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Abstract

In the last two decades, regression analysis with interval-valued type data has received more and more attention. For

the interval-valued symbolic data regression, the Minmax method and the center and range (CR) method are two widely

used popular estimating approaches. In this paper, to improve the estimating efficiency of these two estimating methods,

seemingly unrelated regression approach has been applied to take account of the dependence information of two regression

models of the Minmax method or the CR method. Finally, real data sets are analysed to examine the performance of our

proposed procedure.

Keywords: interval-valued data, minmax method, center and range method, seemingly unrelated regression, generalized

least squares estimation

1. Introduction

Interval-valued data as a more general class of data type called symbolic data are observed as ranges instead of single

values and frequently appear in some fields, such as finance, engineering, and medicine. In the last two decades, regression

analysis with interval-valued type data has received more and more attention. Several approaches have been proposed to

estimate the regression models with interval-valued data. The center method of Billard and Diday (2000) uses interval

midpoints of both response and the associated explanatory variables to build the regression, and apply the fitted model

to the lower and upper bounds of the independent variables to generate predictions respectively. In order to use more

interval information than that of the center method, Billard and Diday (2002) proposed a MinMax method, which suggests

modelling the lower and upper bounds of the intervals of both response and the associated explanatory variables by two

linear regression models independently. Using two different models to predict lower and upper bounds can improve the

linear fit and give an intuitive response interpretation. To include the information given by both the centre and the range of

an interval on a linear regression model to improve the model prediction performance, Lima Neto and De Carvalho (2008)

proposed a center and range (CR) method using two independent models: one for the interval midpoints and another for

the semi-length of the interval. Other estimating approaches can be found in Xu (2010), Giordani (2015) and Souza et al.
(2017). Furthermore, some generalized interval data models have been proposed, examples including additive models of

Lim (2016), partially linear models of Wei et al. (2015).

It is noted that both the MinMax method and CR method analyze the interval data based on two independent linear

regression models, and the assumption of independence between two regression models is not always true in practice.

If these two regression models have some relationship, then, to solve this problem, how to combine the two regression

models is an interesting topic. As we all know, the seemingly unrelated regression (SUR) introduced by Zellner (1962)

is an important tool to analyze multiple equations with correlated disturbances. The SUR specification is expressed as a

set of linear regressions where the disturbances in the different equations are correlated. Therefore, to take account of the

dependence information of two regression models, we propose a seemingly unrelated regression approach based on the

MinMax method or the CR method to modelling interval data.

The rest of this paper is organized as follows. We introduce the MinMax and CRM methods in Section 2. The proposed

SUR approach is given in Section 3. Real interval-valued data sets are analyzed in Section 4 to illustrate the performance

of the proposed approach. Conclusion is presented in Section 5.

2. Minmax and CR Methods for Linear Models With Interval-Valued Data

Let E = {e1, e2, · · · , en} be a set of objects that are described by the p+1 symbolic interval-valued variables Y, X1, X2, · · · , Xp.

Each example ei ∈ E(i = 1, 2, · · · , n) is represented as an interval quantitative feature vector zi = (xi, yi). xi =

1
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(xi1, xi2, · · · , xip)T, where xi j = [ai j, bi j] ∈ � = {[a, b] : a, b ∈ �, a ≤ b}( j = 1, 2, · · · , p) and yi = [yLi, yUi] ∈ � are

the ith observed values of Xj and Y , respectively. Let us work with the matrix notation. Denote

YL =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
yL1

yL2

...
yLn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,YU =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
yU1

yU2

...
yUn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,XL =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 a11 · · · a1p

1 a21 · · · a2p
...
...
. . .

...
1 an1 · · · anp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,XU =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 b11 · · · b1p

1 b21 · · · b2p
...
...
. . .

...
1 bn1 · · · bnp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
2.1 MinMax Method

By Billard and Diday (2002), we consider X1, X2, · · · , Xp related to Y according to the following linear regression rela-

tionship

yLi = β
L
0 + β

L
1 ai1 + β

L
2 ai2 + · · · + βL

paip + εLi, (1)

yUi = β
U
0 + β

U
1 bi1 + β

U
2 bi2 + · · · + βU

p bip + εUi. (2)

Model (1) (2) can be written in the matrix form as

Ym = Xmβm + εm, (3)

where

Ym =

[
YL

YU

]
, Xm =

[
XL 0
0 XU

]
, βm =

[
βL

βU

]
, εm =

[
εL

εU

]
,

and βL =
(
βL

0 , β
L
1 , · · · , βL

p

)T
,βU =

(
βU

0
, βU

1
, · · · , βU

p

)T
, εL = (εL1, · · · , εLn)T , εU = (εU1, · · · , εUn)T .

By applying the least squares approach to model (4), we can get the Minmax estimator of βm as

β̂
mm
=

⎡⎢⎢⎢⎢⎢⎣ β̂L

β̂
U

⎤⎥⎥⎥⎥⎥⎦ = [XT
mXm

]−1
XT

mYm =

⎡⎢⎢⎢⎢⎢⎢⎣
[
XT

LXL

]−1
XT

LYL[
XT

UXU

]−1
XT

UYU

⎤⎥⎥⎥⎥⎥⎥⎦ . (4)

Specifically, the MinMax estimators of βL and β̂U are

β̂
L
=
[
XT

LXL

]−1
XT

LYL, β̂
U
=
[
XT

UXU

]−1
XT

UYU .

2.2 The Centre and Range Method

Let yc
i = (yLi + yUi)/2, yr

i = (yUi − yLi)/2, xc
i j = (ai j + bi j)/2, xr

i j = (bi j − ai j)/2. Lima Neto and De Carvalho (2008)

considered the following two regression models

yc
i = β

c
0 + β

c
1xc

i1 + β
c
2xc

i2 + · · · + βc
pxc

ip + ε
c
i (5)

yr
i = β

r
0 + β

r
1xr

i1 + β
r
2xr

i2 + · · · + βr
pxr

ip + ε
r
i (6)

Denote

Yc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
yc

1

yc
2
...

yc
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,Yr =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
yr

1

yr
2
...

yr
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,Xc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 xc

11
· · · xc

1p
1 xc

21
· · · xc

2p
...
...
. . .

...
1 xc

n1
· · · xc

np

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,X
r =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 xr

11 · · · xr
1p

1 xr
21 · · · xr

2p
...
...
. . .

...
1 xr

n1 · · · xr
np

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
Combing models (5) and (6), we have the following model

Ycr = Xcrβcr + εcr, (7)

where

Ycr =

[
Yc

Yr

]
, Xcr =

[
Xc 0
0 Xr

]
, βcr =

[
βc

βr

]
, εcr =

[
εc

εr

]
.

and Yc =
YL+YU

2
,Xc =

XL+XU
2
,Yr =

YL−YU
2
,Xr =

XL−XU
2

, βc = (βc
0
, βc

1
, · · · , βc

p)T,βr = (βr
0, β

r
1, · · · , βr

p)T, εc = (εc
1
, εc

2
, · · · , εc

n)T,

and εr = (εr
1, ε

r
2, · · · , εr

n)T.

2
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Then, by applying the least squares approach to model (7), we can obtain the CR estimator for βcr as

β̂
cr
=

[
β̂

c

β̂
r

]
=
[
XT

crXcr

]−1
XT

crYcr =

⎡⎢⎢⎢⎢⎢⎢⎣
[
(Xc)TXc

]−1
(Xc)TYc[

(Xr)TXr
]−1

(Xr)TYr

⎤⎥⎥⎥⎥⎥⎥⎦ . (8)

Specifically, the Centre-Range estimators of βc and β̂
r

can be written as

β̂
c
=
[
(Xc)TXc

]−1
(Xc)Tyc =

[
(XU + XL)T(XU + XL)

]−1
(XU + XL)T(YU + YL)

=
(
XT

UXU + XT
LXL + XT

LXU + XT
UXL

)−1 (
XT

UYU + XT
LYL + XT

LYU + XT
UYL

)
,

β̂
r
=
[
(Xr)TXr

]−1
(Xr)Tyr =

[
(XU − XL)T(XU − XL)

]−1
(XU − XL)T(YU − YL)

=
(
XT

UXU + XT
LXL − XT

LXU − XT
UXL

)−1 (
XT

UYU + XT
LYL − XT

LYU − XT
UYL

)
.

3. The Efficient SUR-Based Estimation

For both the Minmax and CR method, we can improve the estimating efficiency by considering the dependence between

their two models. We propose the SUR-based Minmax estimator by applying the SUR method to models (1) and (2)

directly. Similarly, we propose the SUR-based CR estimator by applying the SUR method to models (5) and (6) directly.

It is noted that models (5) and (6) are derived by models (1) and (2), then we construct a two-step SUR-based CR estimator

based on the relation between models (1)-(2) and models (5)-(6).

3.1 The Efficient SUR-Based Minmax Estimator

For models (1)-(2), we assume that

E(εLi) = 0,D(εLi) = σLL,E(εUi) = 0,D(εUi) = σUU ,Cov(εLi, εL j) = 0,Cov(εUi, εU j) = 0, i � j.

Then, we have

Cov(εL) = EεLε
T
L = σLLIn,Cov(εU) = EεUε

T
U = σUUIn, (9)

Different to Billard and Diday (2002) and Lima Neto and De Carvalho (2008), for the models (1)(2), we consider the

following assumptions of their disturbances

E(εLiεU j) =

{
σLU , i = j,
0, otherwise,

for 1 ≤ i, j ≤ n. Then, we have

Cov(εL, εU) = EεLε
T
U = σLUIn, (10)

with In is the identity matrix of order n. Therefore, the 2n × 1 disturbance vector εm = (εT
L, ε

T
U)T has the following

variance-covariance matrix

Ωm = E(εmε
T
m) = ΣLU ⊗ In, (11)

with

ΣLU =

[
σLL σLU

σLU σUU

]
.

By applying the generalized least squares estimation method for linear regression model (3) with (9), we can obtain the

seeming unrelated regression-based Minmax estimator of βm as

β̂
mm
S UR =

⎡⎢⎢⎢⎢⎢⎣ β̂L
S UR

β̂
U
S UR

⎤⎥⎥⎥⎥⎥⎦ = [XT
mΩ
−1
m Xm

]−1
XT

mΩ
−1
m Ym. (12)

However, the covariance matrix Ωm is unknown, then β̂
mm
S UR is infeasible. To solve this problem, we can replace the

unknown elements Ωm by their estimators respectively. Define

σ̂LL =
(YL − XLβ̂

L
)T(YL − XLβ̂

L
)

n − p
, σ̂UU =

(YU − XU β̂
U

)T(YU − XU β̂
U

)

n − p
,

3
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and

σ̂LU =
(YL − XLβ̂

L
)T(YU − XU β̂

U
)

n
,

where β̂
L

and β̂
U

are the Minmax estimators which were defined in equation (4). Then we can define the feasible SUR-

Minmax estimator for β as

β̂
mm
FS UR =

⎡⎢⎢⎢⎢⎢⎣ β̂L
FS UR

β̂
U
FS UR

⎤⎥⎥⎥⎥⎥⎦ = [XT
mΩ̂
−1

m Xm

]−1

XT
mΩ̂
−1

m Ym. (13)

with Ω̂m = Σ̂LU ⊗ In,

Σ̂LU =

[
σ̂LL σ̂LU

σ̂LU σ̂UU

]
.

By the classic theory of linear regression model, we know that the generalized least-squares estimator β̂
mm
FS UR is efficient

than the ordinary least-squares estimator β̂
mm

. If σLU = 0, they are equal. In practice, We can first to test whether σLU = 0

is or not. we can use the Lagrange multiplier test method of Breusch and Pagan (1980) to this testing problem.

3.2 The Efficient SUR-Based CR Estimator

Similarly, for the linear regression models (5) and (6), the feasible SUR-based CR estimator for βcr can be defined as

β̂
cr
FS UR =

[
β̂

c
FS UR

β̂
r
FS UR

]
=

[
XT

crΩ̂
−1

cr Xm

]−1

XT
crΩ̂

−1

cr Ycr. (14)

with Ω̂cr = Σ̂cr ⊗ In, Σ̂cr =

[
σ̂cc σ̂cr

σ̂cr σ̂rr

]
, σ̂cr =

(Yc−Xcβ̂
c
)T(Yr−Xr β̂

r
)

n , and

σ̂cc =
(Yc − Xcβ̂

c
)T(Yc − Xcβ̂

c
)

n − p
, σ̂rr =

(Yr − Xrβ̂
r
)T(Yr − XU β̂

r
)

n − p
,

where β̂
c

and β̂
r

are the CR estimators which were defined in equation (8).

3.3 The Two-Step SUR-Based CR Estimation

The direct SUR-based CR estimatior (13) is obtained on the assumption that model (5)-(6) are data generating models.

However, it is not ture. Model (5)-(6) are generated from model (1)-(2). Then, the variance and covariance of εc and εr

can be computed by the assumptions (9) and (10). We can show that

Φc = Cov(εc) = Cov
(
εU+εL

2

)
= 1

4
E
[
(εU + εL)(εU + εL)T

]
= 1

4
E(εUε

T
U + εLε

T
L + 2εUε

T
L)

=
σUU+σLL+2σUL

4
In,

Φr = Cov(εr) = Cov
(εU − εL

2

)
=
σUU + σLL − 2σUL

4
In,

Φcr = Cov(εc, εr) = 1
4
E
[
(εU + εL)(εU − εL)T

]
= 1

4
E(εUε

T
U − εLε

T
L)

=
σUU−σLL

4
In.

Therefore, the 2n × 1 disturbance vector εcr = (εT
c , ε

T
r )T has the following variance-covariance matrix

Λcr = Cov(εcr) =

[
Φc Φcr

Φcr Φr

]
.

Then, the two-step efficient SUR-based CR estimators are

β̂
cr

TS UR =

[
β̃

c
TS UR
β̃

r
TS UR

]
=
[
XT

crΛ
−1
cr Xcr

]−1
XT

crΛ
−1
cr Ycr. (15)

4



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 9, No. 2; 2020

Table 1. Mushroom interval-valued data set

Species Y X Z Species Y X Z

1 [3,8] [4,9] [0.5,2.5] 13 [3.5,8] [4,10] [1,2]

2 [6,21] [4,14] [1,3.5] 14 [7,14] [8,14] [1.5,2.5]

3 [4,8] [5,11] [1,2] 15 [8,20] [9,19] [3,5]

4 [6,7] [4,7] [3,4.5] 16 [2.5,4] [2.5,4.5] [0.4,0.7]

5 [5,12] [2,5] [1.5,2.5] 17 [7,19] [8,15] [2,3.5]

6 [5,15] [4,10] [2,4] 18 [5,15] [6,15] [2.5,3.5]

7 [4,11] [3,7] [0.4,1] 19 [8,12] [6,12] [1.5,2]

8 [5,10] [3,6] [1,2] 20 [2,6] [3,7] [0.4,0.8]

9 [2.5,4] [3,5] [0.4,0.7] 21 [6,12] [6,12] [1.5,2]

10 [2.5,6] [1.5,3.5] [1,1.5] 22 [6,12] [6,16] [1,2]

11 [1.5,2.5] [3,6] [0.25,0.35] 23 [5,17] [4,14] [1,3.5]

12 [4,15] [4,15] [1.5,2.5]

Table 2. Performance of the methods

Method RMSEL RMSEU r2
L r2

U

Minmax 1.131198 3.241086 0.6241114 0.6146621

SUR-Minmax 1.132775 3.169804 0.6308301 0.6275454

CR 1.479281 3.003173 0.5105622 0.6631535

SUR-CR 1.351316 2.898771 0.5473502 0.6813018

Two-step SUR-CR 1.348811 2.852429 0.5540649 0.7014462

The corresponding feasible estimator is

β̂
cr
FTS UR =

[
β̃

c
FTS UR
β̃

r
FTS UR

]
=

[
XT

crΛ̂
−1

cr Xcr

]−1

XT
crΛ̂
−1

cr Ycr, (16)

where Λ̂ is defined as Λ by replacing unknown parameters σUU , σUU , σUL by their estimators, respectively.

