 1, 2) for {x1, x2} ⊂ V0 and m ≥ 6, i.e., f0(x1; m) = f0(x2; m), then from Lemma 3.1, we
have x1 + x2 − m = 0. In addition, if d03 = g(xi; m) (i = 1, 2), i.e., g(x1; m) = g(x2; m), then (2xp − m){(2xp − m)2 −
(3m − 2)} = 0 for some p ∈ {1, 2}. If 2xp − m = 0, then xp = m/2 = xq for q ∈ {1, 2} \ {p}, and hence 2xp − m , 0.
Thus it must be (2xp − m)2 − (3m − 2) = 0. Then it has solutions xp = (m ±

√
3m − 2)/2, which must be integers.
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Thus we put 3m−2 = s2 (s ≥ 4), and hence m = (s2 +2)/3. If s = 3t (t ≥ 2), then m = 3t2 +2/3, if s = 3t+1 (t ≥ 1),
then m = 3t2 +2t+1, and if s = 3t+2 (t ≥ 1), then m = 3t2 +4t+2, and hence s , 3t. Since (2x−m)2 − (3m−2) = 0
for x ∈ {x1, x2}, we get d02 = m − 1 and d03 = 0. Therefore (i) is proved.

(ii) It follows from Theorem 2.2 that the first three rows of F0(x1, x2, x3) are linearly independent, and hence the first
and the third rows of F0(x1, x2, x3) are also linearly independent. Thus there exists {xp, xq} ⊂ {x1, x2, x3} such that
f0(xp; m) , f0(xq; m), i.e., xp+ xq−m , 0. If d0+ f0(xi; m)d2 = g(xi; m) (i = 1, 2, 3), i.e., d0+ [{(2xi−m)2−m}/2]d2 =

(2xi − m){(2xi − m)2 − (3m − 2)}/6, where dk (k = 0, 2) are constants, then we get d0 = −[(2xp − m)2(2xq − m)2 −
m{4(xp − xq)2 − (3m − 2)} − 2(2xp − m)(2xq − m)]/{12(xp + xq − m)} and d2 = {(2xp − m)2 + (2xp − m)(2xq − m) +
(2xq − m)2 − (3m − 2)}/{6(xp + xq − m)} for some {p, q} ⊂ {1, 2, 3}, where xp + xq − m , 0. Substituting d0 and d2
into d0 + f0(xr; m)d2 = g(xr; m) for r ∈ {1, 2, 3} \ {p, q}, we get (2xp − m)(2xq − m) + (2xq − m)(2xr − m) + (2xr −
m)(2xp −m) + (3m − 2)= (2x1 −m)(2x2 −m) + (2x2 −m)(2x3 −m) + (2x3 −m)(2x1 −m) + (3m − 2) = 0, and hence
(ii) is established.

(II)(i) If 2x∗1 − m = 0 and f1(x∗1; m) = 0 for x∗1 ∈ V1, i.e., {(2x∗1 − m)2 − (m − 2)}/2 = −(m − 2)/2 = 0, then m = 2 < 6.
Thus the required result is obtained.

(ii) If (2x∗j − m)d∗ = f1(x∗j; m) ( j = 1, 2) for {x∗1, x∗2} ⊂ V1 and m ≥ 6, i.e., (2x∗j − m)d∗ = {(2x∗j − m)2 − (m − 2)}/2, then
2(x∗1 − x∗2)d∗ = {(2x∗1 − m)2 − (2x∗2 − m)2}/2 = 2(x∗1 − x∗2)(x∗1 + x∗2 − m). Thus we get d∗ = x∗1 + x∗2 − m, and hence
(2x∗1 − m)(2x∗2 − m) + (m − 2) = 0, which is the required result.

The following is the main theorem of this section:

Theorem 4.1. Let T be an SA(m; {λx}), where SV0 = {x1, x2, · · · , xNSV0 }, N < ν3(m) and m ≥ 6. Then a necessary and
sufficient condition for T to be a 2m-BFF design of resolution R∗({1}|Ω3) is that non-zero indices of an SA satisfy the
following:

(i) When NSV0 = 3,

(1) x1 = 1, x2 = 2 and x3 = 5, where m = 6, or its CSA,

(2) x1 = 1, x2 = 2 and x3 = 7, where m = 9, or its CSA, or

(3) x1 = 1, x2 = 3 and x3 = 5, where m = 6,

(ii) when NSV0 = 4,

(1) x1 = 0, x2 = 1, x3 = 2 and x4 = m − 1, or its CSA,

(2) x1 = 0, x2 = 1, x3 = m − 2 and x4 = m − 1, or its CSA,

(3) x1 = 0, x2 = 2, x3 = 4 and x4 = 6, where m = 6,

(4) x1 = 0, x2 = 1, x3 = 2 and x4 = m − 2, or its CSA,

(5) x1 = 0, x2 = 2, x3 = m − 2 and x4 = m − 1, or its CSA,

(6) x1 = 1, x2 = 2, x3 = m − 2 and x4 = m − 1, where m ≥ 7,

(7) x1 = 0, x2 = 1, x3 = 4 and x4 = 7, where m = 7, or its CSA,

(8) x1 = 0, x2 = 1, x3 = 3 and x4 = m − 1, or its CSA,

(9) x1 = 0, x2 = 1, x3 = m − 3 and x4 = m − 1, where m ≥ 7, or its CSA, or

(10) x1 = 0, x2 = 1, x3 = 4 and x4 = 7, where m = 8, or its CSA,

(iii) when NSV0 = 5,

(1) x1 = 0, x2 = 1, x3 = 2, x4 = m − 1 and x5 = m, or its CSA,

(2) x1 = 0, x2 = 1, x3 = 2, x4 = m − 2 and x5 = m, or its CSA,

(3) x1 = 0, x2 = 1, x3 = 2, x4 = m − 2 and x5 = m − 1, where m ≥ 7, or its CSA,

(4) x1 = 0, x2 = 1, x3 = 3, x4 = m − 1 and x5 = m, or its CSA(if m ≥ 7), or

(5) x1 = 0, x2 = 1, x3 = 4, x4 = 7 and x5 = 8, where m = 8

and
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(iv) when NSV0 = 6, x1 = 0, x2 = 1, x3 = 2, x4 = m − 2, x5 = m − 1 and x6 = m, where m ≥ 7.

Proof. Proof is available in the Appendix.

It follows from Theorems 2.1 and 2.2, Lemmas 2.3, 2.4 and 4.1, and Remark 2.1 that we obtain the following:

Theorem 4.2. If T is a 2m-BFF design of resolution R∗({1}|Ω3) derived from an SA(m; {λx}), where m ≥ 6 and N < ν3(m),
and furthermore

(i) when NSV0 = 3, A#(0,0)
0 θ0 +

[{
1
/√(

m
3

)}
d0

]
A#(0,3)

0 θ3, A#(1,1)
0 θ1 and A#(2,2)

0 θ2 +

[{√(
m
2

)/√(
m
3

)}
d2

]
A#(2,3)

0 θ3 are estimable,

where dk (k = 0, 2) are given in Lemma 4.1.(I)(ii). In particular, if d0 = 0, then A#(0,0)
0 θ0 = θ0 is estimable and A#(3,3)

0 θ3

is not estimable, and also if d2 = 0, then A#(2,2)
0 θ2 is estimable and A#(3,3)

0 θ3 is not estimable.

(ii) When NSV1 = 2, A#(1,1)
1 θ1 and A#(2,2)

1 θ2 +

[{√(
m−2

1

)/√(
m−2

2

)}
d∗

]
A#(2,3)

1 θ3 are estimable, where d∗ is given in Lemma

4.1.(II)(ii). Particularly if d∗ = 0, then A#(2,2)
1 θ2 is estimable and A#(3,3)

1 θ3 is not estimable.

(iii) When NSV2 = 1, A#(2,2)
2 θ2 +

[{
1
/√(

m−4
1

)}
d∗∗

]
A#(2,3)

2 θ3 is estimable, where d∗∗ = 2x∗∗ −m for x∗∗ ∈ SV2. In particular,

if d∗∗ = 0, then A#(2,2)
2 θ2 is estimable and A#(3,3)

2 θ3 is not estimable.

(iv) When NSV3 = 0, A#(3,3)
3 θ3 is not estimable.

(v) When NSVβ ≥ 4 − β (0 ≤ β ≤ 3), A#(u,u)
β θu (β ≤ u ≤ 3) are estimable.

Analogously to Section 3, if A#(u,u)
β θu are estimable for all β (0 ≤ β ≤ u ≤ 3), then θu is estimable. In Table 4.1, the results

of Theorem 4.1, and estimable parametric functions and the resolution R(ω|Ω3) for each design are summarized.

5. Discussion

The class of BFF designs is a subset of FF designs. Thus there may exist a better FF design than a BFF design with respect
to some criterion (e.g., Kuwada, 1982). However BFF designs possess the same advantage over unbalanced designs as
a BIB design does over unbalanced or partially balanced designs. In this paper, we restrict our attention to the class
of 2m-BFF designs derived from SAs. Under these restrictions, we have given a necessary and sufficient condition for
an SA to be a 2m-BFF design of resolution R∗({1}|Ωℓ) for ℓ = 2, 3, where N < νℓ(m). As mentioned earlier, if T is an
SA(m; {λx}), then it is a BA(N,m, 2, t; {µ(t)

i }) for any t (1 ≤ t ≤ m), where the relation between µ(t)
i and λx is given by (5).

When m = t + 1, if there exists a BA of strength t, then it is an SA. However when m = t + 2, there exists a BA of strength
t such that it is not always an SA (e.g., Kuriki and Yamamoto, 1984, and Shirakura, 1977). For example,

T ′ =


0 1 1 0 0 1 1
0 0 0 1 1 1 1
1 0 1 0 1 0 1
1 0 1 1 0 1 0


is a BA(N = 7,m = 4, 2, t = 2; {µ(2)

0 = 1, µ(2)
1 = µ

(2)
2 = 2}), but it is not an SA.

Let T be an SA(m; {λ1 = λm−1 = 1, λx = 0 (x , 1,m − 1)}) with N = 2m, where m ≥ 6. Then under the assumption that

the three-factor and higher-order interactions are negligible, A#(0,0)
0 θ0 +

[
(m − 1)(m − 4)

/ {
2
√(

m
2

)} ]
A#(0,2)

0 θ2, A#(1,1)
0 θ1 and

A#(u,u)
1 θu (u = 1, 2) are estimable, and A#(2,2)

2 θ2 is not estimable (see Table 3.1.(i)). Thus from (2), A#(1,1)
0 θ1 + A#(1,1)

1 θ1 = θ1
is estimable, and the general mean is confounded with some of the two-factor interaction. On the other hand, under the
assumption that the four-factor and higher-order interactions are negligible,
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r-rank{F0(1,m − 1)}

= r-rank




1 1
−(m − 2) m − 2

(m − 1)(m − 4)/2 (m − 1)(m − 4)/2
−(m − 1)(m − 2)(m − 6)/6 (m − 1)(m − 2)(m − 6)/6




= 2 < 4,
r-rank{F1(1,m − 1)}

= r-rank


 1 1

−(m − 2) m − 2
(m − 2)(m − 3)/2 (m − 2)(m − 3)/2




= 2 < 3

and

r-rank{F2} = r-rank{F3} = 0.

Thus the third row of F0(1,m − 1) equals (m − 1)(m − 4)/2 times the first and its last row equals (m − 1)(m − 6)/6
times the second, and the last row of F1(1,m − 1) equals (m − 2)(m − 3)/2 times the first. Hence from Lemma 2.4,

A#(0,0)
0 θ0+ {(m−4)

√
(m − 1)/(2m)}A#(0,2)

0 θ2, A#(1,1)
0 θ1+ [(m−6)

√
(m − 1)/{6(m − 2)}]A#(1,3)

0 θ3, A#(1,1)
1 θ1+

{√(
m−2

2

)}
A#(1,3)

1 θ3

and A#(2,2)
1 θ2 are estimable, and A#(u,u)

γ θu (2 ≤ γ ≤ u ≤ 3) are not estimable. This implies that the main effect is confounded
with some of the three-factor interaction. Therefore if the three-factor and higher-order interactions are negligible, then
T is of resolution R∗({1}|Ω2), and hence it is also of resolution R({1}|Ω2). However if the three-factor interaction is not
negligible, then the main effect is not estimable, and hence it is not of resolution R∗({1}|Ω3).

Appendix

In this Appendix, we provide the proofs of Theorems 3.1 and 4.1.

Proof of Theorem 3.1. We shall prove the claim by listing out all possible cases. In these cases, since SV0 ⊃ SV1 ⊃ SV2,
we have NSV0 ≥ NSV1 ≥ NSV2, and NSVγ − NSVγ+1 ≤ 2 for γ = 0, 1. Furthermore when NSV0 ≥ 5, we have
N ≥ 1 + 1 + m + m +

(
m
2

)
> ν2(m) for m ≥ 4, and hence NSV0 ≤ 4. Then the proof starts with case NSV2 = 0.

[A] When NSV2 = 0, i.e., λx∗∗ = 0 for any x∗∗ ∈ V2, from Theorem 2.2, it must be that 1 ≤ NSV1 ≤ 2 and NSV0 ≥ 2. In
addition,

[a] when NSV1 = 1, i.e., x∗1 = 1 or m − 1, we have r-rank{F1(x∗1)} = 1 < 2. Thus from (8b), the last row of F1(x∗1) must
be 0, i.e., 2x∗1 −m = 0, where m = 2s ≥ 4. However 2x∗1 − m = −(m − 2) < 0 and m − 2 > 0 for m ≥ 4 according as
x∗1 = 1 and m−1, respectively. Therefore in this case, there does not exist a 2m-BFF design of resolution R∗({1}|Ω2).

[b] When NSV1 = 2, i.e., x∗1 = 1 and x∗2 = m − 1, we have r-rank{F1(x∗1, x
∗
2)} = 2.

[1] When NSV0=2, i.e., xi = x∗i (i = 1, 2), we have r-rank{F0(x1, x2)} = 2 < 3. Thus from (8a), the elements of
the last row of F0(x1, x2) must be the same, i.e., f0(x1; m) = f0(x2; m), where f0(x; m) is given by (9). Since
x1 + x2 − m = 0 and ν2(m) − N ≤ ν2(m) − 2m = (m − 4)(m + 1)/2 + 3 > 0 for m ≥ 4, it follows from Lemma
3.1 that case (i) is established.

[2] When NSV0 = 2 + p (p = 1, 2), i.e., x1 = 0 or m (if p = 1) (x1 = 0 (if p = 2)) and xi+1 = x∗i (i = 1, 2) (and
x4 = m (if p = 2)), we have r-rank{F0(x1, x2, · · · , x2+p)} = 3. Then ν2(m)−N ≤ (m−4)(m+1)/2+ (3− p) > 0
for m ≥ 4 and p = 1, 2. Thus cases (ii)(1) and (iii) are proved.

[B] When NSV2 = 1, i.e., 2 ≤ x∗∗1 ≤ m−2, we have r-rank{F2(x∗∗1 )} = 1.When NSV1 = 3,we have N ≥ 2m+
(

m
2

)
> ν2(m)

for m ≥ 4, and hence (NSV2 = 1 ≤)NSV1 ≤ 2. Furthermore from Theorem 2.2, it must be NSV0 ≥ 2.

[a] When NSV1 = 1, i.e., x∗1 = x∗∗1 , we have r-rank{F1(x∗1)} = 1 < 2. Thus from (8b), it must be 2x∗1 −m = 0, and hence
x∗1 = m/2, where m = 2s ≥ 4. Furthermore

[1] when NSV0 = 2, i.e., x1 = 0 or m and x2 = x∗1, we have r-rank{F0(x1, x2)} = 2 < 3. Thus it must be
f0(x1; m) = f0(x2; m) for m ≥ 4. However x1 + x2 − m , 0 for m ≥ 4, and hence, from Lemma 3.1, there does
not exist a 2m-BFF design of resolution R∗({1}|Ω2).
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[2] When NSV0 = 3, i.e., x1 = 0, x2 = x∗1 and x3 = m, we have r-rank{F0(x1, x2, x3)} = 3. When m = 4, we
have 8 ≤ N < ν2(4) = 11, and when m = 2s ≥ 6, ν2(m) − N ≤ ν2(m) − {2 +

(
m
s

)
} ≤

(
m
2

)
+ m −

(
m
3

)
− 1 =

−(m− 6){(m− 6)(m+ 6)+ 35}/6 ≤ 0 for m = 2s ≥ 6. Thus we get m = 4, and hence x1 = 0, x2 = m/2 = 2 and
x3 = 4, which is case (ii)(2).

[b] When NSV1 = 2, i.e., x∗1 = 1 or m − 1 and x∗2 = x∗∗1 , we have r-rank{F1(x∗1, x
∗
2)} = 2. In this case, N ≥ m +

(
m
2

)
=

ν2(m) − 1, and hence it must be NSV0 = 2, i.e., xi = x∗i (i = 1, 2). Then we have r-rank{F0(x1, x2)} = 2 < 3. Thus
from (8a), it must be f0(x1; m) = f0(x2; m) for m ≥ 4. However x1 + x2 −m , 0 for m ≥ 4, and hence, from Lemma
3.1, a 2m-BFF design of resolution R∗({1}|Ω2) does not exist.

[C] When NSV2 = q ≥ 2, where (m − 2) − 1 ≥ q, we have N ≥ q
(

m
2

)
≥ 2

(
m
2

)
> ν2(m) for m ≥ 3 + q. Thus in this case,

there does not exist a 2m-BFF design of resolution R∗({1}|Ω2) with N < ν2(m) for m ≥ 3 + q.

Proof of Theorem 4.1. Similarly to the proof of Theorem 3.1, it will be done by listing out all possible cases. In these
cases, we have SV0 ⊃ SV1 ⊃ SV2 ⊃ SV3, and hence NSV0 ≥ NSV1 ≥ NSV2 ≥ NSV3, and NSVγ − NSVγ+1 ≤ 2 for
γ = 0, 1, 2. Moreover when NSV0 ≥ 7, N ≥ 1 + 1 + m + m +

(
m
2

)
+

(
m
2

)
+

(
m
3

)
> ν3(m) for m ≥ 6, and hence NSV0 ≤ 6. We

also begin the proof with NSV3 = 0.

[A] When NSV3 = 0 (and hence NSV2 ≤ 2), i.e., λx∗∗∗ = 0 for any x∗∗∗ ∈ V3, it follows from Theorem 2.2 that NSV1 ≥ 1
and NSV0 ≥ 2. Moreover

[a] when NSV2 = 0 (and hence NSV1 ≤ 2), and furthermore

[1] when NSV1 = 1, i.e., x∗1 = 1 or m − 1, we have r-rank{F1(x∗1)} = 1 < 3. Thus from Lemma 4.1.(II)(i), there
does not exist a 2m-BFF design of resolution R∗({1}|Ω3).

[2] When NSV1 = 2, i.e., x∗1 = 1 and x∗2 = m − 1, r-rank{F1(x∗1, x
∗
2)} = 2 < 3. Then we have (2x∗1 −m)(2x∗2 −m) +

(m − 2) = −(m − 2)(m − 3) < 0 for m ≥ 6. Therefore from Lemma 4.1.(II)(ii), a 2m-BFF design of resolution
R∗({1}|Ω3) does not exist.

[b] When NSV2 = 1 (and hence NSV1 ≤ 3), i.e., x∗∗1 = 2 or m − 2, we have r-rank{F2(x∗∗1 )} = 1 < 2.

[1] When NSV1 = 1, i.e., x∗1 = x∗∗1 , we have r-rank{F1(x∗1)} = 1 < 3. Then from Lemma 4.1.(II)(i), there does not
exist a 2m-BFF design of resolution R∗({1}|Ω3).

[2] When NSV1 = 2, i.e., x∗1 = 1 or m − 1 and x∗2 = x∗∗1 , we have r-rank{F1(x∗1, x
∗
2)} = 2 < 3. When x∗1 = 1,

(2x∗1 − m)(2x∗2 − m) + (m − 2) = (m − 2)(m − 3) > 0 and −(m − 2)(m − 5) < 0 for m ≥ 6 according as x∗2 = 2
and m − 2, respectively. Thus, it follows from Lemma 4.1.(II)(ii) and the relation of the CSA that there does
not exist a 2m-BFF design of resolution R∗({1}|Ω3).

[3] When NSV1 = 3 (and hence NSV0 ≤ 5), i.e., x∗1 = 1, x∗2 = x∗∗1 and x∗3 = m − 1, r-rank{F1(x∗1, x
∗
2, x
∗
3)} = 3. In

addition,

[3.1] when NSV0 = 3, i.e., xi = x∗i (i = 1, 2, 3), r-rank{F0(x1, x2, x3)} = 3 < 4. Then x1 + x2 −m , 0 for x2 = 2
or m− 2, and m ≥ 6. Furthermore from Lemma 4.1.(I)(ii), we have (2x1 −m)(2x2 −m)+ (2x2 −m)(2x3 −
m) + (2x3 − m)(2x1 − m) + (3m − 2) = −(m − 1)(m − 6) = 0 for x2 = 2 or m − 2. Thus we get m = 6, and
hence x3 = m − 1 = 5. In this case, 27 ≤ N < ν3(6) = 42. Therefore case (i)(1) is established. Here if
x2 = 2, then d0 = 10/3 and d2 = −2/3, and if x2 = m − 2 = 4, then d0 = −10/3 and d2 = 2/3, where dk

(k = 0, 2) are constants given in Lemma 4.1.(I)(ii).
[3.2] When NSV0 = 3 + p (p = 1, 2), i.e., x1 = 0 or m (if p = 1) (x1 = 0 (if p = 2)), x2 = 1, x3 = 2

or m − 2, and x4 = m − 1 (and x5 = m (if p = 2)), we have r-rank{F0(x1, x2, · · · , x3+p)} = 4. Then(
m
2

)
+ 2m + p ≤ N < ν3(m) for m ≥ 6 and p = 1, 2. Thus we obtain cases (ii)(1) and (2), and (iii)(1).

[c] When NSV2 = 2 (and hence NSV1 ≤ 4), i.e., x∗∗1 = 2 and x∗∗2 = m − 2, r-rank{F2(x∗∗1 , x
∗∗
2 )} = 2.

[1] When NSV1=2 (and hence NSV0 ≤ 4), i.e., x∗j = x∗∗j ( j = 1, 2), r-rank{F1(x∗1, x
∗
2)} = 2 < 3. Thus from Lemma

4.1.(II)(ii), (2x∗1 − m)(2x∗2 − m) + (m − 2)= −(m − 3)(m − 6) = 0 for m ≥ 6, and hence we get m = 6 and
x∗2 = m − 2 = 4. In this case, d∗ = 0, where d∗ is a constant given in Lemma 4.1.(II)(ii). Furthermore

[1.1] when NSV0 = 2, i.e., xi = x∗i (i = 1, 2), r-rank{F0(x1, x2)} = 2 < 4. Since m = 6, from Lemma
4.1.(I)(i)(1), we get t = 1, and hence x1 = 1 and x2 = 5, which contradict x1 = 2 and x2 = 4. Thus in this
case, there does not exist a 2m-BFF design of resolution R∗({1}|Ω3).
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[1.2] When NSV0 = 3, i.e., x1 = 0 or m(= 6) and xi+1 = x∗i (i = 1, 2), r-rank{F0(x1, x2, x3)} = 3 < 4. Since
m = 6, we have x1 + x2 −m = −4 , 0 and (2x1 −m)(2x2 −m)+ (2x2 −m)(2x3 −m)+ (2x3 −m)(2x1 −m)+
(3m − 2) = 12 , 0 for x1 = 0. Therefore from Lemma 4.1.(I)(ii) and the relation of the CSA, a 2m-BFF
design of resolution R∗({1}|Ω3) does not exist.

[1.3] When NSV0 = 4, i.e., x1 = 0, xi+1 = x∗i (i = 1, 2) and x4 = m(= 6), r-rank{F0(x1, x2, · · · , x4)} = 4. In this
case, 32 ≤ N < ν3(6) = 42, and hence case (ii)(3) is proved.

[2] When NSV1 = 3 (and hence NSV0 ≤ 5), i.e., x∗1 = 1 or m − 1 and x∗j+1 = x∗∗j ( j = 1, 2), we have
r-rank{F1(x∗1, x

∗
2, x
∗
3)} =3.

[2.1] When NSV0 = 3, i.e., xi = x∗i (i = 1, 2, 3), r-rank{F0(x1, x2, x3)} = 3 < 4. Then x1+x2−m = −(m−3)(, 0)
and 1(, 0) for m ≥ 6 according as x1 = 1 and m − 1, respectively. Furthermore (2x1 − m)(2x2 − m) +
(2x2 − m)(2x3 − m) + (2x3 − m)(2x1 − m) + (3m − 2)= −(m − 2)(m − 9) for x1 = 1 or m − 1. Thus from
Lemma 4.1.(I)(ii), we get m = 9, and hence x1 = 1 or m − 1 = 8 and x3 = m − 2 = 7. In this case,
81 ≤ N < ν3(9) = 130. Thus case (i)(2) is established. If x1 = 1, x2 = 2 and x3 = 7, then we get
d0 = 56/3 and d2 = −7/3, and if x1 = 8, x2 = 2 and x3 = 7, then d0 = −56/3 and d2 = 7/3.

