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Abstract

This paper considers the problem of testing independence of equations in a seemingly unrelated regression model. A

novel empirical likelihood test approach is proposed, and under the null hypothesis it is shown to follow asymptotically a

chi-square distribution. Finally, simulation studies and a real data example are conducted to illustrate the performance of

the proposed method.

Keywords: seemingly unrelated regression, empirical likelihood, independence

1. Introduction

The Seemingly Unrelated Regression (SUR) of Zellner (1962) is an important tool to analyze multiple equations with

correlated disturbances. SUR models have been studied extensively by statistician and econometrician and applied in

many areas, more details can be found in Srivastava and Giles (1987) and Fiebig (2001).

Due to the correlation of the model errors in regression equations, the SUR model allows one to estimate the regression

coefficients more efficiently than each of the regression equations is estimated separately with the correlation is ignored.

It is by now clear that for the traditional linear SUR model, the Generalized Least Squares (GLS) estimator is more

efficient than its Ordinary Least Squares (OLS) counterpart. They are equivalence if the error covariance of the SUR

model is diagonal. Therefore, the problem of testing independence of equations of a SUR model is important. Many

testing approaches have been proposed for this problem. Breusch and Pagan (1980) proposed a Lagrange multiplier test

statistic. Dufour and Khalaf (2002) extended the exact independence test method of Harvey and Phillips (1982) to the

multi-equation framework. Tsay (2004) constructed a multivariate independent test statistic for SUR model with serially

correlated errors.

Different to the above methods, we propose a empirical likelihood test statistic. The empirical likelihood of Owen

(1988,1990) is an effective nonparametric inference method. More references can be found in Owen (2001).

The paper is organized as follows. The empirical log-likelihood ratio test statistic is given in Section 2. Section 3 conducts

some simulation studies to illustrate the performance of the proposed method. An empirical example is also provided to

demonstrate the usefulness of this test. Finally, conclusion is given in Section 4. The Appendix provides the proofs of the

main results.

2. Test Statistic and Its Properties

Consider the following SUR model that comprises the p regression equations

Yi = Xiβi + εi, i = 1, 2, · · · , p, (2.1)

with Yi = (yi1, yi2, · · · , yin)T is a n× 1 vector of responses, Xi = (xi1, xi2, · · · , xin)T is a full-rank n× qi matrix of regressors

with xT
ik = (xik1, xik2, · · · , xikqi ), βi = (βi1, βi2, · · · , βiqi )

T is a vector of qi-dimensional unknown parameters, and εi =

(εi1, εi2, · · · , εin)T is a n × 1 error vector with Eεik = 0, k = 1, 2, · · · , n.

The model (2.1) can be rewritten in vectors and matrixces,

Y = Xβ + ε, (2.2)

1
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where

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Y1

Y2

...
Yp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · Xp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , β =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
β1

β2
...
βp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , ε =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ε1

ε2

...
εp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
so that X is a (np)× q matrix, Y and ε each have dimension (np)× 1 and β has dimension q× 1, with q =

p∑
i=1

qi. The basic

assumptions underlying the disturbances of model (2.1) are

E(εikε jl) =

{
σi j, k = l,
0, otherwise,

for 1 ≤ i, j ≤ p and 1 ≤ k, l ≤ n. Then, we have Var(εi) = Eεiε
T
i = σiiIn, and Cov(εi, ε j) = Eεiε

T
j = σi jIn, with In is the

identity matrix of order n. Therefore, the np × 1 disturbance vector ε has the following variance-covariance matrix

Ω = E(εεT) = Σ ⊗ In, (2.3)

with

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
σ11 σ12 · · · σ1p

σ21 σ22 · · · σ2p
...

...
. . .

...
σp1 σp2 · · · σpp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
We consider the problem of testing independence of p equations in model (2.1), which may be expressed as H0 : σi j = 0

for 1 ≤ i < j ≤ p, or equivalently

H0 : Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
σ11 0 · · · 0

0 σ22 · · · 0
...

...
. . .

...
0 0 · · · σpp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (2.4)

Letting Uk = (ε1kε2k, ε1kε3k, · · · , ε1kεpk, ε2kε3k, · · · , ε2kεpk, · · · , ε(p−1)kεpk)T, k = 1, 2, · · · , n, it is obvious that there are

N = p(p−1)

2
elements in Uk. For example, for the two equations case p = 2, we have Uk = ε1kε2k and N = 1, for the

three equations case p = 3, Uk = (ε1kε2k, ε1kε3k, ε2kε3k)T and N = 3. It is obvious that testing for diagonality of the Σ is

equivalent to testing whether EUk = 0, k = 1, 2, · · · , n. By Owen(1990), this can be done using the empirical likelihood

method. Let p1, p2, · · · , pn be nonnegative numbers summing to unity. Then the corresponding empirical log-likelihood

ratio can be defined as

l̄n = −2 max

⎧⎪⎪⎨⎪⎪⎩ n∑
k=1

log(npk) :

n∑
k=1

pkUk = 0, pk ≥ 0,

n∑
k=1

pk = 1

⎫⎪⎪⎬⎪⎪⎭ . (2.5)

However, ε′ik s in Uk are unknown, then l̄n cannot be used directly. To solve the problem, we can replace εik by its estimator

ε̂ik = yik − xT
ikβ̂i,

with β̂i = (XT
i Xi)

−1XT
i Yi is the least-squares estimator of the coefficients contained in the ith equation of model (1.1).

Then, use ε̂ik to replace εik in Uk, the estimated empirical log-likelihood ratio is then defined by

ln = −2 max

⎧⎪⎪⎨⎪⎪⎩ n∑
k=1

log(npk) :

n∑
k=1

pkξk = 0, pk ≥ 0,

n∑
k=1

pk = 1

⎫⎪⎪⎬⎪⎪⎭ , (2.6)

where ξk = (ε̂1kε̂2k, ε̂1kε̂3k, · · · , ε̂1kε̂pk, ε̂2kε̂3k, · · · , ε̂2kε̂pk, · · · , ε̂(p−1)kε̂pk).

By the Lagrange multiplier technique, the empirical log-likelihood ratio can be represented as

ln = 2

n∑
k=1

log
(
1 + λTξk

)
, (2.7)

where λ = (λ1, λ2, · · · , λn)T is the solution of the equation

1

n

n∑
k=1

ξk

1 + λTξk

= 0. (2.8)

2
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The following theorem indicates that ln is asymptotically distributed as a χ2-distribution.

Theorem 2.1. Suppose the assumptions 1-2 given in Appendix hold, under the null hypothesis, as n→∞, we have

ln
D−→ χ2

N ,

where χ2
N is a χ2-distribution with N = p(p−1)

2
degrees of freedom.

Remark 2.1 For the testing problem (2.4), Breusch and Pagan (1980) proposed a Lagrange multiplier test statistic. This

is based upon the sample correlation coefficients of the OLS residuals:

LM = n
p−1∑
i=1

n∑
j=i

ρ̂2
i j,

where ρ̂i j is the sample estimate of the pair-wise correlation of the residuals. Specifically,

ρ̂i j = ρ̂ ji =

n∑
k=1
ε̂ikε̂ jk

(
n∑

k=1
ε̂2

ik)1/2(
n∑

k=1
ε̂2

jk)1/2

Under the null hypothesis, LM has an asymptotic χ2
N distribution, too.

3. Numerical Studies

3.1 Simulation Studies

In this subsection, we conducted some simulations to illustrate the finite sample properties of the proposed test procedure.

In our simulations, the data are generated from the following SUR model

yik = xik1βi1 + xik2βi2 + εi, i = 1, 2, 3, k = 1, 2, · · · , n

where xik1 ∼ N(0, 1), xik2 ∼ U(−2, 2), and xik3 ∼ N(2, 1). The parameters are set as β11 = 1, β12 = 2, β21 = 2, β22 =

3, β31 = −1, β32 = 3. The model error εik ∼ N(0, σii) and

Cov[(ε1k, ε2k, ε3k)T] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ σ11 ρ12
√
σ11σ22 ρ13

√
σ11σ33

ρ12
√
σ11σ22 σ22 ρ23

√
σ22σ33

ρ13
√
σ11σ33 ρ23

√
σ22σ33 σ33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
where σ11 = 0.25, σ22 = 0.64, σ33 = 0.49.

In order to examine the empirical size of the proposed empirical likelihood (EL) test and the Lagrange multiplier (LM)

test statistic, we set ρ = (ρ12, ρ13, ρ23) = (0, 0, 0), and n = 30, 50, 100, 150, 200, 300, 400, 1000 replications were run and

the rejection rate under a given significance level α(0.01, 0.05, 0.10) was computed as the empirical size of the test, and

the results are reported in Table 3.1. From the results, we can see that the empirical size of the proposed EL test is quite

large for small samples. The size distortion of the LM test is smaller than that of the EL test for small samples. The sizes

of both the EL test and the LM test converge to the correct nominal levels when n grows, as would be expected. The fact

that the size distortion of the EL test is relatively large indicates that the approximation of the finite sample distribution in

small samples using the asymptotic χ2 is relatively poor. The phenomenon was also reported by Dong and Giles (2007),

Liu et al. (2008) and Liu et al. (2011) in other testing problems. According to Owen (2001), this may be improved by

using Fisher’s F-distribution, or Bartlett correction, or bootstrap sample.

To assess the power of the EL and the LM tests, we took the values of ρ to be each of the following values, (0.1,0,0),

(0,0.5,0), (0,0,-0.9), (0.2,0.3,0), (-0.5,0,0.4), (0,-0.5,-0.8), (0.1,-0.2,0.1), (0.1,0.2,0.8), (-0.5,0.4,-0.6), and n = 30, 50.

Results are presented in Table 3.2. we can see that the power of the EL is bigger than that of the LM test for significance

levels of 10%, 5%, and 1%.
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Table 3.1. Empirical sizes of EL and LM tests

n α = 0.01 α = 0.05 α = 0.10

EL LM EL LM EL LM

30 0.067 0.008 0.142 0.048 0.215 0.095

50 0.032 0.014 0.106 0.040 0.155 0.096

100 0.021 0.009 0.067 0.049 0.121 0.090

150 0.013 0.012 0.053 0.050 0.107 0.104

200 0.011 0.009 0.053 0.047 0.119 0.096

300 0.011 0.012 0.047 0.047 0.111 0.102

400 0.011 0.009 0.053 0.051 0.104 0.095

Table 3.2. Power comparison of the EL test with the LM test

n ρ α = 0.01 α = 0.05 α = 0.10

EL LM EL LM EL LM

30 (0.1,0,0) 0.092 0.011 0.183 0.061 0.258 0.126

(0,0.5,0) 0.594 0.286 0.765 0.579 0.832 0.691

(0,0,-0.9) 1.000 1.000 1.000 1.000 1.000 1.000

(0.2,0.3,0) 0.307 0.096 0.508 0.289 0.606 0.406

(-0.5,0,0.4) 0.858 0.578 0.96 0.858 0.977 0.924

(0,-0.5,-0.8) 1.000 1.000 1.000 1.000 1.000 1.000

(0.1,0.2,-0.1) 0.183 0.036 0.308 0.144 0.419 0.231

(0.1,0.2,0.8) 0.993 0.963 0.997 0.998 0.999 0.998

(-0.5,0.4,-0.6) 0.936 0.898 0.978 0.959 0.986 0.989

50 (0.1,0,0) 0.062 0.019 0.158 0.086 0.247 0.154

(0,0.5,0) 0.800 0.659 0.923 0.874 0.962 0.934

(0,0,-0.9) 1.000 1.000 1.000 1.000 1.000 1.000

(0.2,0.3,0) 0.460 0.258 0.616 0.512 0.741 0.655

(-0.5,0,0.4) 0.988 0.941 0.996 0.991 0.997 0.994

(0,-0.5,-0.8) 1.000 1.000 1.000 1.000 1.000 1.000

(0.1,0.2,-0.1) 0.226 0.062 0.396 0.232 0.489 0.360

(0.1,0.2,0.8) 0.999 1.000 1.000 1.000 1.000 1.000

(-0.5,0.4,-0.6) 0.992 0.991 1.000 1.000 1.000 0.999

3.2 A Real Example

Baltagi and Griffin (1983) considered the following gasoline demand equation

ln
Cas

Car
= α + β1 ln

Y

N
+ β1 ln

PMG

PGDP

+ β1 ln
Car

N
+ u,

where Gas/Car is motor gasoline consumption per auto, Y/N is real per capita income, PMG/PGDP is real motor gasoline

price and Car/N denotes the stock of cars per capita. This panel consists of annual observations across 18 OECD countries,

covering the period 1960-78. The data for this example can be found in package plm of the open source software R.

Baltagi (2008) (P 244) considered the problem of testing the independence of the first two countries: Austria and Belgium.

The observed values of Breusch-Pagan (1980) Lagrange multiplier test statistic and the Likelihood Ratio test statistic for

this problem are 0.947 and 1.778, respectively. The observed value of the proposed empirical likelihood test statistic is

2.343. All the three test statistics are distributed as χ2
1 under the null hypothesis, and do not reject the null hypothesis.

4. Conclusion

This paper proposes a novel approach for the independence test for the disturbances of the SUR models based on the

empirical-likelihood method. The proposed test statistic under the null hypothesis is shown to has an asymptotic chi-

square distribution. Compared to the Lagrange multiplier test statistic, the simulation experiment demonstrates that the

proposed method performs satisfactorily. Furthermore, our approach can be applied to the case that the model errors of

one equation of SUR model are correlated.
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Appendix: Proof of the main results

We begin with the following assumptions required to derive the main results. These assumptions are quite mild and can

be easily satisfied.

Assumption 1. E(xikεik) = 0 for 1 ≤ i ≤ p, 1 ≤ k ≤ n.

Assumption 2. E(XT
i Xi) is nonsingular, 1 ≤ i ≤ p.

In order to prove that main results, we first introduce several lemmas.

Lemma 1 Under the assumptions 1-2 and the null hypothesis, we have

1√
n

n∑
k=1

ξk
D−→ N(0,Ω),

with σ2
k = σkk and

Ω =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
σ2

1σ
2
2 0 · · · 0

0 σ2
1σ

2
3 · · · 0

...
...

. . .
...

0 0 · · · σ2
p−1σ

2
p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
Proof: By the result of Tsay (2004), we can obtain Lemma 1.

Lemma 2 Under the assumptions 1-2 and the null hypothesis, we have

1

n

n∑
k=1

ξkξ
T
k

p−→ Ω.

Proof: Firstly, we consider 1
n

n∑
k=1
ε̂ikε̂ jkε̂skε̂lk, one element of 1

n

n∑
k=1
ξkξ

T
k . Let eik = xT

ik(βi − β̂i), by the definition of ξk, we

have
1
n

n∑
k=1
ε̂ikε̂ jkε̂skε̂lk = 1

N

n∑
k=1

(eik + εik)(e jk + ε jk)(esk + εsk)(elk + εlk)

= 1
n

n∑
k=1
εikε jkεskεlk +

15∑
i=1

Ii.

We let I1 =
1
n

n∑
k=1

eike jkeskelk, By Lemma 3 in Owen (1990), we have

|I1| = 1
n

n∑
k=1
|xT

ik(βi − β̂i)xT
jk(β j − β̂ j)xT

sk(βs − β̂s)xT
lk(βl − β̂l)|

≤ ‖βi − β̂i‖‖β j − β̂ j‖‖βs − β̂s‖‖βl − β̂l‖ 1
n

n∑
k=1
‖xik‖‖x jk‖‖xsk‖‖xlk‖

≤ ‖βi − β̂i‖‖β j − β̂ j‖‖βs − β̂s‖‖βl − β̂l‖ max
1≤i≤p,1≤k≤n

‖xik‖4
= Op(n−1/2)Op(n−1/2)Op(n−1/2)Op(n−1/2)op(n2)

= op(1).

Hence, I1 = op(1). By the similar way, we can prove that Ii = op(1), i = 2, 3, · · · , 15. Thus,

1

n

n∑
k=1

ε̂ikε̂ jkε̂skε̂lk =
1

n

n∑
k=1

εikε jkεskεlk + op(1),

and
1

n

n∑
k=1

ξkξ
T
k =

1

n

n∑
k=1

UkUT
k + op(1).

Finally, under the null hypothesis, and by the law of large numbers, we have

1

n

n∑
k=1

ξkξ
T
k

p−→ Ω.
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Lemma 3 Under the Assumptions 1-2, we have

max
1≤k≤n

‖ξk‖ = op(n1/2),

where ‖ · ‖ is the Euclidean norm with ‖a‖ = (a2
1 + · · · + a2

k)1/2 and a = (a1, · · · , ak)T.

Proof:
max
1≤k≤n

|ε̂ikε̂ jk | = max
1≤k≤n

∣∣∣∣[xT
ik(βi − β̂i) + εik

] [
xT

jk(β j − β̂ j) + ε jk

]∣∣∣∣
≤

(
‖βi − β̂i‖ max

1≤k≤n
‖xik‖

)
×

(
‖β j − β̂ j‖ max

1≤k≤n
‖xik‖

)
+ max

1≤k≤n
|εikε jk |

+

(
‖βi − β̂i‖ max

1≤k≤n
‖xik‖

)
max
1≤k≤n

|εik | +
(
‖β j − β̂ j‖ max

1≤k≤n
‖xik‖

)
max
1≤k≤n

|ε jk |.
By Lemma 3 in Owen (1990), we can prove that

max
1≤i≤p,1≤k≤n

‖xik‖ = op(n1/2), max
1≤i≤p,1≤k≤n

|εik | = op(n1/2), max
1≤k≤n

|εikε jk | = op(n1/2),

Combining ‖βi − β̂i‖ = Op(n−1/2) and ‖βk − β̂k‖ = Op(n−1/2), we have

max
1≤k≤n

|ε̂ikε̂ jk | = op(n1/2).

Therefore, we have

max
1≤k≤n

‖ξk‖ = op(n1/2).

Proof of Theorem 2.1. Using the same strategy as the proof of Theorem 3.2 in Owen (1991), we can prove that

‖λ‖ = Op(n−1/2). (a.1)

It follows from Lemma 3 and (a.1) that

max
1≤k≤n

|λTξk | = Op(n−1/2)op(n1/2) = op(1).

Hence, by Taylor’s expansion, we have

ln = 2

n∑
k=1

log(1 + λTξk) = 2

n∑
k=1

(
λTξk −

1

2
(λTξk)2

)
+ rn, (a.2)

with

|rn| ≤ C‖λ‖3 max
k
‖ξk‖

n∑
k=1

‖ξk‖2 = op(1) .

Based on the equation (2.8), by Lemma 3 and (a.1), we have

λ =

⎛⎜⎜⎜⎜⎜⎝ n∑
k=1

ξkξ
T
k

⎞⎟⎟⎟⎟⎟⎠−1 n∑
k=1

ξk + op(n−1/2), (a.3)

and
n∑

k=1

λTξi =

n∑
k=1

(
λTξk

)2
+ op(1). (a.4)

By (a.1)-(a.4), we know that

ln =
n∑

k=1
λTξiξ

T
k λ + op(1)

=

(
1√
n

n∑
k=1
ξk

)T (
1
n

n∑
k=1
ξkξ

T
k

)−1 (
1√
n

n∑
i=1
ξk

)
+ op(1).

Finally, combining Lemmas 1 and 2, we have ln
D−→ χ2

N as n→ ∞. The theorem is then proved.
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2.1 Lehman Type II Frechet Poisson Distribution 
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2.2 Survival and the Hazard Function 
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34d56�
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��D�h jP ��������������������������������������S��

�	�� 
 � � M � � & � �� � ��e%��� � ��� *%�� 1��+%� 	�� �%�� %�=���� �����	�� �	�� 8���	�� 8�
��� 	�� �%�� +���)������M & �� ���� �� ���1�8��������1���$�����:��

�

�

,�1���$���
	��	���%��%�=���������	��	��(,�����������	���	������������8�
���	��� �� 3��+��1��%��8�
���	��M &� �	����������
��:�������:����+����8�
��

� � � � � ��

��
�

��
�

��
�

��
�

�������	�!�"��
�	���������	�����
���������������������������

	

��
	�

����������

����������

����������

����������

����������

����������



�

�

%��+.;;�4�+���������	�1� � � � � � � � � � � � � � � � � � ���������	��
��	���
�	�������������������	����
���� � � � � � � � � � � � � � � � �	
�������	����������

���

�

,�1���:���
	��	���%����8�8�
������	��	��(,�����������	���	������������8�
���	��� �� 3��+��1��%��8�
���	��M &� �	�������
������:�������:����+����8�
��

*%��1��+%�	���%��%�=���������	�������1����$�����:��	������������8�
���	���%��+���)�������>%������8���	���%�+�����%����

)	�	�	����

�����������1�����������1�����������1"���������1�����+������	<�����%����%�+����*%���������������������%��

�
�>���
����	�� KB$� ���������	������ ����������
���� ���)	��
��1�)	�	�	���������	�")	�	�	����%�=������%�8�	��<%��%�

����	��������	�������������
�
����������	����

2.3 Some Sub-models of the LFP Distribution 
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2.4 Expansion of the Density Function 
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�� * m�n�� � =X# * � \@
�Ao

�*���m�� ��# � � pmp q ���������������������������������������`��
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3.2 Incomplete Moment 
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3.4 Renyi Entropy 
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3.6 Order Statistics 
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3.7 Stochastic Ordering 
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5.1 Monte Carlo Simulation 
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5.2 Application to Real Life Data 
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1 Facultad de Ciencias Fı́sico Matemáticas, Universidad Autónoma de Puebla, Puebla, México
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Abstract

In this work, an analysis of change points is made with the Bayes factor, thresholds, and cumulative sum (CUSUM)

statistics methods. For the analysis of change points with the Bayes factor, Poisson data were simulated; the threshold

method was worked with a regression and data of the National Institute of Statistics, Geography and Informatics (INEGI)

of Mexico and coronavirus were used for the CUSUM.

Keywords: Bayes factor, CUSUM, thresholds

1. Introduction

When a change point is mentioned, the first question that comes to mind is: what is a change point? Chen and Gupta

(2012) defined it as the site, or point in time t, in a succession of data {xti } i = 1, . . . , n observed and ordered with respect

to time, in such a way that these observations follow a distribution F1, before a point, and in another point after it, the

distribution is F2. That is, from the statistical point of view, the succession of observations shows an inhomogeneous

behaviour.

Under the classical and Bayesian approaches, the change point problem is considered one of the central problems of

statistical inference, since it interrelates the statistical control theory, the hypothesis tests (when detecting if there is any

change in the sequence of observed random variables), and the estimation theory (when estimating the number of changes

and their corresponding locations). This under the classical and Bayesian approaches.

The change point problems originally appear in the quality control and generally can be found in the mathematical model-

ing of various disciplines such as Environmental Science, Epidemiology, Seismic Signal Processes, Economics, Finance,

Geology, Medicine, Biology, Physics, etc. According to Chen and Gupta (2012), the change point problem is, in general,

visualized as follows:

Let X1, X2, . . . , Xn be a succession of independent random vectors (or variables) with probability distribution functions

F1, F2, . . . , Fn, respectively. The change point problem is to test the null hypothesis, so the problem of the point of change

consists of testing the null hypothesis H0 about the non-existence of change against the alternative, Ha that there is at least

one change point:

H0 : F1 = F2 = . . . = Fn

vs

Ha : F1 = · · · = F(k1) � F(k1+1) = · · · = F(k2) � F(k2+1) = · · · = F(kq) � F(kq+1) = · · · = Fn.

Where 1 < k1 < k2 < · · · < kq < n, q is the unknown number of change points and k1, k2, · · · , kq are the respective

unknown positions that have to be estimated. If the distributions F1, F2, . . . , Fn become a common parametric family

F(θ), where θ ∈ R
p, then the problem of change points is to test the null hypothesis H0 about the non-existence of

change in the parameters θi, i = 1, . . . , n of the population against the alternative Ha that there is at least one change point:

H0 : θ1 = θ2 = · · · = θn = θ (unknown)

vs

Ha : θ1 = · · · = θ(k1) � θ(k1+1)) = · · · = θ(k2) � θ(k2+1) = · · · = θ(kq) � θ(kq+1) = · · · = θn.
where q and k1, k2, . . . , kq must be estimated. Together, these hypotheses reveal the inference aspects of the change points

in order to determine if there is any change point in the process, as well as to estimate their number and their respective

positions.
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The objective of this work is to develop algorithms and programs to apply some procedures to detect change points,

particularly the Bayes factor, the threshold and the cumulative sum statistics (CUSUM) methods.

In this work, some procedures were programmed in order to obtain change points, for this the Bayes factor was used

to detect temporal and spatiotemporal change points. The homogeneous Poisson process was also used since data was

simulated with this process. Multiple temporal-change points and spatiotemporal change points were detected with the

Bayes factor. Changes were also detected with the threshold method and with the cumulative sum (CUSUM) method.

Finally, the Buishand range, the Pettitt and the standard normal homogeneity tests were applied, which confirmed the

change points detected by the cumulative sum method. For the application of the Bayes factor and the threshold methods,

the concepts presented in Altieri (2015) were taken as the basis, Taylor (2000)’s article was used for the cumulative sum

method.

In this work, the programs were elaborated with some instructions from the INLA package in Gómez (2020), Blangiardo

and Cameletti (2015), except for the standard normal homogeneity, Pettit and Buishand ranges tests, for which the Trend

package (from R) of Pohlert (2020) was used.

Simulated data from a Poisson process as well as cement database, INEGI, and coronavirus data were used. The INEGI

and cement data were taken from an example of regression in Gómez (2020), and coronavirus data was taken from the

page coronavirus.gob.mx.

2. Materials and Methods

2.1 Bayes Factor

To detect the change points, the Bayes factor was used. The definition of the Bayes factor will be given below. The change

points are determined according to the values in Table 1.

If there is a problem in which you must choose between two possible models, based on an observed data set D, the

plausibility of the two different models M1 and M2, parameterized by parameter vectors θ1 and θ2, can be measured using

the Bayes factor, which is defined as:

B =
P(D|M1)

P(D|M2)
=

∫
θ1

P(D|θ1,M1)Π(θ1|M1)dθ1∫
θ2

P(D|θ2,M2)Π(θ2|M2)dθ1

where P(D|M1) is called the marginal likelihood or integrated likelihood. This is similar to what is done in the likelihood

ratio tests but now, instead of maximizing the likelihood, the Bayes factor performs a weighted average on the distribution

of the parameters.

A value of B > 1 means that the data supports M1 more than M2.

In the case of the Bayes factor, Jeffreys established an interpretation scale of B, this is shown in Table 1.

Table 1. Interpretation scale of B, according to Jeffreys

B Strength of the evidence in favor of M1

B ≤ 1 Negative supports M2

1 < B ≤ 3 Very scarce

3 < B ≤ 10 Substantial

10 < B ≤ 30 Strong

30 < B ≤ 100 Very strong

> 100 Decisive

Another way to consider the Bayes factor is as follows:

Suppose two hypotheses H0 and H1 such that the a priori probabilities are f0 = P(H0) and f1 = P(H1).

After observing a sample, the a posteriori probabilities of both hypotheses are α0 = P(H0|x) y α1 = P(H1|x). The Bayes

factor in favor of H0 is defined as:

B =
α0

α1

f0
f1

=
α0 f1
α1 f0
.
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Thus, the Bayes factor represents the a posteriori plausibility divided by the a priori plausibility and reports the changes

in our beliefs introduced by data. This has the property of being almost objective and partially eliminates the influence of

the a priori distribution.

As an example suppose the simple contrast:

H0 : θ = θ0 vs Ha : θ = θ1.

We have that the a posteriori distributions are:

α0 = P(H0|x) =
f0L(θ0|x)

f0L(θ0|x) + f1L(θ1|x)
,

α1 = P(H1|x) =
f1L(θ1|x)

f0L(θ0|x) + f1L(θ1|x)
.

So, the Bayes factor is:

B =
α0 f1
α1 f0

=
f0L(θ0|x) f1
f1L(θ1|x) f0

=
L(θ0|x)

L(θ1|x)
,

which coincides with the likelihood ratio, so that the a priori distribution would not influence the Bayes factor, in this

case.

Thus, the Bayes factor for the change point, when it is divided into two segments, is given by the likelihood ratio:

L0

L1

=
Q1Q2

L1

,

where Q1 is the likelihood of segment 1 and Q2 is the likelihood of segment 2, under the alternative hypothesis; and L1 is

the likelihood under the null hypothesis.

Applying the logarithm, we have

B = log{Q1} + log{Q2} − log{L1}.
2.1.1 Homogeneous Poisson Process

To find the change points, first is simulated a homogeneous Poisson process and after of obtained data is worked on. The

homogeneous Poisson process is defined as follows:

Definition 1: A collection of random variables {N(t) : t ≥ 0}, defined in a probability space (ω, F, P) is said to be a

Poisson process (homogeneous) with intensity λ > 0 if it satisfies the following properties:

i)P(N(0) = 0) = 1, this is, N(0) it is always 0.

ii) For all 0 < s < t, N(t) − N(s) has Poisson distribution of parameter λ(t − s).

iii) For all 0 ≤ t1 < . . . < tn, n ≥ 1 (that is, to say for all finite set of times), the random variables N(tn)−N(tn−1), . . . ,N(t2)−
N(t1),N(t1) − N(0),N(0), are independent. This is known as the property of independent increments.

2.1.2 Bisection Method

The bisection method was used to determine the change points with the Bayes factor. This method consists of dividing

the data in half and looking for a change point with the Bayes factor as well as with the likelihoods corresponding to the

null and alternative hypotheses. Then we go to the left side of the data and it is also divided in half; subsequently, the

right side is divided, and so on. We continue going successively to the left and to the right, dividing each side in half and

looking for change points with the Bayes factor.

2.2 Threshold Method

The following is an example of change points determined by the threshold method, explained in Altieri (2015), which

consists of associating a posteriori probability to the data and defining a threshold, in such a way that, if the probability is

less than that threshold, it is said that there is a change point.
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An example of how to associate probabilities is given below, using de following multiple linear regression:

Yi = β0 +

4∑
j=1

β jX j,i + εi.

For this example, we took the cement database in G´mez (2020). In the model, Yi represents the evolved heat of the

observation i and Xj,i is the proportion of the component j in the observation i. The parameter β0 is an intercept and β j,

j = 1, . . . , 4 are coefficients associated with the covariates. Finally, εi, i = 1, 2, . . . , n is an error term with a Gaussian

distribution having zero mean and precision τ.

2.2.1 Cement Data

The cement database used is shown in Table 2.

Table 2. Regression data

X1 X2 X3 X4 Y X1 X2 X3 X4 Y

7 26 6 60 78.5 1 31 22 44 72.5

1 29 15 52 74.3 2 54 18 22 93.1

11 56 8 20 104.3 21 47 4 26 115.9

11 31 8 47 87.6 1 40 23 34 83.8

7 52 6 33 95.9 11 66 9 12 113.3

11 55 9 22 109.2 10 68 8 12 109.4

3 71 17 6 102.7

2.3 Cumulative Sum Method

The Cumulative Sum method consists of the following:

1.- The average is calculated x1+x2+...+x32

32
.

2. The cumulative sum starts at zero S 0 = 0.

3. Other cumulative sums of the form S i = S i−1 + (Xi − X̄) are calculated for i = 2, . . . , 32

S 0 = 0,

S 1 = S 0 + (X1 − X̄),

S 2 = S 1 + (X2 − X̄),

...

S 32 = S 31 + (X32 − X̄).

Bootstrapping is also performed, but an estimator of the magnitude of the change is required before that. An option that

works well regardless of distribution and despite multiple changes is S di f f , which is the maximum difference of S i and

the minimum of S i, as can be seen below:

S di f f = S max − S min where S max = maxi=0,...,33S i, S min = mini=0,...,33S i.

The magnitude of the change is S di f f . A positive value of Sdiff indicates that there was a change from low to high,

which means that traffic accidents changed. The latter is the topic of the problem addressed. Next, a bootstrap analysis of

a single routine is performed. The procedure is the next:

1. A bootstrap sample of 32 units, denoted by Xo
1
, Xo

2
, . . . , Xo

32
, was generated, randomly rearranging the 32 original values.

This is called sampling without replacement.

2. Based on the bootstrap samples, the CUSUM bootstrap is calculated. This is denoted by S o
0
, S o

1
, . . . , S o

32
.

3. The maximum, the minimum and the CUSUM bootstrap difference, denoted by S omax, S omin, and S odi f f are

calculated.

4. It is determined if the bootstrap difference S odi f f is less than the difference S di f f .

A bootstrap analysis consists of performing a large number of bootstraps and counting the number of bootstraps for which
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S odi f f is less than S di f f . Let N be the number of bootstrap samples performed and let X be the bootstrap for which

S odi f f < S di f f . Then the confidence of the change occurred is calculated as a percentage as follows:

Confidence level=100 X
N %.

2.3.1 Traffic Accident Data

The cumulative sum method was applied to traffic accident data in 32 cities, which are the states of the Mexican Republic.

The data, which correspond to the number of traffic accidents, were obtained from INEGI page and are presented in Table

3:

Table 3. Number of traffic accidents

City Accidents City Accidents City Accidents

1 74 11 188 22 146

2 60 12 56 23 69

3 26 13 36 24 113

4 24 14 351 25 278

5 94 15 49 26 208

6 22 16 171 27 41

7 78 17 68 28 136

8 270 18 42 29 80

9 223 19 229 30 140

10 104 20 36 31 37

11 188 21 206 32 83

2.3.2 Coronavirus Data

Coronavirus data corresponding to May 2020, obtained from the coronavirus.gob.mx page, were used to detect the change

points, applying the cumulative sum method. Three groups of data were formed, corresponding to eight, seven, and five

days, respectively. In each database, it was detected where the change from minor to major occurred, that is, where a

higher number of contagion cases occurred in the country. In the database they are divided into infections of men and

women; however, for the analysis of changes, the total contagion cases (men plus women) were considered. Table 4 shows

the data used.

Table 4. Coronavirus infection data

Date Data Date Data Date Data

1 1225 9 1270 16 1483

2 1241 10 1161 17 1145

3 1121 11 2512 18 2747

4 2298 12 2428 19 2261

5 1840 13 2516 20 2083

6 2024 14 2353

7 2085 15 2564

8 2071

3. Results and Discussion

3.1 Analysis of Multiple Change Points With the Bayes Factor

In order to detect, analyze, and compare points of change, a program was developed to detect 5 points of change. A set

of 60 data with 6 different values for the parameter λ were used, which were obtained from a Poisson simulation process.

This exercise is intended to detect the changes generated for the different values of λ. In addition, a comparison was made

with the results obtained when applying an a priori uniform, a log-gamma, and a Gaussian.

A program was generated in R to detect multiple points of change in time. In total, for five change points, 60 data were

used; the smallest segment was four points. A homogeneous Poisson process with different λ was simulated and the a

posterior distribution was approached with the R INLA package, which performs the approximation through Taylor series.

Bayes factor and the bisection method were used to detect the change points.
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A uniform a priori, log gamma and a Gaussian were used. Five change points are shown in Figure 1.

For the following problem, 60 data are used and the smallest division was reached, which was four data. So, there are

fifteen divisions as shown in Table 5.

The change points for a uniform a priori with λ = 2, 1, 4, 7, 6, 1 and in the data divisions or segments 8, 7, 15, 15, 8, 7, were

as shown in Table 5, the change points are the first four and the seventh.

With the same change points and the a priori loggamma with parameters 0.01 and 0.01, the result is that shown in Table

5. It can be seen that compared to the uniform, the log-likelihoods of the loggamma are smaller, however they also detect

the change points.

