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Abstract

The purpose of this study is to do a review of logistic regression and its applications. In addition to the review, a compar-

ison of four different methods of standardization of the β - coefficients was done using publicly available Heart Disease

Data. The methods were compared using their performance in testing accuracy, training accuracy, and area under the

curve (AUC). Based on the comparisons, it was evident that standardizing the coefficient did not affect the overall pre-

diction accuracy of the model regardless of the method used. Although there was some difference found in the training

and testing accuracies, the AUC’s were similar to the unstandardized model for all methods. In essence, standardizing

facilitates better interpretation and does not affect the predictive accuracy of the model.

Keywords: Logistic Regression, Logit model, Standardized Coefficients

1. Introduction

Logistic regression analysis is a specialized case of regression analysis, where the variable to be predicted is classified

into two or more categories. In such cases, the traditional regression technique fails to explain the association between

the independent variables and the response variable. Binary logistic regression model or logit model is the most common

form of this method of analysis in which the response variable takes only two values (Menard, 2000).

The specific form of a binary logistic regression model generally used is

P (Y = 1) =
eβ0+β1X1+β2X2+...+βpXp

1 + eβ0+β1X1+β2X2+...+βpXp
=

1

1 + e−(β0+β1X1+β2X2+...+βpXp)
, (1)

where Y is the dependent variable and X1, X2, ..., Xp are the independent variables. The dependent variable Y takes on the

values either 0 or 1; where 1 indicates the occurrence of a specific event and 0 indicates the absence. Therefore, P(Y = 1)

represents the probability of that event happening and P(Y = 0) depicts the probability of the event is absent.

Logistic regression has a wide range of applications in various fields and its functionality has increased dramatically in

the past several decades. While multiple linear regression falls short in analyzing data with response variable that is not

continuous, logistic regression gives an essential tool is such cases. Application of this method is not limited to only

binary cases as it can be easily modified for cases where response variables have more than two categories. Risk factor

analysis and predictive modeling is one of the main implementations of logistic regression (Peterson, L. E. et al., 1995).

Logistic regression can also be used in survival analysis by grouping event times into intervals and converting them to

categories (Abbott, 1985). Hence, is broadly used in medical research fields to examine the association between risk

factors and diseases (Kurt, I. et al., 2008; Hassanipour, S. et al., 2019).

The parameters, the standard error of the parameters, and the measures of the goodness of it are estimated using the

methods of maximum likelihood estimation (Greene, 1993, Peng et al., 2002)

The logit transformation of P(Y = 1) is defined as

logit (Y) = ln (
p(Y = 1)

p(Y = 0)
) = β0 + β1X1 + β2X2 + . . . + βpXp. (2)

The model converts the nonlinear relationship between P(Y = 1) and the independent variables to a linear equation

that explains the effect they may have on the dependent variable. This linear form gives the opportunity to interpret the

coefficients of the proposed model.

1
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The interpretation of results is rendered using the widely used odds ratio technique for both categorical and continuous

predictors (Peng et al., 2002). Even though the odds ratio can give an idea of the direction of the relationship between

the response variable and explanatory variables, it is not enough to explain the overall extent of how they are related and

also it falls short of comparing over models (Allison, 1999). It should also be noted that some alternate methods based

on the effect measures are proposed in several papers to explain the effects of covariates on binary response variables in a

logistic regression model (Agresti A., Kateri M.,2017; Agresti A., Tarantola C.,2018).

However, the primary focus of this paper is on the β-coefficients and does not investigate these alternate methods. S-

tandardizing the β -coefficients is another approach found in various literature studies (Long J. S., 1997; Menard S.W. ,

1995) , and different techniques to standardize the β-coefficients have also been proposed to allow for more meaningful

interpretations. Standardized coefficients become invariant to the change in scale of measurement which enables one to

compare the relative influence of different explanatory variables within logistic regression (Agresti A., 2018; Agresti A. ,

Finlay B., 1997). However, even though there are some proposed standardized, semi-standardized coefficients for logistic

regression none of them can be universally defined. Robert L. Kaufman (Kaufman R.L. ,1996) in his study found that

semi-standardized coefficients measuring the change in predictive probability of outcomes are preferable because they

are intuitively appealing and as they are bounded in the interval [-1, +1], interpretation of their magnitude becomes eas-

ier. Some approaches of standardizing the coefficients were analyzed using a practical example by Scott Menard, which

included both semi-standardized and completely standardized techniques (Menard S. , 2004).

In this paper, we will discuss the four methods discussed by Menard and in addition to that, we propose a modification of

these four methods for standardization of logistic regression coefficient. These methods will also be compared based on

the resulting testing accuracy, training accuracy, AUC (area under the curve).

The simplest method of partial standardization of logistic regression coefficients is to multiply the coefficients by their

individual standard deviation. This method was mentioned by Menard (Menard S.W., 1995).

b1 = b ∗ S x, (3)

where, the standard deviation of the explanatory variable X (S x) is multiplied with the unstandardized estimated coefficient

of the corresponding variable b. This can be considered as the only predictor-based standardization technique. Another

similar approach is to change the scale of both the dependent variable and the predictors using the standard deviation of

the standard logistic distribution. That is,

b2 =
b ∗ S x
π√
3

, (4)

where, (π
√

3) = 1.8. This method has been adapted in SAS to standardize the coefficients in the PROC LOGISTIC

procedure. Long suggested another approach for standardization which includes the standard deviation of the standard

normal distribution (Long J. S., 1997).

The calculation of this method is similar to the previous one, the only difference is the standard deviation of the standard

normal distribution is added with the standard deviation of the logistic distribution. Hence Equation (4) becomes,

b3 =
b ∗ S x
π√
3
+ 1
. (5)

All of these standardized coefficients only take into account the variation of the independent variable. Hence, they cannot

be considered as fully standardized. To standardize the response variable standard deviation of logit (y) needs to be

calculated, which is tricky. A way out of this is to use the standardization followed in OLS, which is defined as follows,

b∗∗ = b ∗ S x
S y
.

Again, from the definition of Coefficient of Determination (R2), we get

R2 =
S 2

ŷ

S 2
y
,

where, ŷ is the estimated value of y. Adjusting the equation for OLS we get,

2
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S 2
y =

S 2
ŷ

R2
,

Substituting logit(y) in case of y and logit(ŷ) in the place of ŷ we get for logistic regression,

S 2
logit(y) =

S 2
logit(ŷ)

R2
.

Hence, using the similar strategy used in OLS the estimated coefficients can be standardized as follows

b4 =
(b ∗ S x) (R)

S logit(ŷ)

. (6)

This coefficient can be considered as fully standardized as it also takes into account the variance of the response variable

in contrast to the other coefficients discussed before where only the variation of the predictor was studied. For the purpose

of comparing the above four standardization methods, they will be applied to z- scaled data using the mean and standard

deviation. Since median and MAD may be better measures for scaling asymmetric data, we propose applying these

standardization techniques to the median and the MAD scaled data.

In the next section, these standardized logistic regression coefficients for both z-scaled and median/MAD scaled data will

be compared by applying the methods to Heart Disease Data.

2. Implementation of Standardization Methods

In order to illustrate the calculation of the standardization techniques and to review the outcomes, the Cleveland Heart

disease dataset was used. It is a widely used dataset that is publicly available online (Detrano R., 1989). The aim was to

apply logistic regression to develop a predictive model for heart diseases using the predictors. The four different coefficient

standardization methods were applied to the coefficients of the customary model. After that, the resultant models were

compared based on their prediction accuracy.

2.1 Dataset Details

Originally, the data set contained 76 attributes, but a subset of 14 variables are generally used by the researchers in all

published experiments with a total of 313 observations. The 14 variables include a response variable ”target” which refers

to the presence of heart disease in the patient. For the target variable, a value of 0 indicates no/ less chance of heart attack

while a value of 1 indicates yes/ high chance of heart attack.

The 13 predictors considered in the dataset are as follows (Detrano R., 1989):

1. AGE: Continuous

2. SEX: Categorical ( 0 = Female, 1 =Male)

3. Chest Pain Type(CP): Categorical (4 values) 0: typical angina 1: atypical angina 2: non - anginal pain 3: asymp-

tomatic

4. Trestbps: Continuous, represents resting blood pressure on admission

5. Chol: Continuous, represents Serum cholesterol in mg/dl

6. Fbs: Categorical , represents fasting blood sugar level, (2 values) 1: True - fasting blood sugar is greater than 120

mg/dl 0: False - fasting blood sugar is less than 120 mg/dl

7. Restecg: Categorical,represents resting electrocardiographic outcomes (4 values) 0: normal 1: having ST-T wave

abnormality (T wave inversions and/or ST elevation or depression of >0.05 mV) 2: showing probable or definite

left ventricular hypertrophy by Estes’ criteria)

8. Thalach: Continuous, represents maximum heart rate achieved

9. Exang: Categorical, represents the existence of exercise-induced angina (2 values Yes/No)

10. Oldpeak: Continuous, ST depression induced by exercise relative to rest

11. Slope: Categorical, represents the slope characteristics of the peak exercise ST segment

3
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12. Ca: Discrete, represents the number of fluoroscopy colored major vessels (values 0-3);

13. Thal: Categorical, (3 values) 0: normal 1: fixed defect 2: reversible defect

2.2 Methodology and Results

Primarily, logistic regression was applied to the complete dataset. Four standardization techniques of the coefficients

discussed in the previous section were applied to this result. Calculation of b1 is done by simply multiplying the standard

deviation of each explanatory variable with their corresponding coefficients. For instance, for Age b1 = (-0.004908) *

(9.0821010) = -0.04457922 and so on Table ??.

Table 1. Modified coefficients using different standardization methods

Customary model (Pvalue) Method 1 Method 2 Method 3 Method 4

Intercept 3.4505

Age - 0.0049(0.8323) - 0.0446 - 0.0246 - 0.0158 - 0.0110

Sex - 1.7582 (0.0002) - 0.8193 - 0.4517 -0.2912 - 0.2019

Cp 0.8599 (0.000) -0.8874 0.4893 0.3154 0.2189

Trestbps -0.0195 (0.0596) -0.3416 -0.1883 -0.1214 -0.0842

Chol -0.0046 (0.2209) -0.2400 -0.1323 -0.0853 -0.0591

Fbs 0.0349 (0.9475) 0.0124 0.0069 0.0044 0.0031

Restecg 0.4663 (0.1806) 0.2452 0.1352 0.0871 0.06043

Thalach 0.0232 (0.0265) 0.5317 0.2931 0.1889 0.1310

Exang -0.9800 (0.0168) -0.4604 -0.2538 -0.1636 -0.1135

Oldpeak -0.5403 (0.0115) -0.6273 -0.3458 -0.2229 -0.1546

Slope 0.5793 (0.0977) 0.3570 0.1968 0.1269 0.0880

Ca -0.7733 (0.0000) -0.7908 -0.4360 -0.2811 -0.1949

Thal -0.9004 (0.0019) -0.5513 -0.3040 -0.1959 -0.1359

Table 2. Logistic regression coefficients (Mean/SD scaled data)

Customary model (Pvalue) Method 1 Method 2 Method 3 Method 4

Intercept 0.2319

Age -0.0419 (0.8323) -0.0419 -0.0231 -0.0365 -0.0101

Sex -0.8188 (0.0002) -0.8172 -0.4505 -0.7106 -0.1966

Cp 1.0425 (0.0000) 1.0317 0.5688 0.8972 0.2483

Trestbps -0.2409 (0.0596) -0.2340 -0.1323 -0.2087 -0.0577

Chol -0.2510 (0.2209) -0.2297 -0.1266 -0.1997 -0.0553

Fbs -0.0730 (0.9475) -0.0755 -0.0416 -0.0657 -0.0182

Restecg 0.3668 (0.1806) 0.3711 0.2046 0.3228 0.0893

Thalach 0.3420 (0.0265) 0.3385 0.1866 0.2944 0.0815

Exang -0.4276 (0.0168) -0.4304 -0.2373 -0.3743 -0.1036

Oldpeak -0.5950 (0.0115) -0.6236 -0.3438 -0.5423 -0.1501

Slope 0.5568 (0.0977) 0.5641 0.3110 0.4905 0.1357

Ca -0.7673 (0.0000) -0.7983 -0.4402 -0.6943 -0.1921

4
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Table 2 continued from previous page
Customary model (Pvalue) Method 1 Method 2 Method 3 Method 4

Thal -0.5539 (0.0019) -0.5676 -0.3129 -0.4936 -0.1366

To get b2, (Equation 4) above result has to be divided by π
√

3, the numerical value of which is approximately 1.814.

Hence, for Age the standardized coefficient becomes b2 = (-0.004908) * (9.0821010)/ 1.814 = -0.02457. To obtain the

standardized coefficient by the third method (Equation 5) discussed in the previous section, the calculation is similar but

instead of dividing by [π
√

3] the unstandardized coefficients are divided by [π
√

3 + 1] which is equal to approximately

2.814. Therefore, for Age the calculation of the standardized coefficients is as follows: b3 = (-0.004908) * (9.0821010)/

2.814 = -0.01584. The fully standardized fourth approach utilizes the value of the coefficient of determination (R2) to

calculate the modified coefficients. This method, multiplies the first approach explained in equation 3 by R/S logit(ŷ). In

this example, the value of the square root of R2 divided by the standard deviation of the logit(ŷ) was calculated to be

0.246434. So the modified coefficient for predictor Age changed in to b4 = (-0.004908) * (9.0821010) * (0.246434) = -

0.01098. Similar calculations have been done for all other variables and are presented in Table 1.

The column ‘Customary model’ in Table 1 refers to the calculated unstandardized coefficients from the logistic regression

model. ‘Method 1’, ‘Method 2’, ‘Method 3’, and ‘Method 4’ represent the standardized coefficients computed using

Equation 3, Equation 4, Equation 5, Equation 6 respectively. From the results in Table 1 it is evident that as the coefficients

start from being partially standardized using method 1 to fully standardized in method 4, they seem to decrease in terms

of magnitude. Techniques used in SAS have the closest values to the method suggested by Long. Predictor cp (chest pain)

seems to have a comparatively higher relative effectiveness among the significant variables.

