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Abstract

When two groups are compared in a pre-post study, two different conclusions can be drawn between the two-sample t-test

and the analysis of covariance (ANCOVA). It is known as Lord’s Paradox, and it occurs because the parameter in the

two-sample t-test and the parameter of interest in the ANCOVA model are not the same quantity. The difference between

the two parameters can be explained by the covariance of linearly combined random variables which is an important topic

in introductory statistical theory courses. Lord’s paradox is frequently observed in practice, and it is very important for

students (future researchers) to have clear understanding of the paradox. The objective of this article is to explain Lord’s

Paradox using the covariance of linearly combined random variables. The paradox is explained using three scenarios in

the context of educational research. The first scenario is when the average baseline (pre-score) is greater in the treatment

group than the control group, the second scenario is when the average baseline is lower in the treatment group than the

control group, and the third scenario is when the average baseline is same between the two groups by randomization. This

article is written at the level of introductory statistical theory courses for undergraduate and graduate statistics students to

help understanding the difference between the parameter of interest in the two-sample t-test and the parameter of interest

in the ANCOVA model.

Keywords: two-sample t-test, ANCOVA, covariance, linear combination of random variables, pre-post studies

1. Introduction

When two groups are compared in a pre-post study, Lord’s Paradox can be observed between two researchers when

a researcher compares the average change using the two-sample t-test and the other researcher compares the average

post-measurement using the analysis of covariance or simply ANCOVA (Lord 1967; Lord 1969). The paradox has been

studied in the context of health sciences, environmental sciences, and psychometrics (Holland & Rubin, 1983; Wainer

& Brown, 2006; Glymour et al., 2005; Tu et al., 2008; Pearl, 2016). It is an interesting phenomenon which frequently

occurs in practice, but it is not easy to quantify the exact difference between the parameter in the two-sample t-test and

the parameter in the ANCOVA model without statistical theory. In this article, we explain Lord’s Paradox using the

covariance of linearly combined random variables which is discussed in many statistical theory textbooks (Wackerly et

al., 2008; Ross, 2012).

2. Motivating Example

The following example is adapted from the example given by Wright (2006). Suppose two groups of students are com-

pared in their mathematics skills. Group 1 is the treatment group of size n1 (receiving a new teaching method), and Group

0 is the control group of size n0 (receiving a traditional teaching method). Assume each student took pre-test and post-test.

2.1 Scenario 1 (Wright, 2006)

Suppose each student selects a group by his or her own will. Suppose a student with high motivation (who tends to show

high academic performance) is more likely to select Group 1, and suppose a student with relative low motivation is more

likely to select Group 0. Wright (2006) illustrated a similar scenario with balanced group sizes n1 = 5 and n0 = 5 for

Group 1 and Group 0, respectively. See Table 1 for the hypothetical data with minor modification from the example of

Wright (2006).

1
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Table 1. Hypothetical data of a pre-post study (Scenario 1)

ID Group Pre Post Difference

1 0 20 30 10

2 0 30 35 5

3 0 40 40 0

4 0 50 45 -5

5 0 60 50 -10

6 1 40 50 10

7 1 50 55 5

8 1 60 60 0

9 1 70 65 -5

10 1 80 70 -10

Hypothetical Data (Scenario 1)

pre−score

po
st

−
sc

or
e

0 20 40 60 80 100

0
20

40
60

80
10

0

Control
Treatment

Figure 1. Hypothetical data of a pre-post study (Scenario 1)

The average difference is (10 + 5 + 0 − 5 − 10) / 5 = 0 for both groups which can be calculated from Table 1, but the

post-score is 10 points greater on average when we condition on the pre-score as shown in Figure 1. (The data in real

world may contain random noise around the line.) Using the two-sample t-test, the data are not against the null hypothesis

at all (same group average). Using the ANCOVA model, on the other hand, the data are against the null hypothesis and

serve as strong evidence for the alternative hypothesis (greater average post-score in Group 1 conditioning on pre-score).

This is a traditional example of Lord’s Paradox (Lord, 1967; Wright, 2003; Maxwell and Delaney, 2004; Wainer and

Brown 2006). In addition to the graphic illustration, an analytic explanation of the paradox can be provided using the

covariance of linearly combined random variables.

3. Covariance of Linearly Combined Random Variables

Several textbooks for the first semester of undergraduate statistical theory courses include the following proposition

(Wackerly et al., 2008; Ross, 2012).

3.1 Proposition

Let U1, . . . ,Un and W1, . . . ,Wm be random variables. Let L1 =
∑n

i=1 aiUi and L2 =
∑m

j=1 b jWj for fixed real numbers
a1, . . . , an and b1, . . . , bm. Then

Cov(L1, L2) =

n∑
i=1

m∑
j=1

aib j Cov(Ui,Wj) .

2
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Since V(L1) = Cov(L1, L1), a special result for the variance is

V(L1) =

n∑
i=1

n∑
j=1

aia j Cov(Ui,U j)

=

n∑
i=1

a2
i V(Ui) + 2

n∑
i=1

∑
j> i

aia j Cov(Ui,U j) .

From these results, we can explain why the two-sample t-test and the ANCOVA model can lead to different conclusions.

3.2 Two-sample t-test

Let Zi denote the pre-score and Yi denote the post-score of the ith subject in a sample. Let Xi denote the group indicator

for the ith subject, where Xi = 0 for Group 0 (control) and Xi = 1 for Group 1 (treatment). The two-sample t-test can be

formulated as a simple linear model

Di = β0 + β1Xi + εi , (1)

where Di = Yi − Zi is the change in test score (hence a positive value of Di is a desirable outcome), and εi ∼ N(0, σ2) is a

random variable which is independent of Xi. In Equation (1), the parameter of interest is the difference in the two group

averages

β1 = E(Di | Xi = 1) − E(Di | Xi = 0) .

The null hypothesis is H0: β1 = 0, and the one-sided alternative hypothesis is H1: β1 > 0. An alternative expression of β1

is

β1 =
Cov(Xi,Di)

V(Xi)
(2)

because
Cov(Xi,Di) = Cov(Xi, β0 + β1Xi + εi)

= Cov(Xi, β0) +Cov(Xi, β1Xi) +Cov(Xi, εi)

= β1 V(Xi)

by the proposition in Section 3.1.

3.3 ANCOVA

Preserving the same notation used in Section 3.2, the ANCOVA model assumes

Yi = γ0 + γ1Xi + γ2Zi + δi , (3)

where δi ∼ N(0, τ2) is a random variable which is independent of Xi and Zi. Under the ANCOVA model, the parameter

of interest is γ1, the difference in the expected post-score when we compare a randomly selected subject in Group 1 to

a randomly selected subject in Group 0 of the same pre-score. The null hypothesis is H0: γ1 = 0, and the one-sided

alternative hypothesis is H1: γ1 > 0. An alternative expression of the ANCOVA model is

Di = γ0 + γ1Xi + (γ2 − 1) Zi + δi

by subtracting Zi on both sides of Equation (3). Using the proposition in Section 3.1,

Cov(Xi,Di) = Cov(Xi, γ0 + γ1Xi + (γ2 − 1) Zi + δi)

= γ1V(Xi) + (γ2 − 1) Cov(Xi,Zi) ,

so the parameter of interest can be written as

γ1 =
Cov(Xi,Di) + (1 − γ2) Cov(Xi,Zi)

V(Xi)

= β1 + (1 − γ2)

(
Cov(Xi,Zi)

V(Xi)

)

from Equation (2). Using the same argument of the two-sample t-test, we can write

κ1 ≡ Cov(Xi,Zi)

V(Xi)
= E(Zi | Xi = 1) − E(Zi | Xi = 0) ,

3
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which is interpreted as the difference in the average pre-score when we compare Group 1 to Group 0.

3.4 Summary

In general, the two-sample t-test and the ANCOVA model have different parameters of interest, and they are related as

γ1 = β1 + (1 − γ2) κ1 ,

β1 = γ1 + (γ2 − 1) κ1 .
(4)

They are the same quantity (i.e., β1 = γ1) if κ1 = 0 or γ2 = 1. The first condition κ1 = 0 can be satisfied by randomization

(i.e., conducting an experimental study instead of an observational study), but the second condition γ2 = 1 is out of

researcher’s control. In most pre-post studies, pre- and post-scores are positively correlated in both groups, so γ2 > 0. In

addition, we often have 0 < γ2 < 1 because of regression toward the mean (Stigler, 1997; Barnett et al., 2005).

4. Hypothetical Scenarios

In this section, using the relationship between β1 and γ1 in Equation (4), three scenarios are discussed in the context of

the educational research. The first scenario is when the average baseline (pre-score) is greater in the treatment group than

in the control group (Section 2.1), the second scenario is when the average baseline is lower in the treatment group than

in the control group, and the third scenario is when the average baseline is the same between the treatment group and the

control group by randomization. The control group is referred to as Group 0, and the treatment group is referred to as

Group 1.

4.1 Revisiting Scenario 1

In Scenario 1 (from Section 2.1), the ordinary least square estimation (OLSE) results in γ̂1 = 10 and γ̂2 = 0.5. Due to

self-selection by students, the pre-score is greater in Group 1 by 20 points on average when compared to Group 0, so

β̂1 = γ̂1 + (γ̂2 − 1) κ̂1 = 10 + (0.5 − 1) (20) = 0

for the two-sample t-test. This is an example of Lord’s Paradox when the ANCOVA model can reject the null hypothesis,

whereas the two-sample t-test cannot reject the null hypothesis even though the new teaching method seems significantly

more effective than the traditional teaching method when we compare two randomly selected students from each group

with the same baseline score.

4.2 Scenario 2 (Lower Average Baseline Score in the Treatment Group)

In the second scenario, assume the instructor allocates each student to Group 0 (control) or Group 1 (treatment) believing

that the new teaching method would benefit students particularly with low academic performance. See Table 2 for hypo-

thetical data, and see Figure 2 for the scatter plot of pre-score and post-score by group. Note that the pre-score is lower in

Group 1 by 20 points on average when compared to Group 0 (i.e., κ̂1 = −20).

Table 2. Hypothetical data of a pre-post study (Scenario 2)

ID Group Pre Post Difference

1 0 40 45 5

2 0 50 50 0

3 0 60 55 -5

4 0 70 60 -10

5 0 80 65 -15

6 1 20 35 15

7 1 30 40 10

8 1 40 45 5

9 1 50 50 0

10 1 60 55 -5

From the data, the OLSE provides γ̂1 = 0 and γ̂2 = 0.5. In this scenario, the ANCOVA model cannot reject the null

hypothesis because γ̂1 = 0. From Equation (4), for the two-sample t-test, we estimate β̂1 = 0 + (0.5 − 1) (−20) = +10

which can lead to the rejection of β1 = 0 in favor of β1 > 0 (i.e., greater benefit from the new teaching method). This

is another example of Lord’s Paradox when the two-sample t-test can reject the null hypothesis even though the new

teaching method seems ineffective conditioning on the pre-score.

4
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Hypothetical Data (Scenario 2)

pre−score

po
st

−s
co

re

0 20 40 60 80 100

0
20

40
60

80
10

0

Control
Treatment

Figure 2. Hypothetical data of a pre-post study (Scenario 2)

4.3 Scenario 3 (Same Average Baseline Score between the Two Groups)

Suppose students are randomized (or controlled to match the average pre-score between the two groups) so that κ1 = 0.

In this case, the result from Equation (4) leads to β1 = γ1. As shown in Table 3 and Figure 3, we have κ̂1 = 0, so

β̂1 = γ̂1 = 10, but the strength of statistical evidence for the alternative hypothesis is stronger in the ANCOVA model than

in the two-sample t-test because the standard error is lower in the ANCOVA model. Though the ANCOVA model leads

to nearly zero p-value, the two-sample t-test results in a p-value close to 0.05 (for the right-tail H1: β1 > 0). In practice,

when students are randomized, the ANCOVA model should have higher statistical power than the two-sample t-test. It is

because, while the OLSE is unbiased for both β1 and γ1, the variance of Yi − γ2Zi is lower than the variance of Yi − Zi

conditioning on Xi as discussed in Appendix 1.

Table 3. Hypothetical data of a pre-post study (Scenario 3)

ID Group Pre Post Difference

1 0 30 40 10

2 0 40 45 5

3 0 50 50 0

4 0 60 55 -5

5 0 70 60 -10

6 1 30 50 20

7 1 40 55 15

8 1 50 60 10

9 1 60 65 5

10 1 70 70 0
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Hypothetical Data (Scenario 3)
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Figure 3. Hypothetical data of a pre-post study (Scenario 3)

5. Examples

In this section, we provide two practical examples. The example in Section 5.1 is to compare the effect of two programs

on self-esteem score, and the example in Section 5.2 is to compare the effect of two teaching methods on test score.

5.1 Effect of Exercise on Self-Esteem

This example is from the data in R with car package (R Core Team, 2016; Fox & Weisberg, 2011). The data can be seen

using the code below.

> library(car)

> WeightLoss

It has three groups, but we focus on two of the three groups. Twelve subjects (n0 = 12) were treated by a diet program

for three months, and this group is referred to as Group 0. Ten subjects (n1 = 10) were treated by an exercise program in

addition to the diet program for three months, and this group is referred to as Group 1. From the data presented in Table

4, we can estimate the average self-esteem score 14.8333 for Group 0 and 15.2 for Group 1 at Month 1, so κ̂1 = 0.3667.

To formulate hypothesis testing in terms of the expected change in self-esteem (comparing Month 3 to Month 1), the

two-sample t-test can be used with H0: β1 = 0 versus H1: β1 > 0, assuming diet and exercise would be more beneficial

than diet only, at significance level α = 0.05. Using the two-sample t-test, we have a lack of evidence to reject H0: β1 = 0

with observed statistics β̂1 = 1.0667, ŝe = 0.6568, T = 1.624, and p-value = 0.060.

To formulate hypothesis testing in terms of the expected self-esteem score at Month 3 given the score at Month 1, the

ANCOVA model can be used with H0: γ1 = 0 versus H1: γ1 > 0 at α = 0.05. Using the ANCOVA model, we have a

statistically significance result to conclude H1: γ1 > 0 with observed statistics γ̂1 = 1.1764, ŝe = 0.6253, T = 1.881, and

p-value = 0.038.

In the left panel of Figure 4, the vertical distance between the two parallel lines is γ̂1 = 1.1764. In the right panel, the

vertical distance between the two horizontal lines is β̂1 = 1.0667. Note that γ̂2 = 0.7006 in the ANCOVA model, and the

estimated parameter in the two-sample t-test is slightly attenuated toward the null value β1 = 0 because

β̂1 = γ̂1 + (γ̂2 − 1) κ̂1 = 1.1764 − (0.2994)(0.3667) = 1.0667

from Equation (4).

5.2 Comparing Two Teaching Methods

In a mathematics course, two teaching methods were compared for students’ learning on set theory, and the learning was

quantified by test scores. The first teaching method was based on a traditional lecture (Group 0), and the second teaching

method was based on an active-based learning (Group 1). Each of twenty students was randomized into Group 0 or Group

1 by researchers (n0 = n1 = 10), and each student took a pre-test and a post-test on conceptual thinking.

The left panel of Figure 5 shows the pre-score on x-axis and the post-score on y-axis by group. Random numbers were
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Table 4. Self-esteem data for comparing diet group (Group 0) and diet + exercise group (Group 1)

ID Group (Xi) Month 1 (Zi) Month 3 (Yi) Change (Di)

1 0 12 14 +2

2 0 13 15 +2

3 0 17 18 +1

4 0 16 18 +2

5 0 16 15 –1

6 0 13 18 +5

7 0 12 14 +2

8 0 12 11 –1

9 0 17 19 +2

10 0 19 19 +0

11 0 15 15 +0

12 0 16 18 +2

13 1 15 19 +4

14 1 16 18 +2

15 1 13 17 +4

16 1 16 17 +1

17 1 13 16 +3

18 1 15 18 +3

19 1 15 18 +3

20 1 16 17 +1

21 1 16 19 +3

22 1 17 17 +0
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Figure 4. Data comparing diet group (Group 0) and diet + exercise group (Group 1)

generated by N(0, η2) with η = 0.1, and they were added to original data points for illustration purpose because it was

difficult to show all twenty data points without the random noise. Under the ANCOVA model, we estimated γ̂1 = 1.0283

(with standard error ŝe = 0.3422) and γ̂2 = 0.2052. For the hypothesis testing H0: γ1 = 0 and H1: γ1 > 0 at significance

level α = 0.05, we could reject H0 in favor of H1 with T = 1.0283/0.3422 = 3.00 and p-value 0.004.

The right panel of Figure 5 shows the difference in scores (post-score minus pre-score) by group, and the horizontal lines

indicate the estimated average difference for each group. Despite the significant result from ANCOVA, the two boxplots

look very similar except for one data point in Group 1. Even though the students were randomized, the difference in

estimated average pre-score was κ̂1 = 4.5209 − 3.8075 = 0.7134 (comparing Group 1 to Group 0). From Equation (4),

we can estimate β̂1 = γ̂1 + (γ̂2 − 1) κ̂1 = 1.0283 − (0.7948)(0.7134) = 0.4613. For the two-sample t-test, the estimated

parameter β̂1 = 0.4613 was attenuated toward the null value β1 = 0, the estimated standard error was ŝe = 0.5948, and

the resulting test statistic was T = 0.4613/0.5948 = 0.776 with p-value 0.224. Therefore, we could not reject H0 in the
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two-sample t-test at α = 0.05.
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Figure 5. Data comparing traditional lecture (Group 0) and active-based learning (Group 1)

6. Discussion

Lord’s Paradox has been known for a long time, and it has been explained graphically in literature, but it has received less

attention analytically. Using the covariance of linearly combined random variables, we can show that the parameter β1 in

the two-sample t-test and the parameter γ1 in the ANCOVA model are different by the magnitude of (γ2 − 1) κ1, where

κ1 is the difference in the average baseline score, comparing Group 1 (treatment) to Group 0 (control). In practice, it is

difficult to have (γ2 − 1) κ1 = 0 in observational studies. This article can be summarized by the three scenarios in terms of

the educational research scenarios presented in Section 4.

• When students with high baseline scores belong to the treatment group, which means κ1 > 0, we have β1 < γ1. In

an extreme case, we may have the opposite signs γ1 > 0 and β1 < 0.

• When students with low baseline scores belong to the treatment group, which means κ1 < 0, we have β1 > γ1.

When the treatment has no effect at all (i.e., H0: γ1 = 0 is true), there is a good chance of rejecting H0: β1 = 0 in

favor of H1: β1 > 0 under the two-sample t-test with a large sample size.

• When students are randomized so that the average baseline score is same in the two groups, which means κ1 = 0,

we have β1 = γ1. In most practical situations, where pre- and post-scores are positively correlated in both groups,

statistical power to conclude H1: γ1 > 0 in the ANCOVA model is greater than statistical power to conclude H1:

β1 > 0 in the two-sample t-test as heuristically explained in Appendix 1.

The proposition in Section 3.1 is mentioned in most introductory statistical theory courses, and students can have deeper

understanding of the two-sample t-test and the ANCOVA model through the examples.

In observational studies, we sometimes consider the propensity score, the conditional probability of assignment to a

particular group (i.e., control or treatment) as a function of other variables, say (W1, . . . ,Wk) (Rosebaum & Rubin, 1983).

The association between (W1, . . . ,Wk) and Xi does not necessarily imply the association between (W1, . . . ,Wk) and Yi. In

general, the difference between β1 in the two-sample t-test and γ1 in the multiple linear regression Yi = γ0 + γ1Xi + γ2Zi +∑k
j=1 α jWj,i + δi can be quantified as β1 − γ1 = (γ2 − 1) κ1 +

∑k
j=1 α jν j, where ν j ≡ E(Wj,i | Xi = 1) − E(Wj,i | Xi = 0).

See Appendix 2 for detail. If Wj,i is not associated with Yi given all other covariates (i.e., α j = 0), it does not contribute

to the difference between β1 and γ1. The same argument holds for the use of a scalar propensity score, say S i. The role of

propensity score depends on the linear relationship between S i and Yi and E(S i | Xi = 1) − E(S i | Xi = 0). Without any

association between S i and Yi, the propensity score does not play any role in the difference between β1 and γ1.

8
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Appendix 1

In some sense, the two-sample t-test and the ANCOVA model have a common structure:

Di = β0 + β1 Xi + εi ,

D∗i = γ0 + γ1 Xi + δi ,

where Di = Yi − Zi in the two-sample t-test and D∗i = Yi − γ2Zi in the ANCOVA model. In hypothesis testing, when

β1 = γ1, we can gain statistical power by having a smaller standard error (SE), and a lower SE can be achieved by a

smaller variance of the dependent variable, Di and D∗i , given Xi. Assume subjects are randomized so that Xi and Zi are
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uncorrelated. Using the proposition in Section 3.1, we can express V(D∗i ) as

V(D∗i ) = V(Yi − γ2Zi)

= V(Yi) + γ
2
2 V(Zi) − 2γ2 Cov(Yi,Zi)

= [V(Yi) + V(Zi) − 2 Cov(Yi,Zi)] +
[
γ2

2 V(Zi) − 2γ2 Cov(Yi,Zi) − V(Zi) + 2 Cov(Yi,Zi)
]

= V(Di) −
[
(1 − γ2

2) V(Zi) − 2(1 − γ2) Cov(Yi, Zi)
]
,

where
Cov(Yi,Zi) = Cov(γ0 + γ1Xi + γ2Zi + δi,Zi)

= γ1 Cov(Xi,Zi) + γ2 V(Zi)

= γ2 V(Zi)

because Cov(Xi, Zi) = 0 by the randomization. Therefore, we can simplify

V(D∗i ) = V(Di) −
[
(1 − γ2

2) V(Zi) − 2(1 − γ2) γ2 V(Zi)
]

= V(Di) − (1 − γ2) V(Zi)
[
(1 + γ2) − 2γ2

]
= V(Di) − (1 − γ2)2 V(Zi) .

To this end, we have V(D∗i ) < V(Di).

Appendix 2

In the two-sample T-test, the parameter of interest is

β1 =
Cov(Xi,Di)

V(Xi)
= E(Di | Xi = 1) − E(Di | Xi = 0) , (5)

where Di = Yi − Zi. If the multiple linear regression model is given by

Yi = γ0 + γ1Xi + γ2Zi +

k∑
j=1

α jWj,i + δi ,

we can write

Di = γ0 + γ1Xi + (γ2 − 1) Zi +

k∑
j=1

α jWj,i + δi .

Then the parameter of interest in the two-sample t-test is

β1 =
γ1V(Xi) + (γ2 − 1) Cov(Xi,Zi) +

∑k
j=1 α j Cov(Xi,Wj,i)

V(Xi)

= γ1 + (γ2 − 1)
Cov(Xi,Zi)

V(Xi)
+

k∑
j=1

α j
Cov(Xi,Wj,i)

V(Xi)
.

Since Xi is a Bernoulli random variable, as in Equation (5),

κ1 ≡ Cov(Xi,Zi)

V(Xi)
= E(Zi | Xi = 1) − E(Zi | Xi = 0) ,

ν j ≡ Cov(Xi,Wj,i)

V(Xi)
= E(Wj,i | Xi = 1) − E(Wj,i | Xi = 0)

for j = 1, . . . , k. Therefore,

β1 = γ1 + (γ2 − 1) κ1 +

k∑
j=1

α jν j .
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Abstract 
Content summarization is an important area of research in traditional data mining. The volume of studies published on 
anti-epileptic drugs (AED) has increased exponentially over the last two decades, making it an important area for the 
application of text mining based summarization algorithms. In the current study, we use text analytics algorithms to mine 
and summarize 10,000 PubMed abstracts related to anti-epileptic drugs published within the last 10 years. A Text 
Frequency – Inverse Document Frequency based filtering was applied to identify drugs with highest frequency of 
mentions within these abstracts. The US Food and Drug database was scrapped and linked to the results to quantify the 
most frequently mentioned modes of action and elucidate the pharmaceutical entities marketing these drugs. A sentiment 
analysis model was created to score the abstracts for sentiment positivity or negativity. Finally, a modified Latent 
Dirichlet Allocation topic model was generated to extract key topics associated with the most frequently mentioned AEDs. 
We found the top five most common drugs that appeared from the analysis were Gabapentin, Levetiracetam, Topiramate, 
Lamotrigine and Acetazolamide. We further listed the key topics associated with these drugs and the overall positive or 
negative sentiment associated with them. Results of this study provide accurate and data intensive insights on the progress 
of anti-epileptic drug research. 

Keywords: Text Analytics, Anti-Epileptic Drugs, Sentiment Analysis, Topic Modeling 

1. Introduction  
The unparalleled surge in published biomedical literature has made it difficult to define quantitative and qualitative 
summarization of a specific topic. Recent advances in computational power have led to an increase in the use of text 
mining approaches to facilitate the summarization and content review (Khordad & Mercer, 2017; Moradi & Ghadiri, 2017; 
Zhu et al., 2013). Open source analytical tools can rapidly ingest vast sources and volumes of information which can then 
be further pipelined into key insights using algorithms like feature extraction, topic modeling and sentiment analysis, 
allowing accurate summarization (Mishra et al., 2014). These text mining approaches have already been employed in 
analyzing a wide array of topics like oncology databases (Zhu et al., 2013), impact of financial crises on suicides (Jung et 
al., 2017), awareness of climate change in rural communities (Bell, 2013) and analyzing the sentiment of diabetes patients 
on the twitter platform (Salas-Zárate et al., 2017). Although text mining has been employed in several domains of 
biomedical research, its use remains infrequent in many important therapeutic areas, including neuroscience research 
(Singh, 2015). 

Epilepsy, the fourth most frequent neurological disorder, affects more than sixty million people globally (Singh, 2015; 
Singh & Karkare, 2017; Trinka et al., 2015; Singh, He, McNamara, & Danzer, 2013; Singh, LaSarge, An, McAuliffe, & 
Danzer, 2015). The social stigma linked with this condition often primes depression and is frequently associated with a 
decline in the quality of life (Benson et al., 2016; Hester et al., 2016; Luna et al., 2017). The problem is exacerbated by the 
confusion of focusing research efforts on multiple anti-epileptic drugs (AEDs), some of which show mixed results in the 
refractory epileptic populations (Ahmad et al., 2017; de Biase, Valente, Gigli, & Merlino, 2017; Nolan, Marson, Weston, 
& Tudur Smith, 2015; Pellock et al., 2017; Turner & Perry, 2017). The sheer volume of new research on AEDs cripples 
any meaningful insight generation. 

In this study, we analyze 10,000 PubMed abstracts related to AEDs with the end goal of content summarization and 
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insight generation. Abstracts containing US FDA curated list of drugs were identified and analyzed for drug frequency, 
mode of action and the pharmaceutical entities manufacturing the most frequent drugs were acknowledged. A modified 
latent dirichlet analysis algorithm with a bigram tokenizer (mLDA) was used to extract key topics discussed in these 
abstracts. Finally, sentiment analysis was utilized to analyze which of these anti-epileptic drugs are promising candidates 
for further research based on associated positive sentiments.  

2. Methods  
2.1 Data Collection 
We used an R-software based PubMed scrapper to download 10,000 abstracts positive either of these keywords: 
‘anti-epileptic drugs’, ‘anti-convulsant drugs’ and ‘AED’. Only abstracts published between 01/01/2007 to 01/01/2017 
were included in the study. Papers with no abstracts or written in languages other than English were filtered out. The raw 
abstract data was uploaded to a public repository for open access (Singh & Karkare, 2018) . The raw R code used for the 
analysis was deposited in a Github repository (https://github.com/shatrunjai/aed_pubmed). A document term matrix 
(DTM) was created from the abstracts and was compared to the list of drugs approved in the last decade, obtained from the 
US Food and Drug Administration website (https://www.fda.gov/Drugs.htm). Only abstracts focusing on at least one of 
these drugs was included for further analysis.  

2.2 Data Processing 
Collected abstracts were scrubbed for numbers, non-English characters and stop words. The Stanford stop words list was 
used as the default stop word repository (https://nlp.stanford.edu/IR-book/html/htmledition/dropping-common-terms 

-stop-words-1.html). Stemming of abstract was conducted according to the Porter stemmer (Porter, 1980). A document 
term matrix was created as described in Stanford NLP (https://nlp.stanford.edu/).A Term-Frequency-Inverse Document 
Frequency (TF-IDF) matrix was created and further frequency calculations were performed only on relevant TF-IDF 
terms as described in (Jones, 1972).The frequency matrix had a mean word frequency of 272 words and a standard 
deviation of 17 words. Words with frequency cut off two standard deviations from the mean word frequency were filtered 
from the list.  

2.3 Modified LDA Based Topic Modelling 
Latent Dirichlet Allocation (LDA) is a well-defined, unsupervised, generative, probabilistic method for modeling data 
and is frequently used in topic modeling (Blei, Ng, & Jordan, 2003). We created a modified Latent Dirichlet Allocation 
(mLDA) algorithm which assumes that each document can be denoted as a probabilistic distribution over latent topics 
and that the topic distribution in all documents share a common Dirichlet prior distribution. We also included a bigram 
tokenizer to better represent scientific abstracts. Each latent topic in the mLDA model is also represented as a 
probabilistic model over words and the word distributions of topics share a common Dirichlet prior distribution as well. 
Given a corpus M consisting of N documents, with document d having Kd words (d {1,..., N}), mLDA models M 
according to the following generative process (Blei et al., 2003; Li et al., 2016): 

(a) Select a multinomial distribution φt for topic t (t {1,..., T}) from a Dirichlet prior distribution with parameter β. 

(b) Select a multinomial distribution θd for document d (d {1,..., N}) from a Dirichlet prior distribution with 
parameter α. 

(c) For a word wn (n {1,..., Kd }) in document d, 

(i) Select a topic zn from θd. 

(ii) Select a word wn from φzn. 

This generative process has words in documents are the only detected variables whereas others are latent variables 
(φ and θ) and hyper parameters (α and β). In order to deduce the latent variables and hyper parameters, the probability of 
experiential data M is calculated as follows: 

  

Due to the coupling between θ and φ in the integrand (above equation), the precise implication in mLDA is obstinate (Blei 
et al., 2003).The number of topics was selected according to the Rate of Perplexity Change (RPC) previously described by 
Zhao and colleagues (Zhao et al., 2015). This algorithm yielded two key topics on average which were further curated 
manually. 
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2.4 Sentiment Analysis 
To evaluate sentiment for each abstract, the Sentiment Analysis and Tm libraries were used within R-software ,Version 
0.98.109 (“Text Mining Infrastructure in R | Feinerer | Journal of Statistical Software,” n.d.). Sentiment Analysis algorithm 
is a well-established sentiment analysis (SA) protocol and has been cited by over a 1000 journal publications according to 
google scholar. Sentiment Analysis and Tm packages assign three sentiment scores (“positive,” “negative,” and “neutral”) 
to each word, based on a generalized classification system developed by the authors which uses a combination of 
human-annotated and Artificial Intelligence based sentiment scoring algorithms (Bagheri & Islam, 2017). Further, we 
employed the “bag-of-words” approach which has been established to be very dependable for document-level SA, with 
aggregate-level performance approximately equivalent to more refined methods (Gayle & Shimaoka, 2017). 

For the current study, nouns were excluded from the analysis as they contain little to no information (Pinheiro, Prado, 
Ferneda, & Ladeira, 2015). The sentiment of each abstract was calculated by combining the scores of all pertinent word 
tokens. A sentiment score ranging from −1 to +1 was allocated for each abstract based on the assessed grade of negative or 
positive sentiment. For further analysis and visualization, unstandardized scores were normalized to a distribution with a 
mean of zero (x̄ =0) and standard deviation of one (σx̅=1). All abstracts were assigned values of ‘positive’ 
(score>+1),’negative’ (score>-1) or ‘neutral’ (-1<score<+1). 