It is noted that if σUL = 0, model (1) and (2) are independence, we have β̂
mm
S UR = β̂

mm
. If σUU � σLL, model (5) and (6)

are not independence as Φcr =
σUU−σLL

4
In � 0n, then β̃

cr
TS UR � β̂

cr
. If σUU = σLL, then Φcr =

σUU−σLL
4

In = 0n, we have

β̂
cr
TS UR = β̂

cr
.

4. Real Data Analysis

In this section, we shall analyse a real data to illustrate the finite sample properties of the proposed procedures.

Mushroom data set consists of a set of 23 species described by 3 interval variables, where the response variable Y is the

stipe thickness, and the covariates X is the stipe length, Z is the pileus cap width. These mushroom species are members

of the genus Agaricies. The specific variables and their values are extracted from the Fungi of California Species. The

data set given in Table 1 was obtained from Billard and Diday (2006).

The performance assessment of the above estimating approaches will be based on the following measures: the lower

boundary root mean-square error (RMSEL) and the upper boundary root mean-square error (RMSEU ), the square of the

lower bound correlation coefficient (r2
L) and the square of the upper bound correlation coefficient (r2

U) These measures,

calculated from the observed values [yLi, yUi] and their corresponding leave-one-out cross-validation predicted values

based on Minmax, SUR-Minmax, CR, SUR-CR and Two step SUR-CR estimating methods. They are defined by

RMSEL =

√√√√ n∑
i=1

(yLi − ŷLi)2

n
,RMSEU =

√√√√ n∑
i=1

(yUi − ŷUi)2

n
, r2

L = ρ
2(YL, ŶL), r2

U = ρ
2(YU , ŶU).

The results can be found in Table 2. Thus, we conclude that the SUR-MinMax method outperforms the MinMax method,

the two-step SUR-CR method outperforms the SUR-CR method while the SUR-CR method outperforms the CR method.

5
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5. Conclusion

This paper applied the SUR method to improve the efficiency of Minmax method and CR method. Real data sets are

analysed to examine the performance of our proposed methods and the results are satisfactory.

For the Minmax method and CR method, we have some comments. In the simulation studies of Lima Neto and De

Carvalho (2008) and other literatures, the interval data sets are often constructed in two different ways, the first with

values of the centre and range of the intervals simulated independently, the second with values of the interval mid-points

and ranges related according to a linear relationship. However, these assumptions are usually not satisfied in real data

analysis.
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Abstract  
In this paper, we developed D-optimal design in linear model with two explanatory variables in the presence of 

heteroscedasticity. A sequential method of getting D-optimal design was adopted. Two different structures were used 

based on the literatures; it was found that the optimal design takes the extreme values of the design region. The results 

of simulated data was justified with real life data from the kinematic viscosity of a lubricant, in stokes, as a function of 

temperature and pressure which was used as discussed in Linssen (1975). The relative efficiency of other designs with 

respect to D-optimal designs was determined. Three correction methods was adopted from weighted least square 

method for heteroscedasticity problem, it was found that the correction method tagged HCW1 performed better. 

Keywords: D-optimal design, Heteroscedasticity, experimental design, sequential method, correction measure  

1. Introduction 
Experimentation is the process of planning a study to meet specified objectives which constitutes a foundation of the 

empirical sciences (Zhu, 2012). One major advantage of experiment is its ability to control the experimental conditions; 

as well as to determine the variables to include in a study (FackleFornius, 2008). Since the introduction of experimental 

design principle in the first half of the 1930, optimal experimental designs have been gaining attention and had become 

useful tools among researchers in various fields (Atkinson and Donev, 1992; Atkinson, 1996; Atkinson, Donev and 

Tobias, 2007; Berger and Wong, 2009). There are various design criteria, D-optimality has been the most frequently 

used; and often performs better than other criteria (Zocchi and Atkinson, 1999; Atkinson et al., 2007).  Hence, the 

D-optimality has become one of the most popular criteria which involve designs that minimize the generalized variance 

of the parameter vector. The D-optimal designs seek to minimize  (dispersion matrix) or equivalently 

maximise the determinant of the information matrix  of the design through some forms of statistical modeling 

such as regression model. One of the important assumptions of the standard regression model is that the variance of the 

error terms (disturbance term, )  must be equal across the observations which is refers to as homoscedastic with the 

model  where . However, in real life situations, this assumption is often 

violated and the variances of the error terms are not the same. The condition where error terms have different variances 

is termed heteroscedasticity  that is, unequal variance across the observations (Lambert, 

2013; Knaub, 2017). Heteroscedasticity, which is often referred to as a “problem” that needs to be “solved” or 

“corrected” is the change in variance of predicted y, given different values of the independent variables (Knaub, 2011, 

2017). The aim of this research work is to examine D- optimal Designs with different heteroscedastcity Structures and 

the objectives are to construct D-optimal design with different heteroscedasticity structures, to obtain the relative 

efficiencies of other designs with respect to D-optimal design, to determine the heteroscedasticity correction measure 

that will produce the most efficient D-optimal design in the different structures, determining the relative efficiencies of 

the parameters of the D-Optimal design model and to establish the best heteroscedasticity correction measure to achieve 

the most Efficient Parameter Estimation for D-Optimal Design.  

Yan and Raymond (2001) presented D-optimal designs for two- variable logistic regression models where two-variable 

were fitted in the logistic regression models.Jafari (2013) found locally D-optimal design for a logit model in discrete 

choice experiment where there are many alternative set for people to make their choice using D-optimal design for the 

combination of the level of attributes to create alternatives. Jafari, et.al,(2014) worked on D-optimal design for logistic 

regression model with three independent variables; they obtained a locally D-optimal design for several specific states, 

presented certain designs with different points and calculated the subject optimality based on space of the parameters.  
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Jafari and Maram (2015) explored the notion of Bayesian D-optimal design for logistic regression model with 

exponential distribution for random intercept and obtained Bayesian D-optimal design; the method to maximize the 

Bayesian D-optimal criterion which is a function of the quasi- information matrix that depends on the unknown 

parameters of the model. 

Jesús López-Fidalgo and Garcet-Rodríguez, (2004) considered the problem of constructing optimal designs for 

regression models when the design space is a product space and some of the variables are not under the control of the 

practitioner.Zhide and Douglas (2004) found locally D-optimal designs for multistage models and heteroscedastic 

polynomial regression model where they considered the construction of locally D-optimal designs for non-linear, 

multistage model in which one observes a binary response variable.Gaviriaa and López-Ríosb (2014) worked on locally 

D-optimal designs with Heteroscedasticity: a comparison between two methodologies, it was found that the optimal 

design point takes the extreme values for both methods. These prior studies were more particular about the construction 

of the optimal designs with different models under some assumptions of the explanatory variables. In this study, 

construction of D-optimal designs in linear model with two explanatory variables in which there is a problem of 

heteroscedasticity in the model were examined. Different structures were used and the effects were also found on the 

optimal design. 

2. Material and Method  
2.1 Simulation Study  
Starting with a linear regression model of the form (2.1) 

                  (2.1) 

Where  is the error term which is a stochastic term assumed to be normally distributed with mean zero and variance 

 i.e. .These  are fixed independently variables and  is the dependent variable and  are 

parameters that are known. The generations of the data used for independent variables are random variables that are 

normally distributed  

                              (2.2) 

                              (2.3) 

Where K is the correlation between the explanatory variables,  are the independent standard normal 

distribution with mean zero and the unit variance. The response variable was therefore obtained with equation 

                   (2.4)  

Where . 

 (Park, 1966, White, 1980, Guajarati et. al 2012) 

 (Box and Hill, 1974, Harvey, 1976) 

The  took any of the structures in equations 2 and 3. The simulations were carried out in one thousand times 

(1000) at eight sample sizes of 10, 20, 30, 40, 50, 100, 250 and 500. 

In order to correct the heteroscedasticity problem with the selected structures, the weighted least square methods was 

adopted and the  to have Heteroscedasticity Correction Weighted 1 (HCW1), 

 to have Heteroscedasticity Correction Weighted 2 (HCW2) and 

 to have Heteroscedasticity Correction Weighted 3 (HCW3).  

2.2 Construction of D-optimal Design 
There are several methods at hand on the practices of determining the optimal design. These include algorithms, 

sequential, analytical, numerical and graphical methods, used separately or in combinations.  There is no method that 

is generally favorable; it depends on the problem at hand. The method selected in this research work is sequential 

method of getting D-optimal design; we find the D-optimal design for model with different variance structure of the 

error term was essentially obtained. For the model (2.1) used in this study, the number of p is 3. Therefore the partial 

derivative for the model is                                                    

                      (2.5)  

The information matrix is now  

                       (2.6) 

Beginning with p-point design, we get  design matrix of the form 
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             (2.7) 

It should be noted that the procedure requires a sufficient number of observations because we have to ensure that the 

inverse  exist. A simple condition that will guarantee the inverse exists is to have the number of different 

design points greater than or equal to the number of parameters, that is  

The design points are selected within the range of  for the variables. The largest  is found for 

, so these design points were added to design matrix   and the design matrix is 

now  

                         (2.8)  

The iteration continued until the condition for getting optimal design was reached. The maximum  value 

decreases as N increases, according to the general equivalence theorem (Kiefer and Wolfowitz, 1960), a D-optimal 

design satisfies the condition that .  

2.3 Relative Efficiencies of D-optimal to Other Designs 
The Efficiency of D-optimal design  with respect to the other design is  

               (2.9) 

Where p is the number of parameters of the model and  denotes the information matrix of the design  which is 

another design different from D-optimal design. Relative efficiencies of the parameters of the D-optimal design and non 

optimal designs models were also done to establish the result of D-optimal designs point. The design points for all the 

structures were obtained with respect to the probability, number of iteration, the standardized variance. 

2.4 Most Efficient Correction Method 
The best correction method among the one named HCW1, HCW2 and HCW3 was determined. This was done by 

calculating the variances for the probabilities of the D-optimal designs taking the design points as  and the 

probabilities as . The minimum variances were selected for the structures for all the sample sizes and the method 

that has highest values was chosen to be the most efficient.   

2.5 Real Life Application  
Construction of D-optimal design in the presence of heteroscedasticity for the model (1) was applied to a real life data, a 

secondary data from the kinematic viscosity of a lubricant, in stokes, as a function of temperature , and pressure in 

atmospheres (atm), was used as discussed in Linssen (1975) where y is predicted In (viscosity),  is temperature, and 

 is pressure to justify the simulated data. 

3. Result and Discussion  
In this work, D-optimal designs with two different heteroscedasticity structures were constructed when there is no 

heteroscedasticity (No H) and when there is (HR). It was generally found that the D-optimal designs take the extreme 

values of the response variables which follow uniform distribution of the experimental units 

Table 3.1. D-Optimal Designs for the Structures 

        Structures        (-1, -1)    (-1, 1)       (1, -1)   (1, 1) 

 
 

No H 44(0.25143) 44(0.25143) 44(0.25143) 43(0.24571) 

HR 28(0.24138) 30(0.25862) 295(0.25000) 29(0.25000) 

 No H 44(0.25143) 44(0.25143) 43(0.24571) 44(0.25143) 

HR 22(0.23656) 24(0.25806) 24(0.25806) 23(0.24731) 

Table 3.1 presents the construction of the D-optimal when there is no heteroscedasticity and when there is 

heteroscedasticity for the error structures. It can be seen that the D-optimal designs when there is no heteroscedasticity 

for the two structures were same reason being that the error term have equal variance. The optimal designs even though 

the model has three parameters the design consists four points which are the extreme points of the regression 

range.From the table, it can been seen that  
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                (3.1) 

if there are 116 experimental units, 28 should be allocated to when  30 should be for when 

. In the same vein, 29 should be allocated to when  and when

. 

Considering D-optimal design for the second structure, 

               (3.2) 

Equation shows that if there are 93 experimental units, 22 should be allocated to when   24 

should be for when and , 23 for when . 

Table 3.2. D-optimal Designs for the real life data  

    (-1,-1)    (-1,1)       (1,-1)     (1,1) 
 HR 16(0.30000) 11(0.20000) 16(0.30000) 11(0.20000) 

The results still revealed that the D-optimal design for the real life data presented above affirmed the result from 

simulated data in the sense that the design point takes the extreme values of the design region. 

The relative efficiencies of D-optimal design with respect to other designs that are not optimal using the same method 

of construction of D-optimal design from the starting design matrix of point 4 is given below for the structures.  

Table 3.3. Relative Efficiency Table 

  

No of Iteration D-efficiency No of Iteration D-efficiency 

4 0.0019 4 0.0043 

5 0.0225 5 0.0329 

6 0.0331 6 0.0453 

    

114 0.9829 91 0.9788 

115 0.9914 92 0.9894 

Table 3.3 shows that the D-optimal design has close efficiency to other design especially the one closed to the design 

point meaning that the closer the D-efficient to one, the better. The no of iteration for D-optimal design for the first 

structure is 116 and for the second structure 93. Next table present the D-efficiency of the real life data.  

Table 3.4. Relative Efficiencies of other Designs for real life data 

I  

4 0.002128 

5 0.003511 

6 0.004728 

 
 

901 

  0.9869 

902   0.9931 

To determine the best correction method, the variances of the probability in the design point of the D-optimal design 

were calculated using different sample sizes. The best method was chosen on the basis of the one with minimum 

variance. Table 3.5 presented the variances of design points. 
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Table 3.5. Determination of the best Correction Method 

 
Forms 

Correction 
Methods 

Sample size 
10 20 30 40 50 100 250 500 

 

 
HCW1 1.24996 1.26050 1.24407 1.23217 1.24290 1.24434 1.24407 1.25584 

HCW2 1.24978 1.25912 1.25000 1.24386 1.24113 1.25762 1.25584 1.24172 
HCW3 1.24995 1.25969 1.24362 1.24386 1.25718 1.25000 1.25598 1.24223 

 
 

 
 

 

HCW1 1.25774 1.26146 1.24362 1.23030 1.24362 1.25534 1.24481 1.25628 
HCW2 1.25786 1.25868 1.23777 1.24401 1.24144 1.25786 1.25546 1.25739 

HCW3 1.27398 1.25899 1.21102 1.2386 1.25899 1.25718 1.25523 1.25762 

From the table, number of appearance of minimum variance values in HCW1 is more than the other two. Therefore 

HCW1 is assumed to be performing better. 

4. Conclusion 
In the study, constructions of D-optimal designs in the presence of Heteroscedasticity for two different structures were 

considered with when there is no Heteroscedasticity in the data.  

It was generally found that the D-optimal designs take the extreme values of the response variables which follow 

uniform distribution of the experimental units which can be interpreted as taking the least and the highest values of the 

explanatory variables in order to get best output through the response variable. To verify the above findings, a set of real 

life data (secondary data) was used and the design points for D-optimal designs were same with simulated data.  

The relative efficiencies of other designs under different Heteroscedasticity structures were found to prove the strength 

of the design. Determination of the best correction method was also found. This was achieved by comparing the 

variances of the selected correction methods with respect to sample sizes for all the structures used in the study. It was 

found that the correction method with minimum variance that showed the efficiency of the method represented by 

(HCW1) which was done by regressing  on the linear combinations of performed better than the 

remaining two. 
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Abstract

This paper is a reformulation of the paper, Mode 1958 Evolution 12:158 - 165, which was written in terms of a determin-

istic paradigm, using differential equations In this paper, however, the working paradigm will be stochastic, and from the

mathematical point of view, it will be a stochastic process that may be viewed as a branching process within a branching

process. In particular, it will be assumed that the population of host plants will evolve as a multitype branching process,

and the pathogen, which grows on the leaves of the host in every generation of the host, will also be assumed to evolve

as a multitype branching processes during each generation of the host. The contents of this paper, were motivated by

problems in Agriculture in which Plant Pathologists and Plant Breeders work together to control the damage inflicted by

a pathogen on a growing crop of a cultivar such as flax, wheat. and many other cultivars. The focus of attention in

this paper is the development of algorithms that will guide the development of software to run Monte Carol simulation

experiments taking into account mutations in the host and pathogen. The writing of software to implement the algorithms

developed in this paper would require a major effort, and is, therefore, beyond the scope of this paper.