Table 3. Logistic regression coefficients (Median/MAD scaled data)

Customary model (Pvalue) Method 1 Method 2 Method 3 Method 4

Intercept 0.6920

Age 0.0650 (0.9446) 0.0844 0.0465 0.0734 0.0177

Sex -0.8415 (0.0007) -0.8398 -0.4630 -0.7303 -0.1760

Cp 1.1343 (0.0000) 1.1226 0.6189 0.9762 0.2353

Trestbps -0.1610 (0.5814) -0.2322 -0.1280 -0.2019 -0.0487

Chol 0.1072 (0.9692) 0.1527 0.0842 0.1328 0.0320

Fbs 0.0673 (0.7820) 0.0696 0.0384 0.0606 0.0146

Restecg 0.1261 (0.7370) 0.1276 0.0703 0.1109 0.0267

Thalach 0.6672 (0.0004) 0.9032 0.4979 0.7854 0.1893

Exang -0.7237 (0.0004) -0.7284 -0.4016 -0.6335 -0.1527

Oldpeak -0.8915 (0.0000) -1.1391 -0.6280 -0.9906 -0.2387

Slope 0.9685 (0.0002) 0.9811 0.5409 0.8532 0.2056

Ca -0.7982 (0.0000) -0.8305 -0.4579 -0.7222 -0.1741

Thal -0.6699 (0.0011) -0.6864 -0.3784 -0.5969 -0.1439

In the next step, the target was to set up four different models using standardized coefficients calculated by these ap-

proaches and compare their performance based on prediction accuracy. To measure the prediction accuracy, the dataset

was randomly divided into two sets; the testing set which contains 20% of the data and the training set which contains

the rest of the data. The models were developed using the training set and the testing set was used to verify the overall

accuracy. One of the major hurdles faced while setting up models to calculate their accuracies is that the predictors were

measured using different scales. Hence, to make the comparison easier, the predictors were scaled before any kind of

analysis was done. Firstly, all the variables were standardized using the mean and standard deviation of the corresponding

independent variable. In addition, we computed standardized coefficients using the Median/MAD standardized data.

Previously explained four methods of standardizing the coefficients were then applied to both of these scaled datasets. All
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these calculations were done with the help of statistical software R. Outcomes of standardization of the coefficients are

given in Table 2 and Table 3. Here in the Table 2 column ’Customary model’ refers to the unstandardized coefficients of

the dataset scaled by the mean and the standard deviation along with the four standardization methods for the coefficients

in the following columns. Similarly, in the Table 3 column ‘Customary model’ refers to the unstandardized coefficients

of the dataset scaled by the median and the mean absolute deviation along with the four standardization methods for the

coefficients in the following columns.

2.3 Evaluation Criteria

To compare the performance of the models with different standardization techniques, we have used training accuracy and

testing accuracy of the models. In predictive modeling for binary outcome variable the term accuracy refers to the fraction

of correctly specified predictions made by the proposed model. The complete data is divided into two sets namely the

training set and the testing set by a random split for instance in this analysis we have used 80% of the data for the training

set and 20% for the test set. At first the prediction model is built on the training set and later applied on the test set to

asses its prediction accuracy.

One predicament in this process is that, as the data are divided into training and testing sets randomly using R software,

there is a chance of getting different results for different subsets which may result in bias. To solve this issue the complete

process was repeated 1000 times and the average of these repetitions was taken for calculations of testing and training

accuracy. Another criteria that is use in comparing the accuracy in binary predictive modeling is area under the Receiver

operating characteristics (ROC) . The plot represents the proportion of correctly specification events versus the proportion

incorrect specification of the non-events for different probability cutoff’s. A high area under the ROC curve indicates a

better predictive accuracy.

2.4 Results

Table 4 shows the testing accuracy and training accuracy of the models constructed by applying each of the four coefficient

standardization methods along with the model of unstandardized coefficients, which is represented by the ‘Customary

model’ column.

Results indicate that the testing accuracy of the customary model was slightly higher than all standardized models for

median/MAD scaled data. However, for the mean/SD scaled data, the testing accuracy for the customary model and the

models for the 4 methods were similar. Similarly, the training accuracies were somewhat similar for the unstandardized

and standardized coefficients. Moreover, method 4 was seen to have the lowest prediction accuracy among all four

methods. On the other hand, by comparing the testing and training accuracies for mean/SD scaled data and median/MAD

scaled data it can be seen that median/MAD scaled data has approximately 4% to 5% higher accuracy overall.

Table 4. Table for Testing and Training Accuracy

Data Customary model Method 1 Method 2 Method 3 Method 4
Mean

Standardized

(Test set)

0.8193 0.8218 0.8193 0.8221 0.8126

Median

Standardized

(Train set)

0.8754 0.8767 0.8646 0.8766 0.7813

Mean

Standardized

(Test set)

0.8576 0.8574 0.8540 0.8569 0.8472

Median

Standardized

(Train set)

0.9005 0.9000 0.8859 0.8987 0.8083

However, by taking a look at the AUCs for these models in Table 5 it can be seen that even though the unstandardized

model had slightly different AUCs, there was no difference in AUCs of the models constructed from different standard-

ization techniques. This indicates that in terms of distinguishing between the two diagnostic groups, all of these models

show similar performance.

In terms of improving the sensitivity or specificity of the models the standardization techniques seem to have no signifi-

cant effect. As the overall accuracy for the standardized models were lower than the un-standardized one, evidently the
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sensitivity ans specificity was also found to be less than the prior. Moreover, method 4 seems to have the higher sensitivity

than all other models, which also means lower specificity than others.

Table 5. AUC’s for Testing and training set

Data Customary model Method 1 Method 2 Method 3 Method 4
Mean

Standardized

(Test set)

0.8895 0.8899 0.8899 0.8899 0.8899

Median

Standardized

(Train set)

0.9230 0.9210 0.9210 0.9210 0.9210

Mean

Standardized

(Test set)

0.9262 0.9261 0.9261 0.9261 0.9261

Median

Standardized

(Train set)

0.9280 0.9279 0.9279 0.9279 0.9279

It is worth mentioning that the techniques used to scale the dataset seem to have some effect on improving the overall

accuracy of the models. Test sets taken from the dataset for which the numerical variables were scaled using median/MAD

standardization performed better than the one which was scaled using mean/standard deviation. For instance, for the

customary model and the first three models, the testing accuracies were approximately 4% higher in the case of the

dataset standardized by median/MAD Table 3. Additionally, from Table 5 it can be seen that the AUCs are slightly higher

for the data which was standardized using median/MAD.

3. Discussion

The primary purpose of standardizing logistic regression coefficients is to set a ground on the basis of which the predictors

can be ranked. The absolute value of the standardized coefficients enables one to order the independent variables in terms

of importance. According to Menard (Menard S.W., 1995) standardized coefficients render a more precise idea than the

un-standardized logistic regression coefficients. However, adapting such measures for the sake of interpretation may effect

the overall performance of the model. In this study, the goal was to investigate how different standardization techniques

effect the accuracy of the logistic regression model under study.

Different methods of standardizing the coefficients assist in explaining the variation in the dependent variable and allow

one to compare their contributions. It was also investigated if standardizing the coefficients would change the performance

of the model. From the results, it can be seen that if the standardized values are only used in the case of relative comparison

of the predictors, there is not much difference between the four methods. The overall magnitude of the influence is

comparatively lower for the 4th method but if the influences of the predictors were ranked, the ranking was found to be

the same for all four methods.

By taking a closer look at the results it can be seen that standardizing the coefficients did not affect the overall prediction

accuracy of the predictive logistic regression model. Similarly, no evidence was found that following a certain type

of standardization technique would show better performance than the others; the unstandardized regression model, in

general, had higher accuracy. However, method 4 would be a better approach compared to others, as method 2 suggested

by Long and method 3 used in SAS, partially standardizes by only considering the predictors and does not include the

outcome variable in calculation. Both of these methods make little difference to the outcomes thus are not recommended.

In essence, standardizing facilitates better interpretation and does not affect the predictive capacity of the model. This

is evident from the AUC’s computed for both unstandardized and standardized regression coefficients showen in Table

5. As the AUCs calculated from taking the average of multiple iterations, they turned out to be exactly equal for all

standardization techniques, which was also similar to the un-standardized logistic regression model.

4. Conclusion

Logistic regression facilitates a wide range of techniques in conducting statistical analyses. In logistic regression like any

other regression technique, the primary aim is to construct an equation based on the set of explanatory variables, which as

a whole would explain the variation and predict the dependent variable better.

Therefore, it could be inferred that standardized coefficients can also be used for predictive modeling. Similarly, selecting
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any specific method for standardizing the coefficients for interpretation is completely based on how one wants to interpret

it. If the primary goal of conducting a logistic regression analysis is building up a predictive model which can also be

used for comparing the predictor effects and does not affect the overall accuracy of the model, standardizing the regression

coefficients may be advisable.
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Abstract 
One of the most prevalent and traditional uses of statistics in hydrology is flood frequency analysis. The flood can occur 
practically everywhere and is considered the leading cause of natural disaster death worldwide. This study aims to apply 
the flood frequency analysis of the Kelantan streamflow site to identify the optimal distribution that best fits the flood 
frequency data from the goodness-of-fit test (GOF). Five distributions were applied in this study; namely lognormal 
(LG), generalized extreme value (GEV), generalized Pareto (GP), log-Pearson three (L3) and generalized logistic (GL) 
distribution. to obtain the parameter estimates. The distribution performance evaluation is then performed utilizing the 
GOF and efficiency evaluations. The results indicate that the generalized GP distribution is the best possible function 
for determining the annual peak flow at the Kelantan streamflow site. 

Keywords: generalized pareto, L-Moment, Malaysia 

1. Introduction 
In Malaysia, floods have been the most damaging natural event. This is because it is geographically subject to seasonal 
monsoon winds, which bring torrential rainfall to the country's north and east coasts (Mabahwi and Nakamura, 2020; 
Mokhtar et al., 2021; Mokhtar et al., 2021; Badyalina et al., 2022). In Kelantan, floods are considered an annual natural 
phenomenon and the worst record-setting flood of 2014 was recorded as a 'tsunami-like disaster' (Baharuddin et al., 
2015). According to Weng et al. (2016), the flood that badly affected Kelantan in December 2014 was a very severe 
flood that resulted in flood losses in terms of lives lost, injuries, infrastructure destruction, property damage, crop loss, 
loss of livelihoods, interruption of routine services, and healthcare costs. Thus, estimating flood frequency is a critical 
issue, especially in water resource management, because it is used to design hydraulic structures and gives essential 
information (Badyalina et al., 2016; Jan et al., 2016; Kim and Lee, 2021). In flood frequency analysis, the parameters of 
distributions are often estimated using the L-moments approach. L-moments were first proposed by Hosking (1990) as a 
method for estimating distribution parameters using a linear combination of probability-weighted moments (Jan et al., 
2016; Kang et al., 2019). According to David and Nagaraja (2004), L-moments are derived from the expectations of 
order statistics. Hence this may be a factor that is better than conventional moments for describing distribution form 
(Jan et al., 2018; Asquith, 2007). L-moments are widely used in applied research such as civil engineering, meteorology, 
and hydrology. L-moments are widely used in applied research such as civil engineering, meteorology, and hydrology. 
Among the benefits of L-moments include their capacity to work as a linear function of the data, being less prone to 
sample variability, being more robust to extreme values or outliers in the data and allowing for more confident 
inferences about the underlying probability distribution from small samples (Anas et al., 2021). This implies that 
L-moments are less affected by outliers, and the bias of their small sample estimates is kept to a minimum. In addition, 
because L-moments are linear combinations of order statistics, they have been demonstrated to be more useful in 
estimating statistical parameters than other methods, such as the method of moments and least squares (Maleki-Nezhad, 
2014). This finding is supported by Šimková (2021) proposed that L-moments are the most accurate estimators for 
higher quantiles of the interest rate compared to moments and maximum likelihood methods (MLE). Furthermore, it is 
most effective when the tail of the distribution is heavier, and the sample size is small. The minimal amount of data 
available is well recognized to raise the level of uncertainty in both parameter and quantile estimates (Blain et al., 2021). 
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As a result, properly using the L-moments approach with desired constraints can help solve this problem. One of the 
interesting issues made by Shahzad et al. (2021) is that the L-moment can be represented for any random variable with a 
mean. Since the mean considers all data values, it is often applied to generate a better approximation of population 
parameters. Even though L-moment is more reliable than other traditional procedures, the underlying equations 
necessary to determine the L-moment parameters are difficult to solve and require a deep understanding of mathematics 
(Ilaboya and Otuaro, 2019). Thus, it can be summed up that L-moments are very easy to perceive as interval estimation, 
hypothesis testing, and estimation parameters and are very straightforward to understand as indicators of distributional 
form since they assist in summarising theoretical distributions and empirical samples. These advantages are especially 
relevant when data has heavy tails, severe skewness, or large variations. The statistical and probabilistic methods were 
applied to past events to forecast the exceedance likelihood of future events to minimize risk and maximize efficiency in 
design (Smithers and Schulze, 2001). However, this may be a concern when single station data are to be used. Reliable 
estimations require long station records and histories (Malekinezhad & Zare-Garizi, 2014). Therefore, flood frequency 
analysis (FFA) is utilized to forecast and justify extreme flood events to the more soluble issue of fitting distributions to 
the bulk of the data with the aid of refinement of techniques for incorporating historical and palaeoflood data (Kidson & 
Richards, 2005). In Malaysia, FFA is widely used for the river basin distributions such as LG, GEV, GP, L3 and GL 
distribution (Yue & Wang, 2004; Badyalina et al., 2014; Badyalina et al., 2015; Badyalina et al., 2021). According to 
Maposa & Cochran (2017), the Generalized Pareto distribution (GPD) models produced in this study were found to be 
statistically worthwhile for fitting flood heights in the lower Limpopo River basin of Mozambique and proven to be a 
better match compared to time-homogeneous GPD models based on the GOF. Similarly, it also applied to rainfall 
extremes for nine locations in the Lake Victoria basin (LVB) in Eastern Africa. Based on this finding, one of the best 
parameter estimation methods is L-moments, and moreover, normal-tailed GPD was found suitable to assess the 
observed and large number of global climate model rainfall time series (Onyutha & Willems, 2015). Apart from that, 
generalized extreme value distribution (GEV) has been known to be extremely useful, especially in regional flood 
frequency. In this approach, the shape parameter k of the GEV distribution and the ratio of size and location parameters 
are consistent throughout all basins in the region (Morrison & Smith, 2002). In the study conducted by Nimac et al. 
(2022), GEV was employed to estimate the return value curves for the Zagreb-Grič station from 1908 until 2020. The 
analysis showed that short-duration wet events (rainfall levels greater than the appropriate 10-year return values) 
became increasingly common after the 1970s. In Pakistan, three GOF tests, namely Kolmogorov–Smirnov, 
Anderson–Darling, and Chi-squared, were used to the fitted distributions at the 5% significant level. The analysis is 
performed using annual maximum discharge data from 1980 to 2016, and the results show that the generalized extreme 
value distribution (GEV) and the lognormal distribution are the top two distributions for all locations (Badyalina et al., 
2013; Badyalina et al., 2016; Badyalina et al., 2021; Farooq et al., 2018). Meanwhile, log-Pearson distribution (P3) is 
widely employed in hydrologic fields. P3 distribution provides a reasonable model of the distribution of annual United 
States flood data. L-moment ratio relationships for the P3 distribution are then improved to be used to compare a 
region's summary statistics (Griffis & Stedinger, 2007). In similar cases in Tunisia, L - moments are used in identifying 
regional flood frequency distributions, which fully employed GOF from L-skewness and L-kurtosis.   The most 
frequently used distributions are GEV, GL, GP, L3 and LG. The GNO distribution was shown to be the best-suited flood 
frequency distribution, while the GNO and GEV distributions provide the best fit in central and southern Tunisia 
(Abida& Ellouze, 2008). 