[2.2] When NSV0 = 3 + p (p = 1, 2), i.e., x1 = 0 or m (if p = 1) (x1 = 0 (if p = 2)) and xi+1 = x∗i
(i = 1, 2, 3)(and x5 = m (if p = 2)), we have r-rank{F0(x1, x2, · · · , x3+p)} = 4. Furthermore ν3(m) − N ≤
(m− 6)(m2 + 5)/6+ (6− p) > 0 for m ≥ 6 and p = 1, 2. Thus cases (ii)(4) and (5), and (iii)(2) are proved.

[3] When NSV1 = 4, i.e., x∗1 = 1, x∗2 = 2, x∗3 = m − 2 and x∗4 = m − 1, r-rank{F1(x∗1, x
∗
2, · · · , x∗4)} = 3. Furthermore

when NSV0 = 4 + p (p = 0, 1, 2), i.e., when p = 0, we have xi = x∗i (i = 1, 2, · · · , 4), when p = 1, x1 = 0 or
m and xi+1 = x∗i (i = 1, 2, · · · , 4), and when p = 2, x1 = 0, xi+1 = x∗i (i = 1, 2, · · · , 4) and x6 = m, we have
r-rank{F0(x1, x2, · · · , x4+p)} = 4. Then ν3(m) − N ≤ (m − 6)(m2 − 1)/6 − p= (m − 7)(m2 + m + 6)/6 + (8 − p)
for m ≥ 6 and p = 0, 1, 2. Thus when m = 6, we have ν3(6) − N ≤ 0 for p = 0, 1, 2, and when m ≥ 7,
ν3(m) − N > 0 for p = 0, 1, 2. Therefore we establish cases (ii)(6), (iii)(3) and (iv).

[B] When NSV3 = 1 (and hence NSV2 ≤ 3), i.e., 3 ≤ x∗∗∗1 ≤ m− 3, it follows from Theorem 2.2 that r-rank{F3(x∗∗∗1 )} = 1,
and it must be NSV0 ≥ 2. In addition,

[a] when NSV2 = 1 (and hence NSV1 ≤ 3), i.e., x∗∗1 = x∗∗∗1 , we have r-rank{F2(x∗∗1 )} = 1 < 2.

[1] When NSV1= 1, i.e., x∗1 = x∗∗1 , r-rank{F1(x∗1)} = 1 < 3. Thus from Lemma 4.1.(II)(i), there does not exist a
2m-BFF design of resolution R∗({1}|Ω3).

[2] When NSV1 = 2 (and hence NSV0 ≤ 4), i.e., x∗1 = 1 or m − 1 and x∗2 = x∗∗1 , r-rank{F1(x∗1, x
∗
2)} = 2 < 3. Then

from Lemma 4.1.(II)(ii), it must be (2x∗1 − m)(2x∗2 − m) + (m − 2) = 0 for m ≥ 6. We consider case x∗1 = 1.
Then we have (2x∗1 −m)(2x∗2 −m)+ (m−2) =−(m−2){2x∗2 − (m+1)} = 0 for m ≥ 6, and hence x∗2 = (m+1)/2,
where m = 2s + 1 ≥ 7. Moreover

[2.1] when NSV0 = 2, i.e., xi = x∗i (i = 1, 2), we have r-rank{F0(x1, x2)} = 2 < 4. Since x1 = 1, from Lemma
4.1.(I)(i)(1), we get t = 1, and hence m = 6 and x2 = 5. However m = 6 < 7 and 5 < SV3 for m = 6. Thus
from Lemma 4.1.(I)(i)(1) and the relation of the CSA, a 2m-BFF design of resolution R∗({1}|Ω3) does not
exist.

[2.2] When NSV0 = 3, i.e., x1 = 0 or m and xi+1 = x∗i (i = 1, 2), we have r-rank{F0(x1, x2, x3)} = 3 < 4. Then
it holds xp + xq − m , 0 for any {p, q} ⊂ {1, 2, 3} and m ≥ 7. However when x2 = 1, (2x1 − m)(2x2 −
m) + (2x2 − m)(2x3 − m) + (2x3 − m)(2x1 − m) + (3m − 2) = m(m − 1) > 0 and −m(m − 5) < 0 for m ≥ 7
according as x1 = 0 and m, respectively. Therefore it follows from Lemma 4.1.(I)(ii) and the relation of
the CSA that there does not exist a 2m-BFF design of resolution R∗({1}|Ω3).

[2.3] When NSV0 = 4, i.e., x1 = 0 and xi+1 = x∗i (i = 1, 2) and x4 = m, r-rank{F0(x1, x2, · · · , x4)} = 4.
In this case, when m = 7, we have 44 ≤ N < ν3(7) = 64, and when m = 2s + 1 ≥ 9, ν3(m) − N≤(

m
2

)
+

(
m
3

)
−

(
m
4

)
− 1 <

(
m
2

)
+

(
m
3

)
−

(
m
4

)
= −[(m− 9){(m− 9)(m2 + 8m+ 74)+ 682}/24+ 6] < 0 for m ≥ 9. Thus

we get m = 7, and hence x1 = 0, x2 = 1 or m− 1 = 6, x3 = (m+ 1)/2 = 4 and x4 = m = 7. Therefore case
(ii)(7) is proved.

[3] When NSV1 = 3 (and hence NSV0 ≤ 5), i.e., x∗1 = 1, x∗2 = x∗∗1 and x∗3 = m − 1, we have r-rank{F1(x∗1, x
∗
2, x
∗
3)}

= 3.

[3.1] When NSV0=3, i.e., xi = x∗i (i = 1, 2, 3), r-rank{F0(x1, x2, x3)} = 3 < 4. Then x1 + x2 − m < 0 for m ≥ 6.
Furthermore from Lemma 4.1.(I)(ii), it must be (2x1 −m)(2x2 −m)+(2x2 −m)(2x3 −m)+(2x3 −m)(2x1 −
m)+(3m − 2) = −(m − 1)(m − 6) = 0 for m ≥ 6. Thus we get m = 6, and hence, x1 = 1, x2 = 3 and
x3 = m − 1 = 5. In this case, 32 ≤ N < ν3(6) = 42, and hence we have case (i)(3), and d0 = d2 = 0.
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[3.2] When NSV0 = 3 + p (p = 1, 2), i.e., x1 = 0 or m (if p = 1) (x1 = 0 (if p = 2)), xi+1 = x∗i (i = 1, 2) and
x4 = m − 1 (and x5 = m (if p = 2)), r-rank{F0(x1, x2, · · · , x3+p)} = 4. When x3 = 3 or m − 3 (if m ≥ 7),
ν3(m) − N ≤ (m − 6)(m + 3)/2 + (10 − p) > 0 for m ≥ 6 and p = 1, 2, and hence we obtain cases (ii)(8)
and (9), and (iii)(4). When x3 = 4 and m = 8, ν3(8) − N ≤ 7 − p > 0 for p = 1, 2. Thus cases (ii)(10) and
(iii)(5) are obtained. Furthermore when 4 ≤ x3 ≤ m− 4 and m ≥ 9, then N ≥ p+ 2m+

(
m
x3

)
≥ p+ 2m+

(
m
4

)
,

and hence ν3(m) − N≤
(

m
2

)
+

(
m
3

)
− m −

(
m
4

)
− (p − 1)<

(
m
2

)
+

(
m
3

)
−

(
m
4

)
< 0 for m ≥ 9 and p = 1, 2 (see

[B][a][2][2.3] above). Thus there does not exist a 2m-BFF design of resolution R∗({1}|Ω3) with N < ν3(m)
for m ≥ 9.

[b] When NSV2=2 (and hence NSV1 ≤ 4), i.e., x∗∗1 = 2 or m − 2 and x∗∗2 = x∗∗∗1 , we have r-rank{F2(x∗∗1 , x
∗∗
2 )} = 2.

[1] When NSV1=2, i.e., x∗j = x∗∗j ( j = 1, 2), we have r-rank{F1(x∗1, x
∗
2)} = 2 < 3. Thus from Lemma 4.1.(II)(ii), it

must be (2x∗1 −m)(2x∗2 −m)+ (m− 2) = 0 for m ≥ 6. When x∗1 = 2, we have x∗2 = (m+ 1)/2+ 1/(m− 4), which
is an integer for m = 6 only, and hence x∗2 = 4. However 4 does not belong to SV3 for m = 6. Therefore from
Lemma 4.1.(II)(ii) and the relation of the CSA, there does not exist a 2m-BFF design of resolution R∗({1}|Ω3).

[2] When NSV1 = 3 (and hence NSV0 ≤ 5), i.e., x∗1 = 1 or m − 1 and x∗j+1 = x∗∗j ( j = 1, 2), we have

r-rank{F1(x∗1, x
∗
2, x
∗
3)} = 3. In this case, N ≥ m +

(
m
2

)
+

(
m
x∗3

)
for m ≥ 6. Thus when 4 ≤ x∗3 ≤ m − 4 and

m ≥ 8, N ≥ m +
(

m
2

)
+

(
m
4

)
> ν3(m), and hence we only consider case x∗3 = 3 or m − 3 (if m ≥ 7) for m ≥ 6.

[2.1] When NSV0 = 3, i.e., xi = x∗i (i = 1, 2, 3), we have r-rank{F0(x1, x2, x3)} = 3 < 4. Then xs + xt − m , 0
for any {s, t} ⊂ {1, 2, 3}. Moreover when x1 = 1, (2x1−m)(2x2−m)+ (2x2−m)(2x3−m)+ (2x3−m)(2x1−
m) + (3m − 2) = 3(m2 − 7m + 14), −(m2 − 15m + 30), −(m2 − 11m + 22) and −(m2 − 7m − 2) according
as x2 = 2 and x3 = 3, x2 = 2 and x3 = m − 3, x2 = m − 2 and x3 = 3, and x2 = m − 2 and x3 = m − 3,
respectively. However m2 − 7m+ 14 = (m− 6)(m− 1)+ 8 > 0 for m ≥ 6, and furthermore three quadratic
equations m2 − 15m + 30 = 0, m2 − 11m + 22 = 0 and m2 − 7m − 2 = 0 do not have an integer solution
for m ≥ 6. Therefore from Lemma 4.1.(I)(ii) and the relation of the CSA, there does not exist a 2m-BFF
design of resolution R∗({1}|Ω3).

[2.2] When NSV0 = 3 + p (p = 1, 2), we have N ≥ p + m +
(

m
2

)
+

(
m
3

)
≥ ν3(m) for m ≥ 6 and p = 1, 2. Thus

there does not exist a 2m-BFF design of resolution R∗({1}|Ω3) with N < ν3(m).

[3] When NSV1 = 4, we have N ≥ 2m+
(

m
2

)
+

(
m
3

)
> ν3(m) for m ≥ 6. Hence there does not exist a 2m-BFF design

of resolution R∗({1}|Ω3) with N < ν3(m).

[c] When NSV2 = 3, we have N ≥ 2
(

m
2

)
+

(
m
3

)
> ν3(m), and hence a 2m-BFF design of resolution R∗({1}|Ω3) with

N < ν3(m) does not exist.

[C] When NSV3 = q ≥ 2, where (m − 3) − 2 ≥ q, it holds that
(

m
3

)
> 1 + m +

(
m
2

)
for m ≥ 5 + q ≥ 7. Thus we have

N ≥ q
(

m
3

)
≥ 2

(
m
3

)
> ν3(m). Therefore there does not exist a 2m-BFF design of resolution R∗({1}|Ω3) with N < ν3(m) for

m ≥ 5 + q.

Therefore the proof is complete.
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Abstract

In an efficient stock market, the log-returns and their time-dependent variances are often jointly modelled by stochastic
volatility models (SVMs). Many SVMs assume that errors in log-return and latent volatility process are uncorrelated,
which is unrealistic. It turns out that if a non-zero correlation is included in the SVM (e.g., Shephard (2005)), then the
expected log-return at time t conditional on the past returns is non-zero, which is not a desirable feature of an efficient
stock market. In this paper, we propose a mean-correction for such an SVM for discrete-time returns with non-zero
correlation. We also find closed form analytical expressions for higher moments of log-return and its lead-lag correlations
with the volatility process. We compare the performance of the proposed and classical SVMs on S&P 500 index returns
obtained from NYSE.

Keywords: Leverage Effect, Martingale Difference, Return Skewness, Volatility Asymmetry.

1. Introduction

Over the last few decades different aspects of stock price movements in discrete time have been the focus of numerous
research avenues. Suppose Pt denotes the price of a stock at time t, then the continuously compounded return or log-return
(here onwards referred to as return) of the stock is defined as rt = log(Pt/Pt−1). A stock market is said to be efficient if the
price of a stock contains every available information about it. In such a market the risk involved in investing on a stock
is measured by the standard deviation of rt, often termed as the volatility of the stock in finance literature. It has been
noted that volatility varies over time (Engle (1982)). Stochastic Volatility Models (SVMs) is a popular class of models for
describing the time-varying volatility of stock returns (Shephard (2005)).

Although there are a plethora of SVMs for describing the stock returns, one of the simplest yet most popular discrete-
time SVM is given by Taylor (1982), where the return process rt is a non-linear product of two independent stochastic
processes, viz. an i.i.d. error process ϵt, and a latent volatility process ht, which is further modelled as an AR(1). That is,

rt = exp
{

ht

2

}
ϵt

ht = α + ϕ(ht−1 − α) + σηt, ∀t = 1, 2, . . . , (1)

where α = E(ht) is the long-range volatility, ϕ is the stationarity parameter, σ measures the variability of the volatility
process ht, and ϵt and ηt are uncorrelated i.i.d. N(0, 1) errors. Hereafter this model will be referred as S V M0.

As in (1), many of the new generation SVMs which are being used in the finance literature assume that ϵt and ηt are
independent N(0, 1) errors. In reality, however, ϵt and ηt are often correlated (Harvey & Siddique (1999)). Though
discrete-time SVMs with non-zero corr(ϵt, ηt) have been developed earlier and are being used, they assume that ht+1
(instead of ht as in (1)) depends on ηt via AR(1) (see e.g. Meyer & Yu (2000); Berg et al. (2004)). In this paper, we
focus on the SVM presented in (1) with correlated errors (denoted as S V Mρ). That is, the additional assumption in (1) is
corr(ϵt, ηt) = ρ (Jacquier et al. (2004)).

It turns out that introducing a non-zero correlation between ηt and ϵt in (1) has an adverse effect on the admissibility of the
SVM from an efficient market’s viewpoint. In particular, the conditional expectation of rt given the past data, E[rt | Ft−1],
is not zero, where Ft−1 is the space (σ-field) generated with r1, ..., rt−1. This zero conditional expectation of the return is
a necessary requirement for an efficient market hypothesis (EMH) (see Yu (2005) for a review).

In this paper, we propose a mean-correction for S V Mρ - model (1) with correlated errors, such that E[rt | Ft−1] becomes
zero and the corrected SVM would satisfy EMH. The proposed mean-corrected model is denoted by S V Mρµ. Further,
Black (1976) mentioned that, usually, the amount of increment in volatility due to price fall is larger than the magnitude
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of reduction in the volatility due to price increase. In turn, this indicates the volatility of positive returns, var(rt |rt > 0),
is less than the volatility of the negative returns, var(rt |rt < 0) resulting in skewness in return distribution. Moreover,
the kurtosis quantifies the proportion of extreme values, that occur during crashes, explained by the model. We find the
closed form expressions for the higher-order moments and the lead-lag correlation of the underlying return process. These
descriptive statistics indicate the influence of past/future volatility on today’s return.

The remainder of the article is organized as follows. Section 2 presents the main results: S V Mρµ - the mean-corrected
SVM with non-zero correlation that satisfies EMH, and the closed form analytical expressions for the higher order mo-
ments and lead-lag correlation for the proposed model. For the returns of S&P 500 NSYE, Section 3 presents a comparison
between the standard zero correlation model (1) and the ones with non-zero correlation. Finally Section 4 outlines the
concluding remarks and a few possible future directions.

2. Main Results

For this section, we assume that the error terms ϵt and ηt in (1) have not only a constant correlation ρ and i.i.d. N(0, 1)
marginals, but they also follow a bivariate normal distribution. The proposed mean-corrected model (S V Mρµ) contains an
additional term µ, i.e.,

rt = µ + exp
{

ht

2

}
ϵt

ht = α + ϕ(ht−1 − α) + σηt, ∀t = 1, 2, . . . T. (2)

Theorem 1 establishes the value of µ for which the proposed mean-corrected model (2) gives zero conditional expectation
E[rt | Ft−1] and hence satisfy EMH. Later in this section, we derive closed form expressions for the higher-order moments,
i.e., variance, skewness, and kurtosis of rt, and lead-lag correlations between rt and ht±k.

Theorem 1. For S V Mρµ in (2) with |ϕ| ≤ 1, σ > 0 and −∞ < α < ∞, if (ϵt, ηt) follows a standard bivariate normal
distribution with correlation ρ, the mean term

µ = −ρσ
2

exp
{
α

2
+

σ2

8(1 − ϕ2)

}
(3)

gives E[rt | Ft−1] = 0 and vice-versa.

Proof. The conditional expected return E[rt | Ft−1] = 0 gives

−µ = E
[
exp

{
ht

2

}
ϵt

]
= E

[
exp

{
α + ϕ(ht−1 − α) + σηt

2

}
ϵt

]

= exp
{
α

2

}
× E

exp

ϕσ2
∞∑
j=1

ϕ j−1ηt− j


 × E

[
exp

{
σηt

2

}
ϵt

]
. (4)

Since (ϵt, ηt) follows a standard bivariate normal with correlation ρ, the condition distribution of ϵt | ηt is given by
N

(
ρηt, 1 − ρ2

)
. This conditional normal distribution and the moment generating function (mgf) of a normal distribution

simplifies the third term in (4) as

E
[
exp

{
σηt

2

}
ϵt

]
= Eηt

[
exp

{
σηt

2

}
ρηt

]
=
ρσ

2
exp

{
σ2

8

}
, (5)

and the second term to
∞∏
j=1

E
[
exp

{
σϕ j

2
ηt− j

}]
= exp

σ2

8

∞∑
j=1

ϕ2 j

 = exp
{

σ2ϕ2

8(1 − ϕ2)

}
. (6)

Hence the final expression for µ follows from (4)-(6). �

Yu (2005) tried to compute E[rt | Ft−1], but the final expression appears to be incorrect. Note that the proposed mean-
correction (in Theorem 1) makes the model (2) usable in the stock market, as it now satisfies EMH (in particular, E[rt |
Ft−1] = 0). Further, the proof of the above theorem prohibits the usage of heavy-tail distributions (like t distribution)
as the volatility error distribution (Wang et al. (2011)) as its moment generating function would not exist resulting in
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in-existence of expected returns. In Section 3, we discuss the usage of this model for the index returns of S&P500 index
of New York Stock Exchange (NYSE) observed during 1st April, 2002 - 30th March, 2006.

2.1 Higher-order moments

For additional key features on the distribution of returns, we estimate higher order moments, in particular, variance,
skewness and kurtosis conditional on Ft−1.

Theorem 2. For S V Mρµ in (2), if Theorem 1 holds, then the variance of returns conditional on Ft−1 is given by

V(rt | Ft−1) = exp
{
α +

σ2

2(1 − ϕ2)

} (
1 + ρ2σ2 − ρ

2σ2

4
exp

{
− σ2

4(1 − ϕ2)

})
. (7)

Proof. Following the definition of variance,

V(rt | Ft−1) = E[r2
t | Ft−1] − 02

= E
[
exp{ht}ϵ2

t

]
− µ2

= exp {α} × E

exp

σ
∞∑
j=1

ϕ jηt− j


 × E

[
exp {σηt} ϵ2

t

]
− µ2

= exp
{
α +

σ2ϕ2

2(1 − ϕ2)

}
(1 + ρ2σ2) exp

{
σ2

2

}
− µ2 (as in (4)-(6)).

The final result follows by substituting the value of µ from Theorem 1. �

The expressions of the conditional mean and variance are the most crucial components in finding the skewness and kurtosis
statistics. For S V Mρµ in (2), under the same conditions as in Theorem 2, the skewness conditional on Ft−1 is measured
by µ3/(Var(rt | Ft−1))3/2, where

µ3 =
3ρσ

2
exp

{
3α
2
+

9σ2

8(1 − ϕ2)

} [
3 +

9σ2ρ2

4
+
ρ2σ2

6
exp

{
− 3σ2

4(1 − ϕ2)

}
−

(
1 + ρ2σ2

)
exp

{
− σ2

2(1 − ϕ2)

}]
. (8)

The proof of (8) starts with µ3 = E[r3
t | Ft−1], and proceeds in the exact same manner as in Theorems 1 and 2. Similarly

the closed form expression of kurtosis can also be found as µ4/(Var(rt | Ft−1))2, where

µ4 = exp
{

2α +
2σ2

(1 − ϕ2)

}
×

[
3
2
ρ2σ2(1 + σ2ρ2) exp

{
−5σ2

4(1 − ϕ2)

}
+

(
3 + 24ρ2σ2 + 16ρ4σ4

)
− 3

16
ρ4σ4 exp

{
−3
2

σ2

(1 − ϕ2)

}
−9ρ2σ2

(
1 +

3
4
ρ2σ2

)
exp

{
−3σ2

4(1 − ϕ2)

}]
. (9)

As expected all four descriptive statistics found here depends heavily on corr(ϵt, ηt) = ρ. On a closer inspection of these
statistics, we see that ρ = 0 (i.e., the classical SVM by Taylor (1982)) gives µ = 0, µ3 = 0,

Var(rt | Ft−1) = exp
{
α +

σ2

2(1 − ϕ2)

}
and µ4 = 3 exp

{
2α +

2σ2

(1 − ϕ2)

}
.

The simplified expressions found here are consistent with the ones reported by Ghysels et al. (1996), and hence the
proposed model S V Mρµ (2) is a generalization of the classical model S V M0 in (1). Next we investigate the conditional
(on Ft−1) dependence between the current returns and past, current and future volatility.

2.2 Lead-lag correlations

In this section, we wish to estimate three quantities: (1) dependence between the current returns and current volatility,
corr(rt, ht |Ft−1), (2) the potential influence of current returns on future volatility, corr(rt, ht+k |Ft−1), and (c) the influence
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of past volatility on current returns, corr(rt, ht−k |Ft−1). Though empirical estimation of such quantities is not uncommon,
e.g., in Bollerslev et al. (2006), our aim is to find closed analytical expression for these descriptive measures under S V Mρµ

specification.

Since var(rt |Ft−1) is given by (7) and var(ht |Ft−1) = σ2/(1− ϕ2), we only need to find the expressions for the conditional
covariances. First, we recall that under the proposed model, the conditional means are E(rt |Ft−1) = 0 and E(ht |Ft−1) = α.
Now, if we assume that corr(rt, ht |Ft−1) = σrh, then

cov(rt, ht+1) = E[rt(ht − α)] = E[rt(ϕ(ht − α) + σηt+1)] = ϕE[rt(ht − α)] = ϕσrh,

which further implies that cov(rt, ht+k) = ϕkσrh for k ≥ 1. By applying the key mathematical techniques (i.e., properties
of expectation, normal mgf and the expansion of ht = α + σ

∑∞
j=1 ηt− jϕ

j) used in proving results of Section 2.1, one can
easily show that

σrh = cov(rt, ht |Ft−1) = ρσ exp
{
α

2
+

σ2

8(1 − ϕ2)

}
×

{
1 +

σ2

4(1 − ϕ2)

}
,

cov(rt, ht−k |Ft−1) = σrh · ϕk ·
[

σ2

4(1 − ϕ2)

] / [
1 +

σ2

4(1 − ϕ2)

]
.

Clearly, both the lead (cov(rt, ht+k)) and lag (cov(rt, ht−k)) covariances are smaller than the contemporaneous covariance
cov(rt, ht |Ft−1). The contemporaneous correlation can be interpreted as almost instantaneous feedback effect of volatility
change on returns, whereas the impact of return change on future volatility is termed as leverage effect. Bekaert & Wu
(2000) found that volatility feedback effect is stronger than leverage effect. The closed form expressions we have derived
above provide a theoretical proof of the mentioned findings under S V Mρµ specification. Moreover, Bollerslev et al. (2006)
have empirically observed that the lag-correlation with lag h is smaller than lead correlation with lead h which we have
established theoretically. Further note that all these covariances and hence correlations vanish if ρ = corr(ϵt, ηt) = 0.
Next, we compare the goodness of fit of the three stochastic volatility models, S V M0 (classical - with zero correlation),
S V Mρ (with correlation ρ) and S V Mρµ (mean-corrected with correlation ρ), for a real data on returns.

3. Example: S&P 500 NYSE

In this paper, we compare the performance of the three models (S V M0, S V Mρ, S V Mρµ) on the index returns of Standard
and Poor 500 index (S&P500) obtained from New York Stock Exchange during April 01, 2002 – March 30, 2006. We
selected this period to avoid extreme behaviour during “2000 – 2002 dot-com bubble” and “2008 Lehman Brothers’
crash”. Figure 1 displays the time-plot of the returns of 1008 trading days (less than the total number of calendar days).