With the a priori Gaussian with zero mean and precision parameter 0.001, for the same number of change points as the

uniform and the log gamma, the five change points were detected; these are the first four and the seventh, in Table 5. It

can be seen that the value of the log-likelihood of the seventh change point is less than those of the following positions,

however.

The five change points in Table 5 were detected with the Bayes factor B, mentioned above. The values for B indicate the

strength of the evidence in favor of the change point hypothesis. Va-lues less than 1 indicate that there is no change point.

The data in bold, which correspond to the change points, were detected in the following way: value 1 in the middle of

the data, value 2 in data 15, value 3 in data 45, value 4 in data 8, and value 7 in data 53. As can be seen, the values of

the change points are not equal to each other or to the rest. On the other hand, where a change point did not occur, there

were values equal to each other, for example, values 5 and 6, as well as 8, 10, and 14, and in the same way as 9, 11, 13,

and 15; therefore, all these values indicate the non-existence of change points. The strength of the evidence in favor of

the alternative hypothesis, indicated by applying the bisection method for gradual detection of the change points, is strong

for the first point of change and decreases for the following ones; notice this in Table 5. The change points are shown in

Table 5. Change points

Number uniform loggamma Gaussian

1 49.565011 43.644575 42.972975
2 24.392282 25.829232 26.592785
3 13.940830 26.041694 28.329433
4 16.000633 9.990938 11.641769
5 12.478724 2.387813 4.477951

6 12.478724 2.387813 4.477951

7 12.572475 4.498905 5.523642
8 5.701123 1.835601 5.801758

9 4.732525 1.384310 4.912561

10 5.701123 1.835601 5.801758

11 4.732525 1.384310 4.912561

12 5.701123 1.835601 5.801758

13 4.732525 1.384310 4.912561

14 5.701123 1.835601 5.801758

15 4.732525 1.384310 4.912561

Figure 1 and are at 8, 15, 30, 45, and 53 divisions.

3.1.1 Six Change Points With the Bayes Factor

With the same uniform model, six change points were detected for λ = 2, 1, 4, 7, 6, 1, 2, in the data divisions or segments

of 8, 7, 15, 15, 8, 4, 3. The change points detected are the first four, the seventh, and the last. These are shown in Tables 6

and 7.

With the a priori logarithm of gamma, six change points were also detected, which are the first four, the seventh and the

last in Table 6. The difference with the uniform is that the log likelihood is smaller, as can be seen.

For the a priori Gaussian, six change points were also detected. These are shown below in log likelihood values. The

results are somewhat similar to those from the uniform. The change points correspond to the first four, the seventh, and

the last in Table 6. The difference between Gaussian and uniform is that the last change point is less than the previous log

likelihood values, where there is no change point.
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Figure 1. Five change points graph

With the beta logit (with parameters 2 and 2), six change points were well detected, being the same as for the uniform and

the gamma logit: the first four, the seventh, and the last. No big differences are visualized with respect to the uniform.

For the a priori truncated Normal with mean 0 and precision 0.001, the likelihood is smaller compared to the uniform.

This is very similar to the loggamma, since six change points were also detected: the first four, the seventh, and the last in

Tables 6 and 7.

In a similar way to the previous problem, the observed change points are shown in tables 6 and 7. These values are not

repeated among themselves or among the rest. Instead, the rest of the values are repeated, for example, 5 and 6, as well

as 8, 10, 12 and 14, and also 9, 11, and 13; therefore, all these values do not indicate change points, even when they are

greater than 1.

Table 6. Six change points

Num uniform loggamma Gaussian

1 37.382628 44.717137 38.258157
2 23.107912 28.913661 26.506732
3 22.987741 27.851420 26.529322
4 16.466681 5.045601 11.798824
5 12.478724 2.387813 4.477951

6 12.478724 2.387813 4.477951

7 16.555598 3.062915 12.572375
8 5.701123 1.835601 5.801758

9 4.732525 1.384310 4.912561

10 5.701123 1.835601 5.801758

11 4.732525 1.384310 4.912561

12 5.701123 1.835601 5.801758

13 4.732525 1.384310 4.912561

14 5.701123 1.835601 5.801758

15 4.733385 1.720949 4.280097

The change points are shown in Figure 2. These are given in 8, 15, 30, 45, 53, and 57 divisions.

Programming was done in R. The program is presented in appendix A as Program A1.

An algorithm was created for the problem of detecting six change points with the Bayes factor. This algorithm is presented

below:

Algorithm 1: it detects six change points.

Input the INLA function returns the variables mp1, mp2, and mp which contain data simulated with an AR1 autoregres-

sive model and data from a Poisson family for datos A, datos B and datos.

Output the vector respuesta keeps the likelihoods of 15 divisions.

Initialize vectors are initialized mp1, mp2, and mp which contain the simulated data with an AR1 autoregressive model
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Table 7. Six change points

Num logit beta normal

truncated

1 49.664317 51.841263
2 30.567246 16.016904
3 18.174484 33.658036
4 9.944739 7.969972
5 4.633706 2.186421

6 4.633706 2.186421

7 11.248933 1.984581
8 4.076750 1.881876

9 3.794214 1.783849

10 4.076750 1.881876

11 3.794214 1.783849

12 4.076750 1.881876

13 3.794214 1.783849

14 4.076750 1.881876

15 4.405551 2.260447

Figure 2. Six change points graph

and a Poisson family for datos A, datos A, and datos.

Return {respuesta} vector that keeps the verosimilitudes of the divisions.

The datos vector is divided into 1 to 30 and 31 to 60, and it is assigned to datos A and datos B.

i) The likelihood for datos A and datos B is calculated and stored in the respuesta vector,

ii) Vectors datos A and datos B are halved and the data are assigned to datos C and datos D,

iii) The likelihood fo datos C and datos D is calculated.

iv Steps i) and ii) are repeated for the new divisions of the data until the division of only two data.

v) The results obtained are recorded.

3.1.2 Space-Time Analysis of Multiple Change Points With the Bayes Factor

For multiple change points in space-time, what was done was assigning positions. The first one was assigned in the center

and the rest around it in ascending and counterclockwise order. The a posteriori was approximated with the R-INLA

package. The a priori uniform, the Bayes factor, and the bisection method were also used. The simulation of values was

done for a homogeneous Poisson process; four random values of λ (between 1 and 15) were used for each position, so

three change points were estimated. The values of λ are given in each row of Table 8.

And the resulting change points are the first three of Tables 9, 10, 11, and 12. These are in 15, 30, and 45 divisions.

The behavior of the values is similar to that of the first problem presented in this work. The change points indicated in

bold in tables 9, 10, 11, and 12 are not repeated, unlike the rest. According to the strength of the evidence for Bayes factor

B, values less than 1 indicate that there is no point of change. These values are observed in table 10, position 6, value 3,

and in table 11, position 9, value 2.
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Table 8. Lambda values

[1] [2] [3] [4]

[1] 10 3 5 13

[2] 8 12 6 5

[3] 14 8 13 5

[4] 5 4 7 12

[5] 12 7 6 8

[6] 12 9 1 6

[7] 1 13 5 3

[8] 11 14 1 3

[9] 1 13 5 15

[10] 13 1 7 4

[11] 5 11 8 9

[12] 10 3 7 15

[13] 1 13 12 6

[14] 7 1 11 12

[15] 13 12 4 1

[16] 5 6 12 7

Table 9. Change points space-time

[1] [2] [3] [4]

1 33.693643 44.955163 35.315124 41.732270
2 27.795301 25.226235 28.387088 19.482977
3 28.727677 21.122882 27.775696 28.697886
4 12.478724 12.478724 12.478724 12.478724

5 12.478724 12.478724 12.478724 12.478724

6 12.478724 12.478724 12.478724 12.478724

7 12.478724 12.478724 12.478724 12.478724

8 5.701123 5.701123 5.701123 5.701123

9 4.732525 4.732525 4.732525 4.732525

10 5.701123 5.701123 5.701123 5.701123

11 4.732525 4.732525 4.732525 4.732525

12 5.701123 5.701123 5.701123 5.701123

13 4.732525 4.732525 4.732525 4.732525

14 5.701123 5.701123 5.701123 5.701123

15 4.732525 4.732525 4.732525 4.732525

The Bayes factor method detects the change points well. Its weakness is that it only detects changes up to a division of

four, but not when the amount of data is lower.

Programming was performed in R. It is shown in appendix A as program A2.

An algorithm was built to detect 3 space-time points of change in 16 positions. This algorithm is shown below:

Algorithm 2: it detects 3 space-time points of change

Input the INLA function returns the variables mp1, mp2, and mp which contain data simulated with an AR1 autoregres-

sive model and data from a Poisson family for datos A, datos B and datos.

Output the matrizrespuesta keeps the likelihoods of 5 divisions in 16 positions.

Initialize vector mp1, mp2, and mp are initialized. These contain data simulated with an AR1 autoregressive model and

data from a Poisson family for datos A, datos B and datos

n=16 means 16 positions.

for i in 1:n
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Table 10. Change points space-time

[5] [6] [7] [8]

1 33.574630 61.47789451 52.546434 44.358894
2 27.549217 27.37020690 18.324691 21.142981
3 28.777261 -0.08807506 20.678559 1.851282
4 12.478724 12.47872437 12.478724 12.478724

5 12.478724 12.47872437 12.478724 12.478724

6 12.478724 12.47872437 12.478724 12.478724

7 12.478724 12.47872437 12.478724 12.478724

8 5.701123 5.70112304 5.701123 5.701123

9 4.732525 4.73252533 4.732525 4.732525

10 5.701123 5.70112304 5.701123 5.701123

11 4.732525 4.73252533 4.732525 4.732525

12 5.701123 5.70112304 5.701123 5.701123

13 4.732525 4.73252533 4.732525 4.732525

14 5.701123 5.70112304 5.701123 5.701123

15 4.732525 4.73252533 4.732525 4.732525

Table 11. Change points space-time

[9] [10] [11] [12]

1 71.06948660 35.332035 34.663739 28.888859
2 -0.08807506 28.183967 26.321000 25.185406
3 19.83004426 27.173106 28.558468 28.850767
4 12.47872437 12.478724 12.478724 12.478724

5 12.47872437 12.478724 12.478724 12.478724

6 12.47872437 12.478724 12.478724 12.478724

7 12.47872437 12.478724 12.478724 12.478724

8 5.70112304 5.701123 5.701123 5.701123

9 4.73252533 4.732525 4.732525 4.732525

10 5.70112304 5.701123 5.701123 5.701123

11 4.73252533 4.732525 4.732525 4.732525

12 5.70112304 5.701123 5.701123 5.701123

13 4.73252533 4.732525 4.732525 4.732525

14 5.70112304 5.701123 5.701123 5.701123

15 4.73252533 4.732525 4.732525 4.732525

4 lambdas from a 1-15 Poisson process are randomly calculated and they are included in the vector vlambda.

The four vectors simulated by change points, corresponding to the four lambdas, are included in the vector datos which

has space for 60 data

end for

for i in 1:n

The vector datos is divided into 1 to 30 and 31 to 60 and assigned to datos A and datos B.

i) The likelihood for each vector in datos A and datos B is calculated and stored in the matrizrespuesta,

ii) The vector datos A and datos B are halved and data are assigned to datos C and datos D,

iii) The likelihoods for datos C and datos D are calculated.

iv) Steps i) and ii) are repeated for the new divisions of the data until the division of only two data.

v) The results obtained are recorded.

end for

return returns the matrizrespuesta. This matrix contains the likelihoods.
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Table 12. Change points space-time

[13] [14] [15] [16]

1 55.319548 36.493439 53.350957 37.905475
2 7.263903 27.399136 14.610914 25.226621
3 28.683089 26.696299 17.792607 28.209964
4 12.478724 12.478724 12.478724 12.478724

5 12.478724 12.478724 12.478724 12.478724

6 12.478724 12.478724 12.478724 12.478724

7 12.478724 12.478724 12.478724 12.478724

8 5.701123 5.701123 5.701123 5.701123

9 4.732525 4.732525 4.732525 4.732525

10 5.701123 5.701123 5.701123 5.701123

11 4.732525 4.732525 4.732525 4.732525

12 5.701123 5.701123 5.701123 5.701123

13 4.732525 4.732525 4.732525 4.732525

14 5.701123 5.701123 5.701123 5.701123

15 4.732525 4.732525 4.732525 4.732525

3.2 Threshold Method

For the example of the change point, the variable X1 in Table 2 of Section 2.2.1 was used. Probabilities of the a posteriori

distribution were assigned to data of X1. A threshold of 3.041631e− 07 was set, so data having a probability less than this

value were considered as change points.

The program A3 in Appendix A was developed in R. The results were given in zeros and ones:

0 0 1 1 0 1 0 0 0 1 0 1 1

The change occurs where the number 1 begins to be more constant, that is, where the a posteriori probability assigned to

the data is less than the defined threshold, indicating that a point of change exists. The latter happens in position ten and

three, with a threshold of 3.041631e-07.

An algorithm was created which detects multiple points of change by the threshold method. This algorithm is presented

below:

Algorithm 3: it detects multiple change points by the threshold method

Input cement matrix, datos matrix, treshold, regression in ml.

Output Vector menores include zeros and ones; 1 means that the a posteriori probability is less than threshold y 0 means

that the a posteriori probability is greater than threshold.

Inizialite n=13 is the amount of data.

For h in 1:n

The a posteriori probability is calculated for each data.

End For

For h in 1:n

if the a posteriori probability is less than threshold, then a 1 is stored in the vector menores else if it is greater a zero is

stored.

End For

Print menores

3.3 Cumulative Sum Method

3.3.1 With Traffic Accident Data

The algorithm of Section 2.3 was applied to the traffic accident data of Section 2.3.1, Table 3. According to the magnitude

of the change, the minimum sum was −439.6875, and it was found in the data located in the seventh position. The

maximum sum, the minimum sum and the difference were:
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Smax=183.875

Smin=-439.6875

Sdiff=623.5625

Confidence Level for a hundred sample bootstrap=100 X
N % = 83%.

It can be seen in Figure 3 that the change point is at value 7, where it changes from the smallest number of traffic accidents

to a higher number.

Figure 3. Graph with change point at 7

What the algorithm establishes was applied and the program A4 in appendix A was developed.

An algorithm was created with the cumulative sum method, which detects a single point of change. This algorithm is

shown below:

Algorithm 4: it detects a single change point

Input the matrix datos contain data for the analysis

Output parciales are cumulative data sums, rparciales are cumulative bootstrap sums, rSdif are the resampling differ-

ences.

Inizialite n=33 they are 33 data

m=100 is resampling of size 100 with 33 data

For i in 2:n

The cumulative sum is calculated and stored in parciales

End For

The maximumSmax=max(parciales), ,minimum Smin=min(parciales) and difference Sdif=Smax-Smin are calculated

For k in 2:n

The resampling cumulative sum is calculated and stored inrparciales

End For

It is calculated the maximum of rparciales rSmax=max(rparciales)

mimimum rSmin=min(rparciales), and difference rSdif=rSmax-rSmin

return rSdif returns the resampling difference vector.

For j in 1:m a bootstrap resampling of size 100 with 33 data is performed

The differences are calculated for each resampling diferencias[m] = remuestreo(sample(datos, 32))

End for
For j in 1:m
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If If the resampling differences are less than Sdif then the normal differences are stored in the vector respuesta.

End for

The confidence Interval is calculated:

Nconfianza=100*sum(respuestas)/length(respuestas)

Other tests applied with traffic accident data

The Buishand, Pettitt and standard normal homogeneity tests were performed on the same traffic accident data. For all

tests, the result was the change point at position 7. It was used in R the trend library in Pohlert (2020), using the following

code:

library(trend)

data < −c(74, 60, 26, 24, 94, 22, 78, 270, 223, 104, 188, 56, 36

, 351, 49, 171, 68, 42, 229, 36, 206, 146, 69,
113, 278, 208, 41, 136, 80, 140, 37, 83)

y < −ts(data, start = c(1900), f req = 1)

x < −ts(data, start = c(1900), f req = 1)

buishand ranges test
br.test(y,m = 20000)

pettit test
pettitt.test(x)

standard normal homogeneity test
snh.test(x,m = 20000)

3.3.2 With Coronavirus Data

The coronavirus data from Section 2.3.2 in Table 4 were used. The infection data are shown in a bar graph, in Figure 4.

The bar graph shows how the number of infections decreases and increases again. Increases or changes occurred at May

Figure 4. Graph of contagion

4, May 11 an May 18, for the first, second and last group, respectively. This is observed in the CUSUM cumulative sums

graph shown in Figure 5. For each cumulative sum, the statistics and the percentage are those shown in Table 13.

Figure 5. Data groups 1, 2 and 3

The R program applied for the analysis of coronavirus data, was the same as that used for the traffic accidents data.

With the CUSUM method only one change point is detected, however changes are detected even when the database is

small, which is the case with the coronavirus data.
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Table 13. Statistics and percentage

Group 1 Group 2 Group 3

Sdiff=1627.375 Sdiff=1798.714 Sdiff=1259.6

Smax=0 Smax=0 Smax=0

Smin=-1627.375 Smin=-1798.714 Smin=-1259.6

ConfidenceL=89% 83% 61%

4. Conclusion

Programs were developed for the Bayes factor, thresholds, and CUSUM methods. In the case of the Bayes factor method,

the purpose was to numerically detect the points of change and compare the results with those of the a priori distributions

used. For the threshold and CUSUM methods, the objective was to detect the change points. Coronavirus, car traffic, and

regression (cement) databases were used, as well as a database simulated with a Poisson process.

Pettitt, standard normal homogeneity, and Buishand ranges methods were used. The R Trend package, which contains

these methods, was applied to detect the change points.

It can be concluded that the threshold and CUSUM methods detect change points well. The difference is that the threshold

method allows to detect multiple points of change in a regression.

The CUSUM method only detects a point of change, as do Pettitt, standard normal homogeneity, and Buishand ranges

methods. Using the CUSUM method, changes are detected even when the database is small, as happened with the

coronavirus data.

The Bayes factor method detected the change points well. Its weakness is that it can only detect changes up to a division

of four, but when the amount of data in the division is lower, the change points are no longer detected.
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Appendix A

Program A1

rm(list = ls())

library(poisson)

library(INLA)

vector < −hpp.event.times(2, 15, num.sims = 1, t0 = 0)

plot(vector)

vector1 < −hpp.event.times(1, 15, num.sims = 1, t0 = 0)

vector2 < −hpp.event.times(4, 15, num.sims = 1, t0 = 0)

vector4 < −hpp.event.times(6, 15, num.sims = 1, t0 = 0)

datos < −c(vector, vector1, vector2, vector4)

plot(datos, type = ”l”)

datosA = datos[1 : 30]

datosB = datos[31 : 60]

datos
datosA
datosB
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vec res = rep(0, 20)

f actor b < − f unction(datosA, datosB, datos){
p1 < −data. f rame(”num” = seq(1, length(datosA), 1), ”datosA” = datosA)

p2 < −data. f rame(”num” = seq(1, length(datosB), 1), ”datosB” = datosB)

mp1 < −inla(num f (datosA,model = ”ar1”), data = p1, f amily = ”poisson”)

mp2 < −inla(num f (datosB,model = ”ar1”), data = p2, f amily = ”poisson”)

mid f < −data. f rame(”num” = seq(1, length(datos), 1), ”datos” = datos)

mp < −inla(num f (datos,model = ”ar1”), data = mid f , f amily = ”poisson”)

respuesta < −as.numeric(mp1$mlik[1, 1]) + as.numeric(mp2$mlik[1, 1])

−as.numeric(mp$mlik[1, 1])

return(respuesta)

}
vec res[1] = f actor b(datosA, datosB, datos)

vec res
datosC = datosA[1 : 15]

datosD = datosA[16 : 30]

vec res[2] = f actor b(datosC, datosD, datosA)

vec res
datosE = datosB[1 : 15]

datosF = datosB[16 : 30]

vec res[3] = f actor b(datosE, datosF, datosB)

vec res
datosG = datosC[1 : 8]

datosH = datosC[9 : 15]

vec res[4] = f actor b(datosG, datosH, datosC)

vec res
datosI = datosD[1 : 8]

datosJ = datosD[9 : 15]

vec res[5] = f actor b(datosI, datosJ, datosD)

vec res
datosK = datosE[1 : 8]

datosL = datosE[9 : 15]

vec res[6] = f actor b(datosK, datosL, datosE)

vec res
datosM = datosF[1 : 8]

datosN = datosF[9 : 15]

vec res[7] = f actor b(datosM, datosN, datosF)

vec res
datosO = datosG[1 : 4]

datosP = datosG[5 : 8]

vec res[8] = f actor b(datosO, datosP, datosG)

vec res
datosQ = datosH[1 : 4]

datosR = datosH[5 : 7]

vec res[9] = f actor b(datosQ, datosR, datosH)

vec res
datosS = datosI[1 : 4]

datosT = datosI[5 : 8]

vec res[10] = f actor b(datosS , datosT, datosI)

vec res
datosU = datosJ[1 : 4]

datosV = datosJ[5 : 7]

vec res[11] = f actor b(datosU, datosV, datosJ)

vec res
datosX = datosK[1 : 4]

datosY = datosK[5 : 8]

vec res[12] = f actor b(datosX, datosY, datosK)
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vec res
datosW = datosL[1 : 4]

datosZ = datosL[5 : 7]

vec res[13] = f actor b(datosW, datosZ, datosL)

vec res
datosAA = datosM[1 : 4]

datosBB = datosM[5 : 8]

vec res[14] = f actor b(datosAA, datosBB, datosM)

vec res
datosCC = datosN[1 : 4]

datosDD = datosN[5 : 7]

vec res[15] = f actor b(datosCC, datosDD, datosN)

vec res
To use another a priori function, it is changed in the program by the following instruction, where the a priori distribution

to use and its parameters are included, since the INLA package has the a priori distributions to use.

prec.prior < −list(prec = list(prior = ”logtgaussian”, param = c(0, 0.001)))

mp1 < −inla(num f (datosA,model = ”ar1”, hyper = prec.prior), data = p1, f amily = ”poisson”)

Program A2

rm(list = ls())

library(poisson)

library(INLA)

esp t = matrix(0, 60, 16)

matriz resp = matrix(0, 15, 16)

mlambdas = matrix(0, 16, 4)

f actor b < − f unction(datosA, datosB, datos){
p1 < −data. f rame(”num” = seq(1, length(datosA), 1), ”datosA” = datosA)

p2 < −data. f rame(”num” = seq(1, length(datosB), 1), ”datosB” = datosB)

mp1 < −inla(num f (datosA,model = ”ar1”), data = p1, f amily = ”poisson”)

mp2 < −inla(num f (datosB,model = ”ar1”), data = p2, f amily = ”poisson”)

mid f < −data. f rame(”num” = seq(1, length(datos), 1), ”datos” = datos)

mp < −inla(num f (datos,model = ”ar1”), data = mid f , f amily = ”poisson”)

respuesta < −as.numeric(mp1$mlik[1, 1]) + as.numeric(mp2$mlik[1, 1])

−as.numeric(mp$mlik[1, 1])

return(respuesta)

}
f or(i in 1 : 16){
vlambda = sample(1 : 15, 4)

vector < −hpp.event.times(vlambda[4], 15, num.sims = 1, t0 = 0)

plot(vector)

mlambdas[i, ] = vlambda
vector1 < −hpp.event.times(vlambda[1], 15, num.sims = 1, t0 = 0)

vector2 < −hpp.event.times(vlambda[2], 15, num.sims = 1, t0 = 0)

vector4 < −hpp.event.times(vlambda[3], 15, num.sims = 1, t0 = 0)

datos < −c(vector, vector1, vector2, vector4)

espt[, i] = datos
}
f or(indice in 1 : 16){
datosA = esp t[1 : 30, indice]

datosB = esp t[31 : 60, indice]

datos = esp t[, indice]

datosA
datosB
matriz resp[1, indice] = f actor b(datosA, datosB, datos)

datosC = datosA[1 : 15]

datosD = datosA[16 : 30]
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matriz resp[2, indice] = f actor b(datosC, datosD, datosA)

datosE = datosB[1 : 15]

datosF = datosB[16 : 30]

matriz resp[3, indice] = f actor b(datosE, datosF, datosB)

datosG = datosC[1 : 8]

datosH = datosC[9 : 15]

matriz resp[4, indice] = f actor b(datosG, datosH, datosC)

datosI = datosD[1 : 8]

datosJ = datosD[9 : 15]

matriz resp[5, indice] = f actor b(datosI, datosJ, datosD)

datosK = datosE[1 : 8]

datosL = datosE[9 : 15]

matriz resp[6, indice] = f actor b(datosK, datosL, datosE)

datosM = datosF[1 : 8]

datosN = datosF[9 : 15]

matriz resp[7, indice] = f actor b(datosM, datosN, datosF)

datosO = datosG[1 : 4]

datosP = datosG[5 : 8]

matriz resp[8, indice] = f actor b(datosO, datosP, datosG)

datosQ = datosH[1 : 4]

datosR = datosH[5 : 7]

matriz resp[9, indice] = f actor b(datosQ, datosR, datosH)

datosS = datosI[1 : 4]

datosT = datosI[5 : 8]

matriz resp[10, indice] = f actor b(datosS , datosT, datosI)

datosU = datosJ[1 : 4]

datosV = datosJ[5 : 7]

matriz resp[11, indice] = f actor b(datosU, datosV, datosJ)

datosX = datosK[1 : 4]

datosY = datosK[5 : 8]

matriz resp[12, indice] = f actor b(datosX, datosY, datosK)

datosW = datosL[1 : 4]

datosZ = datosL[5 : 7]

matriz resp[13, indice] = f actor b(datosW, datosZ, datosL)

datosAA = datosM[1 : 4]

datosBB = datosM[5 : 8]

matriz resp[14, indice] = f actor b(datosAA, datosBB, datosM)

datosCC = datosN[1 : 4]

datosDD = datosN[5 : 7]

matriz resp[15, indice] = f actor b(datosCC, datosDD, datosN)

indice = indice + 1

}
matriz resp
mlambdas

Program A3

library(INLA)

cement
m1 < −inla(y x1 + x2 + x3 + x4, data = cement)
dato < −c(7, 1, 11, 11, 7, 11, 3, 1, 2, 21, 1, 11, 10)

m1$marginals. f ixed$x1

1 − inla.pmarginal(0,m1$marginals. f ixed$x1)

probas = seq(1, 13)

f or(h in 1 : 13){
probas[h] = inla.pmarginal(dato[h]+0.2,m1$marginals. f ixed$x1)−inla.pmarginal(dato[h]−0.2,m1$marginals. f ixed$x1)

}
menores = seq(1, 13)
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umbral = 3.041631e − 07

f or(h in 1 : 13){
menores[h] = probas[h] < umbral
}
menores

Program A4

datos < −c(74, 60, 26, 24, 94, 22, 78, 270, 223, 104, 188, 56, 36, 351, 49, 171, 68, 42, 229, 36, 206,
146, 69, 113, 278, 208, 41, 136, 80, 140, 37, 83)

promd < −mean(datos)

promd
parciales < −seq(1, 33)

parciales[1] = 0

f or(iin2 : 32){
parciales[i] = parciales[i − 1] + datos[i − 1] − promd
}
parciales
S max = max(parciales)

S min = min(parciales)

S di f = S max − S min
S di f
S max
S min
plot(parciales, type = ”l”)

remuestreo < − f unction(rdatos){
rpromd < −mean(rdatos)

rparciales < −seq(1, 33)

rparciales[1] = 0

f or(k in 2 : 33){
rparciales[k] = rparciales[k − 1] + rdatos[k − 1] − rpromd
}
rS max = max(rparciales)

rS min = min(rparciales)

rS di f = rS max − rS min
return(rS di f )

}
di f erencias = seq(1, 100)

f or(m in 1 : 100){
di f erencias[m] = remuestreo(sample(datos, 32))

}
di f erencias
respuestas < −seq(1, 100)

f or(m in 1 : 100){
respuestas[m] = di f erencias[m] < S di f
}
respuestas
di f erencias
S di f
NCon f ianza = 100 ∗ sum(respuestas)/length(respuestas)

NCon f ianza
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Abstract
In this study, we proposed a flexible lifetime model identified as the modified exponentiated Kumaraswamy (MEK)
distribution. Some distributional and reliability properties were derived and discussed, including explicit expressions for
the moments, quantile function, and order statistics. We discussed all the possible shapes of the density and the failure
rate functions. We utilized the method of maximum likelihood to estimate the unknown parameters of the MEK
distribution and executed a simulation study to assess the asymptotic behavior of the MLEs. Four suitable lifetime data
sets we engaged and modeled, to disclose the usefulness and the dominance of the MEK distribution over its participant
models.

Keywords: Kumaraswamy distribution, bathtub shaped hazard rate function, maximum likelihood estimation, order
statistics, hydrology, reliability engineering, petroleum engineering
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1. Introduction
In this world of science, the significance of probability distributions has an imperative role to elucidate the real-world
random phenomenon. In this scenario, Kumaraswamy (1980) proposed a much better choice against the beta
distribution, the Kumaraswamy distribution. It is defined over the interval bounded in (0, 1)). Several characteristics
like uni-anti-modal, uni-modal, decreasing, increasing, or constant failure rate, which the Kumaraswamy distribution
and the beta distribution shared alike. For details, readers are referred to as Jones (2009). He highlighted some
significant and common features of Kumaraswamy distribution involved simple normalizing constant, uncomplicated
explicit expressions for the density function, distribution function, order statistics, and quantile function. Beta and
Kumaraswamy distributions, both are the special cases of the generalized beta distribution see McDonald (1984), Ali ���
��� (2017), and Mukhtar ������ (2019). To model in hydrology, atmosphere temperature, clinical trials, engineering, and
geology, among other real word random phenomena, Kumaraswamy distribution considers a far better choice than beta
distribution.

Let � be a random variable follow by the Kumaraswamy distribution. The associated cumulative distribution function
(CDF) and corresponding probability density function (PDF) with two shape parameters ( ) with , are
given by, respectively

The capability of Kumaraswamy distribution was raised by Cordeiro and de Castro (2011) in introducing a new
generalized class, called the Kumaraswamy-G (short Kum-G) family. The cumulative distribution function (CDF) and
probability density function (PDF) of the Kum-G family, is defined by, respectively
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where is CDF of arbitrary baseline model based on the parametric vector with are the two shape
parameters, respectively. Let is the probability density function of any baseline model.

To study further modifications and generalizations using the Kum-G family, see the exemplar work of Bourguignon����
��� (2013). They developed the Kumaraswamy Pareto (KP) distribution and discussed their vital characteristics and 
explored their application to the hydrological data. Lemonte ������ (2013) developed two versions of the Kumaraswamy 
distribution named (i) exponentiated Kumaraswamy distribution, and (ii) Log Exponentiated Kumaraswamy 
distribution. They derived numerous mathematical and reliable characters and discussed the application with the 
assistance of Log Exponentiated Kumaraswamy distribution. Alizadeh ��� ��� (2015) developed the Kumaraswamy
version of the Marshall-Olkin (1997) family. Afify ������ (2016) initiated the Kumaraswamy version of Marshall-Olkin
Fréchet distribution (Krishna ��� ��. (2013)) and explored their application in the medical science and reliability
engineering data. Ibrahim (2017) developed the Kumaraswamy version of the power function distribution and explored 
their application in medical science data. Bursa and Ozel (2017) discussed the exponentiated version of Kumaraswamy
power function distribution and explored their application in the metrology data. Mahmoud������� (2018) developed a
five-parameter Kumaraswamy edition of the exponentiated Fréchet distribution. They explored twenty-seven models 
and explored their application in reliability engineering data. Nawaz �����. (2018) generalized Kappa distribution via 
Kumaraswamy G class with the intention that it would be a better alternative to the generalized Kappa distribution and 
exploring their application in the hydrology data. Silva ��� ��� (2019) proposed the exponentiated Kum-G class and 
explored their application in the reliability engineering data. Cribari-Neto and Santos (2019), introduced an interesting 
work according to some specific nature of data included exactly zero, exactly one, or both the cases were involved 
known as the inflated Kumaraswamy distributions. This distribution was the mixture of Kumaraswamy and Bernoulli 
distributions. 

This article is organized in the following sections. We define the linear expressions, shapes, quantile function, reliability,
and other mathematical measures in Section 2. The estimation of the model parameters by the method of maximum
likelihood and simulation results is performed in Section 3. Applications to real data sets are discussed in Section 4 to
illustrate the importance and flexibility of the proposed model and finally, some conclusions are reported in Section 5.

	�	�
��������
The new model is based on the Type II Half Logistic G family of distributions attributed to Hassan �����. (2017) with
associated CDF is given as follows:

(1)

where is any arbitrary baseline model based on , and is a shape parameter with .

For deep understanding, we suggest the reader see some notable efforts including Balakrishnan (1985), extended half
logistic distribution by Altun �����. (2018), type II half logistic exponential by Elgarhy �����. (2019), Kumaraswamy 
inverse Lindley distribution by Hemeda �����. (2020), Al-Marzouki �����. (2021), and among others.

The new model is:

(i) flexible enough and bounded in (0, 1) interval,

(ii) exhibits a bathtub-shaped failure rate function,

(iii) offers more realistic and rationalized results specifically on the complex skewed symmetric and
sophisticated random phenomena,

(iv) provides consistently a better fit over its competitors as shown in the application section using four real
data sets,

(v) provides simple and uncomplicated CDF, PDF, and likelihood functions.

Formally, a random variable � is said to follow the modified exponentiated Kumaraswamy (MEK) distribution if the
baseline model by Lemonte �����. (2013) with associated CDF,

(2)

is placed in equation (1) with =1. The associated CDF with three shape parameters and the
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corresponding PDF is given by respectively

(3)

(4)

2. Distributional Properties
��	����������������������

Linear combination provides a much informal approach to discuss the CDF and PDF than the conventional integral 

computation when determining the mathematical properties. For this, we consider the following binomial expansion:

From Equation (3), linear expression of CDF is given by

(5)

From Equation (4), linear expression of PDF is given by

(6)

(7)

Expression in Equation (6) will be quite helpful in the forthcoming computations of various mathematical properties of
the MEK distribution.

����������� � �
Different plots of density and failure rate functions of the MEK distribution are displayed in Figures 1 and 2, for various
choices of the parameters. Possible shapes of the density function including increasing, decreasing, symmetric, and
upside-down bathtub shapes and, Figure 2 illustrates the increasing, decreasing, U - shaped, and upside-down
bathtub-shaped failure rate function.
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Figure 1. Plot of the density function for Parameters Figure 2. Plot of the failure rate function for Parameters
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Hyndman and Fan (1996) introduced the concept of quantile function. The �th quantile function of � MEK( )
with is obtained by inverting the CDF mention in Equation (3). Quantile function is defined by

Quantile function of � is given by

(8)

One may obtain 1st quartile, median and 3rd quartile of � by setting ��= 0.25, 0.5, and 0.75 in Equation (8) respectively.
Henceforth, to generate random numbers, we assume that CDF (5) follows uniform distribution �= � (0, 1).