2. Methodology 

Hosking (1990) proposed L-moments as a linear combination of probability-weighted moments (PWMs). Assume 

1: 2: :n n n nx x x� � � :n:x�  are the data in a specific order with a sample size of n . Based on Badyalina et al. (2021), the 

procedure of unbiased sample estimator of the L Moments is as follows: 
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From Eq.1, we can obtain the first four components of L-Moments.  
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The first four sample estimates for L-moments are referred to as: 
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The samples of the L-moments ratio are addressed as follows: 

2
2

1

lt
l

�             (10) 

3
3

2

lt
l

�             (11) 

4
4

2

lt
l

�             (12) 

Table 2 provides the potential probability distribution that has been employed in this study, namely GEV, GL, GP, L3 
and LG. In Table 2, the estimation of the parameters for each potential distribution is described. 

Table 2. Parameter estimation for potential distribution using L-Moment Method 

Dist Cumulative Density function Parameter Estimation 
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2.3 Evaluation Criteria 
2.3.1 Accuracy Indicators 

In accuracy indicators, three accuracy indicators are used in this study; namely, root mean square error (RMSE), mean 
absolute error (MAE) and mean absolute error (MAE). The MAE, MAPE and RMSE is define in Eq.13-Eq. 15, 
respectively. 
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where ( )iF y represent the actual data, n represent the total number of data, ( )iF y  represent the average of the 
actual data and ˆ( )iF y  represent the estimated return period from the chosen distribution.  
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2.3.2  L-Moment Ratio Diagram  

Hosking and Wallis (1993) proposed an L-Moment Ratio Diagram to identify the ideal distribution at the selected river 
basin. The L-Moment ratio diagram demonstrates the conceptual relation among both  3t  and 4t . The value of 3t  
drawn from the peak flow data and plotted to L-Moment ratio diagram to identify which distribution lies closely. 

2.3.3 GOF 

Several applicable statistical procedures, such as the GOF tests, can be used to assess whether the probability 
distributions are appropriate for a particular study. The GOF tests can be used to justify choosing the best distribution in 
FFA (Badyalina et al.,2021). Two GOF tests, the Kolmogorov-Smirnov (KS) and Anderson Darling (AD) tests are 
employed in this study to determine how closely the observed data resembles the distributions. 

3. Results and Discussion
Peak flow is generally related to implementing and developing flood management design. This information is essential 
for flood design at the targeted catchment. This study's targeted catchment is a Kelantan, Malaysia river. The annual 
peak flow is analyzed by fitting five normal distributions: GEV, GL, GP, L3 and LG. The estimated parameters for the 
potential distributions using L-Moments are shown in Table 3.  

Table 3. Parameters for the candidate distributions 

Parameters 

Dist. �̂  
�̂  k̂  

GEV 3379.46 2159.52 0.097 

GL 4189.48 1352.17 -0.11 

GP 841.06 5774.65 0.61 

L3 4435.51 2478.35 0.67 

LG -6526.70 9.28 0.22 

Table 3 shows the estimated parameters for the candidate distributions. The �̂ , �̂ and k̂ are for GEV distributions are 
3379.46, 2159.52 and 0.097, respectively. The �̂ , �̂ and k̂ are for GL distributions are 4189.48, 1352.17 and -0.11, 
respectively. The �̂ , �̂ and k̂ are for GP distributions are 841.06, 5774.65 and 0.61, respectively. The �̂ , �̂ and k̂
are for L3 distributions are 4435.51, 2478.35 and 0.67, respectively. The �̂ , �̂ and k̂ are for LG distributions are 
-6526.70, 9.28 and 0.22, respectively. 

 

 

Figure 1. QQ-Plot for Sungai Kelantan river basin annual peak flow and potential distributions 

Figure 1 illustrates QQ-plot for the annual peak flow of the Kelantan River basin and potential distribution. The 
QQ-plot is a visual tool for comparing potential distributions. Compared to other potential distributions, the GP 
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distribution closely resembles the black line based on observational observations. Accuracy indicators, the GOF test, 
and the L-Moment Diagram are added to the study to complement our visual method-based observation. The GOF test, 
a numerical accuracy measure, and an L-moment ratio diagram are the 3 measuring methods employed in this study to 
pick the most suitable model. This study uses the rank score technique to analyze the best distribution that fits the target 
basin. This method called for grading each distribution according to how well it resembled the real observation. A score 
of 5 is awarded for the best distribution that fits the data. A score of 1 is given to the distribution with the poorest fit. 
P-Value is employed to evaluate the GOF test distribution test. The larger P-value implies that the distribution fits the 
data well. In the L-moment diagram, estimations of the dimensionless ratios 3t  and 4t  are compared using sample 
data values. The distribution with the least RMSE, MAE, and MAPE is awarded the highest possible score of 5. The 
distribution with the largest MAPE, RMSE, and MAE is awarded the lowest possible score of 1. 

Table 4. Rank score for potential distribution 

Potential 

Distribution 

GEV GL GP L3 LG 

MAPE 3 2 5 4 1 

KS 4 2 5 1 3 

AD 3 2 5 1 4 

GLRMSE 3 1 5 4 2 

MAE 3 1 5 2 4 

LMR 4 2 5 1 3 

Total Score 20 10 30 13 17 

 

Table 4 demonstrates that the GP distribution is optimal for describing yearly peak flow data for the Kelantan River. 
After evaluating each distribution individually, Table 4 indicates that the GL distribution is unsuitable, as its rank score 
is the lowest. The GP distribution is ranked higher than the other distributions used in this investigation. Due to the 
unique characteristics of each river's data series, it is difficult to establish a particular probability distribution for all 
streamflow basins in Kelantan. The annual peak flow data fluctuates dramatically from year to year due to the 
unpredictability of the weather brought on by climate change. Estimating extreme streamflow with varying return times 
is the purpose of selecting the "optimal" model for each location. Consequently, various return periods of streamflow 
are predicted using the best suitable frequency model. Table 5 shows the estimated return period. 

Table 5. Estimated peak flow for the Kelantan River basin 

Return 

Period 

(Years) 

Estimated peak flow (m3/s) 

GEV GL GP L3 LG 

2 4157.05 4189.48 4108.82 4162.17 4164.14 
10 7745.44 7546.83 8005.92 7735.56 7717.18 
25 9318.14 9325.80 9010.31 9286.64 9294.75 
50 10394.90 10745.44 9474.11 10360.86 10405.59 

100 11393.47 12256.66 9778.72 11376.43 11471.25 
200 12323.38 13876.08 9978.78 12347.38 12505.20 

4. Conclusion 
FFA is suitable for predicting the long-term flow characteristics of a river. This study sought to determine the ideal 
potential distribution for FFA to represent the annual peak flow in the Kelantan River basin. GEV, GL, GP, L3 and LG 
are the distributions employed, representing the five most often used distributions in the analysis of extreme hydrologic 
variables. Regional flood frequency study has utilized L-moment because of the robustness of its GOF, which is 
superior to traditional single-basin GOF. The annual peak flow series data collected from the historical daily stream 
flow record of the Kelantan River basin in Malaysia is applied to the five potential distributions. The model's evaluation 
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uses the L-Moment Ratio Diagram and numerical performance criteria. Based on the performance evaluation, GP 
distribution is found to be optimal for describing yearly peak flow data for the Kelantan River. In future research, it 
would be interesting to implement the distribution to several rivers located near Kelantan River for regional FFA or 
in-situ FFA to provide guidance about the expected behaviour of future flooding.   

References 
Abida, H., & Ellouze, M. (2007). Probability distribution of flood flows in Tunisia. Hydrology and earth system 

sciences discussions, 4(2), 957-981. https://doi.org/10.5194/hessd-4-957-2007 

Anas, M. M., Ali, M., Shafqat, A., Shahzad, F., Abbass, K., & Alilah, D. A. (2021). L-Moments and Calibration-Based 
Estimators for Variance Parameter. Mathematical Problems in Engineering, 2021. 
https://doi.org/10.1155/2021/9847714 

Badyalina, B., & Shabri, A. (2013). Streamflow forecasting at ungauged sites using multiple linear regression. 
MATEMATIKA: Malaysian Journal of Industrial and Applied Mathematics, 67-75.   

Badyalina, B., & Shabri, A. (2015). Flood estimation at ungauged sites using group method of data handling in 
Peninsular Malaysia. Jurnal Teknologi, 76(1).  https://doi.org/10.11113/jt.v76.2640 

Badyalina, B., & Shabri, A. (2015). Flood frequency analysis at ungauged site using group method of data handling and 
canonical correlation analysis. Modern Applied Science, 9(6), 48. https://doi.org/10.5539/mas.v9n6p48 

Badyalina, B., Mokhtar, N. A., Azimi, A. I. F., Majid, M., Ramli, M. F., & Yaa'coob, F. F. (2022). Data-driven Models 
for Wind Speed Forecasting in Malacca State. MATEMATIKA: Malaysian Journal of Industrial and Applied 
Mathematics, 125-139.   

Badyalina, B., Mokhtar, N. A., Jan, N. A. M., Hassim, N. H., & Yusop, H. (2021). Flood Frequency Analysis using 
L-Moment For Segamat River. MATEMATIKA: Malaysian Journal of Industrial and Applied Mathematics, 47-62.  

Badyalina, B., Mokhtar, N. A., Ramli, M. F., Majid, M., & Yusri, M. Y. (2021). Design of Simulation Studies for Flood 
Quantile Prediction Problems at Ungauged Site. Applied Mathematical Sciences, 15(3), 137-140. 
https://doi.org/10.12988/ams.2021.914422 

Badyalina, B., Shabri, A., & Jan, N. (2016). Prediction At Ungauged Site with Topological Kriging And Modified 
Group Method Of Data Handling. Journal Of Environmental Hydrology, 24(6).   

Badyalina, B., Shabri, A., & Marsani, M. F. (2021). Streamflow Estimation at Ungauged Basin using Modified Group 
Method of Data Handling. Sains Malaysiana, 50(9), 2765-2779. https://doi.org/10.17576/jsm-2021-5009-22 

Badyalina, B., Shabri, A., & Samsudin, R. (2014). Streamflow estimation at ungauged site using wavelet group method 
of data handling in Peninsular Malaysia. International Journal of Mathematical Analysis, 8(11), 513-524. 
https://doi.org/10.12988/ijma.2014.4251 

Badyalina, B., Shabri, A., Mokhtar, N. A., Ramli, M. F., Majid, M., & Yusri, M. Y. (2021). Modified Group Method of 
Data Handling for Flood Quantile Prediction at Ungauged Site. International Journal of Statistics and Probability, 
10(6), 1-57. https://doi.org/10.5539/ijsp.v10n6p57 

Baharuddin, K. A., Wahab, S. F. A., Ab Rahman, N. H. N., Mohamad, N. A. N., Kamauzaman, T. H. T., Noh, A. Y. M., 
& Majod, M. R. A. (2015). The record-setting flood of 2014 in Kelantan: challenges and recommendations from 
an emergency medicine perspective and why the medical campus stood dry. The Malaysian journal of medical 
sciences: MJMS, 22(2), 1.   

Blain, G. C., Sobierajski, G. D. R., Xavier, A. C. F., & De Carvalho, J. P. (2021). Regional Frequency Analysis applied 
to extreme rainfall events: Evaluating its conceptual assumptions and constructing null distributions. Anais da 
Academia Brasileira de Ciências, 93. https://doi.org/10.1590/0001-3765202120190406 

David, H. A., & Nagaraja, H. N. (2004). Order statistics. John Wiley & Sons. 
https://doi.org/10.1002/0471667196.ess6023 

Farooq, M., Shafique, M., & Khattak, M. S. (2018). Flood frequency analysis of river swat using Log Pearson type 3, 
Generalized Extreme Value, Normal, and Gumbel Max distribution methods. Arabian Journal of Geosciences, 
11(9), 1-10. https://doi.org/10.1007/s12517-018-3553-z 

Griffis, V., & Stedinger, J. (2007). Log-Pearson type 3 distribution and its application in flood frequency analysis. I: 
Distribution characteristics. Journal of Hydrologic Engineering, 12(5), 482-491. 
https://doi.org/10.1061/(ASCE)1084-0699(2007)12:5(482) 



 
 
http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                Vol. 11, No. 5; 2022 

16 

Hosking, J. R. (1990). L‐moments: Analysis and estimation of distributions using linear combinations of order statistics. 
Journal of the Royal Statistical Society: Series B (Methodological), 52(1), 105-124. 
https://doi.org/10.1111/j.2517-6161.1990.tb01775.x 

Hosking, J., & Wallis, J. (1993). Some statistics useful in regional frequency analysis. Water Resources Research, 29(2), 
271-281. https://doi.org/10.1029/92WR01980 

Ilaboya, I. R., & Otuaro, E. A. (2019). Simple to Use Microsoft Excel Template for Estimating the Parameters of Some 
Selected Probability Distribution Model by Method of L-Moment. parameters, 1, 1.   