Apr 02 2002 Apr 01 2003 Apr 01 2004 Apr 01 2005 Mar 30 2006

−
0.

15
−

0.
05

0.
05

0.
15

Figure 1. Time plot of S&P500 returns during April 01, 2002 – March 30, 2006
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From Figure 1 one can infer that the volatility is relatively high during September 2003 and June 2004, whereas during
October 2004 to April 2005, the volatility is relatively lower than usual. A few descriptive statistics of the observed returns
are as follows:

mean = 0.0014, variance = 0.0005,
skewness = 0.0329, kurtosis = 10.9813.

We follow Meyer & Yu (2000), and use the same Markov Chain Monte Carlo (MCMC) algorithm implemented in Just
Another Gibbs Sampler (JAGS) for fitting the classical model S V M0. For fitting the other two models, S V Mρ and S V Mρµ,
we slightly modify the JAGS code to include the corr(ϵt, ηt) = ρ and µ (derived in Theorem 1). For implementing S V M0
in JAGS, the hierarchical model structure is characterized by

rt | (ht, ht−1, . . . h1, h0;α, ϕ, σ) ∼ N
(
0, exp {ht}

)
,

and ht | (ht−1, . . . h1, h0;α, ϕ, σ) ∼ N
(
α + ϕ(ht−1 − α), σ2

)
.

For S V Mρ, the mean and variance of the conditional distribution of rt changes to

rt | (ht, . . . , h0;α, ϕ, σ) ∼ N
(
ρ eht/2

σ
(ht − α − ϕ(ht−1 − α)), eht (1 − ρ2)

)
,

and the conditional distribution of ht remains the same. Similarly, the implementation of the mean-corrected model
S V Mρµ is characterized by updating the mean and variance of the conditional distribution of rt to

rt | (ht, . . . , h0;α, ϕ, σ) ∼ N
(
µ +

ρ eht/2

σ
(ht − α − ϕ(ht−1 − α)), eht (1 − ρ2)

)
.

The parameters of interest are (α, ϕ, ρ, σ) = Θ (say). We use the same prior (including the hyperparameters) for α, ϕ and
σ as in Meyer & Yu (2000), and a non-informative Uni f (−1, 1) prior for the correlation parameter. The posterior of Θ
and H = {ht, ht−1, ...} given the data {rt, rt−1, ...} is obtained via JAGS. We set the total length of chains to be 180,000,
out of which 30,000 was the burn-in, and from the remaining 150,000 posterior realizations (with the thinning of every
50th realization) were used (i.e., 3000 realizations in total) to obtain the plug-in estimates of the parameters. The thinning
process facilitates a safeguard against the chain dependency in the sampling process. Figure 2 shows the density plots
of the posterior distribution of Θ for the three models, S V M0, S V Mρ and S V Mρµ. We have not included the traceplots,
as all parameters converge nicely and the plots do not reveal anything extra. The plug-in estimates of the parameters are
obtained via posterior mean and variance (summarized in Table 1).

Table 1. Plug-in estimators of Θ = (α, ϕ, σ, ρ) for the three models. The numbers in parentheses show the standard
deviation of the posterior realizations.

Parameter S V M0 S V Mρ S V Mρµ

α -7.88 -7.87 -7.88
(0.1837) (0.2077) (0.192)

ϕ 0.96 0.97 0.96
(0.016) (0.014) (0.014)

σ 0.2 0.177 0.18
(0.04) (0.034) (0.038)

ρ 0.1185 0.105
(0.1362) (0.1278)

Table 1 shows that the posterior estimates of the parameters in S V M0, S V Mρ and S V Mρµ are similar. Further, the near-
unity estimate of ϕ indicates presence of strong volatility clustering. The estimate of the correlation parameter ρ is small
yet positive, which is similar to the findings of French et al. (1987) and Campbell & Hentschel (1992). This may be taken
as an indication of no significant effect of current return on future volatility.

Figure 2 shows that the posterior distributions of the parameters for S V M0, S V Mρ and S V Mρµ are different in their kurto-
sis. A general pattern that can be noticed is that posterior distributions of the parameters under S V M0 are more leptokurtic
compared to their counter parts under other two models except for α. Importantly, too strong volatility clustering is more
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(d) ρ = corr(ϵt , ηt)

Figure 2. Posterior distribution of Θ for the three models. The black solid curves represent S V M0, blue dashed curves are
from S V Mρ model, and the red dotted curves are obtained from the proposed model S V Mρµ.

probable under S V Mρ and S V Mρµ compared to S V M0. In case of variance of volatility, posterior distribution under
S V M0 indicates higher values compared to the other two models. Comparing the posterior distributions of ρ under S V Mρ

and S V Mρµ, the former shows higher probability of being positive valued relative to the latter.

As per Figure 2(d), ρ is very small (close to zero), and thus, it is expected that the proposed model would not provide
significant additional strength in modelling the returns data.

We now compare the three models using the descriptive measures (mean, variance, skewness and kurtosis), three lead-lag
correlations, mean deviance over the posterior distribution, and the mean square prediction error (MSPE):

∑T
t=1 r̂2

t /T . The
deviance function, suggested by Dempster (1974), is

D(Θ) = −2 log f (r | Θ,H) + 2 log g(r),

where f (r | Θ,H) is the likelihood for a given realization of Θ and H , and g(r) is the normalizing constant. Table 2
presents the plug-in values of these “goodness of fit” measures for the three models.

Since ρ ≈ 0.1 (very small), the estimated mean is also small µ = −4.05 · 10−6. Thus all three models would behave very
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Table 2. Goodness of fit measures for the true data and the three models.

GOF measure True data S V M0 S V Mρ S V Mρµ

Mean 0.0014 0 – −4.05 × 10−6
Variance 0.0005 0.0005 0.0005 0.0005
Skewness 0.0329 0 0.0856 0.0769
Kurtosis 10.981 5.196 5.105 5.076
corr(rt, ht) 0.0305 0.0276
corr(rt, ht−10) 0.0053
Deviance -5019 -5033 -5043
MSPE (×10−7) 0.178 12.94 9.298

similarly (which is reflected in the estimated moments under the three models). Surprisingly plug-in estimates of kurtosis
obtained from all three models under-estimates the kurtosis measured from the data. Deviance values indicate that S V Mρµ

provides a slightly better fit compared to the other two models. On the other hand, MSPE values indicate that the basic
SVM provides better prediction among the three models. Though the numerical results presented through the S& P 500
NYSE example do not provide sufficient evidence for S V Mρµ giving additional information than S V M0, it certainly is the
generalization of S V M0 and an example with large ρ = corr(ϵt, ηt) might have given more convincing evidence.

4. Concluding Remarks

In this paper, we have proposed a mean-correction for the SVM with correlation between ϵt and ηt. This mean-correction
step enables the conditional expected return to be zero, which is a necessary condition for a good SVM (i.e., a model that
adhere to the EMH). We have also found the closed form analytical expressions for the higher moments of returns and
lead-lag correlation between the return and volatility.

From S&P500 example, we see that most of the empirical observations on statistical properties of returns are reflected
through all the three models. However, S V Mρµ gives a slightly better fit to the data (in terms of average deviance)
compared to the classical model S V M0 as well as S V Mρ. A close look at this research endeavour generates several
interesting and challenging research problems.

First, the estimated error correlation ρ turns out to be positive despite the fact that return and its volatility move in
opposite directions (Nelson (1991)). Glosten et al. (1993) attributed this discrepancy due to mis-specification in the
underlying SVM, which is caused by not accounting for the size discrepancy in volatility change due to up or down
movement of price. The authors have shown that if the size discrepancy is accounted for then ρ becomes negative. This
result demonstrates that ρ alone can not explain the asymmetric response of return to its volatility sufficiently. As we have
pointed out in the introduction that this size discrepancy can be interpreted as different conditional variances (or volatility)
for positive and negative returns, which leads to skewed return distribution instead of a Gaussian one, a new model can be
developed by extending S V Mρµ in the line of Abanto-Valle et al. (2010).

Second, the observed kurtosis from the data is not completely explained by the model based estimates of kurtosis. Indeed,
the significant difference between empirical kurtosis and the model based estimates again suggests non-normality of the
return error distribution. The problem can be tackled in two ways- (1) introducing jumps in returns or (2) allowing the
return error to be heavy-tailed (e.g. Student’s t). Notice, adding a jump to the return only explains transient changes (as
seen on 8th & 9th August, 2002 ) and does not cause the return distribution to change permanently whereas jump in both
return and volatility explains persistent effects of extreme values (e.g. September, 2003 – June, 2004). S V Mρµ can further
be generalized by including jumps in return and volatility (Eraker et al. (2003)) following the 1st line of argument and
using skew Student’s-t distributions following the 2nd line of argument (Abanto-Valle et al. (2015)).

Although continuous time stochastic volatility has been studied extensively in the literature, discrete-time SVM brings
out new features such as leverage effect and feedback effect which occurs due to lagged reaction between return and its
volatility. In this paper we have established that the empirically observed pattern of leverage effect and lagged correlations
(Bollerslev et al. (2006)) are explained by S V Mρµ. In particular, we have shown that the correlation between current return
and future volatility is maximum in magnitude at lead 0 (or contemporaneously) and the future leverage effects disappear
exponentially with the lead time. Indeed, strong volatility clustering effect indicates more persistent leverage effect. It
may also be noted that the existing practice of assuming ht+1 = α + ϕ(ht − α) + σηt (instead of ht) and corr(ϵt, ηt) = ρ for
a correct SVM specification would not support the empirical observation on contemporaneous correlation.

Mean-correction to the contemporaneously correlated SVM has another very important application, which is extensively
researched in continuous-time scenario, but barely investigated in the discrete-time domain. An arbitrage opportunity is
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created in a market if one can borrow an amount P0 to purchase a stock at time 0, and sell it at time T at a price PT ,
making no loss with probability 1 and getting a profit with positive probability. An efficient market would never want an
arbitrage opportunity to be created. It can be shown that, under mild assumptions, a necessary and sufficient condition
for the existence of no arbitrage is equivalent to the existence of a risk-neutral density. In fact, in continuous time, Pt is a
martingale under this density ((Williams, 2006, Ch. 5)). A discrete time analogue of the no-arbitrage condition is to say
that rt = log

(
Pt

Pt−1

)
is a martingale difference or equivalently has zero mean. Arbitrage free option prices are derived from

SVMs using the risk-neutral density, and may not be unique (e.g., Hull & White (1987)). It can also be shown that if rt

is not a martingale difference process then arbitrage opportunities can be created. As a result, arbitrage free option prices
will not exist. In this paper we have proposed mean-correction of the SVM by adding an appropriate non-zero drift term
which facilitates no-arbitrage and hence the existence of a risk neutral density. Thus the proposed model opens up the
way to compute option prices under the type of SVMs proposed by (Jacquier et al. (2004)). This relationship with option
pricing requires a detailed investigation which we believe can lead to important results.
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Abstract 

In this paper, data on road traffic casualties by age groups, from 2009 to 2013, will be used. Using published road traffic 

casualty statistics from the National Road Safety Commission of Ghana, a 2  8 contingency table is used to determine 

whether road traffic casualty and age group are independent. A one factor analysis of variance tests shall be used to 

conduct a comparative analysis of the rate of road traffic fatalities per 100 casualties across the various age groups in 

Ghana. A multiple comparison test, using the Fisher least significance difference (LSD) method, shall be conducted to 

determine which pairs of age groups are significantly different. 

The study will show that road traffic casualty is not independent of age group. The analysis of variance will show that 

there are significant differences in road traffic fatality indices (fatality per 100 casualties) among various age groups in 

Ghana. The risks of dying in a road traffic accident among children under 6 years and older population who are over 65 

years are both significantly higher than those of other age groups. This points to the fact that, although smaller number of 

children under 6 years and older population who are over 65 years die in road traffic accidents each year, more and more 

people as a proportion of the recorded number of casualties, are being killed through road traffic accidents among these 

two categories of age groups. Thus, the probability of being killed in a fatal road traffic accident is significantly high in 

each of these two age groups.  

Keywords: Contingency, analysis of variance, Traffic fatalities, casualties, injuries  

1. Introduction 

The European Economic Commission (EEC) and the World Health Organization (1979) have recommended a definition 

for a road traffic accident fatality. This includes only deaths which occur within 30 days following a road traffic 

accident while road traffic casualties refer to road traffic accident victims injured or killed within 30 days of the 

accidents. A number of countries have not yet adopted this definition. For example, in some countries, a road traffic 

fatality is recorded only if the victim dies at the site or is dead upon arrival at a hospital. In order to make comparison of 

accident statistics between countries reasonable, figures obtained from countries which have not adopted the 30-day 

fatality definition, should be properly adjusted.  No adjustment is required for figures from countries such as Ghana, 

U.S.A and Great Britain, which have adopted the standard fatality definition. 

Casualties of road traffic accidents in Ghana by age groups, from 2009 – 2013, are given in Table 1. Unlike many fatal 

diseases, road traffic accidents kill people from all age groups, including young and middle-aged people in their active 

years. A cumulative total of 10 555 fatalities is recorded over the 5-year period. The highest fatalities during the period 

were in the 26 – 35 year old. Table 1 also shows that the active age group, 16 – 45 years, was the most vulnerable in 

road traffic fatalities, representing 63.2% of the total fatalities in the 5-year period. 

According to the National Road Safety Commission (NRSC) of Ghana 2013 annual report, one key national Road 

Traffic Fatality index (F. I.) required for characterization and comparison of the extent and risk of road traffic fatality is 

fatalities per 100 casualties (see Hesse and Ofosu, 2015). In Table 1, the distribution of the rate of road traffic fatalities per 

100 accidents by age groups from 2009 – 2013 are also computed.  
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Table 1. Age distributions of fatalities and injuries from road traffic accidents from 2010 to 2013 

  Casualties 

  Persons Killed Persons Injured 

  2013 2012 2011 2010 2009 Total 2013 2012 2011 2010 2009 Total 

A
g
e 

g
ro

u
p

s 
(Y

ea
r
s)

 

0 – 5   97 113 126 136 130 602 214 241 276 389 401 1521 

6 – 15 148 170 212 217 250 997 529 789 846 962 1112 4238 

16 – 25  315 335 365 269 388 1672 2172 2509 2723 3110 3245 13759 

26 – 35  531 661 658 577 609 3036 3871 4458 5070 5297 5861 24557 

36 – 45  359 441 400 379 383 1962 2162 2753 3009 2932 3138 13994 

46 – 55 188 236 209 184 222 1039 1001 1334 1374 1399 1512 6620 

56 – 65  149 159 126 129 141 704 472 621 493 563 618 2767 

Over 65 111 125 103 95 109 543 190 296 229 266 246 1227 

 Total 1898 2240 2199 1986 2232 10555 10611 13001 14020 14918 16133 3994 

 

It can be seen, from Table 2, that the F. I. increased from 24.5 to 31.2 among children under  6 years from year 2009 to 

2013, whilst that of the „over 65‟ age groups increased marginally from 30.7 to 36.9 over the same period. In very 

simple terms, these changes imply that the chance of at least one casualty dying as a result of road traffic accident has 

increased over the period. It can be observed that, over the 5 year period, the „over 65‟ continues to be the age group 

with the highest national fatality rate. For instance, in 2013, about 37% of all road traffic casualties who were over 65 

years lost their lives while 31% of casualties who were 5 years old or less died as a result of road traffic accidents.  

 

Table 2. Rate of fatalities per 100 casualties (fatality indices) 

 

  0 – 5 6 – 15 16 – 25 26 – 35 36 – 45 46 – 55 56 – 65 Over 65 

 

  1 2 3 4 5 6 7 8 

2013 1 31.2 21.9 12.7 12.1 14.2 15.8 24.0 36.9 

2012 2 31.9 17.7 11.8 12.9 13.8 15.0 20.4 29.7 

2011 3 31.3 20.0 11.8 11.5 11.7 13.2 20.4 31.0 

2010 4 25.9 18.4 8.0 9.8 11.4 11.6 18.6 26.3 

2009 5 24.5 18.4 10.7 9.4 10.9 12.8 18.6 30.7 

mean  29.0 19.3 11.0 11.1 12.4 13.7 20.4 30.9 

The number of road traffic fatality victims in Ghana can be classified according to two criteria, of a set of entities, 

namely casualty and age group. Casualty has 2 levels (i.e. fatalities and injured) while age group has 8 levels. These 

form a 2  8 contingency table as shown in Table 3.   

 

Table 3. Road traffic accidents victims from 2010 to 2013 

  
Age Group  

  
0 – 5 6 – 15 16 – 25 26 – 35 36 – 45 46 – 55 56 – 65 Over 65 Total 

ca
su

a
lt

y
 

Fatalities 602 997 1672 3036 1962 1039 704 543 10555 

Injured  1521 4238 5759 24557 13994 38551 2767 1227 92614 

 

Total 2123 5235 7431 27593 15956 39590 3471 1770 103169 

In this study, we wish to know whether road traffic casualty and age group are independent. If they are independent, 

then we would expect to find the same proportion of fatalities across various age groups. We also propose the use of the 
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completely randomized single factor experiment to determine if there are significant differences in road traffic fatality 

index rates among the various age groups.  

2. Method 

Table 4 shows an r  c contingency table where  
ijO  is the observed frequency for level i of the first method of 

classification and level j of the second method of classification, where 
1

c

i ij
j

R O


   is the marginal total for row i and 

1

r

j ij
i

C O


   is the marginal total for column j. Note that 
1 1

,
r c

i j
i j

R C n
 

    where n is the total sample size. 

 

Table 4. An r × c contingency table 

 Columns  

 1 2 …  c Total 

1 11O  12O  … 1cO  1R  

2 21O  22O  … 2cO  2R  

                . 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

r 1rO  2rO  … rcO  rR  

Total 1C  2C  … cC  n 

We are interested in testing the null hypothesis 

 0:H  the row-and-column methods of classification are independent 

against the alternative hypothesis 

 1:H  the row-and-column methods of classification are not independent.  

The test statistic is given by (see Cramér (1946) and Birch (1964)). 

   

2

1 1

( )r c ij ij

i j ij

O E
H

E 


                                       (1) 

were ijE  is the expected cell frequency for the (ij)th cell. It can be shown that, if 0H  is true, then: 

   
(column total) (row total)

.
grand total

i j
ij

R C
E

n

 
                             (2) 

It can also be shown that, for large n, the statistic H has an approximate chi-square distribution with (r – 1)(c – 1) 

degrees of freedom if 0H  is true (see Ofosu and Hesse (2011)). Therefore, we would reject the hypothesis of 

independence if the observed value of the test statistic H is greater than the critical value 
2

, ( 1)( 1)r c  
 , where  is the 

size of the test. An extensive treatment of the chi-square distribution can be found in the book by Lancaster (1969). 

If we reject the null hypothesis, we conclude that there is some interaction between the two criteria of classification.  

3. Results 

3.1 Test of Independence 

The null and the alternative hypotheses are: 

 0:H  Casualty is independent of age group.  

Rows 
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 1:H   Casualty is not independent of age group.  

We first find the expected cell frequencies. These are calculated by using Equation (2). Table 5 shows the expected cell 

frequencies of Table 3 using Equation (2). For example, 10555  2123
11 103169

217.200.E    

 

Table 5. Expected cell frequencies of Table 3 

  

Age Group  

  

0 – 5 6 – 15 16 – 25 26 – 35 36 – 45 46 – 55 56 – 65 Over 65 Total 

ca
su

a
lt

y
 Fatalities 217.200 535.582 760.250 2822.981 1632.424 4050.368 355.111 181.085 10555 

Injured  1905.800 4699.418 6670.750 24770.019 14323.576 35539.632 3115.889 1588.915 92614 

 

Total 2123 5235 7431 27593 15956 39590 3471 1770 103169 

Note that the expected frequencies in any row or column add up to the appropriate marginal total. The test statistic is  

22 8 (   )
.

1 1

ij ij

ij

O E
H

E
i j




 
   

When 0H  is true, H has the chi-square distribution with 7 [i.e. (2 – 1)(8 – 1)] degrees of freedom. We reject 0H  at 

0.05 level of significance when the computed value of the test statistic is greater than 2
0.05,7 14.07.   Substituting 

both the observed values in Table 3 and their corresponding expected values in Table 5 into 
2(   )

,
O Eij ij

ij Eij


   we 

obtain the cells in Table 6.  

 

Table 6. Calculations of the observed test statistic 

 

1 2 3 4 5 6 7 8 Total 

1 j  
245.97 213.55 497.18 14.95 55.36 8727.95 172.90 241.22 10169.08 

2 j  
97.35 50.24 144.35 1.85 7.76 235.23 43.99 106.75 687.52 

Total 343.32 263.79 641.53 16.79 63.12 8963.18 216.89 347.97 10856.59 

 

Thus, the observed value of the test statistic is  

  
22 8 (   )2

1 1

10856.59.
O Eij ij

Eiji j



 

     

Since.10856.59 14.07 , we reject the hypothesis of independence and conclude that casualty is not independent of age 

group. 

3.2 Completely Randomized Single Factor Experiment 

Table 2 is a typical data of a single-factor experiment with 8 levels (age groups) of the factor, where the factor is the 

effect of age on F. I. We wish to determine if there are significant differences between the average F. I. across the 8 age 
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groups. In Table 2, let ijy represent the thi observation taken under the thj age group and  

5 8 5

. . . .. .. ..
1 1 1

,     21,    ( 1,  2,  ...,  8),    ,     40.j ij j j ij
i j i

y y y y j y y y y
  

        

Let j  represent the true mean of the thj  age group and ij  the experimental error. The model for the completely 

randomized single factor experiment is    

,     ( 1,  2,  ...,  8,  1,  2,  ...,  5).ij i ijy j i                                 (3) 

The one-way analysis of variance model assumes that the observations are normally and independently distributed with 

the same variance for each region or factor level (see Ofosu et al. (2014)).  

3.2.1 Validation of Normality and Homogeneity of Variances Assumptions 

We check the normality assumption, using the Shapiro-Wilk W test. The null hypothesis is 

0:H  observations under each region are normally distributed 

against the alternative hypothesis 

1:H   observations under each region are not from a normally distributed population   

The value of the Shapiro-Wilk W test statistic for each of the eight age groups is given in Table 7 below. 

 

Table 7. Observed values of the W test statistic 

Test Statistic 0 – 5 6 – 15 16 – 25 26 – 35 36 – 45 46 – 55 56 – 65 Over 65 

oW  0.802 0.883 0.864 0.930 0.871 0.951 0.836 0.925 

0H  is rejected at the 5% level of significance if the computed value of W is less than 0.762, the tabulated 5% point of 

the distribution of the Shapiro-Wilk test statistic. For each of the 8 age groups, we fail to reject 0H  and therefore 

conclude that there is not enough evidence of non-normality of these samples. 

Levene's test (Levene 1960) is used to test if 8 samples have equal variances. We wish to test  

2 2 2
0 1 2 8: ...H        against  

2 2
0: i jH        for at least one pair (i, j). 

In Table 2, let ijy represent the thi observation taken under the thj age group and  

5 5 8

. . . .. .. ..
1 1 1

,      5,     ( 1,  2,  ...,  8),     ,      40.j ij j j ij
i j i

y y y y j y y y y
  

        

t = number of treatments = 8 

in  = number of observations from treatment (region) i  

1 2 9...N n n n     = overall size of combined samples = 40, 

ij ij iD y y   absolute deviation of observation j from treatment i mean 

iD   average of the in  absolute deviations from treatment i 

D   average of all N absolute deviations 

The Levene‟s test statistic is given by  

  
   

8 8 22

1 1

    

7 32
.

i i i ij i
i i

n D D n D D

LeveneF  

  
                               (4) 

When 0H  is true, LeveneF  has the F-distribution with 4 and 40 degrees of freedom. 0H  is rejected at significance 

level 0.05 when the observed value of LeveneF  is greater than 0.05, 7, 32 2.33.F   Since the observed F-ratio, 1.332, is 

less than the critical F-value, 2.33,  we fail to reject the null hypothesis at the 0.05 level of significance and conclude 

that there are no significant differences among the ten variances. 
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3.2.2 One-way Analysis of Variance 

Since the normality and homogeneity of variances assumptions are validated, we can use the one-way analysis of 

variance to determine if the fatality indices across age groups vary significantly. We wish to test the hypothesis 

 0:H  The mean fatality indices are the same across the 8 categories of age groups,   

against the alternative hypothesis 

 1:H  The mean fatality indices are not the same for at least 2 of age groups. 

The total corrected sum of squares is given by  
8 5

2
40

1 1

2
..  2374.360.

y
ij

j i

SST y
 

                                    (5) 

The sum of squares among treatments is  

2 2. ..
8

5 40
1

  2193.712.
jy y

j

SSA


                                     (6) 

The within treatment sum of squares, ,SSW can be obtained from the equation  

180.648.SSW SST SSA                                     (7) 

The analysis of variance results, based on the data in Table 2, are summarized in Table 8 below. 