��������������!�����������������"�#������
The Skewness and kurtosis of MEK distribution can be calculated by the following two useful measures

and

by Bowley (1920) and Moors (1988) respectively. These descriptive measures, based on quartiles and octiles, provide
more robust estimates than the traditional skewness and kurtosis measures. Moreover, these measures are almost less
reactive to outliers and work more effectively for the distributions, deficient in moments. The following Table-1,
presents some results of the first four moments about the origin, variance, skewness, and kurtosis of MEK distribution
for some choices of parameters place in S-I( 1.1), S-II( 1.07), S-III(

1.1), S-IV( 1.09), S-V( 1.1), S-VI( ),
S-VII( ), S-VIII( ), S-IX( , ), and S-X(

, ). The behavior of variance, skewness, and kurtosis has decreasing trend as per the results indicate
in Table-1.
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Table 1. Some results of moments, variance, skewness, and kurtosis

S-I S-II S-III S-IV S-V

2.2094 2.1831 2.1857 2.1772 2.1743

4.4551 4.3292 4.3346 4.2921 4.2741

9.8507 9.4252 9.4155 9.2805 9.2114

23.176 21.849 21.709 21.294 21.033

Variance 0.8224 0.7061 0.6777 0.6404 0.6082

Skewness 1.0973 1.0949 1.0885 1.0893 1.0867

Kurtosis 1.1677 1.1658 1.1554 1.1558 1.1514

S-VI S-VII S-VIII S-IX S-X

2.1743 2.1487 2.1282 2.2315 2.1974

4.2741 4.1162 3.9881 4.5144 4.3161

9.2113 8.6180 8.1575 9.9463 9.2237

21.033 18.903 17.364 22.952 20.505

Variance 0.6081 0.3139 0.0613 0.6987 0.3811

Skewness 1.0867 1.0649 1.0491 1.0752 1.0581

Kurtosis 1.1514 1.1157 1.0917 1.1262 1.1007

�
��$������%����'�*����+�������+�� �
One of the imperative roles of probability distribution in reliability engineering is to analyze and predicts the life of a
component. Numerous reliability measures for the MEK distribution are discussed here. One may explain the reliability
function as the probability of a component that survives till the time / and analytically it is written as .

�����%����'�;��+��� of � is given by

(9)

In reliability theory, a significant contribution of a function, most of the time considers as a failure rate function or
hazard rate function, and sometimes it is called the force of mortality. Time depended this function is used to measure
the failure rate of a component in a particular period / and mathematically it is written as

<�=���������;��+��� of � is given by

(10)

The conditional survivor function is the probability that a component whose life says /, survives in an additional

interval at =� It can be written as

*������������#�#��;��+��� of � is given by

Most of the time, it is assumed that the mechanical components/parts of some systems follow the bathtub-shaped failure
rate phenomena. For this, several well-established and useful reliability measures are available in the literature to
discuss the significance of EM distribution. the cumulative hazard rate function is expressed by

*�>�����#����=���������;��+��� of � is given by
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The reverse hazard rate function is expressed by

��#�������=���������;��+��� of � is given by

Mills ratio is expressed by

���������� of � is given by

Odd function is expressed by

?���;��+��� of � is given by

We may develop the linear expressions for reliability characteristics, mention in section 1.2. The reliability and hazard
rate functions of � are given by

and

��@���>����K�U���#���
Here we study the limiting behavior of distribution function, density function, reliability function, and failure rate
function of the MEK distribution present in Equations (3), (4), (9), and (10) at / and / .

Proposition-1
��>����K�%���#���;�������%�����;��+�����������'�;��+����������%����'�;��+���������;������������;��+����;������W!�
������%��������/ � ���;������%'�

Proposition-2
��>����K�%���#���;�������%�����;��+�����������'�;��+����������%����'�;��+���������;������������;��+����;������W!�
������%��������/ � ���;������%'�

Indeterminate.

The above limiting behaviors of distribution, density, reliability, and failure rate functions illustrate that there is no
effect of parameters on the tail of the MEK distribution.
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��X��>���������Y���Z��+���������������
Moments have a remarkable role in the discussion of distribution theory, to study the significant characteristics of a
probability distribution.

Theorem 1: If �� MEK ( ), for , then the �-th ordinary moment ( say ) of � is given by

Proof: can be written by following Equation (6), as

by simple computation on the prior expression leads to the final form of the �-th ordinary moment and it is given by

(11)

where U( )= and are the beta function and shape parameters, control the tail
behavior of �, respectively.

The derived expression in Equation (11) provides a supportive and useful role in the development of numerous statistics.
For instance: to deduce the mean of �� place ��=1 in Equation (11) and it is given by

The higher-order ordinary moments of � approximating to 2nd, 3rd, and 4th, can be formulated by setting � = 2, 3, and 4
in Equation (11) respectively. Further to discuss the variability in �� the Fisher index F.I = ( ) plays a
supportive role. One may perhaps further determine the well-established statistics for instance: skewness ( ),
kurtosis ( ), and mode = of � by integrating Equation (11).

Moment generating function can be presented by

Moment generating function of � is followed by equation (9)

A well-established recurrence relationship between the ordinary moments and central moments to derive

the cumulants is . Hence, the first four cumulants are: , ,

, and .

The �-th central moment ( ) of � is given by
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��[�Y�+>�������>�����
Incomplete moments are classified into lower incomplete moments and upper incomplete moments. Lower incomplete
moments are defined as

�������+>����� >>���� of � is given by

Upper incomplete moments are defined as or more convenient, it can be written
as

��������+>������>>�����;���is given by�

Let be the residual life (RL) function has the �-th moment

.

�����������;��;��+��� � is given by

\�����;���/��+���+'���>���������������;��]���^�;��+���� � ;� ��;�����;�>������%#���_�������������`�	��

Let be the reverse residual life (RRL) function has the

�-th moment.

��#����������������;��]���^�;��+��� of � is given by

\���>����������K���>����>�������+��#��'���>��;� ��;�����;�>������%#��W_�������������`�	��
Kayid and Izadkhah (2014) defined, strong mean inactivity time (SMIT). It can be written as

> 0.

����K�>�������+��#��'���>� of ��is given by
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Mean past lifetime (MPL) for the conditional random variable is given by
It can be written as

������������;����>� of X is given by

��j�?�������������+�� �
In reliability analysis and life testing of a component in quality control, order statistics (OS) and moments have 
noteworthy consideration. Let be a random sample of size � follows to the MEK distribution and

be the corresponding order statistics. The random variables and be the �th,
minimum, and maximum order statistics of .

The PDF of is given by

By incorporating Equations (3) and (4), the PDF of takes the form

The last equation is quite helpful in computing the �{th moment order statistics of the MEK distribution. Further, the
minimum and maximum order statistics of follow directly from the above equation with �=1 and �= �, respectively.

The �{th moment order statistics, , of ��is

(12)

��	|�W����'�
When a system is quantified by disorderedness, randomness, diversity, or uncertainty, in general, it is known as entropy.

Rényi (1961) entropy of � is described by

(13)

First, we simplify in terms of , we get
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by shifting the above equation in Equation (13), we get

by solving simple mathematics on the prior equation we will be provided the reduced form of the Rényi entropy for �
and it is given by

(14)

where

The quadratic entropy is a special case of Rényi entropy, called quadratic Rényi entropy (QRE). It has a wide range of
applications in economics, signal processing, and physics. It is obtained by substituting by 2 in Equation (14).

A generalization of the Boltzmann-Gibbs entropy is the – entropy. Although in physics, it is referred to as the Tsallis
entropy. Tsallis (1988) entropy / – entropy is described by

– entropy is described by

�

– entropy of � is given by

(15)

Mathai and Haubold (2013) generalized the classical Shannon entropy known as entropy. It is presented by

entropy of � is given by

(16)

Another generalized version of the Shannon entropy is the - entropy. It is presented by

- entropy of � is given by
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(17)

Havrda and Charvat (1967) introduced entropy measure. It is presented by

entropy of � is given by

(18)

where                    

3. Estimation
In this section, we utilize the method of maximum likelihood estimation which provides the maximum information
about the unknown model parameters.

By Equation (4), the likelihood function, of the MEK distribution is:

The log-likelihood function, reduces to

The maximum likelihood estimates (MLEs) of the MEK model parameters can be obtained by maximizing the last 
equation for , and or by solving the following nonlinear Equations,
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The last three non-linear Equations do not provide the analytical solution for MLEs and the optimum value of , ,
and . The Newton-Raphson is considered an appropriate algorithm which plays a supportive role in such kind of
MLEs. For numerical solutions, the R statistical software (package name, Z��_��+'{����) is preferred to estimate the
MEK distribution parameters.

��	���>�����������'�
In this section, to observe the performance of MLE’s, the following algorithm is adopted.

Step-1: A random sample /	���/����/���������/��of sizes � = 25, 50, and 100 are generated from Equation (5).

Step-2: Each sample is replicated 1000 times.

Step-3: The required results are obtained based on the different combinations of the parameters place in S-XI, S-XII,
and S-XIII.

Step-4: Gradual decrease in S.Es and pretty close ML estimates to the true parameters for the increases of sample size
help out to declare that the method of maximum likelihood estimation works quite well for MEK distribution.

4. Application
In this section, we report the flexibility and potentiality of the MEK distribution by modeling in various disciplines of
applied sciences. For this, we consider four suitable lifetime data sets. The first dataset presents the 20 observations of
flood including 0.265, 0.269, 0.297, 0.315, 0.3235, 0.338, 0.379, 0.379, 0.392, 0.402, 0.412, 0.416, 0.418, 0.423, 0.449,
0.484, 0.494, 0.613, 0.654, 0.74, discussed by Dumonceaux and Antle (1973). The second dataset discussed by
Caramanis �����. (1983) and Mazumdar and Gaver (1984). They estimated the unit capacity factors by comparing two
different algorithms called SC16 and P3. The observations are 0.853, 0.759, 0.866, 0.809, 0.717, 0.544, 0.492, 0.403,
0.344, 0.213, 0.116, 0.116, 0.092, 0.070, 0.059, 0.048, 0.036, 0.029, 0.021, 0.014, 0.011, 0.008, 0.006. The third dataset
refers to 20 mechanical parts failure times. This data set was analyzed by Murthy �����.�(2004) and the observations are
0.067, 0.068, 0.076, 0.081, 0.084, 0.085, 0.085, 0.086, 0.089, 0.098, 0.098, 0.114, 0.114, 0.115, 0.121, 0.125, 0.131,
0.149, 0.160, 0.485 and finally the forth dataset refers to the measurement on 48 samples of petroleum rock obtained
from petroleum reservoirs. This data was discussed by Cordeiro and Brito (2012) and the observations are: 0.0903296,
0.2036540, 0.2043140, 0.2808870, 0.1976530, 0.3286410, 0.1486220, 0.1623940, 0.2627270, 0.1794550, 0.3266350,
0.2300810, 0.1833120, 0.1509440, 0.2000710, 0.1918020, 0.1541920, 0.4641250, 0.1170630, 0.1481410, 0.1448100,
0.1330830, 0.2760160, 0.4204770, 0.1224170, 0.2285950, 0.1138520, 0.2252140, 0.1769690, 0.2007440, 0.1670450,
0.2316230, 0.2910290, 0.3412730, 0.4387120, 0.2626510, 0.1896510, 0.1725670, 0.2400770, 0.3116460, 0.1635860,
0.1824530, 0.1641270, 0.1534810, 0.1618650, 0.2760160, 0.2538320, 0.2004470.

Some descriptive statistics are presented in Table 3. The MEK distribution is compared with its competing models
(mention in Table-4), based on some criteria called, -Log-likelihood (-LL), Bayesian information criterion (BIC),
Cramer-Von Mises (}~), Anderson-Darling (Z~), and Kolmogorov Smirnov (K-S) test statistics. Tables 5-8, confirm
the parameter estimates and their standard errors (in parenthesis) and the goodness-of-fit criteria, respectively. The
MEK distribution is a better fit among all competitors, based on the results in Tables 5-8. Further, fitted density and
distribution functions, Kaplan-Meier survival, and Probability- Probability (PP) plots are presented in Figures 3-6,
respectively, provide close fits to the four datasets.
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Table 2. Average MLEs and Standard Errors (in parenthesis)

S-XI

Parameter estimate
(Standard Error)

S-XII

Parameter estimate
(Standard Error)

� � �

25
0.1846

(0.2493)
0.4643

(0.2518)
0.4647

(0.5686)
0.2146

(0.5654)
0.6297

(0.3091)
0.8348

(1.9998)

50
0.0964

(0.1442)
0.5622

(0.2283)
0.5111

(0.7047)
0.1405

(0.2377)
0.5124

(0.1945)
0.8625

(1.2555)

100
0.0971

(0.0964)
0.5005

(0.1516)
0.4974

(0.4481)
0.1949

(0.2040)
0.5225

(0.1407)
0.6845

(0.6362)

S-XIII

Parameter estimate
(Standard Error)

25
1.4605

(0.0020)
1.4963

(0.8981)
0.1374

(0.0236)

50
1.2108

(0.0935)
1.5576

(0.1588)
0.1690

(0.0243)

100
1.1019

(0.0249)
1.6998

(0.0424)
0.2000

(0.0175)

Table 3. Descriptive Information

Data set Minimum Median Mean Maximum Skewness Kurtosis

Flood data 0.011 0.041 0.045 0.125 1.1672 4.324

Unit capacity data 0.006 0.116 0.288 0.866 0.718 1.974

Failure times data 0.067 0.098 0.121 0.485 3.585 15.203

Petroleum rock data 0.090 0.198 0.218 0.464 1.169 4.109

Table 4. Competitive Models

Abbr. Model Parameters/ variable Range Reference

L-I , 0 < /�< 1 Lehmann (1953)

L-II , 0 < /�< 1 Lehmann (1953)

TL , 0 < /�< 1 Topp and Leone (1955)

Kum , 0 < /�< 1 Kumaraswamy (1980)

GPF Saran and Pandey (2004)

EK , 0 < /�< 1 Lemonte �����. (2013)

WPF
Tahir �����. (2014)

KPF Ibrahim (2017)

MT-II , 0 < /�< 1 Muhammad (2017)
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Topp-Leone (TL), Kumaraswamy (Kum), Lehmann -I and Lehmann-II (L-I, L-II), generalized power function (GPF),

exponentiated Kumaraswamy (EK), Weibull power function (WPF), Kumaraswamy power function (KPF), and

Mustapha Type-II (MT-II).

Table 5. Parameter Estimates and Standard Errors (parenthesis) for Flood data

Model
Parameters

(Standard Errors)
Information Criterion

� -LL BIC W* A* K-S

MEK 0.766
(0.474)

4.537
(1.501)

25.346
(31.929) -15.903 -22.820 0.059 0.369 0.142

EK
0.684

(0.393)
5.002

(1.496)
35.178

(46.797)
-15.514 -22.041 0.074 0.454 0.161

K
3.363

(0.603)
11.792
(5.361)

- -12.866 -19.741 0.166 0.972 0.211

TL
2.244

(0.502)
- - -7.367 -11.739 0.119 0.712 0.335

L-I
1.114

(0.249)
- - -0.112 2.771 0.122 0.731 0.394

L-II
1.727

(0.386)
- - -2.512 -2.027 0.128 0.764 0.413

MT-II
0.852

(0.211)
- - 1.247 5.489 0.131 0.782 0.388

GPF
1.579

(0.353)
- - -16.277 -29.559 0.131 0.728 0.224

WPF
30.814

(16.071)
11.045

(20.466)
0.319

(0.590)
-13.264 -17.540 0.146 0.868 0.198

KPF
1.386

(173.04)
1.693

(211.35)
1.865

(0.572)
-9.884 -10.780 0.303 1.717 0.263

Figure 3. The Empirical Fitted PDF, CDF, Kaplan-Meier Survival, and PP-Plots of the MEK distribution for flood data
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Table 6. Parameter Estimates and Standard Errors (parenthesis) for Unit Capacity Factors data

Model
Parameters

(Standard Errors)
Information Criterion

� -LL BIC W* A* K-S

MEK 1.411
(9.021)

0.957
(0.436)

0.435
(2.767) -10.151 -10.897 0.090 0.579 0.151

EK
0.065

(0.117)
1.185

(0.235)
9.781

(20.034)
-9.849 -10.292 0.103 0.648 0.169

K
0.504

(0.129)
1.186

(0.326)
- -9.671 -13.071 0.108 0.682 0.179

TL
0.594

(0.124)
- - -8.115 -13.095 0.119 0.746 0.169

L-I
0.454

(0.095)
- - -9.485 -15.833 0.107 0.675 0.189

L-II
1.989

(0.415)
- - -4.383 -5.630 0.112 0.703 0.347

MT-II
0.371

(0.086)
- - -8.921 -14.708 0.117 0.732 0.199

GPF
1.185

(0.247)
- - -3.516 -3.897 0.114 0.683 0.411

WPF
2.285

(1.167)
1.105

(0.679)
0.551

(0.244)
-9.234 -9.061 0.095 0.616 0.155

KPF
1.389

(72.029)
0.287

(14.865)
0.737

(0.187)
-11.752 -14.099 0.128 0.767 0.211

Figure 4. The Empirical Fitted PDF, CDF, Kaplan-Meier Survival, PP-Plots of the MEK distribution for unit capacity
factors data
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Table 7. Parameter Estimates and Standard Errors (parenthesis) for Failure Times data

Model
Parameters

(Standard Errors)
Information Criterion

� -LL BIC W* A* K-S

MEK 0.568
(0.199)

10.893
(3.789)

40.053
(42.362) -34.540 -60.094 0.143 1.053 0.166

EK
0.517

(0.165)
11.897
(4.019)

63.739
(63.007)

-33.551 -58.115 0.172 1.232 0.168

K
1.587

(0.244)
21.868

(10.210)
- -25.648 -60.094 0.143 1.053 0.166

TL
0.625

(0.139)
- - -13.742 -24.490 0.339 2.156 0.484

L-I
0.448

(0.100)
- - -8.558 -14.121 0.321 2.063 0.510

L-II
7.341

(1.641)
- - -22.593 -42.191 0.369 2.314 0.398

MT-II
0.340

(0.084)
- - -7.097 -11.197 0.339 2.153 0.500

GPF
3.135

(0.701)
- - -26.208 -50.417 0.416 2.501 0.426

WPF
25.321

(10.981)
8.698

(30.616)
0.189

(0.664)
-26.422 -43.857 0.397 2.452 0.264

KPF
1.053

(87.439)
0.959

(79.636)
2.224

(0.682)
-19.137 -29.286 0.762 4.159 0.370

Figure 5. The Empirical Fitted PDF, CDF, Kaplan-Meier Survival, PP-Plots of the MEK distribution for failure times
data
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Table 8. Parameter Estimates and Standard Errors (parenthesis) for Petroleum Rock data

Model

Parameters

(Standard Errors)
Information Criterion

� -LL BIC W* A* K-S

MEK
0.756

(0.450)
8.525

(3.693)
21.870

(31.023)
-58.371 -105.12 0.038 0.232 0.089

EK
0.727

(0.271)

9.439

(2.784)

24.699

(24.178)
-57.859 -104.10 0.058 0.346 0.108

K
2.719

(0.294)

44.667

(17.587)
- -52.491 -97.241 0.208 1.280 0.153

TL
0.989

(0.143)
- - -21.166 -38.461 0.119 0.721 0.368

L-I
0.630

(0.091)
- - -6.011 -8.152 0.114 0.690 0.429

L-II
3.965

(0.572)
- - -30.221 -56.569 0.128 0.778 0.359

MT-II
0.479

(0.077)
- - -25.54 -1.238 1.225 0.743 0.424

GPF
1.788

(0.258)
- - -52.703 -101.534 0.232 1.442 0.156

WPF
42.995

(15.791)

8.774

(28.625)

0.313

(1.021)
-52.741 -93.869 0.200 1.225 0.149

KPF
1.441

(90.546)

1.405

(88.274)

2.632

(0.555)
-46.042 -80.471 0.417 2.545 0.186

Figure 6. The Empirical Fitted PDF, CDF, Kaplan-Meier Survival, PP-Plots of the MEK distribution for petroleum rock
data
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5. Conclusion
In this article, we developed a flexible lifetime model that demonstrated the increasing, decreasing, and upside-down
bathtub-shaped density and failure rate functions. The proposed model is referred to as the modified exponentiated
Kumaraswamy (MEK) distribution. Numerous mathematical and reliability measures were derived and discussed. For
estimation of the model parameters, we followed the method of maximum likelihood and executed a simulation study to
observe the asymptotic behavior of MLEs. The MEK distribution explored its dominance by modeling in four-lifetime
datasets and we hope it will be considered as a choice against the baseline model.
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Abstract 
Mplus (Muthén & Muthén, 1998 - 2017) is one popular statistical software to estimate the latent interaction effects 
using the latent moderated structural equation approach (LMS). However, the variance explained by a latent interaction 
that supports the interpretation of estimation results is not currently available from the Mplus output. To relieve human 
computations and to facilitate interpretations of latent interaction effects in social science research, we developed two 
functions (LIR & LOIR) in the R package IRmplus to calculate the -squared of a latent interaction above and beyond the 
first-order simple main effects in Structural Equation Modeling. This tutorial provides a step-by-step guide for applied 
researchers to estimating a latent interaction effect in Mplus, and to obtaining the -squared of a latent interaction 
effect using the LIR & LOIR functions. Example data and syntax are available online.  

Keywords: -squared, latent interactions, R package, IRmplus, Mplus 
Mplus (Muthén & Muthén, 1998 - 2017) is one popular statistical software for estimating various latent variable models 
(Hallquist & Wiley, 2018). It has a built-in function to estimate latent interaction effects using the latent moderated 
structural equation approach (LMS; Klein & Moosbrugger, 2000; Muthen & Muthen, 1998-2017). Comparing to the 
product indicator approach that models the latent interactions using the products of observed indicators of exogenous 
latent factors (Kenny & Judd, 1984), the LMS approach estimates the latent interactions by approximating a mixture of 
conditional distributions of observed indicators (Kelava et al., 2011). When latent factors and observed indicators are 
multivariate normally distributed, the LMS approach provides unbiased estimates of latent interaction effects (Kelava & 
Nagengast, 2012; Cham, West, Ma, & Aiken, 2012). However, this approach is limited in that the Mplus output does not 
provide model fit measures, -squared estimation, or standardized parameter estimates. Obtaining these quantities 
requires to run additional analyses or use hand computations. For example, the model fit comparison by the 
log-likelihood ratio test (LRT; Neyman & Pearson, 1933) can be conducted using the function compareModels in the R 
package MplusAutomation (Hallquist & Wiley, 2018). To obtain standardized parameter estimates, one may first 
standardize all variables in the dataset, and then perform an analysis in Mplus based on the standardized variables 
(Maslowsky, Jager, & Hemken, 2015). Nonetheless, for the -squared of latent interactions, manual computations are 
necessary, although equations of the -squared estimation have been presented in Maslowsky and Hemken (2015). 
Using and reporting the -squared of latent interaction effects remains a challenge for applied researchers due to the 
computational complexity.  

To relieve human computations and to facilitate interpretations of latent interaction effects in practice, we developed 
two functions (LIR and LOIR in an R package IRmplus to calculate the variance explained by the latent interaction above 
and beyond the first-order simple main effects in latent variable modeling. R is a leading programming software that 
supports data analysis and statistical modeling (R Core Team, 2017), which has been widely used in social science 
studies.  

In this paper, we briefly introduce the computation of the -squared of a latent interaction and the IRmplus package, 
followed by two examples using the LIR and LOIR functions in the IRmplus package. The strengths and limitations are 
discussed at the end.  
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A Brief Overview of the -squared of Latent Interaction  
Interactions between two latent variables are often estimated in structural equation models (SEM). SEM allows for 
testing a variety of hypothesized models to explain the relationships among a set of latent factors and observed variables 
(e.g., Bollen, 1989; Ullman & Bentler, 2003). SEM is composed of a measurement model and a structural model 
(Schumacker & Lomax, 2004). The measurement model examines the associations between latent factors and observed 
indicators. Let  be an  individual,  be a number of observed indicators, and  be a number of latent factors. 
The measurement model is expressed in Equation (1) as:  

                                       (1) 

where  is a  vector of observed indicators,  is a vector of intercepts,  is a  matrix of factor 
loadings,  is a  vector of latent factors, and  is a  vector of measurement errors that assumes a 
multivariate normal distribution with a mean vector of  and a diagonal matrix of .  

The structural model explains the relationships among latent factors or among latent factors and observed covariates. 
The two-way latent interactions can be estimated in the structural model under two scenarios: (1) between latent factors, 
and (2) between a latent factor and an observed covariate, detailed in the following scenarios. 

Scenario 1: Structural Model with a Two-way Interaction between Latent Factors 
Consider a model with one endogenous variable  and two exogenous variables ( ), denoted as 

. A two-way latent interaction term between two exogenous variables, , is also included, as depicted in 
Figure 1.  

 
Figure 1. Diagram of a Structural Equation Model: Two-way Interaction between Latent Factors 

Note. Structural equation model with one latent interaction effect between two latent factors. Each of , , and  
has five observed indicators (e.g.,  as a measurement model. Note that the latent 
interaction term  is produced with LMS approach here.  

The structural part of this model is expressed in Equation (2) as: 

,                         (1) 

where  is the intercept of the endogenous latent factor , 

 is the regression coefficient assessing the effect of the exogenous latent factor  on the endogenous latent factor 
, 

 is the regression coefficient assessing the effect of the latent moderator  on the endogenous latent factor , 

 is the regression coefficient measuring the latent interaction effect  (typically estimated by the LMS 
approach) on the endogenous latent factor , 

 is the factor disturbance of , assumed a normal distribution with a mean of  and a variance of . 
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Klein and Moosbrugger (2000) proposed the LMS approach to directly claim latent interaction in the structural equation 
in SEM. More detailed technical introduction of the LMS approach can be found in the Klein and Moosbrugger (2000), 
Klein and Muthén (2007), Kelava et al. (2011), and Preacher, Zhang, and Zyphur (2016). Given that the latent 
interaction is assumed to have no covariance with the first-order simple main effects (Klein & Moorusberg, 2011), the 

-squared of a latent interaction can be calculated in the following two steps (Maslowsky, Jager, & Hemken, 2015).  

The first step is to compute the -squared of the simple main effects  without the latent interaction as follows: 

,                                 (3) 

where  is the variance of the exogenous latent factor ,  

 is the variance of the latent moderator ,  

 is the disturbance variance of the endogenous latent factor . 

The second step is to compute the -squared of  including both simple main effects and a latent interaction effect 

as follows: 

                         (4) 

where  is the covariance between the exogenous latent factor  and the latent moderator .  

Lastly, the -squared of the latent interaction is computed as: , which indicates the additional proportion of 
variances explained by a two-way interaction above and beyond the simple main effects.  

Scenario 2: Structural Model with a Two-way Interaction between a Latent Factor and an Observed Covariate 
Consider a model with an endogenous latent factor , an exogenous latent factor , an observed covariate , and a 
latent interaction term  produced by the LMS approach, as depicted in Figure 2.  

 

Figure 2. Diagram of a Structural Equation Model: Two-way Interaction between a Latent Factor and an Observed 
Indicator 

Note. Structural equation model with one latent interaction effect between an exogenous latent factor and an observed 
covariate. Each of  and  has five observed indicators (e.g.,  as a measurement model. Note 
that the latent interaction term  is produced with LMS approach here.  

In this case, the latent factor vector is: . The structural model including the two-way interaction between a 

latent factor and an observed covariate can be expressed as: 
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,                         (5) 

where  is the regression coefficient assessing the effect of the exogenous latent factor  on the endogenous latent 
factor ,  

 is the regression coefficient assessing the effect of the observed covariate  on the endogenous latent factor ,  

 is the regression coefficient measuring the latent interaction effect  on the endogenous latent factor .  

Similar to the computation between latent factors in Equations (3) and (4), the -squared estimation of a latent 
interaction between a latent factor and a covariate is also computed as , with  replaced by Z when 
computing  and , respectively: 

,                                (2) 

,                        (7) 

where  is the variance of the observed covariate ,  

 is the covariance between the exogenous latent factor  and the observed indicator .  

The IIRmplus Package 
Two-way latent interactions are common in social science research and the modeling of latent interactions has brought 
increasing attention. The LIR and LOIR functions in the IRmplus package were developed to compute the -squared of a 
single two-way latent interaction in the SEM given the Mplus output, following Equations (1) through (7). The LMS 
approach, implemented using the XWITH command in Mplus, is one popular method to estimate the two-way 
interactions, whereas the Mplus output lacks the effect size estimates unless fitting to a dataset with all variables 
standardized. To employ IRmplus, Two Mplus outputs are necessary: one for the model without the latent interaction, 
and one for the model including the latent interaction. IRmplus reads needed parameter estimates from the Mplus 
outputs and uses them as the input to compute latent interaction effects. Table 1 presents two functions, LIR and LOIR, 
included in the IRmplus package, that compute the -squared of a latent interaction for the two scenarios discussed 
above. 

Table 1. Functions included in the IRmplus package 

Function Approach Details 
LIR LMS Compute of an interaction effect between two 

latent factors in SEM model in Mplus 
 
 

LOIR LMS Compute of an interaction effect between a 
latent factor and an observed variable in SEM 
model in Mplus     

The LIR and LOIR functions were developed to compute the -squared of a latent interaction one at a time. If multiple 
two-way interactions exist in the structural model, the LIR and/or LOIR functions can be executed multiple times to 
obtain the unique proportion of variances explained by the individual latent interaction.  

The LIR and LOIR functions include six main arguments. The “M0” reads the Mplus output containing only simple main 
effects. The “M1” reads the Mplus output containing both simple main effects and latent interaction effects. The 
“endogenous” is the endogenous latent factor shown on the Mplus output. The “exogenous” is the exogenous latent 
factor shown on the Mplus output. The “moderator” is the moderator variable shown on the Mplus output, which can be 
a latent factor or an observed covariate in the structural model. The “interaction” is the interaction term produced by the 
XWITH function and shown on the Mplus output. The two examples below present the Mplus and R scripts for 
computing the latent interaction  using the IRmplus package.  

Two-way Interaction between Latent Factors 
To demonstrate the utility of functions in the IRmplus package, we simulated two data sets to provide step-by-step 
guide to computing the two-way interaction between latent factors in a SEM model1. The first dataset is read as 
“Example1.dat”. The data generation model contains three latent factors and 15 observed indicators ( ), where 

                                                        
1 Examples (data and Mplus code) are available at https://github.com/luluqinqin/IRmplus/tree/master/Examples. 



 
 
http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                Vol. 10, No. 3; 2021 

73 

 to  measure the exogenous latent factor F1,  to  measure the latent moderator F2, and  to  
measure the endogenous latent factor F3. In the structural model, F3 is regressed on F1, F2, and the interaction term 
between F1 and F2. We use F in this section to label latent variables because this is a common label Mplus reads for the 
latent variables. The F1, F2, and F3 here correspond to the , , and  in Equations (2) through (4).     

Because IRmplus is published on GitHub, the devtools package is required before installing and loading the IRmplus 
package from GitHub2. The IRmplus package is built upon the MplusAutomation, stringr, tidyverse, and stringi packages 
and it only needs to be installed once. However, loading the packages (library()) is needed every time when the R 
program starts.  

install.packages("devtools") 

library(devtools) 

install_github("luluqinqin/IRmplus") 

library(IRmplus) 

Next, we need to prepare the Mplus syntax following a two-step procedure. First, a three-factor SEM model without 
interactions is fitted, where the endogenous latent factor F3 is regressed on the exogenous latent factors F1 and F2. The 
syntax is presented below and needs to be saved as an external Mplus input file (e.g., “SEM_NoINT.inp”).  

TITLE: 3 Factor SEM-Without Interaction; 

DATA: FILE = "example1.dat"; 

VARIABLE:  

NAMES ARE ID y1-y15; 

USEVARIABLES ARE y1-y15; 

ANALYSIS: 

TYPE = RANDOM; 

ALGORITHM = INTEGRATION; 

MODEL: 

F1 BY y1 y2 y3 y4 y5; 

F2 BY y6 y7 y8 y9 y10; 

F3 BY y11 y12 y13 y14 y15; 

F3 ON F1 F2; 

OUTPUT: SAMPSTAT;  

Second, we prepare the syntax for the three-factor SEM model with a two-way latent interaction to estimate the 
interaction effect between exogenous latent factors F1 and F2. The syntax is shown below and saved as another external 
Mplus input file (e.g., “SEM_INT.inp”).  

TITLE: 3 Factor SEM-With Interaction; 

DATA: FILE = "example1.dat"; 

VARIABLE:  

NAMES ARE ID y1-y15; 

USEVARIABLES ARE y1-y15; 

ANALYSIS: 

TYPE = RANDOM; 

ALGORITHM = INTEGRATION; 

MODEL: 

F1 BY y1 y2 y3 y4 y5; 

                                                        
2 Please make sure the toolchain bundle “Rtools” (https://cran.r-project.org/bin/windows/Rtools/ ) is installed in the R 
before installing the devtools package. 
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F2 BY y6 y7 y8 y9 y10; 

F3 BY y11 y12 y13 y14 y15; 

Inter | F1 XWITH F2; 

F3 ON F1 F2 Inter; 

OUTPUT: SAMPSTAT;  

After running the two Mplus input files, we obtain two Mplus output files (e.g., “sem_noint.out”, “sem_int.out”), which 
will serve as the inputs for running the LIR function. Because the interaction is between two latent factors, the LIR 
function from the IRmplus is used to calculate the -squared of the latent interaction between F1 and F2 following the 
command below.  

LIR (M0 = “sem_noint.out”, M1 = “sem_int.out”, endogenous = “F3”, exogenous = “F1”, moderator = “F2”, interaction = 
“INTER”) 

> 0.127 

In the LIR function arguments, the exogenous latent factor is “F1”, the moderator is “F2”, the endogenous latent factor is 
“F3”, and the interaction term “INTER” is produced by XWITH function in Mplus syntax. It is to note that the R script is 
case-sensitive so that the IRmplus arguments (e.g., “INTER”) need to be the same as that shown on the Mplus output. In 
this example, the LIR function returns the -squared of a latent interaction as , which indicates that the two-way 
latent interaction explains around  additional variances above and beyond the simple main effects of exogenous 
latent factors.  

Two-way Interaction between a Latent Variable and an Observed Covariate 
To use the LOIR function in the IRmplus package for the computation of the -squared of the latent interaction between 
a latent factor and an observed covariate using the second simulated dataset “Example2.dat”. The data generation model 
contains 15 observed indicators measuring three latent factors (the same measurement model as that in example 1) and 
one binary covariate (Gender). In the structural model, F3 is regressed on F1, F2, Gender, and the interaction term 
between F1 and Gender. The F1, F3, and Gender here correspond to the , , and Z in Equations (5) through (7).     

We only present the MODEL command in the Mplus syntax below, as other commands are similar to those in the first 
example. The same two-step procedure is followed. First, the model with only the main effects is fitted and the syntax is 
saved (e.g., “SEM2_NoINT.inp). 

MODEL 

F1 BY y1 y2 y3 y4 y5; 

F2 BY y6 y7 y8 y9 y10; 

F3 BY y11 y12 y13 y14 y15; 

F3 ON F1 F2 gender; 

Second, the model with an interaction between the latent variable F1 and the observed variable gender is fitted and 
saved (e.g., “SEM2_INT.inp”). 

MODEL 

F1 BY y1 y2 y3 y4 y5; 

F2 BY y6 y7 y8 y9 y10; 

F3 BY y11 y12 y13 y14 y15; 

inter2 | F1 XWITH gender; 

F3 ON F1 F2 gender inter2; 

F1 WITH gender; 

The WITH function in the Mplus syntax above is used to request the covariance estimate between an exogenous latent 
factor and an observed covariate. Although “F1 WITH gender” and “gender WITH F1” both provide the same covariance 
estimate, the LOIR function only supports the syntax starting with the exogenous latent factor, which is “F1 WITH gender” 
in this example.  