Keywords: host, pathogen, genes for resistance in the host, genes to pathogenicity in the pathogen, mutations pathogenic-

ity in the pathogen, mutations for resistance to the pathogen in the host, embedded deterministic model

1. A Stochastic Model Describing the Coevolution of an Obligate Parasite and Its Host

The model formulated in Mode (1958) was based on a system of differential equations that were used as a framework

to describe the coevolution of an obligate parasite and its host. These equations were also used to suggest that the host

and the parasite populations would coevolve to a state of equilibrium in which both the host and the pathogen coexist.

During the 1950s, computing technology was very primitive when compared to technology that is available in the present

era. But, nevertheless, some simple calculations were included in the(1958) paper to suggest that a host - pathogen

system would indeed converge to a state of a mutual equilibrium in which the host and pathogen populations would

coexist indefinitely. Two other papers on the dynamics of Host - Pathogen systems were also published. In Mode 1961,

a deterministic formulation, which generalized the model in Mode 1958 was published. A stochastic model of a Host -

Pathogen system was published in 1964. In this paper, the working paradigm belonged to a class of stochastic processes

known as birth and death processes.

In this paper, however, the model that will be formulated to describe the coevolution of a host - parasite system will

belong to a class of stochastic processes called branching processes. To illustrate the ideas, in spring of some year in the

evolution of a host - pathogen system, let the symbols Hi for i = 1, 2, · · ·, n, denote the number n > 0 of host plants in

the initial generation. For the sake of simplicity, it will be assumed that all host plants will be infected with the parasite

or some other pathogen. It will also be assumed that the infection of a plant by the pathogen, starts with one spore which

leads to a pustule that produces a spore, this spore in turn produces one or more spores and that this process continues

until a leaf or leaves of a plant is fully covered by the pustules of the parasite. In the literature on stochastic processes, the

type of multiplicative process of spores just described in known as a branching process.

Mathematically, a simple branching process may be described as follows. Let the random variable X0 = 1 denote the

initial pustule on a leaf , and let the random variable ξ, which takes values in the set I = {0, 1, 2, · · ·} of nonnegative

integers, denote the number of pustules produce by any initial pustule. It will be assumed that the random variable ξ has

a Poison distribution with positive parameter λ and probability density function

P
[
ξ = x

]
= f (x) = exp [−λ] λ

x

x!
(1.1)

for x = 0, 1, 2, 3. · · · . It is well known that the expectation and variance of a random variable with a Poisson distribution

are E
[
ξ
]
= λ and var

[
ξ
]
= λ. In the context of the model under consideration, the parameter λ may be interpreted as a

measure of the virulence of the pathogen.

The infection process for any of the n plants will be formulated in terms of class of stochastic processes that are known
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as a branching process. For the sake of simplicity, it will be assumed that an infection of any plant begins with one spore

that which produces one pustule, Then, by assumption, the number of pustules produced by the first pustule is a random

variable and is given by the equation

X1 = ξ , (1.2)

where ξ is a realization of the Poisson random variable. In general, let the random variable Xn denote the number of

pustules on a plant in the n-th generation of the pathogen, and let (ξk | k = 1, 2, · · ·) denote a sequence of independent

random variables whose common distribution is that of the random variable ξ. Then, it follows that the number of pustules

on a plant in generation 2 is

X2 =

X1∑
k=1

ξk . (1.3)

And in general, this line of reasoning may be extended to conclude that

Xν =
Xν−1∑
k=1

ξk . (1.4)

is the number of pustules on a plant for all generations ν = 1, 2, · · · of the pathogen. For the case of flax rust, the generation

time of the pathogen is about 10 days. In reality and in any computer simulation experiment, only some finite number

m > 0 of generations of the pathogen will be considered.

From this equation, it can be seen that the conditional expectation of Xν , given Xν−1, is

E [Xν | Xν−1] = Xν−1λ (1.5)

for ν ≥ 1. Therefore, the unconditional expectation of the number of pustules in generation ν ≥ 1 on any plant satisfies

the recursive equation

E [Xν] = E [Xν−1] λ (1.6)

for ν ≥ 1. The algorithms just described may be used to program a computer to simulate that number of pustules on any

of the n plants under consideration at the end of a season. In any computer experiment, it would be necessary to repeat

the infection process just described for each of the n plants under consideration.

For any host plant Hi, let the random variable Yi denote the total number of pustules on the plant at the end of the growing

season. Then, the total load of pustules on the n > 0 plants under consideration is given by the equation

T =
n∑

k=1

Yi . (1.7)

The value of the random variable will influence that quantity and quality of the seeds produced by the plants. In extreme

cases, the host plants may not be able to produce a sufficient number of viable seeds to produce the next generation of

plants. Under such circumstances, the host-pathogen system would go extinct. But, even though the plants are infected

with a pathogen, it may also happen that the plants produce a sufficient number of viable seeds to produce the next

generation of plants. In such cases, the host - pathogen system would survive for another generation.

Given the a value of the random variable T, let S (ν) denote the conditional probability that in any generation a plant in

generation ν ≥ 1 survives to produce plants in generation ν + 1. If a plant is not infected by a pathogen, then it will be

assumed that this conditional survival probability has the form

S (ν) = exp
[
−(βν)2

]
. (1.8)

If, however, a plant is infected with a pathogen, then it will be assumed that this survival probability has the form

S (v | T ) = exp
[
−(Tβν)2

]
. (1.9)

Let n denote the number of plants at the end of a season. Then, it will be assumed that the number of plants that will

survive and produce seeds in the next generation is a random variable W with a binomial distribution with sample size n
and probability p. It is well known that the probability density function of the binomial distribution is

fBN (x | n, p) =

(
n
x

)
px (1 − p)n−x (1.10)
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for x = 0, 1, 2, · · ·, n.
In what follows, the notation X ∼ BN (n, p) will be used to denote that a random variable X has a binomial distribution

sample size n and probability p. In any computer simulation experiment, a realization of the random variable W would be

computed using the formula

W ∼ BN (n, S (v | T )) , (1.11)

and the realization of the random variable W would be the initial number of plants in the next generation. At this point in a

simulation, the algorithms outlined above would be used to continue the Monte Carlo simulation experiment for another

season.

As indicated in the title of this section, some obligate parasite was considered as the pathogen in the formulation above,

but the model would could also be used for cases in which the pathogen may also grow in the soil or on media prepared

in a laboratory.

2. Genetics of Host and Pathogen

The genetics of pathogenicity and host resistance to flax rust, Melampsora lini (Pers) Lev., has been reported in a pio-

neering works by Flor (1955 and 1956). Through a series of genetic studies, Flor has shown that the host and parasite

possess complementary genetic systems. That is to say, any gene in the host for resistance acts if, and only if, there is a

corresponding gene in the pathogen for avirulence. The genes for host resistance exist as a series of multiple alleles at

five loci, designated as the K, L, M, N, and P in the genome of the host. There is one gene at the K locus, 11 at the L, six

at the M, three at the N, and four at the P, for a total of twenty genes. The K, L, and M loci are inherited independently,

but the N and P loci are linked with about 26 percent recombination. Unlike the genes for host resistance, the genes for

pathogenicity in the pathogen exist at twenty-five separate loci.

Resistance of a host genotype to a particular pathogen genotype occurs whenever any allele in the host (at any one of

the five multiple allelic loci) and its complementary gene for avirulence in the pathogen at any one of the twenty-five (

diallelic loci) are present simultaneously. The alleles for host resistance are all dominant or semi-dominant so that the

heterozygote as well as the homozygote are resistant. The genes for avirulence in the pathogen are also dominant, with

the exception of one locus where the homozygous recessive in combination with one or two doses of a gene in the host

is necessary for resistance. Further details on the genetics flax resistance to flax rust may be found in Flor (1955) and

(1956).

These complementary genetic systems of the host and parasite are illustrated in the model presented below for the simple

case of one locus in both the host and parasite with two alleles at each locus. Let R and r, respectively, denote alleles

for resistance and susceptibility to the pathogen in the host, and let A and a denote alleles for avirulence and virulence,

respectively, in the pathogen. In this model, there are three genotypes of the host, namely RR, Rr and rr. With respect to

the pathogen there are also three genotypes: AA, Aa and aa. The interactions of the three genotypes of the host with three

genotypes of the pathogen are illustrated in the table below.

Table 2.1. Interactions of the Genotypes of the Host and Pathogen

Genotypes RR Rr rr
AA RIS RIS S US
Aa RIS RIS S US
aa S US S US S US

Observe that the columns of the table represent the genotypes of the host, and the rows of the table represent the genotypes

of the pathogen. The symbols in the body of the table represent the interactions of the genotypes of the host and pathogen.

For example in Table 2.1, the symbol RIS denotes resistance of the host to the pathogen, and the symbol S US denotes

susceptibility of the host to the pathogen. By inspecting the first row of this table, it can be seen that according to the model

under consideration, the allele R in the host for resistance to the pathogen is assumed to be dominant to the recessive allele

r for host susceptibility to the pathogen. The dominance effect of the allele A is also illustrated in row 2 of the table. In

row 3 of the table, the susceptibility of each of the three genotypes of the host to the virulent genotype aa of the pathogen

is indicated.

The simple illustrative case illustrating the gene to gene relationship in the host and pathogen considered in this section

could in principle be extended to the case of one locus with multiple alleles. But, such an extension would require a more

complex notation, and, therefore, will not be considered in this section. In the next section, however, cases in which the

gene for gene relationship in the host and the pathogen will be considered with respect to two or more loci with multiple

alleles in the host and pathogen.
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Research on the genetics of host - pathogen systems is still an active field of research, but the focus of attention of current

research differs from that of Flor. Currently, quite a number of researchers are studying the genetics of host - pathogen

systems by sequencing the genomes of the host and parasite. Among those researchers, who are sequencing the gnomes

of host and pathogens are Dr. Robert Brueggeman, Department of Plant Pathology, North Dakota State University. His

current focus of attention is the sequencing the genomes of barley and one of its parasites, which is a fungus called net

blotch. Two Ph.D. theses Boyle (2009) and Richards (2016) have also been devoted to research on net blotch.

Teams of researchers are working on sequencing the genomes of barley and net blotch. For example, the paper Wyatt et

al. 2017 contains an account of the sequencing of the Pyrenophora teres f. teres Isolate 0-1, which the scientific name

for net blotch. The paper Mascher et al. 2017 is devoted to an account of the sequencing of the barley genome and the

paper by Tamang et al. 2019 is devoted to finding susceptibility/resistance to net blotch in the barley genome. In the paper

Richards et al. 2016, there is an account of the fine mapping of the barley genome 6H net blotch susceptibility locus G3..

This brief review will provide the reader with some of the areas of genomic research that is currently in progress among

scientists working on resistance of barley to net blotch, other plant species and pathogens.

3. Linkage of Genes in the Host for Resistance to Two Pathogens

It has been observed by plant geneticists during the past several decades that genes in the host for resistances to two or

more pathogens are often linked, i.e. they are on the same chromosome in the host. An example of such linkage was

reported in the paper Schaller and Briggs (1955) on genes for bunt resistance in wheat. Currently, one can find many

reports on the internet on the location of genes for resistance in partially sequenced genomes of barley and wheat and

their functions at the molecular level, but it is beyond the scope to this paper to review this more recent literature. The

main thrust of this section is to focus on the formulation of a mathematical structure that accommodates linkage of genes

for resistance in the host to two or more pathogens that may be used in computer simulation experiments.

In chapter 2 of the book Mode and Sleeman (2012), a mathematical structure for dealing with linkage of genes at two

or more loci is described for diploid organisms. In that chapter a diploid genotype was represented by the symbol (x, y),

where x is the allele contributed by the maternal parent and y is the allele contributed by the paternal parent. For the case

of two alleles denoted by 0 and 1, four genotypes may be identified; namely, (0, 0) , (0, 1) . (1, 0) and (1, 1). Observe that

in genotype (0, 1) the maternal parent contributed the allele 0, but in genotype (1, 0) the maternal parent contributed the

allele 1.

It should be noted that not all cereal species that are important in agriculture are diploids. A plant species is said to be a

polyploid, if during its evolution two or more genomes have been incorporated to make a single genome. For example,

durum wheat and bread wheat are polyploids. Durum wheat (Triticum durum) for example, has 14 pairs of chromosomes.

It is thought that during its evolution, two genomes that were originally 7 pairs of chromosomes, were joined to make a

species of 14 pairs of chromosomes. Bread wheat (Triticum aestivum).has 21 pairs of chromosomes, and it is thought that

the genome of this species is made of the genomes of three species with genomes of 7 pairs of chromosomes. Polyploidal

species may not follow the same laws of inheritance than those of diploid species. Consequently, the linkage structure

under consideration may not be applicable for polyploid species. Barley is an important spices in agriculture, and it has a

genome made up of 7 pairs of chromosomes. Moreover, this species follows the laws of inheritance for diploid species,

and therefore the linkage structure that will be developed will be applicable to experiments with barley.

In chapter 2, section 2 of Mode and Sleeman (2012), formulas are derived that accommodate linkage at two or more loci

that can be applied in computer simulation experiments involving numerical calculations. In this section, a revision of

some formulas will be derived for the case of two autosomal linked loci. In this case, an arbitrary genotype of diploid

individual with respect to two linked loci may be represented in the form

00

11
, (3.1)

where 00 represents the alleles at two loci contributed by the females parent. Similarly, the symbol 11 denoted the alleles

contributed by the male parent.

An individual of this genotype may in turn produce four types of gametes; namely 00, 01, 10, and 11. Gametes 00 and

11 represent copies of the maternal and paternal gametes respectively; while 01 and 10 are recombination type gametes

containing both maternal and paternal genes. In particular cases, the generic gametic symbols could be identified with

particular haplotypes when the focus of attention is at the molecular level, or with phenotypes when the discussion is at

the Mendelian level. It should also be noted that the Boolean notation under consideration is not phase dependent with

respect to some specific genes at two loci to which attention is being directed, because in terms of Boolean indicators only

parental origins of genes are under consideration.

The four types of gametes will be produced by a given genotype with certain probabilities depending on the probability
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of recombination. Let γ(00), γ(01),γ(10), and γ(11) denote the probabilities an arbitrary genotype produces gametes 00,

01, 10, and 11, respectively. In the two loci case, the linkage (gametic) distribution is the set

(γ(00), γ(01), γ(10), γ(11)) (3.2)

of non-negative numbers whose sum is one. Because of the complementary nature of the meiotic mechanism, i.e., gametes

are almost always produced in pairs, the mechanism of meiosis will be called balanced if the equations

γ(00) = γ(11)

γ(10) = γ(01) (3.3)

are satisfied.

If we let ρ be the probability of recombination, then it follows that

γ(10) + γ(01) = ρ (3.4)

and

γ(00) + γ(11) = 1 − ρ . (3.5)

But, if the mechanism of meiosis is balanced, then

γ(01) = γ(10) =
1

2
ρ (3.6)

and

γ(00) = γ(11) =
1

2
(1 − ρ) . (3.7)

When a objective of an investigation is to map the locations of two loci on the same chromosome expressed in terms of

centimorgens (cM), then the pertinent values of ρ will satisfy the condition 0 ≤ ρ ≤ 1
2
. The case of random assortment

occurs when ρ = 1
2

so that the probability of each type of gamete is 1/4. In principle, however, ρ may be any value such

that 0 ≤ ρ ≤ 1. Note if 0.5 < ρ ≤ 1, then γ (01) and γ (10) are greater than γ (00) and γ (11).