2.5 Machine Learning 
The Sentiment Analysis package uses a one class support vector machine (SVM) algorithm to classify the expressions and 
phrases within the abstracts based on Stanford core NLP trained algorithm. SVM is a supervised analytical method that 
classifies based on the degree to which the several input cases (i.e., expression vectors) predict a given binary class, like 
the presence of absence of positive sentiment (Salas-Zárate et al., 2017). All input terms, i.e. the bigrams can thus be 
assessed in terms of “importance” with respect to a given label (Gayle & Shimaoka, 2017).The classifier was retrained on 
a 7000-abstract sample curated dataset optimized for misclassification rate, precision and recall metrics. 

2.6 Statistical Analyses 
Microsoft SQL Server (version 2012) was used to query the dataset for different clone compositions, and statistical 
analysis was performed using R-statistical software (Version 0.98.109). Significance was determined using a two-tailed 
Student’s t-test for data that met assumptions of normality and equal variance. The Mann-Whitney rank sum test was used 
for non-normal data. Proportions were compared using z-tests. Values presented are means ± SEM or medians [range], as 
appropriate. The experiment-wise error was conservatively set at 0.001 (Cumming, 2010). Corrections for multiple 
comparisons were done using a Bonferroni correction.  

2.7 Figure Preparation 
The results from R-software were exported into csv files which were imported into Tableau (version 8.0) or Microsoft 
Excel (version 2013) which were then used to create graphs and visualizations. Tables were created in Microsoft Word 
(version 2013). 

3. Results 
3.1 Characterizing the Most Published Anti-Epileptic Drugs in the Last 10 Years 
To study AEDs that appeared in PubMed abstracts (2007-2017), an R scrapper was used to parse 10,000 PubMed abstracts. 
To identify abstracts specifically related to AEDs, this scrapped dataset was cross-referenced with the United States Food 
and National Drug database (US FDA) of drugs. A total of 130 drugs (Figure 1) with a mean of 69.34 abstracts per drugs 
and a standard deviation of 22.03 abstracts per drugs were identified. The top 5 most frequent drugs were: Gabapentin 
(abstract count=1371, Figure 1), Levetiracetam (abstract count=1304, Figure 1), Topiramate (abstract count=1027, Figure 
1), Lamotrigine (abstract count=989, Figure 1) and Acetazolamide (abstract count=518, Figure 1). A year-by-year 
frequency of selected drug abstracts was performed for all the drugs beginning the year 1980 (Figure 2) to follow their 
research trends.  

3.2 Characterizing Drug Class of the most Published Drugs 
For all drugs, their pharmaceutical drug categorization was evaluated by using FDA definitions 
(https://www.fda.gov/drugs/informationondrugs/ucm079436.htm). As expected, Anti-Epileptic agents and CNS activity 
suppression agents were at the top of the list of our drug matches (Figure 3). However, cox-2 inhibitors, mood stabilizers, 
cytochrome p450-2C19 inhibitors, analgesics and serotonin reuptake inhibitors also frequent in the class of researched 
AEDs (Figures 3), reflecting the diversity in research initiatives. 

  



 
 
http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                 Vol. 7, No. 4; 2018 

14 

3.3 Characterizing Pharmaceutical Industries with the Most Published Drugs 
Next, the pharmaceutical companies associated with the highest frequency of drug mentions in the 10,000 abstracts 
selected for the study were extracted (Figure 4). Some companies had more than 5 drugs (Sagent Pharmaceuticals and 
Zydus Pharmaceuticals Inc. with 14 and 9 drugs, respectively). Zydus Pharmaceutical’s Topiramate along with the other 8 
drugs appears to lead the list in terms of the number of drugs and the frequency of abstract mentions. However, other 
companies like A-S Medication Solutions which despite having only one drug (Gabapentin), were still top-ranked in 
abstract mention frequency (Figure 4).  

3.4 Using Sentiment Analysis to Score the Abstracts with the Top Anti-Epileptic Drugs  
A sentiment analysis was performed on all the abstracts containing the keyword ‘anti-epileptic drugs’ or ‘AED’ or 
‘anti-convulsion drugs’. An initial analysis revealed a strong correlation between negative sentiment and the frequency of 
abstract mention (Table 1, correlation coefficient=0.68). To correct for this, a normalized sentiment score 
(Sentiment-Sentiment mean/Sentiment S.D.) was calculated for each drug (Table 1). The sentiment value/abstract correlation 
was manually tested for accuracy. Drugs Lisinopril (normalized sentiment score= -3.0) and Telmisartan (normalized 
sentiment score= 3.0) had the highest positive normalized sentiment of all the drugs, indicating that these appeared in 
abstracts with positive connotations (‘positive outcome’, ’no side effects’) more often than other drugs. Conversely, 
Ethosuximide (normalized sentiment score= -0.9) and Meloxicam (normalized sentiment score= -2.3) had the most 
negative sentiment, indicating appearance in abstracts with negative connotations (‘negative outcomes’, ’side effects’). 

3.5 A modified Latent Dirichlet Algorithm Reveals Topics Associated with The Top 5 Most Mentioned Anti-Epileptic 
Drugs  
An mLDA algorithm was employed to identify the key topics being discussed in the papers associated with the top 5 drug 
mentions (Table 2). Key words associated with the top topic indicated research on the lines of spinal surgery and pain 
outcomes. Levetiracetam was associated with topics including its use in refractory and generalized seizure, response bias 
by gender and its association with Brivaracetam. Topiramate was associated with topics including long term side effects, 
the development of drug-resistance, and its effect on Lennox-Gastaut syndrome. Acetazolamide was associated with one 
topic indicating research on its effect on visual acuity and macular degeneration. Finally, Lamotrigine was associated with 
one topic indicating possible side effects of dry mouth and blood spots at higher concentration of the drug.  

4. Discussion 
In this study, we use text analytics algorithms to summarize the latest development in anti-epileptic drug research. We 
mined the top five drugs that have been extensively published in PubMed, elucidate the pharmaceutical entities 
manufacturing/marketing these drugs, and also provided sentiment based direction on how this research is trending. 
Finally, we created an mLDA based topic modelling algorithm to discuss key topics associated with these drugs. 

The most popular AED’s conventionally used as first line treatment include primidone, ethosuximide, benzodiazepines, 
carbamazepine and phenobarbital. In the last 20 years, the Food and Drug Administration (FDA) has further approved 
twelve new AED’s and have a longer list of these drugs in the clinical trial pipelines (Asconapé, 2010). Although all of 
these compounds have been used to treat epilepsy for more than a century a true anti-epileptic drug effective against all 
seizure grades and all demographics is still unavailable and approximately 30% of patients with epilepsy do not respond 
to any existing AEDs (Glauser et al., 2006; Singh, 2015). This has fueled basic research into new pharmacological agents 
with better safety and tolerability, ease of use and better titration rate, fewer potential interactions, and increased efficacy 
in comorbidities (Azar & Abou-Khalil, 2008). The resultant research from studies on different aspects of multiple AEDs 
has often made research summarization difficult and calls for newer computational approaches.  

PubMed, the most extensively used warehouse of biomedical literature comprises of more than 20 million abstracts and is 
increasing at a frequency of over 90,000 abstracts per year: the quantity of articles added each year to PubMed has 
increased three times in the last 10 years (Andronis, Sharma, Virvilis, Deftereos, & Persidis, 2011). As research on a 
solitary subject may extend across numerous scientific areas and technical journals, it is progressively problematic for 
scientists to trail all advances in their area of work. The dispersal of information to many different journals and scientific 
subgroups has created and ‘islets of scientific knowledge’ and has led to the improvement of literature mining approaches 
pointing to link ideas and opinions that are not cited in the same editorial. The process of deducing implied knowledge 
from apparently unrelated concepts has been named literature-based discovery (LBD) (Andronis et al., 2011). These LBD 
methods have been used in the past for the purpose of theory ideation in association with drug discovery. Some of these 
LBD techniques include PubMed text mining, TF-IDF based keyword generation, unsupervised document clustering, 
literature modelling, sentiment analysis and topic modelling techniques. In the current study, we use a subset of these 
techniques for AED centered research summarization.  

The most frequently studied AED was found to be Gabapentin, which is indicated for the treatment of postoperative 
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neuralgia in adults and for treating partial onset seizures in both pediatric and adult patients (Goa & Sorkin, 1993). 
Although the exact mode of Gabapentin action is unknown, it has been suggested that its activity depends on its 
interaction with voltage-gated calcium channels (Goa & Sorkin, 1993). Interestingly, topic modeling revealed the 
keywords ‘pain’ and ‘spinal surgery’ to be associated with this drug. However, although gabapentin is commonly used in 
pain management, its use in post-operative pain and spinal surgery is controversial (Chang, Challa, Shah, & Eloy, 2014; 
Singh, Singh, Fatima, Kubo, & Singh, 2008; Yu, Ran, Li, & Shi, 2013).  

Levetiracetam, the second most commonly researched anti-epileptic drug, is indicated as an adjunctive therapy in the 
treatment of partial onset seizures in patients ≥16 years of age with epilepsy(Deshpande & Delorenzo, 2014; Zheng, Du, 
& Wang, 2015). The precise mechanism(s) by which Levetiracetam exerts its antiepileptic effect is unknown, but studies 
suggest that this agent acts as a neuromodulator and treats seizures by inhibiting presynaptic calcium channels 
(Deshpande & Delorenzo, 2014). Topic modeling from this study revealed recent efforts towards comparing the efficacy 
of Levetiracetam to Brivaricetam which has been a topic of increasing interest over the year (Crepeau & Treiman, 2010; 
Lyseng-Williamson, 2011).  

Topiramate is used as a monotherapy in children of ages two and above and as an adjunctive therapy for adults. Its use is 
children is specifically indicated for seizures related with Lennox-Gastaut syndrome (LGS) (Crumrine, 2011; Donegan, 
Dixon, Hemming, Tudur-Smith, & Marson, 2015; Hoy, 2016). Topic modeling showed a strong association of this agent 
with Lennox-Gastaut syndrome, a disorder which initiates seizures in children (Crumrine, 2011; Singh, 2016; Singh et al., 
2016; VanStraten & Ng, 2012).  

Acetazolamide, a carbonic anhydrase inhibitor is indicated for the treatment of centrencephalic epilepsies (petit mal, 
unlocalized seizures) and is also a popular drug for the treatment of glaucoma (Reiss & Oles, 1996; Millichap & Aymat, 
1967). Results of the topic modeling used in this study support a strong association of this drug with keywords like 
‘macular’, ‘visual’, ‘acuity’, all of which are glaucoma-related terms referring to the discovery of its anti-epileptic 
properties during treatment of glaucoma patients (Lyall, 2008). Lamotrigine is an antiepileptic drug indicated as an 
adjunctive therapy in children above the ages of two specifically for primary generalized tonic-clonic seizures. It is also 
indicated for the treatment of bipolar disorder in patients (Ramaratnam, Panebianco, & Marson, 2016). Although the 
mechanism of action of this drug is unknown, in vitro pharmacological studies suggest that lamotrigine inhibits 
voltage-sensitive sodium channels, thereby stabilizing neuronal membranes and consequently modulating presynaptic 
transmitter release of excitatory amino acids (e.g., glutamate and aspartate). Topic modeling revealed the association of 
this drug with the terms ‘dried blood spots’, which suggests that research efforts have been focused on evaluating the 
safety profile of this drug, specifically in causing blood dyscrasias (Krasowski & McMillin, 2014; Milosheska, Grabnar, 
& Vovk, 2015; Baswan, Li, LaCount, & Kasting, 2016; Singh et al., 2016; Singh & Singh, 2017).  

Sentiment analysis suggests that despite these drugs being well-established and approved lines of therapy in the treatment 
of a variety of epilepsies and seizures, all 5 drugs were associated with a negative sentiment. This indicates the possibility 
of mixed results in at least a subset of these research studies. Further, these findings suggest potential unmet need in the 
area of epilepsy treatment due to the dearth of positive sentiments surrounding these pharmacological agents.  

5. Conclusion 
This study demonstrates that although research efforts surrounding anti-epileptic treatments are moving in the right 
direction, there is an unmet need when it comes to the associated sentiments of researchers towards the most frequently 
studied agents. Despite the potential utility of these drugs in the treatment of epilepsy, their use in treatment could be 
hindered due to associated negative sentiments. Even though this study delineates the key topics surrounding AED 
research in the last decade, further research efforts should be conducted to understand the causal relationship between the 
negative sentiments and the pharmacological profile of these agents. Understanding these causative efforts can help lead 
the way for pharmaceutical manufacturers to devote research efforts towards improving the profiles of their drugs to 
better suit the needs of the patients.  
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Table 1  Sentiment analysis on abstracts with AED mentions. The sentiment of all the abstracts (not-normalized) is shown 
as either positive (score>0) or negative (score<0). The normalized sentiment scores (score-mean/S.D.) is shown in the 
right most column. The mean sentiment score was 0.01320 and the standard deviation was 0.2772. 

Drug Sentiment Polarity Sentiment Normalized Sentiment 

Clopidogrel Positive 0.002897016 -0.037168052 

Mirtazapine Positive 0.005795628 -0.026711299 

Topotecan Positive 0.009118557 -0.01472382 

Fenofibrate Positive 0.01211505 -0.003913961 

Methazolamide Positive 0.01266136 -0.001943146 

Gemcitabine Positive 0.01526285 0.007441739 

Cimetidine Positive 0.01862922 0.019585931 

Cilostazol Positive 0.02063282 0.026813925 

Leflunomide Positive 0.02083333 0.027537266 

Fluoxetine Positive 0.02222189 0.032546501 

Epinephrine Positive 0.02343064 0.036907071 

Loratadine Positive 0.02425356 0.039875758 

Sulfacetamide Positive 0.02611344 0.046585281 

Antibacterial Positive 0.03498982 0.078606854 

Fluorouracil Positive 0.039489 0.094837662 

Ribavirin Positive 0.03993905 0.096461219 

Testosterone Positive 0.04173582 0.102943074 

Gatifloxacin Positive 0.04434233 0.112346068 

Decitabine Positive 0.04531584 0.115858009 

Rifabutin Positive 0.04868627 0.128016847 

Tetrabenazine Positive 0.05354119 0.145530988 

Pioglitazone Positive 0.05555496 0.152795671 

Carisoprodol Positive 0.05842708 0.163156854 

Cytarabine Positive 0.05848246 0.163356638 

Misoprostol Positive 0.0597341 0.167871934 

Omeprazole Positive 0.06585542 0.189954618 

Budesonide Positive 0.06689463 0.193703571 

Calcitriol Positive 0.06788645 0.197281566 

Ketoconazole Positive 0.08378791 0.25464614 

Venlafaxine Positive 0.0912101 0.281421717 

Ganciclovir Positive 0.09387124 0.291021789 

Clarithromycin Positive 0.09424993 0.292387915 

Sumatriptan Positive 0.1025025 0.322159091 

Rifampin Positive 0.1035337 0.325879149 

Piroxicam Positive 0.1071953 0.339088384 

Temozolomide Positive 0.1075685 0.340434704 

Almotriptan Positive 0.1216465 0.39122114 
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Itraconazole Positive 0.1348309 0.438783911 

Linezolid Positive 0.1455073 0.477299062 

Sirolimus Positive 0.148724 0.488903319 

Voriconazole Positive 0.1552595 0.512480159 

Paroxetine Positive 0.1920355 0.645149711 

Oxybutynin Positive 0.20757 0.701190476 

Escitalopram Positive 0.2461041 0.840202381 

Propylthiouracil Positive 0.3178791 1.099130952 

Oxandrolone Positive 0.3825442 1.332410534 

Mercaptopurine Positive 0.4220309 1.474858947 

Chlorzoxazone Positive 0.5641749 1.987643939 

Telmisartan Positive 1.026542 3.655634921 

Lisinopril Positive 2.534934 9.097164502 

Meloxicam Negative -0.6005493 -2.214102814 

Ethosuximide Negative -0.2520805 -0.957000361 

Hemorrhoidal Negative -0.2358386 -0.898407648 

Lansoprazole Negative -0.2164586 -0.828494228 

Cefazolin Negative -0.2010915 -0.773057359 

Laxative Negative -0.2001804 -0.769770563 

Expectorant Negative -0.1859978 -0.718606782 

Menthol Negative -0.1659774 -0.646383117 

Cefepime Negative -0.1627273 -0.634658369 

Celecoxib Negative -0.1516571 -0.594722583 

Olanzapine Negative -0.1500488 -0.588920635 

Bacitracin Negative -0.1498865 -0.588335137 

Atomoxetine Negative -0.1445815 -0.56919733 

Bexarotene Negative -0.1382776 -0.546455988 

Bupropion Negative -0.1250089 -0.498589105 

Lidocaine Negative -0.1211533 -0.484680014 

Cyanocobalamine Negative -0.1130527 -0.455457071 

Ampicillin Negative -0.1123144 -0.452793651 

Indomethacin Negative -0.1115034 -0.449867965 

Carboplatin Negative -0.1075859 -0.43573557 

Gabapentin Negative -0.107477 -0.435342713 

Amantadine Negative -0.105775 -0.429202742 

Oxaliplatin Negative -0.1030068 -0.41921645 

Aspirin Negative -0.1023196 -0.416737374 

Ceftriaxone Negative -0.1000455 -0.40853355 

Diphenhydramine Negative -0.09806558 -0.401390981 

Cortisone Negative -0.09325419 -0.384033874 

Modafinil Negative -0.09214975 -0.380049603 

Doxycycline Negative -0.08559167 -0.356391306 
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Clotrimazole Negative -0.0839393 -0.350430375 

Metronidazole Negative -0.08369748 -0.349558009 

Letrozole Negative -0.08360991 -0.3492421 

Paclitaxel Negative -0.08267615 -0.345873557 

Topiramate Negative -0.08196571 -0.343310642 

Lamotrigine Negative -0.07665585 -0.324155303 

Temazepam Negative -0.07443998 -0.316161544 

Azithromycin Negative -0.07425097 -0.31547969 

Hydrocortisone Negative -0.07420852 -0.315326551 

Valsartan Negative -0.0687518 -0.295641414 

Ciprofloxacin Negative -0.06780962 -0.292242496 

Adenosine Negative -0.06476878 -0.281272655 

Risperidone Negative -0.06339783 -0.276326948 

Etomidate Negative -0.05926828 -0.261429582 

Aripiprazole Negative -0.05923076 -0.261294228 

Nicotine Negative -0.05807075 -0.257109488 

Zaleplon Negative -0.0561836 -0.250301587 

Duloxetine Negative -0.05339635 -0.240246573 

Tizanidine Negative -0.05224761 -0.236102489 

Acetaminophen Negative -0.05086406 -0.231111328 

Ropinirole Negative -0.0489206 -0.224100289 

Hydrochlorothiazide Negative -0.04238263 -0.200514538 

Levetiracetam Negative -0.04194175 -0.198924062 

Phosphate Negative -0.04153744 -0.197465512 

Nevirapine Negative -0.04135263 -0.19679881 

Guanfacine Negative -0.03962207 -0.190555808 

Isoniazid Negative -0.0354021 -0.175332251 

Simvastatin Negative -0.03430078 -0.171359235 

Acetazolamide Negative -0.0340079 -0.17030267 

Propofol Negative -0.03290462 -0.166322583 

Ondansetron Negative -0.03218649 -0.163731926 

Ofloxacin Negative -0.03167064 -0.161870996 

Levofloxacin Negative -0.02956457 -0.154273341 

Zonisamide Negative -0.02831881 -0.149779257 

Riluzole Negative -0.02446827 -0.13588842 

Nifedipine Negative -0.02092019 -0.123088709 

Furosemide Negative -0.01862298 -0.114801515 

Ibuprofen Negative -0.01638219 -0.106717857 

Naproxen Negative -0.01059067 -0.085824928 

Fluconazole Negative -0.007489149 -0.07463618 

Eszopiclone Negative -0.006686009 -0.071738849 

Haloperidol Negative -0.005274025 -0.066645112 
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Disposable Negative -0.004070103 -0.062301959 

Minoxidil Negative -0.001773493 -0.05401693 

Lovastatin Negative -0.001518158 -0.053095808 

Acyclovir Negative -0.001015911 -0.05128395 

Erythromycin Negative -0.00086424 -0.050736798 

 

 

Table 2. Results from mLDA based Topic models run on abstract containing the top 5 drugs. Each topic is represented by 
the top keywords defining the topic. 

Gabapentin Levetiracetam Topiramate Acetazolami
de 

Lamotrigine 

Topic 1 Topic 2 Topic 1 Topic 2 Topic 1 Topic 2 Topic 1 Topic 1 

Pain Analog Refractory Indicated LGS Controlling Clinical Blood 

Group Incidenc

e 

Generalized Woman Epilepsy Drug 

Resistant 

Macular Dried 

Controlle

d 

Scores Seizures Partial 

Epilepsy 

Lennoxgasta

ut 

Effective Visual Spots 

Spinal Inclusio

n 

New Response Drugs Long Term Acuity Concentratio

ns 

Surgery Scale Brivaraceta

m 

Therapy Resolution Drop Better Accuracy 
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Abstract

For square contingency tables with the same ordinal row and column classifications, McCullagh (1977) gave the marginal

cumulative logistic model, which is an extension of the marginal homogeneity (MH) model using the logit transform. The

present paper proposes a different extension of the MH model using the complementary log-log transform. In addition,

the present paper gives the theorem that the MH model is equivalent to the proposed model and the equality of row and

column marginal means holding simultaneously. In data analysis, if the MH model fits the data poorly, the theorem may

be useful for seeing the reason for the poor fit. As example, the occupational status data for British father-son pairs are

analyzed.

Keywords: decomposition, mean equality, logit transform

1. Introduction

Consider a square contingency table with the same ordinal row and column classifications. In the data in Table 1 taken

from Bishop, Fienberg & Holland (1975, p.100), each observation is a pair of father’s occupational status with his son’s

occupational status. For such data, statistical independence between the row and column classification generally does not

hold due to concentration of observations on main diagonal cells. Instead of independence, we are interested in whether

there is a structure of symmetry in the table. For example, Stuart (1955) gave the marginal homogeneity (MH) model

which states the row marginal distribution is identical to the column marginal distribution. It is known that the MH model

is expressed as the equality of marginal cumulative probabilities of row and column. For the data in Table 1, the MH model

indicates the probability that a father’s status is i equals the probability that his son’s status is also i for any category i.

In data analysis, when the MH model fits the data poorly, many statisticians may be interested in a comparison of the

two marginal distributions of row and column variables, say X and Y . One of such analyses is inferring whether X tends

to be stochastically less than Y or vice versa. We are especially interested in applying the extension of the MH model,

for example, the marginal cumulative logistic (ML) model (McCullagh, 1977; Agresti, 1984, p.205) based on the logit

transform. The ML model states that one marginal distribution is a location shift of the other marginal distribution on a

logistic scale. If the ML model fits the data poorly, we are then interested in other extension of the MH model based on

the complementary log-log transform rather than logit transform.

Miyamoto, Niibe & Tomizawa (2005) gave the theorem that the MH model holds if and only if the ML model and the

equality of row and column marginal means hold simultaneously. We refer to such relation as a decomposition of model

(i.e., the MH model is decomposed into the ML model and the equality of row and column marginal means). Also, see

Tahata & Tomizawa (2008) and Kurakami, Tahata & Tomizawa (2013) for the decompositions of the MH model. We are

interested in whether the decomposition with the ML model replaced by the proposed model holds or not. When the MH

model fits the data poorly, it may be useful for seeing the reason for the poor fit of it.

In this paper, Section 2 proposes a new model which is an extension of the MH model based on the complementary

log-log transform. Section 3 gives the decomposition of the MH model using the proposed model. Section 4 refers to the

goodness-of-fit test. Section 5 analyzes the father’s and his son’s occupational mobility data in Britain. We show that the

new model and decomposition are useful for inferring relationships between marginal distributions with the example.
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2. Models

For an r × r square contingency table with ordered categories, let pi j denote the probability that an observation will fall in

the ith row and jth column of the table for i = 1, . . . , r; j = 1, . . . , r. The MH model is defined by

pi· = p·i (i = 1, . . . , r),

where pi· =
∑r

t=1 pit and p·i =
∑r

s=1 psi (Stuart, 1955; Tahata & Tomizawa, 2014). This model indicates the structure

that satisfies the identity of marginal distributions of row and column. Let FX
i and FY

i denote the marginal cumulative

probability of X and Y , respectively; namely FX
i =

∑i
s=1 ps· and FY

i =
∑i

t=1 p·t for i = 1, . . . , r − 1. The MH model may

also be expressed as

FX
i = FY

i (i = 1, . . . , r − 1).

Let LX
i and LY

i denote the marginal cumulative logit transforms of X and Y , respectively; namely

LX
i = log

(
FX

i

1 − FX
i

)
, LY

i = log

(
FY

i

1 − FY
i

)
(i = 1, . . . , r − 1) .

The MH model may further be expressed as

LX
i = LY

i (i = 1, . . . , r − 1).

The ML model (McCullagh, 1977) is defined by

LX
i = LY

i + δ (i = 1, . . . , r − 1),

where the parameter δ is unspecified. The ML model is one of the extensions of the MH model. This model indicates that

the odds that X is i or below instead of i + 1 or above, is exp(δ) times higher than the odds that Y is i or below instead of

i + 1 or above, for i = 1, . . . , r − 1. Therefore this model states one marginal distribution is a location shift of the other

marginal distribution on a logistic scale.

Let CX
i and CY

i denote the marginal cumulative complementary log-log transforms of X and Y , respectively; namely

CX
i = log

(
− log

(
1 − FX

i

))
, CY

i = log
(
− log

(
1 − FY

i

))
(i = 1, . . . , r − 1) .

The MH model may be expressed as

CX
i = CY

i (i = 1, . . . , r − 1).

We shall consider now the marginal cumulative complementary log-log (MCL) model which is defined by

CX
i = CY

i + logΔ (i = 1, . . . , r − 1) ,

where Δ is unspecified. This model indicates that the probability that X is i + 1 or above, is equal to the probability that Y
is i + 1 or above to the power of Δ, for i = 1, . . . , r − 1. Thus this model states one marginal distribution is a location shift

of the other marginal distribution on a complementary log-log scale. Note that if Δ = 1, then we have the MH model. We

see, under the MCL model, Δ > 1 is equivalent to FX
i > FY

i and Δ < 1 is equivalent to FX
i < FY

i . Therefore the parameter

Δ in the MCL model reflects the degree of inhomogeneity between {FX
i } and {FY

i }.
3. Decomposition

Consider the specified scores {uk} may be assigned to both rows and columns satisfying u1 ≤ u2 ≤ · · · ≤ ur or u1 ≥ u2 ≥
· · · ≥ ur, where at least one strict inequality holds. Using the function g(k) which is g(k) = uk for k = 1, . . . , r, consider

the marginal mean equality (ME) model defined by

E(g(X)) = E(g(Y)),

where E(g(X)) =
∑r

i=1 g(i)pi· and E(g(Y)) =
∑r

i=1 g(i)p·i.

We now obtain the following theorem.

Theorem 1. The MH model holds if and only if both the MCL and ME models hold.

proof. If the MH model holds, then the MCL and ME models hold. We assume that both the MCL and ME models hold,

and then we show that the MH model holds. For u1 ≤ u2 ≤ · · · ≤ ur (or u1 ≥ u2 ≥ · · · ≥ ur), we have

E(g(X)) =

r∑
i=1

g(i)pi· = g(1) +

r−1∑
k=1

dk

(
1 − FX

k

)
,
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where

dk = g(k + 1) − g(k).

Similarly, we have

E(g(Y)) = g(1) +

r−1∑
k=1

dk

(
1 − FY

k

)
.

Since the ME and MCL models hold, we have

r−1∑
k=1

dk

(
1 − FX

k

)
=

r−1∑
k=1

dk

(
1 − FY

k

)
, (1)

and

r−1∑
k=1

dk

(
1 − FX

k

)
=

r−1∑
k=1

dk

(
1 − FY

k

)Δ
. (2)

Equations (1) and (2) lead to
r−1∑
k=1

dk

(
1 − FY

k

)
=

r−1∑
k=1

dk

(
1 − FY

k

)Δ
.

Thus we obtain Δ = 1, i.e., the MH model holds because dk ≥ 0 (or dk ≤ 0) for all k = 1, . . . , r − 1, with at least one of the

{dk} being not equal to zero. The proof is completed.

4. Goodness-of-fit Test

Let ni j denote the observed frequency in the ith row and jth column of the r × r table with n =
∑∑

ni j, and let mi j denote

the corresponding expected frequency for i = 1, . . . , r; j = 1, . . . , r. We assume that a multinomial distribution applies to

the table. The maximum likelihood estimates (MLEs) of expected frequencies under each model can be obtained using the

Newton-Raphson method in the log-likelihood equation (see Appendix for the log-likelihood equation). The likelihood

ratio chi-squared statistic for testing the goodness-of-fit of model M is given by

G2(M) = 2

r∑
i=1

r∑
j=1

ni j log

(
ni j

m̂i j

)
,

where m̂i j is the MLE of mi j under the model. The numbers of degrees of freedom (df) of statistics for testing the

goodness-of-fit of the MH, ML, MCL, and ME models are r − 1, r − 2, r − 2, and 1, respectively. Consider two nested

models, say M1 and M2, such that if model M1 holds, then model M2 holds. For testing the goodness-of-fit of model M1

assuming that model M2 holds, the conditional likelihood ratio statistic is given by G2(M1|M2) = G2(M1) −G2(M2). The

number of df for the conditional test is the difference between the numbers of df for the models M1 and M2.

5. Example

Consider the data in Table 1, relating the father’s and his son’s occupational status categories for a British sample again.

The smaller category number means the higher status. We analyze the data using the new model and decomposition of

the MH model.

Table 2 gives the values of likelihood ratio statistic G2 for testing the goodness-of-fit of models. We set uk = k for

k = 1, . . . , 5. The MH, ML and ME models fit the data poorly (G2(MH) = 32.80 with 4 df; G2(ML) = 9.75 with 3 df;

G2(ME) = 20.28 with 1 df). The MCL model fits the data well (G2(MCL) = 4.26 with 3 df). Using Theorem 1 which is

the decomposition of the MH model into the MCL and ME models, we shall consider the reason why the MH model fits

the data poorly. According to Theorem 1 and Table 2, the poor fit of the MH model is caused by the influence of the lack

of structure of the ME model rather than the MCL model. Note that, using the decomposition of the MH model into the

ML and ME models, it is difficult to consider the reason for the poor fit of the MH model because both the ML and ME

models fit the data poorly.

Since the MCL model which is implied by the MH model fits well, we can test the goodness-of-fit of the MH model under

the assumption that the MCL model holds, i.e., the hypothesis that Δ = 1 under the assumption. The difference between

the G2 values for the MH and MCL models is G2(MH|MCL) = G2(MH) −G2(MCL) = 28.54 with 4 − 3 = 1 df, and thus

the hypothesis that Δ = 1 is rejected at the 0.05 significance level. It shows strong evidence of Δ � 1 in the MCL model.