Jan, N. A. M., Shabri, A., & Badyalina, B. (2016). Selecting probability distribution for regions of Peninsular Malaysia 
streamflow. AIP Conference Proceedings. https://doi.org/10.1063/1.4954619 

Jan, N. A. M., Shabri, A., Hounkpè, J., & Badyalina, B. (2018). Modelling non-stationary extreme streamflow in 
Peninsular Malaysia. International Journal of Water, 12(2), 116-140. https://doi.org/10.1504/IJW.2018.091380 

Jan, N. A. M., Shabri, A., Ismail, S., Badyalina, B., Abadan, S. S., & Yusof, N. (2016). THREE-PARAMETER 
LOGNORMAL DISTRIBUTION: PARAMETRIC ESTIMATION USING L-MOMENT AND TL-MOMENT 
APPROACH. Jurnal Teknologi, 78(6-11). https://doi.org/10.11113/jt.v78.9202 

Kang, C., Park, K.-Y., & Cho, Y.-S. (2019). Numerical and Statistical Analyses of Tsunami Heights with the 
L-Moments Method. Applied Sciences, 9(24), 5517. https://doi.org/10.3390/app9245517 

Kidson, R., & Richards, K. (2005). Flood frequency analysis: assumptions and alternatives. Progress in Physical 
Geography, 29(3), 392-410. https://doi.org/10.1191/0309133305pp454ra 

Kim, S. U., & Lee, C.-E. (2021). Incorporation of cost-benefit analysis considering epistemic uncertainty for calculating 
the optimal design flood. Water Resources Management, 35(2), 757-774. 
https://doi.org/10.1007/s11269-021-02764-z 

Landwehr, J. M., Matalas, N., & Wallis, J. R. (1978). Some comparisons of flood statistics in real and log space. Water 
Resources Research, 14(5), 902-920. https://doi.org/10.1029/WR014i005p00902 

Mabahwi, N. A., & Nakamura, H. (2020). The Issues and Challenges of Flood-related Agencies in Malaysia. 
Environment-Behaviour Proceedings Journal, 5(13), 285-290. https://doi.org/10.21834/e-bpj.v5i13.2069 

Malekinezhad, H., & Zare-Garizi, A. (2014). Regional frequency analysis of daily rainfall extremes using L-moments 
approach. Atmósfera, 27(4), 411-427. https://doi.org/10.1016/S0187-6236(14)70039-6 

Malekinezhad, H., & Zare-Garizi, A. (2014). Regional frequency analysis of daily rainfall extremes using L-moments 
approach. Atmósfera, 27(4), 411-427. https://doi.org/10.1016/S0187-6236(14)70039-6 

Maposa, D., & Cochran, J. J. (2017). Modelling extreme flood heights in the lower Limpopo River basin of 
Mozambique using a time-heterogeneous generalized Pareto distribution. Statistics and Its Interface, 10(1), 
131-144. https://doi.org/10.4310/SII.2017.v10.n1.a12 

Mokhtar, N. A., Badyalina, B., Chang, K. L., Yaa’cob, F., Ghazali, A., & Shamala, P. (2021). Error-in-Variables Model 
of Malacca Wind Direction Data with the von Mises Distribution in Southwest Monsoon. Applied Mathematical 
Sciences, 15(9), 471-479. https://doi.org/10.12988/ams.2021.914521 

Mokhtar, N. A., Zubairi, Y. Z., Hussin, A. G., Badyalina, B., Ghazali, A. F., Ya’acob, F. F., . . . Kerk, L. C. (2021). 
Modelling wind direction data of Langkawi Island during Southwest monsoon in 2019 to 2020 using bivariate 
linear functional relationship model with von Mises distribution. Journal of Physics: Conference Series. 
https://doi.org/10.1088/1742-6596/1988/1/012097   

Nimac, I., Cindrić Kalin, K., Renko, T., Vujnović, T., & Horvath, K. (2022). The analysis of summer 2020 urban flood 
in Zagreb (Croatia) from hydro-meteorological point of view. Natural Hazards, 112(1), 873-897. 
https://doi.org/10.1007/s11069-022-05210-4 

Onyutha, C., & Willems, P. (2015). Uncertainty in calibrating generalized Pareto distribution to rainfall extremes in 
Lake Victoria basin. Hydrology Research, 46(3), 356-376. https://doi.org/10.2166/nh.2014.052 

Shahzad, U., Ahmad, I., Almanjahie, I., & Al-Noor, N. H. (2021). Utilizing L-Moments and calibration method to 
estimate the variance based on COVID-19 data. Fresenius Environmental Bulletin, 30(7A), 8988-8994.   

Šimková, T. (2021). Confidence intervals based on L-moments for quantiles of the GP and GEV distributions with 
application to market-opening asset prices data. Journal of Applied Statistics, 48(7), 1199-1226. 
https://doi.org/10.1080/02664763.2020.1757046 



 
 
http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                Vol. 11, No. 5; 2022 

17 

Smithers, J., & Schulze, R. (2001). A methodology for the estimation of short duration design storms in South Africa 
using a regional approach based on L-moments. Journal of Hydrology, 241(1-2), 42-52. 
https://doi.org/10.1016/S0022-1694(00)00374-7  

Yue, S., & Wang, C. (2004). Determination of regional probability distributions of Canadian flood flows using 
L-moments. Journal of Hydrology (New Zealand), 59-73.  

 

Copyrights 
Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/4.0/). 



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 11, No. 5; 2022

Nonlinear Mixed Models Applied to Ruminal Degradability Studies

Vanderly Janeiro1, Robson Marcelo Rossi1, Terezinha Aparecida Guedes1,Ana Beatriz Tozzo Martins1 & Lucimary

Afonso dos Santos2

1 Department of Statistics, State University of Maringá, Maringá, PR, Brazil.
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Received: July 26, 2022 Accepted: August 27, 2022 Online Published: September 7, 2022

doi:10.5539/ijsp.v11n5p18 URL: https://doi.org/10.5539/ijsp.v11n5p18

Abstract

This article presents an application of three classical models to studies of ruminal degradation kinetics, namely Ørskov and

McDonald’s model (1979); Van Milgen, Murphy and Berger’s model (1991), and Richard’s model proposed in France,

Dijkstra, and Dhanoa (1996). Our approach is focused on accounting for animal effects given that measurements are

repeated in the same animal. The models were studied under the perspective of nonlinear mixed-effects (NLME) model-

s. In this way, we intended to accommodate the problems of response variance heterogeneity and correlations between

repeated measures. To apply the proposed method, we used data from an experiment conducted in a Latin square design

to assess the dry matter degradability of the following three silages: Elephant grass (Pennisetum purpureum Schumach.)

silage treated with bacterial inoculant, Elephant grass silage treated with enzyme-bacterial inoculant, and corn (Zea mays
L.) silage. Samples were incubation for 0, 2, 6, 12 , 24, 48, 72 and 96 h. For these experimental data, the Van Milgen,

Murphy, and Berger’s model showed better performance than the others. The proposed approach indicated that inclusion

of animal effects is important for obtaining more accurate information and can be considered in NLME modeling. Fur-

thermore, it was also possible to perform an easy-to-interpret analysis of contrasts between treatments by using Tukey’s

test.

Keywords: Degradation kinetics, Digestibility, In situ degradability, Intake, Random effects, Rumen degradation.

1. Introduction

Collections that generate correlated data are common in several areas of knowledge. In many situations, such collections

are carried out longitudinally, implying that observations on the same individual are correlated and not independent, which

limits the use of certain statistical methods and techniques. Correlations can be accounted for by using the mixed model

theory, which relates a response variable to predictor variables as fixed and random effects factors under the assumption

that the residual distribution is Gaussian (J. C. Pinheiro & Bates, 2000). Most of the time, however, linear mixed models

are not appropriate for explaining relationships between variables. In such analyses, nonlinear mixed effects (NLME)

models arise as an extension of linear mixed models for describing nonlinear parameters.

In the case of longitudinal data, the interest commonly lies in specific individual characteristics, given that the dependent

variable or response is measured several times and the effect associated with the individual/subject is included in the

model as a random effects factor. That is, mixed models are often used to deal with correlated or hierarchical data. Also,

recognizing that there are random effects factors influencing the observed response can increase the accuracy and precision

of fixed effects estimates, minimizing seriously inflated type I error rates (Wang, 2016).

The nonlinear mixed model is based on a mean curve that is fitted to the data, such that individual curves incorporating the

random effects of each individual appear as deviations from this mean curve. In literature, there are several methods pro-

posed to model continuous, unbalanced, and multilevel longitudinal data. One of the first models, proposed by Gregoire

and Schabenberger (1996) incorporates subject random effects, whereas that developed by Littell (2006) directly models

correlation structure. Gregoire and Schabenberger’s (1996) approach employs nonlinear fixed effects models, inducing

correlations in the marginal distribution of within-subject observations and using random effects that vary across subjects

to reduce the impact of autocorrelation. The second procedure (Littell, 2006) uses a covariance structure and generalized

least squares estimators, which are considered the best unbiased estimators (Tasissa & Burkhart, 1997).

In the field of cattle research, it is common to find articles that discuss longitudinal data without taking into account

possible animal correlations (among observation in the same subject). An example is seen in rumen degradability studies

using the model proposed by Mehrez and Ørskov (1977). This approach may lead to inappropriate conclusions because it

ignores important effects and makes assumptions that are inconsistent with the reality of the data.
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Rossi, Martins, Guedes, and Jobim (2010) noted that alternative and/or more innovative methods can provide a more

parsimonious explanation for data of this nature. The authors emphasized the importance of Bayesian inference to make

comparisons between parameters while considering different experimental treatments in a coherent manner, without hav-

ing to resort, for example, to asymptotic procedures.

Frequentist methods can be applied to data sets with a longitudinal structure, as performed byMedeiros, Lima, Savian,

Malheiros, and Werner (2020). The authors sought to address the problems of variance heterogeneity and correlations

between repeated longitudinal measurements in in situ ruminal degradation kinetic studies by using NLME. From a

statistical point of view, similar problems encountered in different contexts and areas can be properly addressed through

the use of mixed models, such as seen in J. C. Pinheiro and Bates (2000); Sartrio (2013); Luwanda and Mwambi (2016);

Wyzykowski, Custdio, Custdio, Gomes, and Morais (2015); Calama and Montero (2004); and Xu et al. (2014). The

proposal to apply a mixed effects methodology involving fixed and random effects parameters and the construction of a

data (co)variance matrix (Yang, Huang, Trincado, & Meng, 2009) seems adequate to capture between- and within-animal

variabilities and allows modeling the degradability of each animal (subject-specific) as the average degradability of all

animals (population specific) (Schabenberger & Pierce, 2002).

In this study we aimed to evaluate the ruminal degradation kinetics through the nonlinear models of Ørskov and McDonald

(1979), Van Milgen, Murphy, and Berger (1991), and France, Dijkstra, and Dhanoa (1996) and compare them in order to

determine the best berformance. For that, we will consider the three nonlinear models with the inclusion of mixed effects.

So that the models include fixed effects and random effects, allowing the variability between animals to be evaluated, with

different structures for the (co)variance matrix of errors and random effects. In addition, we will discuss the comparison

of experimental fixed effects treatments.

In this study, we aimed to evaluate ruminal degradation kinetics using the nonlinear models proposed by Ørskov and

McDonald (1979), Van Milgen, Murphy, and Berger (1991), and France, Dijkstra, and Dhanoa (1996) and compare the

results in order to determine the model with the best performance. For this, we considered the three nonlinear models

with the inclusion of mixed effects; that is, the models contain both fixed and random effects. Such an approach allowed

us to assess between-animal variability using different structures for the (co)variance matrix of errors and random effects.

We also provide a discussion of fixed effects treatments.

2. Materials and Methods

2.1 Material

For model comparison (Table 2), we used a set of observations from a ruminal degradability experiment carried out in

the Dairy Cattle Sector of the Iguatemi Experimental Farm (FEI), State University of Maringá, Maringá, Paraná, Brazil.

Ruminal degradation kinetics were assessed according to Rossi et al. (2010). Treatments consisted of Elephant grass

(Pennisetum purpureum Schumach.) silage with bacterial inoculant (SCE-IBC) (Propiolact MS01), Elephant grass silage

with enzyme-bacterial inoculant (SCE-IEZ) (Bacto Silo), and corn silage (SMI) (Zea mays L.), hereafter referred to as T1,

T2 and T3, respectively. Silages were stored in trench silos, without coating, with a capacity of approximately 20 t.

A 3×3 Latin square experimental design was used, with cows treated as a nuisance factor (three lactating Holstein cows,

C1, C2 and C3) and periods (P1, P2 and P3) and treatments (T1, T2 and T3) considered as factors of interest. For each ani-

mal/period/treatment combination, hereafter referred to as subject or individual (ind), ruminal degradation was evaluated

at the following incubation times: 0, 2, 6, 12, 24, 48, 72, and 96 h (Table 1). The observed and analyzed response was dry

matter (DM) disappearance. For more details on the experiment, see Rossi et al. (2010).

Table 1. Dataset structure.

Time (h)

ind Combination Treatment 0 2 6 12 24 48 72 96

1 C1P1 T1 y11 · · · y18

2 C1P2 T3 y21 · · · y28

3 C1P3 T2 y31 · · · y38

4 C2P1 T2 y41 · · · y48

5 C2P2 T1 y51 · · · y58

6 C2P3 T3 y61 · · · y68

7 C3P1 T3 y71 · · · y78

8 C3P2 T2 y81 · · · y88

9 C3P3 T1 y91 · · · y98

ind: animal/period/treatment combination.
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2.2 Methods

The sampling structure induces a correlation among observations of the same subject. When faced with this type of

problem, several authors adopted a mixed effects modeling approach(Medeiros et al., 2020; Xu et al., 2014; Calama

& Montero, 2004; J. C. Pinheiro & Bates, 2000). A mixed nonlinear model (1) considering the i-th subject in the j-th
evaluation time, according to J. C. Pinheiro and Bates (2000), is such that:

yi = f (φi, vi) + εi i = 1, . . . ,N = 9 (1)

where, yi = [yi1, . . . , yi j, . . . , yini ]
′ denotes the vector of measurements from i-th subject (animal/period/treatment) in the

j-th observation time, f is the differentiable function of parameter vector φi (k × 1), k is the number of parameters in the

model, vi = [vi1, . . . , vi j, . . . , vini ]
′ is the predictor vector, and εi = [εi1, . . . , εi j, . . . , εini ]

′ is the vector residual terms. Still

according to J. C. Pinheiro and Bates (2000) (2):

φi = Xiβ + Zibi (2)

where Xi and Zi are, the incidence matrix (or design) for fixed and random effects, respectively, with the respective pa-

rameter vectors β and bi. As demonstrated by Calama and Montero (2004), the NLME model has as its basic assumptions:

bi
iid∼ Nq(0, D)

εi
iid∼ NJ(0, Ri(β, bi, ρ))

here N denotes a multivariate normal distribution with a null mean vector and D is the q × q positive-definite vari-

anceCcovariance matrix for random effects, representing among subject variability. In this formulation Ri(β, bi, ρ) is the

ni × ni intraindividual varianceCcovariance matrix defining within-subject variability. Ri is allowed to depend on both

random and fixed effects, and ρ represents a set of common but unknown parameters. The Ri matrix is able to describe

within-subject heteroscedasticity and autocorrelation by including both correlation effects and weighting factors. It can

be decomposed and written as (3):

Ri(β, bi, ρ) = σ
2G1/2

i ΓiG1/2
i (3)

where, for the i-th subject with ni measurements, σ2 is the scaling factor for the error dispersion, Gi is the ni × ni diagonal

matrix that accommodates the variability of the error due to time, and Γi is the ni × ni of within-time error autocorrelation

(Crecente-Campo, Tom, Soares, & Diguez-Aranda, 2010; Davidian & Giltinan, 2003).

Among the nonlinear f functions proposed in the literature, we focused on the exponential model (Ørskov & McDonald,

1979), Van Milgen’s model (Van Milgen, Murphy, & Berger, 1991), and Richards model (France, Dijkstra, & Dhanoa,

1996), as depicted in Table 2. We used the parameterization presented in Teixeira et al. (2016).