A problem of considerable theoretical importance in assessing the effects of linkage in populations is that of defining

recombination probabilities and finding a relation between these recombination probabilities and the gametic distribution,

when the number of loci under consideration is greater than two. An interesting step towards a solution of this problem

was made by Schnell (1961), who observed that if one makes the transformation

ρ =
1

2
(1 − λ) , (3.8)

or equivalently

λ = 1 − 2ρ , (3.9)

then a certain orthogonality is introduced which leads to an extension to cases of an arbitrary number of linked loci.

Observe that as ρ varies over the interval [0, 1] , the parameter λ varies over the interval [−1, 1] .

By using these equations, it can be seen that

γ(00) =
1

4
(1 + λ)

γ(10) =
1

4
(1 − λ) . (3.10)

These equations can perhaps be most easily comprehended in vector-matrix notation. Let

γT = (γ(00), γ(10))

λT = (1, λ) (3.11)

be 1 × 2 vectors, where the superscript T stands for transpose of a vector or matrix, and let

A2 =

(
1 1

1 −1

)
(3.12)
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denote a 2 × 2 matrix. Observe that the rows and columns of this matrix is orthogonal. Then, in vector-matrix notation

the above equation may be written in the form

γ =
1

4
A2λ . (3.13)

This equation is of interest, because it expresses γ as a function of λ. In a computer simulation experiment, if the

components of vector λ are assigned numerical values, then the vector γ is determined. From now on the symbol T will

be used to denote the transpose of a matrix.

The following observations are very helpful in finding an extension to the case of an arbitrary number of linked loci.

Firstly,

AT
2 = A2 (3.14)

so that A2 transpose is A2. When a square matrix remains invariant under the operation of transposition, it is said to be

symmetric. Secondly, observe that

AT
2 A2 = A2

2 = 2I2 , (3.15)

where I2 is a 2 × 2 identity matrix., which has the form

I2 =

([
1 0

0 1

])
(3.16)

Equation (3.15) expresses an orthogonality condition which, as we shall see, may be generalized to an arbitrary number

of loci greater than two. Thirdly, if the symbols 00 and 10 are regarded as the vectors ξT1 = (0, 0) and ξT2 = (1, 0), then the

matrix A2 may be represented in the form

A2 =
(
ae j

)
=
(
(−1)ξ

T
i ξ j
)
, (3.17)

for i, j = 1, 2. Lastly, we see the column vector λ may be represented in the form

λ = 2A2γ (3.18)

This equation could be taken as a definition of the column vector λ. In the next section, these results will be extended to

the case of three linked loci.

4. Linkage of Genes for Resistance in the Host to Three Pathogens

In this section in order to make the paper self contained, a revised version of section 2.5 in Mode and Sleeman 2012 will

be presented that will provide a structure to consider genes in the host for resistance to three pathogens. A question that

naturally arises is whether the above scheme considered in section 3 can be generalized to any arbitrary number of loci

greater than two. As we shall see such a generalization is possible, but the manner in which the scheme may be generalized

will not become clear until the three loci case is considered. In the three loci case, an arbitrary diploid genotype may be

represented in the form
000

111
, (4.1)

where as before the zeros and ones represent genes contributed by maternal and paternal parents, respectively. This

genotype is capable of generating 23 = 8 types of gametes containing various combinations of maternal and paternal

genes.

The set of these eight types of gametes will be represented in the form

G = (000, 100, 010, 110, 111, 011, 101, 001) , (4.2)

and let the vector

(γ(ξ) | ξ ∈ G) (4.3)

denote the linkage distribution, i.e., the set of non-negative numbers, whose sum is one, giving the probability that each

type of gamete is produced by the meiotic process. Because the meiotic mechanism is assumed to be balanced, gametes

are produced in pairs so that following symmetry or complementary conditions

γ(000) = γ(111)

γ(100) = γ(011)

γ(010) = γ(101)

γ(110) = γ(001) (4.4)
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will be assumed. From these symmetry conditions, it follows that it will be sufficient to consider only four probabilities

from the linkage distribution in setting up a correspondence with a set of recombination probabilities.

In the three loci case, a recombination probability may be associated with each pair of loci; namely, the pairs (1, 2), (1, 3)

and (2, 3). Let ρ12 , ρ13, and ρ23, denote the probability of recombination between the respective pairs of loci. With each

recombination probability, we may associate a lambda parameter denoted by λ12, λ13 and λ23. From the definitions of ρ12

, ρ13, and ρ23, it follows that

ρ12 = 2 (γ(100) + γ(010))

ρ13 = 2 (γ(100) + γ(110))

ρ23 = 2 (γ(010) + γ(110))

1 − ρ12 = 2 (γ(000) + γ(110)) . (4.5)

Observe that only four gametic probabilities appear on the right so it may be possible to solve four simultaneous linear

equations. Also observe that the symmetry conditions were used in choosing the four gametic probabilities on the right.

By substituting the λ′s for the ρ′s in these equations, it can be shown that

1

4
(1 − λ12) = γ(100) + γ(010)

1

4
(1 − λ13) = γ(100) + γ(110)

1

4
(1 − λ23) = γ(010) + γ(110)

1

4
(1 + λ12) = γ(000) + γ(110) . (4.6)

By solving these four equations for γ(000), γ(100), γ(010) and γ(110), it can be seen that

γ(000) =
1

8
(1 + λ13 + λ23 + λ12)

γ(100) =
1

8
(1 − λ13 + λ23 − λ12)

γ(010) =
1

8
(1 + λ13 − λ23 − λ12)

γ(110) =
1

8
(1 − λ13 − λ23 + λ12) . (4.7)

Just as in the two loci case, these equations may be most easily comprehended if they are cast in vector-matrix notation.

Let

γT = (γ(000), γ(100), γ(010), γ(110)) (4.8)

and

λT = (1, λ13, λ23, λ12) (4.9)

denote row vectors, and let

A3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (410)

denote a 4 × 4 matrix. Then the equations may be written in the compact form

γ =
1

23
A3λ . (4.11)

It should also be noted that the matrix A2 is related to the matrix A3 by the simple recursion formula

A3 =

[
A2 A2

A2 −A2

]
. (4.12)

19



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 9, No. 2; 2020

From this recursive equation, it can be seen that

AT
3 =

[
AT

2 AT
2

AT
2 −AT

2

]
=

[
A2 A2

A2 −A2

]
= A3 (4.13)

because A2 is symmetric. Furthermore, from this equation, it follows that

AT
3 A3 = A2

3 =

[
2A2

2 0
0 2A2

2

]
= 2

[
2I2 0
0 2I2

]
(4.14)

= 22I4

where 0 is a 2 × 2 zero matrix and I4 is an identity matrix of order 4.

We thus see that orthogonality condition carries over to the three loci case. Moreover, let ξT1 = (0, 0, 0), ξT2 = (1, 0, 0), ξT3 =
((0, 1, 0) and ξT4 = (1, 1, 0) denote row vectors. Then, by inspection, it can be seen that

A3 =
(
ai j = (−1)ξ

T
i ξ j
)

(4.15)

for all i, j = 1, 2, 3, 4. Just as in the case of two loci, it also follows, by using the above results and solving for the vector

λ, that the equation

λ = 2A3γ , (4.16)

expresses the vector λ as a linear function of the vector γ, given the matrix A3.

At this juncture it is important to note that the ordering of the gametic symbols

(000, 100, 010, 110) (4.17)

played a basic role in extending the observations made in the case two loci to the case of three loci. Furthermore, the

linear relation (4.16) , connecting the vectors λ and γ , suggests that to extend the results for the case of three loci to cases

of four or more loci, it would be prudent to simplify the notation by abandoning subscripts on the λ and ρ parameters and

replacing them by a function notation of the form λ (ξ) and ρ (ξ) , where ξ is an arbitrary gametic symbol containing 0′s
and 1′s.

Given this function notation, the matrix A3 and the ordering of the elements of the gametic vector γ, equation (4.2) leads

to an automatic ordering of the elements of the vector λ. This observation suggests that extensions of equation (4.1) to

cases of four or more loci could be used to define the vector λ for an arbitrary number of loci. Then, given any ξ ∈ G, a
corresponding recombination probability may be determined by the equation

λ (ξ) = 1 − 2ρ (ξ) . (4.18)

By way of an illustrative example, suppose ξ = 000, indicating that in gametes of this type there was no genetic recom-

bination. For the case of three loci under consideration, it was observed that λ (ξ) = 1, which implies ρ (ξ) = 0, indicating

with gametes of type ξ = 000 recombination occurs with probability 0, which is consistent with our intuition. In this

paper, however, there will be no attempt to extend the results presented in this section to the cases of four or more loci,

because it seems likely that demand for such cases will be very limited. If, however, a reader is interested in considering

four or more linked loci, chapter 2 of the book Mode and Sleeman 2012 may be consulted for an account of working with

four or more linked loci.

It would be of interest to present an example of data such that the probabilities of recombination for the case of three

linked loci could be estimated, but no attempt to construct such an example will be undertaken. For readers who are

interested in three point test for linkage, the book by Liu 1998 may be consulted.

5. Mutations in the Host and Pathogen

It is well known that mutations do occur in plant pathogens. For example, a variety of durum or bread wheat may have

been grown extensively in an area for many years, because it’s resistant to stem rust, a plant pathogen. However, it may

happen that there is a mutation in the pathogen, stem rust, so that a variety of wheat that was resistant to the pathogen

is no longer resistant, due to a mutation in the pathogen. As the science of genomics continues to develop, it may

become possible to identity the location in the genome of the pathogen where the mutation occurred and characterize

it at the molecular level. In this section, however, mutations in the host and pathogen will be described and analyzed

mathematically with a view towards providing a framework for studying the interactions of hosts and pathogens as well

as their coevolution.
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Let A denote a gene in the pathogen for avirulence, and let a denote an allele for virulence. Similarly, let R let denote a

gene in the host for resistance to the pathogen. and r denote an allele for susceptibility in the host . It will be assumed that

the interactions of the host and pathogen follow those described in Table 2.1 in section 2. Let μ12 denote the probability

per generation that gene A in the pathogen mutates to gene a for virulence. Similarly, let ν12 denote the probability per

generation that gene R for resistance in the host mutates to gene r, which confers susceptibility of the host to the pathogen.

If gene a in the pathogen mutates to gene A for avirulence, then, by definition, a back mutation has occurred.

The set of possible mutations in the pathogen may be represented in a two by two matrix

P =

[
ν11 ν12

ν21 ν22

]
. (5.1)

In the first row of this matrix ν11 = 1 − ν12 so that if ν12 = 10−9, then ν11, which is the probability a mutation does not

occur, is close to 1. Row 2 of this matrix, takes into account back mutations, which may occur with probability ν21 > 0.

In computer simulation experiments, the row of the matrix P are assigned numbers such that the rows of this matrix sum

to 1. Similarly, mutations in the host may be represented by the matrix

H =

[
μ11 μ12

μ21 μ22

]
, (5.2)

row sum to 1. Observe that ν12 is the probability per generation that gene R in the host mutates to gene r. The probabilities

in row 2 of the matrix H take into account that back mutations may occur in the host.

It seems likely that before wheats, barley, flax and other plants that were domesticated, they were outbreeders so that in an

evolving population random mating was prevalent, because winds and perhaps insects would distribute pollen randomly

among plants. According to this view, as these species of plants were domesticated they evolved to a state in which they

reproduced by self fertilization. In this situation, the anatomy of a flowering plant evolved in such a way that the pollen

fertilizes only its eggs in same flower. Consequently, when formulating models describing the evolution of these species

of plants, it will be necessary to take into account not only random mating but also reproduction by self fertilization.

in models dealing with the joint evolution of the host and pathogen. It will be assumed that the pathogen reproduces

asexually. That is individuals of type A produce only individuals of type A if a mutation does not occur. Similar remarks

hold for individuals of type a of the pathogen.

A computer experiment that would mimic that rise of virulent mutations in the pathogens and their impact on populations

of domestic wheats, barley and other crops would be of practical interest, because they are actually observed in such

populations. Bread and durum wheats are polyploids, but with respect to one locus in which genes for resistance or

susceptibility to a pathogen are located, the genetic laws governing these traits are similar to those of diploids. The laws

governing the resistance to pathogens in barley follow those of a diploid population. Consider a host pathogen system in

which pathogen is haploid and reproduces asexually. It will be assumed that the pathogen has two alleles A for avirulence

and a for virulence. As is section 2, let R denote a allele in the host for resistance to the pathogen and let r denote at

the same locus for susceptibility to the pathogen. In this model, the host population would consist of three genotypes RR.

Rr and rr. In the absence of mutation, when a population reproduces either by random mating or selfing, individuals of

genotype RR would produce offspring only of genotype RR. But, is such population individuals of genotype Rr would

produce offspring with genotypes RR, Rr and rr with corresponding probabilities 0.25, 0.50, and 0.25. Similarly, in the

absence of mutation, individuals of genotype rr would produce offspring only of genotype rr.

Mutations are rare events and thus need to be taken into account in a model according the laws of evolution of a stochastic

processes. For example, with regard to the pathogen population, let M denote the number of individuals of genotype A in

the population in some generation , and let m denote the number of mutations from genotype A to the virulent genotype

a. If these mutations occur independently, then it follows that the random variable m has a binomial distribution with the

probability density function

P [m = x] = f (x) =

(
M
x

)
μx

12 (1 − μ12)M−x (5.3)

for x = 0, 1, 2, · · ·,M. When M is large, then the probability density function in 5.3 may be approximated by a Poisson

distribution with parameter Mμ12.

As a first step in formulating a model in a host population with respect to one locus, consider a population of plants that

are homozygous for a gene R for resistance to some pathogen. In this case, all plants in a population would be of genotype

RR. It will be assumed that the population reproduces by selfing and that mutations may occur. Specifically, it will be

assumed that allele R may mutate to allele r with probability ν12 per generation, and that allele r may back mutate to allele
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R with probability ν21 per generation, see 5.2. Given a population of individuals of genotype RR, it will be necessary to

describe the set of events that may occur when mutation occurs in the evolution of a population. In particular, under the

assumption that mutations may occur, in what follows formulas will be derived for the distribution of the three genotypes

RR, Rr and rr among the offspring of parents with genotypes RR, Rr and rr.