Therefore the MCL model is preferable to the MH model for the data. Under the MCL model, the MLE of Δ is Δ̂ = 1.13.
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Namely, under the MCL model, the probability that the status category for father in a pair is i+ 1 or above, is estimated to

be equal to the probability that the status category for son in the pair is i+1 or above to the power of 1.13, for i = 1, . . . , 4.

Since Δ̂ > 1, under the MCL model, F̂X
i > F̂Y

i , where F̂X
i and F̂Y

i are MLEs of the marginal cumulative probabilities of X
and Y for i = 1, . . . , 4. Therefore the distribution of the status category for the son tends to be stochastically higher than

that for his father.
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Table 1. Occupational status for British father-son pairs (Bishop et al., 1975, p.100)

Son’s status

Father’s status 1 2 3 4 5 Total

1 50 45 8 18 8 129

(50.25) (40.88) (7.83) (17.62) (7.65) (124.24)

2 28 174 84 154 55 495

(31.07) (172.82) (90.59) (166.05) (57.80) (518.33)

3 11 78 110 223 96 518

(11.30) (72.29) (110.07) (223.10) (93.79) (510.56)

4 14 150 185 714 447 1510

(14.39) (139.05) (185.16) (714.46) (436.78) (1489.84)

5 3 42 72 320 411 848

(3.16) (39.86) (73.91) (328.43) (411.67) (857.03)

Total 106 489 459 1429 1017 3500

(110.17) (464.90) (467.57) (1449.66) (1007.70) (3500.00)

Note: The parenthesized values are the MLEs of expected frequencies under the MCL model.

Table 2. Likelihood ratio chi-square values G2 for models applied to the data in Table 1

Models df G2

MH 4 32.80∗
ML 3 9.75∗

MCL 3 4.26

ME 1 20.28∗

Note: uk for the ME model is integer score. ∗ means significant at the 0.05 level.

Appendix

We consider the MLEs of the expected frequencies {mi j} under the MCL model. Those under the MH, ML and ME models

can be obtained in the similar manner, although those are omitted here.

To obtain MLEs under the MCL model, we must maximize the Lagrangian

L =
r∑

i=1

r∑
j=1

ni j log pi j − λ
⎛⎜⎜⎜⎜⎜⎜⎝

r∑
i=1

r∑
j=1

pi j − 1

⎞⎟⎟⎟⎟⎟⎟⎠ −
r−1∑
i=1

μi

(
log

(
1 − FX

i

)
− Δ log

(
1 − FY

i

))

with respect to {pi j}, λ, {μi}, and Δ. Setting the partial derivatives of L equal to zero, we obtain the equations

pi j = ni j

⎧⎪⎪⎪⎨⎪⎪⎪⎩n +
r−1∑
k=1

μk

⎛⎜⎜⎜⎜⎜⎜⎝FX
k − I(i ≤ k)

1 − FX
k

−
Δ

(
FY

k − I( j ≤ k)
)

1 − FY
k

⎞⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭
−1

(i = 1, . . . , r; j = 1, . . . , r) ,

as well as

1 − FX
i =

(
1 − FY

i

)Δ
(i = 1, . . . , r − 1) ,

and
r−1∑
i=1

μi log
(
1 − FY

i

)
= 0,

where I(·) is the indicator function. Using the Newton-Raphson method, we can solve the equations with respect to {pi j},
{μi} and Δ. Then we can obtain the MLEs of {mi j} and Δ under the MCL model.
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Abstract 
The telecommunication is one of the modes of communication, in which most investments are made. It consists of internet, 
mobile phones, wired and wireless fixed phones, fax, televisions, radio and some other. Among them, demand for internet 
and cellular phones rapidly increases. For a smooth function of this business, knowledge on demand is much important. 
Effective forecasts help a business to manage its supply efficiently. This study aimed to find out an accurate mechanism 
for prediction of demand for internet conections and cellualr phone collections.  

Based on the secondary data available in central bank reports from 1996 to 2016, several statistical forecasting models 
were evaluated for an accurate prediction. There can be seen an increasing demand for both internet and cellular phone 
connections. Number of internet connections has gone up from 4 110 to 4 921 000, while the usage of cellular phones has 
developed from 71 228 to 26 228 000 during this period. Rapid growth in internet usage has happened after 2009, while 
after year 2003, usage of cellular phone has increased rapidly. With compared to models fitted for original form of data, 
models for log transformed data show better performances. The best performance in prediction of internet connection was 
given by ARIMA (1,1,1) model fitted for log transformed data, meanwhile ARIMA (0,1,2) model fitted for log 
transformed data showed the best fit for series of cellular connections. Double exponential smoothing models also show 
better fit for both series. 

Keywords: ARIMA, Cellular phones, Demand, Forecasting, Internet, Telecommunication 

1. Introduction  
Communication is the process of transferring data and information from a source to a destination. Voice, body language 
and signs are the simplest modes of the communication. This information may be in the forms of audio, video, graphics, 
writings, images, gestures, signs and many more.  

Advancement in technologies has changed modes of communication over last fifty years, which gave rise to the 
telecommunication. At present, people communicate through emails, faxes, mobile phones, texting services, video 
conferences, video chat rooms and social media and many more to evolve in upcoming years. This is known as 
telecommunication and it is one of the most important and rapid growing industries at the present era. The most 
significant telecommunication aspects are the internet, satellites and the cellular phones. These modes of communication 
have increased speed of transferring and exchanging data to a greater distant with a low cost effectively.  

The very common form of telecommunication service is the phone service, which is done on either a wired or wireless 
form. The internet, television, and networking for businesses and domestic purposes are among the other services. These 
services may not be available in all areas or from all companies. The pricing points for different services vary widely and 
may be different for residences and businesses. These options are now expanded to wireless connections, while some 
companies offer both wireless and landline services together. Some service providers are offering television now, with a 
higher bandwidth speeds available through an improved infrastructure such as fiber optics. Optical fiber has 
revolutionized the modern telecommunication industry. It helps in transferring information to much greater distance as it 
provides higher bandwidth with little or no loss in the transmission medium.  

1.1 Cellular Usage 
Cellular phone was invented in the early 1970s, which was not much noticed. At that time, the use of cell phone was 
limited to certain areas and the cost was not affordable by everyone. As the technology rises, the phone came down in size, 
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price and weight, which took the attention of the entire nation. The cellphone changed our lifestyles and took place next to 
our wallets in the pocket. It gives us the instant and constant communication with the mobility we desperately needed. 
Modern cellphones are designed in such a way it contains all the personalized device which is owned by an individual 
which includes camera, mp3/mp4 player, games, document folders, etc. Mobile phone’s size is getting bigger and bigger 
day by day with the high updated technologies in it with inbuilt batteries. Even though the price is higher, adults to teens 
are buying them to get the full benefit from it. As a result, they do not depend on a landline to communicate. Hence, the 
usage of landlines and public phone booth is declining.  

1.2 Internet Usage 
Internet has bought a huge impact in our lives. Since it was found that it has brought information and knowledge on our 
fingertips. Internet has brought positive impact in our lives and has made it simple and easier than ever. Earlier in search of 
information, we have to travel all the way to library or get suggestions from the elders, now the use of libraries have 
reduced to a greater extent due to introduction of the internet services. We are able to access large and excess data in just 
one click. It helps in utilizing our time in a productive manner. The most important use of internet is that it gives 
information and education. It provides with various websites and various blogs that give informative and useful content 
which helps the students in studies. It helps the people to learn various things and people get knowledge which they 
implement in their daily life. It helps in communication with the people easily and faster than before. We are able to send 
e-mails, video chatting, texting, watch movies and dramas, shop on e-shopping websites so on. ICT-Information and 
communication Technology has given wings to empower the use of technology related activities in the educational world. 
It is growing in a skyrocketing speed. ICT is used in daily life such as in education, banking, business and all the industrial 
uses. It helps us in e-learning, online banking, access books online, helps in presentation and researching and many more. 

1.3 Objectives  
Since the technology has improved and changed the telecommunication sector to a greater extend, it is important to 
identify the trend in the usage of these services. Therefore, this study takes the facts and figures of cellular phones and 
internet as the sub-indices of tele-communication sector into account for the time analysis of the data. Effective forecasts 
help a business manage its supply chain more economically and efficiently. Accurate predictions allow a business to 
manufacture and services more favorably because it has sufficient time to evaluate and plan. An accurate forecast enables 
a business owner to keep a lower inventory and thus reducing costs and wastages.  

1.4 Previous Works 
According to David (2011), “Forecasts are educated assumptions about future trends and events”. Demir and Ozsoy 
(2014), have stated that forecasting is a complicated process as the factors such as innovation in technology, changes in 
culture and social values, unstable economic conditions, new product, stronger competitors, improved services, etc. There 
are different models for forecasting and their accuracies are depending on the situations and data considered.  

Dhanushka (2013) has examines the growth of the telecommunication sector in Sri Lanka’s by using annual time series. 
This study consisted of bivariate and multivariate co-integration approach to establish the long run equilibrium 
relationship and causality testing to detect the direction of this relationship. According to author, this study is the first of 
its kind to use annual secondary data to examine the long run relationship between telecommunications sector and service 
sector in Sri Lanka. Also one-way link between telecommunications sector growth and service sector growth was 
established through causality test. The sample has confirmed that research hypothesis is positive for the collected data.  
Thus, it has been concluded that increase in telecommunications sector growth increases the long run service sector 
growth. 

Chakaraborty, and Nandi (2003) have examines the relationship between the level of telecommunications infrastructure 
(measured by telephone mainlines per capita or tele density rate) and economic growth by exploiting a panel 
co-integration framework. Almost all of these studies have documented a positive correlation between tele density rates 
and a variety of indices of economic growth. The conclusions are based on simple correlation coefficient and regression 
analysis. Given the unit root characteristics of time series variables in general, results based on regression analysis, as 
pointed out by many, are subject to spurious correlation. In addition, the simple regression coefficients fail to establish the 
causal relationship and its direction between the variables of interest. The study also examines the relationship between 
the two referred variables for a panel of 12 Asian developing countries that vary in terms of stages of development. 
Canning, and Pedroni (2004), TatyanaPalei (2014), Farhadi, Ismail, Fooladi (2012), Lee, and Alford (2017) also have 
shown the impact of telecommunication on economic growth in different regions. 

It seems that studies on modeling usage of cellular and internet connections in literature are lacking. But, studies on 
modeling some other responses are available. Fatai et. al. (2003), has used Engle-Granger’s error correction model(ECM), 
and the autoregressive distributed lag regression approaches(ARDL) to model the demand for electricity in New Zealand. 
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Abraham and Nath (2001) have used Box-Jenkins autoregressive integrated moving average (ARIMA) approach in 
modeling electricity in the state of Victoria, Australia. Monthly electricity consumption in Pakistan has been analyzed by 
Yasmeen and Sharif (2015), by using both linear and nonlinear modeling techniques including ARIMA, Seasonal ARIMA 
(SARIMA) and ARCH/GARCH models. This study evaluated some of these models and some other for modeling usage 
of internet and cellular phones. 

2. Method 
2.1 Data Collection 
Secondary data, available in Sri Lankan central bank’s annual reports, were used for this study.  Number of internet 
connections and cellular connections are in use were recorded with year for the period from year 1996 to year 2016. Data 
in required form were not available for early period.  

2.2 Statistical Models  
There are several statistical models that can be used to explain trends in a series. Among them, Single exponential 
smoothing model (SESM), double exponential smoothing model (DESM), growth curve model(GCM), quadratic trend 
model(QTM), auto regressive model (ARM), moving average model(MAM), auto regressive moving average 
model(ARMAM), auto regressive integrated moving average model(ARIMAM) were evaluated to model the number of 
internet connections, and cellular phone connections. These models were tested for both original form and transformed 
form of data.  As the transformation, natural logarithm was used. In addition to the above models, linear trend models 
(LTM) were also evaluated only for log transformed data. 

In fitting Box Jenkins AR, MA, ARMA, and ARIMA models, stationarity of series was tested with the help of 
autocorrelation and partial autocorrelation functions. When the series was not stationary, by taking the first differences, 
series was made stationary.  

As the accuracy measures of forecast of each model, mean absolute percentage error(MAPE), mean absolute 
deviation(MAD), mean squared deviation(MSD) were used in case of SESM, DESM, GCM, QTM, LTM while the sum of 
square errors(SS), mean square error(MSE) were used additionally in case of MA, AR, ARMA, and ARIMA models. For 
the analysis, 14th version of the statistical package, Minitab, was used. 

3. Results  
Trend in usage of internet and cellular phones is exhibited in Figure 1(a) and Figure 1(b) respectively during the period 
from1996 to 2015. Both series of internet and cellular connections show increasing patterns during the period considered. 
Number of internet connections has gradually increased during this period. However, two different phases can be 
observed in this pattern. During the period from 1996 to 2009, number of internet connections has increased almost 
linearly from 4 110 to 240 000 with a rate of 18 145 per year. Number of internet connection has developed from 240 000 
to 4 091 000 in the period from 2009 to 2015. In this period, average increment in number of internet connections per year 
is about 641 833.  
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(a) Internet                           (b) Cellular 

Figure 1. Trend in series of Internet and Cellular connections 

 
Numbers of cellular connections also have increased year by year during this period except in year 2013. Number of 
cellular connections in 2013 has decreased than the preceding year. In the series of number of cellular connection also, 
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two phases can be observed depending on the trend. From 1996 to 2002, number of cellular connections has developed 
from 71 228 to 931 580, on average, at a rate of 102 815 per year, while number of cellular connections has developed 
from 931 580 to 24 385 000 in the period from 2002 to 2015 with an average rate of 1 804 109 per year. However, it is not 
a linear increment.   

Details, related to the best model selected from SESM, DESM, GCM, QTM for internet connections, are given in Table 1 
below, while details of fitted ARIMA models given in Table 2. Even though, a model from each SESM, DESM, GCM, 
QTM, MAM, ARM could be fitted, an ARIMA model could not be found for the original form of data.  

 

Table 1. Models for series of Internet connections 

Series Model Alpha Gamma MAPE MAD MSD 

  
  

  
  

 O
ri

gi
na

l S
er

ie
s SESM 1.8001 - 4.82E+01 1.34E+05 8.14E+10 

DESM 0.1333 8.9569 1.38E+02 1.03E+05 2.97E+10 

GCM - - 3.00E+01 1.63E+05 1.16E+11 

QTM - - 9.39E+02 3.44E+05 1.57E+11 

SS MS MAPE MAD MSD 
ARIMA (0,1,1) 1.63E+12 9.04E+10 3.05E+01 1.14E+06 8.56E+10 

ARIMA (1,1,0) 1.07E+12 5.93E+10 1.54E+01 1.18E+05 5.62E+10 

  
  

  
  

  
  

  
  

 L
og

 se
ri

es
 

Model Alpha Gamma MAPE MAD MSD 
SESM 1.8995 - 2.3033 0.2664 0.1000 

DESM 0.8725 0.6144 1.8238 0.2035 0.0672 

LTM - - 2.4616 0.2809 0.1091 

GCM - - 2.2815 0.2463 0.1057 

QTM - - 2.3635 0.2623 0.1047 

SS MS MAPE MAD MSD 
ARIMA(0,1,1) 1.7199 0.0956 2.1462 0.2573 0.0905 

ARIMA(1,1,0) 1.1270 0.0626 1.5564 0.1872 0.0593 

ARIMA(1,1,1) 1.0211 0.0601 1.5231 0.1797 0.0537 

 
Table 2. ARIMA Models for series of Internet connections 

Series Model Coef SE P-value 

Original Series 
ARIMA (0,1,1) -0.8002 0.255 0.0060 

ARIMA (1,1,0) 0.8917 0.1465 0.0000 

Log Series 

ARIMA(0,1,1) -0.8995 0.1096 0.0000 

ARIMA(1,1,0) 0.9301 0.1220 0.0000 

ARIMA(1,1,1) 
0.9981 0.0613 0.0000 

0.5181 0.2141 0.0270 

 
SESM and DESM are depending on some parameters called “alpha” and “gamma” and optimal values of them are given 
in Table 1. Among the models SESM, DESM, GCM, and QTM, GCM shows the minimum MAPE while QTM shows the 
highest. However, DESM and QTM show the minimum and the maximum of MAD respectively. DESM shows the least 
MSD. Models ARIMA (0,1,1) and ARIMA (1,1,0) only could be fitted for the series of the internet connections. Out of 
these two models, ARIMA (1,1,0) model shows the minimum for SS, MS, MAPE, MAD, and MSD. 
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                                        (e) ARIMA (1,1,0) 

Figure 2. Plot of observed and fitted values of each model for internet connections 

 

Fitted values with each model alone with the observed values are plotted in Figure 2. Those plots show how far fitted 
values are closer to the observed values under each model. According to them, it can be seen that DESM and ARIMA 
(1,1,0) give better estimates for observed values. 

Details of models that fitted for log transformed number of internet connection are also given in the Table 1. DESM shows 
the minimum MAPE (1.82382) while the other models are having a higher almost the same MAPE. In case of MAD, 
DESM shows the minimum while LTM shows the highest.  MSD of DESM shows the least while other models show 
little higher similar values.  



 
 
http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                 Vol. 7, No. 4; 2018 

37 

Year

Lo
g(

N
o 

of
 In

te
rn

et
 C

on
ne

ct
io

ns
)

20
15

20
14

20
13

20
12

20
11

20
10

20
09

20
08

20
07

20
06

20
05

20
04

20
03

20
02

20
01

20
00

19
99

19
98

19
97

19
96

16

15

14

13

12

11

10

9

8

7

Smoothing Constant
Alpha 1.89952

Accuracy Measures
MAPE 2.30338
MAD 0.26640
MSD 0.09568

Variable

Forecasts
95.0% PI

Actual
Fits

Single Exponential Smoothing Plot for Log(Internet Connections)

   Year

Lo
g(

N
o 

of
 In

te
rn

et
 C

on
ne

ct
io

ns
)

20
15

20
14

20
13

20
12

20
11

20
10

20
09

20
08

20
07

20
06

20
05

20
04

20
03

20
02

20
01

20
00

19
99

19
98

19
97

19
96

17

16

15

14

13

12

11

10

9

8

Smoothing Constants
Alpha (level) 0.872525
Gamma (trend) 0.614446

Accuracy Measures
MAPE 1.82382
MAD 0.20352
MSD 0.06727

Variable

Forecasts
95.0% PI

Actual
Fits

Double Exponential Smoothing Plot for Log(Internet Connections)

 

(a) SESM                                         (b) DESM 

Year

Lo
g(

N
o 

of
 In

te
rn

et
 C

on
ne

ct
io

ns
)

20
15

20
14

20
13

20
12

20
11

20
10

20
09

20
08

20
07

20
06

20
05

20
04

20
03

20
02

20
01

20
00

19
99

19
98

19
97

19
96

16

15

14

13

12

11

10

9

8

Accuracy Measures
MAPE 2.46162
MAD 0.28095
MSD 0.10906

Variable

Forecasts

Actual
Fits

Trend Analysis Plot for Log(Internet Connections)
Linear Trend Model

Yt = 8.64574 + 0.315713*t

   

20
15

20
14

20
13

20
12

20
11

20
10

20
09

20
08

20
07

20
06

20
05

20
04

20
03

20
02

20
01

20
00

19
99

19
98

19
97

19
96

16

15

14

13

12

11

10

9

8

Year

Lo
g(

In
te

rn
et

 C
on

ne
ct

io
ns

)
MAPE 2.28155
MAD 0.24629
MSD 0.10574

Accuracy Measures

Actual
Fits

Variable

Trend Analysis Plot for Log(Internet Connections)
Growth Curve Model

Yt = 8.9214 * (1.02712**t)

 

(c) LTM                                              (d) GCM 

Year

Lo
g(

N
o 

of
 In

te
rn

et
 C

on
ne

ct
io

ns
)

20
15

20
14

20
13

20
12

20
11

20
10

20
09

20
08

20
07

20
06

20
05

20
04

20
03

20
02

20
01

20
00

19
99

19
98

19
97

19
96

16

15

14

13

12

11

10

9

8

Accuracy Measures
MAPE 2.36350
MAD 0.26234
MSD 0.10474

Variable

Forecasts

Actual
Fits

Trend Analysis Plot for Log(Internet Connections)
Quadratic Trend Model

Yt = 8.81647 + 0.269149*t + 0.00221731*t**2

    

20
15

20
14

20
13

20
12

20
11

20
10

20
09

20
08

20
07

20
06

20
05

20
04

20
03

20
02

20
01

20
00

19
99

19
98

19
97

19
96

16

15

14

13

12

11

10

9

8

Year

lo
g(

In
te

rn
et

 C
on

ne
ct

io
ns

)

Log(Internet Connections)
Fitted Values

Variable

ARIMA(1,1,1) model for log(Internet Connections)

 

                     (e) QTM                                      (f) ARIMA(1,1,1) 
Figure 3. Plot of observed and fitted values of each model for log(internet connections) 

 

For series of the first differences of log transformed number of internet connections, MA (1) [ ARIMA (0,1,1)], AR (1) 
[ ARIMA (1,1,0)] and ARIMA (1,1,1) models could be fitted without a constant. Details are in the Table 1 above.  With 
compared to ARIMA (0,1,1) and ARIMA (1,1,0) models, ARIMA (1,1,1) has given the lowest SS, MS, MAPE, MAD, 
and MSD. Plots of observed and fitted values obtained from each model are exhibited in Figure 3. It is clear that DESM 
and ARIMA (1,1,1) gives better prediction with compared to the other models. 
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Table 3. Models for series of Cellular connections 

Series Model Alpha Gamma MAPE MAD MSD 

  
  

  
O

ri
gi

na
l S

er
ie

s 

SESM 1.6190 - 1.80E+01 9.00E+05 1.53E+12 

DESM 0.1519 11.5293 3.63E+01 4.11E+05 3.53E+11 

GCM - - 3.97E+01 4.80E+06 9.71E+13 

QTM - - 1.29E+02 1.29E+06 2.31E+12 

SS MS MAPE MAD MSD 
ARIMA(0,1,2) 1.58E+13 9.35E+11 4.12E+01 7.43E+05 8.36196E+11 

ARIMA(1,1,0) 1.35E+13 7.52E+11 9.76E+00 5.89E+05 7.12044E+11 

  
  

  
  

  
  

  
  

 L
og

 s
er

ie
s 

Model Alpha Gamma MAPE MAD MSD 
SESM 1.9126 - 1.2686 0.1796 0.0400 

DESM 0.9318 1.0171 0.4584 0.0671 0.0055 

LTM - - 2.4510 0.3660 0.1864 

GCM - - 3.0596 0.4589 0.2943 

QTM - - - - - 

SS MS MAPE MAD MSD 
ARIMA(0,1,2) 0.2621 0.0154 0.6843 0.0991 0.0138 

 
Same models were tested for the series of number of cellular connections. Both series of original form of data and 
transformed data were modeled. Details of the selected models are given in the Table 3 and Table 4. A SESM with an 
alpha value 1.619 could explain the series better than SESM with other alpha. Among DESM with different alpha and 
gamma, a model with alpha of 0.1519 and gamma of 11.5293 could be selected as the best DESM for series of original 
data of cellular connections. Among the models SESM, DESM, GCM, QTM fitted for the original form of cellular 
connections, the minimum MAPE is given by SESM while DESM gives the minimum of MAD and MSD. Further, 
ARIMA (0,1,2) and ARIMA (1,1,0) models could be fitted as the best models from each type for this series. According to 
SS, MS, MAPE, MAD, and MSD, ARIMA (1,1,0) model is better than ARIMA (0,1,2) for cellular connections.  

Among the models fitted for log transformed cellular connections, DESM gives the minimum of MAPE (0.4584) while it 
gives the minimum for MAD also. In case of MSD also, DESM shows the least.  No any AR, MA or ARMA models 
could be fitted for the log transformed data of cellular connections.  

However, only ARIMA (0,1,2) model could be fitted for the series of log transformed data. It shows a SS of 0.2621 and 
MS of 0.0154, while it gives low values for MAPE, MAD, and MSD. 
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                       (e) ARIMA (1,1,0) 

Figure 4. Plot of observed and fitted values of each models for cellular connections 

 

Table 4. ARIMA models for series of Cellular connections 

Series Model Coef. SE P-value 

Original series 
ARIMA(0,1,2) 

-0.5228 0.2332 0.0390 

-0.8786 0.2332 0.0020 

ARIMA(1,1,0) 0.9125 0.1223 0.0000 

Log series ARIMA(0,1,2) 
-1.5229 0.1762 0.0000 

-0.9361 0.1710 0.0000 

 
Plot of fitted values from selected models and observed values of log transformed cellular connections are given in Figure 
5. It is clear that DESM and ARIMA (0,1,2) fit data well with compared to other models. 
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(a) SESM                                         (b) DESM 
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                           (e) ARIMA (0,1,2) 
Figure 5. Plot of observed and fitted values of each model for log (cellular connections) 

 

Based on the most suitable models, predictions were made for year 2016. Forecasted values from each selected model, 
forecasting error as a percentage and 95% confidence intervals are given in the Table 5.              
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Table 5. Forecasted values of selected models 

 

According to the prediction error corresponding to year 2016, DESM gives the minimum error of prediction for series of 
internet, while ARIMA (1,1,1) model gives a higher error. In case of cellular connections, ARIMA (0,1,2) model fitted for 
original form of data gives the minimum while ARIMA (0,1,2) model fitted for log (cellular connections) gives relatively 
a lager error. 

4. Discussion 
This study aimed to find a suitable statistical model that fit well with number of internet connections and number of 
cellular connections. Several models were evaluated for original and log transformed data of these series. With compared 
to models fitted for original form of data of both internet and cellular connections, models fitted for log form of data 
performed well.  

There is an increasing trend in usage of both internet and cellular phones during the period from 1996 to 2015.  However, 
there is a rapid growth in usage of internet after year 2009 while a rapid development in cellular phone can be seen after 
years about 2003, 2004. Model ARIMA (1,1,1) fitted for log transformed data can fit the behavior of the series of internet 
connections and this model can be used for the predictions. In addition to this model, double exponential smoothing 
model, fitted for log-transformed data with alpha of 0.8725 and gamma of 0.6144, also can explain data well. 

Fluctuations of series of cellular connections could be explained by using ARIMA (0,1,2) model with log transformation. 
As an alternative model, double exponential smoothing model with alpha of 0.9318 and gamma of 1.0171 also could be 
used for prediction with log-transformed data. 

In selecting the best model, it is necessary to compare accuracy measures of each model fitted for data in different forms 
(original form and log form). Model that gives the minimum for those measures, is supposed to be the best. Models fitted 
for log-transformed data, produced small values for summary measures. Then, it was difficult to make comparisons with 
the summary measures of models fitted for original data, which are large. Parallel to the accuracy measures, prediction 
errors also should be taken into account in selecting a model. However, in this study, priority was given to the accuracy 
measures mentioned above because they are on averages and forecasting error in Table 5 is a just single value.   

Since there are some similarities in trends of these two series, there seems to be a possibility for multivariate approaches 
such as multivariate regression, and vector autoregressive models. They are to be evaluated at the next step. 

5. Conclusions 
During this period concerned, usage of internet connections has increased from 4 110 to 4 921 000, while the usage of 
cellular phones has gone up from 71 228 to 26 228 000. After 2009, a significant growth in internet usage could be 
observed, while usage of cellular phone has increased rapidly after year 2003. Among all models considered, models 
fitted for log transformed data show better performances. ARIMA (1,1,1) model fitted for log transformed data showed 
the best performance in prediction of internet connection, while ARIMA (0,1,2) model fitted for log transformed data 
showed the best fit for series of cellular connections. Double exponential smoothing models also show better fit for both 
series. 

  

Series Selected Model Predicted value Prediction Error   (%) 
95% Confidence Interval 

of Predicted Value 

Internet  DESM 5 495 397 -11.6723 (5 244 135, 5 746 659) 

  ARIMA(0,1,2) 4 221 454 14.2155 (3 718 076, 4 724 833) 

log(Internet) DESM 5 877 252 -19.4321 (3 569 728, 9 676 395) 

  ARIMA(1,1,1) 5 726 413 -16.3669 (3 541 638, 9 258 012) 

Cellular  DESM 27 394 084 -4.4459 (26 386 874, 2 840 129) 

  ARIMA(0,1,2) 26 141 188 0.3309 (24 246 010, 2 836 366) 

log(Cellular) DESM 26 923 228 -2.6507 (22 844 021, 31 734 024) 

  ARIMA(0,1,2) 25 610 167 2.3556 (20 075 284, 32 667 785) 
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Abstract

In this paper, we use the Stein-Chen method to obtain new bounds on Poisson approximation for random sums of inde-

pendent binomial random variables. Some results related to sums of independent binomial distributed random variables

are also investigated. The received results in the present study are more general and sharper than some known results.

Keywords: Binomial random variable, Poisson approximation, Random sums, Stein-Chen method

1. Introduction

In recent times, Poisson approximation problem for random sums of discrete random variables has attracted the attention

of mathematicians. Readers who are interested in this problem can refer to (Hung & Giang, 2016b), (Kongudomthrap &

Chaidee, 2012), (Teerapabolarn, 2013), (Teerapabolarn, 2014b), (Vellaisamy & Upadhye, 2009) and (Yannaros, 1991) for

more details. We need to recall some results concerning the bounds in Poisson approximation for random sums of discrete

random variables.

Let Z1,Z2, . . . be a sequence of independent Bernoulli random variables, each with probability of success P(Zi = 1) =

pi = 1 − P(Zi = 0), i = 1, 2, . . ., and let N be a positive integer-valued random variable and independent of Zi’s. Let Uλ∗

be a Poisson random variable with mean λ∗, VN =
N∑

i=1
Zi, λ

∗ = E
(
λ∗N

)
and λ∗N =

N∑
i=1

pi. In 1991, Yannaros gave a uniform

bound for the total variation distance between the distributions of VN and Uλ∗ as follows, see (Yannaros, 1991):

dTV (VN ,Uλ∗) ≤ E
∣∣∣λ∗N − λ∗∣∣∣ + E

⎛⎜⎜⎜⎜⎜⎝1 − e−λ∗N
λ∗N

N∑
i=1

p2
i

⎞⎟⎟⎟⎟⎟⎠ . (1)

Let X1, X2, . . . , Xn be n independently distributed binomial random variables, each with probabilities

P (Xi = k) = Ck
ri

pk
i (1 − pi)

ri−k,

where pi ∈ (0, 1); ri = 1, 2, . . . ; i = 1, 2, . . . n; k = 0, 1, . . . ri; Ck
ri
=

ri!

k! (ri − k)!
.

Suppose that N is a positive integer-valued random variable and independent of Xi’s. Let Uλ be a Poisson random variable

with mean λ, WN =
N∑

i=1
Xi , λN =

N∑
i=1

ri pi and λ = E (λN). In 2014, Teerapabolarn used the Stein-Chen method to

obtain a uniform bound for the total variation distance between the distribution functions of WN and Uλ as follows, see

(Teerapabolarn, 2014a):

dTV (WN ,Uλ) ≤ E

⎛⎜⎜⎜⎜⎜⎝1 − e−λN

λN

N∑
i=1

ri p2
i

⎞⎟⎟⎟⎟⎟⎠ +min

⎧⎪⎪⎨⎪⎪⎩1,

√
2

λe

⎫⎪⎪⎬⎪⎪⎭ E |λN − λ| . (2)

This paper is organized as follows. The second section is a brief introduction to Stein-Chen method. In section 3, we give

main results of this paper, and conclusions of this study are presented in the last section.