Table 2. Candidate statistical models for describing ruminal degradability

Model Statistical expression

Ørskov (OR) yi j = β1 + β2(1 − e−β3ti j/2) + εi j

Van Milgen (VM) yi j = β1 + β2

[
1 − (1 + β3ti j)e−β3ti j

]
+ εi j

Richard’s (RI) yi j = β1 + β1β2

[
β
β4

1
+ (β

β4

2
− ββ4

1
)e−β3ti j/2

]−1/β4 + εi j

β1: soluble fraction (%) (β1 ≥ 0);
β2: potentially degraded insoluble fraction (%) (β2 ≥ 0);
β3: joint fractional rate of latency and degradation (β3 ≥ 0);
β4: parameter without biological meaning (β4 ≥ −1).

To adjust the models and analyze the data, we used the resources available in the nlme package (linear and nonlinear

mixed effects models) (J. Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 2021) of the R statistical environment (R

Core Team, 2021). The following steps were taken:

• nonlinear models were fitted to individual curves considering only fixed effects, using the nlsList function to

determine whether this approach would be sufficient to explain ruminal degradation kinetics. In the analyzed case,

this model structure was not sufficient;

• random effects were added to all model parameters for selection of the D matrix;
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• after the D matrix was chosen, models were adjusted by incorporating different random effects components into

parameters;

• the best structure for the varianceCcovariance matrix of residuals (Ri) was defined;

• the variance components of all three adjusted models were defined, and the final model was selected; and

• parameter estimates for the final model and pairwise contrasts were analyzed to compare the performance of treat-

ments.

We considered pdSymm (positive definite matrix), pdDiag (diagonal matrix), and pdIdent (identity matrix) as structures

for the (co)variance matrix (D) of random effects of parameters (e.g. J. C. Pinheiro and Bates (2000), section 4.2.2).

Regarding the residual matrix (R), three other correlation structures were considered for Γ, namely corAR1 (autoregres-

sive of order 1 - AR1), corCompSymm (compound symmetry), and corLin (General Linear). The nlm package implements

the corARMA function (autoregressive moving average - ARMA), which can be useful to decide between an AR1 and AR-

MA(p,q) correlation structures. A useful approach is to generate all possible combinations of ARMA models (for p = 0

to p = 2 and q = 0 to q = 2) and choose the one with the lowest Akaike information criterion (AIC) and/or Bayesian in-

formation criterion (BIC). The three matrices were considered with and without the varIdent class matrix (G) to correct

for possible heteroscedasticity within groups (treatments or times) (J. C. Pinheiro & Bates, 2000). To obtain the estimates

presented in Tables 4, 5, 6, and 8, we used restricted maximum likelihood estimation (method = "REML" of the nlme

function).

Several authors do not recommend the use of the determination of coefficient (R2) to select an NLME model, according to

Spiess and Neumeyer (2010). Therefore, of the models described in Table 2, that with the best performance in predicting

DM was determined using the following criteria: intercept, slope, residual sum of squares (RSS), mean squared error

(MSE), root-mean-square error (RMSE), and (R2) of the simple linear model fit between DM values observed and DM

values predicted by NLME model. Furthermore, model efficiency (ME), normalized model efficiency (NME), correlation

between observed and fitted values (Corr), and concordance correlation (ConCorr) were determined after adjusting the

models. These statistics were obtained by using the IA tab function of the nlraa package (Miguez, 2021; Miguez,

Archontoulis, & Dokoohaki, 2018).

3. Results

The observed response (DM) for each subject (animal/period/treatment) is displayed in Figure 1. The curves indicate that

the proposed models are plausible and suggest differences between treatments.

Figure 1. Rumen degradability of dry matter (DM) per animal and treatment

The models presented in Table 2 were adjusted for each individual (Table 1), totaling nine adjustments for each model.

Adjustments were made using the nlsList function of the nlme package, which uses a nonlinear least squares procedure.

Because of the difficulty in estimating Richards model parameters, we opted for a first fit considering β4 = 1. With this

adjustment, we obtained initial values for the simultaneous adjustment of the four parameters. A summary of parameter
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estimates is presented in Table 3. For all models, the coefficient of variation (CV) was high (Table 3), indicating a large

variation in parameter estimates. This suggests that an effect can be added through a probability distribution, that is, by

including random effects components in the model. Such a procedure affords a mixed effects model.

Table 3. Summary of parameter estimates for models fitted to each curve (ind)

Parameter

Model Statistic β1 β2 β3 β4

mean 27.6786 52.0225 0.0523 -

OR SD 12.5968 8.8589 0.0177 -

CV(%) 45.5108 17.0290 33.8497 -

mean 30.0505 42.9881 0.0711 -

VM SD 12.3312 7.2544 0.0190 -

CV(%) 41.0349 16.8754 26.7380 -

mean 14.6044 58.2513 0.1431 1

RI* SD 5.9844 2.5824 0.0538 1

CV(%) 40.9764 4.4332 37.6296 1

mean 14.7507 60.2679 0.0990 0.4716

RI SD 6.4449 3.2281 0.0342 1.5911

CV(%) 43.6919 5.3562 34.5448 337.3897

RI*: Richard’s model with β4 = 1; SD: standard deviation of parameter

estimates; and CV(%): coefficient of variation of parameter estimates.

In this next step, we made adjustments considering mixed effects models. First, we considered that all model parameters

(Table 2) were associated with a random effect of subjects and a fixed effect of treatments.

To determine the best varianceCcovariance matrix for random effects (D), we considered three matrix structures: multiple

of the identity (pdIdent), diagonal (pdDiag), and general positive-definite (pdSymm).

According to the likelihood ratio test results, matrices were not considered to have significant differences, despite p =
0.0485 (see Table 4). AIC values of OR and VM models indicated better results for the identity matrix. For the RI model,

the diagonal matrix was indicated as the best; however, the values obtained for identity and diagonal matrices were very

similar. Considering the lowest BIC value, we concluded that the identity matrix afforded the best results, in addition to

requiring the estimation of fewer parameters.

Table 4. Assessment of different D matrix structures for the three models

Model D Matrix df AIC BIC logLik LRT p−value

OR

pdIdent 11 361.31 385.72 -169.66

pdDiag 13 365.31 394.16 -169.66 0.0000 1.0000

pdSymm 16 365.81 401.32 -166.91 5.4994 0.1387

VM

pdIdent 11 348.99 373.40 -163.49

pdDiag 13 352.99 381.84 -163.49 0.0006 0.9997

pdSymm 16 354.15 389.66 -161.07 4.8402 0.1839

RI

pdIdent 14 355.77 386.84 -163.88

pdDiag 17 353.88 391.62 -159.94 7.8838 0.0485

pdSymm 23 365.01 416.06 -159.50 0.8710 0.9900

df: degrees of freedom; logLik: log-likelihood value; LRT: likelihood ratio statistic.
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VarianceCcovariance identity matrices of the fitted models had the following estimates: D̂OR = 2.12 × 10−5I(3); D̂V M =

10.27 × 10−5I(3); D̂RI = 9.48 × 10−5I(4) (where I is a matrix of ones on the main diagonal and zero otherwise).

A random effect was considered for each model parameter with a varianceCcovariance identity matrix. In Table 5, we

present the results of model adjustments. All possibilities for incorporating random effects were tested. Ørskovs and

Van Milgens models had the lowest AIC, BIC, and logLik values when random effects were attributed to parameter β3

only, being hereafter referred to as OR3 and VM3, respectively. For Richards model, this behavior was observed when

random effects were attributed to β4 only (RI4). For these models, the estimated varianceCcovariance matrices were

D̂OR3
= 2.12 × 10−5I(1), D̂V M3

= 10.27 × 10−5I(1), and D̂RI4
= 0.1188I(1).

Table 5. Evaluation of the mixed effects of each model parameter using the identity varianceCcovariance matrix (D)

Mixed

Model i parameters AIC BIC logLik

ORi

1 β1 362.9761(5) 387.3906(5) -170.4880

2 β2 364.2511(7) 388.6657(7) -171.1255

3 β3 361.3103(1) 385.7249(1) -169.6552

4 β1β2 363.5209(6) 387.9354(6) -170.7604

5 β1β3 361.3112(4) 385.7258(4) -169.6556

6 β2β3 361.3112(3) 385.7258(3) -169.6556

7 β1β2β3 361.3104(2) 385.7249(2) -169.6552

VMi

1 β1 359.7734(5) 384.1880(5) -168.8867

2 β2 360.9057(7) 385.3203(7) -169.4528

3 β3 348.9860(1) 373.4005(1) -163.4930

4 β1β2 360.4013(6) 384.8159(6) -169.2007

5 β1β3 348.9864(3) 373.4010(3) -163.4932

6 β2β3 348.9861(2) 373.4007(2) -163.4931

7 β1β2β3 348.9866(4) 373.4012(4) -163.4933

RIi

1 β1 359.6773(13) 390.7504(13) -165.8386

2 β2 363.1060(15) 394.1791(15) -167.5530

3 β3 355.7812(10) 386.8543(10) -163.8906

4 β4 347.8875(1) 378.9606(1) -159.9437

5 β1β2 360.2088(14) 391.2819(14) -166.1044

6 β1β3 355.7872(12) 386.8603(12) -163.8936

7 β1β4 348.7045(3) 379.7776(3) -160.3522

8 β2β3 355.7867(11) 386.8598(11) -163.8933

9 β2β4 348.0757(2) 379.1488(2) -160.0378

10 β3β4 355.7630(8) 386.8361(8) -163.8815

11 β1β2β3 355.7809(9) 386.8540(9) -163.8905

12 β1β2β4 348.8564(4) 379.9295(4) -160.4282

13 β1β3β4 355.7562(6) 386.8293(6) -163.8781

14 β2β3β4 355.7557(5) 386.8288(5) -163.8779

15 β1β2β3β4 355.7579(7) 386.8310(7) -163.8790
(·):column values ranks by model

Having decided in which parameters to use random effects and their varianceCcovariance structure, we then applied the

within-subject variance-covariance structure Ri, in Eq. (3). The graphs depicted in Figure 2 show that the variability of

residuals differs between models but not over time.
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(a) Ørskov’s Model (b) Vam Milgen’s Model

(c) Richard’s Model

Figure 2. Time versus Standardized residuals

In an attempt to remove such effect, we modeled residual variance as a function of time. For this, we considered different

variances for each time period using the varIdent variance function class of the nlme package in Gi (3). For the

autocorrelation Γi matrix, we used three standard structures from the nlme package, namely autoregressive of order 1

(AR), compound symmetry (CS), and general linear (GL). We fitted the three models using the proposed Γi matrices with

and without varIdent (ID). The results demonstrated that CS associated with ID produced the best results for all models

(Table 6).

Table 6. Comparison of model performance for different alternatives of the R matrix

Model R df AIC BIC logLik Test LRT p−value

OR3

11 361.3103 385.7249 -169.6552

AR 12 363.3103 389.9444 -169.6552 1 X 2 0.0000 0.9999

AR+ID 19 349.3578 391.5285 -155.6789 2 X 3 27.9525 0.0002

CS 12 362.9669 389.6010 -169.4835 3 X 4 27.6091 0.0003

CS+ID 19 345.8534 388.0241 -153.9267 4 X 5 31.1135 0.0001

GL 12 363.3103 389.9444 -169.6552 5 X 6 31.4569 0.0001

GL+ID 19 349.3578 391.5285 -155.6789 6 X 7 27.9525 0.0002

VM3

11 348.9860 373.4005 -163.4930

AR 12 350.9860 377.6200 -163.4930 1 X 2 0.0000 1.0000

AR+ID 19 346.3521 388.5227 -154.1760 2 X 3 18.6339 0.0094

CS 12 347.9360 374.5701 -161.9680 3 X 4 15.5839 0.0292

CS+ID 19 346.0176 388.1883 -154.0088 4 X 5 15.9184 0.0259

GL 12 350.9860 377.6200 -163.4930 5 X 6 18.9683 0.0083

GL+ID not convergence

RI4

14 347.8875 378.9606 -159.9437

AR 15 349.8874 383.1800 -159.9437 1 X 2 0.000075 0.9931

AR+ID 22 340.7743 389.6035 -148.3872 2 X 3 23.113090 0.0016

CS 15 353.9218 387.2145 -161.9609 3 X 4 27.147531 0.0003

CS+ID 22 340.7083 389.5375 -148.3542 4 X 5 27.213515 0.0003

GL 15 349.8836 383.1763 -159.9418 5 X 6 23.175322 0.0016

GL+ID 22 340.7605 389.5897 -148.3803 6 X 7 23.123121 0.0016

After analyzing the predictive capacity of models, as shown in Table 7 and Figures 3 and 4, we concluded that the
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VM3+CS+ID model had the best performance. The graph of observed versus predicted values of the model showed high

linearity, with low RSS, MSE, and RMSE values. Furthermore, the high statistics for the NLME model corroborate this

result.

Table 7. Comparison of model performance

Models

Statistics OR3+CS+ID VM3+CS+ID RI4+CS+ID

DM

intercept 0.8130 0.4242 1.4514

slope 0.9716 0.9941 0.9785

RSS 764.1455 638.3976 686.9378

MSE 11.2374 9.3882 10.1020

RMSE 3.3522 3.0640 3.1784

R2 0.9707 0.9756 0.9737

NLME

ME 0.9690 0.9755 0.9728

NME 0.9699 0.9761 0.9735

Corr 0.9853 0.9877 0.9868

ConCorr 0.9847 0.9877 0.9865

DM, curve of observed versus predicted dry matter degradability values;

RSS, residual sum of squares; MSE, mean squared error; RMSE, root-mean-square

error; ME, model efficiency; NME, normalized model efficiency.