Table 8. Analysis of variance table 

Source of variation Sum of squares Degrees of freedom Mean square F-ratio 

Among treatments 2193.712    7 313.387 

55.513 Within treatments  180.648 32     5.645 

Total 2374.360 39 

  
The test statistic is  

among treatments mean square

within treatments mean square
.F   

When 0H  is true, F has the F-distribution with 7 and 32 degrees of freedom. We reject 0H  at significance level 0.05 

when the observed value of F is greater than 0.05, 7, 32 2.33.F   From Table 8, the computed value of F is 55.513. 

Since the observed F-ratio, 55.513, is greater than the critical F-value, 2.33, we reject the null hypothesis at the 0.05 

level of significance and conclude that there are significant differences among the fatality indices across the 8 age 

groups.  

4. Discussion 

4.1 Multiple Comparison Method 

Since the analysis of variance indicates that the null hypothesis should be rejected, it means that there are differences 

among the 8 treatment means. But as to which of the means are significantly different, the analysis does not specify. 

Obviously, in such a situation, we need a different method for comparing individual treatment means. One such 

methods is the multiple comparison test. 

Over the years, several methods for making multiple comparison tests have been suggested. Duncan (1951, 1952, 1955) 

has contributed a considerable amount of research to the subject of multiple comparisons. Other multiple comparison 

methods in use are those proposed by Tukey (1949, 1953), Newman (1939), Keuls (1952), and Scheffé (1953, 1959). 

The advantages and disadvantages of the various multiple comparison methods are discussed by Bancroft (1968), 

O‟Neill and Wetherill (1971), Daniel and Coogler (1975), Winer (1971) and Ofosu et al. (2014). Daniel (1980) has 

prepared a bibliography on multiple comparison procedures.  

The oldest multiple comparison method, and perhaps the most widely used, is the least significant difference method of 

Fisher, who first discussed it in the 1935 edition of his book “The design of experiments” (see Ofosu et al. (2014)). To 

use this method, we first calculate the least significant difference, (LSD), for the given data. This is given by 



 

 

www.ccsenet.org/ijsp                  International Journal of Statistics and Probability                 Vol. 5, No. 4; 2016 

117 

 1
2

2
,

   ,MSW
N k n

LSD t
 

                                     (8) 

where the level of significance 0.05, 40, 5, 8N n k      and 5.645.MSW   This gives  = 3.068.LSD  

The observed difference between each pair of means is compared to the LSD. If the observed numerical difference is 

greater than 3.068, then the road traffic fatality indices of the two age groups are significantly different. The values of 

the observed numerical differences between pairs of means of the 8 age groups are given in Table 9.  Pairs of age 

groups with fatality indices not significantly different are highlighted in Table 9. 

 

Table 10. Observed numerical differences between pair of means of road user classes 

 

 

0 – 5 6 – 15 16 – 25 26 – 35 36 – 45 46 – 55 56 – 65 Over 65 

   29.0 19.3 11.0 11.1 12.4 13.7 20.4 30.9 

0 – 5   29.0   9.7 18.0 17.9 16.6 15.3 8.6 1.9 

6 – 15 19.3     8.3 8.2 6.9 5.6 1.1 11.6 

16 – 25  11.0       0.1 1.4 2.7 9.4 19.9 

26 – 35  11.1         1.3 2.6 9.3 19.8 

36 – 45  12.4           1.3 8.0 18.5 

46 – 55 13.7             6.7 17.2 

56 – 65  20.4               10.5 

Over 65 30.9                 

 
For example, from Table 9, it can be seen that, the observed numerical difference between the mean fatality indices for 

the age groups „0 – 5‟ and „26 – 35‟ is 17.9. Since 17.9 is greater than 3.068, it follows that there is a significant 

difference between the two age groups with respect to F. I.  It is obvious that the road traffic fatality index for „0 – 5‟ age 

group is significantly higher than that of other age groups except for „Over 65‟. This means that, the risk of dying in a 

road traffic accident among „0 – 5‟ and „Over 65‟ are both significantly higher than those of other age groups, recording 

an average rate of 29.0 and 30.9 deaths per 100 casualties, respectively. 

5. Conclusion 

We‟ve shown that road traffic casualty level depends on age group of victims involved using a 2  8 contingency 

analysis.  

The analysis of variance revealed that there are significant differences in road traffic fatality indices (fatality per 100 

casualties) among various age groups in Ghana. The risks of dying in a road traffic accident among children under 6 

years and older population who are over 65 years are both significantly higher than those of other age groups. This 

points to the fact that, although smaller number of children under 6 years and older population who are over 65 years 

die in road traffic accidents each year, more and more people as a proportion of the recorded number of casualties, are 

being killed through road traffic accidents among these two categories of age groups.  Thus, the probability of being 

killed in a fatal road traffic accident is significantly high in each of these two age groups. This may be due to higher 

fragility of children and older population of road users.    

These findings are consistent with a related study by Loughran et al. (2007), in which they reported that older drivers 

are more than twice as likely as middle-aged drivers to cause an accident. The research revealed that drivers and 

passengers riding in cars driven by older drivers are nearly seven times likelier to die in an auto accident than are 

passengers and drivers riding in cars driven by middle-aged drivers. This statistic suggests that older individuals are 

much likelier than middle-aged individuals to die in a car accident. Given these trends, the research suggests that public 

policy should focus more on improving the safety of automobile travel for older drivers and less on screening out older 

drivers whose driving abilities have deteriorated unacceptably. 
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Abstract 

A closed form formula is provided for the probability, in a closed time interval, that an arithmetic Brownian motion 
remains under or above a sequence of three affine, one-sided boundaries (equivalently, for the probability that a 
geometric Brownian motion remains under or above a sequence of three exponential, one-sided boundaries). The 
numerical evaluation of this formula can be done instantly and with the accuracy required for all practical purposes. The 
method followed can be extended to sequences of absorbing boundaries of higher dimension. It is also applied to 
sequences of two-sided boundaries. 

Keywords: boundary crossing probability; survival probability; probability of absorption; first passage time; hitting 
time; Brownian motion; affine boundary; exponential boundary 

1. Introduction 

The question of the crossing of a non-constant boundary by a diffusion process is of central importance in many 
mathematical sciences. As mentioned in Wang and Pötzelberger (2007), it arises in biology, economics, engineering 
reliability, epidemiology, finance, genetics, seismology and sequential statistical analysis. The probability that a 
diffusion process will remain under or above some critical threshold over a given time interval can be referred to as a 
survival probability or probability of non-absorption. The vast majority of the research articles published on this topic 
either focus on numerical algorithms for general classes of processes or boundaries, usually involving recursive 
multidimensional quadrature, or they seek to obtain approximate solutions, typically substituting the initial boundary 
with another one for which computations are easier and then deriving a bound for the error entailed by using the 
approximating boundary. Much attention has also been paid to asymptotic estimates. However, known closed form 
results are scarce. By closed form results, we mean fully explicit formulae involving functions whose numerical 
evaluation can be carried out with the accuracy and the efficiency required for all practical purposes, in contrast to 
approximate analytical solutions that are quickly computed but inaccurate, and to numerical algorithms that can only 
produce the required standard of precision through heavy computational burden. The most classical of these closed form 
results is the so-called Bachelier-Levy formula (Levy, 1948), which provides the first-passage time density of Brownian 
motion to a linear boundary. This result is extended to a two-sided linear boundary by Doob (1949), but only in infinite 
time. The generalisation to a closed time interval is given by Anderson (1960), who is also able to integrate the density. 
The first passage time density of Brownian motion to a quadratic boundary is obtained independently by Salminen 
(1988) and Groeneboom (1989), while Novikov et al. (1999) manage to derive the hitting time density of Brownian 
motion to a square root boundary, but the numerical evaluation is quite involved in both cases, requiring infinite series 
of roots of combinations of Airy functions or confluent hypergeometric functions. By integrating these first passage 
time densities, the corresponding survival probabilities can be derived, though the integration is not actually performed 
by the mentioned authors and is far from trivial. Scheike (1992) provides a closed form solution for the survival 
probability of Brownian motion in infinite time when the boundary consists of two successive linear functions of time 
but cannot explicitly compute the corresponding integral in finite time. There are also a few closed form results for a 
Brownian motion (Daniels, 1996; Wang and Pötzelberger, 2007), an Ornstein-Uhlenbeck process (Choi and Nam, 2003; 
Wang and Pötzelberger, 2007) and a growth process (Wang and Pötzelberger, 2007), that involve very specific forms of 
the boundary and thus have limited use in practice, although they are quite valuable to test numerical algorithms.  

This paper provides new results for the survival probability of Brownian motion. The problem raised by Scheike (1992) 
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is reformulated, extended and analytically solved. The extension with regard to the existing literature can be 
summarized as follows :  

- cumulative distribution functions are provided, i.e. the integration of the first passage time densities is performed  

- results are provided for generalised Brownian motion (whether arithmetic or geometric Brownian motion), i.e. the 
underlying stochastic dynamics include drift and volatility coefficients 

- sequences of up to three general affine boundaries (in the case of arithmetic Brownian motion) or exponential 
boundaries (in the case of geometric Brownian motion) are handled 

- sequences of two-sided piecewise affine or exponential boundaries are also tackled, under the assumption that the 
growth rate of the boundary is identical on the downside and on the upside, i.e. the upper and the lower sides of the 
boundary are parallel curves 

Only distributions in finite time are considered, as they are the ones used in practice in the various mathematical 
sciences. The choice of affine and exponential boundaries is because they allow to model a reasonably large variety of 
time-dependent conditions for real life problems, while preserving analytical tractability. There are potentially many 
applications, for example in the valuation and risk management of various path dependent financial options or insurance 
contracts as well as in structural models of credit risk (see, e.g., Jeanblanc et al., 2009).  

Section 2 of this article states a closed form formula for the survival probability of an arithmetic or a geometric 
Brownian under or above a sequence of three different one-sided affine or exponential boundaries over a finite time 
interval and provides a few numerical results, then outlines a proof omitting cumbersome computations, and finally 
discusses generalization to higher-dimensional boundaries. Section 3 of this article states a closed form formula for the 
survival probability of an arithmetic or a geometric Brownian motion under and above a sequence of two different 
two-sided, parallel, affine or exponential boundaries over a finite time interval, provides a few numerical results and 
outlines the proof. 

2. Survival Probability of an Arithmetic or a Geometric Brownian Motion under or Above a Sequence of 
One-sided Affine or Exponential Boundaries over a Finite Time Interval 

2.1 Definitions 

Let m  be a real constant, s  be a positive real constant, and ( ){ }, 0B t t ³  be a standard Brownian motion defined 

on a probability space with measure  . Let ( ){ }1 , 0X t t ³  be an arithmetic Brownian motion driven, under  , 

by : 

( ) ( )1dX t dt dB tm s= +  
(2.1)

Let ( ){ }2 , 0X t t ³  be a geometric Brownian motion driven, under  , by : 

( ) ( ) ( ) ( )2 2 2dX t X t dt X t dB tm s= +  
(2.2)

A finite time interval 0,Té ùë û  is considered and divided into a partition P  of n  subintervals 0 1 1 20, , ,t t t té ù é ù=ë û ë û , 

1... ,n nt t T-
é ù=ë û , which are not necessarily of equal length, with 1 1 0...n nt t t t-³ ³ ³ ³ . Let   denote the 

indicator function. For a given n Î  , two piecewise affine absorbing boundaries ( )1g t  and ( )2g t  are defined as 

follows :  

( ) ( )( ) ( )
11 1 ,

1
i i

n

i i i t t
i

g t a b t t t
-

é ù- ë û
=

= + -å  , ia Î  , ib Î  , { }1,2,...,i nÎ  (2.3)
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( ) ( ) ( )
12 ,

1
i i

n

i i t t
i

g t a b t t
-

é ùë û
=

= +å   , ia Î   , ib Î  , { }1,2,...,i nÎ  (2.4)

The difference between ( )1g t  and ( )2g t  is that ( )1g t   is time-homogeneous. 

Similarly, we have the two following piecewise exponential boundaries :  

( ) ( ) ( )( ) ( )
11 1 ,

1

0 exp
i i

n

i i i t t
i

h t X a b t t t
-

é ù- ë û
=

= + -å  , ia Î   , ib Î  , { }1,2,...,i nÎ  (2.5)

( ) ( ) ( ) ( )
12 ,

1

0 exp
i i

n

i i t t
i

h t X a b t t
-

é ùë û
=

= +å  , ia Î   , ib Î  , { }1,2,...,i nÎ  (2.6)

Consider the cumulative distribution function of a sequence of n  maxima or n  minima and n  endpoints in P  in 

the two following cases :  

- the absorbing boundary is defined either by ( )1g t  or ( )2g t  and the process under consideration is 1X  

- the absorbing boundary is defined either by ( )1h t  or ( )2h t  and the process under consideration is 2X  

Such a function is often referred to as a survival probability. As shown by Wang and Pötzelberger (1997), its value can 

be approximated by a Monte Carlo simulation scheme drawing on the Markovian nature of  1X  and 2X  in the 

following manner : the endpoint values of 1X  and 2X  in each time subinterval 1,i it t-
é ùë û  are randomly drawn at 

each performed simulation; if the relevant conditions at each it  are met, then a cumulative variable records the product 

of the conditional probabilities that the boundary has not been crossed in each ( )1,i it t- , which admit simple analytical 

formulae (Siegmund, 1986). This is obviously much more efficient and accurate than discretizing the whole path of the 

process at each run. For 1n > , the survival probability under consideration does not admit any known closed form 

formula. Although it does not seem possible to come up with an explicit and compact formula for any n Î  , one can 

actually solve the problem analytically in “moderate” dimension. In this paper, the case 3n =  is tackled. More 

specifically, let ( )... 1 2 3 1 2 3 1 2 3 1 2 3P , , , , , , , , , , , , ,a a a b b b k k k t t tm sé ùë û
 be defined as one of the following eight cumulative 

distribution functions :    

( ) ( ) 8
AU1 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3P , , , , , , , , , , , , , , , , , , , , , ,a a a b b b k k k t t t a a a b b b k k km sé ù +ë û

Î Î   
(2.7)

( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

1 1 1 1 1 1 1 1 2 2 1 1 2

1 2 2 1 3 3 2 2 3 1 3 3

, 0 ,

,

X t a b t t t X t k X t a b t t t t t

X t k X t a b t t t t t X t k

æ ö< + " £ £ Ç < Ç < + - " £ £ ÷ç ÷ç= ÷ç ÷Ç < Ç < + - " £ £ Ç < ÷çè ø
  

( ) ( ) 8
AU2 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3P , , , , , , , , , , , , , , , , , , , , , ,a a a b b b k k k t t t a a a b b b k k km sé ù +ë û

Î Î   
(2.8)

( )( ) ( ) ( )( )
( ) ( )( ) ( )

1 1 1 1 1 1 1 1 2 2 1 2

1 2 2 1 3 3 2 3 1 3 3

, 0 ,

,

X t a b t t t X t k X t a b t t t t

X t k X t a b t t t t X t k

æ ö< + " £ £ Ç < Ç < + " £ £ ÷ç ÷ç= ÷ç ÷Ç < Ç < + " £ £ Ç < ÷çè ø
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( ) ( ) ( )4 5
GU1 1 2 3 1 2 3 1 2 3 1 2 3 1 1 2 3 2 3 1 2 3P , , , , , , , , , , , , , , , , , , , , , ,a a a b b b k k k t t t a k k k a a b b bm sé ù +ë û

Î Î   
(2.9)

( ) ( ) ( )( ) ( )
( ) ( ) ( )( )( )
( ) ( ) ( ) ( )( )( ) ( )

2 2 1 1 1 2 1 1

2 2 2 2 1 1 2

2 2 2 2 2 3 3 2 2 3 2 3 3

0 exp , 0

0 exp ,

0 exp ,

X t X a b t t t X t k

X t X a b t t t t t

X t k X t X a b t t t t t X t k

æ ö< + " £ £ Ç < ÷ç ÷ç ÷ç ÷ç= Ç < + - " £ £ ÷ç ÷ç ÷÷çÇ < Ç < + - " £ £ Ç < ÷çè ø

  

( ) ( ) ( )4 5
GU2 1 2 3 1 2 3 1 2 3 1 2 3 1 1 2 3 2 3 1 2 3P , , , , , , , , , , , , , , , , , , , , , ,a a a b b b k k k t t t a k k k a a b b bm sé ù +ë û

Î Î   
(2.10)

( ) ( ) ( )( ) ( )
( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( )

2 2 1 1 1 2 1 1

2 2 2 2 1 2

2 2 2 2 2 3 3 2 3 2 3 3

0 exp , 0

0 exp ,

0 exp ,

X t X a b t t t X t k

X t X a b t t t t

X t k X t X a b t t t t X t k

æ ö< + " £ £ Ç < ÷ç ÷ç ÷ç ÷ç= Ç < + " £ £ ÷ç ÷ç ÷÷çÇ < Ç < + " £ £ Ç < ÷çè ø

  

( ) ( ) 8
AL1 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3P , , , , , , , , , , , , , , , , , , , , , ,a a a b b b k k k t t t a a a b b b k k km sé ù -ë û

Î Î   
(2.11)

( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

1 1 1 1 1 1 1 1 2 2 1 1 2

1 2 2 1 3 3 2 2 3 1 3 3

, 0 ,

,

X t a b t t t X t k X t a b t t t t t

X t k X t a b t t t t t X t k

æ ö> + " £ £ Ç > Ç > + - " £ £ ÷ç ÷ç= ÷ç ÷Ç > Ç > + - " £ £ Ç > ÷çè ø
  

( ) ( ) 8
AL2 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3P , , , , , , , , , , , , , , , , , , , , , ,a a a b b b k k k t t t a a a b b b k k km sé ù -ë û

Î Î   
(2.12)

( )( ) ( ) ( )( )
( ) ( )( ) ( )

1 1 1 1 1 1 1 1 2 2 1 2

1 2 2 1 3 3 2 3 1 3 3

, 0 ,

,

X t a b t t t X t k X t a b t t t t

X t k X t a b t t t t X t k

æ ö> + " £ £ Ç > Ç > + " £ £ ÷ç ÷ç= ÷ç ÷Ç > Ç > + " £ £ Ç > ÷çè ø
  

( ) ( ) ( )3 5
GL1 1 2 3 1 2 3 1 2 3 1 2 3 1 1 2 3 2 3 1 2 3P , , , , , , , , , , , , , , , , , , , , , ,a a a b b b k k k t t t a k k k a a b b bm sé ù - +ë û

Î Î Î    
(2.13)

( ) ( ) ( )( ) ( )
( ) ( ) ( )( )( )
( ) ( ) ( ) ( )( )( ) ( )

2 2 1 1 1 2 1 1

2 2 2 2 1 1 2

2 2 2 2 2 3 3 2 2 3 2 3 3

0 exp , 0

0 exp ,

0 exp ,

X t X a b t t t X t k

X t X a b t t t t t

X t k X t X a b t t t t t X t k

æ ö> + " £ £ Ç > ÷ç ÷ç ÷ç ÷ç= Ç > + - " £ £ ÷ç ÷ç ÷÷çÇ > Ç > + - " £ £ Ç > ÷çè ø

  

( ) ( ) ( )3 5
GL2 1 2 3 1 2 3 1 2 3 1 2 3 1 1 2 3 2 3 1 2 3P , , , , , , , , , , , , , , , , , , , , , ,a a a b b b k k k t t t a k k k a a b b bm sé ù - +ë û

Î Î Î    
(2.14)

( ) ( ) ( )( ) ( )
( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( )

2 2 1 1 1 2 1 1

2 2 2 2 1 2

2 2 2 2 2 3 3 2 3 2 3 3

0 exp , 0

0 exp ,

0 exp ,

X t X a b t t t X t k

X t X a b t t t t

X t k X t X a b t t t t X t k

æ ö> + " £ £ Ç > ÷ç ÷ç ÷ç ÷ç= Ç > + " £ £ ÷ç ÷ç ÷÷çÇ > Ç > + " £ £ Ç > ÷çè ø

  

In other words, taking 3n = ,  

- AU1Pé ùë û
 is the probability that an arithmetic Brownian motion will remain under the piecewise affine time-homogeneous 

boundary ( )1g t  defined by (2.3) and under the successive endpoints 1 2 3, ,k k k  

- AU2Pé ùë û
 is the probability that an arithmetic Brownian motion will remain under the piecewise affine 

time-inhomogeneous boundary ( )2g t  defined by (2.4) and under the successive endpoints 1 2 3, ,k k k  
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- GU1Pé ùë û
 is the probability that a geometric Brownian motion will remain under the piecewise exponential 

time-homogeneous boundary ( )1h t  defined by (2.5) and under the successive endpoints 1 2 3, ,k k k  

- GU2Pé ùë û
 is the probability that a geometric Brownian motion will remain under the piecewise exponential 

time-inhomogeneous boundary ( )2h t  defined by (2.6) and under the successive endpoints 1 2 3, ,k k k  

- AL1Pé ùë û
 is the probability that an arithmetic Brownian motion will remain above the piecewise affine boundary ( )1g t  

defined by (2.3) and above the successive endpoints 1 2 3, ,k k k  

- AL2Pé ùë û
 is the probability that an arithmetic Brownian motion will remain above the piecewise affine boundary ( )2g t  

defined by (2.4) and above the successive endpoints 1 2 3, ,k k k  

- GL1Pé ùë û
 is the probability that a geometric Brownian motion will remain above the piecewise exponential boundary 

( )1h t  defined by (2.5) and above the successive endpoints 1 2 3, ,k k k  

- GL2Pé ùë û
 is the probability that a geometric Brownian motion will remain above the piecewise exponential boundary 

( )2h t  defined by (2.6) and above the successive endpoints 1 2 3, ,k k k  

2.2 Statement of Formula 1     

Formula 1  Let ( )... 1 2 3 1 2 3 1 2 3 1 2 3P , , , , , , , , , , , , ,a a a b b b k k k t t tm sé ùë û
 be defined as in Subsection 2.1. Then, 

 

( )... 1 2 3 1 2 3 1 2 3 1 2 3P , , , , , , , , , , , , ,a a a b b b k k k t t tm sé ùë û
 

(2.15)

( ) ( ) ( )2 2 2 1 1 2 2 1 3 3 3 1 1 2 2 1 3 3 21 1 1 1 1

3 1 2 3

1 2 2 3

, , ;

/ , /

z b t t t t z b t t t t t tz b t t

t t t

t t t t

m m m m mm
q q q

s s s

é ù- - - - - - - - - -- -ê ú
ê ú= F ê ú
ê ú
ê úë û

( )

( ) ( )2

2 2 2 1 1 1 2 2 11 1 1 1 1 1

1 1 2
3

3 3 3 1 1 1 2 2 1 3 3 2
1 2 2 3

3

exp

22
, ,

2
; / , /

z b t a t t tz b t a t

t t
z b t a t t t t t

t t t t
t

l

s

m mm
q q

s s
m m m

q
s

é ù- - - - -- - -ê ú
ê úæ ö ê ú÷ç ÷Fç ê ú÷ç ÷ç - - - - - - -è ø ê ú
ê ú
ê úë û

-  

2
2

exp
l

s

æ ö÷ç ÷- ç ÷ç ÷çè ø

( )

( ) ( )

2 2 2 2 1 1 2 1 21 1 1 1 1 2 1

1 2
3

3 3 3 2 1 1 2 1 2 3 3 2
1 2 2 3

3

22
, ,

2
; / , /

z b t t t tz b t t t

t t
z b t t t t t t

t t t t
t

a m mm m
q q

s s
a m m m

q
s

é ù- - + - +- - +ê ú
ê ú
ê úF ê ú- - + - + - -ê ú-ê ú
ê úë û
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2

3exp
l

s
+

æ ö÷ç ÷ç ÷ç ÷çè ø

( )

( ) ( )

2 2 2 2 1 1 1 2 1 21 1 1 1 1 1 2 1

1 2
3

3 3 3 2 1 1 1 2 1 2 3 3 2
1 2 2 3

3

2 22 2
,

2 2
; / , /

z b t a t t tz b t a t t

t t
z b t a t t t t t

t t t t
t

a m mm m
q q

s s
a m m m

q
s

é ù- - + + - +- - - +ê ú
ê ú
ê úF ê ú- - + + - + - -ê ú-ê ú
ê úë û

( )

( ) ( )

2 2 2 1 1 2 2 1 3 21 1 1 1 1 3 1

4 1 2
32

3 3 3 3 1 1 2 2 1 3 2 3
1 2 2 3

3

exp

22
, ,

2
; / , /

z b t t t t tz b t t t

t t
z b t t t t t t

t t t t
t

m m mm m
q q

l s s
a m m ms q

s

é ù- - - - +- - +ê ú
ê úæ ö ê ú÷ç ÷- Fç ê ú÷ç ÷ç - - + + - - +è ø ê ú-ê ú
ê úë û

 

5
2

exp
l

s
+

æ ö÷ç ÷ç ÷ç ÷çè ø

( )

( ) ( )

2 2 2 1 1 1 2 2 1 3 21 1 1 1 3 1 1 1

1 2
3

3 3 3 3 1 1 1 2 2 1 3 2 3
1 2 2 3

3

2 22 2
, ,

2 2
; / , /

z b t a t t t tz b t a t t

t t
z b t a t t t t t

t t t t
t

m m mm m
q q

s s
a m m m

q
s

é ù- - - - - +- - + -ê ú
ê ú
ê úF ê ú- - + + + - - +ê ú-ê ú
ê úë û

 

2

6exp
l

s
+

æ ö÷ç ÷ç ÷ç ÷çè ø

( )

( ) ( )

2 2 2 2 1 1 2 1 2 3 21 1 1 3 1 2 1 1 1

1 2
3

3 3 3 3 2 1 1 2 1 2 3 2 3
1 2 2 3

3

2 22 2
, ,

2 2
; / , /

z b t t t t tz b t t t t
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z b t t t t t t

t t t t
t

a m m mm m m
q q

s s
a a m m m

q
s

é ù- - + - + +- - + -ê ú
ê ú
ê úF ê ú- - + - + + - +ê ú- -ê ú
ê úë û

 

2

7exp
l

s
-

æ ö÷ç ÷ç ÷ç ÷çè ø

( )

( ) ( )

1 1 1 1 3 1 2 1 1 1

1

2 2 2 2 1 1 1 2 1 2 3 2
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s

é ù- - - + -ê ú
ê ú
ê ú
ê ú- - + + - + +ê ú
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F ê ú
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ê ú
ê ú- -ê úë û

 

where the function nF  is a convolution of gaussian densities defined, for any n Î  , by : 

1 1 1,..., ; ,...,n n nx x r r -
é ùF ë û  

( )
( )

( )

212
11

2
1

11
/2 2

1

exp
2 2 1

...