Observe that under the assumption that copies of allele R mutate independently, it follows that

(1 − μ12) × (1 − μ12) = (1 − μ12)2 (5.4)

is the probability per generation that neither of the copies of the allele R in the genotype RR mutate to allele r. Suppose

that among the offspring of a plant of genotype RR an offspring of genotype Rr is found, indicating that a mutation of the

form R −→ r has occurred, This mutation can occur in two ways. Suppose the left allele in the genotype RR does not

mutate with probability (1 − μ12), but the right allele does mutate with probability μ12. In this case, the probability of the

occurrence of the mutant genotype Rr is (1 − μ12) μ12. It can be seen by the same line of reasoning, that the probability

that that left allele in the genotype RR mutates but the right allele dose not mutate is μ12 (1 − μ12). The two mutational

events just described are disjoint. Therefore, the probability of finding an offspring of genotype Rr among the offspring

of an individual of genotype RR is

(1 − μ12) μ12 + μ12 (1 − μ12) = 2μ12 (1 − μ12) . (5.5)

The genotype rr may also be occur among the offspring of individuals of genotype RR. In this case, both the left and right

alleles in the genotype RR have mutated to the allele r. The probability of this rare event is

μ2
12 . (5.6)

The next step in formulating the model of mutation under consideration is to derive formulas for the probabilities of

finding mutant genotypes among the offspring of individuals of genotype Rr. The probability that neither of the alleles in

the genotype mutate is

(1 − μ12) (1 − μ21) . (5.7)

The probability that the right allele r in the genotype Rr back mutates to allele R is ν21. Therefore, the probability of

finding an individual of genotype RR among the offspring of an individual of genotype Rr is

(1 − μ12) μ21. (5.8)

Similarly, the probability of finding an individual of genotype rr among the offspring of an individuals of genotype Rr is

μ12 (1 − μ21) . (5.9)

The last step in the process of deriving formulas for finding mutant genotypes among the offspring of individuals of

genotype rr. The probability that there are no mutant offspring among the offspring of an individual of genotype rr is

(1 − μ21)2 . (5.10)

The probability of finding an individual of genotype Rr among the offspring on an individual of genotype rr is

2μ21 (1 − μ21) . (5.11)

Note that the argument used to derive this formula is the same as that used in deriving formula 5.5. Finally, the probability

of finding an offspring of genotype RR among the offspring of an individual of genotype rr is

μ2
21 . (5.12)

The next step towards reaching the goal stated above is to derive a formula the probabilities of finding genotypes RR, Rr
and rr among the offspring an individual of the genotype RR. Let TORRR denote the number of offspring on an individual

of genotype RR. From 5.4, 5.5 and 5.6, it can be seen that the total probability of finding non-mutant as well as mutant

genotypes among the offspring of an individual of genotype RR is

P [TOTRR] = (1 − μ12)2 + 2μ21 (1 − μ21) + μ2
12 (5.13)
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As an aid in deriving formulas for the probabilities of finding mutant offspring RR, Rr and rr among the offspring of

genotype RR under the assumption mutation, a random variable XRR will be introduced to indicate the genotype of an

offspring of genotype RR. Therefore, the conditional probability of finding an offspring of genotype RR among those of

genotype RR is

P [XRR = RR | TOTRR] =
(1 − μ12)2

(1 − μ12)2 + 2μ21 (1 − μ21) + μ2
12

(5.14)

Similarly,

P [XRR = Rr | TOTRR] =
2μ21 ((1 − μ21))

(1 − μ12)2 + 2μ21 (1 − μ21) + μ2
12

(5.15)

and

P [XRR = rr | TOTRR] =
μ2

12

(1 − μ12)2 + 2μ21 (1 − μ21) + μ2
12

. (5.16)

Let XRr denote a random variable indicating the genotype of an offspring of an parental individual of genotype Rr. Observe

that

TOTRr = (1 − ν12) (1 − ν21) + (1 − ν12) ν21 + (1 − ν21)2 . (5.17)

Therefore, from 5.8 it follows that

P [XRr = RR | TOTRr] =
(1 − μ12) μ21.

(1 − μ12) (1 − μ21) + (1 − μ12) μ21 + (1 − μ21)2
. (5.18)

Similarly, from 5.9 it can be seen that

P [XRr = Rr | TOTRr] =
2μ21 (1 − μ21)

(1 − μ12) (1 − μ21) + (1 − μ12) μ21 + (1 − μ21)2
(5.18)

μand from 5.10 it can be see that

P [XRr = rr | TOTRr] =
μ12 (1 − μ21)

(1 − μ12) (1 − μ21) + (1 − μ12)21 + (1 − μ21)2
(5.19)

For the case of finding genotypes RR, Rr and rr among the offspring of an individual of genotype rr, the total probability

of a mutation is

TOTrr = μ
2
21 + 2μ21 (1 − μ21) + (1 − μ21)2 (5.20)

Therefore,

P [Xrr = RR | TOTrr] =
μ2

21

μ2
21
+ 2μ21 (1 − μ21) + (1 − μ21)2

. (5.21)

By using the same line of reasoning, it follows that

P [Xrr = Rr | TOTrr] =
2μ21 (1 − μ21)

μ2
21
+ 2μ21 (1 − μ21) + (1 − μ21)2

(5.22)

and

P [Xrr = rr | TOTrr] =
(1 − μ21)2

μ2
21
+ 2μ21 (1 − μ21) + (1 − μ21)2

. (5.23)

The expressions in the formulas derived above will be interpreted as elements in three dimensional 1 × 3 vectors that are

defined below.

pRR = (P [XRR = RR | TOTRR] , P [XRR = Rr | TOTRR] , P [XRR = rr | TOTRR])

pRr = (P [XRr = RR | TOTRr] , P [XRr = Rr | TOTRr] , P [XRr = rr | TOTRr]) (5.24)

prr = (P [Xrr = RR | TOTrr] , P [Xrr = Rr | TOTrr] , P [Xrr = rr | TOTRr])

In the next section., it will be shown that these three vectors play an essential role in Monte Carlo simulation experiments

designed to study the occurrence of virulent genotypes in the pathogen and genes for susceptibilities in the host that arise

the host and pathogen populations by the process of mutation.
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6. Evolution of the Host Population as a Multitype Branching Processes

In this section, the formulation of a mulitype branching process evolving on a time scale of discrete generations will

be given along with a description of algorithms to compute a sample of Monte Carlo realizations of such a multitype

branching processes. The class of multitype branching processes considered in this section, is an extension of the one

type branching process described in section 1. To illustrate the algorithms underlying a Monte Carlo simulation procedures

to simulate a sample of realizations of this stochastic process, for the sake of simplicity, attention will be focused on the

case of m = 3 types, which will be referred as genotypes. Let G = {1, 2, 3} denote the set of three genotypes. For the case

of the host with one locus with two alleles R and r, these three genotypes would be RR, Rr and rr as illustrated in section

2.

The number of offspring will be characterized in terms of random variables Nν for ν ∈ G, taking values in the set

I = {n | n = 0, 1, 2, 3, · · ·} of non-negative integers. The probability density functions of these random variables will be

denoted by

P [Nν] = gv (n) for n ∈ I (6.1)

and ν ∈ G. The expected value of a random variable Nν is

E [Nν] = λν ≥ 0 (6.2)

and may be interpreted as the average number of offspring contributed to the next generation by each genotype ν ∈ G.

As in the foregoing sections of this paper, the probability density functions for the random variables Nν, ν ∈ G, will be

chosen as the simple Poisson densities

gv (n) = exp [−λν] λ
n
ν

n!
(6.3)

for n ∈ N and ν ∈ G. It is easy to show that for the density in (6.3), E [Nν] = λν > 0 so that the measure of reproductive

success λv is the parameter for a Poisson density for each genotype. In the experiments reported in this paper, a decision

was made to consider only the special case of Poisson distributions for the random variables Nν for ν = 1, 2, 3. It is well

known for this simple distribution that the expectation and variance both equal the parameter λ.

A multitype branching process in discrete time may be defined as follows. In generation t, where t = 0, 1, 2, 3, · · ·, let the

random function Xi (t) , taking values in the set N, denote the number of individuals of genotype i ∈ G in generation t, and

let

X (t) = (X1 (t)) , X2 (t) , X3 (t) (6.4)

denote a vector of these random functions. For t = 0, an experimenter needs to assign initial values in the set N to each of

the elements in the vector (6.4) . Let the 1×3 vector Yi = (Yi1,Yi2,Yi3) denote the total number of offspring each genotype

produced by genotype i ∈ G in any generation. For each genotype i, let

Yi1,Yi2, · · · (6.5)

denote a sequence of conditionally independent random variables, given Xi (t) the number of individuals of genotype i in

generation t.Each of the random variables in this sequence has a Poisson distribution with parameter λi. Then, the number

of individuals in the population at time t + 1 of genotype i is

Xi (t + 1) =

Xi(t)∑
ν=1

Yiν (6.6)

for i = 1, 2, 3.

The next step in the formulation of the model is to take into account mutation. To include mutations in the model, it will

be necessary to introduce the multinomial distribution. The probability density function of the multinomial distribution

for the case of three dimensions is

f (z1, z2, z3) =
n!

z1!z2!z3!
ps1

1
pz2

2
pz3

3
(6.7)

where

z1 + z2 + z3 = n (6.8)

and

p1 + p2 + p3 = 1 (6.9)

and pi > 0 for i = 1, 2, 3.
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Let pRR denote the 1 × 3 row vector defined in 5.24.Then for an individual of genotype RR,when mutations occur the

number of offspring of each of the three genotypes, RR, Rr and rr,is given by the 1 × 3 row vector OFFRR, which is a

realization of a multinomial distribution with probability vector pRR and sample size n = Xi (t + 1), with genotype i = RR.
For the case of genotype Rr, the number of offspring of each genotype is given by the 1 × 3 vector OFFRr, which is a

realization of a multinomial distribution with probability vector pRr and sample size n = Xi (t + 1) with i = Rr. Lastly,

for the case of genotype rr the number of offspring of the three genotypes is given by the 1 × 3 vector OFFrr, which is

a realization of a multinomial distribution with a 1 × 3 probability vector prr and sample size n = Xi (t + 1) with i = rr.

An algorithm for simulating a realization of a multinomial random vector may be found in the paper by Mode and Gallop

2008.

It will be helpful to arrange the realization of the three 1 × 3 vectors in the form of a 3 × 3 matrix of the form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣o f f11 o f f12 o f f13

o f f21 o f f22 o f f23

o f f31 o f f32 o f f33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6.10)

when it is necessary to compute the number of individuals of each genotype when mutations occur in a population. For

example, when mutations are taken into account, the number of individuals of genotypes RR is at time t + 1

XRR (t + 1) =

3∑
j=1

o f f j1 . (6.11)

Similarly, when mutations are taken into account the numbers of individuals in the population of genotypes Rr and rr are

given by the sums

XRr (t + 1) =

3∑
j=1

o f fJ2 (6.12)

and

Xrr (t + 1) =

3∑
j=1

o f fJ3 (6.13)

7. Embedding a Deterministic Model in a Stochastic Process

Let Z1,Z2, · · · denote a sequence of random variables taking values in the set of real numbers R = (−∞.∞), and suppose

the expectation E
[
Z2

i

]
is finite for every i = 1, 2, · · ·. It is of interest to find the best estimator of the random variable Zn+1,

given the random variable Zn. Let Ẑn+1 denote this estimator. Then it is well known that the conditional expectation

Ẑn+1 = E [Zn+1 | Zn] (7.1)

minimizes the expectation

E
[(

Zn+1 − Ẑn+1

)2]
. (7.2)

Thus Ẑn+1 in 7.1 is the best estimator of Zn+1 in the sense of least squares. In what follows, conditional expectations of

the form 7.1 will be used extensively .

The objective of this section is to describe a procedure for embedding a deterministic model in a stochastic process. As

a first step in describing the derivation of the embedded model, consider the Galton-Watson process defined by equation

1.4 in section 1 by the equation

Xν =
Xν−1∑
k=1

ξk (7.3)

for ν = 1, 2, · · ·. In this case, for a given ν

E[Xν | Xν−1] = E[Xν−1]λ (7.4)

because for each k it is assumed that the random variable ξk has a Poison distribution with expectation λ. As indicated

above, let

X̂i = X̂i−1λ (7.5)

for ν = 1, 2, · · ·.
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For ν = 1 equation 7.5 takes the form

X̂1 = E [X0] λ , (7.6)

where E [X0] = X0, the initial size of the population, which is an assigned number. Thus,

X̂1 = X0λ . (7.7)

is known. From equations 7.5 and 7.7, it follows that

X̂2 = E [X2 | X1] = X̂1λ . (7.8)

By using the process just described, it can be shown that

X̂k = X̂k−1λ (7.9)

for k ≥ 1. By definition, equation 7.9 is the deterministic model embedded in the Galton-Watson process.

For the case of a multitype branching process described in section 6, the basic equation of the process is

Xi (t + 1) =

Xi(t)∑
ν=1

Yiν (7 .10)

for genotypes i = 1, 2 and 3, where given Xi (t), Yi1,Yi2, · · · is a sequence of conditionally independent Poisson random

variables for expectation λi for each genotype i = 1, 2, 3. For each genotype i,it can be shown that

E [Xi (t + 1) | Xi (1)] = Xi (t) λi . (7.11)

Therefore, just as in the case of a one type branching process, the recursive equation

X̂i (t + 1) = X̂i (t) λi (7.12)

will be used to calculate estimates of the sample functions for each genotype i = 1, 2, 3 and t = 0, 1, 2, · · ·.
To take mutation into account in the embedded deterministic model, it will be necessary the use the modified matrix⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ô f f11 ô f f12 ô f f13

ô f f21 ô f f22 ô f f23

ô f f31 ô f f32 ô f f33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (7.13)

which was defined in section 6 in equation 6.10. The symbol ô f f indicated that the elements of the matrix have been

calculated using estimates of the sample functions of the process. In section 6, the elements of the matrix in 7.13 were

calculated as realizations of multinomial random vectors. But, in the embedded deterministic model the rows of the

desired matrix, will be calculated as the mean or expectation of a vector with a multinomial distribution.

Consequently, the modified version of the matrix in 7.13 has the form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
X̂1ô f f11 X̂1ô f f12 X̂1ô f f13

X̂2ô f f21 X2ô f f22 X̂2ô f f23

X̂3ô f f31 X̂3ô f f32 X3ô f f33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7.14)

In this equation, X̂1 is actually X̂1 (t + 1), but for the sake of simplicity, the symbol (t + 1) was not shown in matrix 7.14.
Given this matrix, the estimates of the number of each of the three genotypes at time t + 1 are as follows:

X̂1 (t + 1) =

3∑
ν=1

X̂νô f fν1

X̂2 (t + 1) =

3∑
ν=1

X̂νô f fν2 (7.15)

X̂3 (t + 1) =

3∑
ν=1

X̂νô f fν3
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8. Evolution of the Pathogen Population as a Multitype Branching Process

For the sake of simplicity, it will be assumed that the pathogen is a haploid so that each individual of the pathogen

population has only one copy of a gene at each locus. In what follows the genotype of an individual in the pathogen

population will be denoted by the symbols A and a, which denote avirulence and virulence respectively. According the

mutation matrix in 5.1, gene A of the pathogen mutates to gene a with probability ν12 per generation, and gene a mutates

back to gene A with probability ν21 per generation.

At time t let the random variable W1 (t) denote the number of individuals of genotype A in the pathogen population, and

let the random variable W2 (t) denote the number of individuals of genotype a in the pathogen population at time t. Let

ξi ( j) for j = 1, 2, · · · denote a sequence of conditionally independent Poison random variables with parameter λi, where

i = 1 or i = 2 denotes the genotype of an individual in the pathogen population. Then the evolution of the number of

individuals of genotype 1 = A in the pathogen populate is governed by the recursive equation

W1 (t + 1) =

W1(t)∑
j=1

ξ j (1) , (8.1)

for t = 0, 1, 2, · · ·. If W1 (t) = 0, then W (t + 1) = 0 for all t. Similarly, the evolution of the number of individuals in the

pathogen population of genotype 2 = a has the form

W2 (t + 1) =

W2(t)∑
j=1

ξ j (2) , (8.2)

for t = 0, 1, 2, · · ·. To initialize the recursive procedures in equations 8.1 and 8.2, the number of individuals of each

genotype in the initial population, W1 (0) and W2 (0), must be specified by an experimenter. For each j the expection of

the Poison random variables are E
[
ξ j (1)

]
= λ1 and E

[
ξ j (2)

]
= λ2.Because genotype 2 is a, the gene for virulence,

the values of λ1 and λ2 chosen by an experimenter must satisfy the inequality λ1 < λ2 to take into account that virulent

genotypes of the pathogen will have many more offspring per generation that an avirulent genotype.