(a) Ørskov’s Model

(b) Van Milgen’s Model (c) Richard’s Model

Figure 3. Observed dry matter (DM) degradability values versus DM values predicted using the with SC+ID
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(a) Ørskov’s Model

(b) Vam Milgen’s Model (c) Richard’s Model

Figure 4. Simulated envelope for models fitted with the CS+ID

Table 8 shows the results of Tukeys test, obtained by the function emmeans of the package emmeans (Lenth, 2021). T3

afforded a higher soluble fraction (β̂1 = 47.4471), differing significantly from treatments T1 and T2 at the 5% significance

level. The largest degradable fraction was obtained with T2 (β̂2 = 51.2885), and all treatments differed from each other

in this parameter. Joint fractional rate of latency and degradation (β3), however, did not differ between treatments. The

results depicted in Figure 5 support the previous discussion, as T3 starts at time zero with DM values clearly higher than

that of other treatments. Total degradability was virtually equal for all treatments at 45 h; thus, the degradability rates of

T1 and T2 were higher up to 45 h.
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Table 8. Estimates and contrasts of parameters β1, β2 and β3, with standard errors (SE) and 95% confidence limits (CL)

of the model VM3+CS+ID

Parameter Ti Estimate SE df Lower CL Upper CL

1 23.6593 0.51416 8 22.4736 24.8449

β1 2 22.4619 0.52545 8 21.2502 23.6735

3 47.4471 0.50861 8 46.2742 48.6200

1 46.1181 1.11124 52 43.8882 48.3479

β2 2 51.2885 1.01282 52 49.2561 53.3208

3 33.9917 1.06929 52 31.8460 36.1374

1 0.0541 0.00306 52 0.0480 0.0603

β3 2 0.0621 0.00320 52 0.0557 0.0686

3 0.0547 0.00341 52 0.0479 0.0616

Ti contrast Estimate SE df t−ratio p−value*

1 - 3 -23.7878 0.7232 8 -32.892 0.0000

β1 2 - 3 -24.9852 0.7312 52 -34.166 0.0000

2 - 1 -1.1974 0.7351 8 -1.629 0.2890

1 - 3 12.1263 1.5421 52 7.863 0.0000

β2 2 - 3 17.2967 1.4728 52 11.744 0.0000

2 - 1 5.1703 1.5035 52 3.439 0.0032

1 - 3 -0.0005 0.0045 52 -0.128 0.9909

β3 2 - 3 0.0074 0.0046 52 1.587 0.2600

2 - 1 0.0080 0.0044 52 1.809 0.1765

*: Tukey test

Figure 5. Prediction curves of the adjusted VM3+CS+ID model

4. Conclusion

This study aimed to identify a nonlinear mathematical model for the study of ruminal degradability. The model proposed

by Van Milgen provided better results than Ørskovs and Richards models.

Originally, these are fixed effects models that do not contemplate the addition of random effects to parameters nor the

modeling of their variance and covariance structures.

However, assuming fixed effects for each animal/period/treatment combination, we observed high coefficient of variations

of estimates, indicating that random effects components could improve the results. This observation was confirmed by

addition of random effects of animals using NLME. This method made it possible to consider the compound symmetry

autocorrelation matrix and identity covariance structure, resulting in improvements in model residuals and, consequently,
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greater precision in parameter estimates.

In addition, it was possible and easy compare treatments by the parameters contrasts test using the EMM function.
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Abstract 
In this study, an Autoregressive Integrated Moving Average (ARIMA) model was used to forecast Ghana’s Akosombo 
dam level and hydropower generation by the end of year 2022. Data used for this study span from January 2010 to 
December 2019. Base on the final ARIMA model, power generation is forecasted to decrease from 398 Megawatts/hr in 
December 2019 to approximately 374 Megawatts/hr by December 2022. On the other hand, water level of the 
Akosombo dam is predicted to decrease marginally from 264.8 ft in December 2019 to approximately 255.19 ft by 
December 2022. The Volta River Authority (VRA) and managers of the electricity production in Ghana are encouraged 
to be proactive in expanding energy production by turning more to renewable energy sources. In the coming years, as 
they seek to provide sustainable electricity for their cherished customers, investment decisions should be directed 
towards protecting the volta river from drying up due to human and climatic activities as well as expanding energy mix. 

Keywords: Hydropower, Akosombo Dam, ARIMA, Ghana 

1. Introduction 
Energy is a key component to sustaining economic growth and general well-being. Many of our daily activities is 
dependent on stable electricity. In our global quest to achieving the sustainable development goals, stable electricity has 
been deemed crucial (Owusu et al., 2016). According to the International Energy Agency (IEA, 2015), about 10 % of 
the population of the world are without electricity, with 22% out the population are without electricity living in 
sub-Saharan Africa and some parts of Asia. More scientific studies must be focusing on helping to improve electricity 
supply in developing countries within sub-Saharan Africa and Asia.  

According to the World Energy Outlook report by the International Energy Agency (2015), fossil fuels account for 
about 67% of the worldwide power generation. Despite its availability worldwide, the negative effects on the 
environment as a results of generating electricity from fossil fuel, climate change, depletion of fossil fuel reserves, and 
price volatility need a worldwide increase in the use of renewable resources for power generation (IEA, 2015; NREL, 
2015; Panwar et al., 2011). 
Globally, hydropower remains the largest renewable energy resource due to its cost-effectiveness and reliability (Zhou 
et al., 2020). Ghana has two major hydropower system made up of two plants. The hydropower plants are located at 
Akosombo and Kpong and were commissioned in 1965 and 1982 respectively. Akosombo has six turbine-generator 
units which operates between 84.15m (276ft) maximum and 75.59m (248ft) minimum of headwater elevation. The 
Kpong plant has four turbines which operates between 17.7m maximum and 14.5m maximum of normal water level. 
Ghana’s electricity generation was once powered by diesel generators prior to the construction of Akosombo dam 
(Eshun & Amoako Tuffour, 2016). It is estimated that, about 65% of Ghana’s electricity is sourced from Akosombo dam 
and the remaining 35% generated from other sources (Gyamfi et al., 2015). However, the sustainability of hydropower 
is directly influence by the water level at any given point in time (Harrison, & Whittington, 2001; Miescher, 2021). 

Ghana is among the West African countries blessed with so many renewable resources (IRENA, 2015). With the need to 
increase energy access and also protect the environment, renewable energy development has become key element in the 
sustainable future energy agenda. The energy sector has been searching for sustainable solution to the periodic power 
outages and load shedding. The many years of reliance on hydropower generation, the slow pace of innovative energy 
mix, and growth in economic activities and population are some of the causes of the unstable electricity supply to many 
parts of Ghana (Asumadu-Sarkodie & Owusu, 2016). Recent statistics indicate that the electricity generating mix of the 
country is mainly made up of thermal and hydro sources, with steps being made to add non-renewable sources like solar. 
Currently, about 59.9% of the total electricity generated in Ghana is derived from thermal sources (natural gas, light 
crude oil and diesel fuels), 39.9% is derived from hydro and the 0.2% left is derived from solar technology (Ankrah & 
Lin, 2020). 
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However, despite the 39.9% of electricity derived from hydro, there has being a significant decline in hydropower since 
2014. Ashong (2016) indicated that inadequate water inflow into the hydro dams as a results of low rainfall have been 
the main reason for the decline in hydropower generation, hence the major cause of unstable renewable energy state in 
Ghana. 

There are several models used for forecasting in time series. This study mainly applies the Autoregressive Integrated 
Moving Average (ARIMA) model for predicting power generation and dam level. ARIMA models depend on past 
values to predict the future. The ARIMA model consist of three components (p, d, q), where p is the order of AR process, 
d is the difference order, and q is the order of MA process. The ARIMA model is one of the most used techniques by 
many researchers due to its reliability (Debnath & Mourshed, 2018; Ediger & Akar, 2007). Sarpong (2013) found out 
that the use of ARIMA model is adequate for forecasting. In addition, El Desouky, & Elkateb, 2000) revealed that the 
use of ARIMA model for forecasting provides smaller errors.  

In previous studies, the Owusu et al. (2018) found out that, electricity generation will decline if alternative power 
sources are not urgently considered by Government. Boadi and Owusu, (2019) in their study on climate change and its 
effect on hydropower in Ghana using monthly data from 1970 to 2010 concluded that, 21% of Ghana’s unstable 
electricity supply was due to shortfall in water levels of Akosombo hydroelectric power station. Michieka et al., (2021) 
found out that, long-run positive shock in temperature increases electric power production. According to Asian 
Development Bank (2007), drought causes more shortages resulting in outages and insufficient cooling water which 
ultimately decrease hydropower production. 

Moreover, Ediger and Akar (2007) forecasted primary energy demand by fuel using ARIMA model. The forecasted 
result shows that primary energy demand will decrease between 2005 and 2020. Mite-León and Barzola-Monteses 
(2018) used ARIMA models in forecasting hydropower generation in Ecuador. The outcome of the study showed 
monthly increased in hydropower generation in Ecuador. Kabo-bah et al. (2016) found out that, regular low flow of 
water into the Akosombo dam affects power generation. 

However, most of the previous studies developed on energy focused more on renewable resources, predicting energy 
consumption and in particular, overall energy production (Dind etal., 2018; Katani, 2019; Kaur & Ahuja, 2017; 
Sarkodie, 2017; Wu et al., 2017). Some too focused on factors affecting hydropower generation (Kabo-bah et al, 2016; 
Michieka et al., 2021). Notwithstanding the above, hydropower generation forecast in developing countries, like Ghana, 
has attained very little attention. Energy production forecast is of great importance to the operators of electrical system 
and decision makers to defined better policies and manage risks. 

Also, from previous studies, different models have been used by different researchers in forecasting hydropower 
generation. Owusu et al. (2018) used Polynomial regression. Zolfaghari and Golabi (2021) used adaptive wavelet 
transform (AWT), long short-term memory (LSTM) and random forest (RF) algorithm (AWT-LSTM-RF) to predict the 
electricity production in hydroelectric power plant. Dmitrieva (2015) combined Neural Networks, SVM and ARIMA 
models in forecasting hydropower plant production. Mite-León and Barzola-Monteses (2018) used ARIMA with 
seasonal component in predicting hydropower generation in Ecuador.  

From the year 2003, the Energy Commission of Ghana decided on an annual increase in power supply of 0.9 to 1.8% 
due to increasing population and economic activities (EC, 2013). It is clear from the above that, trends for future 
hydropower generation and water level of the longest serving source of electricity in Ghana (the Akosombo dam) is 
crucial to overcoming power supply challenges.  

This study therefore attempts to forecast Ghana’s hydropower generation as well as water level of the Akosombo dam 
using the Autoregressive Integrated Moving Average (ARIMA) technique. Many of the existing literature on ARIMA 
forecasting models usually ignore analysis of forecasting errors (Koutroumanidis et al., 2009; Ömer Faruk, 2010; 
Khashei & Bijari, 2011). In this study however, error analysis is performed using Root Mean Square Error (RMSE) and 
Mean Absolute Percentage error (MAPE) to evaluate the forecasting accuracy of the selected model. The Volta River 
Authority (VRA) and managers of the electricity company of Ghana may find this study very useful in the planning for 
the coming years as they seek to provide sustainable electricity for their cherished customers. This study may promote 
the need for intervention programs to protect the Volta river from drying up due to human and climatic activities. 
2. Materials and Methods 
The study used two secondary univariate time series data; power generation and dam level, which span from January 
2010 to December 2019. Since the data was measured over time, and uniformly spaced, we considered utilizing the 
Box-Jenkins strategy (Shumway et al., 2000). The time series forecasting by using ARIMA models can be performed in 
four basic steps namely, Identification, Estimation, Diagnosis and Forecasting (Box et al., 2015), to end up with a 
specific formula that satisfies all the underlying conditions as much as possible to produce good and accurate forecast.  
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2.1 Autoregressive Integrated Moving Average Process (ARIMA) 
ARIMA model is a type of Box-Jenkins series analysis which depends on past values to predict the future (Devi et al., 
2013). The modelling is done using the integrated autoregressive and moving average processes. The ARIMA (p, d, q) 
model is divided into three main parts: The Autoregressive (AR) part of order p, which explains the present value of a 
series by the function of p past values, the Moving Average (MA) part of order q, which indicates that the output 
variable depends linearly on current and various past values, and the differenced (d) part which indicates that the data 
values have been replaced with the difference between the values and the previous values.  

The Box-Jenkins methodology apply the maximum likelihood principles in parameter estimation. Using a modified 
form of Mite-León and Barzola-Monteses (2018) model approch, the ARIMA (p, d, q) model is expressed as:  

      (1) 

 
where, 

 is the series with a difference order (d)  

,…,  and ,…,  are the model parameters  

 represent white noise with i.i.d.  

The ARIMA (p, d, q) model is to make nonstationary time series stationary by d order difference.  

2.2 Unit Root Evaluation 
Test for a unit root is one of the basic assumptions underlying any time series data. This study made use of time-plot of the 
data and the ADF statistical test in evaluating the stationarity of the two series. The ADF was based on the assumption that 
the series can approximate an autoregressive of order 1 (Mite-León and Barzola-Monteses, 2018). The ADF test is 
performed under the null hypothesis, the series has a unit root. The regression equation of the ADF test is given by: 

 =   (2) 

Where,  

 is the observed time series  

 is constant  

 is the coefficient of the time trend  

p is the order of AR process. 

If , the series is random walk and if -1 < 1+  < 1, the series is stationary. 

2.4 Model Identification 
Before applying the ARIMA model, the Autoregressive (AR) component p, and the Moving Average (MA) component q, 
was identified using ACF and PACF plots respectively. According to Box and Pierce (1970), the ACF and the PACF are 
correlogram functions that help to decide the degree of association between two successive values of the series and give 
an idea of the possible parameters of the ARIMA model. By following Polprasert et al., (2021) method of identification, 
the ACF and PACF were drawn to stationary time series and the p and q values were evaluated based on truncation and 
trailing nature of the function. Truncation refers to the nature in which the ACF or PACF time sequence is zero (0) after 
some time, and trailing refers to the nature in which the ACF or PACF slowly shrinks to zero (0). If the PACF is 
truncating and ACF is trailing, then p equals the truncation order, q equals 0, and it can be concluded that the sequence 
fits AR model. If PACF of the stationary series is trailing and ACF is truncating, then q equals the truncating order, p 
equals 0 and it can be concluded that the sequence fits MA model; if both the PACF and ACF are trailing, then p equals 
the PACF truncation order, q equals the ACF truncation order, and the model fits the ARMA model. 

2.5 Model Estimation 
After the parameters (p, d, q) of the ARIMA model have been identified, the model is then estimated to obtain the 
coefficients. The maximum likelihood estimation is used in this study to get the estimates of the coefficients of the 
suggested models at the identification stage. We fit all the suggested models at the identification stage to the series to 
obtain estimates of the coefficients. 

2.6 Model Selection 
After a successful estimation of the model, the Akaike Information Criteria (AIC) and the significance of the models 
will be accessed to determine the best model for our series. It is expected that the ARMA components would be 
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significance at 5% level of significance after estimation and return the minimum AIC value. AIC is mathematically 
expressed as:  

   (3) 

where,   

L is the maximum likelihood value 

k is the number of parameters to be estimated.  

When these conditions are satisfied, that model is then selected as the best model for the series.  

2.7 Model Diagnostics 
The Box-Jenkins methodology also provides an avenue to access the goodness of fit of the selected model. It is 
expected that after a complete estimation, the residuals of the selected model would exhibit the following characteristics: 
the residuals should be white noise, the ARMA process should be covariance stationary, thus all the AR roots must lie 
inside the unit circle, the ARMA process should be invertible, thus all the MA roots must lie inside the unit circle. The 
study employs the Ljung-Box test to test whether the residuals are white noise or not. The test is express as: 

 
 

 

(4) 

Where  is asymptotic distribution which a Chi-square distribution with degrees of freedom , and 
 are the orders of AR and MA, n is the sample size,  is the estimated autocorrelation of the time series at lag , 

and   is the number of lags to be tested. 