In the LOIR function arguments, the exogenous latent factor is “F1”, the moderator is “GENDER”, the endogenous latent 
factor is “F3”, and the interaction term is “INTER2”. To match the variable names printed on the Mplus output, the 
moderator and interaction term are both capitalized in the LOIR function. The -squared estimation is computed as 
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, indicating  of the variances are attributable to the latent interaction term.  

LOIR (M0 = “sem2_noint.out”, M1 = “sem2_int.out”, endogenous = “F3”, exogenous = “F1”, moderator = “GENDER”, 
interaction = “INTER2”) 

> 0.102 

Discussion 
The attractive features of the LIR and LOIR functions in the IRmplus package include that it minimizes errors due to 
human misjudges (e.g., output misinterpretation/hand calculation), and promotes the applications and interpretations of 
latent interactions in latent variable modeling. However, the IRmplus package is limited in some ways that would serve 
as our future research directions. It requires multiple executions of the LIR and/or LOIR functions when multiple two-way 
interactions are presented in complex modeling. Future developments of the IRmplus package include exploring the 
calculation of the effect size for the 3-way latent interaction, estimation of interaction effects using other estimation 
approaches (e.g., product indicator approach), and automatic computation of multiple latent interaction terms.  

Conclusions 
The IRmplus package connects two popular statistical programs, Mplus and R, to provide an effective computation of 
latent interactions between two latent variables, or between a latent variable and an observed indicator. The current 
version of IRmplus (v1.0) supports outputs from Mplus version 8. We will continue incorporating more advanced latent 
variable models and developing new functions to support newly methodological developments. We hope that the 
package will be a practical tool to assist researchers to better understand the impact of latent interactions. The authors 
are grateful for any feedback and suggestions. 
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Abstract

In this paper we consider one dimensional generalized mean-field backward stochastic differential equations (BSDEs)

driven by fractional Brownian motion, i.e., the generators of our mean-field FBSDEs depend not only on the solution but

also on the law of the solution. We first give a totally new comparison theorem for such type of BSDEs under Lipschitz

condition. Furthermore, we study the existence of the solution of such mean-field FBSDEs when the coefficients are only

continuous and with a linear growth.

Keywords: backward stochastic differential equation, continuous coefficients, comparison theorem, fractional Brownian

motion, mean-field
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1. Introduction

General backward stochastic differential equations driven by a Brownian motion were first studied by Pardoux and Peng

(1992). Later Pardoux and Zhang (1998) introduced the generalized BSDEs,i.e. BSDEs with an additional term-an in-

tegral with respect to an increasing process. Backward stochastic differential equations driven by a fractional Brownian

motion with H ∈ (1/2, 1) were first considered by Biagini,Hu,Øksendal and Sulem (2002), where they studied the stochas-

tic maximal principle in the framework of a fractional Brownian motion. By adapting the four-step scheme introduced by

Ma,Protter and Yong(1994) and the so-called S-transform, Bender (2005) stuided BSDEs driven by a fractional Brownian

motion with H ∈ (0, 1). Indeed, throughout a backward parabolic PDE, he constructed an explicit solution of a kind of

linear fractional BSDE. Hu and Peng (2009) were the first to study nonlinear BSDEs governed by a fractional Brownian

motion.

It is well known that backward stochastic differential equation provided stochastic representation of solution of some

classes of partial differential equations of second order. With the help of backward stochastic differential equations with

respect to a Brownian motion and a Poisson random measure, some authors generalized this result to integro-partial

differential equations. The pioneer result on BSDEs, established by Pardoux and Peng (1990) require Lipschitz condition

on the drift of the equation. Sow study on BSDE with jumps, established by Sow (2014) require non-Lipschitz coefficients

and application to large deviations.

Mathematical mean-field approaches play an important role in many fields, among them, finance and game theory. S-

ince the pioneering of Lasry and Lions (2007) the research on mean-field has attracted a lot of researchers. Buckdahn,

Djehiche, Li and Peng (2009) studied a type of mean field problem by a purely stochastic approach and introduced a

new type of BSDE which they called mean-field BSDE. Buckdahn, Li and Peng (2009) obtained the existence and the

uniqueness of the solution of the mean-field BSDEs when the coefficient f is Lipschitz, and the terminal condition ξ is a

square integrable random variable. They also got a comparison theorem. Later, more and more works have been studied

on mean-field SDEs and BSDEs, see Buckdahn, Li and Peng (2009), Buckdahn, Li, Peng and Rainer (2017), Hao and Li

(2016), Li (2017), Li and Min (2016). Du, Li and Wei (2011) considered a special type of one dimensional mean-field

BSDEs with coefficients which are continuous and have a linear growth. They got the existence of the minimal solution.

Recently, Juan (2018) considered general mean-field BSDEs with continuous coefficients. Our aim in the present work is

to extend result to generalized mean-field BSDEs driven by fractional Brownian motion with continuous coefficients.

Let us recall that, for H ∈ (0, 1), a fBm (BH(t))t�0 with Hurst parameter H is a continuous and centered Gaussian process

with covariance

E
[
BH(t)BH(s)

]
=

1

2
(t2H + s2H − |t − s|2H), t, s � 0.

For H = 1/2, the fBm is a standard Brownian motion. If H > 1/2, then BH(t) has a long-range dependence, which means
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that for r(n) := cov(BH(1), BH(n + 1) − BH(n)), we have
∑∞

n=1 r(n) = ∞. Moreover, BH is self-similar, i.e. BH(at) has the

same law as aH BH(t) for any a > 0. Since there are many models of physical phenomena and finance which exploit the

self-similarily and the long-range dependence, fBm are a very useful tool to characterize such type of problems.

However, since fBm are not semimartingales nor Markov processes when H � 1/2, we can not use the classical theory of

stochastic calculus to define the fractional stochastic integral. In essence, two different integration theories with respect

to fractional Brownian motion have been defined and studied. The first one, originally due to Young (1936), concerns

the pathwise Riemann-Stieljes integral which exists if the integrand has Hölder continuous paths of order α > 1 − H.

But it turn out that this integral has the properties comparable to the Stratonovich integral, which leads to difficulties in

applications. The second one concerns the divergence operator (Skorohod integral), define as the adjoint of the derivative

operator in the framework of the Malliavin calculus. This approach was introduced by Decreusefond and Us̈tun̈el (1998).

Concerning the study of BSDEs in the fractional framework, the major problem is the absence of a martingale repre-

sentation type theorem with respect to fBm. For the first time, Hu and Peng (2009) overcome this problem, in the case

H > 1/2.

We now introduce a class of reflected diffusion processes with standard Brownian motion. Let G be an open connected

subset of Rd , which is such that for some l ∈ C2(Rd), G = {x : l(x) > 0} , ∂G = {x : l(x) = 0} and |∇l(x)| = 1 for x ∈ ∂G.

Note that at any boundary point x ∈ ∂G, ∇l(x) is a unit normal vector to the boundary, pointing towards to the interior

of G. If drift coeffcient and diffusion coeffcient satisfying some Lipschitz , then it follows from the results in Lions and

Sznitman (1984) (see also Saisho (1987)) that for each x ∈ ∂G, there exists a unique pair of progressively measurable

continuous processes (ηt,Λt), such that

ηt = η0 +

∫ t

0

b(s)ds +
∫ t

0

σ(s)dBs +

∫ t

0

∇l(ηs)dΛs, 0 � t � T,

Λt =

∫ t

0

1ηs∈∂GdΛs, Λ. is a nondecreasing process.

the existence of such a problem driven by fBm was shown in Ferrante and Rovira (2013) and a set D = (0,+∞).

In this paper we study the generalized mean-field BSDEs driven by fBm with Hurst parameter H > 1/2. We prove that

kind of equation has an adapted solution under continuous coefficients. The paper is organized as follows. In section 2 we

give some definitions and results about fractional stochastic integral which will be needed throughout the paper. Section 3

contains the definition of the generalized BSDEs driven by fBm and assumptions. In section 4, we will prove comparison

theorem for the generalized mean-field FBSDE. Finally, section 5 is devoted to prove the main theorem of the paper.

2. Fractional Stochastic Calculus

Denote, for given H ∈ (1/2, 1), φ(x) = H(2H − 1)|x|2H−2, x ∈ R. Let ξ and η be measurable functions on [0,T ]. Define

〈ξ, η〉t =
∫ t

0

∫ t

0

φ(u − v)ξ(u)η(v)dudv

and ||ξ||2t = 〈ξ, ξ〉t.Note that , for any t ∈ [0,T ], 〈ξ, η〉t is a Hilbert scalar product.

LetH be the completion of the measurable functions such that ||ξ||2t < ∞. The elements ofH may be distributions (refer

to Pipiras and Taqqu (2000)).

Let (ξn)n be a sequence in H such that 〈ξi, ξ j〉T = δi j. By PT denote the set of all polynomials of fractional Brownian

motion in [0,T ], i.e. it contains all elements of the form

F(ω) = f
(∫ T

0

ξ1(t)dBH
t , · · · ,

∫ T

0

ξk(t)dBH
t

)
,

where f is a polynomial function of k variables. The Malliavin derivative operator DH
s of an element F ∈ PT is defined as

follows:

DH
s F =

k∑
i=1

∂ f
∂xi

(∫ T

0

ξ1(t)dBH
t , · · · ,

∫ T

0

ξk(t)dBH
t

)
· ξi(s), s ∈ [0,T ].

Since the divergence operator DH is closable from L2(Ω,F , P) to (Ω,F ,H), By D1,2 denote the Banach space be the a

completion of PT with the following norm: ||F||21,2 = E|F|2 + E||DH
s F||2T .
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Now we also introduce another derivative

D
H
t F =

∫ T

0

φ(t − s)DH
s Fds.

The following results are well known, refer to Duncan and Hu (2000), Hu (2005).

Theorem 2.1. (Hu (2005),Proposition 6.25) Let F : (Ω,F , P)→ H be a stochastic process such that

E
(
||F||2T +

∫ T

0

∫ T

0

|DH
s Ft |2dsdt

)
< ∞.

Then, the Itô-type stochastic integral denoted by
∫ T

0
FsdBH

s exists in L2(Ω,F , P). Moreover,

E
(∫ T

0
FsdBH

s

)
= 0 and

E
(∫ T

0

FsdBH
s

)2

= E
(
||F||2T +

∫ T

0

∫ T

0

D
H
s FtD

H
t Fsdsdt

)
.

Theorem 2.2. (Hu (2005),Proposition 10.3) Let f , g:[0,T ]→ R be deterministic continuous functions. If

Xt = X0 +

∫ t

0

g(s)ds +
∫ t

0

f (s)dBH
s , t ∈ [0,T ],

where X0 is a constant and F ∈ C1,2([0,T ] × R), then

F(t, Xt) = F(0, X0) +

∫ t

0

∂F
∂s

(s, Xs)ds +
∫ t

0

∂F
∂x

(s, Xs)dXs +
1

2

∫ t

0

∂2F
∂x2

(s, Xs)
d
ds

(|| f ||2s)ds, t ∈ [0,T ].

Theorem 2.3. (Hu (2005),Proposition 11.1) Let fi(s), gi(s), i = 1, 2 are in D1,2 and E
∫ T

0
(| fi(s)| + |gi(s)|)ds < ∞. Assume

that DH
t f1(s) and D

H
t f2(s) are continuously differential with respect to (s, t) ∈ [0,T ]× [0,T ] for almost all ω ∈ Ω. Suppose

that

E
(∫ T

0

∫ T

0

|DH
t fi(s)|2dsdt

)
< ∞.

For i = 1, 2, denote

Xi(t) =
∫ t

0

gi(s)ds +
∫ t

0

fi(s)dBH
s , t ∈ [0,T ],

Then

X1(t)X2(t) =

∫ t

0

X1(s)g2(s)ds +
∫ t

0

X1(t) f2(s)dBH
s +

∫ t

0

X2(s)g1(s)ds +
∫ t

0

X2(t) f1(s)dBH
s

+

∫ t

0

D
H
s X1(s) f2(s)ds +

∫ t

0

D
H
s X2(s) f1(s)ds.

3. Generalized Fractional BSDE

Let (Ω,F , (Ft)0�t�T , P), T > 0, be a complete stochastic basis, and Ft+ = ∩δ>0Ft+δ = Ft. Suppose that the filtration is

generated by d-dimensional fractional Brownian motion (BH
t )0�t�T , and T > 0 is an arbitrarily fixed time horizon. We

suppose that there is a sub-σ-field F0 ⊂ F , F0 includes all P-null subsets of F , such that

i) the fractional Brownian motion BH is independent of F0, and

ii) F0 is ”rich enough”, i.e.,P2(Rk) = {Pϑ, ϑ ∈ L2(F0;Rk)}, k � 1.

Recall that P2(Rk) is the set of the probability measures on (Rk, B(Rk)) with finite second moment. Here B(Rk) denotes

the Borel σ-field over Rk. By F = (Ft), t ∈ [0,T ], we denote the filtration generated by BH , completed and augmented by

F0.
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The space P2(Rd) is endowed with the 2-Wasserstein metric

W2(μ, ν) = inf
π∈∏(μ,ν)

⎧⎪⎪⎨⎪⎪⎩
(∫

Rd×Rd
|x − y|2π(dx, dy)

)1/2
⎫⎪⎪⎬⎪⎪⎭ ,

where
∏

(μ, ν) is the family of all couplings of μ and ν, i.e., π ∈ ∏
(μ, ν) if and only if π is a measure on R

d × R
d with

marginals μ, ν ∈ P2(Rd).

Assume that

• η0 is a given constant;

• b, σ :[0,T ]→ R are continuous deterministic, σ is differentiable and σt � 0, t ∈ [0,T ].

Note that, since ||σ||2t = H(2H − 1)
∫ t

0

∫ t
0
|u − v|2H−2σ(u)σ(v)dudv, we have

d
dt

(||σ||2t ) = 2σ(t)σ̂(t) > 0, where σ̂(t) =
∫ t

0

φ(t − v)σ(v)dv, 0 � t � T.

Remark 3.1. (Remark 6 by Maticiuc and Nie (2015))
There exists a suitable constant M > 0 which is only dependent H such that

t2H−1

M
� σ̂(t)
σ(t)

� Mt2H−1, 0 � t � T.

since

σ̂(t) =

∫ t

0

φ(t − v)σ(v)dv = H(2H − 1)

∫ t

0

(t − v)2H−2σ(v)dv = H(2H − 1)

∫ 1

0

(t(1 − u))2H−2σ(tu)tdu

= H(2H − 1)t2H−1

∫ 1

0

(1 − u)2H−2σ(tu)du,

then by continuity of σ, we get the remark.

We now introduce a class of reflected processes. Let G be an open connected subset of Rd , which is such that for some

l ∈ C2(Rd), G = {x : l(x) > 0} , ∂G = {x : l(x) = 0} and |∇l(x)| = 1 for x ∈ ∂G. Note that at any boundary point x ∈ ∂G,

∇l(x) is a unit normal vector to the boundary, pointing towards to the interior of G. Let η0 ∈ G and (ηt,Λt) be a solution

of the following reflected SDE with respect to fractional Brownian motion

ηt = η0 +

∫ t

0

b(s)ds +
∫ t

0

σ(s)dBH
s +

∫ t

0

∇l(ηs)dΛs, 0 � t � T, (1)

By a solution of (1), we mean a pair of processes such that η. ∈ G, Λ is a nondecreasing process, Λ0 = 0, and
∫ T

0
(ηt −

a)dΛs � 0 for any a ∈ G,

Λt =

∫ t

0

1ηs∈∂GdΛs.

The existence of such a problem was shown in Lions and Sznitman (2007) for a standard Brownian motion.

Remark 3.2. This problem is solved in Ferrante and Rovira (2009) for a fractional Brownian motion and a set G = (0,∞).

Given a final time T > 0, a final condition ξ, which is a FT measurable real valued random variable and the functions

f : [0,T ] ×Ω × R × P2(R1+d) × R × Rd → R, g : [0,T ] ×Ω × R × P2(R) × R→ R,

we consider the following generalized BSDE with respect to fBm with parameters (ξ, f , g,Λ) (short name GFBSDE)

whose generators depend on both the solution (Y,Z) and the law of (Y,Z), the law of Y , respectivity, i.e.

Yt = ξ +

∫ T

t
f (s, ηs, P(Ys,Zs),Ys,Zs)ds +

∫ T

t
g(s, ηs, P(Ys),Ys)dΛs −

∫ T

t
ZsdBH

s , 0 � t � T. (2)
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in order to give a probabilistic formula for the solution of a system of elliptic PDEs, this requires the new term–an integral

with respect to a increasing process in this equation (2) which is independent of Zs, the local time of the diffusion on the

boundary.

Next we introduce the following sets:

• C1,2
pol([0,T ]×R) is the space of all C1,2 functions over [0,T ]×R, which together with their derivatives are of polynomial

growth,

• V[0,T ] =
{
Y = ψ(·, η) : ψ ∈ C1,2

pol([0,T ] × R), ∂ψ
∂t is bounded , t ∈ [0,T ]

}
,

• ṼH
[0,T ] the completion ofV[0,T ] under the following norm (where β > 0)

||Y ||β =
(∫ T

0

t2H−1E[eβΛt |Yt |2]dt
)1/2

=

(∫ T

0

t2H−1E[eβΛt |ψ(t, ηt)|2]dt
)1/2

,

We assume that the coefficients f and g of the GFBSDE are continuous functions and satisfy the following assumption

(H1):

(H1.1) Linear growth: There exists K � 0, such that

| f (t, η, μ, y, z)| � K(1 +W2(μ, δ0) + |y| + |η| + |z|), dtdP − a.e f or all (η, μ, y, z),

|g(t, η, ν, y)| � K(1 +W2(ν, δ0) + |y| + |η|), dtdP − a.e f or all (η, ν, y).

where δ0 is the Dirac measure with mass at 0 ∈ R1+d or 0 ∈ Rd.

(H1.2) Lipschitz in (μ, y, z): i.e. there exists a constant C ∈ R+ such that for all μ1, μ2 ∈ P2(R1+d), ν1, ν2 ∈ P2(Rd) and all

y1, y2 ∈ R, z1, z2 ∈ Rd,

| f (s, η, μ1, y1, z1) − f (s, η, μ2, y2, z2)| � C(W2(μ1, μ2) + |y1 − y2| + |z1 − z2|) dsdP − a.e.

|g(s, η, ν1, y1) − g(s, η, ν2, y2)| � C(W2(ν1, ν2) + |y1 − y2|) dsdP − a.e.

(H1.3) A progressively measurable continuous, non-decreasing processes Λt has continuous density function.

(H1.4) There exists β > 0 and a function ψ with bounded derivative such that ξ = ψ(ηT ), E(eβΛT |ξ|2) < ∞ and the

integrability condition holds

E
(∫ T

0

eβΛs (1 + E[(Ys,Zs)
2])ds +

∫ T

0

eβΛs |ηs|2ds +
∫ T

0

eβΛs (1 + E[(Ys)
2])dΛs

)
< ∞.

4. Comparison Theorem for General Mean-Field Fractional BSDEs

Definition 4.1. A binary of processes (Yt,Zt)0�t�T is called a solution to (2), if (Yt,Zt) ∈ Ṽ1/2
[0,T ]
× ṼH

[0,T ] and satisfies (2).

Lemma 4.2. Assume X is a mean nonzero Gaussian with nonzero covariance, if for two continuous functions k1(x), k2(x)

such that k1(X) = k2(X), then k1(x) = k2(x) for all x ∈ R.

Proof. Let fX(x) denote the density function of X, we have

fX(x) =
1√
2πθ

e−
(x−α)2

2θ2 ,

where α denote mean, θ2 denote variance. Since k1(X) = k2(X), take expectation in both sides of this equality, we get∫ +∞

−∞
(k1(x) − k2(x)) fX(x)dx = 0,

by density of C∞0 (R) in C(R) and fX(x) � 0 for all x ∈ R, consequently k1(x) = k2(x) for all x ∈ R. �

Lemma 4.3. Assume that h1, h2 and h3 ∈ C0,1
pol([0,T ] × R) such that∫ t

0

h1(s, ηs)ds +
∫ t

0

h2(s, ηs)dBH
s +

∫ t

0

h3(s, ηs)dΛs = 0, 0 � t � T.

Then we have

h1(s, x) = h2(s, x) = h3(s, x) = 0, 0 � s � T, x ∈ R.

81



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 10, No. 3; 2021

Proof. To simplify notation, we let η0 = b(t) = 0 for all t ∈ [0,T ] in (1). Similary to Hu (2005) Theorem 12.3, we have

h1(s, ηs) = Eh1(s, ηs) +

∫ s

0

(∫
R

∂

∂x
pu,s(ηu − y)h1(s, ηs)dy

)
σ(u)dBH

u

+

∫ s

0

(∫
R

∂

∂x
pu,s(ηu − y)h1(s, ηs)dy

)
∇l(ηu)dΛu,

where

pt(x) =
1√
2πt

e−
x2

2t

and

pu,s(x) = p||σ||s−||σ||u (x).

Thus, by stochastic Fubini theorem∫ t

0

h1(s, ηs)ds =

∫ t

0

Eh1(s, ηs)ds +
∫ t

0

∫ s

0

(∫
R

∂

∂x
pu,s(ηu − y)h1(s, ηs)dy

)
σ(u)dBH

u ds

+

∫ t

0

∫ s

0

(∫
R

∂

∂x
pu,s(ηu − y)h1(s, ηs)dy

)
∇l(ηu)dΛuds

=

∫ t

0

Eh1(s, ηs)ds +
∫ t

0

σ(u)

(∫ t

u

∫
R

∂

∂x
pu,s(ηu − y)h1(s, ηs)dyds

)
dBH

u

+

∫ t

0

∇l(ηu)

(∫ t

u

∫
R

∂

∂x
pu,s(ηu − y)h1(s, ηs)dyds

)
dΛu

=

∫ t

0

Eh1(s, ηs)ds +
∫ t

0

[h2(u, ηu) + σ(u)

(∫ t

u

∫
R

∂

∂x
pu,s(ηu − y)h1(s, ηs)dyds

)
]dBH

u

+

∫ t

0

[h3(u, ηu) + ∇l(ηu)

(∫ t

u

∫
R

∂

∂x
pu,s(ηu − y)h1(s, ηs)dyds

)
]dΛu

−
∫ t

0

h2(u, ηu)dBH
u −

∫ t

0

h3(u, ηu)dΛu,

Thus from assumption, we have ∫ t

0

Eh1(s, ηs)ds = 0,

∫ t

0

[
h2(u, ηu) + σ(u)

∫ t

u

∫
R

∂

∂x
pu,s(ηu − y)h1(s, ηs)dyds

]
dBH

u = 0,

∫ t

0

[
h3(u, ηu) + ∇l(ηu)

∫ t

u

∫
R

∂

∂x
pu,s(ηu − y)h1(s, ηs)dyds

]
dΛu = 0.

But h2(u, ηu)+σ(u)
∫ t

u

∫
R
∂
∂x pu,s(ηu − y)h1(s, ηs)dyds and h3(u, ηu)+∇l(ηu)

∫ t
u

∫
R
∂
∂x pu,s(ηu − y)h1(s, ηs)dyds are Fu adapted

(since these are a function of ηu). So from Theorem12.1 of Hu (2005), we see that

h2(u, ηu) + σ(u)

∫ t

u

∫
R

∂

∂x
pu,s(ηu − y)h1(s, ηs)dyds = 0,

h3(u, ηu) + ∇l(ηu)

∫ t

u

∫
R

∂

∂x
pu,s(ηu − y)h1(s, ηs)dyds = 0.

In our situation, (ηu,Λu) is a solution of reflected SDE with respect to fractional Brownian motion

ηu =

∫ s

0

σ(u)dBH
u +

∫ s

0

∇l(ηu)dΛu, 0 � u � s,
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where Λ is a nondecreasing process, and

Λu =

∫ s

0

1ηu∈∂GdΛu.

Although ηu is not center Gaussian process, but by Lemma 4.2, we have

h2(u, z) + σ(u)

∫ t

u

∫
R

∂

∂x
pu,s(ηu − y)h1(s, z)dyds = 0, (3)

h3(u, z) + ∇l(z)

∫ t

u

∫
R

∂

∂x
pu,s(ηu − y)h1(s, z)dyds = 0. (4)

for all z ∈ R. Next, the step as same as Lemma 4.2 of Hu (2005),and consequently h1(s, z) = 0 for all 0 � s � T , z ∈ R.

Finally, Bringing h1(s, z) = 0 into the formulas (3) and (4), h2(u, z) = 0, h3(u, z) = 0 are then an immediate consequence

for all 0 � s � T , z ∈ R. �

It is well known following Lemma (refer to Hu (2005)).

Lemma 4.4. Let (Yt,Zt)0�t�T be a solution of the GFBSDE (2). Then we have the stochastic representation

D
H
t Yt =

σ̂(t)
σ(t)

Zt, 0 � t � T,

Proposition 4.5. Let ξ ∈ L2(Ω,FT ;R). Assume (H1) holds. Then there exists a unique solution of (2). Moreover, for all
t ∈ [0,T ],

E
(
eβΛs |Yt |2 +

∫ T

t
eβΛs s2H−1|Zs|2ds +

∫ T

t
eβΛs |Ys|2dΛs

)
� KΘ(t,T ),

where

Θ(t,T ) := E
(
eβΛT |ξ|2 + 2

∫ T

t
eβΛs (1 + E[(Ys,Zs)

2])ds +
∫ T

t
eβΛs |ηs|2ds + 2

∫ T

t
eβΛs (1 + E[(Ys)

2])dΛs

)
.

Proof. First we will show the second part of the above theorem. Assume that (Y,Z) is a solution of (5). By K we will

denote a constant which may vary from line to line. From the Itô formula

eβΛt |Yt |2 + 2

∫ T

t
eβΛs (DH

s Ys)Zsds + β
∫ T

t
eβΛs |Ys|2dΛs

= eβΛT |ξ|2 + 2

∫ T

t
eβΛs |Ys| f (s, ηs, P(Ys,Zs),Ys,Zs)ds + 2

∫ T

t
eβΛs |Ys|g(s, ηs, P(Ys),Ys)dΛs

+2

∫ T

t
eβΛs |Ys|ZsdBH

s .

By linear growth of f and g, for all μ ∈ P2(R1+d), ν ∈ P2(Rd), we have

2|y f (t, η, μ, y, z)| � 2K|y|(1 +W2(μ, δ0) + |η| + |y| + |z|)
� (2K2 + 2K +

MK2

s2H−1
)|y|2 + |η|2 + 1

M
s2H−1|z|2 + (1 +W2(μ, δ0))2

2|yg(t, η, ν, y)| � 2K|y|(1 +W2(ν, δ0) + |η| + |y|) � (2K + 2K2)|y|2 + |η|2 + (1 +W2(ν, δ0))2

There, we can write

E
(
eβΛt |Yt |2 + 2

M

∫ T

t
eβΛs s2H−1|Zs|2ds + β

∫ T

t
eβΛs |Ys|2dΛs

)
� E(eβΛT |ξ|2) + 2E

∫ T

t
eβΛs |Ys| f (s, ηs, P(Ys,Zs),Ys,Zs)ds + 2E

∫ T

t
eβΛs |Ys|g(s, ηs, P(Ys),Ys)dΛs
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� E(eβΛT |ξ|2) + E
∫ T

t
(2K2 + 2K +

MK2

s2H−1
+ 1)eβΛs |Ys|2ds + (2K + 2K2)E

∫ T

t
eβΛs |Ys|2dΛs

+ E
∫ T

t
eβΛs (|ηs|2)ds +

1

M
E

∫ T

t
s2H−1eβΛs |Zs|2ds

+ E
∫ T

t
eβΛs (1 +W2(P(Ys,Zs), δ0))2ds + E

∫ T

t
eβΛs (1 +W2(P(Ys), δ0))2dΛs

� Θ(t,T ) + E
∫ T

t
(2K2 + 2K +

MK2

s2H−1
)eβΛs |Ys|2ds + (2K + 2K2)E

∫ T

t
eβΛs |Ys|2dΛs

+
1

M
E

∫ T

t
s2H−1eβΛs |Zs|2ds

Choosing β � (2K + 2K2 + 1), we get

E
(
eβΛt |Yt |2 + 1

M

∫ T

t
eβΛs s2H−1|Zs|2ds +

∫ T

t
eβΛs |Ys|2dΛs

)
� Θ(t,T ) + E

∫ T

t
(2K2 + 2K +

MK2

s2H−1
)eβΛs |Ys|2ds.

By Gronwall’s inequality,

EeβΛt |Yt |2 � Θ(t,T ) exp

{
(2K2 + 2K)(T − t) + MK2 T 2H−1 − t2H−1

2 − 2H

}
and also get

E
(∫ T

t
eβΛs s2H−1|Zs|2ds +

∫ T

t
eβΛs |Ys|2dΛs

)
� CΘ(t,T ).

Now we will prove the existence and uniqueness of the solution of (5). The method used here is the fixed point theorem.

We will show that the mapping Γ : Ṽ1/2
[0,T ]
× ṼH

[0,T ] → Ṽ1/2
[0,T ]
× ṼH

[0,T ] given by (X,W)→ Γ(X,W) = (Y,Z) is a contraction,

where (Y,Z) is a solution of the following generalized BSDE:

Yt = ξ +

∫ T

t
f (s, ηs, P(Xs,Ws), Xs,Ws)ds +

∫ T

t
g(s, ηs, P(Xs), Xs)dΛs −

∫ T

t
ZsdBH

s

Let k ∈ N and ti = i−1
k T, i = 1, · · · , k+1. First we will show that Γ is a contraction on Ṽ1/2

[tk ,T ]
×ṼH

[tk ,T ]. Take X, X′ ∈ Ṽ1/2
[tk ,T ]

,

W,W′ ∈ ṼH
[tk ,T ], let Γ(X,W) = (Y,Z), Γ(X′,W ′) = (Y ′,Z′) and let Y = Y − Y ′, Z = Z − Z′, X = X − X′, W = W −W ′. From

Itô formula, for t ∈ [tk,T ], we have

E
(
eβΛt |Yt |2 + 2

∫ T

t
eβΛs (DH

s Y s)Zsds + β
∫ T

t
eβΛs |Y s|2dΛs

)
= 2E

∫ T

t
eβΛs |Y s|( f (s, ηs, P(Xs,Ws), Xs,Ws) − f (s, ηs, P(X′s,W′s), X

′
s,W

′
s))ds

+ 2E
∫ T

t
eβΛs |Y s|(g(s, ηs, P(Xs), Xs) − g(s, ηs, P(X′s), X

′
s))dΛs

Note that 2|ys|| f (s, ηs, μ1, xs,ws) − f (s, ηs, μ2, x′s,w′s)| � 2C|ys|(|xs| + |ws| +W2(μ1, μ2)).

2|ys||g(s, ηs, ν1, xs) − g(s, ηs, ν2, x′s)| � 2C|ys|(W2(ν1, ν2) + |xs|) � C2

α
|ys|2 + 2α|xs|2 + 2αW2

2 (ν1, ν2) for some α > 0.

Choose β = C2

α
+ 1. Then by the Schwartz inequality we obtain

E
(
eβΛt |Yt |2 + 2

M

∫ T

t
eβΛs s2H−1|Zs|2ds +

∫ T

t
eβΛs |Y s|2dΛs

)
= 2KE

∫ T

t
eβΛs |Y s|(|Xs| + |W s|)ds + αE

∫ T

t
eβΛs |Xs|2dΛs
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� 2K
∫ T

t

(
EeβΛs |Y s|2

)1/2 (
EeβΛs (|Xs| + |W s|)2

)1/2
ds + αE

∫ T

t
eβΛs |Xs|2dΛs.

Denote ϕ(t) =
(
EeβΛs |Y s|2

)1/2
and ψ(t) = αE

∫ T
t eβΛs |Xs|2dΛs which is nonincrease. Then by above

ϕ(t)2 � 2K
∫ T

t
ϕ(t)

(
EeβΛs (|Xs| + |W s|)2

)1/2
ds + ψ(t), t ∈ [tk,T ].

Applying Lemma 20 in Maticiuc and Nie (1994) to the above inequality we get

ϕ(t) �
√

2K
∫ T

t

(
EeβΛs (|Xs| + |W s|)2

)1/2
ds +

√
ψ(t), t ∈ [tk,T ].

and therefore for t ∈ [tk,T ]

EeβΛs |Y s|2 � 4K2

(∫ T

t

(
EeβΛs (|Xs| + |W s|)2

)1/2
ds

)2

+ 2ψ(t),

Integrate of both sides on [tk,T ] of above inequality, we can compute∫ T

tk
ϕ(s)2ds � 2ψ(tk)(T − tk) + 4K2

∫ T

tk

(∫ T

t

(
EeβΛs (|Xs| + |W s|)2

)1/2
ds

)2

dt

� 2ψ(tk)(T − tk) + 8K2(T − tk)

(∫ T

tk
(EeβΛs |Xs|2)1/2ds

)2

+ 8K2(T − tk)

⎛⎜⎜⎜⎜⎜⎝∫ T

tk

(
1

s2H−1
EeβΛs s2H−1|W s|2

)1/2

ds

⎞⎟⎟⎟⎟⎟⎠2

� 2ψ(tk)(T − tk) + 8K2(T − tk)2E
∫ T

tk
eβΛs |Xs|2ds

+ 8K2(T − tk)

∫ T

tk

1

s2H−1
dsE

∫ T

tk
eβΛs s2H−1|W s|2ds

:= C · (T − tk)Θ̃(tk,T ),

and similarly ∫ T

tk

1

s2H−1
ϕ(s)2ds � C

2 − 2H
· (T 2−2H − t2−2H

k ) · Θ̃(tk,T ),

where

Θ̃(tk,T ) = E
(∫ T

tk
eβΛs s2H−1|W s|2ds +

∫ T

tk
eβΛs |Xs|2(ds + dΛs)

)
.

Using above inequalities, we deduce

E
(∫ T

tk
eβΛs s2H−1|Zs|2ds +

∫ T

tk
eβΛs |Y s|2(ds + dΛs)

)
� E

∫ T

tk
eβΛs |Y s|2ds +CαE

∫ T

tk
eβΛs |Xs|2dΛs +CE

∫ T

tk
eβΛs

1

α
|Y s|2(2 +

1

s2H−1
)ds

+ CE
∫ T

tk
eβΛsα(|Xs|2 + s2H−1|W s|2)ds

� C · (T − tk)Θ̃(tk,T ) +
C
α

∫ T

tk
ϕ(s)(2 +

1

s2H−1
)ds +CαΘ̃(tk,T )

� C
(
α + (2 +

1

α
)(T − tk)) +

1

α
(T 2−2H − t2−2H

k )

)
Θ̃(tk,T )
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Choosing α such that Cα � 1/4 and taking k large enough that C(α+ 2)(T − tk)/α � 1/4 and C(T 2−2H − t2−2H
k )/α � 1/4,

we obtain

E
(∫ T

tk
eβΛs s2H−1|Zs|2ds +

∫ T

tk
eβΛs |Y s|2(ds + dΛs)

)
� 3

4
Θ̃(tk,T )

Thus Γ is contraction operator in Ṽ1/2
[tk ,T ]
× ṼH

[tk ,T ], and (Ym,Zm) is a Cauchy sequence in Ṽ1/2
[tk ,T ]
× ṼH

[tk ,T ], where (Y0,Z0) ∈
Ṽ1/2

[tk ,T ]
× ṼH

[tk ,T ], and for m � 0

Ym+1
t := ξ +

∫ T

t
f (s, ηs, P(Ym

s ,Zm
s ),Ym

s ,Z
m
s )ds +

∫ T

t
g(s, ηs, P(Ym

s ),Ym
s )dΛs

−
∫ T

t
Zm+1

s dBH
s .