In addition, throughout this paper, dTV is denoted the total variation distance, defined by

dTV (X,Y) = sup
A
|P (X ∈ A) − P (Y ∈ A)| ,

where A ⊆ Z+ := {0, 1, 2, . . .}.
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2. Preliminaries

The Stein-Chen method has been dealt with in detail in many articles (the reader is referred to (Chen, 1975) and (Barbour,

Holst & Janson, 1992) for fuller development). The Stein-Chen method can be summarized as follows.

Let us denote by FWn (A) the probability distribution function of a discrete random variable Wn ∈ A and we will be denoted

by Pλn (A) =
∑
k∈A

e−λn
λn

k

k!
the Poisson distribution function (λn > 0), defined on the set A ⊆ Z+. The best known method

for estimating

Δ = sup
x

∣∣∣FWn (A) − Pλn (A)
∣∣∣

is basing on the following arguments (see (Chen, 1975) for more details).

Assume that h is a bounded real-valued function defined on Z+ and

Pλn (h) = e−λn

∞∑
k=0

h (k)
λn

k

k!
.

Consider the function f (.) which is a solution of the Stein’s equation

λn f (w + 1) − w f (w) = h(w) − Pλn (h). (3)

Setting

h(w) = hA(w) =

⎧⎪⎪⎨⎪⎪⎩1, if w ∈ A,
0, if w � A.

Give h = hA and take the expectation of both sides of the equation (3), we have

FWn (A) − Pλn (A) = E
[
λn f (Wn + 1) −Wn f (Wn)

]
. (4)

Thus, the problem of estimating Δ can be reduced to that of estimating the difference of the expectations

|Eλn f (Wn + 1) − EWn f (Wn)| .
According to Barbour et al. (see (Barbour, Holst & Janson, 1992), for Cw−1 = {0, 1, ...,w − 1}, the solution fA of (3) is of

the form

fA(w) =

{
(w − 1)!λn

−weλn
[
Pλn

(
hA∩Cw−1

) − Pλn (hA) Pλn

(
hCw−1

)]
, ifw ≥ 1,

0, ifw = 0.
(5)

Before starting the main results in next section, we also need the following lemmas, which is directly obtained from

(Barbour, Holst & Janson, 1992) and (Teerapabolarn & Wongkasem, 2007).

Lemma 1 Let V fA (w) = fA (w + 1) − fA (w) . Then, for A ⊆ Z+ and k ∈ Z+ \ {0},

sup
w≥k
|V fA (w)| ≤ min

{
λn
−1

(
1 − e−λn

)
,

1

k

}
.

Lemma 2 Let w0 ∈ Z+ and k ∈ Z+ \ {0}, we have

sup
w≥k

∣∣∣V fCw0
(w)

∣∣∣ ≤ λn
−1

(
eλn − 1

)
min

{
1

w0 + 1
,

1

k

}
.

Lemma 3 Let UλN and Uλ denote a Poisson random variable with mean λN and λ, respectively. Then, for A ⊆ Z+, the
total variation distance between the distributions of UλN and Uλ satisfies the following inequality:

dTV
(
UλN ,Uλ

) ≤ min

⎧⎪⎪⎨⎪⎪⎩1,

√
2

eλ

⎫⎪⎪⎬⎪⎪⎭ E |λN − λ| . (6)

3. Main Results

The following lemma is established for proving the main results.

44



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 7, No. 4; 2018

Lemma 4 Let X1, X2, . . . be a sequence of independent binomial distributed random variables. Setting Wn =
n∑

i=1
Xi and

λn = E(Wn). Then,

E
[
λn f (Wn + 1) −Wn f (Wn)

]
=

n∑
i=1

∑
k≥1

kCk
ri

pk+1
i (1 − pi)

ri−kE
[
f (Wi + k + 1) − f (Wi + k)

]
,

where f is a bounded real-valued function defined on Z+.

Proof. We have

E
[
λn f (Wn + 1) −Wn f (Wn)

]
=

n∑
i=1

E
[
ri pi f (Wn + 1) − Xi f (Wn)

]
.

Setting Wi = Wn − Xi,

E
[
ri pi f (Wi + Xi + 1) − Xi f (Wi + Xi)

]
= E

[
E

[
(ri pi f (Wi + Xi + 1) − Xi f (Wi + Xi)) /Xi

]]
= E

[
ri pi f (Wi + 1)

]
P (Xi = 0)

+ E
[
ri pi f (Wi + 2) − f (Wi + 1)

]
P (Xi = 1)

+
∑
k≥2

E
[
ri pi f (Wi + k + 1) − k f (Wi + k)

]
P (Xi = k)

= E
[
(ri piP (Xi = 0) − P (Xi = 1)) f (Wi + 1)

]
+

∑
k≥2

E
[
(ri piP (Xi = k − 1) − kP (Xi = k)) f (Wi + k)

]
= E

[(
ri pi(1 − pi)

ri − ri pi(1 − pi)
ri−1

)
f (Wi + 1)

]
+

∑
k≥2

E
[(

ri piCk−1
ri

pk−1
i (1 − pi)

ri−k+1 − kCk
ri

pk
i (1 − pi)

ri−k
)

f (Wi + k)
]

= −E
[
ri p2

i (1 − pi)
ri−1 f (Wi + 1)

]
+

∑
k≥2

E
[(

ri piCk−1
ri

pk−1
i (1 − pi)

ri−k+1 − (ri − k + 1) Ck−1
ri

pk
i (1 − pi)

ri−k
)

f (Wi + k)
]

= −E
[
ri p2

i (1 − pi)
ri−1 f (Wi + 1)

]
+

∑
k≥2

E
[(

ri − k + 1

ri
ri piCk−1

ri
pk−1

i (1 − pi)
ri−k+1 − (ri − k + 1) Ck−1

ri
pk

i (1 − pi)
ri−k

)
f (Wi + k)

]

−
∑
k≥2

E
[(

ri − k + 1

ri
− 1

)
ri piCk−1

ri
pk−1

i (1 − pi)
ri−k+1 f (Wi + k)

]

= −E
[
ri p2

i (1 − pi)
ri−1 f (Wi + 1)

]
−

∑
k≥2

E
[
(ri − k + 1) Ck−1

ri
pk+1

i (1 − pi)
ri−k f (Wi + k)

]

−
∑
k≥2

E
[(

ri − k
ri
− 1

)
riCk

ri
pk+1

i (1 − pi)
ri−k f (Wi + k + 1)

]

+ E
[
ri p2

i (1 − pi)
ri−1 f (Wi + 2)

]
= ri p2

i (1 − pi)
ri−1E

[
f (Wi + 2) − f (Wi + 1)

]
+

∑
k≥2

kCk
ri

pk+1
i (1 − pi)

ri−kE
[
f (Wi + k + 1) − f (Wi + k)

]
=

∑
k≥1

kCk
ri

pk+1
i (1 − pi)

ri−kE
[
f (Wi + k + 1) − f (Wi + k)

]
.

This finishes the proof. �
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The following theorems present non-uniform and uniform bounds for the distance between the distribution functions of

WN and Uλ, which are the expected results.

3.1 A Uniform Bound on Poisson Approximation for Random Sums of Independent Binomial Random Variables

Theorem 1 For A ⊆ Z+, we have

dTV (WN ,Uλ) ≤ E

⎛⎜⎜⎜⎜⎜⎝ N∑
i=1

min

{
λ−1

N

(
1 − e−λN

)
ri,

1 − (1 − pi)
ri

pi

}
p2

i

⎞⎟⎟⎟⎟⎟⎠
+min

⎧⎪⎪⎨⎪⎪⎩1,

√
2

λe

⎫⎪⎪⎬⎪⎪⎭ E |λN − λ| .
(7)

Proof. Let f = fA be defined as in (5) and applying (4), we have∣∣∣∣∣∣∣P(Wn ∈ A) −
∑
k∈A

λk
ne−λn

k!

∣∣∣∣∣∣∣ = |E[λn f (Wn + 1) −Wn f (Wn)]| . (8)

Taking account of Lemma 4 and Lemma 1, it follows that∣∣∣E [
ri pi f (Wn + 1) − Xi f (Wn)

]∣∣∣
≤

∑
k≥1

kCk
ri

pk+1
i (1 − pi)

ri−kE | f (Wi + k + 1) − f (Wi + k)|

≤
∑
k≥1

kCk
ri

pk+1
i (1 − pi)

ri−k sup
w≥k
|V f (w)|

≤
∑
k≥1

kCk
ri

pk+1
i (1 − pi)

ri−k min

{
1 − e−λn

λn
,

1

k

}

= min

⎧⎪⎪⎨⎪⎪⎩1 − e−λn

λn
pi

∑
k≥1

kCk
ri

pk
i (1 − pi)

ri−k, pi

∑
k≥1

Ck
ri

pk
i (1 − pi)

ri−k

⎫⎪⎪⎬⎪⎪⎭
= min

⎧⎪⎪⎨⎪⎪⎩1 − e−λn

λn
pi

∑
k≥1

kP (Xi = k), pi

⎛⎜⎜⎜⎜⎜⎜⎝∑
k≥0

P (Xi = k) − (1 − pi)
ri

⎞⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

= min

{
1 − e−λn

λn
piE (Xi) , pi (1 − (1 − pi)

ri )

}
.

Thus, ∣∣∣E [
ri pi f (Wn + 1) − Xi f (Wn)

]∣∣∣ ≤ min

{
λ−1

n

(
1 − e−λn

)
ri,

1 − (1 − pi)
ri

pi

}
p2

i . (9)

Combining (8) with (9), gives

dTV
(
Wn,Uλn

) ≤ n∑
i=1

min

{
λ−1

n

(
1 − e−λn

)
ri,

1 − (1 − pi)
ri

pi

}
p2

i . (10)

From Lemma 3 and (10), it follows the fact that

dTV (WN ,Uλ) =
∞∑

n=1

P (N = n) dTV (Wn,Uλ)

≤
∞∑

n=1

P (N = n)
[
dTV

(
Wn,Uλn

)
+ dTV

(
Uλn ,Uλ

)]

=

∞∑
n=1

P (N = n) dTV
(
Wn,Uλn

)
+ dTV

(
UλN ,Uλ

)

≤
∞∑

n=1

P (N = n)

n∑
i=1

min

{
λ−1

n

(
1 − e−λn

)
ri,

1 − (1 − pi)
ri

pi

}
p2

i

+min

⎧⎪⎪⎨⎪⎪⎩1,

√
2

λe

⎫⎪⎪⎬⎪⎪⎭ E |λN − λ|
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≤ E

⎛⎜⎜⎜⎜⎜⎝ N∑
i=1

min

{
λ−1

N

(
1 − e−λN

)
ri,

1 − (1 − pi)
ri

pi

}
p2

i

⎞⎟⎟⎟⎟⎟⎠
+min

⎧⎪⎪⎨⎪⎪⎩1,

√
2

λe

⎫⎪⎪⎬⎪⎪⎭ E |λN − λ| .

This finishes the proof. �

Remark 1 For r1 = r2 = ... = rn = 1, we have a uniform bound on Poisson approximation for the random sums of

independent Bernoulli random variables:

dTV (VN ,Uλ∗) ≤ E

⎛⎜⎜⎜⎜⎜⎝λ∗−1
N

(
1 − e−λ

∗
N
) N∑

i=1

p2
i

⎞⎟⎟⎟⎟⎟⎠ +min

⎧⎪⎪⎨⎪⎪⎩1,

√
2

λ∗e

⎫⎪⎪⎬⎪⎪⎭ E
∣∣∣λ∗N − λ∗∣∣∣ . (11)

Remark 2 Let us consider:

min

⎧⎪⎪⎨⎪⎪⎩1,

√
2

λ∗e

⎫⎪⎪⎬⎪⎪⎭ ≤ 1

and

min

{
1 − eλN

λN
ri,

1 − (1 − pi)
ri

pi

}
p2

i ≤
1 − eλN

λN
ri p2

i .

Thus, the bounds in (7) and (11) are sharper than the bounds in (2) and (1), respectively.

Corollary 1 For N = n ∈ Z+ is fixed, then λ = λn =
n∑

i=1
ri pi and

dTV
(
Wn,Uλn

) ≤ n∑
i=1

min

{
λ−1

n

(
1 − e−λn

)
ri,

1 − (1 − pi)
ri

pi

}
p2

i . (12)

Remark 3 The result (12) is a uniform bound on Poisson approximation for sums of independent binomial random

variables. This bound is sharper than those reported in (Teerapabolarn, 2014a).

3.2 A Non-uniform Bound on Poisson Approximation for Random Sums of Independent Binomial Random Variables

Theorem 2 For w0 ∈ Z+, we have

|P(WN ≤ w0) − P (Uλ ≤ w0)| ≤ min

⎧⎪⎪⎨⎪⎪⎩ 2λ

w0 + 1
,min

⎧⎪⎪⎨⎪⎪⎩1,

√
2

eλ

⎫⎪⎪⎬⎪⎪⎭ E |λN − λ|
⎫⎪⎪⎬⎪⎪⎭

+ E

⎛⎜⎜⎜⎜⎜⎝ N∑
i=1

λN
−1

(
1 − e−λN

)
min

{
eλN ri

(w0 + 1)
,

(1 − (1 − pi)
ri ) eλN

pi

}
p2

i

⎞⎟⎟⎟⎟⎟⎠ .
(13)

Proof. For Cw = {0, ...,w} and w0 ∈ Z+, let hw0
: Z+ → R such that

hCw0
(w) =

{
1 if w ≤ w0,
0 if w > w0.

According to Barbour et al. (see (Barbour, Holst & Janson, 1992) on p.7), the solution fCw0
(w) of (3) is expressed in the

form of

fCw0
(w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(w − 1)!λn
−weλn

[
Pλn

(
hCw0

)
Pλn

(
1 − hCw−1

)]
, if w0 < w,

(w − 1)!λn
−weλn

[
Pλn

(
hCw−1

)
Pλn

(
1 − hCw0

)]
, if w0 ≥ w,

0 , if w = 0.

Given f = fCw0
and h = hCw0

, the Stein’s equation

hCw0
(w) −

∑
k≤w0

e−λn
λk

n

k!
= λn f (w + 1) − w f (w) .
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Taking expectations of both sides, and applying Lemma 2 and Lemma 4, we have∣∣∣P(Wn ≤ w0) − P
(
Uλn ≤ w0

)∣∣∣
≤

n∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎝∑
k≥1

kCk
r pk+1

i (1 − pi)
ri−kE | f (Wi + k + 1) − f (Wi + k)|

⎞⎟⎟⎟⎟⎟⎟⎠
≤

n∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎝∑
k≥1

kCk
r pk+1

i (1 − pi)
ri−kλ−1

n

(
eλn − 1

)
min

{
1

w0 + 1
,

1

k

}⎞⎟⎟⎟⎟⎟⎟⎠
=

n∑
i=1

λ−1
n

(
eλn − 1

)
min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pi

∑
k≥1

kP (Xi = k)

w0 + 1
, pi

∑
k≥1

P (Xi = k)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= λ−1

n

(
eλn − 1

) n∑
i=1

min

{
ri

w0 + 1
,

1 − (1 − pi)
ri

pi

}
p2

i .

Thus, ∣∣∣P(Wn ≤ w0) − P
(
Uλn ≤ w0

)∣∣∣ ≤ λ−1
n

(
eλn − 1

) n∑
i=1

min

{
ri

w0 + 1
,

1 − (1 − pi)
ri

pi

}
p2

i . (14)

In addition, by using Lemma 3, Teerapabolarn showed that (see (Teerapabolarn, 2013) for more details):

∣∣∣P (
UλN ≤ w0

) − P (Uλ ≤ w0)
∣∣∣ ≤ min

⎧⎪⎪⎨⎪⎪⎩ 2λ

w0 + 1
,min

⎧⎪⎪⎨⎪⎪⎩1,

√
2

eλ

⎫⎪⎪⎬⎪⎪⎭ E |λN − λ|
⎫⎪⎪⎬⎪⎪⎭ . (15)

Combining (14) and (15) gives

|P (WN ≤ w0) − P (Uλ ≤ w0)|

≤
∞∑

n=0

P (N = n) |P (Wn ≤ w0) − P (Uλ ≤ w0)|

≤
∞∑

n=0

P (N = n)
∣∣∣P (Wn ≤ w0) − P

(
Uλn ≤ w0

)∣∣∣
+

∣∣∣P (
UλN ≤ w0

) − P (Uλ ≤ w0)
∣∣∣

≤
∞∑

n=0

P (N = n)
1 − e−λn

λn

n∑
i=1

min

{
rieλn

w0 + 1
,

(1 − (1 − pi)
ri ) eλn

pi

}
p2

i

+min

⎧⎪⎪⎨⎪⎪⎩ 2λ

w0 + 1
,min

⎧⎪⎪⎨⎪⎪⎩1,

√
2

eλ

⎫⎪⎪⎬⎪⎪⎭ E |λN − λ|
⎫⎪⎪⎬⎪⎪⎭

≤ E

⎛⎜⎜⎜⎜⎜⎝1 − e−λN

λN

N∑
i=1

min

{
rieλN

w0 + 1
,

(1 − (1 − pi)
ri ) eλN

pi

}
p2

i

⎞⎟⎟⎟⎟⎟⎠
+min

⎧⎪⎪⎨⎪⎪⎩ 2λ

w0 + 1
,min

⎧⎪⎪⎨⎪⎪⎩1,

√
2

eλ

⎫⎪⎪⎬⎪⎪⎭ E |λN − λ|
⎫⎪⎪⎬⎪⎪⎭ .

This finishes the proof. �

Remark 4 For r1 = r2 = ... = rn = 1, we have a non-uniform bound on Poisson approximation for the random sums of

independent Bernoulli random variables:

|P(VN ≤ w0) − P (Uλ∗ ≤ w0)| ≤ min

⎧⎪⎪⎨⎪⎪⎩ 2λ∗

w0 + 1
,min

⎧⎪⎪⎨⎪⎪⎩1,

√
2

eλ∗

⎫⎪⎪⎬⎪⎪⎭ E
∣∣∣λ∗N − λ∗∣∣∣

⎫⎪⎪⎬⎪⎪⎭
+ E

⎛⎜⎜⎜⎜⎜⎜⎝
(
eλ
∗
N − 1

)
(w0 + 1) λ∗N

N∑
i=1

p2
i

⎞⎟⎟⎟⎟⎟⎟⎠ .
(16)
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Corollary 2 For N = n ∈ Z+ is fixed, then λ = λn =
n∑

i=1
ri pi and

∣∣∣P(Wn ≤ w0) − P
(
Uλn ≤ w0

)∣∣∣ ≤ λ−1
n

(
eλn − 1

) n∑
i=1

min

{
ri

w0 + 1
,

1 − (1 − pi)
ri

pi

}
p2

i . (17)

Remark 5 The result (17) is a non-uniform bound on Poisson approximation for sums of independent binomial random

variables.

4. Conclusions

We conclude this paper with the following comments. Bounds for the distance between the distribution function of ran-

dom sums of independent binomial random variables and an appropriate Poisson distribution function were obtained.

The received results in this paper are sharper than those reported in (Teerapabolarn, 2014a), (Teerapabolarn, 2014b), and

(Yannaros, 1991). Moreover, non-uniform bounds on Poisson approximation for sums (and random sums) of independent

binomial random variables are given. The results will be more interesting and valuable if we discuss Poisson approxi-

mation for random sums of dependent binomial random variables. We shall continue studying this matter in our future

research.
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Abstract 
The allocation of a (treatment) condition-effect on the wrong principal component (misallocation of variance) in principal 
component analysis (PCA) has been addressed in research on event-related potentials of the electroencephalogram. 
However, the correct allocation of condition-effects on PCA components might be relevant in several domains of research. 
The present paper investigates whether different loading patterns at each condition-level are a basis for an optimal 
allocation of between-condition variance on principal components. It turns out that a similar loading shape at each 
condition-level is a necessary condition for an optimal allocation of between-condition variance, whereas a similar 
loading magnitude is not necessary. 

Keywords: Principal component analysis, misallocation of variance, within- and between condition effects 

1. Introduction 
1.1 Condition Effects in Principal Component Analysis 
Principal component analysis (PCA) has regularly been performed for the analysis of event-related potentials of the 
electroencephalogram (Dien, Khoe & Mangun, 2007; Dien, 2010; Kayser & Tenke, 2003, 2005). In the context of 
event-related potentials, PCA is often performed for observed variables representing k levels of at least one (experimental) 
condition factor, so that the components represent a mixture of the between- and within-condition variance. However, 
(experimental) condition factors occur in several areas of research and PCA is performed in several areas of research and 
has been adapted to several different methodological contexts (Jolliffe & Cadima, 2016). It is therefore interesting to 
know how experimental condition effects are optimally allocated on principal components.  

1.2 Misallocation of Between-condition Variance 
Since Wood and McCarthy (1984) it has been regarded as an optimum when a single PCA component combines the 
complete between-condition variance of a single condition factor with some within-condition variance. Although the 
allocation of the variance of a single condition factor on a single principal component combining within- and 
between-condition variance was described as an optimum in research on event-related potentials, this form of variance 
allocation might also be useful in other contexts of research as it allows for a parsimonious data description. Wood and 
McCarthy (1984) used the term ‘misallocation of variance’ in order to denote that the between-condition variance is 
allocated on more than one principal component. Misallocation of variance has been investigated in simulation studies on 
methods of PCA component rotation (e.g., Scharf & Nestler, in press; Dien, 2010; Beauducel & Debener, 2003; Wood & 
McCarthy, 1984) and new methods of component rotation have been proposed that may reduce misallocation of variance 
(Beauducel, 2018; Beauducel & Leue, 2015). Moreover, Scharf and Nestler (in press) have demonstrated that the 
covariation of several condition factors may induce misallocation of variance.  

It has also been proposed to perform a separate PCA for each group representing a level of a single condition factor 
because the loading shapes in each condition can be different (Barry, De Blasio, Fogarty & Karamacoska, 2016). 
Although it might be reasonable to identify condition-specific loading patterns by means of separate PCAs at each level of 
a condition factor, the effect of this form of analysis on misallocation of variance remains unknown.  
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1.3 Aims of the Present Paper 
The present paper therefore investigates the effects of separate PCAs at each level of a single condition factor on the 
allocation of between-condition variance on PCA components. First, some definitions for separate PCAs at each level of a 
single condition factor and for a PCA of the between-condition variance of the condition factor are presented. Second, it is 
shown that misallocation of condition variance as it has been demonstrated and discussed since Wood and McCarthy 
(1984) follows necessarily from rotation of components that perfectly represent a single condition effect. Third, it is 
shown that different condition-specific loading shapes do not allow for an unambiguous allocation of between-condition 
variance on a single component representing within- and between-condition variance. Finally, it is shown that different 
condition-specific loading patterns are compatible with an unambiguous allocation of between-condition variance on a 
single component, when the between-condition differences of the loadings on each component can be accounted for by a 
scalar. 

2. Definitions: PCA for within- and Between-condition Variance 
Consider that p random variables have been observed in k levels of a condition factor, so that 

� �, 1,2, , .i k for i k� �x x x �, 1,2, , .k for i k1,2, ,1,2, ,�kx                         (1) 

Although the expectation of x is zero � �( 0)� �x , the conditions imply � � 0.i� �x  However, when a within- condition 
PCA is performed separately for the correlations or covariances at each level of the condition factor, � �Ev

i i i� �x x x , the 
mean centered part of ix , is analyzed, since � � � �Cov , Cov , ,v v

i i i i i� �x x x x Σ so that 

, 1,2,... ,v v v
i i i for i k� �x A c         (2) 

superscript “v” denotes the within-condition variance and where v
iA is a p � p matrix of component loadings and ´v v

i iA A  
contains the eigenvalues in decreasing order. The components v

ic are assumed to have an expectation zero, � � 0.v
i� �c PCA 

initially yields orthogonal components � �´( )v v
i i� �c c I , so that each covariance matrix of observed variables can be 

decomposed into 
' , 1,2,... ,v v v

i i i for i k� �	 A A                          (3) 

Typically, components ci are divided into a subset of q wanted components wi and p – q unwanted components ui 
( [ , ],i i i�c w u [ , ]i i i�A M N ). Orthogonal and oblique rotations of iM  and iw  have been proposed, so that non-zero 
component inter-correlations are possible ´( [ ] )i i i� �c c Q . The covariances of observed variables are then decomposed by 

     ' ' , 1,2,... .i i i i i i for i k� 
 �Σ M Q M N N       (4) 

It is possible to write the complete data comprising condition variance and within-group variance as 

 

 

   (5) 

 

where i1 has the dimensions of ix and k1 has the dimensions of kx . The related within- and between-conditions PCAs 
yield  

   (6) 

Usually qv wanted within-condition components v
iw are separated from p – qv unwanted within-condition components 

v
iu  and qb wanted between-condition components bw from p – qb unwanted between-condition components bu . This 

yields 

                          (7) 

and  

                             (8) 

for the wanted components. 

Typically, the wanted components are rotated in order to improve the interpretation (Dien, 2010; Kayser & Tenke, 2003). 
If there is an additional condition factor, there can be additional groupings of PCAs for each level of the condition factor 
and an additional PCA across the levels of the condition factor. If the sample size is sufficiently large, it is also possible to 
perform a PCA for each of the combinations of condition levels and across all combinations of conditions of the two 
condition factors.  
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3. Misallocation of Variance 
3.1 Misallocation of Variance and Component Rotation 
When there are only a few condition factors the number of wanted within-condition components is probably larger than 
the number of wanted between-condition components. For example, when there is only one condition factor with two 
levels, PCA of the between-condition variance without subsequent component rotation will result in only one 
between-condition component. When qv

 > qb = 1 it is possible to write Equation 8 as 

 

 

           (9) 

 

 

where j denotes the number of the respective within-condition component. For qb = 1 and  

1 1, ,v b v b
i k� �m m m mk1

vmv
k1k  Equation 9 can be written as 
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where 1 1, ,v v
i kw wv

k1w denotes the scores on the first wanted component (j=1) at each level i of the condition factor, and 

1 1, ,b b
i kw w

1i
b
k1w denotes the expectancy of the first wanted component on each level i of the condition factor, which 

corresponds to the expectancy of the observed  scores on condition level i, with 

1 1 1 1[ , , ] [E( ), ,E( )] [E( ), ,E( )]b b
i k i k i k� �w w w w x x

p p y
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Equation 10 describes what is typically regarded as an optimal allocation of variance, namely, that a condition effect 
occurs on a single component that combines within- and between-condition variance. The simulation studies on this issue 
were based on a single condition effect that was introduced exclusively on a single component when the data were 
generated (Wood & McCarthy, 1984; Dien, 2010; Beauducel & Debener, 2003; Beauducel & Leue, 2015) and that 
occurred on more than one component after PCA followed by component rotation. 

Component rotation means that the M is rotated by means of postmultiplication by a qv � qv transformation matrix T 
(Harman, 1976) and that the component scores are counter-rotated by means of premultiplication with T-1, so that 

 

  (11) 

 

 

For a single condition i the rotation of the infinite matrices containing the population of individual component scores l 
can be written as 

 

(12) 

 

 

 

Theorem 1 describes that a non-zero expectation that is initially only on the first component leads to a non-zero 
expectation on others than the first component after component rotation.  
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Proof. A single element for condition i of the matrix resulting from Equation 12 is given by 

 

        (13) 

Equation 13 can be written as 

� � � �� �* * *
1 1 1E , , .v
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t w t w w t wjq, ***,,       (14) 

Equation 14 implies that the expectation for the population of scores even for j > 1 is � � � �* *
1 1E E .j iji

�t w t w    

This completes the proof.                 � 

Theorem 1 implies that a condition effect that occurs only on the first component before rotation, also occurs on other 
components after rotation. Thus, Theorem 1 shows that misallocation of variance as it has typically been investigated in 
simulation studies since Wood and McCarthy (1984) is a necessary consequence of any rotation of an initial set of 
components combining unambiguously within- and between-condition effects. Therefore, the attempts to reduce 
misallocation of variance are attempts to recover the initial combination of within- and between-condition components 
(Dien, 2010; Beauducel & Leue, 2015; Beauducel, 2018) so that the matrix T, transforming the original components to 
the given components becomes I. This implies �*T I  and * 0,jh for j h� �t  so that Theorem 1 does not hold. 
Eliminating variance misallocation by means of component rotation precludes that there exists a PCA solution for the data 
at hand where each between-condition effect can be allocated on a separate single component. This is, however, not 
necessarily the case for any data set. 

3.2 Misallocation of Variance in Combined within- and Between-Condition Components 
Theorem 1 describes misallocation of variance as it can occur when PCA is performed for the total sample, i.e., across the 
levels of a between-condition factor. When separate within-condition components ,...,v v

i kc c  are computed, the 
within-condition components ,...,v v

i kc c  are completely unrelated to bc so that within- and between-condition variance is 
completely disentangled. This yields the question under which constraints within- and between-condition components can 
be combined into a single component representing within- and between-condition variance unambiguously. Theorem 2 
describes a constraint for the component loadings that implies � �, , ,v b v b

i i k k
 
� c c c cc , v
k 

vc, k 
, k i.e., that each component in c 

can be decomposed into a separate within- and between-condition component. This implies that no misallocation of 
variance occurs because each between-condition component is uniquely combined with another within-condition 
component.  

 
Theorem 2. If , ,v b v b

i k� �A A A Ak, vA Avv
k, �k , then , , , , .v v b b

i k i k� � � �� 

 � 
 �c c c c c .� � �v b b
� 
 �k i k, , , ��v b b

k, , ,, ,v �� b
ii, , ,, ,��v

k,   

Proof. Since [ , , ]b b b
i k�c c c ]b

k,,  Equation 6 can be written as 
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inserting bA for , ,v v
i kA A, v

kA,  into Equation 15 yields 

                   (16) 

This completes the proof.                 � 

Thus, when the within-condition loading matrices at each condition level are identical to the between-condition loading 
matrix, this implies a component model where all components combine their respective within- and between-condition 
variance. Theorem 2 implies that no misallocation of variance occurs when each condition-specific loading pattern is 
identical to the between-condition loading pattern. When Theorem 2 holds, it would be possible to find a solution 
without variance misallocation by means of component rotation. Writing loading vectors 
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(17) 

Note that the scores b
sic are equal for each between-condition component s at each condition-level i. For convenience, 

the raw data reproduced from the first component are considered. This yields 
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1 1 1 .b�x a c Thus, it is possible that 
only a subset of the within-condition loading matrices and between-condition loading matrices is identical and that this 
subset of components combines within- and between-condition variance. When there is only one between-condition 
component, i.e., qv

 = p > qb = 1, Equation 17 can be written as 
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Theorem 3 describes constraints for the loadings that are compatible with a model combining a single between-condition 
component with the first within-condition component. 
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This completes the proof.                  � 

The identity of the loading patterns of the first unrotated within- and between-condition components is a sufficient 
constraint for the allocation of the between- and within-condition variance on a common component. Theorem 4 describes 
a somewhat relaxed constraint that is based on an identical shape of the loadings of the first within- and between-condition 
components but allows for a different scale.  
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This completes the proof.                  � 

Theorem 4 shows that condition-specific loading patterns that have the same shape, but a different scale are compatible 
with a model where a single between-condition component is unambiguously allocated on a single within-condition 
component.  