2.8 Model Forecasting and Evaluation 
Once the selected model has been verified, the model will then be used to predict power generation and dam level in the 
next 36 months. After the forecasting, this study employs the Root Mean Square Error (RMSE) and Mean Absolute 
Percentage error (MAPE) to evaluate the forecasting accuracy of the selected model. The RMSE and MAPE are given 
by: 

 
  

 
 
(5) 

 

  

 
 
(6) 

where  is the predicted value for the ith observation,  is the observed value for the jth observation, n is the number 
of non-missing residuals. 

3. Results 
3.1 Graphs of the Series 
It can be observed from figure 1 and 2 that, both series depicts a change in mean over time which suggest that both 
series are non-stationary. 
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Figure 1. Power generation                                   Figure 2. Dam level 

                   
Figure 3. Correlogram for power generation                           Figure 4. Correlogram for dam level 

It can be observed from both correlogram plots (Figure 3 and 4) that, the ACF decline very slowly, which also suggest 
that both series are not stationary. This can be confirmed using the ADF test. Table 1 and 2 below display the results of 
ADF statistical test for stationarity 4 both power generation and dam level respectively. 

Table 1. ADF test results for Power generation 

Without differencing 

 
After first differencing 
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t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -2.512378  0.1151

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -7.532736  0.0000
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Table 2. ADF test results for dam level 

Without differencing 

 
After first differencing 

 
It can be confirmed from the ADF test that both series were not stationary at their levels and became stationary after 
first differencing. This confirmed the use of ARIMA (p,d,q) model to estimate our models and make predictions.  

3.2 Model Estimation  
It is therefore appropriate to determine the various ARMA components and the suggested models for both series. 

                      
Figure 5. ACF and PACF for power gen                               Figure 6. ACF and PACF for dam level 

Possible models for power generation are ARIMA (3,1,3), (3,1,8), (8,1,8) and (8,1,3) and the possible models for dam 
level are ARIMA (1,1,1), (1,1,4), (1,1,5), (1,1,6), (6,1,1), (6,1,4), (10,1,1) etc. After a successful estimation of the 
possible models, ARIMA (8,1,3) returned significance ARMA coefficients with least AIC and SIC value. Therefore, it is 
selected as the best model for power generation. 

Table 3. Parameters estimates of the selected model for power generation 

 

 
Also, ARIMA (10,1,1) returned significance ARMA and least AIC and SIC value. Therefore, it is selected as the best 
model for dam level. 

  

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -0.909780  0.7820

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -6.823674  0.0000
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Autocorrelation Partial Correlation
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Variable Coefficient Std. Error t-Statistic Prob.  

C -1.040110 2.863109 -0.363280 0.7171
AR(8) -0.204761 0.091469 -2.238583 0.0271
MA(3) -0.234018 0.098148 -2.384329 0.0187

SIGMASQ 2145.712 302.7057 7.088443 0.0000

    Akaike info criterion 10.58063
    Schwarz criterion 10.67405
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Table 4. Parameters estimate of the selected model for dam level 

 

 
3.3 Model Diagnostics  
It is very advisable to check the goodness of fit of the selected model to see whether it adequately fit the data before 
forecasting is perform. 

3.3.1 Power Generation Model Diagnostics 

Table 5. Ljung-Box results 

 

 
Figure 7. AR/MA roots results 

All the AR and MA roots lie inside the unit circles, which shows that the ARMA process is covariance stationary and 
invertible. Also, all the p-values of Ljung-Box Q-statistics are greater than 5% level of significance, there we fail to 
reject the null hypothesis and conclude that the residuals are white noise. This confirm that ARIMA (8,1,3) model 
adequately fits the data.  

  

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.054919 0.948797 0.057882 0.9539
AR(10) 0.409277 0.077391 5.288431 0.0000
MA(1) 0.427821 0.092820 4.609148 0.0000

SIGMASQ 5.545471 0.789410 7.024829 0.0000

    Akaike info criterion 4.635189
    Schwarz criterion 4.728605

Q-statistic probabilities adjusted for 2 ARMA terms

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 -0.075 -0.075 0.6927
2 0.006 -0.000 0.6964
3 0.018 0.018 0.7345 0.391
4 -0.004 -0.001 0.7366 0.692
5 -0.074 -0.075 1.4301 0.698
6 -0.059 -0.071 1.8718 0.759
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3.3.2 Dam Level Model Diagnostics 

Table 6. Ljung-Box results 

 

 

Figure 8. AR/MA root results 
The AR and MA roots lie inside the unit circles, which shows that the ARMA process is covariance stationary and 
invertible. Also, all the p-values of Ljung-Box Q-statistics are greater than 5% level of significance, there we fail to 
reject the null hypothesis and conclude that the residuals are white noise. This confirm that ARIMA (10,1,1) model 
adequately fits the data. 

3.4 Model Forecasting in the Next 36 Months 
Since the selected model has successfully passed the diagnostic stage, power generation and dam level are predicted as 
below. From figure 9, the vertical axis represents the quantity of power generation in megawatts while the horizontal 
axis denotes the time in months in which the power was generated. It can be observed that there were fluctuations in 
power generation from October 2019 to June 2020. Right from June 2020, power generation is forecasted to decrease 
from 395 Megawatts in June 2019 to approximately 355 Megawatts by December 2022. From figure 10, the vertical 
axis denotes the volume of the water level in meters whiles the horizontal axis denotes the time in the value which is 
recorded in months. Based on the predicted values, water level of the Akosombo dam is predicted to increase marginally 
from 269.6 meters in December 2019 to approximately 275.5 meters by December 2022, despite the fluctuations that 
may occur. 

  

Q-statistic probabilities adjusted for 2 ARMA terms

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.034 0.034 0.1370
2 0.032 0.031 0.2643
3 -0.115 -0.117 1.8984 0.168
4 -0.105 -0.100 3.2775 0.194
5 -0.109 -0.097 4.7738 0.189
6 -0.127 -0.133 6.8149 0.146
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Table 7. Forecasted values of power generation 

Month/Year Actual values Predicted values 
Oct-19 357 349.2051 
Nov-19 407 361.0639 
Dec-19 398 355.4225 
Jan-20 371.5740 
Feb-20 397.3494 

* * 
* * 
* * 

Oct-21 370.0246 
Nov-21 368.8737 
Dec-21 367.8731 
Jan-22 366.6854 
Feb-22 365.4151 
Mar-22 364.4296 
Apr-22 363.3315 
May-22 362.3126 
Jun-22 361.2342 
Jul-22 360.2168 

Aug-22 359.1689 
Sep-22 358.1587 
Oct-22 357.1657 
Nov-22 356.1144 
Dec-22 355.0862 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. Actual (brown) and Forecasted (blue) graph for power generation 
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Table 8. Forecasted values of Dam level 

Month/Year Actual values Predicted values 

Oct-19 256.2 268.8725 

Nov-19 266 272.1425 

Dec-19 264.8 269.6202 

Jan-20  268.7932 

Feb-20  268.0890 

* * 

* * 

* * 

Oct-21  276.8238 

Nov-21  276.7653 

Dec-21  276.7890 

Jan-22  276.8539 

Feb-22  277.0353 

Mar-22  277.4018 

Apr-22  277.2610 

May-22  277.9840 

Jun-22  278.2834 

Jul-22  278.2778 

Aug-22  278.2807 

Sep-22  278.2892 

Oct-22  278.3313 

Nov-22  278.3903 

Dec-22   278.4970 

 

 
Figure 10. Actual (brown) and Forecasted (blue) graph for dam level 

3.5 Forecasting Evaluation 
The table below display the evaluation results of our forecasted models for hydropower generation and dam level 
respectively. 

 

 

252

256

260

264

268

272

276

280

I II III IV I II III IV I II III IV I II III IV
2019 2020 2021 2022

DamLevel DAMLEVELF



 
 
http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                Vol. 11, No. 5; 2022 

40 

Table 9. Power generation forecasted evaluation results 

Model fit statistics Forecasted value 

RMSE 

MAPE 

36.4405 

8.0559 

Table 10. Dam level forecasted evaluation results 

Model fit statistics value 

RMSE 

MAPE 

4.8203 

1.8203 

It can be observed that, both tables presented values which are smaller. This means that the selected model for 
hydropower generation and that of dam level provide best forecasting accuracy results. 

4. Discussion 
The objective of the study was to obtain an appropriate ARIMA model that will help forecast hydropower generation 
and dam level which has a significant impact on hydropower. The Box-Jenkins method was employed to obtain the 
suitable model for our series. The study made use of two different univariate time series which was obtained monthly. 
The two datasets were monthly recorded data for power generation and dam level. The study first looked at hydropower 
and its significance to the development of a country, irregularities in dam levels because of climate and environmental 
conditions and lastly some of the models that have been used for forecasting hydropower generation. The graph of both 
series was obtained, and it was found that, there is a change in mean of the two series which shows nonstationary nature 
of the series.  

There were rise and fall in dam level across the sample period, but in a downward pattern from 2011 to 2015 and 
upward pattern from 2016 to 2019. There is also sharp decline in power generation from 2014 to 2015. ACF plots for 
both series decline slowly which suggest nonstationary for both series. The ADF statistical test also proved that power 
generation and dam level are nonstationary. Transformation of the series was done by taking the first difference of both 
series to obtained stationarity. The correlogram of both series suggested different orders of p and q for AR and MA 
process. After different estimations, ARIMA (8,1,3) and ARIMA (10,1,1) fulfilled all the model selection criteria for 
power generation and dam level respectively. 

For the validation of the model, the residuals hypotheses were tested. First, the Ljung-Box test was used to determine if 
the residuals of the selected models are white noise. The test returned p-values greater than 5% significance level up to 
six lags for both power generation and dam level. Also, from the root statistics, all the AR and MA roots fell inside the 
unit circle which shows that, the selected models were stationary and invertible respectively. With this validation, a 
forecast was made.  

The results of Ghana’s hydropower generation and Akosombo dam level are depicted in Figure 9 and Figure 10 
respectively. The fitted model was used to forecast the observed series (2010-2019) and based on that the future series 
were forecasted as presented in Table 7 and Table 8 for hydropower generation and dam level respectively. Table 7 
shows that there were fluctuations in Ghana’s hydropower generation from October, 2019 to June 2020. But there is a 
decrease from 395mWh in June, 2019 to 355.0862mWh in 2022 in a low decrease scenario. Though there may be 
fluctuations but it won’t be much as those observed from October, 2019 to June, 2020. But in all, there is going to be a 
slight decrease in power generation from December 2019 to December 2022 (355.4225meters to 355.0862meters). Also, 
Table 8 shows that there was a decrease in the Akosombo dam level from 269.8ft in December, 2019 to 267.4496ft in 
June 2020. Despite the fluctuations that may occur, there will be an increase in dam level from 269.8m in December, 
2019 to 278.4970m by December, 2022 in slow increase scenario. This forecast supports earlier works of (Owusu et al., 
2018 and Boadi & Owusu 2019).  

Hydropower production phantom the sustainability of a country and Ghana has suffered from power outages since 2014. 
Jude et al., (2011) found out that, decrease in hydropower generation also decrease energy consumption, which in turn 
decrease economic growth. According to Ashong (2016), the decline in hydropower generation is mainly due to the 
inadequate inflow of water into the hydro dams as a results of low rainfall. This signifies that climate variabilities and 
environmental conditions are main variables that affect water levels and generation of hydropower (Michieka et al., 
2021; Miescher, 2021).  

The forecasting evaluation results for hydropower generation and dam level are displayed in Table 9 and 10 respectively. 
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From Table 9, RMSE of 1.16 means that the average distance between the observed series and the predicted values is 
1.16. MAPE of 0.4% means that the ARIMA (8,1,3) model-predicted level varies by 0.4% from the observed series. 
Also, from Table 10, RMSE of 3.85 means that the average distance between the observed series and the predicted 
values is 3.85. MAPE of 1.45% means that the ARIMA (10,1,1) model-predicted level varies by 0.4% from the 
observed series. This means that the selected models are statistically sound to make future forecast. In a similar study, 
Sarkodie (2017) used RMSE and MAPE to analyze forecasting errors in predicting electricity consumption in Ghana. 

5. Conclusions  
The ARIMA models has revealed that, following the trend of past values of hydropower and water level from the 
Akosombo dam, both variables will trend downwards in future. Based on the forecasting results obtained, Ghana will 
experience a slight decrease in hydropower generation despite the increase in water level that will occur, as the results 
showed. This implies that there should an introduction of new hydro plants that will utilized the excess water to produce 
more of electricity for the country.  The Volta River Authority (VRA) and managers of the electricity production in 
Ghana are also encouraged to be proactive in expanding energy production by turning more to renewable energy 
sources. In the coming years, as they seek to provide sustainable electricity for their cherished customers, investment 
decisions should be directed towards protecting the volta river from drying up due to human and climatic activities as 
well as expanding energy mix. Government of Ghana should devote funding to support scientific research in renewable 
energy and energy-harvesting technologies to ensure that enough energy is available for citizens and industries. Future 
research is encouraged to be done using new variables, to study patterns of power outages, construct economic models 
and make predictions. This will increase effective decision making process in the energy sector and also help sustain the 
growth of the economy.  
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Abstract

For square contingency tables with ordered categories, Iki, Ishihara and Tomizawa (2013) considered the t-distribution

type symmetry model and Iki, Okada and Tomizawa (2018) extended this model. These models are appropriate for

a square contingency table if it is reasonable to assume an underlying bivariate t-distribution having any degrees of

freedom. This study proposes three kinds of parsimonious models for these models. Additionally, this paper provides

the decompositions of the parsimonious symmetry model using the proposed model. Some simulation studies based on

bivariate t-distribution show the performances of the proposed models.

Keywords: bivariate t-distribution, square contingency table, symmetry, underlying distribution

1. Introduction

For analysis of contingency tables, we are interested in whether the two classificatory variables are independent of each

another. When the independence does not hold, we may use Pearson’s correlation coefficient to estimate the correla-

tion between the two variables. Additionally, it is important to interpret the data, and propose models that fit the data

well. Goodman (1979) considered the uniform association model, and Agresti (1983a) considered the linear-by-linear

association model.

In particular, we consider tables with the same row and column classifications, which are known as square contingency

tables. For square contingency tables, the independence between the row and column is unlikely to hold because many

observations fall in the main diagonal cells, which indicates that the value of the row category is the same as the value of

the column category. Therefore, for the analysis of square contingency tables, instead of independence, we are interested

in whether or not the row variable is symmetric with the column variable. The symmetry (S) model (Bowker, 1948),

the marginal homogeneity model (Stuart, 1955) and the quasi-symmetry model (Caussinus, 1965) have been proposed as

models of symmetry. Moreover, for the research of the symmetry model, see Yoshimoto et al. (2019), Ando et al. (2021)

and Shinoda et al. (2021).