Then there exists (Y,Z) ∈ Ṽ1/2
[tk ,T ]
× ṼH

[tk ,T ] being a limit of (Ym,Zm), i.e.

lim
m→+∞ E

(
eβΛt |Ym

t − Yt |2 +
∫ T

tk
eβΛs (|Ym

s − Ys|2 + s2H−1|Zm
s − Zs|2)ds

)
= 0,

lim
m→+∞ E

(∫ T

tk
eβΛs |Ym

s − Ys|2dΛs

)
= 0,

Therefore for any t ∈ [tk,T ],

lim
m→∞

(
−Ym+1

t + ξ +

∫ T

t
f (s, ηs, P(Ym

s ,Zm
s ),Ym

s ,Z
m
s )ds +

∫ T

t
g(s, ηs, P(Ym

s ),Ym
s )dΛs

)
= −Yt + ξ +

∫ T

t
f (s, ηs, P(Ys,Zs),Ys,Zs)ds +

∫ T

t
g(s, ηs, P(Ys),Ys)dΛs

in L2(Ω,F , P) and Zm1[t,T ] → Z1[t,T ] in L2(Ω,F ,H). We show (Y,Z) that satisfies (5) on [tk,T ]. The next step is to solve

the equation on [tk−1, tk]. With the same arguments, repeating the above technique we obtain a uniqueness of the solution

of generalized BSDE with respect to fBm on the whole interval [0,T ]. �

Now we would like to study the comparison theorem. From the counter examples in Borkowska (2013) (see the example

3.1 and 3.2 therein) and example 2.1 in Juan, Hao and Zhang (2018) (only need to simple modify ), we know that if the

driver f depends on the law of Z or is not increasing with respect to the law of Y , we usually do not have the comparison

theorem. Now we give two examples here.

Example: Let d = 1. We consider

Yi
t = ξ

i +

∫ T

t
E[|Zi

s|]ds −
∫ T

t
Zi

sdBH
s , i = 1, 2. 0 � t � T.

For ξ2 = 0, (Y2,Z2) = (0, 0), in particular, Y2
0 = 0. We consider two cases for ξ1.

(i) For ξ1 := −((BH
T )+)2 � 0, Z1

t := E[DH
t [ξ1]|Ft] = −2E[(BH

T )+|Ft] � 0. Thus E[|Z1
t |] = E[−Z1

t ] = 2E[(BH
T )+] =

2
∫ ∞

0
x 1√

2πT H e−
x2

2T2H dx = 2T H√
2π

, t ∈ [0,T ]. And Y1
0 = E[ξ1] +

∫ T
t E[|Z1

s |]ds = − T 2H

2
+ 2T H+1√

2π
> 0, for T > (

√
2π
4

)
1

1−H , i.e. for

T > (
√

2π
4

)
1

1−H , Y1
0 > 0 = Y2

0 , although ξ1 � 0 = ξ2, P − a.s.
(ii) For ξ1 := −e−BH

T < 0, Z1
t := E[DH

t [ξ1]|Ft] = E[e−BH
T |Ft] > 0, t ∈ [0,T ]. Thus E[|Z1

t |] = E[Z1
t ] = E[e−BH

T ] =∫
R e−x 1√

2πT H e−
x2

2T2H dx = 1√
2πT H

∫
R e−

1

2T2H (x+T 2H )2

dxe
T2H

2 = e
T2H

2 , t ∈ [0,T ], and Y1
0 = E[ξ1]+

∫ T
t E[|Z1

s |]ds = −e
T2H

2 +Te
T2H

2 >

0, for T > 1, i.e. for T > 1, Y1
0 > 0 = Y2

0 , although ξ1 < 0 = ξ2, P − a.s.

We consider now the mean-field BSDE as follows

Yt = ξ +

∫ T

t
f (s, ηs, PYs ,Ys,Zs)ds +

∫ T

t
g(s, ηs, PYs ,Ys)dΛs −

∫ T

t
ZsdBH

s , 0 � t � T. (5)
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Theorem 4.6. (Comparison theorem) Let ( fi, gi) = ( fi(s, ω, η, μ, y, z), gi(s, ω, η, ν, y)) , i = 1, 2, be two pair drivers satisfy-
ing the assumption (H1.4). Moreover, we suppose

(i) One of the both coefficients pairs satisfies Lipschitz in (μ, y, z) and (ν, y).

(ii) One of the both coefficients pairs satisfies: for all θ1, θ2 ∈ L2(Ω,F ;R), and all (s, η, y, z) ∈ [0,T ] × R × R × R
d,

fi(s, η, Pθ1 , y, z) − fi(s, η, Pθ2 , y, z) � L(E[((θ1 − θ2)+)2])1/2,

gi(s, η, Pθ1 , y) − gi(s, η, Pθ2 , y) � L(E[((θ1 − θ2)+)2])1/2.

Let ξ1, ξ2 ∈ L2(Ω,FT ;R) and denote by (Y1,Z1) and (Y2,Z2) the solution of the mean-field BSDE (6) with data (ξ1, f1, g1)

and (ξ2, f2, g2), respectively. Then, if ξ1 � ξ2, P − a.s., f1(s, η, μ, y, z) � f2(s, η, μ, y, z), dsdP − a.e., and g1(s, η, ν, y) �
g2(s, η, ν, y), dsdP − a.e.for all (η, μ, ν, y, z), it holds that also Y1

s � Y2
s , for all s ∈ [0,T ], P − a.s.

Proof. Without loss of generality, we assume that (i) and (ii) are satisfied by ( f1, g1). Let us put fs := f1(s, η, PY1
s
,Y1

s ,Z
1
s )−

f2(s, η, PY2
s
,Y2

s ,Z
2
s ), gs := g1(s, η, PY1

s
,Y1

s )− g2(s, η, PY2
s
,Y2

s ), and Zs := Z1
s − Z2

s , Ys := Y1
s − Y2

s . From Itô-Tanakas formula

applied to (Ys
+
)2, we have

E[(Ys
+
)2] + E

∫ T

t

d
ds
||Zr ||2s1(Ys>0)ds = 2E

∫ T

t
Ys
+
1(Ys>0) fsds + 2E

∫ T

t
Ys
+
1(Ys>0)gsdΛs,

Notice that, since ( f1, g1) is Lipschitz continuous and f1 � f2, g1 � g2, we have

E[(Ys
+
)2] + E

∫ T

t

d
ds

(||Zr ||2s)1(Ys>0)ds

� 2E
∫ T

t
Ys
+
1(Ys>0)

(
f1(s, η, PY1

s
,Y1

s ,Z
1
s ) − f2(s, η, PY2

s
,Y1

s ,Z
1
s ) +C|Ys| +C|Zs|

)
ds

+2E
∫ T

t
Ys
+
1(Ys>0)

(
g1(s, η, PY1

s
,Y1

s ) − g2(s, η, PY2
s
,Y1

s ) +C|Ys|
)

dΛs,

Moreover, as for all θ1, θ2 ∈ L2(Ω,F ;R) and (s, η, y, z) ∈ [0,T ] × R × R × Rd,

f1(s, η, Pθ1 , y, z) − f1(s, η, Pθ2 , y, z) � L(E[((θ1 − θ2)+)2])1/2,

g1(s, η, Pθ1 , y) − g1(s, η, Pθ2 , y) � L(E[((θ1 − θ2)+)2])1/2.

we have

E[(Ys
+
)2] + E

∫ T

t

d
ds

(||Zr ||2s)1(Ys>0)ds

� CE
∫ T

t
Ys
+
1(Ys>0)

(
(E[(Ys

+
)2])1/2 + |Ys| + |Zs|

)
ds

+CE
∫ T

t
Ys
+
1(Ys>0)

(
(E[(Ys

+
)2])1/2 + |Ys|

)
dΛs,

by Remark 3.1, we obtain, there exists a suitable constant M > 0,

2

M
s2H−1|Zs|2 � d

ds
(||Zr ||2s) � 2Ms2H−1|Zs|2,

Thus

E[(Ys
+
)2] +

2

M
E

∫ T

t
s2H−1|Zs|21(Ys>0)ds

� CE
∫ T

t
Ys
+
1(Ys>0)

(
(E[(Ys

+
)2])1/2 + |Ys| + |Zs|

)
ds

+CE
∫ T

t
Ys
+
1(Ys>0)

(
(E[(Ys

+
)2])1/2 + |Ys|

)
dΛs

� CE
∫ T

t
(Ys
+
)2ds +CE

∫ T

t
(Ys
+
)2s1−2Hds +CE

∫ T

t
|Zs|2s2H−11(Ys>0)ds +CE

∫ T

t
(Ys
+
)2dΛs
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� CE
∫ T

t
(Ys
+
)2(1 + p(s) + s1−2H)ds +CE

∫ T

t
|Zs|2s2H−11(Ys>0)ds,

the last inequality applies assumption (H1.4). Choose suitable M, such that 2
M −C > 0, then we have

E[(Ys
+
)2] � CE

∫ T

t
(Ys
+
)2(1 + p(s) + s1−2H)ds,

From Gronwall’s inequality, E(Ys
+
)2 = 0, s ∈ [0,T ], i.e. Y1

s � Y2
s , P − a.s, s ∈ [0,T ]. �

5. General Mean-Field Fractional BSDEs Under Continuous Coefficients

We assume that the coefficients f and g of the GFBSDE are continuous functions and satisfy the following assumption

(H2):

(H2.1) Linear growth: There exists K � 0, such that

| f (t, η, μ, y, z)| � K(1 +W2(μ, δ0) + |y| + |η| + |z|), dtdP − a.e f or all (η, μ, y, z),

|g(t, η, ν, y)| � K(1 +W2(ν, δ0) + |y| + |η|), dtdP − a.e f or all (η, ν, y).

where δ0 is the Dirac measure with mass at 0 ∈ R1+d or 0 ∈ Rd.

(H2.2) Monotonicity in μ: for all θ1, θ2 ∈ L2(Ω,F ;R), and all (η, y, z) ∈ R × R × Rd,

f (s, η, Pθ2 , y, z) � f (s, η, Pθ1 , y, z), dtdP − a.e,whenever θ2 � θ1,

g(s, η, Pθ2 , y) � g(s, η, Pθ1 , y), dtdP − a.e,whenever θ2 � θ1.

(H2.3) For a.e.(s, ω) ∈ [0,T ] ×Ω, f (s, ω, ·, ·, ·, ·), g(s, ω, ·, ·, ·) are continuous with a continuity modulus ρ : R+ → R
+ for

μ:

| f (s, ω, η, μ1, y, z) − f (s, ω, η, μ2, y, z)| + |g(s, ω, η, ν1, y) − g(s, ω, η, ν2, y)| � ρ(W2(μ1, μ2)).

Here ρ is supposed to be increasing and such that ρ(0+) = 0.

Remark 5.1. (H2.2) is equivalent to the following condition:

(H2.2′): For all μ1, μ2 ∈ P2(R), (s, η, y, z) ∈ [0,T ] × R × R × Rd, it holds f (s, η, μ2, y, z) � f (s, η, μ1, y, z), whenever the
distribution functions Fμ1

, Fμ2
satisfy Fμ1

� Fμ2
. Recall that Fμ(x) = μ((−∞, x]), x ∈ R, μ ∈ P2(R).

Indeed, if we let μ1 = Pθ1 ,μ2 = Pθ2 , then from θ2 � θ1, P-a.s., we get Fμ1
� Fμ2

, and (H2.2′) implies f (s, η, Pθ2 , y, z) �
f (s, η, Pθ1 , y, z). This shows that (H2.2′)⇒ (H2.2).

In order to show that (H2.2)⇒(H2.2′): We consider μ1, μ2 ∈ P2(R), with Fμ1
� Fμ2

. Let ξ be a random variable
uniformly distributed on [0, 1], and let F−1

μi
be the left inverse function of Fμi . Then θ2 := F−1

μ2
(ξ) � F−1

μ1
(ξ) =: θ1, and

Pθ1 = μ1, Pθ2 = μ2. From (H2.2) we get f (s, η, Pθ2 , y, z) � f (s, η, Pθ1 , y, z).

Before proving the main theorem in this paper, we need the following lemma which gives the approximation of continuous

functions by the Lipschitz functions and it was presented by Lepeltier and Martin (1997). we have to introduce a new

method to study the relationship between two measures, we define

W2,+(μ, ν) = inf
π∈∏(μ,ν)

⎧⎪⎪⎨⎪⎪⎩
(∫

Rd×Rd
|(x − y)+|2π(dx, dy)

)1/2
⎫⎪⎪⎬⎪⎪⎭ ,

where
∏

(μ, ν) is the family of all couplings of μ and ν, i.e., π ∈ ∏
(μ, ν) if and only if π is a measure on R

d × R
d with

marginals μ, ν ∈ P2(Rd).

The following Lemma is a modified based on Lemma 3.1 in Li, Liang and Zhang (2018).
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Lemma 5.2. Let f : [0,T ]×Ω×R×P2(R1+d)×R×Rd → R be a continuous function in (η, μ, y, z) and satistying (H2),
Then the sequence of functions

fn(s, ω, η, μ, y, z) := ess inf
(ζ,ν,r,b)∈R×P2(R1+d)×R×Rd

{ f (s, ω, ζ, ν, r, b) + nW2,+(μ, ν) + n|η − ζ | + n|y − r| + n|z − b|}

is well defined for n � K and has the following properties

(i) Linear growth: for all (s, ω, η, μ, y, z) ∈ [0,T ] × Ω × R × P2(R1+d) × R × R
d, | fn(s, ω, η, μ, y, z)| � C(1 +W2(μ, δ0) +

|η| + |y| + |z|);
(ii) Monotonicity in μ: fn(s, ω, η, μ2, y, z) � fn(s, ω, η, μ1, y, z), for μ1, μ2 ∈ P2(R1+d) with Fμ2

� Fμ1
, for all (s, ω, η, y, z) ∈

[0,T ] ×Ω × R × R × Rd, n � 1;

(iii) Monotonicity in n: for any (s, ω, η, μ, y, z) ∈ [0,T ] × Ω × R × P2(R1+d) × R × R
d, n � m, fn(s, ω, η, μ, y, z) �

fm(s, ω, η, μ, y, z);

(iv) Lipschtiz condition: for any (s, ω, η, μ, y, z) ∈ [0,T ]×Ω×R×P2(R1+d)×R×Rd, | fn(s, ω, η, μ, y, z)− fn(s, ω, η1, μ1, y1, z1)| �
n(W2(μ, μ1) + |η − η1| + |y − y1| + |z − z1|);
(v) Strong convergence: If (ηn, μn, yn, zn)→ (η, μ, y, z) in R × P2(R1+d) × R × Rd as n→ ∞, then fn(s, ω, ηn, μn, yn, zn)→
f (s, ω, η, μ, y, z) as n→ ∞.

From Lemma 5.2, for fixed s, we consider the sequence fn(s, ω, η, μ, y, z), and gn(s, ω, ν, μ, y) n � 1, related to f and

g, respectively. Also consider h(s, ω, η, μ, y, z) = K(1 + W2(μ, δ0) + |η| + |y| + |z|). It is obvious now that fn and h are

F-progressively measurable functions which are Lipschitz in (μ, y, z), uniformly in (s, ω). For ξ ∈ L2(Ω,FT ;R) we know

from Proposition 4.5, for n � K, that the following mean-field BSDEs have a unique adapted solution

Yn
t = ξ +

∫ T

t
fn(s, ηs, PYn

s ,Y
n
s ,Z

n
s )ds +

∫ T

t
gn(s, ηs, PYn

s ,Y
n
s )dΛs −

∫ T

t
Zn

s dBH
s , 0 � t � T. (6)

Ut = |ξ| +
∫ T

t
h(s, ηs, PUs ,Us,Vs)ds +

∫ T

t
q(s, ηs, PUs ,Us)dΛs −

∫ T

t
VsdBH

s , 0 � t � T. (7)

From Lemma 5.2, we know that ( fn, gn) and (h, q) satisfy the assumptions of Proposition 4.5, therefore we have

−Us � Ym
s � Yn

s � Us, P − a.s, s ∈ [0,T ], f or all n � m � K. (8)

The following two Lemmas have been implied in Proposition 4.5.

Lemma 5.3. There exists a conatant C which depends on K,T and E[eβΛT ξ2], such that

E
(
eβΛs |Yn

t |2 +
∫ T

t
eβΛs s2H−1|Zn

s |2ds +
∫ T

t
eβΛs |Yn

s |2dΛs

)
� C,

E
(
eβΛs |Ut |2 +

∫ T

t
eβΛs s2H−1|Vs|2ds +

∫ T

t
eβΛs |Us|2dΛs

)
� C.

Lemma 5.4. (Yn,Zn), n � 1, converges inV1/2
[0,T ]
×VH

[0,T ].

Now ,we give the main result of this paper:

Theorem 5.5. Let ξ ∈ L2(Ω,FT ;R). Assume (H2) holds. Then equation

Yt = ξ +

∫ T

t
f (s, ηs, PYs ,Ys,Zs)ds +

∫ T

t
g(s, ηs, PYs ,Ys)dΛs −

∫ T

t
Zn

s dBH
s , 0 � t � T. (9)

has an adapted solution (Y,Z). Also, there is a minimal solution (Y∗,Z∗) of (9), in the sense that for any other solution
(Y,Z) of (9), we have Y∗s � Ys, s ∈ [0,T ], P-a.s. Moreover, for all t ∈ [0,T ],

E
(
eβΛs |Yt |2 +

∫ T

t
eβΛs s2H−1|Zs|2ds +

∫ T

t
eβΛs |Ys|2dΛs

)
� CΘ(t,T ),

where

Θ(t,T ) := E
(
eβΛT |ξ|2 + 2

∫ T

t
eβΛs (1 + E[(Ys,Zs)

2])ds +
∫ T

t
eβΛs |ηs|2ds + 2

∫ T

t
eβΛs (1 + E[(Ys)

2])dΛs

)
.
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Proof. From (8) we have Yn0 � Yn � U for all n � n0 � K. Moreover, Yn → Y converges inV1/2
[0,T ]

, On the other hand,

also Zn → Z inVH
[0,T ].

Hence, thanks to (i) and (v) in Lemma 5.2, we get

fn(s, ηs, PYn
s ,Y

n
s ,Z

n
s )→ f (s, ηs, PYs ,Ys,Zs), n→ ∞,

gn(s, ηs, PYn
s ,Y

n
s )→ g(s, ηs, PYs ,Ys). n→ ∞.

Thus

E
(∫ T

t
eβΛs | fn(s, ηs, PYn

s ,Y
n
s ,Z

n
s ) − f (s, ηs, PYs ,Ys,Zs)|2ds

)
→ 0, as n→ ∞,

and

E
(∫ T

t
eβΛs (gn(s, ηs, PYn

s ,Y
n
s ) − g(s, ηs, PYs ,Ys))dΛs

)2

→ 0, as n→ ∞.

From Theorem 2.1, Lemma 4.5 and remark 3.2, we can get

E(

∫ T

t
eβΛs (Zn

s − Zs)dBH
s )2 = E

(∫ T

t
e2βΛs (Zn

s − Zs)
2ds +

∫ T

t

∫ T

t
D

H
r (Zn

s − Zs)D
H
s (Zn

r − Zr)drds
)

= E
(∫ T

t
e2βΛs (Zn

s − Zs)
2ds + 2

∫ T

t

∫ T

s
D

H
r (Zn

s − Zs)D
H
s (Zn

r − Zr)drds
)

� E
(∫ T

t
e2βΛs (Zn

s − Zs)
2ds + 2M2

∫ T

t

∫ T

s
(sr)2H−1(Zn

s − Zs)(Zn
r − Zr)drds

)
, as n→ ∞.

On the other hand, from the BSDE (6) we can prove similarly that E[
∫ T

0
|Yn

t − Ym
t |dt]→ 0 as n,m→ ∞. Therefore, Y has

a continuous version, i.e. Y ∈ V1/2
[0,T ]

and E[
∫ T

0
|Yn

t − Yt |dt]→ 0 as n→ ∞. Thus, taking the limit in (6), we get that (Y,Z)

solves (9).

Let (Ŷ , Ẑ) ∈ V1/2
[0,T ]
×VH

[0,T ] be any solution of (9). From the comparison theorem we get that Yn
s � Ŷs, s ∈ [0,T ], P − a.s.,

for all n � 1, and therefore Ys � Ŷs, s ∈ [0,T ], P-a.s., that is, Y is the minimal solution of (9). �
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Abstract 
In this paper, we present a review on the log-logistic distribution and some of its recent generalizations. We cite more 
than twenty distributions obtained by different generating families of univariate continuous distributions or 
compounding methods on the log-logistic distribution. We reviewed some log-logistic mathematical properties, 
including the eight different functions used to define lifetime distributions. These results were used to obtain the 
properties of some log-logistic generalizations from linear representations. A real-life data application is presented to 
compare some of the surveyed distributions. 

Keywords: log-logistic distribution, log-logistic generalizations, generalized classes of distributions, construction of 
new families, censored data, survival analysis 

1. Introduction  
The log-logistic distribution, also known as Fisk distribution in economics, is one of the important continuous 
probability distributions with a heavy tail defined by one scale (or one rate) and one shape parameters. The log-logistic 
distribution is a distribution with a non-negative random variable whose logarithm has the very popular logistic 
distribution. It was initially introduced to model population growth by (Verhulst, 1838). It is often applied to model 
random lifetimes, and hence has applications in time-to-event analysis. So; if the original data of variable is 

 etc., then  etc. follow logistic distribution. A logarithmic transformation 
on the logistic. The LL distribution is similar in shape to the 2-parameter log-normal distribution but it is more suitable 
for use in the time-to-event data analysis since it has heavier tails than the 2-parameter log-normal. The good thing for 
log-logistic distribution is that it has greater mathematical tractability when dealing with incomplete (or censored) data 
and also its cumulative distribution can be written in closed form. Log-logistic distribution is particularly applicable to 
model heavy tailed data in business, medicine, economics, income, wealth, and social sciences. It can also be found in 
modeling non-monotone (i.e., unimodal) hazard functions.  

The log-logistic distribution has various important properties compared to many other parametric distributions used in 
the field of survival and reliability analysis: (i) it is cumulative distribution function (cdf) has an explicit closed-from 
expression, which is very useful for analyzing time-to-event data with incomplete information (e.g. censoring and 
truncation); (ii) it has a similar shape of pdf and hazard function as the log-normal distribution but has heavier-tails and 
the tail properties are what the inference is based on; (iii) it has a non-monotonic hazard function: the hazard function is 
unimodal when shape parameter is greater than 1 and is decreasing monotonically when shape parameter is less than or 
equal to 1; this is what makes to be different from the Weibull distribution; (iv) it has the potential for analysis of 
time-to-event data whose rate increases initially and decreases later; (v) it is also used to analyse the skewed data; (vi) 
the LL distribution can be adopted as the basis of an accelerated failure time (AFT) model by allowing the scale 
parameter α to differ between groups (Reath et al. 2018), (vii) it  has also closed under the proportional odds model; 
and the last but not the least (viii) The generalization of the LL distribution has an attractive feature of being a member 
to both AFT and Proportional hazard (PH) models. These important properties are what makes that the log-logistic 
distribution can be viewed as a simple while useful parametric model which can be widely used in many different 
disciplines, including demography for modeling population growth (Verhulst, 1838); economics for the distribution of 
wealth or income inequality (Fisk, 1961); engineering for reliability analysis (Ashkar & Mahdi, 2003); and hydrology 
for modelling stream flow rates and precipitation (Rowinski et al. 2002) and many other fields.  
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Some other authors who discussed and studied the properties and applications of LL distribution are (Kleiber and Kotz, 
2003) studied the application of LL distribution in economics. Collatt (2003) discussed the application of LL 
distribution in health science for modeling the time following for heart transplantation, Tahir et al (2014) discussed it is 
useful for modeling censored data usually common in survival and reliability experiments. Other authors who studied 
the applications of LL distribution are (Prentice, 1976) (Prentice and Kalbfleisch, 1979); (Bennett, 1983); (Singh and 
George, 1988); (Nandram, 1989); (Diekmann, 1992); (Bacon, 1993); (Little et al. 1994); (BRÜEDERL and Diekmann, 
1995); (Gupta et al. 1999) among others. The LL distribution has been widely used in different fields such as actuarial 
science, economics, survival analysis, reliability analysis, hydrology and engineering. In some cases, the log-logistic 
distribution is verified to be a good alternative to the log-normal distribution for modeling censored data in survival and 
reliability analysis due to its mathematical simplicity and it is characterizing increasing hazard rate function. However 
due to the symmetry of the log-logistic model, it may be poor when the hazard rate is heavily tailed or skewed. 
Therefore, there is an increasing trend in generalization of the baseline LL distribution by adding an extra shape 
parameter to the parent (or baseline) distribution or by using other generalization techniques. In the statistical literature, 
proposing new probability distributions is rich and growing rapidly and various are the papers extending the LL 
distribution designed to serve as statistical models for a wide range of real lifetime applications with does not follow 
any of the existing probability distributions.  

The remainder of the paper is organized as follows. Section 2 reviews the LL distribution, and the two common 
parametrization methods for LL distribution and some mathematical properties of the LL distribution are discussed. 
Section 3 discussed the extensions of the LL distribution. Section 4 methods for generating new families of continuous 
probability distributions and we cite telegraphically twenty distributions obtained by different generated families and 
compounding methods on the log-logistic distribution.  Section 5 presents the estimation of the parameters. A real-life 
data application is presented in section 6. Section 7 we discussed the censored data and the G- families of the 
distributions. concluding remarks and the summary of the work is presented in section 8. Finally, Section 9 we highlight 
some future works after the survey. 

2. Log-logistic Distribution  
There are several different parametrizations of the distribution in use. In this study we focused on the two common ones; 
scale parametrization and rate parametrization. There are several functions related to continuous probability 
distributions. In this study, we focused on those functions which are related to lifetime distributions as a random 
variable. The most common ones are; cumulative distribution function (cdf), probability density function (pdf), survival 
(reliability function), hazard (failure) rate function (HR), cumulative hazard rate (CHR) function, cumulative hazard 
rate average function (HRA), and the conditional survival function (CSF). The good thing for these functions is that 
they completely describe the distribution of lifetime, and if you know any of these functions, it is easy to determine the 
others. 

For a random variable X has a log-logistic distribution having shape parameter and scale parameter 
denoted by . The cdf, pdf, survivor function, hazard (failure) rate function, cumulative hazard rate 

function, reversed hazard rate function, the hazard rate average function, and the conditional survival functions are 
given by respectively: 
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Where is the CDF of x analogous to H(x) in HRA(x). 

2.1 Alternative Parametrization  

An alternative parametrization is given by applying the rate parameter which is commonly used in some families like 

the exponential distribution (is the reciprocal of the scale parameter α)  

Therefore, without loss of generality the cumulative density function, probability density function, survivor function 
and hazard function of the LL distribution are, respectively  

 

 

 

 

Where  and  > 0 are the unknown parameters, is the support of the distribution, and  0.  is the 
rate parameter and  is the shape parameter, that shows as that log-logistic distribution is monotone decreasing when 

 1, and is unimodal when 1. If T has a LL distribution, then Y = log T has a logistic distribution. 

2.2 Mean Residual Life Function 
The mean residual life (MRL) function has been widely used in survival and reliability analysis because of its easy 
interpretability and large area of application. The MRL function computes the expected remaining survival time of a 
subject given that a component has survived or not failed until time t.  

Suppose that  and  Then the MRL function for continuous X is computed 

by  

 

Where  represents the parameter vector of  and  is the survival (reliability) function. and  
whenever  

For continuous distributions with finite mean, the survival function is defined through the MRL function: 

 

Consider the reliability or survival function of the LL distribution with scale and shape parameters. The mean of the LL 
distribution is only finite when the shape parameter is greater than 1, thus the mean residual life function is only defined 
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when . The mrl for the LL distribution is easily obtained by 

 

Where 

 

And 

 

Hence the MRL function is given by 

 

The hazard rate function can also be defined by the MRL function  

 

The critical point  of the hazard rate is given by 

 

The hazard rate increases to its maximum at the point  and then steadily decreases. The mean residual life function 
has the reverse shape of the hazard rate function. This fact was proved by (Gupta and Akman, 1995). 

2.3 The Quantile Functions 
The quantile functions play a central role in statistical and data analysis. Generally, a probability distribution can be 
defined either in terms of the distribution function or by the quantile function (Midhu et al. 2013).  

The quantile function (inverse CDF) of LL distribution is; 

 

It follows that the  

Lower quartile is 

 

Medium is 

 

Upper quartile is 

 

2.4 Moments and the Moment Generating Function  
Many important properties and features of a probability distribution can be obtained through its moments, such as mean, 
variance, kurtosis, and skewness. The essential moment functions, such as the moment generating function, rth moment, 
rth central moment, are presented. 

Theorem 4.3.2: If  then the moment generating function, 1st moment, 2nd moment, and rth moments are 
given, respectively by  
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 is the type-II beta function.  

Proof: We have that the Moment Generating Function mgf of  according to (Casella and Berger, 2002) is  

 

By using MacLaurin series the equation becomes: 

 

 

By substituting , we find  with . This means that if boundary of  then 

boundary of  and for , then . Then, the moment generating function it can be written as follows: 

 

By applying Beta Function: 

 

Therefore, the mgt of LL distribution is: 

 

By differentiating the mgt that we have before then the 1st and 2nd moments of LL distribution are retrieved as follows: 

1st moment of LL distribution: 
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2nd moment of LL distribution: 

 

 

 

 

Similarly, the ℎ moment in general, is  

 

 

 

 

In addition, the mean, variance, skewness and the kurtosis of the log-logistic distribution are given, respectively by 

The mean of the LL distribution is 

 

The Variance of the LL distribution is  

 

 

 

 

2.5 Characteristic Function 
Proposition 4.4.5: The characteristic function of the LL distribution  is given by  
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As can be seen from the above proposition, the characteristic function of the LL distribution cannot be computed 
analytically. However, applying the concept of complex analysis; we can express as: 

First, since the   

 

Second, evaluating the above equation into two parts to solve it easily, we get: 

i)  

 

ii)  

 

Third, we can transform  by applying MacLaurin Series, then we find the results of each part: 

i)  

 

ii)  

 

Hence, the characteristic function is the sum of the two parts: 

 

 

Therefore, the characteristic function of the LL distribution is: 

 

We can also derive the norm characteristic function of the LL distribution: 

 

Since the value of the norm characteristic function of the LL distribution equals 1. It shows us that the characteristic 
function of the LL distribution is a finite function.  

More details about the log-logistic distribution can be found in (Ekawati et al. 2015) 

3. Extensions of Log-Logistic Distribution 
In recent years, the ability to propose new probability models to deal with reliability and survival analysis has increased. 
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Many extensions (or generalizations) of the log-logistic distribution have been proposed in the last two decades. In 
terms of applications, the log-logistic distribution and its generalizations have become the most popular models for 
survival and reliability data. Some recent applications have included: modeling for AIDS and Melanoma data (de 
Santana, Ortega, Cordeiro, & Silva, 2012); used for minification process (Gui, 2013); modeling breast cancer data 
(Ramos et al. 2013); (Tahir et al. 2014); modeling on censored survival data (Lemonte, 2014); modeling time up to first 
calving of cows (Louzada & Granzotto, 2016); modeling, inference, and use to a polled Tabapua Race Time up to First 
Calving Data (Granzotto et al. 2017); modeling positive real data in many areas (Lima & Cordeiro, 2017); analysing a 
right-censored data (Shakhatreh, 2018); modeling lung cancer data (Alshangiti, et al. 2016); and modeling of breaking 
stress data (Aldahlan, 2020). 

Because of the increasing interest in terms of applications and methodology, we feel it is timely that a survey is 
provided of the log-logistic distribution and its generalizations. In this study, we provide such a review. We review in 
the following sections nearly twenty generalizations. For each generalized one, we try to give expressions for the cdf, 
pdf, reliability (or survival) function, the failure (or hazard) rate function, the reversed hazard function, the quantile 
function and the cumulative hazard function. Sometimes not all of these functions are given if they are not stated in the 
original source or if nice closed form expressions are not known. 

In the statistics and probability, the literature on statistical theory abounds in surveys of topics of current interest. 
Ghitany (1998) provided thorough reviews of the recent modifications of the gamma distribution. Pham and Lai  (2007) 
provided through reviews of the recent generalizations of the Weibull distribution. Nadarajah (2013) provided an 
extensive survey of the exponentiated Weibull distribution. Li and Nadarajah (2020) provided an extensive review of 
the student’s t distribution and its generalizations. Rahman et al. (2020) provided an expository review of the 
transmuted probability distributions. Tomy et al. 2020) provided an extensive review of the recent generalizations of the 
exponential distribution. Dey, et al. (2021) provided an extensive review of the transmuted distributions. We contribute 
to the literature by reviewing the log-logistic distribution and its generalizations. While it is common to come across 
reviews which deal with generalizations of an existing distributions, our approach is significantly different. Our focus is 
on the method. To be the best of our knowledge, there is no other work which attempts to bring together at one place 
nearly twenty generalizations (or extensions) of the LL distribution. In this work, we have reviewed only univariate 
log-logistic distribution and related distributions. A future work is to review bivariate, multivariate, matrix variate and 
complex variate log-logistic distribution.  

4. Review of the Methods for Building New Log-Logistic Distributions  
In this section, we present up-to-date review of the methods for building new families of continuous probability 
distributions. In probability and applied statisticians have shown great interest in building and generating new 
generalized probability models that extend well-known probability distributions and are more flexible for data modeling 
in many different disciplines of applications.in recent decades, some different extensions of continuous distributions 
have received great attention in the recent literature. Gupta and Kundu (2009) discussed six different techniques for the 
induction of shape/skewness parameter(s) in probability distributions namely: (1) method of proportional hazard model, 
(2) method of proportional reversed hazard model, (3) method of proportional cumulants model, (4) method of 
proportional odds model, (5) method of power transformed model, and (6) method of Azzalini’s skewed model. On the 

other hand,  Lee et al. (2013), reviewed the different methods of generating new probability distributions and they 
focused on the two main techniques; adding parameters and combining existing probability distributions. On the other 
hand, they discussed three methods developed before 1980s, and they are: (1) method of differential equation, (2) 
method of transformation, and (3) method of quantile. Then they discussed five generating techniques developed since 
1980s, those are : (1) method of adding parameters to an existing distribution, (2) composite method, (3) the 
beta-generated method, (4) the transformed-transformer (T-X) method, and (5) methods of generating skewed 
distributions. Tahir and Nadarajah (2015) wrote a review of methods for generating probability distributions with more 
than 300 reference papers, most of these distributions were introduced in the recent years, (Nadarajah et al. 2013); 
(Tahir and Cordeiro (2015), (Ahmad et al. 2019) and (De Brito et al. 2019) gives an excellent review on the recent 
developments of univariate continuous distributions.  

This study work offers a survey of recently different methods for developing families of probability distributions. The 
technique of obtaining a new generalized distribution is of different forms; generally speaking, the five methods 
developed since 1980s, can be named them as a combination methods because of the reason because of the reason that 
these techniques attempt to add an extra parameters to an existing probability distribution or combining existing 
distributions into new distributions (Lee et al., 2013). In this work, we will categorize into two headings; (1) generator 
method or Parameter Induction method, and (2) Compound method. 
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4.1 Generator Method  
There are several different methods described in the literature used to extend well-known probability distributions. 
Probably, one of the most popular method is to consider distribution generators and is called generator method (also 
known as parameter induction method). The method deals with an induction a shape parameter(s) to a baseline (or 
parent) distribution to improve goodness-of-fits and to explore tail properties. In the generator method, we can 
categorize into; exponentiated-G family, beta-G family, gamma-G family, Marshall-Olkin class, Kumaraswamy class, 
transmuted family, cubic transmuted family, a general transmuted family, alpha-power transformation, T-X family 
method, Zubair-G family, and the Cordeiro-Tahir’s family. 