2 1
n

n
i i i

i i

nn
nD

i
i

y yy

dy dy

r

r

p r

-
+

=

-

=

æ ö÷ç - ÷ç ÷- -ç ÷ç ÷ç ÷- ÷çè ø
=

 -

å
ò  

(2.16)

1 2, , ... ,n
nD x x xù ù ù ù ù ù= -¥ ´ -¥ ´ -¥û û û û û û , ix Î  , 1,1ir ù éÎ -û ë  , { }1,...,i nÎ  

The ia  terms, { }2, 3i Î , in (2.15) are given by : 

{ } { } { } { }... AU2 ... GU2 ... AL2 ... GL2
2 2 P P P P P P P P
aa

é ù é ù é ù é ù é ù é ù é ù é ùê ú ê ú ê ú ê ú ê ú ê ú ê ú ê úë û ë û ë û ë û ë û ë û ë û ë û
= = = =

æ ö÷ç= + + + ÷ç ÷çè ø
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( ) { } { } { } { }... AU1 ... GU1 ... AL1 ... GL1
2 2 1 P P P P P P P P
a b t

é ù é ù é ù é ù é ù é ù é ù é ùê ú ê ú ê ú ê ú ê ú ê ú ê ú ê úë û ë û ë û ë û ë û ë û ë û ë û
= = = =

æ ö÷ç+ - + + + ÷ç ÷çè ø
     

{ } { } { } { }... AU2 ... GU2 ... AL2 ... GL2
3 3 P P P P P P P P
aa

é ù é ù é ù é ù é ù é ù é ù é ùê ú ê ú ê ú ê ú ê ú ê ú ê ú ê úë û ë û ë û ë û ë û ë û ë û ë û
= = = =

æ ö÷ç= + + + ÷ç ÷çè ø
     

( ) { } { } { } { }... AU1 ... GU1 ... AL1 ... GL1
3 3 2 P P P P P P P P
a b t

é ù é ù é ù é ù é ù é ù é ù é ùê ú ê ú ê ú ê ú ê ú ê ú ê ú ê úë û ë û ë û ë û ë û ë û ë û ë û
= = = =

æ ö÷ç+ - + + + ÷ç ÷çè ø
     

 

The il  terms, { }1,2, 3, 4,5,6,7i Î  , in (2.15)  are given by : 

11 12 al m=  

2
2 2 2 1 2 1 2 12 2 2t tl m a m m m= - +  

2
1 2 1 1 2 1 2 13 1 2 22 2 4 2 2a t tal m m m m m ma= + - - +  

( )2
4 3 3 3 2 1 3 1 2 3 2 12 2 2 2t t t tl m a m m m m m= + - - -  

( )2
5 3 3 1 1 3 1 3 2 1 3 1 2 3 2 12 2 4 2 2 2a a t t t tl m a m m m m m m m= + - + - - -  

( ) ( ) ( ) ( )2 2
3 3 2 1 1 3 2 1 3 2 1 2 3 2 16 3 3 2 2 22 2 4 2 2 2 2t t t t t tl m m m m m m m m m m ma a a - - - -= + - + + + -  

( ) ( )2

3 3 2 1
2

7 1 1 2 2 2 3 3 3 2 12 2 4 2 2 2ta t tl m m m m m ma a a m+ -= + - + + -  

( ) ( )( )2 3 2 1 3 2 1 1 12 2 2t t a tm m m m m- - + - +  

The iz  terms, { }1,2, 3i Î  , in (2.15) are given by : 

( ) { } ( ) { }... AU1 ... AU2
1 1 1 1 1 2 1 1 1 1 2 2 1P P P P
min , , min , ,z a b t k a a b t k a b t

é ù é ù é ù é ùê ú ê ú ê ú ê úë û ë û ë û ë û
= =

= + + + + 

( )( )( ) { } ( )( )( ) { }... GU1 ... GU2
1 1 1 1 2 2 1 1 1 1 2 2 2 1P P P P

min , ln / 0 , min , ln / 0 ,a b t k X a a b t k X a b t
é ù é ù é ù é ùê ú ê ú ê ú ê úë û ë û ë û ë û

= =
+ + + + + 

( ) { } ( ) { }... AL1 ... AL2
1 1 1 1 2 1 1 1 1 2 2 1P P P P

max , , max , ,a b t k a a b t k a b t
é ù é ù é ù é ùê ú ê ú ê ú ê úë û ë û ë û ë û

= =
+ + + + + 

( )( )( ) { } ( )( )( ) { }... GL1 ... GL2
1 1 1 1 2 2 1 1 1 1 2 2 2 1P P P P

max , ln / 0 , max , ln / 0 ,a b t k X a a b t k X a b t
é ù é ù é ù é ùê ú ê ú ê ú ê úë û ë û ë û ë û

= =
+ + + + +   

( )( ) { } ( ) ( )( )( ) { }... AU1 ... GU1
2 2 2 2 1 2 3 2 2 2 1 2 2 3P P P P
min , , min , ln / 0 ,z a b t t k a a b t t k X a

é ù é ù é ù é ùê ú ê ú ê ú ê úë û ë û ë û ë û
= =

= + - + + - 

( ) { } ( )( )( ) { }... AU2 ... GU2
2 2 2 2 3 3 2 2 2 2 2 2 3 3 2P P P P

min , , min , ln / 0 ,a b t k a b t a b t k X a b t
é ù é ù é ù é ùê ú ê ú ê ú ê úë û ë û ë û ë û

= =
+ + + + + + 

( )( ) { } ( ) ( )( )( ) { }... AL1 ... GL1
2 2 2 1 2 3 2 2 2 1 2 2 3P P P P

max , , max , ln / 0 ,a b t t k a a b t t k X a
é ù é ù é ù é ùê ú ê ú ê ú ê úë û ë û ë û ë û

= =
+ + - + + - 

( ) { } ( )( )( ) { }... AL2 ... GL2
2 2 2 2 3 3 2 2 2 2 2 2 3 3 2P P P P

max , , max , ln / 0 ,a b t k a b t a b t k X a b t
é ù é ù é ù é ùê ú ê ú ê ú ê úë û ë û ë û ë û

= =
+ + + + + +   
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( )( ) { } ( ) ( )( )( ) { }... AU1 ... GU1
3 3 3 3 2 3 3 3 3 2 3 2P P P P
min , min , ln / 0z a b t t k a b t t k X

é ù é ù é ù é ùê ú ê ú ê ú ê úë û ë û ë û ë û
= =

= + - + + -   

( ) { } ( )( )( ) { }... AU2 ... GU2
3 3 3 3 3 3 3 3 2P P P P

min , min , ln / 0a b t k a b t k X
é ù é ù é ù é ùê ú ê ú ê ú ê úë û ë û ë û ë û

= =
+ + + +   

( )( ) { } ( ) ( )( )( ) { }... AL1 ... GL1
3 3 3 2 3 3 3 3 2 3 2P P P P

max , max , ln / 0a b t t k a b t t k X
é ù é ù é ù é ùê ú ê ú ê ú ê úë û ë û ë û ë û

= =
+ + - + + -   

( ) { } ( )( )( ) { }... AL2 ... GL2
3 3 3 3 3 3 3 3 2P P P P

max , max , ln / 0a b t k a b t k X
é ù é ù é ù é ùê ú ê ú ê ú ê úë û ë û ë û ë û

= =
+ + + +   

The im  terms, { }1,2, 3i Î , in (2.15) are given by : 

( ) { } { } { } { }... AU1 ... AL1 ... AU2 ... AL2
1 1 P P P P P P P P

bm m
é ù é ù é ù é ù é ù é ù é ù é ùê ú ê ú ê ú ê ú ê ú ê ú ê ú ê úë û ë û ë û ë û ë û ë û ë û ë û

= = = =

æ ö÷ç= - + + + ÷ç ÷çè ø
     

{ } { } { } { }... GU1 ... GL1 ... GU2 ... GL2

2

1 P P P P P P P P2
b

s
m

é ù é ù é ù é ù é ù é ù é ù é ùê ú ê ú ê ú ê ú ê ú ê ú ê ú ê úë û ë û ë û ë û ë û ë û ë û ë û
= = = =

æ öæ ö÷ç ÷÷ç+ç - - + + + ÷÷ç ÷ç ç÷è ø÷çè ø
     

( ) { } { } { } { }... AU1 ... AL1 ... AU2 ... AL2
2 2 P P P P P P P P

bm m
é ù é ù é ù é ù é ù é ù é ù é ùê ú ê ú ê ú ê ú ê ú ê ú ê ú ê úë û ë û ë û ë û ë û ë û ë û ë û

= = = =

æ ö÷ç= - + + + ÷ç ÷çè ø
     

{ } { } { } { }... GU1 ... GL1 ... GU2 ... GL2

2

2 P P P P P P P P2
b

s
m

é ù é ù é ù é ù é ù é ù é ù é ùê ú ê ú ê ú ê ú ê ú ê ú ê ú ê úë û ë û ë û ë û ë û ë û ë û ë û
= = = =

æ öæ ö÷ç ÷÷ç+ç - - + + + ÷÷ç ÷ç ç÷è ø÷çè ø
     

( ) { } { } { } { }... AU1 ... AL1 ... AU2 ... AL2
3 3 P P P P P P P P

bm m
é ù é ù é ù é ù é ù é ù é ù é ùê ú ê ú ê ú ê ú ê ú ê ú ê ú ê úë û ë û ë û ë û ë û ë û ë û ë û

= = = =

æ ö÷ç= - + + + ÷ç ÷çè ø
     

{ } { } { } { }... GU1 ... GL1 ... GU2 ... GL2

2

3 P P P P P P P P2
b

s
m

é ù é ù é ù é ù é ù é ù é ù é ùê ú ê ú ê ú ê ú ê ú ê ú ê ú ê úë û ë û ë û ë û ë û ë û ë û ë û
= = = =

æ öæ ö÷ç ÷÷ç+ç - - + + + ÷÷ç ÷ç ç÷è ø÷çè ø
     

q  is given by : 

{ } { } { } { }... AU1 ... AU2 ... GU1 ... GU2P P P P P P P P
1q

é ù é ù é ù é ù é ù é ù é ù é ùê ú ê ú ê ú ê ú ê ú ê ú ê ú ê úë û ë û ë û ë û ë û ë û ë û ë û
= = = =

æ ö÷ç= + + + ÷ç ÷çè ø
   

{ } { } { } { }... AL1 ... AL2 ... GL1 ... GL2P P P P P P P P
1

é ù é ù é ù é ù é ù é ù é ù é ùê ú ê ú ê ú ê ú ê ú ê ú ê ú ê úë û ë û ë û ë û ë û ë û ë û ë û
= = = =

æ ö÷ç- + + + ÷ç ÷çè ø
     

End of Formula 1. 

From a numerical perspective, Formula 1 raises the question of the evaluation of the function 3F . A straightforward 
calculation yields the following integration rule : 

( )2

2

2
2 1 1 2 3 2 2

3 1 2 3 1 2 22 2
1 2

exp / 2
, , ; ,

2 1 1

x

y

y x y x y
x x x N N dy

r r
r r

p r r=-¥

é ù é ù- - -ê ú ê úé ùF = ê ú ê úë û ê ú ê ú- -ë û ë û
ò  (2.17)

where the function .N é ùë û  is the univariate standard normal cumulative distribution function. 

Using (2.17), the numerical evaluation of the function 3F  is easy by means of a classical adaptive Gauss-Legendre 
quadrature. Alternatively, the following identities can be verified :  

3 1 2 3 1 2 2 3 3 1 2 3 1 2 1 3 2 3, , ; / , / , , ; / , / , /x x x t t t t N x x x t t t t t té ù é ùF =ê ú ê úë û ë û  
(2.18)
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3 1 2 3 1 2 2 3 3 1 2 3 1 2 1 3 2 3, , ; / , / , , ; / , / , /x x x t t t t N x x x t t t t t té ù é ùF - - = - -ê ú ê úë û ë û  
(2.19)

3 1 2 3 1 2 2 3 3 1 2 3 1 2 1 3 2 3, , ; / , / , , ; / , / , /x x x t t t t N x x x t t t t t té ù é ùF - = - -ê ú ê úë û ë û  
(2.20)

3 1 2 3 1 2 2 3 3 1 2 3 1 2 1 3 2 3, , ; / , / , , ; / , / , /x x x t t t t N x x x t t t t t té ù é ùF - = - -ê ú ê úë û ë û  
(2.21)

where the function 3 .,.,.;.,.,.N é ùë û  is the trivariate standard normal cumulative distribution function, the numerical 

evaluation of which can be performed with double precision and computational time of approximately 0.01 second using 

the algorithm by Genz (2004). 

A few numerical results are reported in Table 1, in which the 
AU1Pé ùë û

 survival probability is computed for increasing 

levels of the volatility coefficient s and other parameters fixed as follows : 0.01m = , 1 0.25t = , 2 0.5t = , 

3 1t = , 1 0k = , 2 0.02k = , 3 0.03k = , 1 0.22,a =  1 0.12b = - , 2 1 1 1a a b t= + , 2 0.16b = , 

( )3 2 2 2 1a a b t t= + - , 3 0.24b = - . Notice that the absorbing boundary here is continuous at times 1t  and 2t , but 

non-continuous boundaries can be handled just as easily. Formula 1 is implemented using the algorithm by Genz (2004) 

for the computation of the trivariate standard normal cumulative distribution function. The results are compared with 

those obtained using the semi-analytical Monte Carlo algorithm devised by Wang and Pötzelberger (1997), denoted by 

WP simulation algorithm, that enables to draw only the endpoints of the time subintervals at each run, which is 

dramatically more efficient and accurate than a basic Monte Carlo simulation. Random numbers are drawn by the 

Mersenne Twister generator.  

For all computed values, a 5-digit convergence can be observed between Formula 1 and the WP algorithm, on condition 

that a total of 100,000,000 stochastic simulations are performed. The latter method requires a computational time of 411 

seconds on an i-7 4GHz personal computer. This is cut to 42 seconds when only 10,000,000 simulations are performed, 

which achieves 5-digit convergence in 2 cases out of 3 and 4-digit convergence in one case. The numerical computation 

of Formula 1 takes approximately 0.2 second. The efficiency of the implementation of the WP algorithm could probably 

be improved, for instance by resorting to low discrepancy sequences instead of a pseudo random number generator, but 

this is not the subject of this article.  

Table 1. Numerical evaluation of the survival probability of an arithmetic Brownian under a one-sided piecewise affine, 

time-homogeneous, absorbing boundary, as a function of volatility 

 Formula 1 WP 
simulation algorithm 

10,000,000 runs 

WP 
simulation algorithm 

100,000,000 runs 
Volatility = 20% 0.275332974 0.275318288 0.275387164 
Volatility = 50% 0.257810712 0.257763484 0.257885116 
Volatility = 80% 0.191728749 0.191718319 0.191716445 

2.3  Proof of Formula 1 

Only sequences of upper boundaries are tackled, since the results for sequences of lower boundaries ensue by symmetry 

of Brownian paths. 

Let us deal with process 1X  first. Let us denote by p  the sought probability when the boundary is defined by ( )1g t  



 
 
www.ccsenet.org/ijsp                  International Journal of Statistics and Probability                 Vol. 5, No. 4; 2016 

128 

in (2.3). The random variables ( )1 1X t , ( )1 2X t  and ( )1 3X t  are absolutely continuous random variables that admit 

known Gaussian density functions. At time 1t , 1X  must be located below 1 1 1 1,a b t k+  and 2a , in order not to be 

absorbed; at time 2t , it must stand underneath the points ( )2 2 2 1 2,a b t t k+ -  and 3a ; at time 3t , it must end below 

( )3 3 3 2a b t t+ -  and 3k . Hence, by conditioning with respect to ( )1 1X t , ( )1 2X t  and ( )1 3X t , and by using the 

weak Markov property of ( ){ }1 , 0X t t ³ , one can come up with the following integral formulation of the problem : 

( )( ) ( )( )( )
1 2 3

1 2 3

1 1 1 1 1 1 1, 0

z z z

x x x

p X t dx X t a b t t t
=-¥ =-¥ =-¥

= Î Ç < + " £ £ò ò ò   

 

(2.22)

( )( ) ( ) ( )( ) ( )( )1 2 2 1 2 2 1 1 2 1 1 1,X t dx X t a b t t t t t X t dxÎ Ç < + - " £ £ Î

( )( ) ( ) ( )( ) ( )( )1 3 3 1 3 3 2 2 3 1 2 2 3 2 1,X t dx X t a b t t t t t X t dx dx dx dxÎ Ç < + - " £ £ Î  

( ) ( ) ( )
1 1 1 2 2 2 3 3 3

1 2 3

1 1 2 1 2 3 2 3 3 2 1, ,

z b t z b t z b t

x x x

f x f x x f x x dx dx dx

- - -

=-¥ =-¥ =-¥

= ò ò ò  

 

(2.23)

where the functions ( )1 1f x , ( )2 1 2,f x x  and ( )3 2 3,f x x  are defined by : 

( ) ( ) ( )
1

1 1 1 1 1
0
, sup
t t

f x Y t dx Y t a
£ £

æ ö÷ç ÷= Î <ç ÷ç ÷çè ø
  

 

(2.24)

( ) ( ) ( ) ( )
1 2

2 1 2 2 2 2 2 1 1 1, , sup
t t t

f x x Y t dx Y t a b t Y t dx
£ £

æ ö÷ç ÷= Î < - Îç ÷ç ÷çè ø
  (2.25)

( ) ( ) ( ) ( )
2 3

3 2 3 3 3 3 3 2 2 2, , sup
t t t

f x x Y t dx Y t a b t Y t dx
£ £

æ ö÷ç ÷= Î < - Îç ÷ç ÷çè ø
  

 

(2.26)

and the process ( ){ }, 0Y t t ³  is defined by : 

( )
( )
( )
( )

1 1

2 1 2

3 2 3

, 0

,

,

dt dB t t t

dY t dt dB t t t t

dt dB t t t t

m s
m s
m s

ìï + " £ <ïïï= + " £ £íïïï + " £ £ïî

 

(2.27)

i ibm m= - , { }1,2, 3i Î  

The function ( )1 1f x  is obtained by differentiating the classical formula for the joint distribution of the maximum of 

Brownian motion with drift and its endpoint over the closed time interval 10,té ùë û  (see, e.g., Karatzas and Shreve, 1991). 
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To obtain the functions ( )2 1 2,f x x  and ( )3 2 3,f x x , the following lemma is introduced. 

Lemma 1  Let ( ){ }, 0Y t t ³  be an arithmetic Brownian motion with constant drift m Î   and volatility 

s +Î  under a given probability measure  . Let it  and jt  be two non-random times such that 

0 0j it t t> > = .  

Then, if ix ,  jx  and h  are real constants with ix h<  and jx h<  , we have, at time 0t   :  

( ) ( ) ( ), , sup
i j

i i j j
t t t

Y t x Y t x Y t h
£ £

æ ö÷ç ÷ç £ £ £ ÷ç ÷÷çè ø
  (2.28)

2 22

22
, ; exp , ;j j j ji i i i i i

j ji j i j

x t x h tx t t x t th
N N

t tt t t t

m mm mm

ss s s s

é ù é ù- - -æ ö- +ê ú ê ú÷ç= - ÷ -çê ú ê ú÷ç ÷è øê ú ê úë û ë û
 

 

where the function 2 1 2, ;N x x ré ùë û  is the bivariate standard normal cumulative distribution function with upper bounds 

1x  and 2x  and correlation coefficient r    

 

Proof of lemma 1  

( ) ( ) ( ), , sup
i j

i i j j
t t t

Y t x Y t x Y t h
£ £

æ ö÷ç ÷ç £ £ £ ÷ç ÷÷çè ø
  

( ) ( )( ) ( ) ( ) ( ), sup ,
ji

i j

xx

i j i j
t t t

Y t dy Y t dz Y t h Y t dy Y t dz dydz
£ £-¥-¥

æ ö÷ç ÷ç= Î Î £ Î Î ÷ç ÷÷çè ø
ò ò    (2.29)

The pair ( ) ( )( ),i jY t Y t  is bivariate normal with correlation coefficient equal to /i jt t  . The conditional 

cumulative distribution function of ( )sup
i jt t t

Y t
£ £

 is given by Wang and Pötzelberger (1997)  and can be written as 

follows : 

( ) ( ) ( ) ( )( )
( )2

2
sup , 1 exp
i j

i j
t t t j i

h y z h
Y t h Y t dy Y t dz

t ts£ £

æ öæ ö - - ÷ç÷ç ÷ç÷ç £ Î Î = - ÷÷ çç ÷÷ ç÷ ÷ç ÷ç -è ø è ø
  

(2.30)

One can then solve the integration problem in (2.29) to obtain (2.28).  

 

Differentiating the right-hand side of (2.29) and dividing by the density function of ( )iY t , one can obtain : 

( ) ( ) ( ) ( ), , , , , , , sup
i j

i j i j j j i i
t t t

x x h t t Y t dx Y t h Y t dxf m s
£ £

æ ö÷ç ÷ç= Î £ Î ÷ç ÷÷çè ø
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( )
( )

( )( )
2

1
exp / 2

2
j i j i

j i

j i

x x t t
t t

t t

m
s p

s

æ öæ ö ÷ç - - - ÷÷çç ÷÷çç ÷÷= - -çç ÷÷çç ÷÷ç ÷ç - ÷è ø ÷çè ø

 

(2.31)

( ) ( )
( )

( )( )
2

2
2

exp
21

exp / 2
2

j i j ii
j i

j i

h x x h x t t
t t

t t

m

s

m
s p

s

-
æ æ ö öæ ö ÷ ÷ç çæ ö - + - - ÷ ÷÷çç ç÷ ÷ ÷÷ç çç ç÷ ÷ ÷÷- - -ç çç ç÷ ÷ ÷÷ç çç ç÷ ÷ ÷ç ÷è ø ç ÷ç ç - ÷ ÷è ø ÷ ÷ç çè è ø ø

 

Plugging : 

( ) ( )2 1 2 1 2 2 2 1 2 1 2, , , , , , ,f x x x x a b t t tf m s= -  
(2.32)

( ) ( )3 2 3 2 3 3 3 2 3 2 3, , , , , , ,f x x x x a b t t tf m s= -  
(2.33)

 

into (2.23), the rest of the proof, whose details are omitted, then consists in performing the necessary calculations to 

solve the triple integral in (2.22) and obtain the linear combination of eight trivariate cumulative distribution functions 

given by Formula 1. Elementary modifications provide the survival probability when the boundary is defined by the 

function ( )2g t  in (2.4). A basic application of Ito’s lemma to ( ) ( )( )2 2ln / 0X t X  shows that the survival 

probability of the process 2X  is given by the formula for the survival probability of the process 1X  with the two 

following adjustments : the drift coefficients become 2 / 2i ibm m s= - - , { }1,2,3i Î  and ik   becomes 

( )( )2ln / 0ik X . 

 
2.4 Generalization to Higher Dimension 

Similar exact formulae can be derived for 3n >  but they become more and more cumbersome. In general, for any 

n Î  , they will involve a number 2n  of the n -  variate cumulative distribution functions of Gaussian type given by 

(2.16). For an arithmetic Brownian motion subject to the absorbing boundary ( )1g t , the integration problem to solve is 

the following :  

( )
1

1 1 1 1 1 1 1
0

, , , , , , ...
n

n

i i i i i i i i n n
iD

x x a b t t t dx dx dxf m s
-

+ + + + + -
=

-ò  

(2.35)

where 0 0x =  and 

( ) ( )1 1 1 1 2 2 2 2 2 3 1 1 1,min , , ,min , , ... ,min ,n
n n n nD a b t k a a b t k a a b t k- - -

ù ù ù ù ù é ù ù= -¥ + ´ -¥ + ´ ´ -¥ +û û û û û ë û û  

The main issue is numerical rather than analytical : evaluating the Gaussian integral given by (2.16) in high dimension is 

not easy. Rewriting it in terms of the standard normal cumulative distribution function of order n , as was done in (2.18) 

– (2.21) for 3n = , does not solve the numerical issue, as there does not exist an algorithm capable of evaluating the 
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n -variate standard normal cumulative distribution function with arbitrary precision in “reasonable” time as soon as 

4n =  . For more background on this topic, the reader may refer to Genz and Bretz (2009). 