The next step in the formulation of the pathogen process is to take into account that mutations may occur in populations

avirulent individuals that are of genotype A. Mutations in individuals of the virulent genotype a will also be included in

the formulation. According to the 2×2 matrix of mutation probabilities in 5.1 for the pathogen, the mutation probabilities

for genotype A are ν11 and ν12, and those for genotype a are ν21 and ν22. Let OA (t) = (nA1 (t) , na1 (t)) denote a 1 × 2

vector of the numbers of genotypes A and a that are offspring of genotype A at time t+ 1. Then, by assumption, the vector

OA (t + 1) has a multinomial distribution with sample size W1 (t + 1) and probability vector pA = (ν11, ν12) at time t + 1

in the evolution of the pathogen process. Similarly, let the 2 × 1 vector Oa (t + 1) = (nA2 (t + 1) , na2 (t + 1)) denote the

number of offspring of genotype a with genotypes A and a. By assumption this vector also has a multinomial distribution

with sample size W2 (t) and probability vector pa = (ν21, ν22).

To complete the derivation of the process for the pathogen in any generation, it will be helpful for arrange the two vectors

just derived in the 2 × 2 matrix [
nA1 (t + 1) na1 (t + 1)

nA2 (t + 1) na2 (t + 1)

]
. (8.3)

From this matrix it can be seen that, when mutation is taken into account, the number of individuals of genotype A in the

population at time t + 1 is

W1 (t + 1) =

2∑
j=1

nA j (t + 1) , (8.4)

and the number of individuals of genotype a in the population at time t + 1 is

W2 (t + 1) =

2∑
j=1

na j (t + 1) (8.5)

By using procedures similar to those in section 7, a deterministic model may be embedded in the pathogen process under

consideration. For example, the recursive deterministic model corresponding to equation 8.1 is

Ŵ1 (t + 1) = Ŵ1 (t) λ1 (8.6)
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for t = 0, 1, 2, · · ·. Similarly, the recursive deterministic model corresponding to equation 8.2 is

Ŵ2 (t + 1) = Ŵ2 (t) λ2 . (8.7)

To include mutation in the embedded deterministic model, the probabilities in the mutation matrix[
ν11 ν12

ν21 ν22

]
(8.8)

will play a fundamental role. The estimated expectation matrix for the numbers of mutations for the embedded determin-

istic model is [
Ŵ1 (t + 1) ν11 Ŵ1 (t + 1) ν12

Ŵ2 (t + 1) ν21 Ŵ2 (t + 1) ν22

]
. (8.9)

Therefore, it follows that the estimated number of individuals of genotype 1 in the pathogen population at time t + 1 is

Ŵ1 (t + 1) =

2∑
k=1

Ŵk (t + 1) νk1 (8.10)

Similarly, the estimated number of individuals of genotype 2 in the pathogen population at time t + 1 is

Ŵ2 (t + 1) =

2∑
k=1

Ŵk (t + 1) νk2 . (8.11)

9. Generation Times of Small Grains, Other Cultivars, Their Pathogens and Balanced Polymorphisms

An essential ingredient of an evolutionary model of small grains, such as wheat and barley, is their generation times.

By definition, a generation time, is the time from the germination of seeds to the time that the mature plants produce

seeds. For those varieties of wheat and barley that are planted in the spring in northern temperate regions of the earth, the

generations times of these species are in the range of 90 for 100 days. The generation times for varieties of flax in northern

temperate regions also are in the range of 90 to 100 days. When these species are grown in the southern temperate regions

of the earth, the generation times of the species under consideration are essentially the same.

The generation times of the pathogens, which vary among pathogens, are usually much shorter than those of the host.

In the computer experiments reported in this paper, it will be assumed that the generation time of a pathogen is 10

days. Under this assumption, for every generation of the host, there are about 10 generations of the pathogen that will

be simulated. Mutations in the host and pathogen often occur during the reproduction process in connection with the

copying of DNA in both the host and pathogen when cells divide. Because for every generation of the host, there will

be 10 generations of the pathogen, it is more likely that during every growing season, there many more mutations in the

pathogen than the host.

After the seeds sprout in the hosts under consideration, there is a rapid increase in biomass, in the forms of leaves, stems

and structures connected with reproduction, such as heads that contain the seeds in wheat and barley and structures that

contain the seeds in flax. To model the process of plant growth after germination would technically be a very difficult.

Consequently, no attempt will be made to model plant growth in this paper. But, it will be tacitly assumed that plant grow

does occur in computer simulation experiments and provides a medium on which a pathogen grows and damages the

plant. The procedures described in section 1 will be used in all computer simulation experiments to quantify the damage

the pathogen does to the host in each generation of a computer experiment.

The term, balanced polymorphisms, is used in evolutionary biology. From the mathematical point of view, it refers to

the structure that results form the convergence of a Host-Pathogen model to a limit. For the case of a deterministic

model the so called balanced polymorphism will be the constant structure that is the limit of the solution of deterministic

equations, describing the evolution of a host-pathogen system as t −→ ∞ when it exits. For the case of a stochastic

model describing the evolution of a host-parasite population, in some formulations, such as a Markov processes, the

model will converge in distribution to what is called a quasi-stationary distribution. If a reader is interested of examples

in which a stochastic model converges to a quasi-stationary distribution, the book by Mode and Sleeman (2012) may be

consulted. For a so called quasi - stationary distribution, the mean and variance of the distribution remains constant for

all t after convergence. In the case of a stochastic model, the quasi-station distribution may be referred to as a balanced

polymorphism. The models described in the foregoing sections are Markov processes.

28



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 9, No. 2; 2020

References

Flor, H. H. (1955). Host-parasite interaction in flax rust-its genetics and other implications. Phytopath., 45, 680-685.

Flor, H. H. (1956). The complementary genic systems in flax and flax rust. In Advances in Genetics, New York: Academic

Press, Inc. https://doi.org/10.1016/S0065-2660(08)60498-8

Liu, B. H. (1998). Statistical Genomics, Linkage, Mapping and QTL Analysis. CRC Press, Boca Raton and New York.

Liu, Z., Holmes, D., Faris, J. D., Chao, S., Brueggeman, R. S., Edwards, M. C., & Friesen, T. L. (2015). QTL mapping
reveals effector-triggered susceptibility underlying the barley-Pyrenophora teres f. teres interaction. Molecular Plant

Pathology.

Mascher, M., Gundlach, H., & Himmelbach, A. (2017). A chromosome conformation capture ordered sequence of the

barley genome. Nature 544: 427-433.

Mode, C. J. (1958). A mathematical model for the co-evolution of obligate parasites and their hosts. Evolution, 12,

158-165. https://doi.org/10.2307/2406026

Mode, C. J. (1961). A Generalized Model of a Host-Pathogen System. Biometrics, 17, 386-403.

https://doi.org/10.2307/2527833

Mode, C. J. (1964). A Stochastic Model of the Dynamics of Host-Pathogen Systems With Mutation. The Bulletin of
Mathematical Biophysics, 26, 205-233. https://doi.org/10.1007/BF02479043

Mode, C. J., & Gallop, R. J. (2008). A review of Monte Carlo simulation methods as they apply to selection and mutation

in Wright-Fisher models of evolutionary genetics. Mathematical Biosciences, 211, 205-225.

Mode, C. J., & Sleeman, C. K. (2012). Stochastic Processes in Genetics and Evolution. World Scientific, New Jersey,

London, Singapore, Beijing, and Hong Kong. https://doi.org/10.1142/8159

O’ BOYLE, P. D. (2009). Genetic characterization and linkage mapping of barley and net blotch resistance genes. Ph.

D. thesis, Department of Crop and Soil Sciences, Virginia Polytechnic Institute and State University.

Richards, J. K. (2016). Genetic and molecular characterization of host resistance and susceptibility to Pyrenophora F.
teres in Hordeum vulgare. Ph. D. thesis, Department of Plant Pathology, North Dakota State University.

Richards, J., Chao, S., Friesen, T., & Brueggeman, R. (2016). Fine mapping of the barley chromosome 6H net form net

blotch susceptibility locus. G3: Genes, Genomes, Genetics, 6(7), 1809-1818. https://doi.org/10.1534/g3.116.028902

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

29



International Journal of Statistics and Probability; Vol. 9, No. 2; March 2020 
ISSN 1927-7032   E-ISSN 1927-7040 

Published by Canadian Center of Science and Education 

30 

D-Optimal Slope Design for Second Degree Kronecker Model Mixture 

Experiment With Three Ingredients 

Ngigi Peter Kung’u1, J. K. Arap Koske2, Josphat K. Kinyanjui1  

1 Department of mathematics, statistics and actuarial science, Karatina University, Karatina, Kenya 

2 Department of mathematics & computer science, Moi University, Eldoret, Kenya 

 

Correspondence: Thomas C. Keane, Director, ISES Labs, Department of Chemistry and Biochemistry, Russell Sage 

College, Troy, NY 12180, USA. E-mail: keanet@sage.edu 

 

Received: October 24, 2019   Accepted: February 5, 2020   Online Published: February 28, 2020 

doi:10.5539/ijsp.v9n2p30          URL: https://doi.org/10.5539/ijsp.v9n2p30 

 

Abstract 
This study presents an investigation of an optimal slope design in the second degree Kronecker model for mixture 

experiments in three dimensions. The study is restricted to weighted centroid designs, with the second degree Kronecker 

model. A well-defined coefficient matrix is used to select a maximal parameter subsystem for the model since its full 

parameter space is inestimable. The information matrix of the design is obtained using a linear function of the moment 

matrices for the centroids and directly linked to the slope matrix. The discussion is based on Kronecker product algebra 

which clearly reflects the symmetries of the simplex experimental region. Eventually the matrix means are used in 

determining optimal values of the efficient developed design. 

Keywords: information matrix, moment matrix, optimal design, response surface methodology, weighted centroid 

design, Kiefer ordering  

1. Introduction 
This study deals with the exploration and optimization of response surface. This is a problem faced by experimenters in 

many technical fields, where in general the response of interest is affected by a set of independent factors. In this 

response surface methodology (RSM) problem we assume a response of interest is influenced by three factors with the 

intent of optimizing this response. The response in linked to the factors through a second degree polynomial model.  

In this mixture experiment the response is a function of the proportions of each ingredient. Let ix  represent the 

proportion of the ith ingredient in the mixture. Then, we have two conditions, 3,2,1,0 �� ixi  and �
�

�
3

1

1
i

ix . Evidently 

the levels of the factors ix are interdependent. The experimental region for the mixture problem is a two dimensional 

simplex. 

2. Materials and Methods 
Let 1m=(1, …, 1)' m��  be a unity vector. The experimental conditions t=(t1, t2, …, tm) with ti ≥0 of a mixture experiment 

are points in the probability simplex,  

� � 	 
11:]1,0[...,,, 21 ������ tttttT m
m

mm . 

Under experimental conditions, mTt � , the response tY  is taken to be a quantitative random variable. The responses 

are assumed to be uncorrelated with equal but unknown finite variance say ),0(2 �� . The design in point has finite 

number of support points.   

This study adopts a second degree polynomial regression function with the expected response:  

��
�
��

�����
m

ji
ji

jijiij

m

i
iiit ttttfYE

1,1

2
)()()( ����                            (1) 
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where tY , is the response under experimental condition 
mTt � , and 

2

)...,,,( 1211

m
mm ��� ����  an unknown 

parameter. (see (Draper & Pukelsheim, 1998)).  

A general review of design environment is done by (Pukelsheim, 1993) while (Klein, 2004) showed that the class of 

weighted centroid designs with at least two ingredients is essentially complete for the Kiefer ordering, (Draper, Heilijers, 

& Pukelsheim, 2000). As a consequence, we restrict the study to weighted centroid design. 

General Design Problem 
The problem of finding a design with maximum information on the parameter subsystem �K�  can be formulated as; 

Maximize ( ( ( )))p kC M� �  with T� �                               (2) 

Subject to TsPDMCk �� �� )())((  

where T denotes the set of all designs Tm. The side condition )())(( sPDMCk �� is equal to the existence of an unbiased 

linear estimator for �K�  under , Pukelsheim (1993). In which case, the design  is called feasible for �K� . Any 

design solving problem (2) above for a fixed p - , 1] is called optimalp �� for �K� in T. For all p - , 1], the 

existence of optimalp �� design for �K� is certain, (Pukelsheim, 1993).  

Moment Matrix 
An experimental design �  is a probability measure on the experimental domain with a finite number of support points. 

Each support point s� supp(τ) directs the experimenter to take a proportion T({t}) of all observations under 

experimental condition T. The statistical properties of a design are reflected by its moment matrix: 

                             )()'()()( 2mNNDdtftfM �� �
�

��                             (3) 

where, NND(m²) denotes the cone of nonnegative definite m²×m² matrices. The entries of M(τ) are fourth moments of τ, 

since the regression function )(tf  is purely quadratic.  

Information matrix  
We use unit vectors e1, e2, e3 and set eij=ei� ej for i<j  i,j={1, 2,3} and define the coefficient matrix  

��
�

�
��
�

� �
�

��� 2

1

21

2

);(

m
m

KKK  

where  

�
�

�
m

i
iiieeK

1

1 '  

and �
�
�

���
m

ji
ji

ijjiijm EeeK
1,

1
2 )(                                       (4) 

Obtainable as follows:  

From )001(1
��e , � 	�� 0102e and � 	�� 1003e  we have:  

� 	���� 0000000011111 eee , � 	���� 0000100001122 eee , 

� 	���� 1000000003333 eee , � 	���� 0000000102112 eee , 

� 	���� 0000010001221 eee , � 	���� 0000001003113 eee , 

� 	���� 0010000001331 eee , � 	���� 0001000003223 eee , 
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� 	���� 0100000002332 eee , � 	�� 00112E , � 	�� 01013E  and 

� 	�� 10023E  

Therefore, we obtain; 
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The full parameter vector 2m��� for model equation (1) is not estimable. We select a maximal sub parameter vector: 
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for all  

2m���                                       (5) 

To optimize the response, we focus on the movement of the design center along the direction of the directional 

derivatives of the response function, that is, tY
t

%
%

. Since the designs that attain certain properties in Y (estimated 
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response) do not enjoy the same properties for the estimated derivatives (slopes), we consider experimental designs that 

are constructed with derivatives in mind, (Murty & Studden, 1972) and (Ott & Mendenhall, 1972). 

In practice, it is often of interest to investigate the slope of the response surface at a point t , not only over the axial 

directions, but also over any specified direction. We develop the concept of robust slope over all directions. Define D, a 

matrix arising from the differentiation of ( )f t ��  with respect to each of the m independent factors, (see (Sung, Hyang, 

& Rabindra, 2009)). That is; 

             
�

��
�

�
��
�

�
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%
%

%
%

�
mt
tf

t
tf

t
tfD )('

...,,
)('

,
)('

21

,   where, tttf ��)(                        (6) 

An important matrix for the design with three ingredients is the adjusted 63�  slope matrix 0H DK� .   

The amount of information a design contains on K’�  is captured by the information matrix: 

                Ck(M(τ))=min{LM(τ)L’  L
2
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where 
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�
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1mI
 denotes the ��
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� �
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�
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�

� �
2

1

2

1 mm
 identity matrix and L is the left inverse of K derived from the linear 

relation, KKKL ��� �1)( . The information matrices for K’θ takes the form: 

                ��
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)(0

m
NNDLLMC �                                  (8) 

Thus the information matrices for K’θ are linear transformations of the moment matrices. 

We then consider optimizing the information matrices for K’θ of the form: 

                  )(000 mNNNDHCHC ���                                    (9) 

Optimality Criteria 
We will compute optimal design for the polynomial fit model using matrix mean p�  which is an information function 

(Pukelsheim, 1993). For an information matrix Ck(M(τ))�  PD(m) the kiefers p� -criteria are defined by: 
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where - min(C) refers to the smallest eigenvalue of C. By definition p� (C) is a scalar measure which is a function of 

the eigenvalues of C for all p�[-� ;1]. (Pukelsheim, 1993) .  