4. Discussion 
According to Wood and McCarthy (1984) misallocation of variance occurs when a single between-condition effect that 
can in principle be allocated on a single PCA component is allocated on more than one component in a given PCA solution. 
The present study describes constraints that are to be imposed on the component loading matrices in order to avoid 
misallocation of variance. The following conclusions can be drawn: When a single between-condition effect is allocated 
on a single component of an initial PCA solution, any rotation of these initial components will result in a misallocation of 
variance (Theorem 1). This is an algebraic demonstration of what has been discussed elsewhere (Scharf & Nestler, in 
press; Dien, 2010; Beauducel & Leue, 2015; Beauducel, 2018), namely that, at the level of combined within- and 
between-condition components, the misallocation of variance is directly related to component rotation. However, 
component rotation can only result in an optimal allocation of between-condition variance when such a rotational solution 
exists for a given data set.  

Since it has been proposed to perform separate PCAs at each level of a condition factor (Barry et al., 2016), the 
consequences of this procedure for misallocation of variance were explored. When a PCA is calculated at each level of a 
condition factor and when a PCA is calculated for a single between-condition factor, an unambiguous allocation of the 
between-condition variance on a single component combining within- and between-condition variance is possible when 
the within-condition component loadings have the same shape, even when their scale is different (Theorem 3 and 4). Thus, 
only when the constraints of Theorem 3 and 4 hold for a given data set, it would be possible to find the solution with 
optimal allocation of between-condition variance by means of component rotation.  

Theorem 3 and 4 also imply that separate PCAs at each level of a condition-factor are not necessarily a way to avoid or 
eliminate misallocation of variance. When different loading shapes occur at each level of a condition factor in separate 
PCAs, this indicates that misallocation of variance would occur when the separate components are combined into within- 
and between variance components. In contrast, when the loading shape is similar in the different PCAs with larger or 
smaller loadings at each level of the condition factor, the components can be combined into within- and 
between-components without misallocation of variance.  

Finally, it follows from Theorem 4 that perfect congruence coefficients (Tucker, 1951; Wrigley & Neuhaus, 1955) of the 
loadings of respective components at different levels of the condition factor are not a necessary condition for optimal 
variance allocation because congruence coefficients also refer to the similarity of the loading magnitude. For optimal 
variance allocation, a perfect Pearson correlation of the loadings of the respective components at different levels of the 
condition factor would be necessary. 
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Abstract

In this work, we study the two-parameter Odd Lindley Weibull lifetime model. This distribution is motivated by the

wide use of the Weibull model in many applied areas and also for the fact that this new generalization provides more

flexibility to analyze real data. The Odd Lindley Weibull density function can be written as a linear combination of the

exponentiated Weibull densities. We derive explicit expressions for the ordinary and incomplete moments, moments of

the (reversed) residual life, generating functions and order statistics. We discuss the maximum likelihood estimation of the

model parameters. We assess the performance of the maximum likelihood estimators in terms of biases, variances, mean

squared of errors by means of a simulation study. The usefulness of the new model is illustrated by means of two real data

sets. The new model provides consistently better fits than other competitive models for these data sets. The Odd Lindley

Weibull lifetime model is much better than Weibull, exponential Weibull, Kumaraswamy Weibull, beta Weibull, and the

three parameters odd lindly Weibull with three parameters models so the Odd Lindley Weibull model is a good alternative

to these models in modeling glass fibres data as well as the Odd Lindley Weibull model is much better than the Weibull,

Lindley Weibull transmuted complementary Weibull geometric and beta Weibull models so it is a good alternative to these

models in modeling time-to-failure data.

Keywords: Lindley distribution, Weibull distribution, Maximum likelihood, Moments, Order statistics

1. Introduction

The goal of this paper is to introduce a new two parameter alternative to the Weibull, beta Weibull, Lindley Weibull,

exponential Weibull, Kumaraswamy Weibull, transmuted complementary Weibull geometric and the tree parameters Odd

lindly Weibull (OLW) models that overcomes these mentioned drawbacks.

The probability density function (PDF) and CDF of the Weibull (W) distribution are given by (for x ≥ 0)

g(x, β) = βxβ−1 exp
(
−x

β
)
, (1)

and

G(x, β) = 1 − exp
(
−x

β
)
, (2)

respectively, where β > 0 is a shape parameter. Some useful generalization of the Weibull distribution studied in the

literature includes, but are not limited to, Mudholkar and Srivastava (1993), Mudholkar et al. (1995), Mudholkar et al.

(1996), Xie and Lai (1995), Ghitany et al. (2005), Famoye et al. (2005), Sarhan and Zaindin (2009), Silva et al. (2010),

Aryal and Tsokos (2011), Xie et al. (2002), Lai et al. (2003), Cordeiro et al. (2010), Provost et al. (2011), Cordeiro et al.

(2012), Shahbaz et al. (2012), Khan and King (2013), Cordeiro et al. (2013), Merovci and Elbatal (2013), Hanook et al.

(2013), Yousof et al. (2015), Cordeiro et al. (2014), Lee et al. (2007), Elbatal and Aryal (2013), Aryal and Elbatl (2015),

Afify et al. (2016), Nofal et al. (2016), El-Bassiouny et al. (2016), Yousof et al. (2017a,b,c,d), Aryal et al. (2017a,b),

Korkmaz et al. (2017), El-Bassiouny et al. (2017), Alizadeh et al. (2017a,b), Brito et al. (2015). Alizadeh et al. (2018),

Yousof et al. (2018), Cordeiro et al. (2018), Hamedani et al. (2018), among others. A state-of-the-art survey on the class

of such generalized Weibull distributions can be found in Lai et al. (2001) and Nadarajah (2009)

The probability density function (PDF) and CDF of the OL-G family of distribution (Silva et al. (2017)) are given by

f (x;α, ξ) = α2 (1 + α)−1 g (x; ξ) G (x; ξ)−3 exp
[
−αG (x; ξ) /G (x; ξ)

]
, (3)
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and

F(x;α, ξ) = 1 −
[
α +G (x; ξ)

]
(1 + α)−1 G (x; ξ)−1 exp

[
−αG (x; ξ) /G (x; ξ)

]
, (4)

respectively. To this end, by using equations (1), (2) and (3) to obtain the two-parameter OLW PDF (for x ≥ 0). A random

variable X is said to have the OLW distribution if its density function and CDF are given by

f (x;α, β) = α2 (1 + α)−1 βxβ−1
[
exp

(
2x
β
)]

exp

⎡⎢⎢⎢⎢⎢⎢⎣−α1 − exp
(
−x

β
)

exp
(
−xβ

)
⎤⎥⎥⎥⎥⎥⎥⎦ , (5)

and

F(x;α, β) = 1 − (1 + α)−1
[
α + exp

(
−x

β
)]

exp
(
x
β
)

exp
{
−α

[
exp

(
x
β
)
− 1

]}
, (6)

respectively, we write X ∼OLW(α, β), where α is a positive shape parameter. The PDF in (5) and the CDF in (6) are firstly

introduced by Silva et al. (2017). Henceforth, the PDF of X in (5) can be easily expressed as

f (x) =

∞∑
i,k=0

υi,kg (x; (i + k + 1) , β) , (7)

where

υi,k = (−1)k α2+k (α + 1)−1 [(i + k + 1) i!]−1 Γ (i + k + 3) /Γ (k + 3) ,

and g (x; δ, β) is PDF of Exp-W model with positive parameters δ and β. A handbook, by Rinne (2009), covers the Weibull

model in many of its aspects. The study of the family of Exp-W models and their applications attracted the interest of

researchers in the nineties. Such interest is growing since then. The CDF of X can be given by integrating (7) as

F(x) =

∞∑
i,k=0

υi,kG (x; (i + k + 1) , β) , (8)

where G (x; δ, β) is PDF of Exp-W model with positive parameters δ and β. For further information about the Exp-W

distribution we refer to Mudholkar and Srivastava (1993) and Nadarajah and Kotz (2006). For more details about the

OL-G family and its properties see Silva et al. (2017).

Figure 1. Plots of the OLW PDF and HRF for some parameter values.

The justification for the practicality of the OLW lifetime model is based on the wider use of the W model. Aswell as we

are motivated to introduce the OLW lifetime model because it exhibits increasing, decreasing as well as bathtub hazard

rates as illustrated in Figure 2. It is shown in Section 1 that the OLW lifetime model can be viewed as a mixture of the
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two-parameter Exp-W distributions introduced by Mudholkar and Srivastava (1993) and Mudholkar et al. (1995). It can

be viewed as a suitable model for fitting the unimodal and left skewed data. The OLW lifetime model is much better

than Weibull, exponential Weibull, Kumaraswamy Weibull, beta Weibull, and the three parameters Odd lindly Weibull

with three parameters models so the OLW lifetime model is a good alternative to these models in modeling glass fibres

data as well as the OLW lifetime model is much better than the Weibull, Lindley Weibull transmuted complementary

Weibull geometric and beta Weibull models so the OLW lifetime model is a good alternative to these models in modeling

time-to-failure data.

2. Statistical Properties

2.1 Quantile Functions

Let X be an arbitrary random variable (r.v.) with CDF F(x;α, β). For any u ∈ (0.1), the uth quantile function (QF) Q(u)

of the r.v. X is the solution of u = F (Q(u)) for all Q(u) > 0, from Equation (6), we get

(u − 1) (1 + α) exp (1 + α) = −1 + α −G (Q(u))

1 −G (Q(u))
exp

{
−1 + α −G (Q(u))

1 −G (Q(u))

}
,

where

−1 + α −G (Q(u))

1 −G (Q(u))
,

is the Lambert W (·) function of the real argument (u − 1) (1 + α) exp (1 + α) . From Silva et al. (2017), we can write the

following equation for QF of the OLW model

Q (u) =
[
1 − log

(
1 −

{
1 + α

[
1 +W−1

(
(u − 1) (1 + α) exp (1 + α)

)−1
]})] 1

β ,

where W (·) is Lambert function.

2.2 Moments

The rth ordinary moment of X is given by μ′r =
∫ ∞

0
xr f (x) dx = E(Xr). Using (7), we get

μ′r =
∞∑

i, j,k=0

υi,kΥ
(i+k+1)
j

r
β−1∏
m=0

(
r
β
− m

)
, ∀ r > −β, (9)

where

Υ
(ω,r)
j = ω (−1)i ( j + 1)−(r+β)/β

(
ω − 1

j

)
,

v−1∏
m=0

(v − m) = Γ (1 + v) = v (v − 1) (v − 2) ...1, v ∈ R+

and Γ (ζ) =
∫ ∞

0
xζ−1 e−tdx is the complete gamma function. The rth incomplete moment of X, say ϕr (t), is given by

ϕr (t) =
∫ t

0
xr f (x) dx. Using Equation (7), we obtain

ϕr (t) = γ
(
1 + rβ−1, t−β

) ∞∑
i, j,k=0

υi,kΥ
(i+k+1,r)
j , ∀ r > −β, (10)

where γ (ζ, x) =
∫ x

0
xζ−1 e−xdx is the incomplete gamma function.

2.3 Order Statistics and Their Moments

Let X1, . . . , Xn be a random sample from the OLW model of distributions and let X1:1, . . . , Xn:n be the corresponding order

statistics. The PDF of the ith order statistic, say Xi:n, can be expressed as

fi:n (x) = [B(i, n − i + 1)]−1 f (x) F (x)i−1 [1 − F (x)]n−i , (11)

where B(·, ·) is the beta function. Substituting (5) and (6) in Equation (11), we obtain

fi:n (x) =

∞∑
m,p=0

k+n−i∑
j=0

υ j,m,p g (x; ( j + m + p + 1) , β) ,
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where

υ j,m,h =

i−1∑
k=0

(−1)k+m α j+m+2 (1 + α)−( j+1) [m! ( j + m + p + 1)
]−1

× [B(i, n − i + 1)]−1

(
j + m + p

j + m

)(
k + n − 1

j

)(
i − 1

k

)
.

Then, the qth moment of Xi:n is given by

E
(
Xq

i:n

)
=

∞∑
m,p,h=0

k+n−i∑
j=0

υ j,m,p Υ
( j+m+p+1,q)

h

q
β−1∏
w=0

(
q
β
− w

)
, ∀ q > −β. (12)

Based upon the moments in Equation (12), we can derive explicit expressions for the L-moments of X as infinite weighted

linear combinations of the means of suitable OLW order statistics. They are linear functions of expected order statistics

defined by

λr = r−1
r−1∑
d=0

(−1)d
(
r − 1

d

)
E (Xr−d:r) , r ≥ 1.

2.4 Moment of Residual and Reversed Residual Lifes

The nth moment of the residual life, say zn(t) = E[(X − t)n | X > t], n = 1, 2,. . . , uniquely determines F(x). The nth

moment of the residual life of X is given by

zn(t) =

∫ ∞
t (x − t)ndF(x)

1 − F(t)
.

We can write

zn(t) = [1 − F(t)]−1
∞∑

i,k=0

n∑
r=0

υi,k (−t)n−r
(
n
r

) ∫ ∞

t
xr g (x; (i + k + 1) , β) dx

= γ
(
1 + nβ−1, t−β

)
[1 − F(t)]−1

∞∑
i, j,k=0

n∑
r=0

Υ
(i+k+1,n)
i, j,k,r , ∀ n > −β,

where

Υ
(i+k+1,n)
i, j,k,r = υi,ktn−r (i + k + 1) (−1)i+n−r ( j + 1)−(n+β)/β

(
i + k

j

)(
n
r

)
.

The nth moment of the reversed residual life, say Zn(t) = E [(t − X)n | X ≤ t], for t > 0 and n = 1, 2,. . . , uniquely

determines F(x). We have

Zn(t) =

∫ t
0

(t − x)ndF(x)

F(t)
.

Then, the nth moment of the reversed residual life of X becomes

Zn(t) = F(t)−1
∞∑

i,k=0

n∑
r=0

υi,k (−1)r
(
n
r

)
tn−r

∫ t

0

xr g (x; (i + k + 1) , β) dx

= γ
(
1 + nβ−1, t−β

)
F(t)−1

∞∑
i, j,k=0

n∑
r=0

Ω
(i+k+1,n)
i, j,k,r , ∀ n > −β,

where

Ω
(i+k+1,n)
i, j,k,r = υi,ktn−r (i + k + 1) (−1)i+r ( j + 1)−(n+β)/β

(
i + k

j

)(
n
r

)
.
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3. Maximum Likelihood Method

We consider the estimation of the unknown parameters of the OLW model from complete samples only by maximum

likelihood method. The MLEs of the parameters of the OLW (α, β) model is now discussed. Let x1, . . . , xn be a random

sample of this distribution with parameter vector Ψ = (α, β)ᵀ. The log-likelihood function for Ψ, say � = �(Ψ), is given

by

� = �(Ψ) = 2n log (α) − n log (1 + α) + n log β + (β − 1)

n∑
i=1

log (xi) + 2

n∑
i=1

x
β

i − α
n∑

i=1

1 − exp
(
−x

β

i

)
exp

(
−xβi

) ,
the last equation can be maximized either by using the different programs like R (optim function), SAS (PROC NLMIXED)

or by solving the nonlinear likelihood equations obtained by differentiating Equation 13. The score vector elements,

U (Ψ) = ∂�
∂Ψ
=

(
∂�
∂α
, ∂�
∂β

)ᵀ
can be easely obtained, we can obtain the estimates of the unknown parameters by setting

the score vector to zero, U(Ψ̂) = 0. Solving these equations simultaneously gives the MLEs α̂ and β̂. For the OLW

distribution, all the second order derivatives exist. The interval estimation of the model parameters requires the 2 × 2

observed information matrix J(Ψ) = {Ji j} for i, j = α, β. The multivariate normal N2(0, J(Ψ̂)−1) distribution, under

standard regularity conditions, can be used to provide approximate confidence intervals for the unknown parameters,

where J(Ψ̂) is the total observed information matrix evaluated at Ψ̂. Then, approximate 100(1 − δ)% confidence intervals

for α and β can be determined by: α̂ ± zδ/2
√

Ĵαα and β̂ ± zδ/2
√

Ĵββ, where zδ/2 is the upper δth percentile of the

standard normal model. Further works could be addressed using different methods to estimate the OLW parameters such as

least squares, moments, weighted least squares, Jackknife, Cram’er-von-Mises, bootstrap, Bayesian analysis, Anderson-

Darling, among others, and compare the estimators based on these methods.

4. Simulation Studies

We consider a random sample of size n = 50, 150, 200, 250, 300 and 500 from our density corresponding to particular

choices of the parameters as follows: α=0.25, β=0.5, α=1.5, β=0.9 and α=0.8, β=1.5, the results are presented in Tables

1, 2 and 3 respectively. Below we provide the MLEs, biases (Bias), variances (Var), mean square of errors (MSEs) and

Confidence Interval for the estimates of all the parameters under both the methods of estimation. The log-likelihood

function can be maximized directly via the R-package or by solving the nonlinear likelihood equations obtained by

differentiating the PDF (5) (using the optim function as well as the Max-BFGS subroutines. One can observe the estimates

of the unknown parameters by setting the score vector to zero, and then using any statistical software to solve them

numerically. The results show that the maximum likelihood estimation performs well. In general, the biases, variances

and MSEs of the parameters are reasonably small. The biases, variances and MSEs always decrease as the sample size

increases. The results suggest that the maximum likelihood method can be used to estimate the parameters of the OLW

model.

Table 1 provides the biases, variances, MSEs and Confidence Interval under the method of maximum likelihood. We

consider 1000 simulations for drawing random samples each of size n = 50, 150, 200, 250, 300 and 500 drawn from our

density respectively when α = 0.25 and β = 0.5.

Table 1. The MLEs, Bias, Var, and MSE values for the OLWD

n Parameter (MLE) Bias Var MSE Confidence Interval

50 α=0.25(0.247229 ) -0.002771 0.0017944 0.001802 (0.1691,0.3366)

β=0.5(0.507311 ) 0.007311 0.0011746 0.001228 (0.4418,0.5759)

150 α=0.25(0.247489 ) -0.002511 0.0006301 0.000636 (0.1993,0.2985)

β=0.5(0.503367 ) 0.003367 0.0003829 0.000394 (0.4677,0.5436)

200 α=0.25(0.248688 ) -0.001312 0.0004553 0.000457 (0.2072,0.2918)

β=0.5(0.502525 ) 0.002525 0.0002828 0.000289 (0.4699,0.5368)

250 α=0.25(0.249041 ) -0.000959 0.0003657 0.000367 (0.2148,0.2886)

β=0.5(0.501742 ) 0.001742 0.000216 0.000219 (0.4726,0.5316)

300 α=0.25(0.249389 ) -0.000611 0.00032 0.00032 (0.2155,0.2861)

β=0.5(0.501331 ) 0.001331 0.0001873 0.000189 (0.4743,0.5301)

500 α=0.25(0.249847 ) -0.000153 0.0001874 0.000187 (0.2245,0.2787)

β=0.5(0.500251 ) 0.000251 0.0001117 0.000112 (0.4798,0.5218)
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Table 2 provides the MLEs, biases, variances, MSEs and Confidence Interval under the method of maximum likelihood.

We consider 1000 simulations for drawing random samples each of size n = 50, 150, 200, 250, 300 and 500 drawn from

our density respectively when α=1.5 and β=0.9.

Table 2. The MLEs, Bias, Var, and MSE values for the OLWD

n Parameter(MLE) Bias Var MSE Confidence Interval

50 α = 1.5(1.529613 ) 0.029613 0.033058 0.033935 (1.2203,1.9334)

β = 0.9(0.929152 ) 0.029152 0.0156265 0.016476 (0.7296,1.2245)

150 α = 1.5(1.51163 ) 0.01163 0.0096352 0.00977 (1.3240,1.7228)

β = 0.9(0.907027 ) 0.007027 0.0038567 0.003906 (0.7955,1.0367)

200 α = 1.5(1.508664 ) 0.008664 0.0077297 0.007805 (1.3531,1.6969)

β = 0.9(0.906696 ) 0.006696 0.0031 0.003145 (0.8050,1.0131)

250 α = 1.5(1.503555 ) 0.003555 0.0056863 0.005699 (1.3631,1.6487)

β = 0.9(0.905057 ) 0.005057 0.0023803 0.002406 (0.8178,1.0088)

300 α = 1.5(1.506448 ) 0.006448 0.0047551 0.004797 (1.3760,1.6528)

β = 0.9(0.904546 ) 0.004546 0.0020092 0.00203 (0.8215,0.9957)

500 α = 1.5(1.502812 ) 0.002812 0.0029378 0.002946 (1.4031,1.6138)

β = 0.9(0.903687 ) 0.003687 0.001307 0.001321 (0.8385,0.9740)

Table 3 provides the biases, variances, MSEs and Confidence Interval under the method of maximum likelihood. We

consider 1000 simulations for drawing random samples each of size n = 50, 150, 200, 250, 300 and 500 drawn from our

density respectively when α=0.8 and β=1.5.

Table 3. The MLEs, Bias, Var, and MSE values for the OLWD

n Parameter (MLE) Bias Var MSE Confidence Interval

50 α = 0.8(0.80632 ) 0.00632 0.0091889 0.009229 (0.6242,1.0034)

β = 1.5(1.538177 ) 0.038177 0.0255296 0.026987 (1.2617,1.8741)

150 α = 0.8(0.799961 ) -0.000039 0.0027371 0.002737 (0.7012,0.9048)

β = 1.5(1.512985 ) 0.012985 0.0073598 0.007528 (1.3508,1.6777)

200 α = 0.8(0.800502 ) 0.000502 0.0020934 0.002094 (0.7089,0.8903)

β = 1.5(1.510718 ) 0.010718 0.0058925 0.006007 (1.3640,16650)

250 α = 0.8(0.800997 ) 0.000997 0.0018525 0.001854 (0.7174,0.8887)

β = 1.5(1.506141 ) 0.006141 0.0044795 0.004517 (1.3843,1.6418)

300 α = 0.8(0.800886 ) 0.000886 0.0014993 0.00150 (0.7275,0.8757)

β = 1.5(1.505427 ) 0.005427 0.0037086 0.003738 (1.3875,1.6335)

500 α = 0.8(0.80081 ) 0.00081 0.000879 0.00088 (0.7418,0.8593)

β = 1.5(1.503156 ) 0.003156 0.002423 0.002433 (1.4061,1.5991)

From Tables 1, 2 and 3, we note that the Bias is reduced as the sample size is increased.
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5. Real Data Analysis

In this section, we illustrate the empirical importance of the OLW model and other lifetime distributions using two

applications to real data.

The first data set (I): The first set consists of 63 observations of the strengths of 1.5 cm glass fibres, originally obtained

by workers at the UK National Physical Laboratory. The data are:

0.55, 0.74, 0.77, 0.81, 0.84, 0.93, 1.04, 1.11, 1.13, 1.24, 1.25, 1.27, 1.28, 1.29, 1.30, 1.36, 1.39, 1.42, 1.48, 1.48, 1.49,

1.49, 1.50, 1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.55, 1.58, 1.59, 1.60, 1.61, 1.61, 1.61, 1.61, 1.62, 1.62, 1.63, 1.64, 1.66,

1.66, 1.66, 1.67, 1.68, 1.68, 1.69, 1.70, 1.70, 1.73, 1.76, 1.76, 1.77, 1.78, 1.81, 1.82, 1.84, 1.84, 1.89, 2.00, 2.01, 2.24.

These data have also been analyzed by Smith and Naylor (1987). For this data set, we shall compare the fits of the OLW

distribution with some competitive models like Weibull (W), exponential Weibull (EW), Kumaraswamy Weibull (KwW)

(Cordeiro et al., 2010), beta Weibull (BW) (Lee et al., 2007), and Odd lindly Weibull with three parameters (OLW∗) (Silva

et al. 2016).

The second data set (II): represents 40 observations of time-to-failure (103/h) of turbocharger of one type of engine,

see Xu et al. (2003). The data are: 1.6, 3.5, 4.8, 5.4, 6.0,6.5, 7.0, 7.3, 7.7, 8.0, 8.4, 2.0, 3.9, 5.0, 5.6, 6.1, 6.5, 7.1, 7.3,

7.8, 8.1, 8.4, 2.6, 4.5, 5.1, 5.8, 6.3, 6.7, 7.3, 7.7, 7.9, 8.3, 8.5, 3.0, 4.6, 5.3, 6.0, 8.7, 8.8, 9.0. This data set is used to

compare the fits of the OLW lifetime model with some competitive models like W, Lindley Weibull (LiW) (Cordeiro et

al. 2018), transmuted complementary Weibull geometric (TCWG) (Afify et al. 2014) and BW models. All parameters of

these distribution are positive numbers. In Tables 1 and 2, the MLEs and their standard errors (SEs) (in parentheses) of

the parameters from the fitted models and the values of the Akaike Information Criterion (AIC), Cram er-von Mises (W∗)
and Anderson-Darling (A∗) goodness-of-fit statistics are presented. According to the lowest values of the AIC, W∗ and A∗
statistics.

For the first data set, the OLW model provides the best fit. The empirical PDF and CDF for the OLW are displayed in

Figures 2 and 3 respectively, which support the results of Table 4.
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For the second data set, the OLW model provides the best fit. The empirical PDF and CDF for the OLW are displayed in

Figures 4 and 5 respectively, which support the results of Table 2.
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Hence, we prove empirically that the proposed model provides better fits in two applications than other seven extended

Weibull distributions with two, three and four parameters. There are too many models to fit and this fact really shows that

the OLW model can be a good alternative for modeling survival data.

6. Discussion

In this work, we propose and study a new two-parameter lifetime model, called the Odd Lindley Weibull (OLW) distri-

bution, which extends the Weibull distribution. The OLW distribution is motivated by the wide use of the Weibull model

in many applied areas and also for the fact that this new generalization provides more flexibility to analyze real data. The

OLW density function can be written as a linear combination of the exponentiated W (Exp-W) densities. We derive explic-

it expressions for the ordinary and incomplete moments, moments of the (reversed) residual life, generating functions and

order statistics. We discuss the maximum likelihood estimation of the model parameters. We assess the performance of

the maximum likelihood estimators in terms of biases, variances, mean squared of errors by means of a simulation study.

The usefulness of the new model is illustrated by means of two real data sets. The new model provides consistently better

fits than other competitive models for these data sets. The OLW lifetime model is much better than Weibull, exponential

Weibull, Kumaraswamy Weibull, beta Weibull, and the three parameters Odd lindly Weibull with three parameters models

so the OLW lifetime model is a good alternative to these models in modeling glass fibres data as well as the OLW lifetime

model is much better than the Weibull, Lindley Weibull transmuted complementary Weibull geometric and beta Weibull

models so the OLW lifetime model is a good alternative to these models in modeling time-to-failure data. We hope that

the new distribution will attract wider applications in reliability, engineering and other areas of research. Finally, as a

future work we will consider bivariate and multivariate extension of the OLW distribution. In particular with the copula

based construction method, trivariate reduction etc.
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Table 4. The MLEs(SEs inparentheses) for some fitted models to data set I and the AIC,W∗ and A∗ values

Model ∧
α

∧
b

∧
β

∧
λ AIC W∗ A∗

W – – 5.781 1.628 34.414 0.237 1.304

– – (0.576) (0.037)

EW 0.671 – 7.285 1.718 35.351 0.636 3.484

(0.249) – (1.707) (0.086)

TW – -0.5010 5.1498 0.6458 34.6720 1.0358 0.1691

– (0.2741) (0.6657) (0.0235)

OLLW – 0.9439 6.0256 0.6159 36.3736 1.2364 0.2194

– (0.2689) (1.3478) (0.0164)

BW 0.620 10.249 7.759 2.382 37.179 0.196 1.089

(0.248) (95.117) (2.023) (2.897)

KwW 0.606 0.214 6.908 1.337 35.252 0.161 0.908

(0.162) (0.029) (0.004) (0.003)

OLW∗ 0.049 – 1.102 0.492 34.387 0.153 0.870

(0.087) – (0.527) (0.494)

OLW 0.2026 – 1.716 – 33.427 0.138 0.813
(0.0317) – (0.087) –

Table 5. The MLEs(SEs inparentheses) for some fitted models to data set II and the AIC,W∗ and A∗ values

Model ∧
α

∧
b

∧
β

∧
λ AIC W∗ A∗

W – – 3.872 6.920 82.48 0.0769 0.5730

– – (0.517) (0.294)

LiW – 0.898 0.169 3.499 81.89 0.0636 0.4815

– (1.093) (0.073) (0.633)

TCWG 0.188 -8.9×10−5 0.2059 2.7881 81.32 0.0496 0.3766

(0.046) (0.647) (0.2747) (0.8733)

BW 0.075 11.242 0.240 115.43 79.04 0.0210 0.1696

(0.030) (3.850) (0.102) (489.0)

OLW 8.309 – 0.188 – 77.90 0.0159 0.1018
(0.148) – (0.046) –
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Absrtact 
Walking is a sustainable mode of transportation that has several benefits related to improved health and reducing traffic 
congestion. The drawback to walking as a mode of transportation is the increased potential to be involved in a severe crash, 
which is greater than when two automobiles are involved in a crash. This paper provides a statistical analysis of pedestrian 
crashes that occurred in two Alabama cities where the crashes are divided into those where a sidewalk was present and 
those where a sidewalk was not present. The goal of the paper is to determine the difference in crash experiences and 
variables that contribute to vehicle-pedestrian crashes associated with the presence of the sidewalk. The paper uses binary 
logistic regression to develop models of pedestrian crashes and evaluates the models to determine factors that contribute 
the pedestrian crashes. The paper concludes that pedestrian crashes often happen in the evenings, with low lighting and 
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1. Introduction 
1.1 Introduction to the Problem 
Walking is a vital and sustainable means of transportation and is gaining popularity. The 2009 National Household Travel 
Survey (NHTS) presented that an estimated 42 billion walking trips are made every year in the US, accounting for 10.5% 
of the total trips taken (1). The safety of these pedestrians therefore is a top priority. In 2014, almost 5,000 pedestrian were 
killed and 65,000 injured in traffic crashes in the US, with 78% occurring in urban areas (2). In Alabama, there were a 
total of 759 vehicle-pedestrian crashes resulting in 283 fatalities and incapacitating injuries, with another 387 pedestrians 
injured, with 84% being reported in urban areas (3). 

To ease pedestrian movements, sidewalks are usual constructed along roadways to allow for those walking a quality, 
weather restraint surface to make their trip. Additionally, the presence of a sidewalk provides legitimacy to the walking 
trip and a perceived level safety upon which the pedestrian might use to justify making their trip. However, even with a 
sidewalk in place, there is still the possibility of a vehicle-pedestrian crash to occur.  

This paper provides a statistical analysis of crashes that occurred in two Alabama cities where the pedestrian crashes are 
divided into those where a sidewalk was present and those where a sidewalk was not present. The goal of the paper is to 
determine the difference in crash experiences and variables that contribute to vehicle-pedestrian crashes associated with 
the presence of the sidewalk. The paper uses binary logistic regression to develop models of pedestrian crashes and 
evaluates the models to determine factors that contribute the pedestrian crashes. The paper concludes that pedestrian 
crashes often happen in the evenings, with low lighting and visibility levels, independent of the presence of sidewalks. 

1.2 Related Literature 
The study of vehicle-pedestrian crashes has been examined by several researchers looking at different aspects of the 
problem. Several statistical methodologies have been used to model pedestrian crashes including mixed logit, logistic 
regression, ordered probit, and binary logistic regression (4,5,6,7,8,9,10,11). 

Studies have concluded that increases in speed lead to more severe crashes while increases in lanes and width of lanes 
tended to decrease the number of crashes (12,13,14). The urban environment has been studied and determined that 
land-use and transit availability have an influence on pedestrian crashes, typically negatively as walking friendly 
development and increased transit tend to have higher instances of pedestrian crashes, however it is often assumed that 
these higher numbers are actually lower on a comparative rate bases to the exposure of pedestrian and the number of 
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people choosing to walk (15,16,17,18,19,20). Other factors such as traffic operations have been shown to decrease crashes 
(21,22).  