4.1.1 The Exponentiated-G family of Distributions  

The exponentiated-G family of distributions can be traced back to Gompertz (1825), (Verhulst 1838;1845;1847) and 
Lehmann (1953). It is one of the simplest methods for parameter induction techniques. The method adds one shape 
parameter to an existing distribution. If is the cumulative distribution function (cdf) of the baseline model, then  

 

 is also the cdf of the new distribution and it is called the exponentiated-G distribution (Exp-G distribution) with 
exponent parameter   

The distribution G is the baseline distribution and is a positive real parameter. The variable  can take any of the 
form 

 

The probability density function (pdf) corresponding to (32) is  

 

These family of distributions became famous after the papers by (Mudholkar & Srivastava, 1993) 
exponentiated-Weibull distribution, Gupta et al. (1998) named the family to the proportional reversed hazard rate (PHR) 
model, and (Gupta and Kundu 1999, 2001; 2002) exponentiated -exponential distribution. This family of distributions is 
considered in many papers in the literature such as (Mudholkar et al. 1995); (Mudholkar & Hutson, 1996), (Choudhury, 
2005), (Singh et al. 2005), (Nadarajah and Kotz 2006), (Barrios & Dios, 2012), (Shakil & Ahsanullah, 2012) and 
(Gholam, 2013), among many others. 

Exponentiated log-logistic distribution 

This new extended distribution was developed by  (Rosaiah et al. 2006), (Aslam & Jun, 2010), (Rao et al. 2012) and 
(Chaudhary & Kumar, 2014). The cdf of Exponentiated log-logistic distribution (ELL) is given as 

 

where  are the unknown parameters of the model.  

The ELL is obtained from the CDF of the log-logistic by . The pdf of ELL is as follows: 

 

The ELL distribution may be taken as a parametric model for survival analysis, if the lifetimes show a large variability. 
For any lifetime random variable t, the reliability (survival) functions  the hazard rate function , the reversed 
hazard rate function  and the cumulative hazard rate function  associated with (34) and (35) are  
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Two-parameter Exponentiated log-logistic distribution: 

Chaudhary (2007, 2019) studied the exponentiated log-logistic distribution regarding to the standard log-logistic 
distribution (when  and called two-parameter exponentiated log-logistic distribution. 

If the cdf of the standard LL distribution is  

 

Then the cdf of the two-parameter exponentiated LL distribution is given by 

 

the pdf corresponding to (41) is given by 

 

The survivor function, hazard rate function and the quantile function are given by respectively  

 

 

 

4.1.2 The Beta-G Family of Distributions  

Beta distribution is a continuous probability distribution with two positive shape parameters,  It is the natural 
extension of the uniform distribution and the prior of the binomial distribution. It can rescale and shift to create a new 
probability distribution with a wide range of shapes and apply for a different application.  

Eugene et al. (2002) and Jones (2004)were introduced the Beta-G family of distributions based on the parameter 
induction technique. The generator method that Eugene et al. (2002) proposed is as follows. For any continuous 
baseline cumulative distribution function cdf  

 

where  is the parameter vector, the cdf of the beta-G,  say, is given by 

 

Where are additional shape parameters to those in that aim to provide greater flexibility of its tails and to 

introduce skewness. ,   represents the beta function and 

 represents the incomplete beta function ratio, 

 is the beta function,  is the gamma function, and  is the incomplete 

beta function.  

The pdf of the beta-G family of distribution takes the form 
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The beta-G family is also called the beta logit family. These family of distributions become much more popular after 
Eugene et al. (2002) .This class is studied and discussed the estimation methods and the characterization by maximum 
entropy by (Zografos & Balakrishnan, 2009) and the moments from beta-G family are studied by (Cordeiro & 
Nadarajah, 2011) 

Beta log-logistic distribution  

Lemonte, (2014) proposed and studied the beta log-logistic distribution. The new distribution is quite flexible to model 
and analyze positive real data. The cdf of the beta log-logistic (BLL) distribution is given by  

 

The pdf corresponding to (48) is  

 

For any lifetime random variable t, the reliability (survival) functions  the hazard rate function , the reversed 
hazard rate function  and the cumulative hazard rate function  associated with (48) and (49) are  

 

 

 

 

This extension distribution can be used in many fields, like economics, reliability analysis in engineering, survival 
analysis, hydrology, and other disciplines as the LL distribution. 

4.1.3 The Gamma-G Family of Distributions  

Zografos and Balakrishnan (2009)proposed a simple generator approach (or parameter induction technique). If 
 and  are the cdf, pdf and survival function of the baseline distribution respectively. Then the 

cdf of the gamma-G family is given by 

 

And the pdf of the gamma-G family is given by 

 

The corresponding hazard (or failure) rate function is given by 

 

Another gamma-G family was proposed by (Ristic and Balakrishnan, 2012) which is slightly different from the above 
generator. The cdf and pdf of their generator was defined by  

 

And the pdf of the gamma-G family is given by 

 

The corresponding hazard function is given by 
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Nadarajah et al. (2015b) studied the mathematical and statistical properties of the Zografos-Balakrishnan-G family of 
distributions.  

Zografos-Balakrishnan log-logistic distribution  

Ramos et al. (2013) proposed a gamma log-logistic distribution by using the Zografos-Balakrishnan -G technique and 
they called the Zografos-Balakrishnan Log-logistic distribution (ZB-G). The ZB-G family is a LL distribution plus an 
extra shape parameter  The pdf and cdf of the Zografos-Balakrishnan Log-logistic distribution is given by using 
the equations of (1) and (2): 

 

And the corresponding cdf is given by 

 

The method for Ristic and Balakrishnan (2012) is an alternative method that can be used to extend the LL distribution 
and it can be an open research question.  

4.1.4 The Marshall-Olkin Family of Distributions  

Marshall and Olkin, (1997) introduced a simple generator approach of adding a single parameter to a family of 
well-known distributions and several authors applied their technique to generalize the well-known probability 
distributions in the last two decades.  

If  and  are the cdf and survival function of the baseline distribution depending on the vector 
parameter  , and   is an additional parameter known as tilt parameter. Then the survival function of Marshall 
and Olkin (MO) family is given by 

 

Where . Note that, if , then  which means that we obtain the baseline 
distribution. Applying (62), the generalized versions of the well-known distribution have been proposed. 

The pdf corresponding to (62) is given by  

 

And the hazard rate function h(t) is given by  

 

Marshall-Olkin log-logistic distribution 

Gui (2013) introduced the Marshall-Olkin Log-logistic distribution (MOLL) and studied the mathematical and 
statistical properties of the proposed model and used it to models of time series.  The survival function, pdf, and the 
hazard rate function of the proposed distribution are given by: 

 

 

 

Other authors who studied the further results involving reliability analysis, the estimation of the parameters and the uses 
of the Marshall-Olkin log-logistic distribution are (Alshangiti et al.  2016), and (Shakhatreh, 2018), (Nasiru et al. 
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2019)  

4.1.5 The Alpha Power Transformation  

Mahdavi and Kundu (2017) proposed a new generator technique that many authors applied to introduce for new 
statistical distributions to increase flexibility of the given family. The technique adds a new parameter to the baseline 
distribution. The cdf of Alpha power transformation (AP) is defined as  

 

where  is the cdf of the baseline distribution and  is the vector parameter. 

The pdf corresponding to (68) is given as  

 

Two-parameter Alpha Power Transformed Log-logistic distribution  

Several researchers have applied the alpha power technique to extend the log-logistic distribution.  

Malik and Ahmad (2020) proposed the two-parameter alpha power log-logistic distribution (APLL) of two unknown 
parameters  scale parameters and  shape parameter. Note that, Malik and Ahmad (2020) extended the standard 
log-logistic distribution (where the shape parameter equals 1). 

If the cdf of the standard LL distribution takes the form: 

 

Then the cdf of the APLL is given by 

 

The pdf corresponding to (71) is given by 

 

The survival function of the APLL is defined as 

 

The hazard rate function of the APLL is given by 

 

The reverse hazard rate function of the APLL is given by 

 

The Alpha Power Transformed Log-logistic distribution 

Aldahlan (2020) proposed an Alpha Power Transformed Log-logistic distribution (APTLL) and studied the 
mathematical and statistical properties of the new distribution. Aldahlan (2020)  extended the two-parameter 
log-logistic distribution. If the cdf of the two-parameter baseline log-logistic distribution takes the form: 
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Then the cdf of the APTLL is given by 

 

The pdf corresponding to (77) is given by 

 

The survival function of the APTLL is defined as 

 

The hazard rate function of the APTLL is given by 

 

The reverse hazard rate function of the APTLL is given by 

 

The cumulative hazard rate function of the APTLL is given by  

 

4.1.6 The Kumaraswamy-G Family of Distributions  

Kumaraswamy Distribution 

Kumaraswamy (1980) introduced a new two-parameter continuous distribution on (0,1) named Kumaraswamy 
distribution. Kumaraswamy distribution has the cdf and pdf of the form 

 

where  and  are both shape parameters.  
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The Kumaraswamy distribution has the same basic shape properties to the beta distribution; where (1) 
 unimodal; (2)  bathtub; (3)  decreasing; (4)  increasing, and 

(4)  constant. 

Kumaraswamy-G family of distributions 

Jones (2009) and Cordeiro and de Castro (2011) introduced the Kumaraswamy-G family of distributions by extending 
the beta-G family of distributions by applying Kumaraswamy distribution as a generator instead of the beta generator. 
That is; the cdf of the Kumaraswamy-G of distributions is derived by replacing the cdf in (46) by the Kumaraswamy 
distribution as the following: 

The cdf of the Kumaraswamy-G family of distributions 

 
The pdf corresponding to (85) is given by 

 

Where  are the two extra shape parameters in addition to those in the baseline model whose role are to 
govern tail weights and skewness. The pdf of the Kumaraswamy-G family has many similar properties to the beta-G 
family, but has some advantages in terms of mathematical tractability, since it doesn’t involve any specific function 

such as the beta function.  

Kumaraswamy log-logistic distribution  

de Santana et al. (2012) and Muthulakshmi, (2013) proposed and studied the mathematical and statistical properties of 
the Kumaraswamy log-logistic distribution. de Santana et al. (2012)  proposed a new distribution that contain several 
essential distributions as sub-models to the extended distribution. 

The cdf and pdf of the Kumaraswamy Log-logistic distribution (KULL) are defined as  

 

 

The survival function corresponding to (87) is  

 

The hazard function corresponding to (87) is  

 

where  is the scale parameter, and the shape parameters  govern the skewness of (87). 

4.1.7 The McDonald-G family of Distributions  

McDonald Distribution 

McDonald, (2008) introduced a new distribution called McDonald distribution with cdf of the form 
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where re the three shape parameters. Some of the special cases of the Mc distribution includes the beta 

type 1 distribution (c=1) and the Kumaraswamy distribution (a=1).  

The pdf corresponding to (91) is  

 

McDonald-G family of distributions 

Alexander et al. (2012) introduced the McDonald-G family of distributions by replacing the upper limit of the 
integral in equation (91) with .  

For any baseline cumulative distribution function (cdf) the resulting cdf  of the Mc-generalized family of 
distribution Mc-G is  

 

where the  is the incomplete beta function ratio and  

The pdf corresponding to (93) is 

 

Lemonte and Cordeiro (2013) stated that this method of parameter induction facilitates the computation of several 
statistical and mathematical properties of the G family of probability distributions. 

McDonald Log-logistic distribution  

Tahir et al. (2014) introduced and studied the McDonald log-logistic distribution and they considered three of the above 
extended models of log-logistic distribution, (1) beta log-logistic distribution; (2) Kumaraswamy log-logistic 
distribution; and (3) gamma log-logistic or Zografos-Balakrishnan log-logistic distribution.  

Using the equations of the cdf and pdf of the McDonald-G family, they obtained the CDF and pdf of the McDonald 
log-logistic distribution. 

The cdf of the McDonald is given by 

 

Where  and  where  are shape 

parameters while  is a scale parameter.  

The corresponding pdf of the (95) is given by 

 

For a lifetime random variable t, the survivor function, the hazard (failure) rate function, the reversed hazard rate 
function, the cumulative hazard rate function and the quantile function of the McDLL distribution are given by 
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And 

 

4.1.8 The Transmuted Family of Distributions  

Shaw and Buckley (2009) introduced a new method of parameter induction (generator technique) and several 
researchers applied their method to extend and generalize the well-known probability distributions in the last decade. 
They named the family as quadratic transmuted family of distributions and they used it to financial mathematics and 
other applied fields.  

For any baseline distribution with cdf  depending on the vector parameter then the CDF of the transmuted 
family is given by 

 

where    is the vector parameter,  is the extra shape parameter. When  we obtain the 
baseline distribution, i.e., . 

The pdf corresponding to (102) is given by using differentiation  

 

Aryal and Tsokos (2009, 2011) first highlight the method in (114) and proposed a couple of transmuted probability 
distributions that would offer more distributional flexibility in reliability and environmental analysis. For detail about 
this family we refer to  (Bourguignon et al. 2016)and (Alizadeh et al. 2017) who studied the general properties of this 
family, while (Tahir and Cordeiro, 2015) have introduced a list of quadratic transmuted family of distributions. Rahman 
et al. (2020) have provided an up-to-date list of popular transmuted -G classes of distributions. 

Transmuted Log-logistic distribution  

Aryal (2013) proposed and studied some of the statistical and mathematical properties of the transmuted log-logistic 
distribution. using the equations (102) and (103); they derived the cdf and pdf of the transmuted LL distribution as 
follows: 

 

The pdf of the transmuted log-logistic distribution is given by 

 

More details about the transmuted LL distribution and its applications to real data sets can be found in (Granzotto and 
Louzada, 2015); (Louzada and Granzotto,  2016); and (Adeyinka, 2019). 

4.1.9 The Cubic Transmuted Family of Distributions  

Granzotto et al. (2017) introduced a new parameter induction technique of generating probability distributions called 
Cubic Transmutation technique. The reason behind developing of cubic transmuted family was that the quadratic 
transmuted distribution captures the complexity of unimodal data but the real-life data become more complex to use 
them, and sometimes cannot be fitted by applying the quadratic transmuted family.  

For any baseline distribution with cdf  depending on the vector parameter then the CDF of the cubic 
transmuted family is given by 

 

where  
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The pdf corresponding to (106) is given by 

 

Rahman et al. (2019, 2020) proposed two new cubic transmuted families of distributions. On the other hand, Aslam et al. 
(2018)introduced another cubic transmuted-G family of distributions using the T-X idea of (Alzaatreh et al, 2013). 

Rahman et al. (2020) have provided an up-to-date list of popular cubic transmuted -G classes of distributions. In general, 
the cubic transmuted distributions show better flexibility to handle multi-modal data than the quadratic transmuted 
distributions.  

Cubic transmuted Log-logistic distribution  

Granzotto et al. (2017) proposed the cubic transmuted log-logistic distribution. they used the transmuted log-logistic 
distribution to derive the pdf of the cubic transmuted log-logistic distribution.  

The pdf of the cubic transmuted log-logistic distribution is given by 

 

The cdf corresponding to (108) is given by 

         (109) 

4.1.10 The General Transmuted Family of Distributions  

Merovci et al. (2016) proposed and studied the statistical and mathematical properties of the generalized transmuted 
family of distributions. (Alizadeh et al. 2017) introduced a new generalized transmuted family of distributions and have 
described it as a linear combination of exponentiated densities in terms of the same parent distribution. Recently, 
Rahman et al. (2018) introduced a couple of new general transmuted family of distributions and they named 
k-transmuted families and they defined by 

 

where  for  and  and  

 

where   and for . 

AL-Kadim (2018) introduced a generalized family of transmuted distribution which turned out to be a special case of 
family (110). 

4.1.11 The Weibull-G Family of Distributions  

Alzaatreh et al. (2013) and Bourguignon et al. (2014) proposed the Weibull-G family of continuous probability 
distributions. Weibull-G family is an interesting technique of inducting an extra shape parameter(s) to an existing G 
distribution. Considering the cdf of the Weibull distribution which is given by 

 
where  are the unknown parameters of the Weibull distribution.  

They defined the cdf of the Weibull-G family by replacing , the cdf 
is given by 

 

Where  is the baseline cdf, which depends on a parameter vector   

The pdf corresponding to (113) is given by 
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The hazard rate function of the Weibull-G family is given by 

 

where works as a corrected factor 
for the failure rate function of the parent (or baseline) distribution.  

The Weibull-G family can deal with general situations in modeling and analysing time-to-event data with different 
shapes of the hazard (or failure) rate function. For example, if the baseline distribution is a log-logistic distribution the 

 

Weibull-Log-logistic Distribution  

Oluyede et al. (2016)proposed the log-logistic Weibull distribution and they applied it into a lifetime data. Considering 

a series system and assuming that the lifetime of the component follow the log-logistic and Weibull distribution with 

survival functions  respectively. The survival  of 

the system is given by 

 

The cdf of the log-logistic-Weibull distribution is given by 

 

The corresponding pdf is given by 

 

Where  

4.1.12 The Exponentiated Generalized Family of Distributions  

Cordeiro et al. (2013) proposed a new family of distributions, called the exponentiated generalized (EG) class of 
distributions. This method belongs to the parameter induction method, where the purpose is to add two new extra shape 
parameters to the baseline (or parameter) distribution. 

The cdf of the EG class of distribution is given by  

 

where  are two extra parameters whose role is to govern the skewness and create distributions with 

heavier/lighter tails. 

The pdf corresponding to (120) is given by  

 

where  is the pdf of the baseline (or parent) distribution. the two parameters in (121) can add entropy to 

the center of the Exponentiated Generalized density or possible control both tail weights.  

Exponentiated generalized log-logistic distribution  

Lima and Cordeiro (2017) studied the mathematical and statistical properties of a new four-parameter survival model 
applying the exponentiated generalized (EG) class. 
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The cdf of the new distribution is given by 

 

The pdf corresponding to (122) is given by 

 

The hazard rate function of the EGLL is given by 

 

The quantile function of EGLL is given by inverting (122) 

 

 

4.1.13 The T-X Family of Distributions  

Alzaatreh et al. (2013) proposed a new family of distributions, called the T-X family of distributions as an extension to 
the beta-G family of distributions introduced by (Eugene et al., 2002).  

If the cdf of the baseline distribution is  then the cdf of the T-X family is given as 

 

where R is the cdf of the baseline random variable, and the function   must satisfy the following conditions: 

1.  

2.  is differentiable and monotonically non-decreasing 

3.  as  and  as  

Where  is the support of the baseline random variable for  

The pdf corresponding to (126) if it exists is given by 

 

Alzaatreh and Ghosh (2015) introduced three sub-families of the T-X family which are beta-exponential-X family, 
gamma-X family, and the Weibull-X family. These three sub-families demonstrate that the T-X family consists of many 
sub-classes of distributions within each sub-family, one can introduce many new distributions as well as relateits 
members to many existing probability distributions. More details about the T-X family of distributions and their 
modifications we can refer to (Nasiru, 2018). 

4.1.14 The Weibull-X Family of Distributions 

Alzaatreh and Ghosh (2015) proposed the Weibull-X family of distributions. Using the  concept of T-X family of 
distributions introduced by Alzaatreh et al. (2013).  

The cdf and the pdf of the T-X family of distributions are given by; 
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Where  are the hazard rate and the cumulative hazard rate functions associated with  

If a random variable T follows the Weibull distribution with a pdf of  

 

The pdf and cdf of the Weibull-X family of distributions is given by 

 

 

5.1.15 The Exponentiated Kumaraswamy-G family  

Lemonte et al. (2013)proposed the exponentiated Kumaraswamy-G family of distributions. The cdf and the pdf of the 
EK family are given by 

 

 

where  are extra positive shape parameters. The distribution (134) provides more options for analysing data 
restricted to the interval (0,1). 

5.1.16 The Generalized Weibull-G Family of Probability Distributions  

Cordeiro et al. (2015)proposed a new generalized Weibul-G family of probability distributions and they studied the 
mathematical and statistical properties of the family and some special models.  

The cdf of the generalized Weibull family is given by 

 

The pdf corresponding to (130) is given by 

 

The generalized Weibull-Log-logistic Distribution  

Cordeiro et al. (2015) introduced the generalized Weibull log-logistic distribution (GWLL). 

the pdf of the GWLL with a log-logistic distribution having a scale parameter of a and a shape parameter of b is given 
by;  

 

The literature on the generalized log-logistic distribution using generator (or parameter induction) methods is enrich 
enough and is also rapidly improving. We now describe the generalization of the log-logistic distribution using 
compounding and other methods in the following. 

5.1.17 The Gamma Uniform Family of Probability Distributions  

Torabi and Hedesh (2016) proposed a new generator approach called the gamma-uniform family of distributions. the 
cdf of the family is given by  
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The pdf and hazard rate function corresponding to (138) are given by 

 

 

This distribution can be applied for modeling any data set with changing the extra parameters. 

4.2 Compounding Methods  
The compounding method is a technique that combine two or more existing distributions  

4.2.1 The Exponentiated G-Geometric Class 

Nadarajah et al. (2015)introduced the exponentiated G-geometric also known as the generalized G-geometric class. If  

 and N be a geometric random variable with failure probability parameter  and 

probability mass function where p is the success probability.  

If we define the unconditional of cdf of the exponentiated G-geometric (EGG) class can follow as 

 

Where  are two extra shape parameters. This new family can also be obtained by modification or an 

extension of Marshall-Olkin family of distribution by replacing the baseline CDF with its exponentiation and adding 

two more extra shape parameters to the original distribution. 

The pdf corresponding to (141) is given by 

 

The exponentiated log-logistic geometric distribution 

Mendoza et al. (2016)proposed and studied the exponentiated log-logistic geometric distribution. they derived some of 

the mathematical and statistical properties of the EEG Log-logistic distribution. 

If  are an i.i.d random variables having the exponentiated log-logistic distribution with cdf and pdf  

 

 

where  are the unknown parameters of the model. For , we obtain as a special case the LL 

distribution.  

Then,  

� The conditional density function of EGG log-logistic function for is  

 

The pdf of the exponentiated log-logistic geometric type I (ELLGI) distribution reduces to 
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Where  is the vector of parameters ( . 

The cdf corresponding to (146) is given by 

 

The hazard rate function corresponding to (146) is given by 

 

� The conditional density function of EGG log-logistic function for is  

 

The pdf of the exponentiated log-logistic geometric type II (ELLGII) distribution reduces to 

  

Where  is the vector of parameters ( . 

The cdf corresponding to (150) is given by 

 

The hazard rate function corresponding to (150) is given by 

 

4.3 Other Methods  
In this section, we present some new techniques for generating new probability distributions.  

4.3.1 Khan and Khosa’s Generalized Log-Logistic Distribution  

Khan and Khosa (2015) proposed a generalized log-logistic distribution that belongs to the PH family and they 
described that it has properties identical to those of log-logistic, and tend to the Weibull in the limit, and they defined 
that these features enable the model to handle all kinds of hazard functions.  

The pdf, survivor function, hazard rate function, and the cumulative hazard rate function of the Generalized log-logistic 
distribution is given by respectively; 

 

 

 

 

5. Estimation of the Parameters  
In the statistics literature, due to the importance of the LL distribution and its generalizations, the estimation of the 
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unknown parameters has been widely studied from the two main inferential statistics of thought: frequentists and 
Bayesians. From the frequentist approach, there are several different techniques that were proposed for parameter 
estimation but the maximum likelihood estimators (MLEs) are commonly used in most of the studies because of their 
appealing properties and can be applied when building confidence regions and intervals and also in test statistics. 
Although MLE method has been proven to be consistent, asymptotically efficient under very general conditions, it was 
found that it breaks down as one parameter tending to cause the likelihood to be infinite, rendering the other parameters 
inconsistent and is not applicable to J-shape distributions (Cheng and Amin, 1983). Ranneby, (1984) mentioned that the 
MLE is unbound and inefficient in the estimation of the mixtures of continuous distributions and heavy-tailed 
distributions. Therefore, to overcome the drawbacks in the MLE method (Cheng and Amin, 1979) proposed a maximum 
product of spacings (MPS) estimator to deal with those problems as it will return valid results over a much wider range 
of distributions and their generalizations. The method was also developed independently by (Ranneby, 1984).  

In this study, we applied the maximum product spacings (MPS) method to estimate the unknown parameters for most of 
the generalized distributions discussed in this paper. For more information about the MPS estimator we can refer to 
(Cheng and Amin, 1979, 1983; Kawanishi, 2020; Ranneby, 1984; Thongkairat et al. 2018). The MPS estimator is a 
general technique used for estimating unknown parameters from observations with continuous univariate distributions 
and is an alternative to the MLE method. The log-likelihood for the distribution parameters can be maximized by using 
nonlinear likelihood equations obtained by differentiating the log-likelihood or by using software programs and 
packages. In this study, we applied the MPS (Maximum Product Spacing) package (version 2.3.1) (Teimouri, 2018) 
available in the R programming language to estimate the unknown parameters of the generalized distributions. The 
package has been continuously updated and more information can be obtained from 
https://cran.rstudio.com/web/packages/MPS/index.html. Currently, Bayesian inference of the log-logistic parameters 
and some of its generalizations has also received attention in the literature and some of them are still needs to be 
studied.  

6. Real-life Data Application 
In this section, we compare the performances of some of the generalizations of the log-logistic distribution in Section 5 
using a real-life data set. The data represent the survival times of 121 patients with breast cancer obtained from a large 
hospital in a period from 1929 to 1938 (Lee and Wang, 2003). The data are: 

(154.0, 139.0, 129.0, 129.0, 127.0, 126.0, 125.0, 117.0, 115.0, 111.0, 109.0, 109.0, 105.0, 103.0, 96.0, 93.0, 90.0, 

89.0, 88.0, 83.0, 80.0, 78.0, 69.0, 68.0, 67.0, 67.0, 65.0, 65.0, 62.0, 61.0, 60.0, 60.0, 60.0, 59.0, 58.0, 57.0, 56.0,  

55.0, 54.0, 52.0, 51.0, 51.0, 51.0, 49.0, 48.0, 47.0, 46.0, 46.0, 45.0, 45.0, 44.0, 43.0, 43.0, 43.0, 42.0, 41.0, 41.0, 

41.0, 40.0, 40.0, 40.0, 39.0, 39.0, 38.0, 38.0, 38.0, 37.0, 37.0, 37.0, 35.0, 35.0, 32.0, 31.0, 31.0, 30.0, 29.1, 28.2,  

27.9, 24.0, 24.0, 23.6, 23.4, 23.0, 21.1, 21.0, 21.0, 20.9, 20.4, 19.8, 17.9, 17.5, 17.3, 17.2, 16.8, 16.5, 16.3, 16.2, 

15.7, 15.5, 14.8, 14.4, 14.4, 13.5, 12.3, 12.2, 11.8, 11.0, 10.3, 8.4, 8.4, 7.5, 7.4, 6.8, 6.6, 6.3, 6.2, 5.6, 5.0, 4.0,  

0.3, 0.3) 

Table 1. Descriptive statistics of the data 

Mean Median Variance Skewness Kurtosis Minimum Maximum  

46.33 40 1244.464 1.03 0.35 0.3 154 
 

We fitted the following scale-shape variations of some of the surveyed distributions: The beta log-logistic distribution 
(BLL), the Kumaraswamy log-logistic distribution (KWLL), the exponentiated log-logistic distribution (ELL), the 
exponentiated generalized log-logistic distribution (EGLL), the Zografos-Balakrishnan log-logistic distribution (ZBLL), 
the Marshall-Olkin log-logistic distribution (MO-LL), the Weibull-log-logistic distribution (WLL), the Weibull-X (T-X) 
log-logistic distribution (WXLL) , the exponentiated Kumaraswamy log-logistic distribution (EKWLL), the 
gamma-uniform log-logistic distribution (GLL), and the Log-logistic (LL) distribution.  

Each distribution was fitted by the method of maximum product spacings (MPS). Table 2 gives the values of the MPS 
estimates of the model parameters for the BLL, KWLL, ELL, ZBLL, EGLL, MO-LL, WLL, WXLL, EKWLL, GLL, 
and LL models fitted to the exceedances of breast cancer data. We estimate the unknown parameters of each model by 
maximum product spacings (MPS). There exist many maximization methods in R packages like NM (Nelder-Mead), 
BFGS (Broyden-Fletcher Goldfarb-Shanno), NR (Newton-Raphson), BHHH (Berndt-Hall-Hall-Hausman), and SANN 
(Simulated-Annealing) methods. In this study, the maximum product spacing estimators (MPS) are computed using 
Nelder-Mead optimization (NM) and the measures of goodness of fit AIC, BIC, CAIC, HQIC, Anderson-Darling (A*) 
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and Cramer-von Misses (W*) are used to compare the ten selected models.  

Table 2. MPS estimators of the model parameters and the maximum of the log-likelihood function  

Distributions MPS estimators of the parameters  

 a b c α β ) 
GLL (a, α, β) 0.765   1.495 63.618 -579.011 

WXLL (a, b, α, β) 0.878 0.865  1.439 44.828 -579.143 

KWLL (a, b, α, β) 0.366 4.311  3.113 207.018 -579.211 

EGLL (a, b, α, β) 6.870 0.691  1.683 187.670 -579.301 

WLL (a, b, α, β) 14.442 0.610  0.115 222.676 -579.411 

BLL (a, b, α, β) 0.696 6.885  1.661 203.623 -579.412 

ZBLL (a, α, β) 0.351   3.011 79.117 -580.609 

ELL (a, α, β) 0.319   3.305 71.682 -580.748 

EKWLL (a, b, c, α, β) 3.603 5.835 0.181 1.700 82.094 -579.330 

MO-LL (a, α, β) 1.137   1.800 32.683 -587.677 
LL (α, β)    1.856 35.177 -587.599 

 

Table 3 lists the values of the following statistics: Akaike Information Criterion (AIC), values of Bayesian Information 
Criterion (BIC), values of Consistent Akaike Information Criterion (CAIC), values of Hannan-Quinn information 
Criterion (HQIC), Cramer-von Misses statistic (W*), and Anderson-Darlin Statistic (A*). The smaller the values of 
these criteria the better the fit. For more information about these criteria, we refer to (Anderson & Burnham, 2004; 
Bierens, 2004; Burnham & Anderson, 2004)and (Fang, 2011). 

Table 3. Goodness-of-fit tests for the generalizations of the 2-parameter log-logistic distribution  

Distribution Goodness of fit (G-O-F) criteria  

 BIC AIC CAIC HQIC A* W* 
GLL 1172.411 1164.023 1164.229 1167.430 0.463 0.063 

WXLL 1177.469 1166.286 1166.631 1170.828 0.407 0.055 

KWLL 1177.607 1166.424 1166.769 1170.966 0.538 0.079 

EGLL 1177.786 1166.602 1166.947 1171.144 0.422 0.057 

WLL 1178.006 1166.823 1167.168 1171.365 0.417 0.057 

BLL 1178.008 1166.825 1167.170 1171.367 0.431 0.058 

ZBLL 1175.606 1167.218 1167.423 1170.625 0.442 0.052 

ELL 1175.885 1167.498 1167.703 1170.904 0.439 0.051 

EKWLL 1182.639 1168.660 1169.182 1174.338 0.476 0.062 

LL 1184.791 1179.199 1179.301 1181.47 1.257 0.2096 
MO-LL 1189.742 1181.355 1181.560 1184.761 1.084 0.131 

We can see that the 3-parameter gamma-uniform log-logistic distribution gives the smallest AIC, CAIC, BIC, and HQIC 
values. The GLL distribution provides significantly better fits than all of the other distributions, including the WELL 
and other distributions. MO-LL and LL distributions give the largest values for all criterion and tests, also the EKWLL 
distribution, these distributions may be thought to give worst fits. The maximum likelihood estimates of the best fitting 
GLL distribution are The fitting was performed using the R 
package MPS (Teimouri, 2018).  

Shifted log-logistic distribution or generalized log-logistic distribution or simply a three-parameter log-logistic 
distribution is an extension of the 2-parameter log-logistic distribution by an adding a shift parameter or location 
parameter. If we apply the generalization of the shifted log-logistic distribution by adding an extra parameter(s) and 
then apply the above breast cancer data. The comparison of the selected models plus the Shifted (3-parameter) 
Log-logistic distribution (SLL) are listed in Table 4. 
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The pdf of the shifted log-logistic distribution is given by 

 

Table 4. Goodness-of-fit tests for the generalizations of the shifted log-logistic distribution  

Distribution Goodness of fit (G-O-F) criteria  

 BIC AIC CAIC HQIC A* W* 
GLL 1178.489 1167.306 1167.650 1171.848 0.352 0.051 

WXLL 1182.851 1168.872 1169.394 1174.549 0.411 0.059 

WLL 1183.550 1169.572 1170.093 1175.249 0.365 0.052 

KWLL 1183.807 1169.828 1170.350 1175.506 0.372 0.051 

ZBLL 1181.69 1170.506 1170.851 1175.048 0.410 0.051 

ELL 1181.954 1170.771 1171.116 1175.313 0.412 0.051 

BLL 1185.310 1171.331 1171.331 1177.009 0.395 0.062 

EGLL 1185.337 1171.358 1171.880 1177.035 0.385 0.052 

EKWLL 1188.942 1172.168 1172.904 1178.941 0.437 0.054 

SLL 1183.224 1174.836 1175.042 1178.243 0.795 0.130 

MO-LL 1188.349 1177.165 1177.510 1181.707 0.606 0.085 
LL 1184.791 1179.199 1179.301 1181.470 1.257 0.2096 

 

We can see that the 4-parameter gamma-uniform log-logistic distribution gives the smallest AIC, CAIC, BIC, HQIC, A*, 
and W* values. The GLL distribution provides significantly better fits than all of the other distributions, including the 
WELL and other distributions. MO-LL and LL distributions give the largest values for all criterion and tests, also the 
EKWLL distribution, these distributions may be thought to give worst fits. The maximum likelihood estimates of the 
best fitting GLL distribution are  = -1.8892325.  

TTT Plot 

In the survival and reliability analysis, there is a qualitative information about the failure rate shape, which can help in 
selecting a specified model. The Total time on test (TTT) plot or TTT transform is a device used for assessing the 
empirical behavior of the hazard (or failure) rate function. The hazard rate may be constant, decrease, increase, be an 
upside-down bathtub shaped, bathtub shaped or indicate a more complicated process. The TTT plot for the above 
survival data is displayed in Fig 1, which reveals an increasing hazard rate function. This plot reveals that the 
distributions with increasing hazard rate function could be good candidates for modeling the above cancer data. In our 
case, the GLL is the one that best fits the data. 

 
Figure 1. The TTT-plot for Cancer data 
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7. Censored Data and G-Classes of the Log-Logistic Distribution 
The generating and extension of the existing probability distributions is an essential topic in survival and reliability 
analysis and has been applied in many applications in fields like social sciences, biological sciences, engineering, 
economics, physics, chemistry, medicine among others. Extension and generating of an existing probability distribution 
might allow to the resulting distribution to accommodate non-monotone forms for the failure rate function. Lai et al 
(2013) stated that the time of failure or life can have different interpretations depending on the area applications. 
Therefore, we can obtain more flexible distributions for modeling this kind of random variables. On the other hand, 
effectiveness and tractability for modeling censored data require, among other things, closed form expressions for the 
cumulative distribution function.  