Consequently a design with maximum information on the parameter subsystem �'K  solves the problem; 

Maximize p� (Ck(M(τ))) with τ�Т 

Subject to Ck(M(τ))�  PD(m)                                 (11) 

Suppose )(./ satisfies the side condition Ck(M(τ))�  PD(m) and write Cj=Ck(M( j/ ) ) for j=(1, 2, 3). For all p� (-

� ;1], )(./  solves problem (11) if and only if; 
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(T. K. , 2004). 

3. Construction of the design 

We consider the weighted centroid design 332211

3

1

)( /./././../ ���� �
�j

jj  with three elementary centroids 

(captured from the support points):  

&
�

&
 

!

&
"

&
#

$

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�
�

1

0

0

,

0

1

0

,

0

0

1

1/  ,

&
�

&
 

!

&
"

&
#

$

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�
�

2/1

2/1

0

,

2/1

0

2/1

,

0

2/1

2/1

2/  and 

&
�

&
 

!

&
"

&
#

$

�
�
�

�

�

�
�
�

�

�
�

3/1

3/1

3/1

3/ . 

These designs discovered by ( (Scheffe', 1958) and (H., 1963)), are exchangeable and invariant under permutations, (T. 

K. , 2002). Weighted centroid designs are exchangeable.  

The moment matrices for 
1/  and 

2/  are: 
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Defining matrix KKKL ��� �1)(
~

 where K is the earlier defined (equation 4) coefficient matrix,  
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The information matrices for the designs 
1/  and 

2/  are obtained as follows: 



 
 
http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                 Vol. 9, No. 2; 2020 

35 

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

����

000000

000000

000000

0003/100

00003/10

000003/1

~
))((

~
))(( 111 LMLMCC k //               (13) 

and 

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

����

16/30016/116/10

016/3016/1016/1

0016/3016/116/1

16/116/1024/148/148/1

16/1016/148/124/148/1

016/116/148/148/124/1

~
))((

~
))(( 222 LMLMCC k //                (14) 

Using equations (13) and (14), we obtain the information matrix for the design )(./  from; 
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This matrix has a regular inverse, 
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The slope matrix D as defined by equation (6) is obtained as  
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�
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�
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D  

A corresponding adjusted slope matrix 0H DK�  is thus given by;  
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To get the D-optimal design we employ the relation, that )(./  is optimalp ��  for �K �  in T if and only if;  
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otherwisetraceC
jforHCtraceH

HCCHtrace
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j
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1
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From which, the unique D-optimal design for �K �  is derived using the equation (putting p=0)  
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The following results can be easily demonstrated using condition (16):  

0 For j=1 
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0 For j=2; 
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with � 	
2

323121

2

3

2

2

2

1

2

0

1

20
27

142

9

8

..
��������� tttttttttHCCtraceH  

The equation, 000

1
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 implies that 
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�
. , giving 
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2 �.  

Therefore the unique D-optimal design for �K �  is  
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The information matrix: 
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Where 
36
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,

48
,
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1
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�
� jittandtba ...

 

The maximum of the D-criterion is 5514.0
964.5

1
)(

3

1

0 ��
�
�

�
�
���v . 

4. Conclusion  
The design presented is highly efficient and can be employed as a design for a finite sample size. Of importance is to 

relate the weights to the number of support points for each centroid. However, the experimenter is cautioned to ensure 

high accuracy levels in the measurement of ingredient levels. 
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Abstract  
This paper develops a Bayesian analysis of the scale parameter in the Weibull distribution with a scale parameter �  

and shape parameter 3  (known). For the prior distribution of the parameter involved, inverted Gamma distribution has 

been examined. Bayes estimates of the scale parameter,� , relative to LINEX loss function are obtained. Comparisons 

in terms of risk functions of those under LINEX loss and squared error loss functions with their respective alternate 

estimators, viz: Uniformly Minimum Variance Unbiased Estimator (U.M.V.U.E) and Bayes estimators relative to 

squared error loss function are made. It is found that Bayes estimators relative to squared error loss function dominate 

the alternative estimators in terms of risk function.  

Keywords: Bayes estimates, squared error loss function, LINEX loss function, U.M.V.U.E. 

1. Introduction  
Sometimes, in practical situations either from past experience or from some reliable sources, one may have a guessed 

estimate of the parameter which can be treated as a prior information. Thompson (1968a, b) introduced the idea of 

shrinking usual estimators towards point as well as interval guess value to get the improved estimators. In some 

situations, in place of point estimation or interval guess value, the prior information may be available in the form of 

prior distribution. Applying Bayesian approach, prior information available in form of prior distribution may be utilized 

in the estimation of parameters. In Bayesian estimation, the loss function and prior distribution play important role.  

The symmetric loss function viz squared error loss function has been widely used by several authors including Berger 

(1980), Box and Tiao (1973), Martz and Waller (1982), Sinha and Kale (1980). The researchers such as Aitchson and 

Dunsmore (1975), Berger (1980), Fergusson (1967), Varian (1975) and Zellner and Gielsel (1968), have pointed out that 

in some situations use of symmetric loss functions may be inappropriate. Actually, we may come across the situations 

where a given negative error may be more serious than a given positive error or vice-versa, e.g. in dam construction, 

overestimation of peak of water level is more serious than underestimation. In the same way, in estimation of reliability 

function, use of symmetric loss function may be inappropriate as recognized by Canfield (1970). Here, overestimation 

of reliability function or average failure time is more serious than underestimation. [Feymann (1987)]. Varian (1975) 

proposed a very useful assymetric loss function known as LINEX loss function which rises exponentially on one side of 

zero and almost linearly on the other side of zero. 

Weibull distribution play an important role in many fields of application. It has two parameters .  and 3 where ‘. ’ is 

referred to as shape parameter and ‘ 3 ’ as scale parameter. This distribution was used by a Swedish scientist Weibull in 

(1951) to describe experimentally observed variation in fatigue resistance of steel, its elastic limits, e.t.c. It has also 

been used to study the variation of the length of service of radio service equipment. Finally, it has also been successfully 

used in reliability theory. 

Theoretically, it arises as the limiting distribution as �4n , of the smallest of n independent random variables with 

the same distribution. The use of the Weibull distribution as a model analyzing lifetime data, quality and reliability 

analyses dates back the late nineteenth century. Berger and Sun (1993) gives extensive survey of its uses in the context 

of lifetime data. Menderhall and Hader (1958) and Cox (1959) are among the first authors who addressed competing 

risks in survival analysis. Cox (1959) gave other examples where this type of distribution arises. For other references 
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concerning competing risks, see David and Moeschberger (1978), Basu and Klein (1982). 

Bhattacharya (1967) considered the estimation of both the shape and scale parameters using an inverted Gamma prior 

probability density function. Canavos and Tsokos (1970) developed a fully Bayesian analysis of both the scale and 

shape parameters assuming independent prior distributions. 

2.1 LINEX Loss Function 
In some estimation and prediction problems, use of symmetric loss function may be inappropriate, as has been 

recognized in the literature – see, for example, Ferguson (1967), Zellner and Geisel (1968), Aitchson and Dunsmore 

(1975), Varian (1975) and Berger (1980).  

The authors mentioned above, except for Varian, have considered symmetric linear loss functions. Varian (1975) 

proposed a very useful assymetric loss function known as LINEX loss function which rises approximately exponentially 

on one side of zero and almost linearly on the other side of zero in his applied study of real estate assessment. 

Underassessment results in an approximately linear loss of revenue whereas overassessment often results in appeals 

with attendant, substantial litigation and other costs. 

Attention is directed herein at establishing properties of estimation and prediction procedures based on LINEX loss 

functions.  

Let �� ��5 ˆ  denote the scalar estimation error in using �̂  to estimate � . Varian (1975) introduced the following 

convex loss function: 

0,0,,)( 67�5��5 5 bcabcbeL a                            (2.1) 

It is seen that 0)0( �L . Also, for a minimum to exist at 0�5 , we must have cab � , and thus equation (2.1) can be 

reexpressed as  

1 2 0,0,1)( 67�5��5 5 baaebL a                                (2.2) 

There are two parameters, a and b, involved in equation (2.2) with ‘b’ serving to scale the loss function and ‘a’ serving 

to determine its shape. 

2.1.1 Obtaining Bayes Estimators Using Linex Loss Function 

Let )/( Dh �  denote the posterior density function of � , where D denotes the sample and prior information,  
� 	�,,,, 21 nxxx � . Let �

E  denote the posterior expectation with respect to )/( Dh � . The posterior risk is defined as the 
1 2)(5LE

�  and is given by 

1 2 � 	 � 	1 21)(ˆ)(
ˆ ����5 � ��

�

�

�

�

�
EaeEebLE aa

…                          (2.3) 

Theorem 2.1 
The value of �̂  that minimizes (2.7) is  

� 	1 2�

�
� a

B eE
a

��
� log

1ˆ                                    (2.4) 

provided, of course, � 	�

�

aeE �
 exists and is finite. This involves evaluation of moment generating function for posterior 

density. 

Proof 
The conditions for relative minimum are 

(i) 1 2 0)(
ˆ

�5
%
% LE

��
  and (ii) 1 2 0)(

ˆ2

2

65
%
% LE

��
 at the minimum value. 

(i) implies that 

� 	1 2 0
ˆ ��� aeEaeb aa �

�

�
 that is � 	1 2 01

ˆ ��� �

�

� aa eEeab  

Since 07ab , it implies that 

� 	 01
ˆ ��� �

�

� aa eEe  
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Taking logs and simplifying, we get 

� 	1 2�

�
� a

B eE
a

��
� log

1ˆ  

(ii) implies that 

1 2 1 2

1 2 0

)(
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(
ˆ
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'(
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*+
, 5
%
%

%
%

�5
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� �
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�

�� ���
aa eEeba

LELE
 

Since B�̂  satisfies conditions (i) and (ii), it follows that B�̂  is the minimum value. 

3. Bayesian Estimation of Parameters in Case of Weibull Distribution 
3.1 Introduction 
In this section, we develop a Bayesian analysis for the Weibull distribution with respect to the usual life-testing 

procedures. It is divided into two parts: in the first, we consider the Bayes estimates of the parameters of Weibull 

distribution using squared error loss function while in the second part we consider the Bayes estimates of the parameters 

of Weibull distribution using LINEX error loss function. These estimates obtained based on the two loss functions are 

later compared in order to show the corresponding efficiencies. 

3.2 Weibull Bayesian Distribution 
The Weibull distribution is given by the probability density function 

� 	
&
"

&
#

$
6����

�
�

Otherwise

xexxf

x

,0

0,,0,1 3�
�
3 �3

3

                            (3.1) 

The parameters �  and 3  are called the scale and shape parameters respectively. Because the shape parameter is 

known in some cases, we treat the scale parameter �  as the random variable. We derive a fully Bayesian solution by 

assuming independent prior distribution of � . Specifically, we consider an inverted gamma,  

� 	
� 	

� 	
&
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&&
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$
6���
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Otherwise

v
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ev
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0,,0,
1
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9

                         (3.2) 

The reasons for considering the inverted gamma prior density (3.2) are that it is flexible enough to capture almost any 

kind of prior experience, and it also possesses the attractive property that the posterior distribution of the parameter after 

the sample has been observed is also of the inverted gamma type. A family of prior densities which gives rise to 

posteriors belonging to the same family is very useful inasmuch as the mathematical tractability is maintained, and this 

‘nice’ property has been termed ’closure under sampling’ by Wetherill (1961). For densities which admit sufficient 

statistics of fixed dimensionality, Raiffa and Schlaifer have considered a method of generating prior densities on the 

parameter space that possess this desirable property. A family of such densities has been called by them a ‘natural 

conjugate family’, and for Weibull density (3.1), the inverted gamma prior forms such a family.  

For our distribution given in (3.1), we have 
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                (3.3) 

Now substituting the assumed value of � 	�-  given in (3.2) and the value of �
�
��

�
�

3� ,
xf  obtained in (3.3) to (3.1), we 

obtain 
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From (3.4), the marginal probability density function of X is 
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where  

99 3 �� �
�

n

i
ix
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*
                                    (3.6) 

The posterior density function of �  given xX �  is given by 
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The values obtained in (3.4) and (3.5) are substituted in (3.7) to obtain; 
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                               (3.8) 

which is the required posterior density function and *9  is as given in (3.6). 

3.3 Bayes Estimator and Bayes Risk Using Squared Error Loss Function 
Theorem 3.1 
If the loss function is the squared error, � 	 � 	2ˆˆ, MML ���� �� , then the Bayes estimator with respect to the prior 

distribution � 	�-  of �  is given by: 
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Proof 
From (3.9); 
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Now substituting the value obtained in (3.8) to (3.10), we get; 
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which upon simplification gives; 
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1
ˆ

*

��
�

vnM
9�  which is the required Bayes estimator of � . 

Theorem 3.2 
If the loss function is the squared error, � 	 � 	2ˆˆ, MML ���� �� , then the corresponding Bayes risk is given by: 
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Now using (3.8), we get; 
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Substituting the values obtained in (3.8) and (3.13) into (3.12), we get; 
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Hence using (3.14) in (3.11), we get; 
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This is simplified to give 
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Hence from (3.15) and (3.16), we obtain 
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which is the required Bayes risk of M�̂  relative to squared error loss function. 

3.4 Risk Function of M�̂  Using Linex and Squared Error Loss Function 
In this section, we shall obtain the risk function of the Bayes estimator M�̂ , using both squared and Linex error loss 

function. 

Theorem 3.3 
The risk function of M�̂  obtained using squared error loss function, � 	 � 	2ˆˆ, MML ���� �� , is given by: 
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� 	 � 	
� 	 � 	2

22

11

1ˆ

��
�'

(

)
*
+

,
��
��

�
vn

n
vn
vR MS

��9�  

Proof 

� 	� � � ��
1 2

),/(ˆ)ˆ(
2

x x x
MMS

n

xdxfR 3���� �                          (3.17) 

where ),/( 3�xf is the joint distribution. 