Studies by McMahon and colleagues have concluded the pedestrian crashes tend to be higher in locations where 
sidewalks do not exist versus locations where sidewalks are present (23,24). Another paper by Retting et al. concluded 
that sidewalks can reduce the risk of pedestrian crashes in residential areas (25). With regard to residential areas, several 
studies indicated that traffic calming devices, intended to reduce the speed of vehicles, also can reduce the number of 
pedestrian crashes because many were caused by children who often do not accurately gauge speed of vehicles and tend to 
cross mid-block (26,27,28,29). Pedestrian visibility was often cited as an issue in crashes and the installation of lights for 
nighttime pedestrians was presented as means to improve safety (30,31).  

This study performs a binary logistic statistical analysis to test the impact of the presence of sidewalks on pedestrian crash 
severity, which has not been covered in the related literature on pedestrian crashes. 

2. Methodology 
To analyze the differences in crashes between those that occur with a sidewalk present and those that occur without a 
sidewalk present, a statistical model will be used to analyze the data. The statistical modeling tool used in this study is 
Binary Logistic Regression using IBM SPSS Statistics 24.  

2.1 Logistic Regression 
The goal of using binary logistic regression is similar to any type of modeling analysis, to find the best fit and the most 
parsimonious model. The distinguishing characteristic of the logistic regression model from a linear regression model is 
the response variable. In the logistic regression model, the response variable is binary or dichotomous (32). The difference 
between logistic and linear regression is reflected both in the choice of a parametric model and in the assumptions. Once 
this difference is accounted for, the methods employed in an analysis using logistic regression follow the same general 
principles used in linear regression analysis. 
2.2 Binary Logistic Regression  
Binary logistic Regression estimates the probability that a characteristic is present (e.g. estimate probability of "success") 
given the values of explanatory variables (32).  

The definitions of the variables Y and X are as follows: 

Let Y, for any subset i, be a binary response variable such that Yi = 1 if the trait is present in observation and Yi = 
0 if the trait is not present in observation.  

Let X = (X1, X2, ..., Xk) be a set of explanatory variables which can be discrete, continuous, or a combination. xi is 
the observed value of the explanatory variables for observation.  

For our analysis, the response variable will be Yi = 1 when aa crash with a certain severity is observed and Yi = 0 if the 
alternate severity is recorded. The explanatory variables X1, X2, ..., Xk will be collected from the crash analysis database as 
an attempt to define the dependent variable. 

Setting up these variables gives us the model (33): 

 πi=Pr(Yi=1|Xi=xi)=exp(β0+β1xi)1+exp(β0+β1xi)πi=Pr(Yi=1|Xi=xi)=exp(β0+β1xi)1+exp(β0+β1xi) (1) 

or, 

logit(πi)=log(πi1−πi)=β0+β1xi=β0+β1xi1+…+βkxiklogit(πi)=log(πi1−πi)=β0+β1xi=β0+β1xi1+…+βkxik  (2) 

Several assumptions must be made for the model to be correct. Firstly, the data set Yi must be independently distributed, 
that is, the cases are independent of one another. In addition the distribution of Y is Bin(ni, πi), i.e., binary logistic 
regression model assumes binomial distribution of the response (32). The dependent variable doesn’t need to be normally 
distributed, but it typically assumes a distribution from an exponential family. The data set does not assume a linear 
relationship between the dependent and independent variables, but it does assume linear relations between the logit and 
response variables; logit(π) = β0 + βX (33). Homogeneity of variance doesn’t need to be satisfied. Errors need to be 
independent but not normally distributed. Due to the fact that maximum likelihood estimation is used rather than ordinary 
least squares to estimate its parameters, the model relies on large-sample approximations.  

To determine the goodness of fit for the model, various statistics must be considered, namely the chi-square, deviance G2 

and likelihood ratio test and statistic, ΔG2 and the Hosmer-Lemeshow test and statistic. For estimating the parameters, the 
maximum likelihood estimator (MLE) for (β0, β1) is obtained by finding (β^0,β^1)(β^0,β^1) that maximizes (33): 

L(β0,β1)=∏i=1Nπyii(1−πi)ni−yi=∏i=1Nexp{yi(β0+β1xi)}1+exp(β0+β1xi)  (3) 

3. Results 
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3.1 Data Preparation 
The data used in this analysis were extracted from the Critical Analysis Reporting Environment (CARE) maintained by 
the Center for Advance Public Safety at the University of Alabama. Pedestrian crash data was obtained for Huntsville and 
Montgomery, two cities similar in size, in Alabama. Both cities are around 200,000 in population and sidewalks 
availability is limited to selected locations throughout the cities, such that there are several areas without and without 
sidewalks.  

To perform the analysis and generate a sufficient amount of data, pedestrian crash data from both cities were aggregated 
and organized into two datasets, “Sidewalk Present” and “No Sidewalk Present”. There were two levels in the response 
variable to examine the severity of the pedestrian crash, severe indicating that a fatality or incapacitating injury occurred 
and not severe indicating a minor injury or no injury occurred.  

3.1.1 Sidewalk Present 

For data analysis purposes, any incident that occurred within 20 meters of a sidewalk was defined to be a sidewalk present 
crash. An assumption was made that the presence of a sidewalk implied that the pedestrian was using the sidewalk 
correctly as there is no mechanism to be certain that the pedestrian was not walking in the roadway near a sidewalk. The 
total number of crashes in this group from both cities is 149. 

3.1.2 No Sidewalk Present 

All pedestrian crash data that was not included in the Sidewalk Present group was analyzed as No Sidewalk Present 
crashes. Total number of crashes in this group from both cities is 120. From an exposure metric, the number of crashes that 
occurred without the presence of a sidewalk is interesting because these areas would be ones where pedestrian traffic 
would not typically be expected as there are no sidewalks to encourage walking trips. In addition, areas without sidewalks 
experience difference in roadway lighting, shoulders availability, edge of pavement maintenance and ditch placement. 

3.2 Contributing Circumstances 
When examining the pedestrian crashes, there are a number of different elements that can contribute the crash, as recorded 
by the officer completing the crash report. The crash could have been the fault of the driver or the pedestrian. For the 
analysis, the primary contributing circumstance has been divided into two groups, pedestrian at-fault and driver at-fault as 
shown in Table 1. 

 

Table 1. Primary Contributing Circumstance for Pedestrian Crashes 

Driver's fault Pedestrian's fault 

Driving Under the Influence Improper Crossing 

Aggressive Operation Lying or Sitting in the roadway 

Failed to Yield Right of Way Pedestrian Under the Influence 

Not Visible   

Other - No Improper Movement   

Swerved to Avoid Vehicle   

Wrong Side of Road   

Failed to Yield the Right of Way   

Failure to Obey Sign   

Followed too Closely   

Misjudge Stopping Distance   

Traveling Wrong Way   

Unseen Object/Person   

Vision Obstructed   
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3.3 Model Development 
The statistical analysis process requires a number of steps to perform. Each step includes a selection of variable and 
provides summary statistics to evaluate the model. The results from the step methodology can be interpreted using the 
following matrix shown in Table 2. 

 

Table 2. Step Model Selection Matrix 

 Predicted 
Observed Not Severe Severe 

Not Severe Model is Predicting Accurately Acceptable 

Severe Not Acceptable Model is Predicting Accurately 

 

The horizontal axis is the predicted values from the analysis and the vertical axis compares the results to the observed 
condition. The node “Severe x Severe” and “Not Severe x Not Severe” are cases in which the model is accurately 
predicting the observed case. When the model is predicting a severe case and the observation is also a severe case, it is 
concluded that the model is predicting accurately. When the prediction suggests a severe case but the observation is not 
severe (“Severe x Not Severe”) no issue is raised because this creates a more conservative prediction and builds in a factor 
of safety. However, the case that is predicted to be not severe but is observed as severe (“Not Severe x Severe”) is 
underestimating the safety of the section. Therefore the combination which produces the least liberal (or most 
conservative) case is to be chosen as it has the highest factor of safety. 

The other value that was involved in the model development task was the overall percentage correct. If multiple steps 
have the same level of safety, i.e. the lowest amount of underestimated cases, the overall model accuracy percentage is 
compared to select the most appropriate combination of variables. 

3.3.1 Sidewalk Present 

Table 3 shows the severe and not severe cases in each step using different variables for locations where there is a 
sidewalk present. The observed and predicted values are generated and the overall percentage correct shows how 
accurately the model was predicting the observed condition. The steps are various iterations of combinations of 
applicable variables in order to determine the best suited combination to most accurately predict the observed case. 

 

Table 3. Best Step Option Model, Sidewalk Present 

Observed 

Predicted 

Percentage Correct 

Crash Severity 

Not Severe Severe 

Step 6 Crash Severity Not Severe 89 13 87.3 

Severe 30 17 36.2 

Overall 
Percentage 71.1 

 

Using both values identified and Table 3, the model from step 6 was selected for use in this particular analysis. The 
specific variables and results of the model obtained from the software are shown in Table 4. 
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Table 4. Results from SPSS, Sidewalk Present 

Estimat
e 

Standard 
Error 

Odds ratio 
(OR) 95% C.I. 

Time 
10:00 
AM 

Reference 
Category 

Lowe
r Upper 

Time(1) 4:00 PM -0.017 0.661 0.983 0.269 3.588 

Time(2) 7:00 AM -1.101 0.567 0.333 0.109 1.01 

Time(3) 7:00 PM 1.135 0.846 3.11 0.592 16.339 

Lighting Condition Darkness 
Reference 
Category 

Lighting 
Condition(1) Daylight 0.817 0.585 2.264 0.72 7.125 

Weather Condition Clear 
Reference 
Category 

Weather 
Condition(1) Rain 1.044 0.732 2.84 0.676 11.933 

Causal Unit Age 17 to 24 
Reference 
Category 

Causal Unit Age(1) 25 to 54 1.163 0.941 3.199 0.506 20.228 

Causal Unit Age(2) 55 to 74 0.421 0.621 1.524 0.451 5.145 

Causal Unit Age(3) CU is No 0.408 0.849 1.503 0.285 7.938 

Not at fault Age 0 to 15 
Reference 
Category 

Not at fault Age(1) 16 to 25 0.132 1.53 1.141 0.057 22.881 

Not at fault Age(2) 26 to 64 -1.388 1.608 0.25 0.011 5.841 

Not at fault Age(3) 
65 Years 
+ -0.389 1.502 0.678 0.036 12.859 

Not at fault Age(4) N/A 0.542 1.697 1.719 0.062 47.84 

Causal Unit Gender Female 
Reference 
Category 

Causal Unit 
Gender(1) Male 1.209 1.714 3.351 0.117 96.326 

Causal Unit 
Gender(2) 

Unknow
n 1.861 1.657 6.428 0.25 

165.38
2 

Roadway Curvature Curve 
Reference 
Category 

Roadway 
Curvature(1) Other 1.955 1.708 7.067 0.249 

200.82
9 

Roadway 
Curvature(2) Straight 0.154 0.573 1.166 0.379 3.588 

Constant -3.304 1.228 0.037 

 

From the data presented in Table 4, the odds ratios show the odds that a severe crash will occur in the variable data set 
compared to a reference category. For example, in the light condition, the odds ratio says that a severe incident is 
approximately 2.26 times more likely to occur in darkness than in daylight. This result makes sense because of the 
difficulty in drivers seeing individuals walking the evening and during dark periods. This result coincides with the time of 
day odds ratio that shows a much higher likelihood of being in a severe crash after 7:00 PM in the evening. A similar odds 
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ratio is developed for clear versus rainy weather condition, indicating a much higher likelihood that individuals will be 
walking when the weather is nice and therefore the potential exposure is greater for individuals to be in a severe crash. For 
the casual age groups, 25 to 54 has an OR of 3.2, but when looking at the reference category and the other variables, the 
overall number of drivers in Huntsville from this population are likely influencing the number of severe crashes with 
pedestrians as the reference category is relatively small, 17 to 24, and the other groups have a larger number of potential 
drivers than the reference group and tend to drive more miles. For the individuals likely to be involved in a crash as a 
pedestrian, the most likely age range is 16 to 25. This is also logical as these individuals often take greater risks. 

3.3.2 No Sidewalk Present 

Table 5 shows the severe and not severe cases in each step using different variables for locations where there is not a 
sidewalk present. The observed and predicted values are generated and the overall percentage correct shows how 
accurately the model was predicting the observed condition. The steps are various iterations of combinations of applicable 
variables in order to determine the best suited combination to most accurately predict the observed case. 

 

Table 5. Best Step Option Model, No Sidewalk Present 

Observed 

Predicted 

Percentage 
Correct 

Crash Severity 

Not Severe Severe 

Step 3 Crash Severity Not Severe 46 5 90.2 

Severe 8 25 75.8 

Overall Percentage 84.5 
 

Using both values identified and Table 5, the model from step 3 was selected for use in this particular analysis. The 
specific variables and results of the model obtained from the software are shown in Table 6. 

 

Table 6. Results from SPSS, No Sidewalk Present 

   
 

Estimate 
Standard 

Error 
Odds Ratio 

(OR) 
 

95% C.I. 

      Lower Upper 

Day of Week(1) Weekend  -1.478 .155 .228 .030 1.746 

Time 10:00 AM 
Reference 
Category 

 
.541 

   

Time(1) 4:00 PM  -38.829 .997 .000 .000 . 

Time(2) 7:00 AM  -1.385 .158 .250 .037 1.710 

Time(3) 7:00 PM  -.483 .770 .617 .024 15.616 

Lighting(1) Daylight  .172 .874 1.188 .141 9.989 

Weather(1) Rain  -22.306 .999 .000 .000 . 

Locale Open Country 
Reference 
Category 

 
.334 

   

Locale(1) Residential  .774 .588 2.168 .131 35.785 

Locale(2) Shopping  -1.129 .221 .323 .053 1.970 

CUPedMan Entering 
Reference 
Category 

 
.690 

   

CUPedMan(1) N/A  .782 .389 2.186 .370 12.931 

CUPedMan(2) Walking  20.176 .998 578642084 .000 . 
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V2 Age 15 to 34 
Reference 
Category 

 
1.000 

   

V2 Age(1) 45 to 64  39.677 .998 1704627395 .000 . 

V2 Age(2) 65 Years +  -38.611 .998 .000 .000 . 

CUGen Female 
Reference 
Category 

 
.819 

   

CUGen(1) Male  19.429 .998 274131915 .000 . 

CUGen(2) Unknown  18.928 .998 166089394 .000 . 

CUCurveGra Curve 
Reference 
Category 

 
.810 

   

CUCurveGra(1) Other  -80.497 .997 .000 .000 . 

CUCurveGra(2) Straight  .702 .516 2.018 .242 16.833 

Constant   4.446 1.000 85.251   

 

From the data presented in Table 6, the odds ratio show that the odds a severe crash will occur in the variable data set 
compared to the reference category. For example, weekends are more likely to have a pedestrian crash when no sidewalk 
is present. This could indicate that more individuals are walking on roadways without sidewalks during the weekends. In 
addition, the data show that during even hours, after 7:00 PM, during non-daylight hours when it is not raining, the 
likelihood of being involved in a severe pedestrian crash are higher. These conclusions make sense conceptually, as the 
combination of darkness, nighttime and weekend walking without sidewalks all tend to lead to higher severity pedestrian 
crashes.  

The additional factor of cause, pedestrian under the influence, is a contributing circumstance to increase these crashes as 
the presents of alcohol or drugs impairs judgement and can lead pedestrians to attempt to cross when there is not a 
sufficient gap to allow a pedestrian to cross the street or encourage safe walking along a roadway. Finally, residential 
locations where the roadways are curved tended to lead to higher crash severity for pedestrians. Again, this is logical as 
most individuals walking at night would be near their residence and the curvature of roadway would obscure the vision of 
the driver to reduce the reaction time to avoid the crash. 

4. Discussion 
4.1 Comparison 
One difference between the factors for when sidewalks are present versus when sidewalk are not present is that the 
sidewalk model includes the driver while the no sidewalk present has variable related to the pedestrian. This indicates that 
the models are assigning different causal units based on the presence of the infrastructure. When sidewalks are present, the 
crashes are caused by the driver, or at least attributed to the driver by the reporting officer’s opinion. Alternatively, when 
sidewalks are not present, the pedestrian is reported to be responsible for the crash at a much higher and statistically 
significant level. 

4.2 Conclusions 
This paper examined pedestrian crash characteristics for severe versus not severe crashes for situations when a sidewalk is 
present and those when a sidewalk is not present. In both instances, higher severity pedestrian crashes tended to occur in 
the evening hours, during periods of darkness. This conclusion is important because driver education can be introduced to 
help expose this issue make drivers aware that pedestrians are out walking during evening hours, and not to assume the 
because of the hour that pedestrians will not be present along the roadways. 

In both sidewalk present and no sidewalk present scenarios, males tend to have a higher likelihood of being in a severe 
pedestrian crash. This may be attributed to the comfort level of males walking during the evening and darkness hours or 
may be a reflection of the risk taking attitudes, especially when the presence of alcohol or drugs might be a factor. 
Additionally, walking on curved roadways was seen in both instances to increase severity as the sight distance is limited. 
Interesting to note, that the crashes tend to be more severe in residential neighborhood when sidewalks are not present 
during the weekends; indicating that individuals might be more likely to feel comfortable walking without a sidewalk in 
residential locations than in commercial areas. 

Overall, the comparison indicated that the presence of sidewalks does not lead to an extreme difference between the 
factors that influence the severity of pedestrian crashes in these two case study cities. Generally, pedestrians are more 
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likely to be involved in a severe crash when walking during evening hours when the weather is good and visibility is low 
due to lighting conditions. 
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Abstract

In this paper, we deal with the estimation of the reliability R = P(Y < X) where X, a unit strength, and Y , a unit stress, are

independent exponentiated Weibull random variables. The maximum likelihood and Bayesian methods are used to make

inference about R. We obtain the Baysian estimator using Lindely’s procedure under squared error loss and LINEX loss

functions with gamma prior for the unknown model parameters. The asymptotic and bootstrap confidence intervals are

obtained as well as the credible interval for R is constructed in view of the empirical Bayesian procedure. For illustrative

purposes, analysis of real data sets is presented. Mont Carlo simulations are carried out to compare the performances of

the different estimators.

Keywords: maximum likelihood estimation, stress-strength model, Lindely’s approximation, asymptotic confidence in-

terval, bootstrap intervals, credible interval

1. Introduction

We consider the inference on the reliability R = P(Y < X) of a system where X, a unit strength, and Y , a unit stress, are

independent exponentiated Weibull random variables. This function means that R is the probability that a system is strong

enough to overcome the stress imposed on it. The reliability parameter R is a measure of a system performance. Birnbaum

(1956) who was introduced the main idea of this area of research. The stress-strength model has wide applications in

several fields. For example, in engineering, X can represent the strength of a system structure and Y represents the stress

due to environmental conditions imposed on it. Information about the mechanical reliability of system design can be

obtained prior the production through stress- strength model. This information can decrease the costs of production.

Other example, in biology, R can be a measure of the difference between two populations and has applications in many

areas. When X is a treatment group and Y represents a control group, R refers to a measure of the treatment effects. For

details, see Hauk et al. (2000), Reiser (2000) and Wellek (1993). Due to the practical importance, the estimation of R
has attracted the attention of several authors who considered several distributions such as exponential, normal, Weibull,

generalized exponential etc.. Among of other works deal with inferences about R: Mahdizadeh (2018), Sarhan et al.

(2015), Rao et al. (2016), Jovanovic and Rajic (2014), Raqab et al. (2008), Weerahndi and Johnson (1992), Constantine

et al. (1986), Rezaei et al. (2010). Our aim in this research is to focus on inferences for R = P(Y < X) when X and Y are

two independent but not identical distributed random variables with the exponentiated Weibull (EW) distribution. We use

several estimation methods: classical and Bayesian for point estimation and asymptotic confidence, bootstrap confidence

intervals and credible interval for interval estimation. The performances of Bayes and non-Bayes methods are compared

by analysis of real data sets and Mont Carlo simulations through computed the mean square error of different estimators

and average lengths and coverage probability of different estimating intervals. The exponentiated Weibull random variable

has a cumulative distribution function

F(x) = (1 − e−xα )θ (1)

and the corresponding probability density function (pdf)

f (x) = αθxα−1e−xα (1 − e−xα )θ−1, x > 0, α and θ > 0. (2)

Here α and θ are shape parameters. We use the abbreviation EW(α, θ) to denote the exponentiated Weibull distribution

with density cited above. This distribution has been introduced by Mudholkar and Srivastava (1993). The EW family

includes many important distributions. For examples, for θ = 1, it represents Weibull distribution, for α = 1 , it represents

the exponentiated exponential distribution. For α = 2, it represents the one-parameter Burr type-X distribution as well

as a generalized Rayleigh distribution. Furthermore, The EW distribution has a convenient structure of its distribution
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function that can be used quite adequately and effectively in analyzing several lifetime data. The article is organized

as follows: In Section 2, we consider the maximum likelihood estimation. In Section 3, we derive different confidence

intervals estimation for R. Section 4 proposes Bayesian approximation technique to get the Bayesian estimation for R.

Section 5, adopts empirical Bayesian procedure to obtain a credible interval estimation for R. Analysis of real data sets is

given in Section 6. In Section 7 simulation study is carried out, and Section 8 concludes the paper.

Now, we assume that X follows EW(α1, θ1) and Y follows EW(α2, θ2). Our interesting value is the reliability param-

eter R defined by

R = P(Y < X) = EX(FY (x)).

Using this form with equation (2), we get

R = α1θ1

∫ ∞
0

xα1−1e−xα1
(1 − e−xα1

)(θ1−1)(1 − e−xα2
)θ2−1)dx.

Applying the series expansion (1 − z)a =
∑∞

i=0
(−1)iΓ(a+1)zi

Γ(a+1−i)i! ,on the last two terms of the integrand with some mathematical

manipulations, we get, finally, the form of R as

R = θ1Γ(θ1)Γ(θ2 + 1)

∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+ j+k(i + 1)
−α1(k α2

α1
+1)

i! j!k!Γ(θ1 − i)Γ(θ2 + 1 − j)
Γ(k
α2

α1

+ 1). (3)

Alternatively, we assume that α1 = α2 = α and then the reliability parameter R can be obtained as

R =
θ1

(θ1 + θ2)
. (4)

The assumption of this form may be associated with many practical situations. If θ1 = θ2, R = 0.5, that is X and Y are

independent and identically distributed and there is an equal chance that the strength is greater than stress. When θ1 and

θ2 are estimated the value of R is simply estimated using equation (4). We remark that equation (4) does not contain α but

θ1 and θ2 are functions of α and hence R depends on α. However, if α is (estimated) already known, the estimators of θ1
and θ2 are obtained and hence so does the estimator of R.

2. Maximum Likelihood Estimation

Suppose x = {x1, x2, . . . , xn1
} and y = {y1, y2, . . . , yn2

} be two random samples taken from EW(α, θ1) and EW(α, θ2),

respectively. The observed value xi represents the strength of i− th component and observed value yi represents the stress

acting on it. Based on these observed samples, the likelihood function of α, θ1 and θ2 is

L(x, y|α, θ1, θ2) ∝ αn1+n2θn1

1
θn2

2
e−(T1+T2) (5)

The log-likelihood function, l, is

l ∝ nlnα + n1lnθ1 + n2lnθ2 − T1 − T2 (6)

where

T1 =

n1∑
i=1

[xαi − (α − 1)lnxi − (θ1 − 1)lnui],

T2 =

n2∑
i=1

[yαi − (α − 1)lnyi − (θ1 − 1)lnvi],

ui = 1 − e−xαi , vi = 1 − e−yαi and n = n1 + n2

and the estimating equations can be obtained as

n
α
− 1

α
(p1 − q1) + θ1 p2 + θ2q2 − (p2 + q2) = 0, (7)

n1

θ1
+

n1∑
i=1

lnui = 0, (8)
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n2

θ2
+

n1∑
i=1

lnvi = 0 (9)

where

p1 = p1(α) =

n1∑
i=1

(xαi − 1)lnxαi , p2 = p2(α) =

n1∑
i=1

u−1
i xαi e−xαi lnxi,

q1 = q1(α) =

n2∑
i=1

(yαi − 1)lnyαi , q2 = q2(α) =

n2∑
i=1

v−1
i yαi e−yαi lnyi.

From equations (8) and (9), we obtain the ML estimators:

θ̂1(α̂) = n1/

n1∑
i=1

lnu−1
i , θ̂2(α̂) = n2/

n2∑
i=1

lnv−1
i (10)

where α̂ can be obtained as the solution of the nonlinear equation

1

α
(n − p1 − q1) = n1 p2(

n1∑
i=1

lnui)
−1 + n2q2(

n2∑
i=1

lnvi)
−1 + (p2 + q2)

that can be rewritten in the form

g(α) = α (11)

where g(α) =
n−p1−q1

p2[1+n1(
∑n1

i=1
lnui)−1]+q2[1+n2(

∑n2
i=1

lnvi)−1]
.

The ML estimator, α̂, of α can be obtained from equation (11) by using a simple iterative technique as g(α(i)) = α(i+1),

where α(i) is the j− th iterate of α̂. The iterations should be finished when the absolute value of (α(i)−α(i+1)) is sufficiently

small. Once α̂ is obtained, we get θ1 and θ2 using equations (10) and hence the MLE of R is given by

R̂M = θ̂1/(θ̂1 + θ̂2) (12)

on the basis of the invariance property of the MLE.

3. Confidence Intervals

Although R̂M can be obtained in explicit form, it is difficult to obtain the exact distribution of it. Hence, we mainly depend

on the asymptotic distribution of R̂M to construct an asymptotic confidence interval (ACI) of R. We also consider two

different parametric bootstrap confidence intervals.

3.1 Asymptotic Confidence Interval

From the asymptotic distribution of γ̂ = (θ̂1, θ̂2, α̂)′ we derive the asymptotic distribution of R̂M and hence we obtain the

ACI of R. The MLE of γ = (θ1, θ2, α)′ is asymptotically normal with mean of true γ and variance-covariance matrix

I−1(γ) = (ai j(γ))
−1 where I−1(γ) is the inverse of the Fisher information matrix I(γ) = −E( ∂2l

∂γi∂γ j
), i, j = 1, 2, 3. I(γ) is

consistently estimated by I(γ̂) where γ̂ is the MLE of γ. The variance-covariance matrix can be written in terms of its

elements as the inverse of the matrix

(ai j) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
where the elements ai j for i, j = 1, 2, 3 are the negative of second derivatives of the log-likelihood function given by

equation (6); That is,

a11 =
n1

θ2
1

, a22 =
n2

θ2
2

,

a33 =
1

α
(g1 + g2) − 1

α2
(p1 + q1 − n) − (θ1 − 1)h1 − (θ2 − 1)h2,

a12 = a21 = 0, a13 = a31 = −p2, a23 = a32 = −q2. (13)

where p1, q1, p2, q2 are defined in equation (7),

g1 = g1(α) =

n1∑
i=i

(xαi lnxi + xαi − 1)lnxi,
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g2 = g2(α) =

n2∑
i=i

(yαi lnyi + xαi − 1)lnyi,

h1 = h1(α) =

n1∑
i=i

(1 − ϕi − xαi )ϕi(lnxi)
2,

h2 = h2(α) =

n2∑
i=i

(1 − ψi − yαi )ψi(lnyi)
2,

ϕi = u−1
i xαi e−xαi and ψi = v−1

i yαi e−yαi .

The MLE is R̂M = θ̂1/(θ̂1+ θ̂2) as given by equation (12), is asymptotically normally distributed with mean R and variance

σ2
R =
∑2
=1

∑2
j=1
∂R
∂θi
∂R
∂θ j

I−1
i j (γ) (Rao 1973) which is consistently estimated to be

σ2
R =

1

J(θ1 + θ2)4
[(a11a33 − a2

13)θ21 − 2a13a23θ1θ2 + (a22a33 − a2
23)θ22] (14)

where J = a11a22a33 − a11a2
23 − a22a2

13.

Remembring that all the above values of var(R̂M) = σ2
R is computed at the MLE of the parameters θ1, θ2 and α. Therefore,

an asymptotic 100(1 − τ)% confidence interval, ACI, for R can be obtained as

[R̂M + zτ/2σR, R̂M − zτ/2σR]. (15)

where zk is the k− th quantile of the standard normal distribution. A better of such confidence interval may be obtained in

cases of large sample sizes. For small sample sizes, we adopt the bootstrap confidence interval in the following.

3.2 Bootstrap Confidence Intervals

In this section, we propose the use of the following method to generate parametric bootstrap samples, suggested by Efron

and Tibshirani (1998), of R, starting from the given independent random samples x and y obtained from EW(α, θ1) and

EW(α, θ2), respectively. We employ the percentile bootstrap and Student’s t bootstrap confidence intervals for R. The

steps of the method to construct the bootstrap confidence interval for R are summarized in the following steps:

Step 1. Given a random sample x = {x1, x2, . . . , xn1
} and y = {y1, y2, . . . , yn1

}, calculate α̂, θ̂1 and θ̂2.

Step 2. Sample with replacement from the original sample using α, θ1 and θ2 computed in step 1. Generate a bootstrap

sample x∗ = {x∗1, x∗2, . . . , x∗n1
} using α̂ and θ̂1 and similarly generate y∗ = {y∗1, y∗2, . . . , y∗n1

} using α̂ and θ̂2.

Step 3. Calculate the same statistics α̂∗, θ̂1
∗

and θ̂2
∗

as in step 1 using the sample found in step 2. Compute the bootstrap

estimate of R using equation (12), say R̂∗.
Step 4. Repeat steps 2-3, N times, where N ≥ 1000, and put the bootstrap values R̂∗ in ascending order.

(i) Percentile bootstrap (p − boot) confidence interval

Define R̂∗(p) such that ( 1
N )
∑N

j=1 I(R̂∗j ≤ R̂∗(p)) = p where R̂∗(p) is the p percentile of {R̂∗j , j = 1, . . . ,N}, 0 < p < 1 and I(..)
is the indicator function.

The (1 − τ)100% p − boot confidence interval for R is given by

[R̂∗(τ/2), R̂∗(1 − τ/2)]. (16)

(ii) Student’s t bootstrap (t − boot) confidence interval

Consider the sample mean, ¯̂R∗ = (1/N)
∑N

j=1 R̂∗j , and sample variance, Var(R̂∗) = (1/N)
∑N

j=1(R̂∗j − ¯̂R∗)2 of {R̂∗j , j =

1, . . . ,N}. Define statistic T̂ ∗(p) such that (1/N)
∑N

j=1 I(
R̂∗j−R̂M√
Var(R̂∗)

≤ T̂ ∗(p)) = p where T̂ ∗(p) is the p percentile of { R̂∗j−R̂M√
Var(R̂∗)

, j =

i, . . . ,N}. The (1 − τ)100% t − boot confidence interval for R is given by

[R̂M + T̂ ∗(τ/2)

√
Var(R̂∗), R̂M − T̂ ∗(τ/2)

√
Var(R̂∗)]. (17)
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4. Bayesian Estimation of R

In this section, the Bayes estimates of R are obtained. We assume that the parameters θ1, θ2 and α have independent

gamma distributions, priori, each with density function Π(γ) ∝ γa−1e−bγ, γ > 0, for fixed values of a, b > 0 and γ is the

vector space (θ1, θ2, α)′. The joint posterior density function of θ1, θ2 and α can be obtained as

p(θ1, θ2, α|x, y) = k−1αn+a0−1θn1+a1−1
1

θn2+a2−1
2

e−δ1θ1 e−δ2θ2 × e−(b0+z)αe−c+d+z (18)

where δ1 = δ1(α) = b1 + d1, δ2 = δ2(α) = b2 + d2,

z =
∑n1

i=1
ln(xi)

−1 +
∑n2

i=1
ln(yi)

−1, c = c(α) =
∑n1

i=1
xαi +
∑n2

i=1
yαi ,

d1 = d1(α) =
∑n1

i=1
lnu−1

i , d2 = d2(α) =
∑n2

i=1
lnv−1

i , d = d1 + d2, n = n1 + n2,

ui and vi are given in equation (6) and k−1 is the normalizing constant. The Byes estimator of R under squared error loss

function is given by

R̂B =

∫ ∞
0

∫ ∞
0

∫ ∞
0

R(θ1, θ2)p(θ1, θ2, α|x, y)dαdθ1dθ2. (19)

In view of difficulty to evaluate the posterior expectation in equation (19) analytically, we employed Lindely’s approxi-

mation method to approximate the ratio of integrals in equation (19) and so we can obtain the estimate of R. Depending

on the ML estimators for α, θ1, and θ2, we use lindely’s approximation form expanding about these estimators.