However, for 4n = , it can be verified that the following integration rule holds :  

 

4 1 2 3 4 1 2 3, , , ; , ,x x x x r r ré ùF ë û  
(2.36)

( )
3 2 2

2 2 2
2 3

2 3

2
2 2

1 1 2 4 3 2 3 3 2 2
2 32 2

1 3

1
1
exp

1

2 2 1 1

x y

x

y y

y y x y x y y
N dy dyN

r

r
r r r r r

p r r=-¥ =-¥

-

+
-

- é ù é ùæ ö - - - -÷ç ê ú ê ú÷ç= ÷ç ê ú ê ú÷ç ÷÷ç ê ú ê ú- -è ø ë û ë û
ò ò  

More generally, the actual numerical dimension of the function nF  can always be reduced by a factor of 2 by using :  

1 2 1 1 2 1, ,..., , ; ,..., ,n n n n nx x x x r r r- - -
é ùF ë û  

2 1

2 13

3

1 1 2 1 1

2 2
1 11 1

...

n

n

n n n

n

x xx

yy y

x y x y
N N

r r

r r
-

-

- -

-=-¥ =-¥=-¥

é ù é ù- -ê ú ê ú= ê ú ê ú
ê ú ê ú- -ë û ë û

òò ò  

(2.37)

( )
( )

( )
( )

( )( )
2 3 1

2
2 22

3 2 2 1 2 22 2
2 2

2 2
2 2

2

...

1 1
exp ...

2 2 1 2 1

1 2

n

n n n
n

n n

i
i

dy dy dy

y
y y y yr r

r r

r p
-

- - -
-

- -

=

æ ö÷ç ÷ç ÷- - - - -ç ÷ç ÷- -ç ÷çè ø

 -

 

Given the smoothness of the integrand in (2.37), it should be possible to attain a combination of accuracy and efficiency 
that would be satisfactory for all practical purposes in “moderate” dimension, roughly speaking, by applying  adaptive 
Gauss-Legendre quadrature combined with a Kronrod rule (Kronrod, 1964;  Calvetti et al., 2000) to reduce the number 
of required iterations. These are standard numerical techniques and it is easy to find available code or built-in functions 
in the usual scientific computing software. The dimension n  at which the use of a closed form formula analogous to 
Formula 1 ceases to be “competitive” with regard to a conditional Monte Carlo scheme should be numerically 
investigated. It must be emphasized that, even in “high” dimension, where Monte Carlo simulation becomes the method 
of last resort, exact formulae valid in lower dimension remain useful in two ways : they provide benchmarks with 
respect to which the accuracy of the numerical algorithms can be checked, and they can be used as control variates that 
substantially reduce the variance of the Monte Carlo estimates. 

3. Survival Probability of an Arithmetic or a Geometric Brownian Motion under and above a Sequence of 
Two-sided affine or Exponential Boundaries over a Finite Time Interval 

3.1 Definitions 

Let us consider a finite time interval 0 2,t té ùë û  divided in two subintervals 0 1,t té ùë û  and 1 2,t té ùë û , 2 1 0 0t t t³ ³ = . The 

absorbing boundary now consists of two parallel upper and lower curves in each time interval, these curves being line 

segments when dealing with process 1X ,  or exponential curves when dealing with process 2X .  More specifically, let 

( )... 1 2 3 4 1 2 1 2 1 2P , , , , , , , , , , ,a a a a b b k k t tm sé ùë û
 be defined as one of the following four cumulative distribution functions, 

where 1k  and 2k  are real constants  :    
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( ) ( ) 8
AUL1 1 2 3 4 1 2 1 2 1 2 1 2 3 4 1 2 1 2

3 4 3 2 1 1 2 1 0

P , , , , , , , , , , , , , , , , , , , ,

, , 0

a a a a b b k k t t a a a a b b k k

a a a a b t t t t

m sé ù + -ë û
Î Î Î

> > + ³ ³ =

  
 

(3.1)

( )( ) ( )( ) ( )
( ) ( )( ) ( ) ( )( ) ( )

1 1 1 1 1 2 1 1 1 1 1

1 3 2 1 1 2 1 4 2 1 1 2 1 2 2

, 0 , 0

, ,

X t a b t t t X t a b t t t X t k

X t a b t t t t t X t a b t t t t t X t k

æ ö< + " £ £ Ç > + " £ £ Ç < ÷ç ÷ç= ÷ç ÷Ç < + - " £ £ Ç > + - " £ £ Ç < ÷çè ø
  

( ) ( ) 8
AUL2 1 2 3 4 1 2 1 2 1 2 1 2 3 4 1 2 1 2

3 4 3 2 1 2 1 1 2 1 0

P , , , , , , , , , , , , , , , , , , , ,

, , 0

a a a a b b k k t t a a a a b b k k

a a a b t a b t t t t

m sé ù + -ë û
Î Î Î

> + > + ³ ³ =

  
 

(3.2)

      
( )( ) ( )( ) ( )
( )( ) ( )( ) ( )

1 1 1 1 1 2 1 1 1 1 1

1 3 2 1 2 1 4 2 1 2 1 2 2

, 0 , 0

, ,

X t a b t t t X t a b t t t X t k

X t a b t t t t X t a b t t t t X t k

æ ö< + " £ £ Ç > + " £ £ Ç < ÷ç ÷ç= ÷ç ÷Ç < + " £ £ Ç > + " £ £ Ç < ÷çè ø
  

( ) ( ) 8
GUL1 1 2 3 4 1 2 1 2 1 2 1 2 3 4 1 2 1 2

3 4 3 2 1 1 2 1 0

P , , , , , , , , , , , , , , , , , , , ,

, , 0

a a a a b b k k t t a a a a b b k k

a a a a b t t t t

m sé ù + -ë û
Î Î Î

> > + ³ ³ =

  
 

(3.3)

      

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )( )
( ) ( ) ( )( )( ) ( )

2 2 1 1 1 2 2 2 1 1

2 1 1 2 2 3 2 1 1 2

2 2 4 2 1 1 2 2 2 2

0 exp , 0 0 exp , 0

0 exp ,

0 exp ,

X t X a b t t t X t X a b t t t

X t k X t X a b t t t t t

X t X a b t t t t t X t k

æ ö< + " £ £ Ç > + " £ £ ÷ç ÷ç ÷ç ÷ç= Ç < Ç < + - " £ £ ÷ç ÷ç ÷÷çÇ > + - " £ £ Ç < ÷çè ø

  

( ) ( ) 8
GUL2 1 2 3 4 1 2 1 2 1 2 1 2 3 4 1 2 1 2

3 4 3 2 1 2 1 1 2 1 0

P , , , , , , , , , , , , , , , , , , , ,

, , 0

a a a a b b k k t t a a a a b b k k

a a a b t a b t t t t

m sé ù + -ë û
Î Î Î

> + > + ³ ³ =

  
 

(3.4)

      

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

2 2 1 1 1 2 2 2 1 1

2 1 1 2 2 3 2 1 2

2 2 4 2 1 2 2 2 2

0 exp , 0 0 exp , 0

0 exp ,

0 exp ,

X t X a b t t t X t X a b t t t

X t k X t X a b t t t t

X t X a b t t t t X t k

æ ö< + " £ £ Ç > + " £ £ ÷ç ÷ç ÷ç ÷ç= Ç < Ç < + " £ £ ÷ç ÷ç ÷÷çÇ > + " £ £ Ç < ÷çè ø

  

3.2 Statement of Formula 2    

Formula 2  Let ( )... 1 2 3 4 1 2 1 2 1 2P , , , , , , , , , , ,a a a a b b k k t tm sé ùë û
 be defined as in Subsection 3.1. Then, 

( )... 1 2 3 4 1 2 1 2 1 2P , , , , , , , , , , ,a a a a b b k k t tm sé ùë û
 

1 2
2 2

2 2
exp

m n

m n
m m

q f
s s

¥ ¥

=-¥ =-¥

æ ö÷ç ÷= +ç ÷ç ÷çè ø
å å  

(3.5)
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1 1 3 2 1
2

21 2

2 1 3 2 1
2

21 2

1 1 4 2 1
2

21 2

2 1 4 2 1
2

21 2

2 2 2
, ;

2 2 2
, ;

2 2 2
, ;

2 2 2
, ;

m m n t
N

tt t

m m n t
N

tt t

m m n t
N

tt t

m m n t
N

tt t

b q l b q f l

s s
b q l b q f l

s s
b q l b q f l

s s
b q l b q f l

s s

ì é ùï - + - - +ï ê úï ê úïï ê úï ë ûïï é ù- + - - +ï ê úï-ï ê ú
ê úë ûí é ù- + - - +ê ú- ê ú
ê úë û
é ù- + - - +ê ú+ ê ú
ê úë û

üïïïïïïïïïïïï ïï ïï ïýï ïï ïï ïï ïï ïï ïï ïï ïï ïï ïï ïï ïï ïï ïî þ

 

( ) ( )1 2 2
4 2 1 2 12 2 2

2 2 2
exp 2

m n

m n m t
m m

q b f q m m m
s s s

¥ ¥

=-¥ =-¥

æ ö÷ç ÷- + - - + -ç ÷ç ÷çè ø
å å  

1 3 3 4 4 1
2

21 2

2 3 3 4 4 1
2

21 2

1 3 4 4 1
2

21 2

2 3 4 4 1
2

21 2

2 2 2 2
, ;

2 2 2 2
, ;

2 2 2
, ;

2 2 2
, ;

m m n t
N

tt t

m m n t
N

tt t

m m n t
N

tt t

m m n t
N

tt t

b q l b b q f l

s s
b q l b b q f l

s s
b q l b q f l

s s
b q l b q f l

s s

é ù- + - + + +ê ú-ê ú
ê úë û
é ù- + - + + +ê ú- -ê ú
ê úë û
é ù- + - + + +ê ú- -ê ú
ê úë û
é ù- + - + + +ê ú+ -ê ú
êë û

ì üï ïï ïï ïï ïï ïï ïï ïï ïï ïï ïï ïï ïï ïï ïí ýï ïï ïï ïï ïï ïï ïï ïï ïï ïï ïï ïï ïï ïúï ïî þ

 

1 2
22 2

2 2
exp

m n

a m n
m m

q f
s s

¥ ¥

=-¥ =-¥

æ ö÷ç é ù é ù ÷- - +ç ÷ë û ë ûç ÷çè ø
å å  

1 2 1 3 2 2 1
2

21 2

2 2 1 3 2 2 1
2

21 2

1 2 1 4 2 2 1
2

21 2

2 2 1 4 2
2

1

2 2 2 2 2
, ;

2 2 2 2 2
, ;

2 2 2 2 2
, ;

2 2 2 2 2
,

a m a m n t
N

tt t

a m a m n t
N

tt t

a m a m n t
N

tt t

a m a m n
N

t

b q l b q f l

s s
b q l b q f l

s s
b q l b q f l

s s
b q l b q f l

s

é ù- + + - + - +ê ú
ê ú
ê úë û
é ù- + + - + - +ê ú- ê ú
ê úë û
é ù- + + - + - +ê ú- ê ú
ê úë û

- + + - + - +
+ 2 1

22

;
t

tts

ì üï ïï ïï ïï ïï ïï ïï ïï ïï ïï ïï ïï ïï ïï ïí ýï ïï ïï ïï ïï ïï ïï ïï ïé ùï ïê úï ïï ïê úï ïï ïê úï ïî ë û þ

 

( ) ( ) ( )1 2 2
2 4 2 2 1 2 12 2 2

2 2 2
exp 2 2

m n

a m n m a t
m m

q b f q m m m
s s s

¥ ¥

=-¥ =-¥

æ ö÷ç ÷+ - + - + - + -ç ÷ç ÷çè ø
å å  
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1 2 3 3 4 2 4 1
2

21 2

2 2 3 3 4 2 4 1
2

21 2

1 2 3 4 2 4 1
2

21 2

2 2 3 4
2

1

2 2 2 2 2 2
, ;

2 2 2 2 2 2
, ;

2 2 2 2 2
, ;

2 2
,

a m a n m t
N

tt t

a m a n m t
N

tt t

a m a n m t
N

tt t

a m
N

t

b q l b b f q l

s s
b q l b b f q l

s s
b q l b f q l

s s
b q l b

s

é ù- + + - + + - +ê ú-ê ú
ê úë û
é ù- + + - + + - +ê ú- -ê ú
ê úë û
é ù- + + - + + - +ê ú- -ê ú
ê úë û

- + + - +
+ 2 4 1

22

2 2 2
;

a n m t

tt

f q l

s

ì üï ïï ïï ïï ïï ïï ïï ïï ïï ïï ïï ïï ïï ïï ïí ýï ïï ïï ïï ïï ïï ïï ïï ïé ù+ - +ï ïê úï ï-ï ïê úï ïï ïê úï ïî ë û þ

 

where the following notations hold : 

( ) { } { } { } { }... AUL1 ... AUL2 ... GUL1 ... GUL2

2

1 1 1P P P P P P P P2
b b

s
m m m

é ù é ù é ù é ù é ù é ù é ù é ùê ú ê ú ê ú ê ú ê ú ê ú ê ú ê úë û ë û ë û ë û ë û ë û ë û ë û
= = = =

æ öæ ö æ ö÷ç÷ ÷÷ç ç= - + + ç - - +÷ ÷÷ç ç÷ ÷çç ç÷è ø è ø÷çè ø
     

( ) { } { } { } { }... AUL1 ... AUL2 ... GUL1 ... GUL2

2

2 2 2P P P P P P P P2
b b

s
m m m

é ù é ù é ù é ù é ù é ù é ù é ùê ú ê ú ê ú ê ú ê ú ê ú ê ú ê úë û ë û ë û ë û ë û ë û ë û ë û
= = = =

æ öæ ö æ ö÷ç÷ ÷÷ç ç= - + + ç - - +÷ ÷÷ç ç÷ ÷çç ç÷è ø è ø÷çè ø
     

1 2a aq = -  

3 4a af = -  

( )( ) { } ( )( ) { }... AUL1 ... AUL2
1 1 1 1 1 3 1 1 1 1 1 1 3 2 1 1 1P P P P

min , , min , ,a b t k a b t a b t k a b t b tb
é ù é ù é ù é ùê ú ê ú ê ú ê úë û ë û ë û ë û

= =
= + - + + + -   

( )( )( )( ) { }... GUL1
1 1 1 1 2 3 1 1 P P

min , ln / 0 ,a b t k X a b t
é ù é ùê ú ê úë û ë û

=
+ + -   

( )( )( )( ) { }... GUL2
1 1 1 1 2 3 2 1 1 1 P P

min , ln / 0 ,a b t k X a b t b t
é ù é ùê ú ê úë û ë û

=
+ + + -   

( )( ) { } { }... AUL1 ... GUL1
2 2 1 1 4 1 1 P P P P

max ,a b t a b tb
é ù é ù é ù é ùê ú ê ú ê ú ê úë û ë û ë û ë û

= =

æ ö÷ç= + - + ÷ç ÷çè ø
   

( )( ) { } { }... AUL2 ... GUL2
2 1 1 4 2 1 1 1 P P P P

max ,a b t a b t b t
é ù é ù é ù é ùê ú ê ú ê ú ê úë û ë û ë û ë û

= =

æ ö÷ç+ + + - + ÷ç ÷çè ø
   

( )( )( ) { } ( )( ) { }... AUL1 ... AUL2
3 3 2 2 1 2 2 2 3 2 2 2 2 2P P P P

min , min ,a b t t k b t a b t k b tb
é ù é ù é ù é ùê ú ê ú ê ú ê úë û ë û ë û ë û

= =
= + - - + + -   

( ) ( )( )( )( ) { }... GUL1
3 2 2 1 2 2 2 2 P P

min , ln / 0a b t t k X b t
é ù é ùê ú ê úë û ë û

=
+ + - -   

( )( )( )( ) { }... GUL2
3 2 2 2 2 2 2 P P

min , ln / 0a b t k X b t
é ù é ùê ú ê úë û ë û

=
+ + -   

( ) { } { } { } { }... AUL1 ... GUL1 ... AUL2 ... GUL2
4 4 2 1 4P P P P P P P P

a b t ab
é ù é ù é ù é ù é ù é ù é ù é ùê ú ê ú ê ú ê ú ê ú ê ú ê ú ê úë û ë û ë û ë û ë û ë û ë û ë û

= = = =

æ ö æ ö÷ ÷ç ç= - + + +÷ ÷ç ç÷ ÷ç çè ø è ø
     

1 1 1tl m= - , ( )2 1 1 2 2 1t t tl m m= - - - , 3 1 1 2 12t tl m m= - + , ( )4 1 1 2 1 2 2 12t t t tl m m m= - - -  

End of Formula 2. 

A few numerical values are reported in Table 2 for various levels of volatility and other parameters fixed as follows : 

0.01m = , 1 0.25t = , 2 0.5t = , 3 1t = , 1 0k = , 2 0.02k = , 1 0.36a = , 1 0.15b = , 2 0.42a = - , 
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2 0.15b = , 3 1 1 1a a b t= + , 3 0.12b = - , 4 2 2 1a a b t= +  , 4 0.12b = - . A comparison is made with results 

obtained using the algorithm by Pötzelberger and Wang (2001), denoted by PW, specifically designed for two-sided 

boundaries. The infinite double series in Formula 2 is truncated to summation operators ranging from 4m = -  to 

4m =  and from 4n = -  to 4n = , since adding more terms does not modify the obtained numerical results at 

least up to the 8th digit. Computational time is approximately 0.3 second. In general, the infinite double series can be 

truncated in a simple manner by setting a convergence threshold such that no further terms are added once the 

difference between two successive finite sums becomes smaller than that prespecified level.  

 

Table 2. Numerical evaluation of the survival probability of an arithmetic Brownian under a two-sided piecewise affine, 

time-homogeneous, absorbing boundary, as a function of volatility 

 Formula 2 PW simulation algorithm

10,000,000 runs 

PW simulation algorithm

100,000,000 runs 

Volatility = 20% 0.377958716
  

0.377923023 0.377971427 
 

Volatility = 50% 0.12468422 
 

0.124786191 0.124625324 
 

Volatility = 80% 0.02140513 
 

0.021276911 0.021382631 
 

 

3.3 Proof of Formula 2 

Let us consider the calculation of AUL1Pé ùë û
. Since the upper and the lower sides of the boundary grow at the same rate in 

each time interval, i.e. at the rate 1b  both from below and from above in 0 1,t té ùë û  and at the rate 2b  both from below 

and from above in 1 2,t té ùë û  , the same technique can be applied as in the beginning of the proof of Formula 1, i.e. the 

initial boundary crossing problem is turned into one where the boundary and the drift of the process become piecewise 

constant. Hence, denoting by p  the sought probability, the problem can be formulated as follows :  

( ) ( )
1 3

2 4

1 1 2 1 2 2 1,p f x f x x dx dx

b b

b b

= ò ò  

(3.6)

where the functions ( )1 1f x  and ( )2 1 2,f x x  are defined by : 

( ) ( ) ( ) ( )
11

1 1 1 2 1 1
00

sup , inf
t tt t

f x Y t a Y t a Y t dx
£ ££ £

æ ö÷ç ÷= < > Îç ÷ç ÷çè ø
  

 

(3.7)

( ) ( ) ( ) ( ) ( )
1 21 2

2 1 2 3 2 1 4 2 1 2 2 1 1, sup , inf ,
t t tt t t

f x x Y t a b t Y t a b t Y t x Y t dx
£ ££ £

æ ö÷ç ÷= < - > - £ Îç ÷ç ÷çè ø
  (3.8)

and the process ( ){ }, 0Y t t ³  is defined by : 

( ) ( )
( )

1 1

2 1 2

, 0

,

dt dB t t t
dY t

dt dB t t t t

m s
m s

ì + " £ <ïï= íï + " £ £ïî
 (3.9)
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i ibm m= - , { }1,2i Î  

The function ( )1 1f x  results from the differentiation of the classical formula for the joint distribution of the maximum, 

the minimum and the endpoint of a Brownian motion (see, e.g., Cox & Miller, 1965). To obtain ( )2 1 2,f x x , the 

following lemma is introduced. 

Lemma 2   Let ( )Y t  be an arithmetic Brownian motion with constant drift m Î   and volatility s +Î  under 

a given probability measure  . Let q  be the conditional probability defined, at time 0 0t = , by :  

( ) ( ) ( ) ( )sup , inf ,
i ji j

j j i i
t t tt t t

q Y t b Y t a Y t x Y t dx
£ ££ £

æ ö÷ç ÷ç= £ ³ £ Î ÷ç ÷÷çè ø
  

(3.10)

where , ,i jx x  a  and b  are real constants such that : b a> , ib x a³ > , jb x a³ > , and it  and jt  are two 

non-random times such that : 0j jt t> ³  . Then, 

( )
( ) ( )

( ) ( )2

2

2
exp

2

j i j i

j i

n i j i

j i

x x t t n b a
N

n b a t t
q

a x t t n b a
N

t t

m

m s

ms

s

¥

=-¥

é æ ö ù- - - - - ÷çê ú÷ç ÷çê ú÷ç ÷æ ö- ÷ê úç -è ø÷ç ÷ ê úç= ÷ç æ ö÷ ê ú÷ç - - - - -è ø ÷ç ÷ê úç ÷- çê ú÷ç ÷÷ç -ê úè øë û

å  

(3.11)

( )( )
( ) ( )

( ) ( )2

2 2

2
exp

2

j i j i

i j i

n i j i

j i

x a x t t n b a
N

a x n b a t t

a x t t n b a
N

t t

m

m s

ms

s

¥

=-¥

é æ öù- + - - + - ÷çê ú÷ç ÷çê ú÷ç ÷æ ö- - - ÷ê úç -è ø÷ç ÷ ê úç- ÷ç æ ö÷ ê ú÷ç - + - - + -è ø ÷ç ÷ê úç ÷- çê ú÷ç ÷÷ç -ê úè øë û

å  

Proof of lemma 2 

( ) ( ) ( ) ( ), sup , inf ,
i ji j

i i j j
t t tt t t

Y t x Y t b Y t a Y t x
£ ££ £

æ ö÷ç ÷ç £ £ ³ £ ÷ç ÷÷çè ø
  

(3.12)

( ) ( )( ) ( ) ( ) ( ) ( ), sup , inf ,
ji

i ji j

xx

i j i j
t t tt t t

y a z a

Y t dy Y t dz Y t b Y t a Y t dy Y t dz dzdy
£ ££ £= =

æ ö÷ç ÷ç= Î Î £ ³ Î Î ÷ç ÷÷çè ø
ò ò    

 

The following result can be found in Guillaume (2010) : 

( ) ( ) ( ) ( )sup , inf ,
i ji j

i j
t t tt t t

Y t b Y t a Y t dy Y t dz
£ ££ £

æ ö÷ç ÷ç £ ³ Î Î ÷ç ÷÷çè ø
  

(3.13)

( ) ( )( )
( )

( )( ) ( )( )
( )2 2

2 2
exp exp

n j i j i

n b a z y n b a b y n b a z b n b a

t t t ts s

¥

=-¥

æ ö æ ö- - - - - - - - + -÷ ÷ç ç÷ ÷ç ç= -÷ ÷ç ç÷ ÷ç ç÷ ÷÷ ÷ç ç- -è ø è ø
å  
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Plugging (3.13) into (3.12) yields : 

( ) ( ) ( ) ( ), sup , inf ,
i ji j

i i j j
t t tt t t

Y t x Y t b Y t a Y t x
£ ££ £

æ ö÷ç ÷ç £ £ ³ £ ÷ç ÷÷çè ø
  

( ) ( )
22

22
exp , ;j ji i i

n ji j

x n b a tn b a x t t
N

tt t

mm m

s s s

¥

=-¥

ì é ùïæ ö - - -- -ï÷ ê úç ï÷ç= í÷ ê úç ÷ï÷ç ê úè øïïî ë û
å  

(3.14)

( ) ( )
2 2

2 2
, ; , ;j j ji i i i i

j ji j i j

a n b a t x n b a tx t t a t t
N N

t tt t t t

m mm m

s s s s

é ù é ù- - - - - -- -ê ú ê ú- -ê ú ê ú
ê ú ê úë û ë û

 

( )
2

2
, ;ji i

ji j

a n b a ta t t
N

tt t

mm

s s

é ù üï- - -- ïê ú ï+ ýê ú ïê ú ïïë û þ
 

( )( ) ( )
22

2 22
exp , ;j ji i i

n ji j

x a n b a ta n b a x t t
N

tt t

mm m

s s s

¥

=-¥

ì é ùïæ ö - + - -- - +ï÷ ê úç ï÷ç- -í÷ ê úç ÷ï÷ç ê úè øïïî ë û
å  

( ) ( )
2 2

2 2 2
, ; , ;j i j j ji i i

j ji j i j

x t a n b a t x a n b a tt a t t
N N

t tt t t t

m m mm

s s s s

é ù é ù+ - + - - - + - -+ê ú ê ú- - - -ê ú ê ú
ê ú ê úë û ë û

 

( )
2

2
, ;ji i

ji j

a n b a ta t t
N

tt t

mm

s s

é ù üï- + - -+ ïê ú ï+ - ýê ú ïê ú ïïë û þ
 

The interchange between summation and integral is a straightforward application of Tonelli’s theorem to non-negative 

measurable functions, where the measures are the counting measure on   and the Lebesgue measure on  . Lemma 

2 ensues by differentiating (3.14) and dividing by the density function of ( )iY t .  