The LL distribution has been found to be very useful for modeling and analysing the incomplete (censored and 
truncated) data in the area of survival and reliability analysis. The LL distribution is an effective model for censored 
data, especially where the hazard rate is non-monotonic (i.e. incidence of an event increases after some finite time and 
then slowly decreases). When it comes to the extension of the log-logistic distribution using the G-classes of 
distributions, the Kumaraswamy-G family of distributions can be effective and tractable models for incomplete (or 
censored) data. The Marshall-Olkin family and the Exponentiated-G family of distributions can also be effective and 
tractable models for censored data, provided G is in closed form. However, beta-G and Mc-G distributions may not be 
effective or tractable models for censored data since their cumulative distribution functions involve the incomplete beta 
function. 

8. Concluding Remarks 
The LL distribution is one of the most commonly used distributions in survival and reliability analysis, particularly for 
events where the hazard rate is non-monotonic. It has also appeared in the literature under other names, such as Fisk 
distribution. Various LL extensions and generalizations have been introduced in recent years. In this paper, we have 
listed twenty distributions obtained from different generated families and compounding methods on the LL distribution. 
We review some of the statistical and mathematical properties of the LL distribution. We expect that these extensions or 
generalizations of the LL distributions will be an addition to the art of constructing useful models and lifetime 
distributions in general. One can discover easier the type of G-Classes that still is not applied to the LL distribution. The 
generalization of log-logistic distribution through generator, compounding and other methods was first applied in the 
area of survival and reliability analysis. After that time, several researchers have successfully applied these methods of 
generalizations to model lifetime and survival data. At present, these methods are being applied in the areas of 
engineering, economics, environmental, medical, hydrology, social science among others to handle more complex data. 

9. Future Projects after the Survey 
We hope our work will be of value to the statistical and probability community. As for the scope of future work, the 
possible future projects are: (1) to propose more new extensions of the LL distribution which have not been attempted; 
(2) to review and extend some of the generalized LL distributions, (3) to prepare a review and new developments on 
parametric survival models, (4) to derive some mathematical and statistical properties of the new extended distributions, 
(5) to estimate the parameters of the new extensions using both the classical and Bayesian approaches; (6) to review the 
multi variate, matrix variate and complex variate of the generalized LL distribution; and (6) to applied the new 
extensions of the LL distribution into a real-life data sets. 
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Abstract

The copula function is an effective and elegant tool useful for modeling dependence between random variables. Among

the many families of this function, one of the most prominent family of copula is the Archimedean family, which has its

unique structure and features. Most of the copula functions in this family have only a single dependence parameter which

limits the scope of the dependence structure. In this paper we modify the generator of Archimedean copulas in a way

which maintains membership in the family while increasing the number of dependence parameters and, consequently,

creating new copulas having more flexible dependence structure.

Keywords: compound Archimedean copula, dependence structure, association measures, finite tail dependence

1. Introduction

Dependence between variables has raised much research interest, where the challenge has always been to find a suitable

multivariate distribution with which to model it. One promising direction is based on copula functions which provide

a powerful tool geared to building multidimensional distributions with given marginals. By Sklar’s Theorem (Sklar’s,

1959), every multivariate cumulative distribution function F (X1, ..., Xd) = P (X1 ≤ x1, ..., Xd ≤ xd) of a random vector

(X1, ..., Xd) can be uniquely written in term of the separate parts of its marginals Fi (xi) = P (Xi ≤ xi) which are set of

univariate distributions, and copula C, which holds the dependence structure between them, such as

F (x) = P (X1 ≤ x1, ..., Xd ≤ xd) = C (F1 (x1) , ..., Fd (xd)) , (1)

xi ∈ (−∞,∞) , i = 1, ..., d.

By Nelsen (2006), the copula function must meet three properties. 1. For ui = Fi (xi) when at least one of the marginals

has zero value then C (u1, ..., 0, ..., ud) = 0, 2. if all marginals except for ui are equal to one, then C (1, ..., ui, ..., 1) = ui,

and 3. C is a d-dimensional non-decreasing function, i.e.
2∑

i1=1
...

2∑
id=1

(−1)i1+...+id C
(
u1,i1 , ..., ud,id

) ≥ 0, for any [a, b] ∈ (0, 1)d

ordered ai < bi and u j,1 = a j, u j,2 = b j for j = 1, ..., d. This function has been comprehensively researched by Joe (1997),

Nelsen (2006), and Durante & Sempi (2015) to mention only a few. See also references by Druet & Kotz (2001), and

Genest & MacKay (1986). There are several families of copulas, the most common are the elliptical, which developed

from an elliptically distributed random variables, the extreme value copula, which enables a suitable dependence structure

for rare events, and the Archimedean family. The advantage of the Archimedean family is the unique structure that is

expressed in its generator function. Different choices of generator functions yield different copulas with their particular

expression of dependence. Many interesting parametric functions belong to this family, which contains a wealth of

dependence structures (Embrechts et al., 2001). Among the most common are the Clayton copula (1978) in which the

tails of the distribution are more dependent on the negative tail than on the positive, Frank (1979) which is symmetric

Archimedean copula and Gumbel (1960) in which the tails of the distribution are more dependent on the positive tail than

on the negative.

Table 1. Examples of families of Archimedean copulas

Family Cθ (u, v) ϕθ (t) Range of θ

Clayton
[
max

(
u−θ + v−θ − 1, 0

)]− 1
θ 1

θ

(
t−θ − 1

)
θ ∈ [−1,∞) \ {0}

Gumble exp
(
−

[
(− ln u)θ + (− ln v)θ

]− 1
θ

)
(−ln (t))θ θ ∈ [1,∞)

Frank − 1
θ

ln
[
1 +

(e−θu−1)(e−θv−1)
e−θ−1

]
−ln

(
e−θt−1
e−θ−1

)
θ ∈ (−∞,∞)
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A two-dimensional Archimedean copula is denoted by:

Cθ (u, v) = ϕ−1
θ (ϕθ (u) + ϕθ (v)) , (2)

where ϕθ (t) is the Archimedean generator and θ is the dependence parameter. The generator ϕ is a continuous, strictly

decreasing convex function ϕ : [0, 1]→ [0,+∞] such that ϕθ (1) = 0. Kimberling (1974) proved that ϕθ (t) is a completely

monotone function. Schweizer and Sklar (1983) showed that ϕ−1
θ (t) induces a bivariate copula if it is convex. McNeil

& Neslehova (2009) showed that the necessary and sufficient condition for d-dimensional copula is for ϕ−1
θ (t) to be d-

monotone on [0,∞), i.e., to satisfy (−1)k dkϕ−1
θ (t)

dtk ≥ 0 on [0,∞) and k ∈ [1, d − 2]. Many properties of the Archimedean

copulas and their generators are introduced and have been proven in Nelsen (2006). Some of them listed as follows:

• The pseudo-inverse of the generator ϕ is the function ϕ[−1]
θ (t) =

{
ϕ−1
θ (t) , 0 ≤ t ≤ ϕθ (0) ,

0, ϕθ (0) ≤ t ≤ ∞. , Nelsen (2006,4.1.2).

• The distribution function of Archimedean copula C with generator ϕθ(t) is denoted by KC (t) = t − ϕθ(t)
ϕ′θ(t+)
, Nelsen

(2006,4.3.4).

• The density of Archimedean copula C is given by cθ(u, v) =-
ϕ′′(C(u,v))ϕ′(u)ϕ′(v)

[ϕ′(C(u,v))]
3 , Nelsen (2006,4.3.6).

Archimedean copulas have been used in different fields, such as actuarial science (Albrecher et al., 2011, Thilini et al.,

2020), finance risk models (McNeil et al., 2005), portfolio allocations (Hennessy & Harvey, 2002), and hydrology (Chen

and Guo, 2019). Several researchers have been involved in generating new Archimedean copulas, using its generator. Joh

and Hu (1996) introduced families of multivariate copulas with tractable dependence structure, which was obtained by a

mixture of a distributions called max-infinitely divisible. Genest et al., (1993) showed five different ways of generating

alternative models having an Archimedean generator. The methods were right and left composition, scaling, composition

via exponentiation, and linear combination. As an example, they generated a new generator which is a combination of

Clayton’s Frank’s and Gummble’s bivariate copulas, given by

ϕα,β,γ(t) = log

(
1 − (1 − γ)β

1 − (1 − γtα)β
)
, α > 0, β > 1, 0 < γ < 1, 0 < t ≤ 1. (3)

Morillas (2005) introduced a method designed to produce new copulas such that Cϕ (x1, ..., xn) = ϕ[−1] (C (ϕ (x1) , ..., ϕ (xn))) .
She showed sufficient conditions for the new copula but didn’t investigate its behavior as compared with that of the orig-

inal. Spreeuw (2010) presented a flexible family of Archimedean copula where the inverse of an Archimedean generator

was generated from ψ, a utility function which is nondecreasing and concave. He assumed that ψ defined on [0, 1] so −ψ
is strictly decreasing and convex and could therefore serve as a generator. He transformed ψ in order to get ψ(0) = −1 and

defined an Archimedean generator of the form ϕ(s) = max
[
1 + β (ψ (0) − ψ (s)) , 0

]
, s ≥ 0, β > 0. Bernardino & Rulliere

(2017) proposed conversion of the generator that allowed choosing an upper tail dependence without changes in the shape

of the copula. They changed only part of a given generator and called it an Upper-Patched generator because the transfor-

mation is local and affects only the upper tail dependence. The new generator is given by ϕ (t) = Pd−1(t)+(1−Pd−1(t))ϕD(t),
where t < t0, ϕD(t) is a non-strict generator with endpoint d0 ≤ t0 and u2 := max (u1, u2). Xie et al., (2017) extended

the Durante copula to a multivariate case by applying Marshall-Olkin distribution ideas (Marshall & Olkin, 1967). In

our work we choose a different approach for enriching the Archimedean family and to apply it for two dimensions. We

intend to replace θ, the generator parameter by new parameters, and propose a methodology for generating new copulas

characterized by enhanced structures and improved properties. In section 2, we introduce a compounding method and

the notion of compound generator. A short introduction of dependence measures is given in section 3. An example of

generating a compound copula and a comparison of the original and the resulting compound copula is given in section 4.

Conclusions are given in section 5.

2. Compound Archimedean Copula

In this paper we present a tool for generating new Archimedean copulas and we provide an extension to this family by

creating new generators. This is achieved by using a compound of an existing generator with respect to gη (θ), a probability

density of the dependence parameter θ,

ϕM (t) =
∫
Θ

ϕθ (t) gη (θ) dθ, (4)
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where M denotes compound. We now give sufficient conditions on the new generator guaranteeing that the resulting

copula belongs to the Archimedean family.

Theorem 1 Let ϕM (t) =
∫
Θ
ϕθ (t) gη (θ) dθ be a compound of ϕθ (t) , a generator of an Archimedean copula, with respect to

gη (θ), a density function of θ. Then for any ϕθ (t) and density function gη (θ) the compound ϕM (t) is also an Archimedean
copula generator.
Proof. We need to show that the inverse of the Archimedean generator ϕ−1

M (t) is strictly decreasing and convex and that

the generator satisfying ϕM (1) = 0.

Using the fact that for Archimedean generator complies ϕθ (1) = 0 we get

ϕM (1) =

∫
Θ

ϕθ (1) gη (θ) dθ = 0. (5)

It is obvious that

ϕ−1
θ (ϕθ (t)) = t. (6)

By differentiating both sides of Eq. (6) by t, we get

ϕ−1′
θ (ϕθ (t))ϕ′θ (t) = 1, (7)

ϕ′θ (t) =
1

ϕ−1′
θ (ϕθ (t))

. (8)

Taking into account that ϕ−1
θ (t) is strictly decreasing, we conclude that ϕ−1′

θ (t) < 0 and ϕ−1′
θ (ϕθ (t)) < 0. Finally, by Eq.(8),

we obtain that ϕ′θ (t) < 0. Similarly we get

ϕ′M (t) =
1

ϕ−1′
M (ϕM (t))

. (9)

Let ϕ′M (t) be the first derivative by t of the compound generator ϕM (t) such as

ϕ′M (t) =
∫
Θ

ϕ′θ (t) gη (θ) dθ. (10)

Taking into account that ϕ′θ (t) < 0 we conclude that ϕ′M (t) < 0 and ϕ−1′
M (ϕM (t)) < 0 and that leads to ϕ−1′

M (t) < 0.
Similarly, we get

d
dt
ϕ−1′

M (t) = ϕ−1′′
M (t) = −

ϕ
′′
M

(
ϕ−1

M (t)
)

(
ϕ′M

(
ϕ−1

M (t)
))2
ϕ−1′

M (t) (11)

where ϕ′′M (t) is the second derivative by t, i.e.

ϕ′′M (t) =
∫
Θ

ϕ′′θ (t) gη (θ) dθ. (12)

Due to the fact that the generator ϕθ (t) is convex (Nelsen, 2006. Theorem 4.1.4), we get that ϕ′′θ (t) > 0 and taking into

account (12) we get ϕ′′M (t) > 0. We can, therefore, conclude that ϕ
′′
M

(
ϕ−1

M (t)
)
> 0. Using ϕ−1′

M (t) < 0, from Eq.(11) the

desired result ϕ−1′′
M (t) > 0 is obtained.

corollary 2 For any ϕθ (0) < ∞, the copula Cθ(u, v) is defined as a non-strict copula (Nelsen, 2006), and CM(u, v), the
compound copula, is also non-strict , and the compound generator holds the same end value, ϕM (0) as that of the original
generator, ϕθ (0).

Proof. Let ϕθ (t) be a non-strict generator, then ϕθ (0) is a real number smaller than infinity. Let ϕM (t) be a compound

generator defined in Eq.(4) then

ϕM(0) =

∫
θ

ϕθ (0) gη(θ)dθ (13)

= ϕθ (0)

∫
θ

gη(θ)dθ = ϕθ (0) < ∞.
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3. Measures of Association and Compound Copula

The most common approach for characterizing a copula is measuring the strength of dependence which the data hold and

its asymptotic properties. In this paper, we focus on two key measures of association, Kendall’s tau, which is known as a

bivariate concordance and discordance measure, and cross-ratio, which describes local dependence. We also examine the

finite tail dependence of the compound copula (Sweeting and Fotiou, 2011).

Kendall’s tau. Genest and Rivest (1993) showed that for Archimedean copulas this measure is given by:

τθ = 1 + 4

∫ 1

0

ϕθ (t)
ϕ′θ (t)

dt. (14)

Let ϕθ(t) be an Archimedean generator resulting in Kendall’s tau τθ as introduced in Eq.(14). Let gη (θ) be a compounding

distribution of θ used to create a compound generator shown by (4). By substituting ϕθ (t) into ϕM (t) the Kendall’s tau for

a compound copula is defined as

τM = 1 + 4

∫ 1

0

⎡⎢⎢⎢⎢⎢⎣
∫
θ
ϕθ (t) gη (θ) dθ∫
θ
ϕ′θ (t) gη (θ) dθ

⎤⎥⎥⎥⎥⎥⎦ dt. (15)

τM can be expressed as an expectation of τθ with respect to a specified distribution g∗η, as seen in the following theorem.

Theorem 3 Let the compounding distribution defined in (4), then τM = Eg∗η [τθ] , where g∗η =
ϕ′θ(t)gη(θ)∫
θ
ϕ′θ(t)gη(θ)dθ

.

Proof.

Eg∗η [τθ] = 1 + 4

∫
θ

g∗η

[∫ 1

t=0

ϕθ (t)
ϕ′θ (t)

dt
]

dθ.

= 1 + 4

∫ 1

t=0

∫
θ

ϕθ (t)
ϕ′θ (t)

ϕ′θ (t) gη (θ)∫
θ
ϕ′θ (t) gη (θ) dθ

dθdt

= 1 + 4

∫ 1

t=0

⎡⎢⎢⎢⎢⎢⎣
∫
θ
ϕθ (t) gη (θ) dθ∫
θ
ϕ′θ (t) gη (θ) dθ

⎤⎥⎥⎥⎥⎥⎦ dt = τM . (16)

Cross-ratio. The cross-ratio function is a commonly used tool to describe local dependence between two correlated

variables. It can detect characteristics of association that cannot be captured by any other global dependence measures as

Kendall’s tau (Abrams et al., 2020). Oakes (1989) defined the measure as:

Rθ(u, v) =
Cθ(u, v) d2

dudvCθ(u, v)

d
dvCθ(u, v) d

duCθ(u, v)
. (17)

Positive or negative local dependence and independence at a location (u, v) are obtained for Rθ(u, v) > 1, 0 < Rθ(u, v) < 1

and Rθ(u, v) = 1, respectively. Using basic derivative rules he gave a simplified measure for the Archimedean copula,

Rθ(u, v) = rθ {Cθ(u, v)} = rθ(s) =
−sϕ′′θ (s)

ϕ′θ(s)
|s=Cθ(u,v). For the compound copula rθ is replaced by rM and Cθ(u, v) is replaced by

CM(u, v).

Finite tail dependence. The coefficient of tail dependence measures the amount of dependence in the upper and the lower

tail of distribution at the limit. For a copula function this boundary does not always exist. An alternative which we adopt

here is to calculate the measure at a finite value k, (Sweeting and Fotiou, 2011). The finite upper tail dependence (FUTD)

for the compound copula at k is defined as

λ(k)
U =

1 − 2k +CM(k, k)

1 − k
, (18)

and the finite lower tail dependence (FLTD) as

λ(k)
L =

CM(k, k)

k
. (19)

4. Generating a Compound Copula: An Example

In this section, we introduce an example of generating a compound copula. We show the benefits gained by using the

compound copula, as compared to the standard Archimedean copula, by comparing the values of the dependence measures

discussed above.
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Example 1.

Let Cθ(u, v) be a copula introduced by Nelsen (2006, 4.2.8)

Cθ (u, v) = max

[
θ2uv − (1 − u) (1 − v)

θ2 − (θ − 1)2 (1 − u) (1 − v)
, 0

]
. (20)

This copula is an Archimedean copula with generator function

ϕθ (t) =
1 − t

1 + (θ − 1) t
, θ > 1. (21)

Note that this a non-strict copula with ϕθ (0) = 1.

Let us assume that θ, the dependence parameter, is distributed

gη(θ) =
1

ln(b) − ln(a)

1

θ
, a < θ < b. (22)

Then using Eq.(4) we get a compound generator of the form

ϕM(t) =
1

ln(b) − ln(a)

∫ b

a

1

θ

1 − t
1 + (θ − 1) t

dθ (23)

=
1

ln(b) − ln(a)
(ln(θ) − ln ((θ − 1)t + 1))b

a

=
1

ln(b) − ln(a)

(
log(b) − ln ((b − 1)t + 1)

− log(a) + ln ((a − 1)t + 1)

)

= 1 +
ln

(
((a−1)t+1)
((b−1)t+1)

)
ln

(
b
a

) , ∀ b > a, (24)

which provides ϕM(1) = 1 +
ln( a

b )
ln( b

a )
= 1 − 1 = 0, and ϕM(0) = 1 + ln(1)

ln( b
a )
= 1, with an inverse

ϕ−1
M (t) =

bat − abt

bat − bat+1 + abt+1 − abt . (25)

By placing Eq.(25) and Eq.(23) in Eq.(2) , a new compound copula is obtained:

CM (u, v) = max

[
bak − abk

bak − bak+1 + abk+1 − abk , 0

]
, (26)

for k = (ϕM(u) + ϕM(v)) =

(
1 +

ln
(

((a−1)u+1)
((b−1)u+1)

)
ln( b

a )

)
+

(
1 +

ln
(

((a−1)v+1)
((b−1)v+1)

)
ln( b

a )

)
,

∀ b > a.

Kendall’s tau: Using Eq.(14), for the original copula we get

τθ = 1 − 2(θ + 2)

3θ
, (27)

and for the compound generator in Eq.(23) we get
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τM = 1 + 4( (28)∫ 1

t=0

(((a − 1)t + 1) ((b − 1)t + 1))
(
ln

(
b
a

)
+ ln

(
((a−1)t+1)
((b−1)t+1)

))
a − b

)dt

= 1 +
4

6(a − b)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 (a − 1) (b − 1)
(
ln

(
b
a

))
+3 (a + b − 2) ln( b

a ) + b − a
+ (2(a − 1)(b − 1) + 3(a + b)) ln( a

b )

− 2(b−1)
(a−1)

+
3(a+b)
(a−1)

− 3(a+b)
(b−1)

+
2(a−1)
(b−1)

+6 ln( b
a ) +

(3a−b−2) ln(a)

(a−1)2 +
(a+2−3b) ln(b)

(b−1)2

− 6a
(a−1)
+ 6b

(b−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The cross ratio for the original copula,is given by:

rθ(s) =
−s

(
2(θ−1)2(1−s)

(1+(θ−1)s)3 +
2(θ−1)

(1+(θ−1)s)2

)
− θ

(1+(θ−1)t)2

, (29)

where s = Cθ (u, v) = max
[
θ2uv−(1−u)(1−v)

θ2−(θ−1)2(1−u)(1−v)
, 0

]
, rθ(s) ∈ [0, 2] .

For the compound copula we get

rM(s) =

−s
[

(b−a)(2(a−1)(b−1)s+a+b−2)

((a−1)s+1)2((b−1)s+1)2 log( b
a )

]
−

(
(b−a)

((a−1)s+1)((b−1)s+1) log( b
a )

)
=

s (2(a − 1)(b − 1)s + a + b − 2)

((a − 1)s + 1)((b − 1)s + 1)
, (30)

where s = CM(u, v).

The upper and lower tail dependence are given by (18)-(19) with (23) substituted in CM(u, v).We now explore graphically

the three measures of dependence discussed above with respect to the original and compound copulas. Figures 1,2 and 3

are related to Kendall’s tau, Cross-ratio and FLTD, respectively.
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The blue lines represent the values of the measures as a function of θ for the original copulas. The other four lines represent

the values for the compound copula, where each line corresponds to different fixed values of a and varying values of b.

From the graphs, it can be seen that the compound copula offers a richer choice of dependence structures.

Figure 4. presents Kendall’s tau (x-axis) vs. Cross-ratio values (y-axis) for the original and the compound copulas. The

top left represents the original and for the bottom left the compound copula. The right pair is similar to that on the left
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except that Kendall’s tau is limited to (0 − 0.1). We note that while for each value of Kendall’s tau there is only one

corresponding value of the cross-ratio, the range of such values in the compound copula is much wider. This clearly offers

extended modeling possibilities.
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Figure 4. Kendall’s tau vs. Cross-ratio for mixed and original copula

Example 2.

Let Cθ(u, v) be a copula introduced by Nelsen (2006, 4.2.16)

Cθ(u, v) =
1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(
u + v − 1 − θ

(
1

u
+

1

v
− 1

))
+

√(
u + v − 1 − θ

(
1

u
+

1

v
− 1

))2

+ 4θ

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (31)

With generator function

ϕθ (t) =
(
θ

t
+ 1

)
(1 − t) , θ > 0 (32)

note that this is a strict copula with ϕθ (0) = ∞. Let us assume that θ, the dependence parameter, is distributed Gamma i.e.

gα,β(θ) =
e−θββαθα−1

Γ(α)
. Then using Eq.(4) the compound generator equal to

ϕM(t) =

∞∫
θ=0

gα,β(θ)ϕθ (t) dθ (33)

=

∞∫
θ=0

e−θββαθα−1

Γ (α)

((
θ

t
+ 1

)
(1 − t)

)
dθ

=
(α + βt)(1 − t)

βt
,

with an inverse

ϕ[−1]
M =

1

2β

(
(−α − βt + β) +

√
(αβ − β − t)2 − 4βt

)
. (34)

And using Eq.(2) a new compound copula is obtained

CM(u, v) =
1

2β

((
−α − β ·

((
(α + βu)(1 − u)

βu

)
+

(
(α + βv)(1 − v)

βv

))
+ β

))
+ (35)

1

2β

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
√√√ (
α + β ·

((
(α+βu)(1−u)

βu

)
+

(
(α+βv)(1−v)

βv

))
− β

)2
+

4β
((

(α+βu)(1−u)

βu

)
+

(
(α+βv)(1−v)

βv

)) ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
which it is a strict copula with ϕM(0) = ∞. We now explore this copula function using two dependence measures.

Kendall’s tau and Blomqvit’s β, which describe the position of pairs of observations relative to their quadrants and obtained
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by

βl = 4 ·C
(

1

2
,

1

2

)
− 1 (36)

For this purpose we substitute (33) and (32) into Kendall’s tau Eq.(14) , and calculate Blomqvit’s β by substituting (31)

and (35) into Eq.(36) for u = 1
2

and v = 1
2
.We will explore this two measures numerically. Figure 5 relates to Kendall’s

tau and Blomqvit’s β.
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Range of Blomqvit's values VS. Kendall's tau values

 Blomqvit values for the Orginal copula in Red.

        Blomqvit values for the compound copula in steelblue.

Figure 5. Kendall’s tau vs. Blomqvit’s β for the original and the compound copulas

The red dots represent the values of Blomqvit’s β corresponding to Kendall’s tau in the original copula. We note that

for each value of τθ there is a single corresponding Blomqvit’s β. The blue lines represent the values of Blomqvit’s β
corresponding to Kendall’s tau in the compound copula. For each τθ there are multiple values of Blomqvit’s β. While for

the original copula, positive values of τθ resulted in only positive values of Blomqvit’s β and negative values of τθ resulted

in only negative values of Blomqvit’s β, this restriction is removed when it comes to the compound copula, e.g. in the

second quadrant there are positive values of Blomqvit’s β corresponding to negative values of τθ.

5. Conclusions

In this paper, we introduce a novel method for generating new members of Archimedean copulas. We use a compound

distribution approach by which we compound the generator function of a copula with a density function of its depen-

dence parameter. We therefore create a new compound generator function which subsequently generates a compound

Archimedean copula. We demonstrate this process with particular Archimedean copulas and show that the compound

copulas offer a higher degree of flexibility in terms of dependence measures.
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Abstract 
The Maxwell-Boltzmann speed distribution is the probability distribution that describes the speeds of the particles of 
ideal gases. The Maxwell-Boltzmann speed distribution is valid for both un-mixed particles (one type of particle) and 
mixed particles (two types of particles). For mixed particles, both types of particles follow the Maxwell-Boltzmann 
speed distribution. Also, the most probable speed is inversely proportional to the square root of the mass. 

The Maxwell-Boltzmann speed distribution of mixed particles is based on kinetic theory; however, it has never been 
derived from a mechanical point of view. This paper proves the Maxwell-Boltzmann speed distribution and the speed 
ratio of mixed particles based on probability analysis and Newton’s law of motion. This paper requires the probability 

density function (PDF)  of the speed  of the particle with mass  after the collision of two 
particles with mass  in speed  and mass  in speed . The PDF  in integral form has been 
obtained before. This paper further performs the exact integration from the integral form to obtain the PDF 

 in an evaluated form, which is used in the following equation to get new distribution  from 
old distributions . When  are the Maxwell-Boltzmann speed distributions, 
the integration  obtained analytically is exactly the Maxwell-Boltzmann speed distribution. 

 

The mechanical proof of the Maxwell-Boltzmann speed distribution presented in this paper reveals the unsolved 
mechanical mystery of the Maxwell-Boltzmann speed distribution since it was proposed by Maxwell in 1860. Also, 
since the validation is carried out in an analytical approach, it proves that there is no theoretical limitation of mass ratio 
to the Maxwell-Boltzmann speed distribution. This provides a foundation and methodology for analyzing the interaction 
between particles with an extreme mass ratio, such as gases and neutrinos. 

Keywords: Maxwell speed distribution, Maxwell-Boltzmann speed distribution, Maxwell-Boltzmann distribution, 
Avogadro’s law, kinetic theory of gases, kinetic theory, thermodynamics, statistical mechanics, subatomic particles 

1. Overview 
James C. Maxwell (1860a,b) first provided the Maxwell speed distribution in 1860 on a statistical heuristic basis. 
Maxwell (1867) and Boltzmann (1872) carried out more investigations into the physical meaning of the distribution. 
Boltzmann (1877) derived the distribution again based on statistical thermodynamics. Nevertheless, none of their 
approaches were based on Newton’s law of motion. 

The simplest way to prove the Maxwell-Boltzmann speed distribution is from a statistical view, beginning from the 
normal distribution of the velocity  in x-direction as follows. 

                                        (1) 

or  

                                          (2) 
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Where , ,  is the Boltzmann constant,  is the equilibrium temperature, and  is the particle 

mass. Extending from the velocity  to three independent velocities in three directions, and transferring it 

to spherical coordinates ( ) using , , and  gives 

                             

                               (3) 

Where  is the Maxwell-Boltzmann speed distribution shown in Equation (4) (Brush, 1966, Landau et al., 1969, 
McQuarrie, 1976, Garrod, 1995, Maudlin, 2013). 

                                     (4) 

In the Maxwell-Boltzmann speed distribution, the most probable speed, , is inversely proportional to the square root 
of the mass for fixed temperatures as follows 

                                         (5) 

 

Therefore, when two types of particles with mass  and  are mixed at the same temperature, the above equation 
gives the following mass-speed relationship 

                                          (6) 

An example of the theoretical Maxwell-Boltzmann speed distribution curves and their corresponding most probable 
speeds  and  of two types of particles with a mass ratio of nine are shown below. 

 

Figure 1. Maxwell-Boltzmann speed distributions of two types of particles 

Boltzmann (1872) tried to provide mechanical proof of the Maxwell-Boltzmann speed distribution in 1872 by 
formulating the following equation. 

                              (7) 

where  is the number of particles with speeds between x and x+dx, and similarly for ,  is the 
number of particles with speeds between  and . In addition, the symbol  represents the probability 
density function (PDF) of the resulting speed after a collision between two particles. The definition is excellent and 
meaningful, but the method used to calculate this PDF  has yet to be created. Following Boltzmann’s work in 1872, 
we derived the PDF  based on Newton’s law of motion in this paper. The PDF  for equal mass particles had been 
provided by Lin et al. (2019). 

To consider the collisions of unequal mass particles, we need to have four PDFs: , , 
, and . Where  is the PDF of post-collision speed  of a particle with 

a mass  after the collision of two particles with mass  in a pre-collision speed  and mass  in a 

Normalized speed 
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pre-collision speed . For , the PDF is identical to the collision of two equal mass particles (Lin et al., 2019). 
For , the PDF will be given in this paper. 

After the PDF  was derived, a numerical iteration method (Lin et al., 2019) can be used to get a new 
distribution  from the old distribution , and set  for the next iteration using the 
following equations. 

,  =1,2,…N           (8) 

Where  is the fraction of the number of particles with mass , N is the total number of particle types, and 
. 

Due to finite precision, the limit of computer memory, and computation time, the numerical iterations method can only 
apply to mixtures of gasses with a mass ratio between 0.01 and 100. In the cases of mixtures of molecules and 
subatomic particles, the extreme mass ratio is between  and . This paper provides an analytical integration 
method to show that the Maxwell-Boltzmann speed distribution is valid for even these extreme cases. When 

 are the Maxwell-Boltzmann speed distributions, the analytical integration  obtained 
by the following equation will also be the Maxwell-Boltzmann speed distribution.  

                  (9) 

The integration is tedious, but the final result is exactly the Maxwell-Boltzmann speed distribution. Moreover, the RMS 
speed square is inversely proportional to the particle masses as predicted by Avogadro’s law (Avogadro). 

2. Velocity Diagram for a Collision of Two Particles  
A velocity diagram for a collision of two particles is used to derive the PDF of two types of particles' post-collision 
speed. Two concentric circles in the 2D plane can be constructed as a velocity diagram for the collision of two particles 
in 3D space. The concentric circles velocity diagram provides a geometric relationship between the pre-collision and 
post-collision speeds. The concentric circles velocity diagram was used by Maxwell in his study of the 
Maxwell-Boltzmann speed distribution and is explained and proved in this section. 

Concentric circles velocity diagrams are based on two reference frames: the fixed reference frame (O) and a 
center-of-mass (CM) reference frame (C). Speeds can be transferred between the fixed frame (O) and the CM frame 
(C).  

2.1 The Fixed Reference Frame 
In the fixed reference frame, before a collision, two particles with mass  and  are moving at pre-collision 
velocities  ( ) and  ( ). After the collision, the post-collision velocities of the two particles change to 

 ( ) and  ( ), as shown in the figure below. It is important to note that the variables in the PDF  
 are speeds, which are the magnitudes of the velocities. Note that the vector  without an arrow-hat  

indicates the length of the vector. For example, . 

 

Figure 2. Velocities of two particles before and after a collision 

2.2 The Center-of-mass Reference Frame 
The center-of-mass (CM) reference frame uses the center of mass of two particles as its origin point (C). The velocity of 
the center-of-mass of two particles is related to the two masses  and  and their corresponding velocities  and 
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 as 

                                (10a) 

where  and  are mass ratio and are defined as: ; . 

Before the collision, the pre-collision velocities of particles 1 and 2 in the CM frame are 

                                       (10b) 

                                       (10c) 

 

It can be shown that after the collision, the post-collision velocities of particle 1 and particle 2 change to  ( ) 
and  ( ) according to the following first three rules, which satisfy the last two conservations of momentum 
and energy. 

1. Point P will be on Circle C-A.  

2. Point Q will be on Circle C-B.  

3. Velocity  and  have opposite directions.  

4. Conservation of momentum. 

 

5. Conservation of energy (by  and ). 

    

  

 

Figure 3. Post-collision velocities of two particles relative to the center of mass 

3. Probability Density Function of the Post-Collision Speed in Integral Form 
After any collision between two particles, the resulting speeds depend on two random factors: (1) the random directions 
of the pre-collision velocities  relative to  represented by a random angle  (see Figure 4), and (2) the random 
direction of the post-collision velocity  represented by a random angle  (see Figure 4). These two random factors 
are discussed below to prepare for the derivation of the PDF . 

          (11) 

The right-hand side of the above equation will be derived in the following sections. And, the final PDF  will be 
obtained at the end of this section. 
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Figure 4. Three sphere surfaces O-A, D-C, C-P with centers at O, D, C, and radius  

3.1 The Randomness of the Directions in 3D Before the Collision 
For two given pre-collision speeds  and , the post-collision speeds depend on the directions of the two 
pre-collision velocities  and . The two pre-collision velocities both have random directions. The directions of 
these two pre-collision velocities determine the radius of circle C-A and circle C-B. The randomness of the two 
velocities can be reduced to one random angle  which considers only the relative direction between  and  and 
is defined as the angle between the two pre-collision velocities  and  (in the fixed frame) as shown in Figure 4. 

For fixed magnitudes of  and , if  is also fixed in the direction, but the direction of  is 
changed, then point A will be located on a spherical surface, as shown in Figure 4. And the probability of point A on the 
surface is uniformly distributed since  has equal opportunity in any direction. Therefore the probability density of 
point A located on the sphere surface O-A at angle  is 

                                        (12) 

3.2 The Randomness of the Directions in 3D after the Collision 
Similar to the pre-collision directions defined by  (representing the relative moving direction before the collision), the 
location of the point P will be defined by , as the angle between  and , as shown in Figure 4, such 
that the same angle  will result in the same magnitude  of the different velocity . 