From (3.3)  

� 	

� � �� � �� � �

� � �

���

���

1 21 21 2

1 2

),/(),/(ˆ2),/(ˆ

),/(ˆ2ˆ)ˆ(

22

22

x x xx x x
M

x x x
M

x x x
MMMS

nnn

n

xdxfxdxfxdxf

xdxfR

3��3���3��

3������

���

�

    (3.18) 

Substituting the value of M�̂  obtained in (3.10) to (3.18) we get 

� 	

2

1

1

1
*

1

1

1

2
*

1

1

1

1

1
2

1
ˆ

�
�
39�

�
39�

3

3

�3

�3

�
�

�
�
�

�
�
�
��
�

�
��
�

�
��

�

�
�
�
�

�
�
�

��
�

�
��
�

�
��

�

� � :

� � :

�

�
�
�

�
�
� �

�

�

�
�
�

�
�
� �

�

�

�

x x

n

i

x

i

n

x x

n

i

x

i

n

MS

n

n

i
i

n

n

i
i

xdex
vn

xdex
vn

R

�

�

                    (3.19) 

Using *9   as given in (3.6) in (3.19) gives 

� 	
� 	

� 	
2

1

1

1

1

1

1

1

2

1
2

1

1

1

1

1

2

1
ˆ

�9
�

3

9
�

3�

3

3

�33

�33

�
�

�
�

�
�
�

�
�

��
�

�
�
�

�
�
�

�
�

��
�

� � :�

� � :�

�

�
�
�

�
�
� �

�

�

�

�
�
�

�
�
� �

�

�

�

�

x x

n

i

x

i

n

i
in

n

x x

n

i

x

i

n

i
in

n

MS

n

n

i
i

n

n

i
i

xdexx
vn

xdexx
vn

R

�

�

              (3.20) 

which upon simplification of integrals gives 

� 	 � 	
� 	 � 	2

22

11

1ˆ

��
�'

(

)
*
+

,
��
��

�
vn

n
vn
vR MS

��9�  

Theorem 3.4 
The risk function of M�̂  using Linex error loss function is given by: 

� 	 � 	

� 	 � 	 '
(

)
*
+

,
�

��
��

�
���

�
������

1
1

)1(

)1/(1
ˆ

)1/(1/(

vn
ava

vna
ebR n

vnvna

ML
9�

�
�

9�

                (3.21) 

Proof 
Using Linex error loss function as given in (2.4), we get 

 

� 	1 2 � 	1)/(ˆ)/(

1 21 2

ˆˆ
����5 � � �� � �� ���� ��� abxdxfeabxdxfebeLE

x x x

a
M

x x x

aa

n

M

n

M ��         (3.22) 

Substituting the value of M�̂  obtained in (3.10) to (3.18) we get 
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� 	

� 	1
1

ˆ
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1

1

1
*

1

1

1
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1

1)1/(
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�
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�
�

�
�
�
��
�

�
��
�

�
��

�

�
�
�
�

�
�
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� � :

� � :

�

�
�
�

�
�
� �

�

�

�
�
�

�
�
� �
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�

�

�
�
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�
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3

3
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abxdex
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xdexebeR

x x

n

i

x

i

n

x x

n

i

x

i

n
vnaa
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n

n

i
i

n

n

i
i

�

�

 

and using *9  as given in (3.6), we get 

� 	

� 	 � 	1
1

ˆ

1

1

1
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1

1

1

1

1

1

1
)1/(

��
�

�
�

�
�
�

�
�
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�

�
�
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� � :

�

�
�
�

�
�
� �

�

�

�

�
�
�

�
�
� �

�
���

�
�

�
�
�
� ��

�

��

�9
�

3

�
3�

3

33

�33

�3
9�

abxdexx
vn

ab

xdexebeR

x x

n

i

x

i

n

i
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n

x x

n

i

x

i

vnxa

n

na
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n

n

i
i

n

n

i
i

n

i
i

�

�

               (3.23) 

which when the integrals are solved, the final value is obtained as 

� 	 � 	

� 	 � 	 '
(

)
*
+

,
�

��
��

�
���

�
������

1
1

)1(

)1/(1
ˆ

)1/(1/(

vn
ava

vna
ebR n

vnvna

ML
9�

�
�

9�

 

Theorem 3.5 

The Bayes risk of M�̂  using Linex error loss function is given by: 

� 	

� 	 � 	 � 	
� 	

� 	 baK
vn

annaKa
vn
naK

v
abe

R

vvv

vvvna

MLB

�'
(

)
*
+

,

��
�

�
��8

�

��

���

9999
9

9

�
9

2
1

)1(
2/

1

2
2

2

ˆ

221

2/2/)2()1/(        (3.24) 

where � 	zKv  is an integral representation of the modified Bessel function of the third kind of order v. 

Proof 
The prior risk function of M�̂ (denoted by � 	MR �- ˆ, ) with respect to the prior distribution � 	�-  of �  is defined as the 

prior expectation of the risk function. That is 

� 	 � 	1 2 � 	 � 	���
�

��-���- dRRER MLMLM
ˆˆˆ,  

where  

� 	 � 	1 2��� ,ˆˆ
MML LER �  

The prior risk function is also called the Bayesian risk or simply the Bayes risk. Thus 

� 	 � 	1 2 � 	 � 	�
�

�

��
0

ˆˆˆ

�

��-��� dRRER MLMLMLB                          (3.25) 

Substituting the values of � 	�-  and � 	MLR �̂  given in (3.2) and (3.21) respectively to (3.25) we get 

� 	
1 2 � 	 � 	

� 	 bd
v

e
vn
vab

d
vvn

eabd
vvna

eeebR

v

v

v

v
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�
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�
�
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�
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�

�
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�

�
�

�

�

�
�

�
�

�
�

�
���

0

1

0

1

0
1

)1/(

)1(

)1(

)1()1/(1
ˆ

*

�

�
9

�

�
9

�

�
9

�9

�
�
�9

�
�

99�
��

9�

     (3.26) 
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which further gives; 

� 	 � 	 1 2
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vna
e

v
beR

vn

a
vvna

MLB �
���8

� �
�

�
�

�
�
�

�
�
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0
1

)1/(

)1/(1
ˆ

*

�

�
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9

�
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9�                (3.27) 

The integral value is solved as follows: 

1 2 ��
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Using the binomial expansion to expand 
n

vn
a �

'(
)

*+
,

��
�

1
1

�
, we have; 
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1
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1
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To simplify our integration, we can consider the first three terms and assume that the rest are negligible. Since 

0
1
�

�� vn
a�

; 
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d
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v
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v
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          (3.30) 

The above integrals are evaluated by using an integral representation of � 	zKv , the modified Bessel function of the 

third kind of order v. (Erd’ely, et. al, formula 23 p82), and subsequent use of the same formula in conjunction with the 

fact that � 	 � 	zKzK vv �� . Accordingly,  

� 	 �
�

�

���
�
�

�
�
�
�

�
��

�
0

12

1 2

2

1

t

vt
atz

vv dtte
a

azK  

where � 	 0Re,0)Re( 2 66 zaz , z is the variable and v is the order of the Bessel’s function. 

The function 

� 	 1 2)()(
)sin(2

zz
v

zK vvv ;�;� �<
<

 

is a solution of Bessel differential equation 

� 	 022
2

22 ���� wvzdz
dwzdz

wdz  
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Now, in our case; 
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and by comparing with the relation 
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we see that; 

azt ��
2

1
,�  which implies that az 2� . 

� 	
a

a 9
�

2*
 which implies that 

a
a 9

�* . Therefore; 
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9
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                  (3.31) 

Similarly, 
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and 
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Thus substituting (3.31), (3.32) and (3.33) in (3.30), we obtain 
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   (3.34) 

Substituting (3.34) in (3.27), we get 
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which is the required Bayes risk of M�̂  using Linex error loss function. 

3.5 Risk Function and Bayes Risk of Uniformly Minimum Variance Unbiased Estimator of �   
In this section, we shall obtain the Uniformly Minimum Variance Unbiased Estimator of � . This estimator will be used 

to obtain the risk function and Bayes risk of the estimator using both squared and Linex error loss function. 

Theorem 3.6 

Let nXXX ,,, 21 �  be a random sample of size n from the Weibull distribution. Let � 	nxxxt ,,,ˆ
21 ���  be an 

estimator of � . Then 
n

x
n

i
i�

�� 1ˆ

3

�  is a unique U.M.V. Unbiased Estimator of � .  

Proof 
The likelihood function of nXXX ,,, 21 �  is given by: 
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� 	 � 	 ::
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i
i

exxfxL
1
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1
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,,,,

3

�3

�
33�3�                      (3.35) 

Let � 	 �
�

�
n

i
in xxxxt

1

21 ,,, 3� . Hence (3.35) becomes 

� 	 � 	 � 	nxxxhtgxL ,,,,,, 21 ��3� �  where 

� 	 �

�
3�

tn

etg
�

�
�
�

�
�
��,  and � 	 :

�

��
n

i
in xxxxh

1

1

21 ,,, 3�  

By factorization theorem, � 	 �
�

�
n

i
in xxxxt

1

21 ,,, 3� is a sufficient statistics for � . 

To show that � 	 �
�

�
n

i
in xxxxt

1

21 ,,, 3�  is a complete statistics, we need to also show that  

1 2 0)( �ThE  implies that 0)( �Th , for all values of T, where )(Th  is a function of T. 

1 2 � 	dttTthThE
t
�
�

�

��
0

Pr)()(  where �
�

�
n

i
ixT

1

3
 

To obtain the p.d.f. of T 

�
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�
n

i
ixT

1

3
. Let 3xy �  it implies that 3

1

yx �  and 
1

1
1 �

� 3

3
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dx

 

Therefore; 

 
dy
dxxfyg )()( �  which reduces to �

�

y

eyg
�

�
1

)(  

Since nyyy ,,, 21 �  are independent and identically distributed as Y, then the distribution of T is; 

����
�

teTh
t

n 0,
1

)( �

�
 

1 2 0)( �ThE , then 0
1

)(
0

��
�

�

�

t

t

n eth �

�
, which on reducing becomes 

0)()2()1()0(
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�'
(

)
*
+

,
�����

���

�� ���
n

enhehehh  

Therefore; 

0)(,,0)2(,0)1(,0)0( ���� nhhhh � , that is, 0)( �th  for all values of �,2,1,0�t  

Therefore �
�

�
n

i
ixT

1

3
 is a complete statistics. 

Now; 

� 	 � 	��
��

��
�

�
�
�

�
�

n

i
i

n

i
i xExETE

11

33
                              (3.36) 

But; 
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� 	 �
�
3 3

�333 ��
�
�

�
�
�� �

�
� dxexxxE

x
n 1

1  

Thus, (3.36) reduces to 

� 	 �� nTE
n

i
���

�1

 and therefore � 	 ��nTE /  

Thus, 

n

x

n
TTh

n

i
i�

���� 1)(ˆ

3

�
 is the required unique U.M.V. Unbiased Estimator of � .  

Theorem 3.7 

The risk function of �̂  using squared error loss function is given by � 	
n

RS

2

ˆ �� � , where �̂  is the unique U.M.V. 

Unbiased Estimator of � .  

Proof 
The risk function of �̂  is obtained by using the squared error loss function. 

� 	 � 	1 2 � 	 � 	������ ˆˆ,ˆˆ
2

VarELERS ����                      (3.37) 

Substituting the value of �̂  obtained in Theorem 3.6 in (3.37), we get 
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��                      (3.38) 

Since nxxx ,,, 21 �  are independent and identically distributed as X, (3.38) becomes 

� 	 � 	 � 	33� xVar
n

xVar
n
nRS

1ˆ
2

��                        (3.39) 

Now we  need to obtain � 	3xVar . 

By definition, � 	 � 	 � 	1 2 � 	 2222 �3333 ���� xExExExVar               (3.40) 

Now; 

� 	 2

1

122 2�
�
3 3

�333 ��
�
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�
� dxexxxE

x
n

 and hence � 	 2�3 �xVar          (3.41) 

The value obtained in (3.41) is substituted in (3.39) to get  

� 	
n

RS

2

ˆ �� � , 

which is the required risk function of the unique U.M.V. Unbiased Estimator of � . 

Theorem 3.8 

The Bayes risk of �̂  using squared error loss function is given by � 	
)1)(1(

ˆ
2

��
�

vvn
RSB

9� , where �̂  is the unique 

U.M.V. Unbiased Estimator of � .  
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Proof 
The prior risk function of �̂  (denoted by )ˆ,( �-R  ) with respect to the prior distribution )(�-  of is defined as the prior 

expectation of the risk function. That is 

1 2 ��-���- dRRER SS ��� )()ˆ()ˆ()ˆ,(                      (3.42) 

The prior risk function is also called the Bayesian risk or simply the Bayes risk  

Thus; 
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��-�� dRR SSB                            (3.43) 

The values of )(�-  and � 	�̂SR  given in (3.2) and in Theorem 3.7 respectively are used in (3.43) to obtain 
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which after simplification becomes 
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9�  as required. 

Theorem 3.9 

The risk function of �̂  using Linex error loss function is given by � 	
'
'
'
'
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, where �̂    is the 

unique U.M.V. Unbiased Estimator of � .  

Proof 
Using Linex error loss function as given in (2.4), we get 
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                 (3.44) 

Using integration by parts to integrate the integral 
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Similarly, using integration by parts to integrate the integral 
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Hence (3.45) and (3.46) are used in (3.44) to obtain; 
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Theorem 3.10 

The Bayes risk of �̂  using Linex error loss function is given by 
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, where �̂  is the unique 

U.M.V. Unbiased Estimator of � .  

Proof 
The prior risk function is also called the Bayesian risk or simply the Bayes risk. Thus 
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Substituting the values of � 	�-  and � 	�̂LR  given in (3.2) and Theorem (3.9) respectively to (3.47) we get 
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The integral is solved as in (3.27) which then gives the final value of the integral as; 
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4. Computation of Relative Efficiency and Comparison in Terms of Risk Functions  
4.1 Introduction 
In this section, we make comparisons of the obtained estimators in terms of risk functions of those under Linex loss and 

squared error loss function. Once Bayes estimators under Linex loss function and squared error loss function have been 

obtained, comparisons in terms of their risk functions have been made, their relative efficiencies are computed. Thus 

some conclusions based on computations and graphs regarding relative efficiencies for some effective intervals will 

help us to know what estimators performs better than alternative estimators in terms of effective interval relative to 

Linex loss function than those relative to squared error loss function.   

4.2 Computation of Relative Efficiencies and Comparison in Terms of Risk Function of Weibull Bayesian Distribution 
In this section, we will use some of the results obtained section three. We have obtained that the risk functions, denoted 

by � 	 � 	 � 	��� ˆ,ˆ,ˆ
SMLMS RRR  and � 	�̂LR , where the subscript L denotes risk relative to Linex error loss function and S 

denotes risk relative to squared error loss function. These risk functions are given in Theorems 3.3, 3.4, 3.7, and 3.9 

respectively. 

Let us define relative efficiencies of the estimator M�̂  with respect to �̂   under the Linex and squared error loss 

function as follows: 
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These relative efficiencies (RE) are functions of a, 9 , � , n, and v. For some sets of values of a, 9 , � , n, and v, the 

graphs of the relative efficiencies, plotted against �  are shown in Figs. 4.1 and 4.2. 

 

Figure 4.1. Plot of � 	�� ˆ,ˆ
MLRE  for different values of “a” given n = 4, 3�9  and v = 0.5 

From the above figure, we observe that for an increase in the magnitude of “a”, ttytytyty 

 

Figure 4.2. Plot of � 	�� ˆ,ˆ
MSRE  for different values of “Theta” given n = 4, 3�9  and v = 0.5 

From the above figure, for an increase in the values of � , there is a decrease in the magnitude of RE. 

Thus some conclusions based on graphs regarding effective interval reveals that for the Weibull distribution, M�̂  

performs better than alternative estimators in terms of effective interval relative to squared error loss function than those 

relative to Linex error loss function. 

5. Summary and Concluding Remarks 
Asymmetric LINEX loss functions have been employed in the analysis of several central statistical estimation and 

prediction problems. Optimal estimators and predictors relative to LINEX loss and their associated risk functions have 

been derived. The analytical ease with which results can be obtained using asymmetric LINEX loss functions makes 

them attractive for use in applied problems and in assessing the effects of departures from assumed symmetric loss 

functions. For example, Pandey and Rai (1992), in the normal – mean problem, found that Bayes estimators relative to 

LINEX loss functions dominate the alternative estimators in terms of risk function and Bayes risk. They also found out 

that if 2  is unknown, the Bayes estimators are still preferable over alternative estimators. In the Weibull distribution, 

it was straight forward to derive an estimator that is optimal relative to LINEX loss function and to obtain its risk 

function and Bayes risk. Also, certain well known estimators, for example, the U.M.V. Unbiased Estimator of � , that 

are admissible relative to squared error loss function were shown to be also admissible relative to LINEX loss function. 

As a referee Zellner (1973) has stated, “…the point that questions of admissibility may depend quite sensitively on 
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features of the loss function, such as symmetry, is not generally appreciated…” and implies that a lot more thought 

should be given to the choice of a loss function, rather than to blindly trust in squared error loss function”, see Zellner 

(1973) for an analysis of the effects of errors in specifying loss functions on solutions to control problems. While the 

LINEX class of loss functions is convenient and useful, it is recognized that other asymmetric loss functions, for 

example, asymmetric linear and quadratic loss functions, are available and may be useful. Further study of the 

properties of alternative estimators relative to these and other types of asymmetric loss functions would be useful and is 

left for future research. 
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