Lindely’s approximation:

Lindely (1980) developed an approximate procedure to evaluate the ratio of two integrals such as that of the posterior

mean of a function w(λ) where

E(W(λ)|t) =
∫

w(λ)eq(λ)dλ/
∫

eq(λ)dλ (20)

where q(λ) = l(λ) + ρ(λ), l(λ) is the logarithm of the likelihood function and ρ(λ) is the logarithm of the prior density

of λ where λ is a vector of parameters, say λ = (λ1, λ2, . . . , λr). According to Lndely’s approximation, E(W(λ)|t) is

approximately estimated by the form

E(W(λ)|t) = [w+ (1/2)
∑

i

∑
j

(wi j + 2wiρi)σi j + (1/2)
∑

i

∑
j

∑
k

∑
l

li jkσi jσklwl]λ=λ̂ + termso f ordern−2orsmaller (21)

where w = w(λ), i, j, k, l = 1, 2, 3, . . . , r, wi = ∂w/∂λi, wi j = ∂
2w/∂λi∂λ j, li jk = ∂

3l/∂λiλ jλk, ρ j = ∂ρ/∂λ j, σi j is the (i, j)th
element in the inverse of the matrix {−li j} and λ̂ = (λ̂1, λ̂2, . . . , λ̂r) is the MLE of λ, viz, all these quantities are evaluated at

the MLE of the parameters. Consider the case of three parameters; that is when λ = (λ1, λ2, λ3).The posterior mean from

equation (21)) is reduced to

ŵB = E(W(λ)|t) = w + (w1δ1 + w2δ2 + w3δ3 + δ4 + δ5) + (1/2)[A(w1σ11 + w2σ12 + w3σ13)+

B(w1σ21 + w2σ22 + w3σ23) +C(w1σ31 + w2σ32 + w3σ33)]
(22)

where

δi =
∑3

j=1 ρ jσi j, i = 1, 2, 3,

δ4 = w12σ12 + w13σ13 + w23σ23, δ5 = (1/2)(w11σ11 + w22σ22 + w33σ33),

A = σ11l111 + 2σ12l121 + 2σ13l131 + 2σ23l231 + σ22l221 + σ33l331,

B = σ11l112 + 2σ12l122 + 2σ13l132 + 2σ23l232 + σ22l222 + σ33l332,

C = σ11l113 + 2σ12l123 + 2σ13l133 + 2σ23l233 + σ22l223 + σ33l333.

In our case, we have λ = (θ1, θ2, α) and w = w(θ1, θ2, α) = R as given in equation (4). To apply Lidely’s form of equation

(22), we first obtain the σi j elements of the inverse of the matrix {−li j}, i, j = 1, 2, 3. From the log-likelihood function

given in equation (5), we can obtain σi j as follows:

σ11 = J−1(a22a33 − a2
23), σ22 = J−1(a11a33 − a2

13), σ12 = J−1(a13a32 − a12a33) = σ21, σ13 = J−1(a12a23 − a13a22) = σ31,

σ23 = J−1(a13a21 − a11a23) = σ32,

where ai j, i, j = 1, 2, 3 are given by equations (13) and J is given in equation (14).

The quantities ρ j and li jk, i = 1, 2, 3 are obtained as

ρ1 = (a1 − 1)θ−1
1 − b1, ρ2 = (a2 − 1)θ−1

2 − b2, ρ3 = (a0 − 1)α−1 − b0,

l111 = 2n1θ
−3
1

, l222 = 2n2θ
−3
2

,
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l333 = α
−2( f1 + f2 + g1 + g2) − 2α−3(p1 + q1 − n) − 3α−1(k1 + k2) + (θ1 − 1)z1 + (θ2 − 1)z2,

l133 = l331 = h1, l233 = l332 = h2

where f1 =
∑n1

i=1
(xαi lnxαi + xαi − 1)lnxi, f2 =

∑n2

i=1
(yαi lnyαi + yαi − 1)lnyi,

z1 =
∑n1

1
[2ϕ3

i + 3(xαi − 1)ϕ2
i + (x2α

i − 3xαi + 1)ϕi](lnxi)
3,

z2 =
∑n2

1
[2ψ3

i + 3(yαi − 1)ψ2
i + (y2α

i − 3yαi + 1)ψi](lnyi)
3,

k1 =
∑n1

1
xαi (lnxi)

2, k2 =
∑n2

1
yαi (lnyi)

2,

h1, h2, g1, g2, ϕi, ψi, p1 and q1 are given in equation (13).

Then,

A = σ11l111 + σ33l331, B = σ22l222 + σ33l332, C = 2σ13l133 + 2σ23l233 + σ33l333, δ1 = J−1A1, δ2 = J−1A2, δ3 = J−1A3

where

A1 = (a22a33 − a2
23)[(a1 − 1)θ−1

1 − b1] + a13a32[(a2 − 1)θ−1
2 − b2] + a13a22[(a0 − 1)α−1 − b0],

A2 = a13a32[(a1 − 1)θ−1
1 − b1] + a11a33[(a2 − 1)θ−1

2 − b2] + a11a23[(a0 − 1)α−1 − b0],

A3 = −a13a22[(a1 − 1)θ−1
1 − b1] − a11a23[(a2 − 1)θ−1

2 − b2] + a11a22[(a0 − 1)α−1 − b0].

Moreover, w1 = t1, w1 = t2, w11 = t3, w22 = t4, w12 = t5, where

t1 = θ2(θ1 + θ2)−2, t2 = −θ1(θ1 + θ2)−2, t3 = −2θ2(θ1 + θ2)−3, t4 = 2θ1(θ1 + θ2)−3, t5 = 2θ1(θ1 + θ2)−3 − (θ1 + θ2)−2;

w3 = w33 = w13 = w23 = 0.

Also, δ4 = J−1a13a32t5, δ5 = 2J−1[(a22a33 − a2
23)t3 + (a11a33 − a2

13)t4].

Therefore, The Bayes estimator for R, under squared error loss function and LINEX loss function, using Lindely’s ap-

proximation can be obtained in what follows.

- Under squared error loss function

The Bayes estimator for R, denoted by R̂BS L, under squared error loss function can be evaluated by the form

R̂BS L = R + Φ + Ψ1t1 + Ψ2t2 (23)

where Φ = (1/2)t3σ11 + (1/2)t4σ22 + t5σ12, Ψ1 = δ1 + (1/2)(Aσ11 + Bσ21 +Cσ31),

Ψ2 = δ2 + (1/2)(Aσ12 + Bσ22 +Cσ32), A = σ11l111 + σ33l331, B = σ22l222 + σ33l332,

C = 2σ13l133 + 2σ23l233 + σ33l333.

All these values are evaluated at the MLEs of θ1, θ2 and α.

- Under LINEX loss function

Under LINEX loss function, the Bayes estimator of w = w(θ1, θ2, α) is given by

ŵB = −(1/s)lnE(e−sw|x, y), s � 0.

where

E(e−sw|x, y) =
∫ ∫ ∫

θ1,θ2,α
e−sw p(θ1, θ2, α|x, y)dθ1dθ2dα/

∫ ∫ ∫
θ1,θ2,α

p(θ1, θ2, α|x, y)dθ1dθ2dα.

We apply Lindely’s approximation on this integral form as were used to evaluate equation (20), to obtain

E(e−sw|x, y) = e−sw + Φ + Ψ1w1 + Ψ2w2 (24)

where Φ = (1/2)w11σ11 + (1/2)w22σ22 + w12σ12.

The values of w1, w2, w11, w22 and w12 can be obtained as follows:

w1 = −se−sRt1, w2 = −se−sRt2, w11 = se−sRQ1, w22 = se−sRQ2 and w12 = se−sRQ3 where Q1 = −(0.5)(sθ2θ−1
1 R + 2)t3,

Q2 = (0.5)(sR − 2)t4 and Q3 = θ
−1
2 t1 + (0.5)sRt3 − t4

The Bayes estimator for R, denoted by R̂BLL, under LINEX loss function can be evaluated by the form

R̂BLL = R − (1/s)ln(1 + sH). (25)

where H = H(θ1, θ2, α) = (0.5)Q1σ11 + (0.5)Q2σ22 + Q3σ12 − Ψ1t1 − Ψ2t2,

Keeping in mind that these values are evaluated at the MLEs of θ1, θ2 and α.
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5. Credible Interval

We know that the inference about R depends only on θ1 and θ2. However, the estimators of θ1 and θ2 depend on α, the

estimation of R can be accomplshed as soon as α is estimated and become known. Depending on the ML estimate of

α from the observed samples, we employed the empirical Bayesian procedure suggested by Lindely (1969) and used by

Awad and Gharaf (1986). They had estimated the prior parameters of θ1 and θ2 empirically. From the likelihood function

given in equation (5), one can see that U =
∑n1

1
ln(1 − e−xαi )−1 and V =

∑n2

1
ln(1 − e−yαi )−1 are sufficient statistics for

θ1 and θ2, respectively. We have the assumption that θ1 and θ2 have independent gamma priors as θ1 ∼ G(a1, b1) and

θ2 ∼ G(a2, b2). The empirical Bayes procedure suggests to take a1 = n1 + 1, b1 = U, a2 = n2 + 1, b2 = V as estimated

from the observed samples. When we adopt these empirical priors we get the posterior distributions θ1|x ∼ G(a1, b1) and

θ2|y ∼ G(a2, b2) where a1 = 2n1 + 1, b1 = 2U and a2 = 2n2 + 1, b2 = 2V . Therefore, we can get two independent chi-

squared random variables Q1 and Q2 as Q1 = 4θ1U ∼ χ2(2N1) and Q2 = 4θ2V ∼ χ2(2N2), N1 = 2n1 + 1 and N2 = 2n2 + 1.

The random variable Q = (N2Uθ1/N1Vθ2) ∼ F(2N1, 2N2), i.e. Q is F distributed random variable with 2N1 and 2N2

degrees of freedom. Hence, Q = (N2U/N1V)(R/1 − R) can be used as a pivotal quantity to obtain a 100(1 − τ)% CrI for

R. The lower and upper bounds of this interval can be obtained, respectively, as

L = F(2N1, 2N2; τ/2)
[N2u

N1v
+ F(2N1, 2N2; τ/2)

]−1
,U = F(2N1, 2N2; 1 − τ/2)

[N2u
N1v
+ F(2N1, 2N2; 1 − τ/2)

]−1
. (26)

It is worth to mention that this interval performs very well in terms of its length compared with the confidence intervals

in Section 3, as it is expected, when we apply to the real data as we will see in Section 6.

6. Data Analysis

For illustration purposes, we present a real data analysis of the strength of two types of data: (1) Single carbon fiber data

and (2) Jute fiber data. We apply the estimation methods, presented here, for R.

(1) Single carbon fibers data

We present a real data analysis of the strength data reported by Badar and Priest (1982). The data represent the strength

data measured in GPA (GigaPascal, GPA = KN/mm2, Kilonewten/squared millimeter, that it is used to measure tensile

strength of materials such as nylon, fiber, . . .,etc.). We consider the data of single carbon fibers that were tested under

tension at gauge lengths of 20 mm and 50 mm. The data sets are given as follows:

Data set 1 of length 20 mm: X (n1 = 69)

1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 2.063,

2.098, 2.140, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.359, 2.382, 2.426, 2.435, 2.478, 2.490, 2.514,

2.535, 2.554, 2.566, 2.570, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.773, 2.800, 2.809, 2.818, 2.821,

2.848, 2.880, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 3.128, 3.233, 3.433, 3.585.

Data set 2 of length 50 mm: Y (n2 = 65)

1.339, 1.434, 1.549, 1.574, 1.589, 1.613, 1.746, 1.753, 1.764, 1.807, 1.812, 1.840, 1.852, 1.852, 1.862, 1.864, 1.931,

1.952, 1.974, 2.019, 2.051, 2.055, 2.058, 2.088, 2.125, 2.162, 2.171, 2.172, 2.180, 2.194, 2.212, 2.270, 2.272, 2.280,

2.299, 2.308, 2.335, 2.349, 2.356, 2.386, 2.390, 2.410, 2.430, 2.431, 2.458, 2.471, 2.497, 2.514, 2.558, 2.577, 2.593,

2.601, 2.604, 2.620, 2.633, 2.670, 2.682, 2.699, 2.705, 2.735, 2.785, 3.020, 3.042, 3.116, 3.174.

Now we want to see whether the EW distribution can be used to fit these data sets or not. For this purpose we use the

graphical approach called Q-Q plot for each data set. Q-Q plots are commonly used to compare a data set to a theoretical

model. We construct the Q-Q plot by obtaining the points (Q(i), xi), i = 1, 2, ...,m where Q(i) = F−1(i/(m + 1), α̂, θ̂) and

xi is i − th order statistic of the given data, α̂ and θ̂ are the MLE of α and θ. For the given data set 1 and 2, we get the

MLEs α̂1 = 1.4543, θ̂1 = 23.5641 and α̂2 = 1.6242, θ̂2 = 24.5255, respectively. Hence, the shape parameters α̂1 and α̂2

of the distributions of the data sets are not very different. Therefore, the MLE, α̂, of common α is estimated to be 1.5224

and θ̂1 = 27.0128, θ̂2 = 20.2886. To support this claim, we also compute the log-likelhood values, lnL1(x, α̂1, θ̂1) and

lnL2(y, α̂2, θ̂2) (in case of α is not common, α1 � α2), for the distribution of the two data sets, to find lnL1 = −52.3765

and lnL2 = −36.4957. In case of α is common (α1 = α2 = α), we found that lnL1 = −53.0107 and lnL2 = −37.4773.

These support that we cannot reject the null hypothesis that α1 = α2 and hence the claim that the two shape parameters

for the distributions of thses data sets are equal, is justified. Figures 1 and 2 depict the Q-Q plots for both the data set

1 and 2. It is clear that the EW model fits quite well for both given data sets. This conclusion is also supported by the

Kolmogrov-Smirnov (K-S) tests where the K-S statistic values are 0.0843 and 0.0929 with associated p values are 0.6784

and 0.5959, respectively.

Based on the estimates θ̂1 and θ̂2, the ML estimate of R is R̂M = 0.5711 and the bootstrap estimate is R̂Boot = 0.5721.

The ACI, p-boot CI and t-boot CI, with 95% confidence level, for R and their lengths are reported in Table 1. To evaluate
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the Bayes estimates and credible interval, small values (0.001) for the hyper parameters of gamma prior densities were

considered to the vague prior information allow to get meaningful comparison with MLE of R. From the Bayes estimators

formulas in equations (23) and (25), the Bayes estimates of R is R̂BS L = 0.5704 and R̂BLL = 0.5736. We note that the

estimated value of R is greater than 0.5, implying that the carbon fibers with length 20 mm is stronger than carbon fibers

with length 50 mm. The 95% credible interval, CrI, for R, computed by the form given in the equation (26), and its length

are reported in Table 1. Note that the CrI region is highly shorter in length than the corresponding confidence intervals.

For bootstrap methods, the results are based on 5000 repeated samples.

Table 1. Confidence and credible intervals for R (single carbon fiber data)

ACI p-boot CI t-boot CI CrI

(0.4880, 0.6541) (0.4886, 0.6536) (0.4885, 0.6536) (0.4967,0.6142)

0.1661 0.1706 0.1663 0.1167

(2) Jute fibers data

These data sets are presented and studied by Xie et al. (2009). The data represent the breaking strength of Jute fiber at

two different gauge lengths. The data sets are given as follows:

Data set 1 of length 10 mm: X (n1 = 30):

693.73, 704.66, 323.83, 778.17, 123.06, 637.66, 383.43, 151.48, 108.94, 50.16, 671.49, 183.16, 257.44, 727.23, 291.27,

101.15, 376.42, 163.40, 141.38, 700.74, 262.90, 353.24, 422.11, 43.93, 590.48, 212.13, 303.90, 506.60, 530.55, 177.25.

Data set 2 of length 20 mm: Y (n1 = 30):

71.46, 419.02, 284.64, 585.57, 456.60, 113.85, 187.85, 688.16, 662.66, 45.58, 578.62, 756.70, 594.29, 166.49, 99.72,

707.36, 765.14, 187.13, 145.96, 350.70, 547.44, 116.99, 375.81, 581.60, 119.86, 48.01, 200.16, 36.75, 244.53, 83.55.

To check whether the EW distribution can be used or not to fit these data sets, we use the Q-Q plot and K-S tests. The

ML estimators for data sets 1 and 2 are α̂1 = 0.2703 and α̂2 = 0.2703, respectively, and hence the distributions of the

two data sets have the same shape parameters α1 = α2 = α. The ML estimate of the common shape parameter α is

α̂ = 0.2681 and hence θ̂1 = 62.1842, θ̂2 = 48.8899. The K-S statistic values are 0.1420 and 0.1376 with associated p
values are 0.5341 and 0.5737, respectively. Therefore, one cannot reject the hypothesis that the data sets follow the EW

distribution. Figures 3 and 4 show that the EW distribution fits well the tow data sets. For jute fiber data and under the

same considerations for Bayes estimates (cited in case of single carbon fiber data), we get the following estimators of R:

R̂M = 0.5598, R̂Boot = 0.5693, R̂BS L = 0.5582 and R̂BLL = 0.5725. We note that the estimated value of R is greater than

0.5, implying that the Jute fiber with length 10 mm is stronger than Jute fiber with length 20 mm. The ACI, p-boot CI and

t-boot CI as well as CrI and their lengths are reported in Table 2. The results using the bootstrap methods are obtained

over 5000 repeated samples.

Figure 1. Q-Q plot of the fitted EW distribution for data set 1(single carbon fiber data)

Table 2. Confidence and credible intervals for R (jute fiber data)

ACI p-boot CI t-boot CI CrI

(0.4448, 0.6944) (0.4379, 0.6958) (0.4434, 0.6958) (0.4755,0.6491)

0.2496 0.2579 0.2524 0.1736
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Figure 2. Q-Q plot of the fitted EW distribution for data set 2(single carbon fiber data)

Figure 3. Q-Q plot of the fitted EW distribution for data set 1 (jute fiber data)

Figure 4. Q-Q plot of the fitted EW distribution for data set 2 (jute fiber data)

For the two data sets, the MLE and Bayes estimator (under non informative priors) perform quite similarly, while the

length of the credible interval is the shortest compared with the corresponding confidence intervals obtained by other

methods.
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7. Simulation Study

A simulation study is carried out through some simulation experiments to see how the different estimation methods work

for different values of R = P(Y < X) using different sample sizes. We generate a set of 2000 X-samples from the EW(α, θ1)

and another set of 2000 independent Y-samples from the EW(α, θ2). We choose the sample sizes n1= 10, 20, 35 and 50

with combinations of the same values of n2. The parameter values of α is 0.75 (1.5) with different several values of θ1
and θ2 to represent different values of the reliability parameter R to be 0.25, 0.40, 0.50, 0.70, 0.90. From the sample, we

estimate α from equation (11) using a simple iterative algorithm. We employ the estimate of α to evaluate θ1 and θ2 using

equations (10). Consequently, we get the MLE, R̂M of R. For Bayesian estimation under squared error loss and LINEX

loss functions, small values (0.001) for the hyper-parameters of gamma prior densities are considered to get meaningful

comparison with MLE of R. We report the average mean squared errors (MSEs) of different estimators in Tables 3 and

4. We compute the 95% confidence interval based on asymptotic distribution of R̂M and the bootstrap, p-boot and t-boot,

confidence intervals as well as the credible interval. The average lengths and coverage probabilities (CPs) are reported for

95% confidence level in Tables 5 and 6.

From the results in Tables 3 and 4, some of points are observed from this simulation.

- All estimators perform quite well in terms of the MSEs for all sample sizes.

- The ML estimator works well even with small sample size. This show that the coincidence and consistency properties

of all estimators.

- The MSE of R̂BS L is the smallest comparing with that of the other estimators, especially for small sample sizes.

- The MSEs decrease as the sample size increases for all methods and for different values of R.

- For the same size of the samples (say, for samples in sizes (10,10) or in sizes (35,20) at different values of R), the MSEs

increase when 0 < R ≤ 0.5 and decrease when 0.5 < R ≤ 1 as R value increases through these two ranges.

- For small sample sizes, the MSEs of the different estimators in case of n1 � n2 is smaller than the MSEs in case of

n1 = n2.

Examining Tables 5 and 6, it is clear that:

- The average lengths of all intervals decrease as the sample size increases.

- The average lengths of the credible interval are smaller than that of the asymptotic and bootstrap confidence intervals

for all different values of R and different sample sizes.

- For the same size of the samples, at the values of R, 0 < R ≤ 0.5, the increasing values of R the increasing the average

lengths of different intervals and conversely when 0.5 < R ≤ 1.

- For small sample sizes, the average lengths of the different intervals in case of n1 � n2 is smaller than the lengths in case

of n1 = n2.

- The coverage probabilities of the bootstrap confidence intervals are able to preserve the nominal level even for small

sample sizes.

- The coverage probabilities of the asymptotic confidence intervals are slightly lower than the nominal level.

- The coverage probabilities of the credible intervals based on lack information a priori, are lower than the nominal level.

- In brief, the performances of the bootstrap confidence intervals are the best among the intervals taken into account here.

Also, the credible interval is the best in terms of the lengths of the intervals.

Other simulation results were also considered at α = 1.5 for the same sample sizes cited above. The results are not

reported here since they have a similar pattern to the results in Tables 3, 4, 5 and 6.

8. Conclusion

In this article, we studied the Bayesian and non Bayesian Inferences of the stress-strength parameter R = P(X > Y) when

X and Y both follow the exponentiated Weibull distribution. We employed the ML method to estimate the MLE of R.

The exact distribution of R is difficult to obtain and then we resorted to use the asymptotic distribution to compute the

asymptotic confidence interval. Parametric bootstrap procedure is conducted and evaluate the estimate of R as well as

different bootstrap confidence intervals are computed. We derived two Bayes estimates of R based on the independent

gamma priors, using the approximate Lindely’s procedure under squared error loss and LINX loss functions. Also, we

derived the credible interval using the empirical method of Lindely (1969) and Awad and Gharaf (1986). The simulation

results indicate that the Bayesian estimator under squared error loss function works the best even for small sample sizes.

87



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 7, No. 4; 2018

The credible intervals perform the best in terms of the average lengths of the intervals in both cases of n1 � n2 and n1 = n2

of the samples. The bootstrap confidence intervals are the best in terms of the nominal level taken into account in the

simulation. Using real data, we examine the different estimations over two actual data sets.

Table 3. MSEs for different estimates of R, n1 = n2

R (n1, n2) R̂M R̂Boot R̂BS L R̂BLL

(10,10) 0.0072 0.0074 0.0070 0.0069

0.25 (20,20) 0.0036 0.0038 0.0036 0.0034

(35,35) 0.0019 0.0020 0.0019 0.0019

(10,10) 0.0108 0.0120 0.0095 0.0107

0.40 (20,20) 0.0064 0.0059 0.0060 0.0063

(35,35) 0.0030 0.0033 0.0029 0.0029

(10,10) 0.0125 0.0130 0.0109 0.0129

0.50 (20,20) 0.0061 0.0062 0.0057 0.0062

(35,35) 0.0034 0.0036 0.0033 0.0035

(10,10) 0.0095 0.0096 0.0089 0.0097

0.70 (20,20) 0.0045 0.0046 0.0043 0.0045

(35,35) 0.0025 0.0025 0.0025 0.0025

(10,10) 0.0020 0.0020 0.0021 0.0020

0.90 (20,20) 0.0008 0.0010 0.0009 0.0008

(35,35) 0.0005 0.0006 0.0005 0.0005

Table 4. MSEs for different estimates of R, n1 � n2

R (n1, n2) R̂M R̂Boot R̂BS L R̂BLL

(10,20) 0.0072 0.0066 0.0070 0.0059

0.25 (35,20) 0.0023 0.0027 0.0030 0.0028

(35,50) 0.0018 0.0018 0.0018 0.0018

(10,20) 0.0092 0.0093 0.0083 0.0091

0.40 (35,20) 0.0047 0.0042 0.0045 0.0046

(35,50) 0.0028 0.0029 0.0027 0.0028

(10,20) 0.0081 0.0096 0.0073 0.0083

0.50 (35,20) 0.0049 0.0052 0.0046 0.0050

(35,50) 0.0030 0.0028 0.0029 0.0030

(10,20) 0.0067 0.0071 0.0043 0.0068

0.70 (35,20) 0.0038 0.0034 0.0036 0.0038

(35,50) 0.0018 0.0023 0.0018 0.0019

(10,20) 0.0015 0.0014 0.0018 0.0015

0.90 (35,20) 0.0008 0.0008 0.0008 0.0008

(35,50) 0.0005 0.0005 0.0005 0.0005
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Table 5. Average lengths for different intervals (CPs in brackets), n1 = n2

R (n1, n2) ACI CP p-boot CP t-boot CP CrI CP
(10,10) 0.3221 (0.9045) 0.3363 (0.9571) 0.3599 (0.9695) 0.2526 (0.8780)

0.25 (20,20) 0.2317 (0.9235) 0.2413 (0.9505) 0.2596 (0.9680) 0.1813 (0.9120)

(35,35) 0.1770 (0.9420) 0.1732 (0.9492) 0.1771 (0.9505) 0.1367 (0.9000)

(10,10) 0.4041 (0.9180) 0.4234 (0.9485) 0.4364 (0.9555) 0.3086 (0.9120)

0.40 (20,20) 0.2916 (0.9280) 0.2974 (0.9507) 0.3000 (0.9520) 0.2319 (0.9040)

(35,35) 0.2226 (0.9390) 0.2212 (0.9506) 0.2249 (0.9560) 0.1733 (0.9160)

(10,10) 0.4163 (0.9070) 0.4511 (0.9535) 0.4437 (0.9495) 0.3231 (0.9060)

0.50 (20,20) 0.3025 (0.9340) 0.3044 (0.9512) 0.2966 (0.9400) 0.2344 (0.9161)

(35,35) 0.2311 (0.9380) 0.2319 (0.9532) 0.2323 (0.9505) 0.1790 (0.9240)

(10,10) 0.3588 (0.9051) 0.3761 (0.9537) 0.3632 (0.9395) 0.2816 (0.9000)

0.70 (20,20) 0.2600 (0.9230) 0.2635 (0.9515) 0.2542 (0.9405) 0.2027 (0.8940)

(35,35) 0.1981 (0.9235) 0.1910 (0.9505) 0.1911 (0.9505) 0.1532 (0.9180)

(10,10) 0.1663 (0.9000) 0.1605 (0.9405) 0.1318 (0.9100) 0.1325 (0.8660)

0.90 (20,20) 0.1195 (0.9220) 0.1213 (0.9507) 0.1084 (0.9255) 0.0903 (0.8911)

(35,35) 0.0903 (0.9330) 0.0934 (0.9490) 0.0857 (0.9365) 0.0676 (0.9021)

Table 6. Average lengths for different intervals (CPs in brackets), n1 � n2

R (n1, n2) ACI CP p-boot CP t-boot CP CrI CP
(10,20) 0.2877 (0.9265) 0.3082 (0.9505) 0.3671 (0.9745) 0.2288 (0.8800)

0.25 (35,20) 0.2062 (0.9245) 0.1980 (0.9481) 0.1984 (0.9515) 0.1628 (0.8900)

(35,50) 0.1632 (0.9355) 0.1615 (0.9511) 0.1790 (0.9690) 0.1312 (0.9000)

(10,20) 0.3539 (0.9190) 0.3658 (0.9478) 0.4004 (0.9680) 0.2800 (0.8740)

0.40 (35,20) 0.2595 (0.9320) 0.2566 (0.9496) 0.2459 (0.9375) 0.2055 (0.8820)

(35,50) 0.2056 (0.9360) 0.2129 (0.9506) 0.2225 (0.9600) 0.1623 (0.9040)

(10,20) 0.3652 (0.9120) 0.3721 (0.9477) 0.4103 (0.9700) 0.2813 (0.8920)

0.50 (35,20) 0.2697 (0.9375) 0.2788 (0.9502) 0.2680 (0.9370) 0.2117 (0.8920)

(35,50) 0.2134 (0.9370) 0.2078 (0.9501) 0.2119 (0.9545) 0.1681 (0.9100)

(10,20) 0.3124 (0.8970) 0.3169 (0.9488) 0.3379 (0.9620) 0.2421 (0.8480)

0.70 (35,20) 0.2314 (0.9371) 0.2273 (0.9510) 0.2084 (0.9340) 0.1815 (0.9100)

(35,50) 0.1832 (0.9375) 0.1841 (0.9503) 0.1899 (0.9560) 0.1380 (0.9200)

(10,20) 0.1424 (0.8835) 0.1372 (0.9455) 0.1350 (0.9480) 0.1110 (0.8220)

0.90 (35,20) 0.1050 (0.9385) 0.1072 (0.9485) 0.0879 (0.9000) 0.0832 (0.9000)

(35,50) 0.1462 (0.9230) 0.1534 (0.9490) 0.1148 (0.8840) 0.0647 (0.8540)
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Abstract 
This article addresses the issue of misclassification in a single categorical variable, that is, how to test whether the 
collected categorical data are misclassified.  To tackle this issue, a pair of null and alternative hypotheses is proposed. A 
mixed Bayesian approach is taken to test these hypotheses. Specifically, a bias-adjusted cell proportion estimator is 
presented that accounts for the bias caused by classification errors in the observed categorical data. The chi-square test is 
then adjusted accordingly. To test the null hypothesis that the data are not misclassified under a specified multinomial 
distribution against the alternative hypothesis they are misclassified, the Bayes factor is calculated for the observed data 
and a comparison is made with the classical p-value.   

Keywords: Bayes factor, classification errors, Dirichlet’s distribution, Type II maximum likelihood 

1. Introduction 
The problem of misclassification is a major issue in observational epidemiologic studies. Not long after Bross (1954) 
pointed out that the non-differential misclassification would bias the corrected odds ratio toward the null hypothesis, 
Diamond and Lilienfeld (1962a-b) has extended the result to various types of epidemiologic studies. A 2 × 2 case-control 
studies with a single exposure variable being misclassified has been widely studied (Fleiss et al 2003, Chapter 17; 
Gustafson 2004, Chapter 5; Kleinbaum et al 1982, Chapter 12; Rothman et al 2008, Chapter 19). Yet, almost no authors 
pay attention to investigate the effect of misclassification in the analysis of a single categorical variable except Mote and 
Anderson (1965). Mote and Anderson primarily takes a deductive approach to account for the bias caused by the 
classification errors. Yet, the shortcoming with a deductive approach is that it does not take the sampling errors into 
consideration. As a result, the issue on how to deal with the misclassification in the analysis of categorical data still 
remains unsolved.  