 

Applying Lemma 2, the function ( )2 1 2,f x x  can be plugged in (3.6). Then, performing the necessary calculations, 

Formula 2 can be obtained. 
 

4. Conclusion 

In this paper, new formulae were obtained for the probability of absorption of generalised Brownian motion through 
sequences of affine or exponential one-sided or two-sided boundaries. It was shown that the method could be applied to 
higher numbers of successive one-sided boundaries. However, such an extension may not be commendable in the case 
of two-sided boundaries, as the resulting analytical formulae will involve a quickly increasing number of summation 
operators, thus slowing down the process of numerical convergence. 
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Abstract

The Lomax distribution, known as Pareto (type II) distribution, is a heavy tail probability distribution used extensively in
business, economics and in actuarial modeling. The Weibull-Pareto distribution defined by Alzaatreh et al. (2013a) has
shown high bias and standard error for the ML estimates when the parameter c >> 1. In this paper we use the Lomax
distribution to construct the Weibull-Lomax distribution. It is observed that the Weibull-Lomax distribution performs
significantly better in terms of the ML estimations. Some structural properties of the Weibull-Lomax distribution are
discussed.

Keywords: Lomax distribution, Weibull-Lomax distribution, T-X family of distributions

1. Introduction

Let r(t) be the probability density function (PDF) of a random variable T ∈ [a, b] for −∞ ≤ a < b ≤ ∞ and let G(x) be the
cumulative distribution function (CDF) of a random variable X such that the link function W(·) : [0, 1] −→ [a, b] satisfies
the following conditions: (i) W(·) is differentiable and monotonically non-decreasing, and (ii) W(0)→ a and W(1)→ b.

The CDF of the T-X family defined by Alzaatreh et al. (2013b) is

F(x) =
∫ W(G(x))

a
r(t) dt. (1)

If the random variable T ∈ (0,∞) and W(z) = − log(1 − z), then the PDF corresponding to (1) is given by

f (x) = hg(x) R
(
Hg(x)

)
, (2)

where hg = g/(1 − G) and Hg = − log(1 − G) are the hazard and cumulative hazard rate functions corresponding to the
PDF g(x).

Alzaatreh et al. (2013a) studied a generalization of the Pareto distribution by using (2) where T and X follow Weibull and
Pareto random variables respectively. The probability density function (PDF) of the Weibull-Pareto distribution (WPD) is
defined as

f (x) =
βc
x

(
β log

( x
θ

))c−1
e−(β log(x/θ))c

, x > θ; c, β, θ > 0. (3)

Alzaatreh et al. (2013a) studied some general properties of the Weibull-Pareto distribution in (3). They showed that this
distribution can be applied to fit data with different characteristics. It can fit data with long right tail, long left tail and
approximately symmetric. However, they pointed out a major problem in estimating the parameters of the Weibull-Pareto
distribution (WPD). The estimated values of the parameters c and β using the maximum likelihood estimation (MLE)
have high biases and standard errors when c >> 1. This occurred because when c > 1, the WPD can be left skewed. The
left skeweness of the WPD affects the ML estimates of the parameters. It was shown that the estimates of c and β are very
sensitive to the estimate of the parameter θ. To solve this problem, Alzaatreh et al. (2013a) proposed a modification of
the MLE method (MMLE) which improved the results of the MLE. However, they pointed out that MMLE still produce
high bias and standard error values in some cases and further research needed to solve the estimation problem for the
parameters of WPD. The main objective of this article is to provide an alternative to the Weibull-Pareto distribution
namely, the Weibull-Lomax distribution. By merely considering another member of the family of Pareto distribution
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(after suitable transformation) a greater improvement in estimation under the MLE (maximum likelihood method) is
achieved. The paper is organized as follows: In section 2, the Weibull-Lomax distribution is defined and several properties
are studied including quantile function, limit behaviour, unimoadality, Shannon entropy, reliability parameter, moments,
mean deviations and order statistics. The asymptotic distributions of the sample minima and maxima are also studied in
section 2. Parameter estimation and application are studied in section 3. We provide some concluding remarks in section
4.

2. The Weibull-Lomax Distribution

Let the random variable T and X follow the Weibull and Lomax distributions. Then from (2), the PDF of the Weibull-
lomax distribution (WLD) can be written as

f (x) =
βc

x + θ

(
β log

(
1 +

x
θ

))c−1
e−(β log(1+ x

θ ))
c

, x > 0; c, β, θ > 0. (4)

Remark 2.1. Note that the WLD in (4) is only a shift by θ of the WPD in (3). I.e. If Y ∼ WPD(c, β, θ) then X = Y − θ
follows WLD(c, β, θ).

When c = 1, the WLD reduces to the Lomax distribution with parameters β and θ. From (4), the CDF and hazard rate
function of WLD, respectively, are

F(x) = 1 − e−(β log(1+ x
θ ))

c

. (5)

h(x) =
βc

x + θ

(
β log

(
1 +

x
θ

))c−1
, (6)

In Figures 1 and 2, various graphs of f (x) and h(x) are provided for different parameter values. The plots indicate that the
Weibull-Lomax distribution can be reverse J-shaped, right-skewed or left-skewed. Also, the Weibull-Lomax distribution
hazard function can be a decreasing failure rate or upside down bathtub shapes.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4

f(
x)

c = 0.5  θ = 1
c = 1     θ = 1
c = 2     θ = 1
c = 2     θ = 2
c = 10   θ = 1
c = 10   θ = 2

x

Figure 1. Graphs of the Weibull-Lomax PDF for various choices of c and θ when β = 1.

Remark 2.2. Based on Remark 2.1 and Alzaatreh et al. (2013a), one can obtain the following properties of the WLD.

(i) If a random variable Y follows the Weibull distribution with parameters c and 1/β , then the random variable
X = θ(eY − 1) follows the Weibull-Lomax distribution.

(ii) Let Q(p), 0 < p < 1 denote the quantile function of WLD. Then Q(p) = θ
{
exp

((− log(1 − p)
)1/c /β

)
− 1

}
.
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Figure 2. Graphs of the Weibull-Lomax hazard function for various choices of c when β = θ = 1

(iii) The limit of the Weibull-Lomax density and the Weibull-Lomax hazard function as x → ∞ is 0, and the limit as
x→ 0 is given by

lim
x→0

f (x) = lim
x→0

h(x) =


0, c > 1
β/θ, c = 1.
∞, c < 1

(iv) The WLD is unimodal at x0. When c ≤ 1, the mode is at x0 = 0 and when c > 1, the mode is the solution of the
equation k(x0) = 0, where

k(x) = − log(1 + x/θ) − c
(
β log(1 + x/θ)

)c
+ c − 1.

(v) The Shannon entropy (Shannon, 1948) for a random variable X that follows the WLD is

ηX = − log
(
βc
θ

)
+

1
β
Γ

(
1 +

1
c

)
+

(
1 − 1

c

)
δ + 1,

where δ = −
∫ ∞

0 e−u log(u)du = 0.57722 is the Euler gamma constant.

2.1 Reliability Parameter

The reliability parameter R is defined as R = P(X > Y), where X and Y are independent random variables. Numerous
applications of the reliability parameter have appeared in the literature such as the area of classical stress-strength model
and the break down of a system having two components. Other applications of the reliability parameter can be found in
Hall (1984) and Weerahandi and Johnson (1992). If X and Y are two continuous and independent random variables with
the CDFs F1(x) and F2(y) and their PDFs f1(x) and f2(y) respectively, then the reliability parameter R can be written as

R = P(X > Y) =
∫ ∞

−∞
F2(t) f1(t)dt.

Theorem 2.3. Suppose that X ∼ WLD(c1, β1, θ) and Y ∼WLD(c2, β2, θ), then

R = 1 −
∞∑

k=0

(−1)k

k!

(
β2

β1

)kc2

Γ

(
kc2

c1
+ 1

)
.

Proof. Follows from Lemma 2.4 in Alzaatreh and Ghosh (2014). �
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2.2 Moments and Mean Deviations

Using Remark 2.1, the s-th moments for the WLD can be written as

E(Xs) = (−1)s θs + θs
s∑

k=1

∞∑
i=0

(
s
k

)
(−1)s−kki

i!βi Γ(1 + i/c). (7)

Remark 2.4. From (7), we have the following

(i) If c > 1, then the s-th moments of the Weibull-Lomax distribution exist.

(ii) If c < 1, then the s-th moments of the Weibull-Lomax distribution do not exist.

(iii) If c = 1, then the s-th moments of the Weibull-Lomax distribution exist iff β > s.

The amount of scatter in a population is evidently measured to some extent by the totality of deviations from the mean
and median. If we denote the median by M, then the mean deviation from the mean, D(µ), and the mean deviation from
the median, D(M), can be written as

D(µ) = 2µF(µ) − 2
∫ µ

0
x f (x)dx. (8)

D(M) = µ − 2
∫ M

0
x f (x)dx. (9)

Now, consider Im =
∫ m

0 x f (x)dx, where f (x) is defined in (4). On Using the substitution u = (β log(1 + x/θ))c, we get

Im = θ

∞∑
k=0

1
βkk!

∫ am

0
uk/ce−udu

= θ

∞∑
k=0

γ(am, 1 + k/c)
βkk!

, c > 1, (10)

where m > 0, am = (β log(1 + m/θ))c and γ(x, a) =
∫ x

0 ta−1e−tdt is the lower incomplete gamma function.

From equations (8) and (9), the mean deviation from the mean and the mean deviation from the median are, respectively,
given by

D(µ) = 2µ
(
1 − exp

{− (
β log(1 + µ/θ)

)c}) − 2Iµ
D(M) = µ − 2IM ,

where Iµ and IM can be calculated numerically from (10).

2.3 Quantile Measures of Tail Behavior

Skewness and kurtosis of a distribution can be measured by β1 = µ3/σ
3 and β2 = µ4/σ

4, respectively. However the
expression for the third and fourth moments of WLD(c, β, θ) do not always exist (see Remark 2.4). Consequently, the
moment based skewness and kurtosis measures can not be applied when c < 1. Instead we consider the quantile based
skewness and kurtosis measures which always exist. The quantile function of WLD(c, β, θ) are in closed form, alternative-
ly we can define the measure of skewness and kurtosis based on the quantile function. The Galton’ skewness S defined
by Galton (1883) and the Moors’ kurtosis K defined by Moors (1988) are given by

S =
Q(6/8) − 2Q(4/8) + Q(2/8)

Q(6/8) − Q(2/8)
. (11)

K =
Q(7/8) − Q(5/8) + Q(3/8) − Q(1/8)

Q(6/8) − Q(2/8)
. (12)

When the distribution is symmetric, S = 0 and when the distribution is right (or left) skew, S > 0 (or S < 0). As K
increases the tail of the distribution becomes heavier. To investigate the effect of the two shape parameters c and β on
the WLD(c, β, θ) distribution, equation (11) and (12) are used to obtain the Galtons’ skewness and Moors’ kurtosis where
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the quantile function can be found from Remark 2.2. Figure 3 displays 3D graphs for the Galtons’ skewness and Moors’
kurtosis for the WLD(c, β, θ) when θ = 1 and different values of c and β. From Figure 3, the WLD can be left skewed,
right skewed or near symmetric (S=0). Furthermore, for fixed value of c > 1, Galton’s skewness and Moors’ kurtosis are
decreasing function of β. Also, for fixed value of β, Galton’s skewness and Moors’ kurtosis are decreasing function of
c. In Figure 4, we determined the regions when the WLD is left skewed, right skewed or nearly symmetric (S=0) occur.
A cubic function relating log(β) to log(c) is obtained for the situation when the distribution is nearly symmetric (see R
results in the Appendix). Since the symmetry of WLD does not depend on θ, we assumed θ = 1.
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Figure 3. Graphs of Quantile Skewness and Kurtosis for the WL PDF when θ = 1.
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2.4 Order Statistics for the Weibull Lomax Distribution

In this section, we study the moments of the r-th order statistic and the large sample distribution of the sample minimum
and the sample maximum when a random sample of size n are drawn from the WLD(c, β, θ) distribution. The density
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function of the r-th order statistic Xr:n for a random sample of size n drawn from (4), is given by

fXr:n (x) = r
(
n
r

)
(F(x))r−1(1 − F(x))n−r f (x)

= r
(
n
r

) r−1∑
k=0

(−1)k
(
r − 1

k

)
WLD(c, β(n − r + k + 1)1/c, θ)

(n − r + k + 1)
. (13)

From (13), the PDF of the rth order statistic Xr:n can be expressed as a finite sum of the Weibull-Lomax PDFs. From (13),
the distribution of the sample maximum Xn:n = max(X1, X2, · · · , Xn), and the sample minimum X1:n = min(X1, X2, · · · , Xn)
are, respectively, given by

fXn:n (x) = n
n−1∑
k=0

(−1)k

k + 1

(
n − 1

k

)
WLD(c, β(k + 1)1/c, θ). (14)

fX1:n (x) = WLD(c, βn1/c, θ). (15)

From (15), it is evident that the Weibull-Lomax distribution is closed under minimization. This property is also known as
min stable property (See Feller, 1971).

In order to find the large sample distribution of Xn:n, we will use the sufficient condition for weak convergence due to von
Mises (1936) which is stated in the following theorem:

Theorem 2.5. Let F be an absolutely continuous c.d.f and suppose h f (x) is nonzero and differentiable function. If

lim
x→F−1(1)

d
dx

(
1

h f (x)

)
= 0,

then F ∈ D(G1), where G1(x) = exp(− exp(x)).

In our case F−1(1) = ∞ and from (6), we have

lim
x→∞

d
dx

(
1

h f (x)

)
=

0, c ≥ 1
∞, c < 1.

(16)

Hence, the large sample distribution of Xn:n is of extreme value type provided that c > 1. When c = 1, the Weibull Lomax
distribution reduces to the Lomax distribution. Also, according to Arnold et al. (2008), the large sample distribution of
Xn:n will be of extreme value type.

In order to derive the asymptotic distribution of the sample minima X1:n, we consider Theorem 8.3.6 of Arnold et al.(2008).
Observe that, since F−1(0) is finite, it follows from the theorem that the asymptotic distribution of the sample minima X1:n
is not of Fréchet type. The asymptotic distribution of X1:n will be of the Weibull type with parameter α > 0 if

lim
ε→0+

F(F−1(0) + εx)
F(F−1(0) + ε)

= xα, for all x > 0.

Note that
lim
ε→0+

F(θ + εx)
F(θ + ε)

= x lim
ε→0+

f (θ + εx)
f (θ + ε)

= xc.

Hence, the asymptotic distribution of the sample minima X1:n is of the Weibull type with shape parameter c. Furthermore,
since the WLD is only a shift by θ of the WPD, therefore, the asymptotic distributions for the sample maxima when c ≥ 1
is of extreme type. Also, the asymptotic distribution the sample minima for the WPD is of the Weibull type with shape
parameter c.

Next, we consider the s-th moment for Xr:n, 1 ≤ r ≤ n. From (13), if Y ∼ WLD(c, β(n − r + k + 1)1/c, θ), then

E(Y s) = (−1)s θs + θs
s∑

k=1

∞∑
i=0

(
s
k

)
(−1)s−kki

i!βi(n − r + k + 1)i/c Γ(1 + i/c). (17)
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From (13), the sth moment of Xr:n can be written as

E(Xs
r:n) = r

(
n
r

) r−1∑
k=0

(−1)k

n − r + k + 1

(
r − 1

k

)
E(Y s), (18)

where E(Y s) are given in (17). The s-th non central moment of X1:n and Xn:n can be obtained by setting r = 1 and r = n
in equation (18).

Theorem 2.6. (i) If c > 1, then the s-th non central moment of Xr:n exist.

(ii) If c < 1, then the s-th non central moment of Xr:n do not exist.

(iii) If c = 1, then the s-th non central moment of Xr:n exist iff β(n − r + 1) > s.

Proof. Follows directly from Remark 2.4. �

3. Parameter Estimation and Application

The parameters of WLD are estimated by using the maximum likelihood. A simulation study is conducted to evaluate the
performance of the maximum likelihood method.

3.1 Maximum Likelihood Estimation Method

Let X1, X2, · · · , Xn be a random sample of size n drawn from the density in (4). The log-likelihood function ℓ = ℓ(c, β, θ)
is given by

ℓ = nc log β + n log c −
n∑

i=1

log (θ + xi) + (c − 1)
n∑

i=1

log
(
log(1 + xi/θ)

) − n∑
i=1

(
β log(1 + xi/θ)

)c . (19)

The log-likelihood can be maximized numerically to obtain the maximum likelihood estimates. Several routines available
for numerical maximization. We used the PROC NLMIXED in SAS to maximize equation (19). The initial estimates for
the parameters of WLD are obtained as follows: the initial estimates of c and β are the moment estimates of c and β from
the Weibull distribution, which are given by c0 =

π

(6slog xi )
and β0 = exp

(
−x̄log xi − δ/c0

)
, where slog xi and x̄log xi are the

sample standard deviation and the sample mean for log xi and δ is the Euler gamma constant (Johnson et al., 1994, pp.
642-643). The initial estimate of θ is taken to be 1.

3.2 Simulation Study to Evaluate the Performance of MLE

In this sub-section, a simulation study is conducted to evaluate the performance of the MLE method of WLD in terms
of both bias and standard deviation for various parameter combinations and different sample sizes. For each parame-
ter combination, a random sample from WLD is generated by first generating a random sample y1, y2, · · · , yn from the
Weibull distribution with parameters c and 1/β, then by using Remark 2.2(i), Xi = θ(eYi − 1), i = 1, 2, . . . , n follows the
WLD(c, β, θ).

The parameter combinations for the simulation study are c = 0.5, 1, 4, 7, β = 0.5, 1, 3, and θ = 0.5, 1, 3. Two different
sample sizes of n = 100 and 500 are used in the simulation. For each sample size and parameter combination, the
simulation process is repeated 200 times. The average bias (estimate - actual), and the average standard deviation of the
maximum likelihood estimates are presented in Tables 1 and 2.

The results show that the maximum likelihood estimation method performs well. In general, the biases and standard
deviations of the parameters are reasonably small. As the sample size increases, the results show that the biases and stan-
dard deviations of the estimators decrease. The results from this simulation study, suggest that the maximum likelihood
estimates method can be used effectively to estimate the parameters of the Weibull-Lomax distribution. Also, if c > 1 , the
results from Tables 1 and 2 show that the MLE method performs good in estimating the model parameters. This suggests
that the WLD can be used an alternative to the WPD in modeling real life data sets.

3.3 Applications

Alzaatreh et al. (2013a) used three data sets from Park et al. (1964) and Park (1954) and fit them to Weibull-Pareto
distribution using the MMLE method. In this subsection, we fit these data sets and show that WLD provides similar fit.
The data sets are the grouped frequency distributions of adult numbers for Tribolium Confusum and Tribolium Castaneum
cultured at 24 C and Tribolium Confusum strain. In particular, Data set 1 represents a random sample of 857 Tribolium
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Table 1. Bias and standard deviation of the parameter estimates for n = 100

Actual Values Bias Standard deviation
c β θ ĉ β̂ θ̂ ĉ β̂ θ̂

0.5 0.5 0.5 0.0287 −0.0001 0.0218 0.0748 0.1764 0.4158
1 0.0225 0.0073 0.1774 0.0784 0.1920 0.9007
3 0.0266 0.0092 0.3276 0.0772 0.1826 2.5553

1 0.5 0.0232 −0.0011 0.0184 0.0683 0.3520 0.3326
1 0.0218 0.0086 0.1598 0.0681 0.3814 0.9051
3 0.0223 0.0165 0.3531 0.0626 0.3643 2.1206

3 0.5 0.0206 0.0176 0.0258 0.0517 1.1344 0.2790
1 0.0241 0.1880 0.1011 0.0497 1.1983 0.6267
3 0.0154 0.1619 0.1682 0.0478 1.1155 1.6073

1 0.5 0.5 0.0836 0.0083 0.0680 0.2328 0.1924 0.4886
1 0.0500 0.0227 0.2613 0.2244 0.1856 0.9557
3 0.0773 0.0168 0.5588 0.2333 0.1861 2.9163

1 0.5 0.0333 0.0658 0.0743 0.1542 0.3902 0.3491
1 0.0472 0.0258 0.0940 0.1596 0.3618 0.6508
3 0.0556 0.0495 0.3845 0.1691 0.3917 2.1340

3 0.5 0.0408 0.0797 0.0193 0.1052 1.1522 0.2372
1 0.0376 0.0614 0.0085 0.1022 1.1650 0.4817
3 0.0256 0.1354 0.1569 0.0955 1.1701 1.4879

4 0.5 0.5 0.5229 −0.0268 −0.0256 1.0086 0.1698 0.4036
1 0.3374 −0.0004 0.0775 0.8892 0.1671 0.8325
3 0.6047 −0.0413 −0.3706 1.0022 0.1418 1.9807

1 0.5 0.6234 −0.0505 −0.0246 0.9791 0.4286 0.3377
1 0.4174 0.0260 0.0676 0.9472 0.4471 0.7082
3 0.4091 0.0246 0.1803 1.0248 0.4609 2.1711

3 0.5 0.1886 −0.1328 −0.0265 0.4220 1.1250 0.2178
1 0.1209 0.1592 0.0614 0.4010 1.2174 0.4728
3 0.1377 −0.0921 −0.1133 0.4029 1.1831 1.3794

7 0.5 0.5 0.4476 −0.0086 0.0007 1.3689 0.1239 0.2988
1 0.4629 −0.0004 0.0396 1.3946 0.1250 0.6038
3 0.6692 −0.0191 −0.1366 1.5165 0.1097 1.5466

1 0.5 1.8592 −0.1978 −0.1348 1.7858 0.4377 0.3463
1 1.6115 −0.1439 −0.1945 1.9261 0.4591 0.7135
3 1.9645 −0.2476 −1.0595 1.7831 0.4022 1.8825

3 0.5 0.2483 0.0982 0.0197 0.7125 1.1624 0.2273
1 0.2000 0.0234 0.0083 0.6995 1.2274 0.4811
3 0.2757 −0.0104 −0.0079 0.6927 1.2099 1.4260
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Table 2. Bias and standard deviation of the parameter estimates for n = 500

Actual Values Bias Standard deviation
c β θ ĉ β̂ θ̂ ĉ β̂ θ̂

0.5 0.5 0.5 0.0132 −0.0151 −0.0281 0.0348 0.0944 0.1861
1 0.0116 −0.0030 −0.0058 0.0341 0.0974 0.3857
3 0.0067 0.0026 0.0893 0.0372 0.0978 1.2534

1 0.5 0.0079 0.0138 0.0189 0.0356 0.2224 0.2066
1 0.0077 0.0057 0.0303 0.0359 0.2250 0.4078
3 0.0138 −0.0107 0.0092 0.0384 0.2345 1.1882

3 0.5 0.0057 0.1076 0.0213 0.0298 0.9001 0.1922
1 0.0073 0.0660 0.0442 0.0321 0.8795 0.4162
3 0.0060 0.0491 0.0766 0.0302 0.8460 1.1589

1 0.5 0.5 0.0098 0.0221 0.0816 0.1273 0.1266 0.3280
1 0.0171 0.0143 0.1173 0.1333 0.1168 0.5645
3 0.0253 0.0084 0.2387 0.1228 0.1140 1.7001

1 0.5 0.0117 0.0198 0.0211 0.0962 0.2375 0.2007
1 0.0200 0.0162 0.0540 0.1017 0.2642 0.4483
3 0.0161 0.0260 0.1870 0.0987 0.2624 1.3323

3 0.5 0.0179 0.1027 0.0238 0.0676 1.0732 0.2246
1 0.0118 0.1047 0.0476 0.0602 0.9458 0.3995
3 0.0112 0.1673 0.2464 0.0672 1.0295 1.3051

4 0.5 0.5 0.1038 0.0497 0.1590 0.9285 0.1857 0.4613
1 0.0944 0.0491 0.3146 0.9194 0.1861 0.9304
3 0.3544 −0.0079 0.0952 0.9766 0.1537 2.1699

1 0.5 0.0156 0.1598 0.1371 0.6922 0.3962 0.3200
1 0.0250 0.1420 0.2442 0.6449 0.3926 0.6303
3 −0.0064 0.1548 0.7849 0.6285 0.3846 1.8555

3 0.5 0.0956 0.0416 0.0097 0.2913 1.2129 0.2396
1 0.0868 0.0659 0.0288 0.2875 1.2269 0.4841
3 0.1223 0.0032 0.0094 0.3002 1.2342 1.4565

7 0.5 0.5 0.2962 0.0415 0.1375 1.2609 0.1857 0.4586
1 −0.0383 0.0600 0.3516 1.1002 0.1743 0.8852
3 −0.0157 0.0398 0.7004 1.1850 0.1412 2.1105

1 0.5 0.5314 0.0559 0.0571 1.5608 0.4655 0.3683
1 0.5067 0.0802 0.1527 1.5718 0.4696 0.7455
3 0.5462 0.0624 0.3714 1.6205 0.4495 2.1272

3 0.5 0.3919 −0.4290 −0.0834 0.5326 1.1271 0.2209
1 0.0085 0.2958 0.1175 0.4168 1.0852 0.4266
3 0.1736 0.0318 0.0439 0.5122 1.2105 1.4283
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Table 3. Parameter estimates and K-S values for the fitted data sets

Data sets Data set 1 Data set 2 Data set 3
Distributions WPD WLD WPD WLD WPD WLD

Estimates θ̂ = 9.107 θ̂ = 14.245 θ̂ = 33.208 θ̂ = 22.122 θ̂ = 23.283 θ̂ = 12.627
β̂ = 0.380 β̂ = 0.436 β̂ = 0.747 β̂ = 0.521 β̂ = 0.866 β̂ = 0.517
ĉ = 6.953 ĉ = 6.863 ĉ = 5.059 ĉ = 8.719 ĉ = 6.161 ĉ = 12.398

K-S values 0.0482 0.0549 0.0730 0.0905 0.0803 0.0901
AIC values 8904.5 8908.6 9276.41 9311.5 2973.44 2982.1

Castaneum cultured at 240C, the Data set 2 represents a random sample of 952 Tribolium Castaneum cultured at 240C
and Data set 3 represents a random sample of 368 Tribolium Castaneum cultured at 240C. The data sets are avialable
in Alzaatreh, et al. (2013a). Above we provide the estimates, the Kolmogorov-Smirnov test (K-S) and the Akaike
information criterion (AIC) values for the WLD and WPD in Table 3. The estimates of WLD are based on MLE method
and the estimates of WPD are based on MMLE method (taken from Alzaatreh et al., 2013a). The results in Table 3 show
that WLD and WPD provide similar fits to three data sets. Figure 5 supports the results in Table 3.
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Figure 5. Histograms and fitted PDFs for WLD and WPD.