The band area between  and  on the sphere surface C-P is , the total area of the sphere 
surface is , and the ratio is  Therefore the probability density of point P located on the sphere surface 
C-P at angle  is  

                                      (13) 

3.3 Considering all the Possible Directions in 3D Before and after Collisions 
For a fixed , the  and  as shown in Figure 4, can be computed as 

 

                          (14a) 

 

 

                                    (14b) 

 

So the relation between  and  for fixed  and  is given by 

A
P

O D B
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, )
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                       (15) 

Hence 

                   (16) 

 

3.4 Probability Density Function  in Integral Form 
The PDF  of the post-collision speed  for two given pre-collision speeds  and  can be 
obtained by summating all densities for all possible directions, i.e.,  between 0 , yields 

 

                           

                             (17) 

Where 

 

                                         (18a) 

                                   

                                (18b) 

                                         (18c) 

                               

                                (18d) 

                        (18e:g) 

,  ,                   (18h:j) 

4. Probability Density Function of the Post-Collision Speed in Evaluated Form 
The PDF , shown in Equation (17), is in integral form and can be used to compute numerically the probability of 
post-collision speed of particles 1 after a collision. Because the PDF in integral form can be computed numerically, it 
can be used in Equation (8) to mechanical proof the Maxwell-Boltzmann speed distribution using numerical iteration. 
The limitation of computer-aided proof of the Maxwell-Boltzmann speed distribution is that two particles’ mass ratio 

cannot be near infinite.  
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In order for the PDF  to be used for analytical proof of the Maxwell-Boltzmann speed distribution, the PDF 
must be evaluated and formulated for all the possible pre-collision speeds of the two particles as detailed in the 

following sections.  

4.1 Integrate the Probability Density Function 
The PDF of the post-collision speed in the previous section is in integral form with an interval from 0 to . Since some 

 values in the interval near the lower bound  and the upper bound  cannot have a valid real number but 
some imaginary number, it is required to use the proper interval  of the integration and integrate the PDF 

 of Equation (17) as 

 

 

    (19a) 

                                            (19b) 

where 

                     (20a) 

,                       (20b:d) 

4.2 Determine the Bounds of Interval  
We will determine the lower bound ( ) and upper bound ( ) of  ( ) for given pre-collision speed ( ), 
pre-collision speed ( ) and a target post-collision speed ( ) in the above PDF . The  ( ) is the 
angle between the pre-collision speed ( ) and pre-collision speed ( ), as shown in Figure 4.  

The possible range of  ( ) is from  to . However, some ranges of  ( ), near  or/and , are 
impossible to reach the target post-collision speed ( ) because  ( ) is bound by  and  as following 

                                                     (21) 

Where  

                                                           (22a) 

                                   (22b) 

                                       (22c) 

Where,  and  as shown in Figure 4, can be computed from  by Equation (14). 

The inequation of Equation (21) can be formulated in terms of , , ,  and separated into two inequations as 

          (23a) 

            (23b) 

Let the  in lower bound and upper bound of  be  and  respectively and express the boundary values of 
the above equation using a plus-minus sign in conjunction with  for a more compact formulation as  

          (24) 

The  and  in the above equation can be solved by taking square twice (Note 1), as shown in Equation 
(25). For convenience, let us assign a new variable  to the solutions of  as 
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                   (25a) 

Or in polar coordinate as follows, where . 

                          (25b) 

Because the value of any cosine function cannot be smaller than  or larger than , we must limit the values of 
 between -1 and +1 as 

                 and                      (26) 

In the table below,  for each case is calculated by Equation (20a) as follows. 

For Case 1 and Case 3, :    (  

 

                          (27) 

For Case 2 and Case 4, :    ( ) 

 

 

                      (28) 

Equation (27) and Equation (28) can be combined to  

               (29) 

 

Table 1. The functions  and  for all cases 

     

Now we have determined the bounds  of the integral and the values . Let’s summarize the PDF again as 

following 

                                    (30) 

where 

              (31a) 

                  (31b:d) 

                              (31e:f) 

IF Use

Case 1 *

Case 2 *

Case 3

Case 4 **

4 Possible
L bounds

4 Possible
U bounds

*   
** 
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Figure 5. Relations between ( ) and ( ) 

 
4.3 Regions of  by the Lower and Upper Bounds 
The PDF  in the equation above cannot be formulated with one formula but 16 formulas. Because  has four 
possible formulas of , , , , and  have four possible formulas of 

, , , , the total combination of  is sixteen ( ), as shown 
in the table below.  

Table 2. Sixteen formulas of  for computing  

The formulas of  in the table above can be visualized as eight regions (ADFGJKMP) with coordinates of 
 and  as shown in Figure 6. Each region represents a formula of . Both  and  have four 

possible formulas, as shown in Equation (29), which in terms depends on the pre-collision speeds of two particles 
before a collision. The formula of  is the addition of  (Case 3 and Case 4) and  (Case 1 and Case 
2) as shown in the table above. 

In Figure 6, eight formulas (BCEHILNO) are not shown as regions. It can easily be proved that these eight formulas 
(BCEHILNO) are the boundary between two regions. For example, Formula E or O ( ) is the boundary (part of 

) between Formula G and Formula M and can be obtained by equating the Formula G and Formula M as 

 

Substituting the above equation of the boundary line ( ) into Formulas G and M shows that Formula G and Formula 
M merge to Formula E or O as 

 

 

Other examples for the boundary lines  and  between Formula M-A and Formula M-0 can be obtained by 

Post-collision
Pre-collision

a b

Lower bound Case 1: Case 2: 

Upper bound

Case 3: 
A B (D-J Boundary) C (A-K Boundary) D ( )

E (G-M Boundary) F G ( ) H (F-P Boundary)

Case 4: 
I (A-K Boundary) J ( ) K L (D-J Boundary)

M ( ) N (F-P Boundary) O (G-M Boundary) P



 
 
http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                Vol. 10, No. 3; 2021 

144 

Formula M = Formula A and Formula M = 0 as 

 

 

 

All the boundary lines in Figure 6 can be found from the formulas of two adjacent regions as described above and are 
listed in the table below.

Table 3. Equations of the boundary lines 

 

For the case of , the angle  is greater than zero ( ), and there are six regions 

(AFGKMP) of , as shown in Figure 6(a). For the case of , the angle  is less than zero ( ), 

and region G becomes Region J, and region M becomes Region D, as shown in Figure 6(b).  

 

 

Figure 6. Eight regions of  and boundary lines 

As it can be observed in Figure 6, the shapes of regions of  is related to the angle , which is defined as 

, as shown in Equation (18h). Four combinations of  and  are used as examples to visualize the 

regions of  for some typical mass ratios. The four mass ratios are (a) , (b) 

, (c) , (d) . Where (a) is a special case representing 

equal-mass particles. The angle  determines the slope of the boundary lines  to  as 

shown in Figure 6 and Figure 7. 

Boundary line (BL) Adjacent regions Equation of boundary line

K-0

F-0

F-P; G-M; K-A ; 

A-0

P-M; F-G,    P-D; F-J

G-0,             J-0

 G−K; M−A, J−K; D−A

M-0,            D-0

P
F

Regions and boundary lines for 

J
D
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         Figure 7. Regions A to P for the formulas of  

for computing  with  

5. Analytical Proof by Double Integrals 
The Maxwell-Boltzmann speed distribution is proved by examining speed distributions before and after a random 
collision of two particles in a steady-state system. We assumed the speed distributions of both particle 1 and particle 2 
before a collision are the Maxwell-Boltzmann speed distributions. Suppose the integrated speed distributions of both 
particle 1 and particle 2 after the collision are also the Maxwell-Boltzmann speed distribution. In that case, it proves that 
the Maxwell-Boltzmann speed distribution is the right speed distribution of the steady-state system. 

Before a random collision, we let the speed distributions  of particle 1 and particle 2 respectively be 

the Maxwell-Boltzmann speed distribution as  

                                              (32a) 

                                              (32b) 

Where ,  and  is the Boltzmann constant,  is the temperature. 

The speed distributions of particle 1 after the collision can be calculated from the following equation with the 

PDF  computed by Equation (30) as 

               (33a) 

           (33b) 

Where  is the PDF of post-collision speed  of particle 1 after a random collision of particle 1 with 

pre-collision speed  and particle 2 with pre-collision speed  as 

                                         (34a) 

A

PF

K

a b

MG

A

P
F

K

null null null

M

G

A

P
F

K

MG

d

null

null

null

null

c



 
 
http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                Vol. 10, No. 3; 2021 

146 

with                                    (34b) 

 

5.1 Simplify the Distribution Parameters 

To further evaluate the speed distribution   as in Equation (33), the speed distribution can be first simplified 

by eliminating  by the definition of the Boltzmann constant  as shown below 

                                                                (35) 

Since  (as defined in Equation (18e)) and simplified symbol  as  will yield 

          

 

                     (36) 

 

5.2 Convert Coordinate to Polar Coordinate 

The speed distribution, as shown in the equation above, has a double integral for  and . By converting Cartesian 

coordinates to polar coordinates:   We can evaluate the first integral for 

 then evaluate the second integral for  as following. 

            

                    (37) 

In the flowing section, we will evaluate the integral for . 

5.3 Evaluate the Integral for  

In this section, we will evaluate the inner integral  in Equation (37). Where  

could be any of the eight formulas depends on the pre-collision speeds  and . Because  has a 

different formula for different  and , the above integral needs to be separated into different integrals for different 

regions. For example, the integral path across regions MGF, , need to be evaluated by three integrals of 

corresponding formulas  from Table 2 and bounded by the relevant boundary lines from Table 3 as follows.  

 

 

Where  

 

Substituting  for each region from Table 2 into the above three integrals and evaluating each integral will 
yield  
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It can be shown that the integral for  integrating through different paths for different  results in the same function of 
 as 

             

                            (38) 

The detailed integrations are shown in Note 2. 

 

Figure 8. Integration paths 

5.4 Evaluate the Integral for  
Substituting Equation (38) into Equation (37) yields 

             

  

                                           (39) 

5.5 Cange Variable from  to  

Changing the variable from  to  by , , and using  

, yields 

                

  

                                          (40) 

This concludes the derivation of the Maxwell-Boltzmann speed distribution  of the post-collision speed of 
particle 1 as 

                                 (41) 

The PDF  of the post-collisiton speed of particle 2 will also be exactly the Maxwell-Boltzmann speed 
distribution as  
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null
null
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(42) 

The above PDF  can be concluded by simply treat particle 2 as particle 1 and following the same procedure 
for getting . 

6. Conclusion and Outlook 
This paper analytically proved the Maxwell-Boltzmann speed distribution and the speed ratio of mixed particles based 
on particles' collision mechanics. The proof is based on a probability density function of post-collision velocities 
developed in Sections 3 and 4. The probability density function of the post-collision speed reveals the microscopic 
mechanics behind the macroscopic phenomenon. It can be used as a mathematical tool in the fields of statistical 
thermodynamics and kinetic theory. 

The derivation of the Maxwell-Boltzmann speed distribution results in another significant outcome: the 
Maxwell-Boltzmann speed distribution is valid for interactions with extreme mass ratios between molecules and 
subatomic particles, where the mass ratio is between  and .  

This article gives mechanical proof of the Maxwell-Boltzmann speed distribution and the speed ratio for monatomic 
particles only. The same procedures can be applied to polyatomic particles. The PDF of the post-collision speed must be 
extended to including the rotation of the molecules unless the rotation is small and its effect can be neglected. Moreover, 
the procedures may also be applied to charged particles. The chemical characteristic of molecules may be revealed from 
the speed and spin distributions induced by the mutual interaction of two different molecules. Our method provided in 
this paper may have a significant impact on this kind of research. 
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Notes 
Note 1. 
To solve for  from the following equation. 

 

  

 

Let , and square to get 

 

     

        

 

Rearrange and square again to get 

 

    

     

or 

 

    

    

or 

                                                      (N1) 

Where 
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Therefore, the  in Equation (N1) are given by 

 

 

                            (N2) 

 

By using ,  

the equation above becomes 

 

                                   (N3) 

 

Because the value of any cosine function cannot be smaller than -1 or larger than +1, we must limit the values of 

 between -1 and +1 as 

 

                 (N4) 

                 (N5) 

Note 2. 

a) Integration paths across the regions (AKGF) and (AKG’): 

A:  

  

 

K:  
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G’:  

    

    

 

G:  

    

    

              

 

F:  

    

  

 

Combine the results to get 

 

  

   

   

    

 

It is interesting to note that all the terms with a cosine function are canceled. 

For , , only two integration paths are needed: (AKF) and (APF). 

 

  

   

 

b) Integration paths across the regions (AMGF), (AMG’), and (M’G’): 
 

A:  
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M:  

  

    

                 

 

M’:  

  

    

 

G’:  

    

  

 

G:  

    

  

             

 

F:  

    

 

Combine the results to get 
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The integration path (M’G’) is the only path for very small .  
 
c) Integration paths across the regions (AMPF) and (M’PF): 
 

A:  

  

 

M:  

  

  

              

 

M’:  

    

  

 

P:  

  

 

F:  

    

 

Combine the results to get 
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Abstract 

Propensity Score Methodology (PSM) was used to investigate the effect of education on attitude towards domestic 

violence (ATDV) among men and women in Nigeria. 

A total of 14,495 and 33,419 records were extracted for men and women respectively from the 2016-2017 Multiple 

Indicator Cluster Survey (MICS) in Nigeria. The outcome variable was ATDV. The study framework described the role 

of education on ATDV in the light of demographic characteristics, socioeconomic profile, and lifestyle. Selection bias 

was checked among the levels of education using the multinomial logit regression. Propensity scores (PS) and PS 

weights were generated for the treatment variable and average treatment effects (ATE) of ATDV were estimated using 

logistic regression that combined regression adjustment and inverse-probability weight. Descriptive statistics, odds 

ratios and 95%CI were presented. 

The mean age of men and women were 30.8±10.2 years and 29±9.4 years respectively. About 22% men and 35% women 

justified domestic violence (DV) respectively. Selection bias was found between the covariates and level of education 

(p<0.05). PSM effectively corrected the selection bias (SD diff ≈ 0, Variance ratio ≈ 1). Men (AOR = 0.84, 95% CI: 

0.78, 0.92) and women (AOR=0.94, 95%CI: 0.80, 2.22) who have attained tertiary level of education were less likely to 

justify DV in comparison to their uneducated counterparts. 

Tertiary education was protective for ATDV among men and women. The use of PSM effectively controlled for 

selection bias in estimating the effect of education on ATDV. PSM will enable researchers make causal inference from 

non-experimental/cross-sectional studies in situations where randomized control trials are not feasible. 

Keywords: propensity score, attitude towards domestic violence, treatment effect, selection bias 

1. Background 

1.1 Introduction 

Experimental studies remain the gold standard when the measurement of a causal relationship is of interest. Scholars 

solely rely on Randomized Control Trials (RCT) to make causal inference in various fields of research. However, 

randomization, manipulation, and intervention are impossible in some research especially in evaluating the effect of 

programs (Oliver et al., 2002). For instance, it will be unethical for a researcher to deny some set of people access to 

education programs because of research. Similarly, it will be unacceptable for a researcher to expose some women to 

violence and watch if their access to maternal health care will be poorer than those who were not exposed to violence 

(Kean, Lock, & Howard-Lock, 1991; Sayar et al., 2019). However, analysis of observational data is an option, but the 

generalizability and the reliability of such findings are questionable especially in studies where a causal factor is of 

interest. The major problem of a non-experimental study is “selection bias” which is known as the systematic difference 

between the treatment (exposed) and control (non-exposed) group based on any number of covariates This systematic 

difference (selection bias) was corroborated by Shadish in a study where study participants who self-selected 

themselves into the training group performed better than those who were randomly assigned to the same training group 

(Shadish, Luellen, & Clark, 2006). Findings from Shadish study confirmed the claim of Rosenbaum and Rubin that 

participants who were not randomly assigned to treatment will tend to give a better report on the treatment or the 
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exposure. 

All efforts to adjust and correct for selection bias such as structural equation modeling (SEM) and adjusted regression 

showed no improvement (Cepeda, Boston, Farrar, & Strom, 2003). Only the use of PSM can  effectively  control for 

the selection bias (Arikan, van de Vijver, & Yagmur, 2018). Many studies have used PSM to address the problem of 

selection bias in quasi-experimental and cross-sectional study designs (Feng, Zhou, Zou, Fan, & Li, 2012; Rubin, 1997; 

Shadish et al., 2006; Yang, Imbens, Cui, Faries, & Kadziola, 2016; Yaya, Gunawardena, & Bishwajit, 2019). PSM is a 

statistical method that has proven useful for evaluating treatment effects when using non-experimental or observational 

data (Guo & Fraser, 2015). PSM is used when researchers need to assess the effect of covariates on the outcome 

variable using survey data, census, administration data, and other observational data without any intervention by 

random assignment rules (Rubin, 1997). 

Domestic violence (DV) was defined as “any use of physical, sexual, psychological or economic violence of one family 

member, irrespective of person’s age, gender or any other personal circumstance of the victim or the perpetrator of 

violence” (DHS, 2018). Attitude towards domestic violence (ATDV) has been identified as an indicator of the degree of 

social acceptance of DV and a known predictor of victimization and perpetration of DV. People’s ATDV determines 

whether such violent acts will be reported or not (NBS, 2017; Okenwa-Emegwa, Lawoko, & Jansson, 2016). A higher 

proportion of men (25%) and women (35%) justified DV for reasons like, “wife burns the food”, “argues with him”, 

“goes out without telling him”, “neglects the children”, or “refuses sexual intercourse with him” (NDHS, 2018; 

Okenwa-Emegwa et al., 2016). The magnitude, extent, and predictors of ATDV against women have been examined 

among men and women (Fawole, Aderonmu, & Fawole, 2005; Okenwa-Emegwa et al., 2016). Factors such as Islamic 

religion, residency in the northern region, the South-South region, low levels of education, and low household wealth 

index have been reported to influence the justification of DV. Of the reported associated factors of DV and ATDV, 

studies have implicated education, but majority of the evidence was been based on observational studies which have 

limitations when it comes to “causal inference”. It is on this premise that the present study is aimed at employing PSM 

to investigate the effect of education on ATDV. 

Further, the use of PSM to estimate the effect of drug use on violent behaviors while adjusting for selection bias among 

students in South-West Nigeria showed that drug use was associated with the likelihood of violent behavior. (Yusuf, 

Akinyemi, Adedokun, & Omigbodun, 2014). Also, IPV has been linked as a risk factor for maternal health care 

utilization and poor pregnancy outcome using PSM (Yaya et al., 2019). 

Studies have shown that a higher level of education was protective against the risks of DV among men and women 

(Bates, Schuler, Islam, & Islam, 2004; Koenig, Ahmed, Hossain, & Mozumder, 2003; Okenwa-Emegwa et al., 2016; 

Wang, 2016). Since ATDV is an indicator of the degree of social acceptance of DV and a known predictor of 

victimization and perpetration of DV (NBS, 2017), Since ATDV is an indicator of the degree of social acceptance of DV 

and a known predictor of victimization and perpetration of DV, it is important to investigate whether education will also 

be a protective factor for ATDV among the general population to be able to make policies that will protect current and 

potential victims of domestic violence and enhance a protective ATDV among the perpetrators. 

We aimed to examine the effect of education on ATDV among men and women in Nigeria using PSM. We hypothesized 

that PSM will improve the estimation of the effect of educational level on ATDV among men and women. 

2. Materials and Methods 

2.1 Study Design and Setting 

We used the 2016-2017 Multiple Indicator Cluster Survey (MICS5), a cross-sectional study carried out among adults 

(men and women) of age 15 to 49 years in Nigeria. Nigeria is the most populous African country with an estimated 

population of about 206 million inhabitants consisting of 99.1 million females (Thomas & Crow, 2020; Worldometer, 

2020). Nigeria has 36 states and a Federal Capital Territory (political divisions). Nigeria has more than 50 ethnic groups 

among which Yoruba, Hausa/Fulani, and the Igbo are the dominants. Also, Islam and Christianity are the predominant 

religions practiced. 

2.2 Study Population and Sampling Procedures 

The study population included men and women who are between the ages of 15 and 49. The survey used the sampling 

frame to determine the enumeration areas (EAs), local government areas (LGAs), states, and zones in Nigeria as 

prepared in the 2006 Population Census of the Federal Republic of Nigeria. Details of the sampling procedure were 

provided in the MICS5 report. (NBS, 2017). For this analysis, records of men and women who responded to the 

questions on ATDV were sorted, resulting to a total of 14,495 and 33,419 records of men and women respectively. 

 



 

 

http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                Vol. 10, No. 3; 2021 

156 

2.3 Study Variables 

We used ATDV as the outcome variable. ATDV was categorized as “DV justified” and “DV not justified”. ATDV was 

measured by asking the respondents the following question. In your opinion, is a husband justified for hitting or beating 

his wife in the following situations: If she goes out without telling him, if she neglects the children, If she argues with 

him, If she refuses to have sex with him, If she burns the food.  

Any respondent who said yes to any of the five questions was said to have justified DV. Also, whosoever said no to all 

the five questions does not justify DV. The treatment variable was Educational level, while the covariates were age, 

religion, occupation type, residential type, geopolitical region, marital status, wealth index, ethnicity, number of 

children, age at first sex, alcohol use, tobacco use, and media use. 

2.4 Data Analysis 

We described the demographic characteristics, socio-economic, and lifestyle using frequency tables and percentages. 

Association between the treatment variable (educational level) and all the categorical variables were tested using the 

chi-square test. The PSM was thereafter used to estimate the effect of level of education on ATDV. 

2.5 Techniques Used in Propensity Score Methods 

The approach was in three stages. First, we checked for imbalance (selection bias) between the treatment variable and 

the covariates using multinomial regression. Each of the study covariates were used as the outcome variable in the 

model and the treatment variable (Educational level) as the explanatory variable in the model,  

Multinomial equation 

log (
πij

πiJ

) = αj +  χ
i
βj 

Where πij is the probability of a response of the dependent that is greater or equal to a given category (i=2…4), πiJ is the 

probability of the response less than the given category (i=1), αj is a constant and βj is a vector of regression coefficients, 

for j=1,2,…,J−1. Xi is a vector of the covariates. At the second stage, we estimated generalized PS expressed as which is 

the generalized PS of receiving treatment dose d for participants k with observed covariate X. The inverse of the PSW was 

obtained for participants. The inverse PSW is expressed as
1

𝑒 (𝑋𝑘,𝑑)
 (Bergstra et al., 2019).  

Stage three was achieved by using the “tebalance summary” on “stata MP 14” to check if the standardized difference of 

the weighted scores is close to zero and the variance ratio for the weighted scores are close to one for all the covariates 

(SD diff ≈ 0, Variance ratio ≈ 1). If the result obtained satisfied the above criterion (i.e SD diff ≈ 0, Variance ratio ≈ 1), 

then selection bias has been corrected (i.e covariates are balanced) otherwise the selection bias has not been corrected. 

Lastly, we used the “teffect ipw” command on stata MP 14 to estimate the effect of the treatment (level of education). 

The “teffect ipw” command conducted a logistic regression that combined regression adjustment and 

inverse-probability weights between the study outcome variable ATDV and the propensity weight of the treatment 

variable. This provided the average treatment effect (ATE) which measures the effect of the PSW of educational level 

on ATDV.  

Also, the potential outcome means (PO mean) which measures the effect of education on ATDV without the use of PS 

(Feng et al., 2012; Lu, Guo, & Li, 2020). Data were weighted to reflect educational level differentials in the population 

of men and women. Descriptive statistics, odds ratios, and 95%CI were presented. All analyses were conducted at 5% 

level of significance using stata MP 14 (StataCorp, 2015). 

3. Results 

3.1 Respondents Profile 

Information about the socio-economic, demographic characteristics of men and women were presented in Tables 1 and 

2. Men had a mean age of 29 years (SD=10 years). Of the 14,495 men who participated in this study, 22% justified DV. 

About 10.7% had no education while 17.3% had tertiary education. Close to half (48.2%) of the respondents were 

married. More than half (53.1%) of the respondents had no children, and about 32.7% used alcohol. Also, 97.3% do not 

smoke and most of them (56.6%) had media exposure. Also, 32.6% were residents of urban areas and 13.4% were from 

the South-West region. There was a preponderance (38.8%) of Hausa men in this study, 13.4% were Yorubas, and 

majority (44.8%) of the respondents were rich. 

The mean age of female participants was 29 ± 9.4 years. Also, 34.5% justified DV and 10.8% of the women have 
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attained the tertiary level of education. There was a preponderance of married women (70.7%) in this study and 28.1% 

had no children. Further, 18.6% used alcohol while almost all (99.6%) don’t engage in cigarette smoking. More than a 

half (59.8%) were exposed to media and 32.0% were urban dwellers. 

Table 1. Demographic Characteristics of men and women 

 Men Women 

Variables  Frequency (n=14495) Percentage (%)  Frequency 

(n=33419) 

Percentage (%)  

Age         

15-19 3283 22.6 6312 18.9 

20-24 2257 15.6 5569 16.7 

25-29 2070 14.3 5835 17.5 

30-34 2018 13.9 5211 15.6 

35-39 1883 13.0 4343 13.0 

40-44 1684 11.6 3564 10.7 

45-49 1300 9.0 2585 7.7 

Age Mean(SD) 29.1(10.0)   29(9.4)     

Education         

None 1552 10.7 4687 14 

Primary 3443 23.8 12125 36.3 

Secondary 6995 48.3 13006 38.9 

Tertiary 2505 17.3 3601 10.8 

Ethnicity         

Hausa 5555 38.3 13093 39.2 

Igbo 1856 12.8 4715 14.1 

Yoruba 1886 13 4234 12.7 

Other ethnic group 5198 35.9 11377 34 

Geopolitical Zones         

North central 2978 20.5 6767 20.2 

North east 2338 16.1 4942 14.8 

North west 3753 25.9 9124 27.3 

South east 1381 9.5 3595 10.8 

South-South 2109 14.5 4642 13.9 

South west 1936 13.4 4349 13 

Residence         

Urban 4722 32.6 10703 32 

 Rural 9773 67.4 22716 68 

Marital status         

 Married 6983 48.2 23569 70.7 

 Divorced/ widowed 225 1.6 8356 25.1 

Single 7279 50.2 1400 4.2 
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Table 2. Respondents’ profile 

 
Men Women 

Variables Frequency (n=14495) Percentage (%) Frequency (n=33419) Percentage (%) 
Parity         
None 7703 53.1 9395 28.1 
 1 – 2 2186 15.1 7327 21.9 
 3 – 4 2004 13.8 7376 22.1 
 more than 4 2602 18 9321 27.9 
Total 14495 100 33419 100 
Wealth index         
Poor 5138 35.4 12080 36.1 
Average 2858 19.7 6612 19.8 
Rich 6499 44.8 14727 44.1 
Total 14495 100 33419 100 
Alcohol         
 Yes 4738 32.7 6229 18.6 
 No 9757 67.3 27189 81.4 
Total 14495 100 33418 100 
Tobacco use         
 Yes 398 2.7 119 0.4 
 No 14097 97.3 33299 99.6 
Total 14495 100 33418 100 
Media Exposure         
No 6294 43.4 19978 59.8 
Yes 8201 56.6 13441 40.2 
Total 14495 100 33419 100 

3.2 Selection Bias 

The result from the multinomial logit model that was fitted to check for selection bias in the data was presented in the 

supplementary tables. The results revealed that selection bias was present in the data (p <0.05). 

3.3 Weighted Propensity Scores 

Table 3 shows the standardized difference and variance ratio of the weighted PS for men and women. The standardized 

difference of the weighted scores is close to zero and the variance ratio is close to one. This implied that selection bias 

has been addressed with the use of PSM. Also, the similarities in the trends for each level of education presented in 

Figures 1 and 2 implied a good overlap in the estimated PS for educational level among men. 

Table 3. Weighted propensity scores for men 

  Men Women 
  Primary Secondary Tertiary Primary Secondary Tertiary 
  SD VR SD VR SD VR SD VR SD VR SD VR 
Variable                         
Residence                         
Rural -0.37 1.58 -0.39 1.59 -0.37 1.58 -0.18 1.14 -0.13 1.11 -0.22 1.17 
Marital status                         
Divorced/widowed -0.13 0.42 -0.13 0.42 -0.16 0.34 0.12 1.13 0.03 1.04 0.06 1.06 
Single 0.58 1.48 0.63 1.49 0.59 1.48 0.06 1.68 0.1 2.13 0.1 2.23 
Wealth index                         
Poor -0.36 1.24 -0.31 1.21 -0.39 1.28 -0.08 0.89 -0.07 0.89 -0.19 0.71 
Middle 0.06 0.99 0.03 0.1 1.3 1.1 0.16 1.31 0.18 1.35 0.21 1.4 
Rich 0.07 0.97 0.57 0.7 0.04 0.4 -0.85 1.16 0.04 1.06 0.08 1.1 
Parity                         
1-2 -0.53 0.55 -0.53 0.55 -0.59 0.49 0 0.99 0.03 1.04 -0.07 0.9 
3-4 -0.38 0.6 -0.42 0.55 -0.45 0.52 0 1 0.01 1.02 -0.07 0.9 
>4 0.31 1.96 0.27 1.84 0.41 2.24 -0.09 0.91 -0.06 0.95 0.09 1.07 
Alcohol                         
No 0.56 1 0.62 0.97 0.66 0.94 -0.85 1.12 0.04 1 0.14 1.03 
Smoke                         
No -0.15 3.81 -0.17 4.33 -0.1 2.74 0 0.92 -0.02 1.45 -0.02 1.51 
Media use                         
No -0.36 0.75 -0.37 0.75 -0.35 0.76 0.13 1.3 0.09 1.21 0.1 1.24 

SD = Standard difference, VR= Variance Ratio 
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Figure 1. Overlap plot for the propensity score of level of education (Men) 

 

Figure 2. Overlap plot for the propensity score of level of education (Women) 

No Edu (blue line): This represents the uneducated 

Pry Edu (pink line): Those who have attained primary level of education 

Secondary Edu (Green line): Those who have attained secondary level of education 

Tertiary Edu (Green line): Those who have attained tertiary level of education 

3.4 Treatment Effect for Attitude Towards Domestic Violence Among Men 

The result from the multivariate analysis was presented in table 4. In comparison with uneducated men, those who have 

attained a tertiary level of education (AOR = 0.84, 95% CI: 0.78, 0.92) were less likely to justify DV. Similarly, the 

Yorubas (AOR = 1.12, 95% CI: 0.96, 1.31) were more likely to justify DV relative to Hausa men. The same pattern was 

observed for men from the rich wealth quintile (AOR = 1.07, 95% CI: 0.99, 1.17) compared to poor men. Also, men 

who were exposed to media (AOR = 1.02, 95% CI: 1.00, 1.03) were more likely to justify DV relative to their 

unexposed counterparts.   

Women who have attained a tertiary level of education (AOR = 0.94, 95% CI: 0.80, 2.22) were less likely to justify DV 

compared to their uneducated counterparts. Similarly, Yoruba women (AOR = 0.99, 95% CI: 0.84, 1.17) were less likely 

to justify DV relative to Hausa women and rich women (AOR = 0.91, 95% CI: 0.81, 1.02) were less likely to justify DV 
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compared to poor women. 

Table 4. Treatment effect for attitude towards domestic violence among men and women 

Logistic regression that combined regression adjustment and inverse-probability weighting  

  Men Women 

  AOR 95% CI AOR 95% CI 

Variables   Lower Upper   Lower Upper 

Education             

None  ref           

Primary 0.94 0.87 1.03 1.03 0.88 2.41 

Secondary 0.92 0.85 1 1.04 0.88 2.42 

Tertiary 0.84 0.78 0.92 0.94 0.8 2.22 

Residence             

Urban  ref     

 
    

Rural 1.05 1.03 1.07 1.04 1.02 1.06 

Ethnicity             

Hausa  ref     

 
    

Igbo 1.04 0.9 1.2 1.07 0.96 1.18 

Yoruba 1.12 0.96 1.31 0.99 0.84 1.17 

Others 1.07 1.00 1.15 0.99 0.92 1.07 

Marital Status             

Married ref     

 
    

Single 1.06 0.97 1.16 0.95 0.83 1.08 

Widowed/divorced 1.02 0.95 1.09 0.99 0.94 1.03 

Parity             

None  ref     

 
    

1-2 1 0.96 1.05 1.04 1.02 1.07 

3-4 1.12 0.97 1.28 1.06 1.02 1.1 

>4 1.03 0.94 1.13 1.05 1.01 1.09 

Media use             

Yes 1.02 1.00 1.03 1.02 1.01 1.04 

No  ref     

 
    

Wealth index             

Poor  ref     

 
    

Average 1.07 0.99 1.17 0.96 0.86 1.08 

Rich 1.06 0.97 1.16 0.91 0.81 1.02 

AOR= Adjusted odds ratio for the treatment effects 

4. Discussion 

The exigency of policies that will enhance protective ATDV among the general population necessitated the investigation 

of the role of education on ATDV. A powerful statistical technique that is capable of providing better estimates was 

explored in this study. 

The effect of education on ATDV was assessed among men and women in Nigeria using nationally representative data. 

We used ATDV as the main outcome variable, education as the treatment variable, while the explanatory variables were 

demographic characteristics, Socioeconomic profile, lifestyle, and others. Selection bias was detected in the data which 

led to the use of PSM since it’s capable of minimizing selection bias in the data. The effectiveness of PSM has been 

established in previous studies (Yang et al., 2016; Yaya et al., 2019; Yusuf et al., 2014).  This study showed that a 

lower proportion of men justified DV compared to women. Although, the prevalence of ATDV was higher than that of 

Ukraine and Ghana, but almost similar to that of Moldova and Namibia (Sardinha & Catalan, 2018). The disparity in the 

descriptive findings could be a consequence of the differences in the attributes of the countries, such as cultural beliefs 

and level of campaign against DV in the different countries. Arisi and Oromareghake reported that some cultures in 

Nigeria considered women as inferior beings, only beneficial in the kitchen, for pleasure and temptation (Arisi & 

Oromareghake, 2011). Also, it was known as common practice among men that women must kneel to beg their 

husbands when they are mistreated by their husbands (Arisi & Oromareghake, 2011). Krause also corroborated the 

findings by further explaining that some cultures considered those acts of wife-beating as a legitimate requital for a 
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wife’s defiance rather than seeing it as violence (Krause, Gordon-Roberts, VanderEnde, Schuler, & Yount, 2016). A 

higher proportion of women justified DV in this study. These findings were similar to that of a report in Palestine. The 

study buttressed that victims of DV are usually restrained from justifying DV to avoid marital separation as it could 

affect the children and their sustenance (Haj-Yahia, 2005). 

Our results showed that only men who had primary education, secondary education, and tertiary education were  less 

likely to justify DV, this is contrary to the previous finding where men who had primary and secondary education 

justified DV (Okenwa-Emegwa et al., 2016). This study and the previous study used a nationally representative data and 

the definitions of ATDV were similar, but the disparity could be as a result of the differences in the methods of analysis 

i.e the PSM that was used for this study has addressed the selection bias in the data thereby providing a better estimate 

(Cepeda et al., 2003). This paper has its limitations. The PSM is only capable of adjusting for selection bias. This 

method may not be capable of addressing other forms of bias, such as measurement bias. However, this limitation does 

not erode the strength of this study as it added to knowledge about statistical methodology and alternatives to improve 

findings from non-experimental studies.  

Education played a crucial role in ATDV among men and women in Nigeria. Tertiary education was protective for 

ATDV among men and women. The use of PSM effectively controlled for selection bias in estimating the effect of 

education on ATDV. PSM will enable researchers to make causal inferences from non-experimental/ cross-sectional 

studies in situations where randomized control trials are not feasible. 
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