This article addresses another important issue, that is, whether the observed categorical data are misclassified. Instead of 
using a deductive method, an inductive approach is employed to account for the misclassification bias embedded in the 
collected data. First, the inverse way is taken by equating the expected value of the estimated sample cell proportion with 
its population parameter conditional on that the misclassification probabilities are given. Then the bias-adjusted estimator 
is presented for the population cell proportion parameter by inverting the misclassification matrix. Second, the 
appropriate misclassification probabilities are calculated depending on if the misclassification is possibly made either 
from one category to all other categories (scenario I) or merely to its neighboring categories (scenario II). Third, in order 
to test the null hypothesis that the data are not misclassified under a specified multinomial distribution, a mixed Bayesian 
approach is used to calculate the Bayes factor and compare it with the traditional p-value.  

2. Methodology & Background 

Given that X is a categorical variable with K (≥ 3) categories and the data are collected through a simple random sampling 

of size N, where 	
�

�
K

i
inN

1

(table 1). The crude estimator, jp̂ , for the population cell proportion pj in the jth category is 

then given by  

    Nnp jj /ˆ � .          (1) 

Assume that jp̂ is distributed as a multinomial distribution with the population size N and the cell proportion of the jth 
category pj. It is well known that Eq. 1 is an unbiased estimator for the population cell proportion parameter, provided that 
the observed data are not misclassified (Agresti 2002). However, it is shown below by Eq. 4 that jp̂

 
of Eq. 1 is no longer 

unbiased for pj, once the observed data are misclassified.  
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Table 1. Observed data for the categorical variable X   

Variable Categories 

X 1 2 ……… K 

Observation n1 n2 ……… nK 

 
Suppose that the observed data are misclassified. Let wjk (j� k) be the misclassification probability of an observation 
belonging to the jth category being incorrectly classified into the kth category and wjj the correct classification probability 
that an observation belonging to the jth category being correctly classified into the jth category. Then, it is easily shown that 
the expected value of p̂ is  

     WppE �)ˆ( ,           (2) 

where ),...,,( 21 Kpppp � , )ˆ,...,ˆ,ˆ(ˆ 21 Kpppp � , and Kkj
T

jkwW ,...,2,1,][ ��  is the misclassification matrix, in 

which 1
1

�	
�

K

k
jkw for j = 1, 2, …, K. Eq. 2 shows that the crude estimator kp̂  is no longer  unbiased for the 

population parameter pk , provided that IW � ,where I is the K × K identity matrix. A set of misclassification 

probabilities {wjk} is said to be feasible if the misclassification matrix W in Eq. 2 is invertible (or nonsingular) for 0 < 

wjk < 1.  

Assume that W is invertible. Then bias-adjusted cell proportion (BACP) estimators ( kp� ) are defined by 

    pVpWp ˆˆ1 �� ��
,          (3) 

where T
Kpppp ),...,,( 21
���� � , V = [vjk], j, k = 1, 2, …, K, denotes the inverse matrix of W, and Vnn �� , 

T
Knnn ),,,,,( 1
��� � , T

Knnn ),...,( 1� . Note that by using Eqs. 2 and 3 it’s easily shown: ppE �)(
� , namely, p� is an 

unbiased estimator for p, provided that W is known. The BACP estimators { kp� } are said to be admissible if for feasible 

wjk we have  10 �� kp�  and 	
�

�
K

j
jp

1
1

�
. Similarly, a set of misclassification error probabilities {wjk} is said to be 

admissible if the corresponding BACP estimators { kp� } are admissible.        
    

 

The misclassification matrix W has two possible forms depending on how the categorical variable X is misclassified. 
There are two possible scenarios that are given as follows: 

Scenario I: The misclassification occurs after classifying one category incorrectly into all other categories. Also, because 
misclassification can occur equally likely from any one of the jth correct category to the kth (observed) wrong category, we 
thus have, for fixed j 

0�� jkj w� , k ≠ j, and 	
�
�

��
K

jk
k

jkjj ww
1

1 , j = 1, 2, …, K,      (4) 

Scenario II: The misclassification occurs after classifying one category incorrectly only into its neighboring categories. 
Therefore, we have, for fixed j 

wjk = 0 for |k - j| > 1, and 	
�
�

��
K

jk
k

jkjj ww
1

1 , j = 1, 2, …, K.     (5)  

When K = 3, the associated misclassification matrix with its determinant and its inverse matrix for scenarios I and II are 
hereby obtained respectively. An explicit form of the misclassification matrix WI and its inverse VI for scenario I are given 
respectively by 
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2121

3311

3232

1

1
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����
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IW ,      (6a) 

  0)1()det( 2
321 ������� ���II W ,        (6b) 

and 

  

�
�
�

�

�

�
�
�




�

���
���
���

���� �

333

222

111

)(

1

1

1

][ 2
1

���
���
���

IIjkI vV ,      (6c) 

where 13121 ww ��� , 23212 ww ��� , and 32313 ww ��� . 

The BACP estimators for scenario I are given by 

  	
�

��
K

j
jIjkIk pvp

1
)()( ˆ

�
,  k = 1, 2, …, K,      (7) 

By using Eqs. 6b and 7, the feasibility and admissibility constraints for the misclassification probability and BACP 
estimator are given respectively as follows: 

    1321 �

 ��� ,         (8a) 

and 

    11 �� ,     12 �� ,     13 �� .       (8b)  

For scenario II, an explicit form of the misclassification matrix WII and its inverse VII are given respectively by 

�
�
�

�

�

�
�
�




�

�
��

�
�

22

3311

22

10

1

01

��
����

��

IIW ,       (9a) 

0)1)(1()det( 3212 �������� ����IIII W ,      (9b) 

and 

�
�
�

�

�

�
�
�




�

�����
�����

����
���� �

1322332

22
2

222

212121
1

)(

)1)(1()1(

)1()1()1(

)1()1)(1(

][

�������
�����

������

IIIIjkII vV ,   (9c) 

where 121 w�� , 23212 ww ��� , 323 w�� , and 03113 �� ww .  

The BACP estimator for scenario II is thus given by 

  	
�

��
K

k
kIIjkIIj pvp

1
)()( ˆ

� ,  j = 1, 2, …, K.      (10) 

By using Eqs. 9b and 10, the feasibility and admissibility constraints for the misclassification probability and BACP are 
given respectively as follows: 

       1321 �

 ��� ,         (11a) 

and 

        22 p̂�� .              (11b) 

To test whether the data in table 1 are misclassified, we need to test the following (sharp) null hypothesis that the data has 
no misclassification under p = p0 versus the alternative hypothesis that the data are misclassified (Berger and Selleke 
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1987) 

H0: p = p0, ω = 0 versus H1: p ≠ p0, ω > 0,            (12) 

where T
Kppp ),...,( 1� , T

Kppp ),...,( 00
1

0 � , 11 1 21 2 1( ,..., , ,..., ,..., ,... )T
K K K KKw w w w w w� � , {wjk} are the 

entries of the misclassification matrix W given by Eq. 2.  

To test Eq. 12 the bias-adjusted chi-square test (BACST) is given by  

   		
��

���� 
K

k
kkkk

K

k
kK NnnpppN

1

02020

1
)/(]/)[(

���
,    (13) 

where 	
�

�
K

j
jjkk nvn

1

�
, vjk denotes the entry of the jth row and the kth column of the inverse matrix V of the 

misclassification matrix W in Eq. 2 and 00
kk Npn � , k = 1,…, K. 

For large samples, Eq. 13 is distributed under H0 asymptotically as the central chi-square distribution with K – 1 degrees 
of freedom (df). Yet Eq. 13 is distributed asymptotically under H1 as the noncentral chi-square distribution with K – 1 
degrees of freedom and the non-centrality parameter given by (Lancaster 1969) 

   )2()( 020

1

2

1

20
jjj

K

j
j

K

j
jjK pppppp 
���� 		

��
!
�

.      (14) 

When wjk = 0 for all j and k, Eq. 13 reduces to  

	
�

�� 
K

j
jjK Nnn

1

02 )/(ˆ .        (15) 

Reject the null hypothesis H0 if 0
ˆ CK " , where K ̂  is given by Eq. 15 and C0 is the critical value of the central 

chi-square distribution with K – 1 df at the significance level α 

As is well known from the Bayesian viewpoint, the p-value is not an adequate measure for the evidence to support the null 

hypothesis (Goodman 1999a-b). Hence the Bayes factor is calculated as a comparison with the p-value. To formulate the 

hypothesis-testing problem in a Bayesian setting we begin with the data ),...,,( 21 Knnnn � and assume that its 

probability distribution follows in a family of distributions which are parameterized by #�$%),( �p , where 

}0,1|{
1

���$ 	
�

k

K

k
k ppp  is the K-dimensional simplex. To test the hypotheses of 0,: 0

0 �� �ppH  vs 

0,: 0
1 �� �ppH (Eq.12), it is assumed that there exist a prior probability density function (PDF) )(0 �h  and another 

joint density ),( �ph under H1. Since p and ω are a priori independent under H1, we have 

   )()(),( 0 pghph �� � ,        (16) 

where g  is a prior PDF on p ϵ Σ which assigns mass π0 to {p = p0} and 1 – π0 to {p ≠ p0}. Define 0)( 0 �pg  and 

writing the PDF of K 
�

 given p and ω as ),|( �pf K 
�

, the Bayes factor is given by (Kass and Raftery 1995)  

   
)(

)0,|(
)(

0

Kg

K
K

g

m
pfB
 

� 
� �

�� �
,       (17a) 

where gm  is given by  
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   &&
#�$
 � dpdpghpfm KKg ��� )()(),|()( 0

��
.      (17b) 

In Eq. 17a, )0,|( 0 � �pf K
�

is the PDF of the central chi-square distribution with K – 1 df, while ),|( �pf K 
�

in Eq. 

17b is the PDF of the noncentral chi-square distribution with K – 1 degrees of freedom and the non-centrality parameter 

K!
�

 given by Eq. 14. 

When K = 3, )( )(3 Igm  
�

of Eq. 17b is calculated for Scenario I with the assumption of ���� ��� 321 and  

1
0 )( �� ch � , the PDF of uniform distribution over [0, c], where c is the upper bound on the admissible BACP for 

scenario I and obtain 

     dppgdt
c

m
c

Ig )()
2

exp(
2

11
)(

30 3
)(3 �



��



�� & &

$
�

!!
��

�
,     (18) 

where an approximation to the noncentral chi-square distribution is provided by using the central chi-square distribution 
(Cox and Reid 1987). The lower bound for the Bayes factor after using a symmetric Dirichlet’s prior for g(p) are obtained 
under scenario I and II:  

   
)|(

]})/([exp{

)(3)max(

3

1

02
2
1

2
1

iig

j
jj

g
i m

Nnn
B

 

��
�

	
� �

'
 , i = I or II.     (19) 

The details for obtaining the value of )max( i' , i = I or II, are given in the appendix.  

3. Example 
The data in table 2 are taken from table C.1 in Woodward’s book, pp. 756-760 (Woodward 2005). It represents the lung 
cancer data collected by the Bombay Cancer Registry from all cancer patients registered in the 168 government and 
private hospitals and nursing homes in Bombay, Australia, and from death records maintained by the Bombay Municipal 
Corporation. The survival times of each subject with lung cancer from time of first diagnosis to death (or censoring) were 
recorded over the period 1st January 1989 to 31st December 1991. Here we are only concerned with type of tumor of 682 
subjects grouped by gender.  

 

Table 2. 682 cancer patients are classified by sex and type-of-tumor  

 Type of tumor 
Gender Local Regional Advanced Total 
Male 165 169 229 563 

Female 37 39 43 119 
 

The issue of concern here is whether the data are misclassified separately for males and females. Because we do not 

have any prior belief on the values of p0 in Eq. 12, they are thereby determined empirically from the observed data. As a 

result, the values of p0 are chosen differently for males and females. For females the values of p0 in the null hypothesis 

are chosen to be that of equiprobability, 3
1

321)(0 : ��� pppH F and wjk = 0 vs 3
1

321)(1 : ��� pppH F  and wjk > 0, 

while that of p0 in the null hypothesis for males are set up as follows: 4.0,3.0,3.0: 321)(0 ��� pppH M  and wjk = 0 
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vs 4.0,3.0,3.0: 321)(1 ��� pppH M  and wjk > 0. Because the misclassification probabilities of {wjk}, j, k = 1, 2, 3 

are zero under the null hypothesis, the BACST values of Eq. 15 are then given respectively by M ̂  = 0.15 (p-value = 

0.93) and F ̂  = 0.47 (p-value = 0.79) for males and females. Therefore, the null hypothesis H0 is not rejected at the 

significance level of 0.05 for both males and females. Yet, we would like to test the above hypotheses from the 

Bayesian perspective by calculating the Bayes factor as a comparison with the p-value.   

For both males and females under scenarios I or II, Eq. A10 in the appendix has three negative and one positive real, 
and a pair of conjugate complex roots. Due to the constraint that τ > 0, only the positive root is a stationary point for Eq. 
A9. Eq. A9 for males has only under scenario II a unique positive local maximum (Figure 1), while Eq. A9 has a unique 
positive local maximum at its stationary point for females only under scenario I (Figure 2).  

 

Table 3. A comparison of the lower bound for Bayes factor (Eq. 19) with the p-value for admissible CF models 

Scenario II  
Males c2 

)max( II'  )( )max( IIgm '  g
IIB  

p-value 

Table 2 0.293073 0.0553 61 0.053 0.93 

Scenario I 

Females c1 
)max( I'  )( )max( Igm '  g

IB  
p-value 

Table 2 0.310924 0.0540 1.8 0.22 0.79 

 
By taking the reciprocal of the lower bound of the Bayes factor (table 3, column 5) we are able to assess the evidence 
whether the cancer data in table 2 are misclassified. The collected data for males were in favor of supporting H1 against H0 
by at most a factor of “19 to 1”, whereas for females by at most a factor of “5 to 1”.  

 

 

Figure 1. A plot of )|( )(3 IIgm  �'  given by Eq. A9 is for CF model 10 under scenario II for males 
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Figure 2. A plot of )|( )(3 Igm  �'  given by Eq. A9 is for CF model 12 under scenario I for females 

 
4. Discussion 
Some interesting observations are worthy to be mentioned below: 

1. So far, this author is not aware of any guideline available in the literature on deciding how large the lower 
bound for the Bayes factor should be so that we’re confident the evidence provided by the data surely 
supporting H1 rather than H0. Yet, since the lower bounds for the Bayes factor from the cancer data for both 
genders were not large enough, a tentative conclusion was that the cancer data in table 2 seemed unlikely to 
be misclassified. Although H0 was not rejected for both gender in table 2 either according to their p-values 
(table 3, column 6), the p-value is, strictly speaking, not an appropriate measure for assessing the evidence 
provided by the data due to its inherent fallacy (Goodman 1999a-b). 

2. From the analysis of the Bombay cancer data, the existence of Bayes factor seems to depend not only on the 
scenario (I or II) (the misclassification pattern), but also the multinomial distribution of p0 (table 3). To 
clarify this issue, another data set related to the degree of severity for the clinical condition of myocardial 
infarction patients was studied (Snow 1965), where the distribution of p0 for the treated and control groups 
are respectively specified as (0.4, 0.4, 0.2) and (0.3, 0.4, 0.3). It was found that the Bayes factor existed for 
the treated group under scenario I, but not under scenario II, whereas for the control group it exists under 
both scenarios. It seems that a crucial condition for the existence of Bayes factor is whether the BACST 
value (Eq. 13) is positive. As far as the existence of the Bayes factor is concerned, I’d like to make a 
conjecture which is given as follows: 

“For any data set under either scenario I or II the lower bound of
g
iB , i = I or II, exists if the associated (.)K 

�
of Eq. 13 

is positive for K ≥ 3.”  

5. Conclusion 
This paper addresses an issue: “how to test whether the collected categorical data are misclassified.” A mixed Bayesian 
approach is used to test the null hypothesis that the collected data are not misclassified under a specified multinomial 
distribution for the studied categorical variable. The Bayes factor is employed as the main instrument to assess the 
evidence provided by the data. The lung cancer from all hospitals in the city of Bombay, Australia was used as an 
example for illustration. Based on the result of the Bayes factor in this study, the p-value was shown again not an 
appropriate measure to assess the evidence provided by the data.  
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Appendix A 
With an assumption of ���� ��� 321  and pNn �� � , we have under scenario I  
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, 0 < θ < c1,   (A1) 

where }ˆ,{min 3
1

3,2,1
1 jj

pc
�

� . 

By substituting Eq. A1 into Eq. 13, we have 
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By Eq. 14, we have 
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of Eq. 18 with a choice of )(0 �h which equals to the pdf of uniform distribution over [0, c1] is 
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where )(3 I 
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and 3!
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 are given respectively by Eqs. A2 and A3. By using a linear approximation from the Taylor series 
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By substituting Eqs. A2 and A3 into the above equation and integrating )(3 I 
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 with respect to θ, we have after algebraic 
simplification  
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By using Eq. A6, we have 
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 If the prior distribution function for g(p) is taken to be a symmetric Dirichlet’s distribution with the flattening constant 

(or hyper-parameter) τ (τ > 0) (Good 1975), then Eq. A5 is reduced to 
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Similarly, )|( )(3 IIgm  �' has exactly the same expression like Eq. A9 except that )(3 I � and c1 are replaced respectively 

by )(3 II �  and c2. 

To avoid the use of hyper-prior distribution on τ (Good and Crook 1974), the non-Bayesian approach is used to find the 

stationary point max(.)'  for )|( (.)3 
�

'gm . By using an elementary technique in calculus to calculate the first derivative 
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of )|( )(3 Igm  
�

'  and set it equal to zero, we have after simplification  
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To solve Eq. A10 for the stationary points, I employed the “ROOTS” subroutine in the MATLAB (Redfern and 
Campbell 1998).   

According to the terms of Good (1975), the way to estimate max' is called by the type II maximum likelihood or the 

maximum hyper-prior likelihood method. This kind of approach to estimate the Bayes factor is called the 

Bayesian/Fisherian criterion which is a compromise from taking a full Bayesian approach.  
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Abstract 
This article discusses the local polynomial regression estimator for  and the local polynomial regression 
estimator for  in a finite population. The performance criterion exploited in this study focuses on the efficiency of 
the finite population total estimators. Further, the discussion explores analytical comparisons between the two estimators 
with respect to asymptotic relative efficiency. In particular, asymptotic properties of the local polynomial regression 
estimator of finite population total for  are derived in a model based framework. The results of the local 
polynomial regression estimator for  are compared with those of the local polynomial regression estimator for 

 studied by Kikechi et al (2018). Variance comparisons are made using the local polynomial regression estimator 
 for  and the local polynomial regression estimator  for  which indicate that the estimators are 

asymptotically equivalently efficient. Simulation experiments carried out show that the local polynomial regression 
estimator  outperforms the local polynomial regression estimator  in the linear, quadratic and bump populations.  

Keywords: Asymptotic Properties, Asymptotic Relative Efficiency, Finite Population, Local Polynomial Regression, 
Model Based Framework, Nonparametric Regression, Sample Surveys 
1. Introduction 
The theory of sample surveys involves principles and methods of collecting and analyzing data from a finite population 
of units and then making inferences about finite population parameters on the basis of information obtained from the 
sample. For some early work on survey sampling theory, see Royall (1970a), Royall (1970b), Royall (1971), Smith 
(1976) and Pfeffermann (1993). In this study, an estimator of the finite population total is developed and its properties 
derived using the local polynomial regression procedure. Local polynomial regression is a nonparametric technique 
which is a generalization of kernel regression and is used for smoothing scatter plots and modeling functions. Under 
normal conditions, when , this is referred to as local constant regression, when , this is local linear regression 
and when , this is local polynomial regression.  is the order of the local polynomial being fit. In local polynomial 
regression, a low order weighted least squares regression is fit at each point of interest , using data from some 
neighborhood around  ( see Cleveland (1979) and Cleveland and Devlin (1988)).  

Once a modeling approach is undertaken, there is a special feature in finite population estimation problems that the 

unknown quantities are realized values of random variables, so the basic problem has the feature of being similar to a 

prediction problem. In order to estimate  at a given point , the association between the predictor variable and the 

response variable is explored. This methodology was introduced by Stone (1977). It has also been studied by Fan 

(1993), Fan and Gijbels (1996), Breidt and Opsomer (2000) and Kikechi et al (2017). Like in Stone (1977), the main 

aim of this procedure is to quantify the contribution of the covariate  to the response  per unit value of  in order 

to summarize the association between the two variables, to predict the mean response for a given value  and to 

extrapolate the results beyond the range of the observed covariate values. A weight  is assigned to the point 
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 where  is the size of the local neighbourhood and  is the unimodal non-negative function. On the other 

hand, inferences may explore properties of the process that generate the population values (Montanari and Ranalli 

(2003)). An assumption is made from the fact that the finite population has been generated by a super population model 

 and it is of interest to estimate the population parameters , where . The super population 

model can be applied to predict the unobserved values  after obtaining estimates of  and  using the known 

auxiliary information ,  (see Montanari and Ranalli (2005) and Rueda and Sanchez-Borrego (2009)). 

The nonparametric approach does not restrict the functional form of the distribution nor does it specify the various 
stochastic properties such as ,  and . Rather, it leaves them to cover broad classes of models, thus 
allowing for more robust inference than inference obtained in parametric approach. Using the model ξ, the 
nonparametric estimator of total,  has been derived by Nadaraya (1964), Watson (1964), Priestly and Chao (1972), 
Gasser and Muller (1979), Dorfman (1992) ), Chambers et al (1993) and Odhiambo and Mwalili (2000). In his study, 
Dorfman (1992) has been able to prove the asymptotic unbiasedness and MSE consistency of this estimator. The 
estimator, however suffers from sparse sample problem, and more work needs to be done to come up with another 
technique that can overcome this problem. This is where the local polynomial procedure comes in. See Kikechi et al 
(2017) and Kikechi et al (2018). 

The local polynomial regression is one of the most successfully applied design adaptive non parametric regression. This 
estimation procedure is an attractive choice due to its flexibility and asymptotic performance. Having a local model 
(rather than just a point estimate) enables derivation of response adaptive methods for bandwidth and polynomial order 
selection in a straightforward manner. The procedure has also the advantage of eliminating design bias and alleviating 
boundary bias. Furthermore, the method adapts well to random, fixed, highly clustered and nearly uniform designs. The 
weighted least squares principle to be employed in the local polynomial approximation approach, opens the way to a 
wealth of statistical knowledge and thus providing easy computations and generalizations. See Fan (1992), Fan (1993), 
Ruppert and Wand (1994) and Fan and Gijbels (1996) among others. 

Kikechi et al (2018) employ a superpopulation approach to estimate the finite population total using the procedure of local 
linear regression. Explicitly, the authors derive robustness properties of the local linear regression estimator and carry out 
simulation experiments on the performances of this estimator in comparison with other estimators that exist in the 
literature. Results indicate that the local linear regression estimator is more efficient and performing better than the 
Horvitz-Thompson (1952) and Dorfman (1992) estimators, regardless of whether the model is specified or mispecified. 
In this paper, the local polynomial regression estimator of finite population total for  is studied and asymptotic 
properties derived. Analytical comparisons are carried out between this estimator and the local polynomial regression 
estimator for  studied by Kikechi et al (2018) which indicate that the estimators are asymptotically equivalently 
efficient. Simulation experiments however indicate that the local polynomial regression estimator  is superior and 
dominates the local polynomial regression estimator  in the linear, quadratic and bump populations. 

2. Method of Constructing the Local Polynomial Regression Estimator  for  
The superpopulation model considered for estimating the finite population total is given by, 

 

Specifically, the following assumptions hold for the model considered in the nonparametric regression estimation of 
: 

 

 

The properties of the error are given by, 

 

 

The functions   and  are assumed to be smooth and strictly positive. Consider the Taylor series 
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expansion of  expressed as, 

 

 

The Taylor series expansion is written in a general form expressed as, 

 

where  lies in the interval  and 

 

The constants  and  are solved using the least squares procedure by making  the subject of the formulae, squaring 
both sides, summing over all possible sample values and applying the weights to obtain a solution to the weighted least 
squares problem of the form; 

 

Letting, 

 

Differentiating  with respect to  and equating to zero, gives 

 

Implying that 

 

Letting 

 

Then it follows from equation (9) that 

 

Similarly, differentiating  with respect to  and equating to zero, gives 

 

Implying that 

 

and thus 

 

Multiplying equation  and equation by  and  respectively, gives 
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Subtracting equation  from equation , gives 

 

Making  the subject of the formulae, gives 

 

Similarly, multiplying equation  and equation by  and  respectively, gives 

 

 

Subtracting equation  from equation , gives 

 

Making  the subject of the formulae, gives 

 

Now it follows from equation (5) that 

 

If the value assigned is zero, assuming that  is a pre-assigned constant, then 

 

Therefore 

 

 

where 

 

Implying that the finite population total estimator  for  can be estimated using  
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3. Properties of the Local Polynomial Regression Estimator  for  
In deriving the properties of the local polynomial regression estimator, the following assumptions are made according to 
Ruppert and Wand (1994): 

(i) The  variables lie in the interval . 

(ii) The function  is bounded and continuous on . 

(iii) The kernel  is symmetric and supported on . Also  is bounded and continuous satisfying the 

following: , , , ,  

(iv) The bandwidth  is a sequence of values which depend on the sample size  and satisfying  and , 
as . 

(v) The point  at which the estimation is taking place satisfies . 

Fan (1993) imposed conditions on  and are only used for convenience in terms of technical arguments and thus can 
be relaxed.  

3.1 The Expectation of the Local Polynomial Regression Estimator  for  
The expectation of  for  is derived as,  

 

 

Using the Taylor series expansion of the form, 

 

Theorem 3 in Fan and Gijbels (1996) is such that under the conditions given in (i)-(v), allows 

 

 

 

 

 

3.2 The Bias of the Local Polynomial Regression Estimator  for  
The bias of  is given by 

 

Therefore the asymptotic expression of the bias of the local polynomial regression estimator  is 
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3.3 The Variance of the Local Polynomial Regression Estimator  for  
The variance of the local polynomial regression estimator  is estimated using the variance of the error, thus 

 is derived as 

 

 

 

where, 

 

The asymptotic expression for the variance of  is given by the expression using the results of  that have been 
derived, thus 

 

 

3.4 The MSE of the Local Polynomial Regression Estimator  for  
Theorem I in Fan (1993) allows that under condition (ii) gives, 

 

 

The asymptotic expression for the MSE of the local polynomial regression estimator  is given by 

 

Note that results for the local polynomial regression estimator of finite population total  for  have been derived 
by Kikechi et al (2018). 

3.5 The Asymptotic Relative Efficiency 
The relative efficiency of two procedures is the ratio of their efficiencies, but it is often possible to use the asymptotic 
relative efficiency, defined as the limit of the relative efficiencies as the sample size grows, as the principal measure of 
comparison. Let  be the local polynomial regression estimator of finite population total for  and  be the 
local polynomial regression estimator of finite population total for  as studied by Kikechi et al (2018). 

If  and  are both unbiased estimators of , then the relative efficiency of  to  is given by, 

 

If  and  are both asymptotically unbiased estimators of , then the asymptotic relative efficiency of  to  is 
given by, 
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Therefore, the estimators of finite population totals for  and  are respectively given by, 

 

 

 

The variance of the local polynomial regression estimator  is given by, 

 

The asymptotic expression for the variance of the local polynomial regression estimator  is estimated by, 

 

The variance of the local polynomial regression estimator  is given by, 

 

The asymptotic expression for the variance of the local polynomial regression estimator  is estimated by, 

 

Note that in Kikechi e tal (2017),  and  

Thus the asymptotic relative efficiency of the local polynomial regression estimator  to the local polynomial regression 
estimator  derived by Kikechi et al (2018) is given by, 

 

4. Simulation Study 
4.1 Description of the Data Sets 
In this section, simulation experiments are carried out to evaluate the performance of the estimators. The data are 
generated from the regression model of the form, 

 

The data sets are obtained by simulation using specific models having relations of the form, 

  

  

  

for the linear, quadratic and bump populations respectively. The ′  are generated as independent and identically 
distributed (iid) uniform (0, 1) random variables. The errors are assumed to be independent and identically distributed 
(iid) random variables with mean  and constant variance. The analysis and comparison in terms of performance is based 
on the local polynomial regression estimator  and the local polynomial regression estimator . The Epanechnicov 
kernel given is used for kernel smoothing on each of the populations due to its simplicity and easy computations using 
well designed computer programs and is defined as,  
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The bandwidths are data driven and are determined by the least squares cross validation method. For each of the three 
artificial populations of size , samples are generated by simple random sampling without replacement using sample 
size . For each combination of mean function, standard deviation and bandwidth, 500 replicate samples are 
selected and the estimators calculated. 

 

Table 1. Computational Formulae for the Local Polynomial Regression Estimators  and  

                  Estimator               Formulae 

 

 

 

 

Figure 1. Scatter Diagram for the Linear Population 

 

 

Figure 2. Scatter Diagram for the Quadratic Population 
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Figure 3. Scatter Diagram for the Bump Population 

 
4.2 Results 
The results of the bias and mean squared error (MSE) for the local polynomial regression estimator  for  and the 
local polynomial regression estimator  for  in the linear, quadratic and bump populations are provided in the 
table below. 

 

Table 2. The Bias and MSE for  and  in the Three Artificial Populations 

 Linear  Quadratic  Bump  
     
BIAS 5.507608 3.777348 4.7372 0.45116 5.293896 0.4187236 

MSE 100.8874 15.40735 18.40769 0.1601695 43.9272 0.1896261 

 
5. Discussion 
In estimating  for the local polynomial regression estimator ,  has been assumed to be a pre-assigned constant 
and in particular the value assigned is zero. It has therefore been shown in section 2 that the estimator  is biased 
leading to a biased estimation of the finite population total. On the other hand, when estimating  for the local 
polynomial regression estimator , the value of  is not pre-assigned but rather determined by the set of data provided 
and thus minimizing the bias. With regard to asymptotic relative efficiency, there is no difference in the performance of 
the local polynomial regression estimator  studied in this paper and the local polynomial regression estimator  
studied by Kikechi et al (2018). The reason for this being that their ratio converges to  as  becomes large, see 
equation . This therefore implies that the estimators are asymptotically equivalently efficient. However, it is 
observed from simulation experiments conducted that the biases and MSEs computed in table 2 for the local polynomial 
regression estimator  are small in all the three populations. The results therefore indicate that the local polynomial 
regression estimator  is superior and dominates the local polynomial regression estimator  for the linear, 
quadratic and bump populations. 

6. Conclusion 
In this article the local polynomial regression estimators  and  of finite population totals have been studied in a 
model based framework. Analytically, variance comparisons are explored using the local polynomial regression 
estimator  for  and the local polynomial regression estimator  for  in which results indicate that the 
estimators are asymptotically equivalently efficient. Simulation experiments carried out in terms of the biases and MSEs 
show that the local polynomial regression estimator  outperforms the local polynomial regression estimator  in 
all the three artificial populations and therefore,  is the most efficient estimator.  
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