4. Conclusion

In this paper, a shift by a parameter θ > 0 of the Weibull-Pareto distribution defined by Alzaatreh et al. (2013a) is proposed
namely, the Weibull-Lomax distribution. Based on Alzaatreh et al. (2013a), the maximum likelihood estimation produces
high biases and standard errors for the WPD parameters and therefore, they proposed a modification of the MLE, MMLE,
which can be used only when c > 1. This problem in estimatioing the WPD parameters has motivated us to present an
alternative to the WPD by using Lomax distribution in replace of Pareto distribution in the T − X family proposed by
Alzaatreh et al. (2013b). In this paper we showed that the MLE method can be used effectively to estimate the WLD
parameters without any restriction on the parameter c. The results of the simulation study in section 3.2 are compared with
the results of the simulation study for the WPD obtained by Alzaatreh et al. (2013a). In most cases, it was observed that
the biases and standard errors for the MLEs of WLD parameters are smaller than the MMLEs for the WPD parameters.
Furthermore, WLD is applied to the same data sets used in Alzaatreh et al. (2013a). The results in Table 3 and Figure 5
showed that WLD and WPD provide similar fit to the data sets.
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Appendix R outputs for the regression line in Figure 4.

C a l l :
lm ( f o r m u l a = l o g ( b ) ˜ l o g ( c ) + I ( l o g ( c ) ˆ 2 ) + I ( l o g ( c ) ˆ 3 ) )

R e s i d u a l s :
Min 1Q Median 3Q Max

−0.089138 −0.017417 −0.003819 0 .019843 0 .095153

C o e f f i c i e n t s :
E s t i m a t e S td . E r r o r t v a l u e Pr ( > | t | )

( I n t e r c e p t ) 9 .16963 0 .36639 25 .03 < 2e−16 ∗∗∗

l o g ( c ) −8.50759 0 .45294 −18.78 < 2e−16 ∗∗∗

( l o g ( c ) ) ˆ 2 2 .42676 0 .17909 1 3 . 55 8 . 3 6 e−15 ∗∗∗

( l o g ( c ) ) ˆ 3 −0.26426 0 .02279 −11.59 5 . 4 1 e−13 ∗∗∗

−−−

S i g n i f . codes : 0 ∗∗∗ 0 . 001 ∗∗ 0 . 0 1 ∗ 0 . 0 5 . 0 . 1 1

R e s i d u a l s t a n d a r d e r r o r : 0 .03302 on 32 d e g r e e s o f f reedom
M u l t i p l e R− s q u a r e d : 0 . 9 9 8 8 , A d j u s t e d R− s q u a r e d : 0 .9987
F− s t a t i s t i c : 8651 on 3 and 32 DF , p−v a l u e : < 2 . 2 e−16
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Abstract

One of the numerically preferred methods for fitting a function to noisy data when the underlying function is known to
be smooth is to minimize the roughness of the fit while placing a limit on the sum of squared errors. We show that the
fit can be formulated as a solution to a convex program. Since convex programs can be solved by various methods with
guaranteed convergence, our formulation enables one to use these methods to compute the fit numerically. Numerical
results show that our formulation is successfully applied to the problem of sensitivity estimation of option prices as
functions of the underlying stock price.

Keywords: nonparametric regression, smoothing spline, convex programming, penalized least squares

1. Introduction

We consider the problem of fitting a function g : [a, b)→ R to noisy data when the underlying function f∗ : [a, b)→ R is
assumed to satisfy a certain smoothness condition. We presume that we observe m noisy measurements Yi1, . . . ,Yim of f∗
at each xi ∈ [a, b) for 1 ≤ i ≤ n, and that

Yi j = f∗(xi) + ϵi j,

for 1 ≤ i ≤ n and 1 ≤ j ≤ m, where ϵi1, . . . , ϵim are independent and identically distributed (iid) with a mean of 0 and a
variance of σ2

i < ∞. We are particularly interested in the case where the underlying function f∗ is known to be k times
differentiable (for k ≥ 2) and its kth derivative is square integrable. This situation naturally arises when the (k − 2)th
derivative of f∗ is observed to be smooth, and hence, one tries to find the fit g by minimizing the roughness of the (k−2)th
derivative of the fit g. Since the “roughness” of a function f : [a, b) → R is measured by

∫ b
a

{
f (2)(x)

}2
dx, the roughness

of the (k−2)th derivative of g is measured by
∫ b

a

{
g(k)(x)

}2
dx. While minimizing the roughness

∫ b
a

{
g(k)(x)

}2
dx, one needs

to ensure that the fitted function is close enough to the estimated values of f∗. This can be done by imposing a limit on
the sum of squared distances between the fitted function and the estimates of f∗ as follows:

n∑
i=1

(Y i − g(xi))2/n ≤ S

for some positive constant S > 0, where Y i =
∑m

j=1 Yi j/m for 1 ≤ i ≤ n. This leads to the following formulation for
computing the fit:

Minimize
∫ b

a

{
g(k)(x)

}2
dx subject to

n∑
i=1

(
Y i − g(xi)

)2
/n ≤ S (1)

over g ∈ Dk, where

Dk =

{
f : [a, b)→ R : f is k times differentiable and

∫ b

a

{
f (k)(x)

}2
dx < ∞

}
.

Formulation (1) was introduced by Schoenberg (1964) and was studied extensively in the numerical analysis community
by a number of authors including Reinsch (1967), Reinsch (1971), Wahba (1975), and Gander (1980). Formulation (1) is
often contrasted, in the statistics literature, with the following formulation:

Minimize
n∑

i=1

(
Y i − g(xi)

)2
/n + λn

∫ b

a

{
g(k)(x)

}2
dx (2)
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over g ∈ Dk for a sequence of nonnegative real numbers (λn : n ≥ 1). In Formulation (2), the term
∫ b

a

{
g(k)(x)

}2
dx

measures the roughness of the fit g and the term
∑n

i=1

(
Y i − g(xi)

)2
/n measures the sum of squared errors. The parameter

λn controls the trade-off between the roughness and the goodness-of-fit.

One of the advantages of Formulation (1) over Formulation (2) is that a good estimate of S is easily provided in For-
mulation (1), while the performance of Formulation (2) is highly sensitive to the choice of (λn : n ≥ 1) and selecting
(λn : n ≥ 1) is not straightforward. For this reason, Formulation (1) is preferred in the numerical analysis community.
A good estimate of S in Formulation (1) can be obtained using the laws of large numbers as follows. By the weak law
of large numbers,

∑m
j=1 ϵi j/

√
m converges in distribution to N(0, σ2

i ) as m increases to infinity, where N(µ, σ2) denotes a
normal random variable with a mean of µ and a variance of σ2. Hence, ϵ2

i , where ϵ i = (1/m)
∑m

j=1 ϵi j, can be approximated
by (N(0, σ2

i ))2/m for m sufficiently large. By applying the strong law of large numbers in n,
∑n

i=1(N(0, σ2
i ))2/n can be

approximated as
∑n

i=1 σ
2
i /n for n sufficiently large. Therefore, the following approximation is possible

1
n

n∑
i=1

(
Y i − f∗(xi)

)2
=

1
n

n∑
i=1

ϵ2
i ≈

1
nm

n∑
i=1

(N(0, σ2
i ))2 ≈ 1

nm

n∑
i=1

σ2
i

for n and m sufficiently large. The symbol ≈ is used to informally express “approximate equality.” In practice, σ2
i is

estimated by the sample variance S 2
i of Yi1, . . . ,Yim for 1 ≤ i ≤ n; i.e., S 2

i =
∑m

j=1

(
ϵi j − ϵ i

)2
/(m − 1). A good estimate of

S is thus
∑n

i=1 S 2
i /(nm).

Despite its practical importance, there exist few numerical procedures that compute the solution of Formulation (1) with
guaranteed convergence. Traditionally, the solution of (1) is computed as follows. For each S > 0, there is a unique
λn = λn(S ) such that the solution of (2) for this λn is the solution of (1). Furthermore, the solution of (2) for this λn,
denoted by gλn , satisfies

∑n
i=1

(
Y i − gλn (xi)

)2
/n = S . Since (2) can be solved by solving a set of linear systems (pages

410–412 of Györfi et al., 2002), λn(S ) can be computed iteratively by means of the Newton procedure starting from an
initial guess of λn(S ). This procedure does not guarantee global convergence to the solution of (1); see Reinsch (1971).

In this paper, we show that (1) can be reformulated as a convex program (Proposition 1). Convex programs can be solved
using various methods that guarantee global convergence to the solution; see the Lagrangian method on page 217 of
Zangwill (1969) for an example of methods that solve convex programs. Our formulation thus enables one to compute the
solution of (1) with guaranteed convergence by using those methods and powerful software packages that are designed to
solve convex programs.

This paper is organized as follows. Section 2 describes the proposed formulation in detail. Numerical results in Section 3
illustrate that our formulation is successfully applied to the problem of sensitivity estimation of option prices as functions
of the underlying stock price. Concluding remarks are included in Section 4.

1. Proposed Formulation

In this section, we describe how Formulation (1) can be reformulated as a convex program. We first present some prelim-
inary results.

A spline function with degree r > 1 with knots x1, . . . , xn, where a < x1 < . . . , < xn < b, is a function s : [a, b) → R
having the following two properties: (a) In each of the intervals [a, x1), [x1, x2), . . . , [xn−1, xn), [xn, b), s(x) is given by
some polynomial of degree r or less, and (b) s(x) is r − 1 times continuously differentiable on [a, b). We denote the set
of spline functions with degree r by Sr([a, b)). Even though Sr([a, b)) seems to be infinite dimensional, it turns out to
be finite dimensional with the dimension equal to r + n + 1. We describe one of the bases for Sr([a, b)), which is the
set of B-splines; the B-splines are preferred in numerical studies since they have bounded supports, and hence, produce
well–conditioned numerical settings. We introduce additional knots x−r, . . . , x0, xn+1, . . . , xn+r+1 so that

x−r < x−r+1 < · · · < x0 < a < x1 < · · · < xn < b < xn+1 < · · · < xn+r+1.

The B-spline Bi,r of degree r is defined recursively by

Bi,0(x) =
{

1, if xi ≤ x < xi+1
0, otherwise (3)

for i = −r, . . . , n + r and x ∈ R and

Bi,l(x) =
x − xi

xi+l − xi
Bi,l−1(x) +

xi+l+1 − x
xi+l+1 − xi+1

Bi+1,l−1(x) (4)
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for i = −r, . . . , n+ r− l, l = 1, . . . , r, and x ∈ R. By Theorem 14.1 on page 262 of Györfi et al. (2002),
{
Bi,r : i = −r, . . . , n

}
restricted to [a, b) is a basis of Sr([a, b)). We are ready to present the main result of this paper.

Proposition 1 Assume 2 ≤ k ≤ n. Consider the minimization problem

minimize
∫ b

a

{
g(k)(x)

}2
dx (5)

subject to
1
n

n∑
i=1

(
Y i − g(xi)

)2 ≤ S

over g ∈ Dk for some constant S > 0. Then, there exists a solution ĝn ∈ Dk to Problem (5). Furthermore, ĝn can be
represented as

ĝn(x) =
n∑

i=−(2k−1)

ĉiBi,2k−1(x)

for x ∈ [a, b), where the ĉis are the solution to the following convex program in the decision variables c−(2k−1), . . . ,
cn, y1, . . . , yn ∈ R.

minimize
∫ b

a

 n∑
i=−(2k−1)

ciB
(k)
i,2k−1(x)

2

dx =
n∑

i=−(2k−1)

n∑
j=−(2k−1)

cic j

∫ b

a
B(k)

i,2k−1(x)B(k)
j,2k−1(x)dx

subject to
n∑

i=1

(
Y i − yi

)2
/n ≤ S , (6)

n∑
i=−(2k−1)

ciBi,2k−1(x j) = y j, j = 1, . . . , n.

Proof. We letC =
{
(y1, . . . , yn) ∈ Rn :

∑n
i=1

(
Y i − yi

)2
/n ≤ S

}
. It should be noted thatC is a nonempty, closed and bounded

subset of Rn.

By Lemmas 20.2 and 20.3 on pages 415 and 416 of Györfi et al. (2002), for any y = (y1, . . . , yn) in C, there exists a unique
spline function h of degree 2k − 1 satisfying h(xi) = yi for i = 1, . . . , n and h(l)(a) = h(l)(b) = 0 for l = k, . . . , 2k − 1.
Furthermore,

∫ b
a

{
h(k)(x)

}2
dx ≤

∫ b
a

{
g(k)(x)

}2
dx for any g ∈ Dk satisfying g(xi) = yi for 1 ≤ i ≤ n. Since (Bi,2k−1 :

−(2k − 1) ≤ i ≤ n) is a basis of S2k−1([a, b)) (Theorem 14.1 on page 262 of Györfi et al., 2002), there exists a unique
c−(2k−1), . . . , cn such that h(x) =

∑n
i=−(2k−1) ciBi,2k−1(x) for x ∈ [a, b). The cis are determined by the following linear system

with n + 2k variables and n + 2k linear equations:
n∑

i=−(2k−1)

ciBi,2k−1(x j) = y j

n∑
i=−(2k−1)

ciB
(l)
i,2k−1(a) = 0 (7)

n∑
i=−(2k−1)

ciB
(l)
i,2k−1(b) = 0

for j = 1, . . . , n and l = k, . . . , 2k − 1. By the uniqueness of c−(2k−1), . . . , cn, the linear system (7) is nonsingular, and

hence, the map from y in Dk to
∫ b

a

{
h(k)(x)

}2
dx is continuous. Hence, there exists ŷ = (ŷ1, . . . , ŷn) ∈ C that minimizes∫ b

a

{
g(k)(x)

}2
dx over g ∈ Dk. Let ĥ be the unique spline function satisfying ĥ(xi) = ŷi for i = 1, . . . , n and ĥ(l)(a) = ĥ(l)(b) =

0 for l = k, . . . , 2k − 1. Let ĉ−(2k−1), . . . , ĉn be the solution to (7) when (y1, . . . , yn) = (ŷ1, . . . , ŷn). Obviously, ĥ is a feasible
solution to (6). For any feasible solution c−(2k−1), . . . , cn, y1, . . . , yn of (6),

∑n
i=−(2k−1) ciBi,2k−1(x) belongs toDk, and hence,∫ b

a

(∑n
i=−(2k−1) ciB

(k)
i,2k−1(x)

)2
dx is less than or equal to

∫ b
a

{
ĥ(k)(x)

}2
dx. Thus, the ĉis and the ŷis are the solution to (6). 2

We close this section by describing how to evaluate the B-splines and the integration of the product of their kth derivatives
that appear in (6). The B-splines can be evaluated recursively through Equations (3) and (4). The kth derivative of the
B-spline can be evaluated recursively through the following relation: for a B-spline of degree r,

dBi,r(x)/dx = (r/(xi+r − xi))Bi,r−1(x) − (r/(xi+r+1 − xi+1))Bi+1,r−1(x) (8)
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for i = −r, . . . , n and x ∈ [a, b); see Lemma 14.6 on page 265 of Györfi et al. (2002).

There are a couple of ways to compute the integration in (6). First,
∫ b

a B(k)
i,2k−1(x)B(k)

j,2k−1 (x)dx can be computed by evaluat-

ing B(k)
i,2k−1 using the recursion in (8) and by numerically evaluating the integration. Second, one can use the closed form

formula for the integration of the product of the kth derivatives of the B-splines given by Equation (7) on page 1026 of
Vermeulen et al. (1992) and the closed form formulas for the B-splines (Equation (1.20) on page 8 of Dierckx, 1993) to
directly compute the kth derivatives and the integration of their products.

3. Numerical Results

3.1 A Motivation from Finance

This paper is motivated by the need to estimate the price of a stock option and its derivatives as functions of the underlying
stock price. The first and second derivatives of an option price play an important role when financial institutions manage a
portfolio of stocks and stock options in an attempt to hedge the risks associated with the portfolio. For example, consider
a call option that gives the holder of the option the right to buy the underlying stock by a certain date for a certain price.
Since the price of such a call option depends on the underlying stock price, the option price can be denoted by f∗(x),
where x is the underlying stock price per share. The delta (∆) of the option is defined by the first derivative d f∗/dx of
the option price with respect to the underlying stock price. It is well known that a portfolio consisting of a short position
of the call option and a long position of ∆ shares of the underlying stock is expected to grow at a risk-free interest rate.
Since the value of delta changes as the underlying stock price changes over time, the number of shares of the underlying
stock in the portfolio must be changed periodically to stay in the risk-free position. This step is called rebalancing. When
rebalancing a portfolio, the gamma (Γ) of the option, which is the second derivative d2 f∗/dx2 of the option price with
respect to the underlying stock price, is used since the value of gamma tells us how much delta changes, and hence, how
many shares of the underlying stock should be sold or bought in order to stay in a delta neutral position.

Recently, financial institutions have been issuing stock options with much more complex payoff structures than that of a
call option. For such options, the option price cannot be expressed in a closed-form formula, and hence, one needs to use
simulation to estimate the option price. Simulation of the option price consumes a significant amount of time. In order
to facilitate quick decisions, traders in financial institutions conduct simulations before they actually need to rebalance a
portfolio. Since the underlying stock price in the future cannot be predicted accurately, the traders conduct simulations
for all possible underlying stock prices on the day when rebalancing takes place. The question thus boils down to how
to estimate the option price f∗ and its first and second derivatives, d f∗/dx and d2 f∗/dx2, over a range [a, b) of possible
underlying stock prices using simulation.

One simple strategy for estimating f∗, d f∗/dx and d2 f∗/dx2 for x ∈ [a, b) is to choose various possible values for the stock
price, say x1, . . . , xn, from [a, b), estimate the option price at each xi for 1 ≤ i ≤ n using simulation, use finite differences
of the estimated option prices to estimate delta, and use finite differences of the estimated delta values to estimate gamma.
A serious drawback of this approach is that the estimated delta and gamma values often lead to noisy curves as functions
of the underlying stock price. It is especially frustrating for traders to see gamma values fluctuating around zero because
positive gamma values suggest purchasing additional shares of the underlying stock, while negative gamma values suggest
selling some of the shares. Figure 1 shows an example of the estimated gamma values plotted against the underlying stock
price. The stock prices S 1, S 2, and S 3 are close to one another, but the graph suggests different strategies because the
gamma values are positive, negative, and positive at S 1, S 2, and S 3, respectively. This degree of randomness in the gamma
curve is not acceptable in practice.

To overcome this drawback, we propose fitting a curve g : [a, b)→ R to the estimated values of f∗ so that the fitted curve
has a smooth second derivative. Since the “roughness” of a function f : [a, b) → R is measured by

∫ b
a

{
f (2)(x)

}2
dx, the

roughness of the second derivative of g is measured by
∫ b

a

{
g(4)(x)

}2
dx. While minimizing

∫ b
a

{
g(4)(x)

}2
dx, we want to

make sure that the fitted function is close to the estimated values of f∗ by placing a limit on the sum of squared distance
between the fitted values and the estimated values. This leads to the following optimization problem:

minimize
∫ b

a

{
g(4)(x)

}2
dx

subject to
1
n

n∑
i=1

(
Y i − g(xi)

)2 ≤ S

over g ∈ D4, where Yi j is the jth replication of the estimated value of the option price at xi for 1 ≤ i ≤ n and 1 ≤ j ≤ m.
The above formulation is a special case of Formulation (1) with k = 4.
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Figure 1. The horizontal axis is the underlying stock price, and the vertical axis is gamma.

3.2 Applying Our Formulation to Sensitivity Estimation of Option Prices

We consider the case where f∗(x) is the expected payoff of a certain equity-linked security (ELS) when the underlying
stock price is denoted by x. The payoff function of the ELS has the following structure. Suppose that the ELS is issued at
time 0 and matures at time T . We denote the underlying stock price at time t ∈ [0,T ] by S t. There are q days when early
redemption is possible. On each of those days di for 1 ≤ i ≤ q, the ELS expires with a payoff of $ri if S di/S 0 exceeds
some threshold bi. Otherwise, the ELS does not expire until maturity. If there is no early redemption and S t/S 0 does not
drop below a limit b until maturity, then the ELS expires with a payoff of $1 at maturity. Otherwise, the ELS expires with
a payoff of $S T /S 0 at maturity.

We let a = 90, b = 110, and xi = 90 + (20)(i/n) − (10/n) for 1 ≤ i ≤ n. For each xi, a sample path of a geometric
Brownian motion is generated as a trajectory of the stock price between now and maturity, and the corresponding payoff
of the ELS is computed. Yi j is the payoff computed this way in the jth replication of the geometric Brownian motion at xi.
The parameters used for the experiment are T = 365 days, q = 6, d1 = 61, d2 = 122, d3 = 182, d4 = 243, d5 = 304, d6 =

365, b1 = 0.9, b2 = 0.9, b3 = 0.85, b4 = 0.85, b5 = 0.8, b6 = 0.8, r1 = 1.05, r2 = 1.10, r3 = 1.15, r4 = 1.20, r5 = 1.25, r6 =

1.30, and b = 0.7. The remaining time until maturity is 60 days, the annual volatility is 30%, the annual risk–free interest
rate is 5%, and the initial stock price at time 0 is $125.

We set m = 50, so 50 sample paths for the geometric Brownian motion are generated at each xi to compute Yi1, . . . ,Yi50
for 1 ≤ i ≤ n. We compute Y i =

∑50
j=1 Yi j/50 for 1 ≤ i ≤ n and use (x1,Y1), . . . , (xn, Yn) to compute the proposed estimator

ĝn by solving (6) with CVX, a package for specifying and solving convex programs (Grant & Boyd, 2014). The constant
S in Formulation (6) is replaced with

∑n
i=1 S 2

i , where S 2
i is the sample variance of Yi1, . . . , Yim for 1 ≤ i ≤ n.

To measure the accuracy of the proposed estimator, we compute the following integrated mean square error (IMSE) be-
tween the underlying function f∗ and ĝn:

∑n
i=1 (ĝn(xi) − f∗(xi))2 /n, where f∗(xi) is estimated from the average of 400, 000

iid replications of Yi j at each xi. Table 1 reports the averages and the standard deviation of the IMSE, computed based on
200 iid replications of ĝn, for a variety of n values. The IMSE decreases as n increases, which displays the convergence
of ĝn to f∗ as n→ ∞.

Table 1. The averages and the standard deviation of the IMSE when f∗(x) is the price of the ELS.

n 5 10 20 40 80 160

IMSE Average (10−4) 8.6 4.4 2.1 1.1 0.7 0.6
Standard deviation (10−4) 6.1 2.9 1.5 0.8 0.5 0.3

4. Concluding Remarks

In this paper, we study a numerically preferred formulation for fitting a smooth function to noisy data. Numerical results
illustrate that our formulation successfully computes the fit. They also suggest that the fit converges to the true function
as the number of observations in the data set increases to infinity. Future research topics include studies on asymptotic
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properties of the fit when the number of observations in the data set increases to infinity.
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