We consider an r × r square contingency table with the same row and column ordinal classifications. Let pi j denote the

probability that an observation will fall in the ith row and jth column of the table (i = 1, . . . , r; j = 1, . . . , r). The S model

is defined by

pi j = p ji (i < j);

see Bishop et al. (1975, p.282). This model indicates a structure of symmetry of the probabilities with respect to the main

diagonal of the table. Agresti (1983b) considered the linear diagonals-parameter symmetry (LDPS) model defined by

pi j = θ
j−i p ji (i < j).

This indicates that the probability of an observation falling in the (i, j)th cell, i < j , is θ j−i times higher than the probability

of it falling in the ( j, i)th cell. A special case of the LDPS model obtained by putting θ = 1 is the S model. Tomizawa

(1991) proposed an extended linear diagonals-parameter symmetry (ELDPS) model defined by

pi j = θ
j−i
1
θ

j2−i2

2
p ji (i < j).

This indicates that the probability of an observation falling in the (i, j)th cell, i < j , is θ
j−i
1
θ

j2−i2

2
times higher than the

probability of it falling in the ( j, i)th cell. Agresti (1983; 1984, p.216) described the relationship between the LDPS model
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and the joint bivariate normal distribution as follows: the LDPS model may be appropriate for a square ordinal table if it

is reasonable to assume an underlying bivariate normal distribution with equal marginal variances. Moreover, Tomizawa

(1991) pointed out that the ELDPS model may be appropriate for a square ordinal table if it is reasonable to assume an

underlying bivariate normal distribution with different marginal variances.

For any fixed constant m (m > 2), Iki et al. (2013) proposed the t-distribution type symmetry (TS(m)) model defined by

p
− 2

m+2

i j − p
− 2

m+2

ji = ηm( j − i) (i < j).

A special case of this model can be obtained by putting ηm = 0 in the S model. The TS(m) model indicates that the

difference between the two symmetric probabilities raised to the power [= −2/(m+2)] is proportional to the distance from

the main diagonal of the r × r table. The TS(m) model may be appropriate if it is reasonable to assume an underlying

bivariate t-distribution with equal marginal variances having m degrees of freedom (see Iki et al., 2013). For any fixed

constant m (m > 2), Iki et al. (2018) proposed the extended t-distribution type symmetry (ETS(m)) model defined by

p
− 2

m+2

i j − p
− 2

m+2

ji = γm( j2 − i2) + ηm( j − i) (i < j).

A special case of this model can be obtained by putting γm = 0 in the TS(m) model. The ETS(m) model may be appropriate

if it is reasonable to assume an underlying bivariate t-distribution with different marginal variances having m degrees of

freedom (see Iki et al., 2018).

Now, we are interested in considering more parsimonious t-distribution type symmetry models, which can be described

in terms of fewer parameters than the TS(m) (ETS(m)) models.

The purpose of this paper is to propose new models which may appropriate for a square ordinal table if it is reasonable

to assume an underlying bivariate t-distribution. The new models are different from the S, TS(m) and ETS(m) models.

Section 2 proposes models and describes the properties of the new models. Section 3 includes the decompositions using

the proposed models. Section 4 shows the maximum likelihood estimates of expected frequencies under the proposed

models. Section 5 describes the relationships between the proposed models and t-distribution by the simulation study.

Section 6 provides some concluding remarks.

2. Models

We consider random variables U and V having a joint bivariate t-distribution with m (m > 2) degrees of freedom, meaning

E(U) = μ1, E(V) = μ2, variances Var(U) = mσ2
1/(m−2),Var(V) = mσ2

2/(m−2), and correlation coefficient Corr(U,V) = ρ.
The probability density function f (u, v) is

f (u, v) =
1

2πσ1σ2

√
1 − ρ2

(
1 +

Q(u, v)

m

)− m+2
2

,

where,

Q(u, v) =
1

1 − ρ2

[(u − μ1

σ1

)2
− 2ρ

σ1σ2

(u − μ1)(v − μ2) +
(v − μ2

σ2

)2]
;

see Muirhead (2005, p.48). The probability density function is also expressed as

f (u, v) = c
[
1 +

1

m
(a1u + b1v + a2u2 + b2v2 + d(u, v))

]− m+2
2

, (1)

where

c =
1

2πσ1σ2

√
1 − ρ2

,

a1 =
2

σ1(1 − ρ2)

(
ρμ2

σ2

− μ1

σ1

)
, b1 =

2

σ2(1 − ρ2)

(
ρμ1

σ1

− μ2

σ2

)
,

a2 =
1

σ2
1
(1 − ρ2)

, b2 =
1

σ2
2
(1 − ρ2)

,

d(u, v) =
1

1 − ρ2

⎛⎜⎜⎜⎜⎝− 2ρ

σ1σ2

uv +
μ2

1

σ2
1

+
μ2

2

σ2
2

− 2ρμ1μ2

σ1σ2

⎞⎟⎟⎟⎟⎠ ,

45



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 11, No. 5; 2022

and d(u, v) = d(v, u). When Var(U) = Var(V), that is, σ2
1 = σ

2
2 (= σ2), f (u, v) is expressed as

f (u, v) = c
[
1 +

1

m

(
a1u + b1v + t(u2 + v2) + d(u, v)

)]− m+2
2

, (2)

where

c =
1

2πσ2
√

1 − ρ2
,

a1 =
2

σ2(1 − ρ2)
(ρμ2 − μ1) , b1 =

2

σ2(1 − ρ2)
(ρμ1 − μ2) ,

t =
1

σ2(1 − ρ2)

d(u, v) =
1

σ2(1 − ρ2)

(
−2ρuv + μ2

1 + μ
2
2 − 2ρμ1μ2

)
,

and d(u, v) = d(v, u). Moreover, when E(U) = E(V) and Var(U) = Var(V), that is, μ1 = μ2 (= μ) and σ2
1 = σ

2
2 (= σ2),

f (u, v) is expressed as

f (u, v) = c
[
1 +

1

m

(
k(u + v) + t(u2 + v2) + d(u, v)

)]− m+2
2

, (3)

where

c =
1

2πσ2
√

1 − ρ2
,

k = − 2μ

σ2(1 + ρ)

t =
1

σ2(1 − ρ2)

d(u, v) =
2

σ2(1 − ρ2)

(
−ρuv + μ2 − ρμ2

)
,

and d(u, v) = d(v, u).

We consider the r × r square contingency table with ordered categories. For any fixed constant m (m > 2), we propose a

model defined by

pi j =

[
1 +

1

m

(
μ + κ(i + j) + τ(i2 + j2) + φi j

)]− m+2
2

(i = 1, . . . , r; j = 1, . . . , r).

We shall refer to this model as a parsimonious symmetry (PaS(m)) model. From the form of equation (3), the PaS(m)

model may be appropriate if it is reasonable to assume an underlying bivariate t-distribution with same marginal means

and variances having m degrees of freedom. Under the PaS(m) model, we see that

pi j = p ji (i < j).

Namely, the PaS(m) model implies the S model.

Next, for any fixed constant m (m > 2), we propose a model defined by

pi j =

[
1 +

1

m

(
μ + α1i + β1 j + τ(i2 + j2) + φi j

)]− m+2
2

(i = 1, . . . , r; j = 1, . . . , r).

We shall refer to this model as a parsimonious t-distribution type symmetry (PaTS(m)) model. From the form of equation

(2), the PaTS(m) model may be appropriate if it is reasonable to assume an underlying bivariate t-distribution with same

marginal variances (and different marginal means) having m degrees of freedom. A special case of the PaTS(m) can be

obtained by putting α1 = β1 in the PaS(m) model. Under the PaTS(m) model,

p
− 2

m+2

i j − p
− 2

m+2

ji =
β1 − α1

m
( j − i) (i < j).
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Namely, the PaTS(m) model implies the TS(m) model. Additionally, under the PaTS(m) model, setting ωi j = μ + α1i +
β1 j + τ(i2 + j2) + φi j, we see that

lim
m→∞

pi j

p ji
= lim

m→∞
(1 +

ωi j

m )−
m+2

2

(1 +
ω ji

m )− m+2
2

= lim
m→∞

{(1 + ωi j

m )
m
ωi j }− ωi j

2
(1+ 2

m )

{(1 + ω ji

m )
m
ω ji }− ω ji

2
(1+ 2

m )

=
exp[−ωi j

2
]

exp[−ω ji

2
]

= exp
[
1

2
(α1 − β1)( j − i)

]
= θ j−i (i < j),

where

θ = exp
[
α1 − β1

2

]
.

Namely, the PaTS(m) model approaches the LDPS model as m becomes larger.

Moreover, for any fixed constant m (m > 2), we propose a model defined by

pi j =

[
1 +

1

m

(
μ + α1i + β1 j + α2i2 + β2 j2 + φi j

)]− m+2
2

(i = 1, . . . , r; j = 1, . . . , r).

We shall refer to this model as a parsimonious t-distribution type symmetry (PaETS(m)) model. From the form of equation

(1), the PaTS(m) model may be appropriate if it is reasonable to assume an underlying bivariate t-distribution with different

marginal means and variances having m degrees of freedom. A special case of the PaETS(m) can be obtained by putting

α2 = β2 in the PaTS(m) model. Under the PaETS(m) model,

p
− 2

m+2

i j − p
− 2

m+2

ji =
β1 − α1

m
( j − i) +

β2 − α2

m
( j2 − i2) (i < j).

Namely, the PaETS(m) model implies the ETS(m) model. Further, under the PaETS(m) model, we see that

lim
m→∞

pi j

p ji
= exp

[
1

2
(α1 − β1)( j − i) +

1

2
(α2 − β2)( j2 − i2)

]
= θ

j−i
1
θ

j2−i2

2
(i < j),

where

θ1 = exp
[
α1 − β1

2

]
, θ2 = exp

[
α2 − β2

2

]
.

Namely, the PaETS(m) model approaches the ELDPS model as m becomes larger.

PaS (m) PaTS (m) PaETS (m)

S TS (m) ETS (m)

� �

� �

�
���

�
���

�
���

Figure 1. Relationships among models

In Figure 1, we show the relationships among models. In Figure, A→ B indicates that model A implies model B.
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3. Decompositions of Models

Consider the r × r square contingency table. Let X and Y denote the row and column variables, respectively. We refer

to the model of equality of marginal means, that is, E(X) = E(Y), as the ME model. Additionally, we refer to model of

equality of marginal means and variances, that is, E(X) = E(Y) and Var(X) = Var(Y), as the MVE model. Then, we obtain

the following theorems.

Theorem 1 The PaS(m) model holds, if and only if both the PaETS(m) and MVE models hold.

Proof. If the PaS(m) model holds, then the PaETS(m) and MVE models hold. Assuming that the PaETS(m) and MVE

models hold, then we shall show that the PaS(m) model holds. From the PaETS(m) model, we see

p
− 2

m+2

i j − p
− 2

m+2

ji =
1

m

[
(α1 − β1) (i − j) + (α2 − β2)

(
i2 − j2

)]
(i < j).

Then, because the MVE model is given by to E(X) = E(Y) and E(X2) = E(Y2),

r∑
i=1

r∑
j=1

pi j

(
p
− 2

m+2

i j − p
− 2

m+2

ji

)

=

r∑
i=1

r∑
j=1

pi j

m

[
(α1 − β1) (i − j) + (α2 − β2)

(
i2 − j2

)]

=
α1 − β1

m

r∑
i=1

r∑
j=1

(i − j) pi j +
α2 − β2

m

r∑
i=1

r∑
j=1

(
i2 − j2

)
pi j

=
α1 − β1

m
(E(X) − E(Y)) +

α2 − β2

m

(
E(X2) − E(Y2)

)
= 0.

Additionally, we have

r∑
i=1

r∑
j=1

pi j

(
p
− 2

m+2

i j − p
− 2

m+2

ji

)

=
∑∑

i< j

pi j

(
p
− 2

m+2

i j − p
− 2

m+2

ji

)
+
∑∑

i> j

pi j

(
p
− 2

m+2

i j − p
− 2

m+2

ji

)

=
∑∑

i< j

(
pi j − p ji

) (
p
− 2

m+2

i j − p
− 2

m+2

ji

)
.

For any i < j, if pi j � p ji, then (pi j − p ji)(p
− 2

m+2

i j − p
− 2

m+2

ji ) < 0, if pi j = p ji, then (pi j − p ji)(p
− 2

m+2

i j − p
− 2

m+2

ji ) = 0. Thus, when

we assume that the PaETS(m) and MVE models hold, we can obtain pi j = p ji for all i < j. Moreover, pi j − p ji = 0 for all

i < j, that is,

(α1 − β1)(i − j) + (α2 − β2)(i2 − j2) = 0 for all i < j.

Therefore we obtain α1 = β1 and α2 = β2. Namely, the PaS(m) model holds. The proof is completed.

Theorem 2 The PaS(m) model holds, if and only if both the PaTS(m) and ME models hold.

The proof of Theorem 2 is omitted because that is obtained in a way similar to Theorem 1.

4. Goodness-of-fit Test

For an r × r contingency table, let ni j denote the observed frequency in the ith row and jth column of the table, where

n =
∑∑

ni j and let mi j denote the corresponding expected frequency (i = 1, . . . , r; j = 1, . . . , r). Assume that the observed

frequencies have a multinomial distribution. Let G2(M) denote the likelihood ratio chi-squared statistic, defined by

G2(M) =

r∑
i=1

r∑
j=1

ni j log

(
ni j

m̂i j

)
,

where m̂i j is the maximum likelihood estimate of expected frequency mi j under model M. Under model M, these statistics

have a asymptotically central chi-squared distribution with the corresponding degrees of freedom. For the PaS(m) model,

{pi j} are determined by μ, κ, τ and φ. Therefore, the numbers of degrees of freedom for the PaS(m) model are r2 − 4.

48



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 11, No. 5; 2022

Similarly, the numbers of degrees of freedom for the PaTS(m) and PaETS(m) models are r2 − 5 and r2 − 6, respectively.

We consider the maximum likelihood estimates of expected frequencies {mi j} under the PaS(m), PaTS(m) and PaETS(m)

models in the log-likelihood equation. For the PaS(m) model, we must maximize the Lagrangian

L =
r∑

i=1

r∑
j=1

ni j log pi j − λ
⎛⎜⎜⎜⎜⎜⎜⎝

r∑
i=1

r∑
j=1

pi j − 1

⎞⎟⎟⎟⎟⎟⎟⎠ −∑∑
i< j

ψi j(pi j − p ji)

−
∑∑

(i, j)∈D
λi j

{
p
− 2

m+2

i j −
(
μ + κ(i + j) + τ(i2 + j2) + φi j

)}
,

where

μ =
1

2

(
11p

− 2
m+2

11
− 13p

− 2
m+2

12
+ 3p

− 2
m+2

13
+ p

− 2
m+2

23

)
,

κ =
1

2

(
−6p

− 2
m+2

11
+ 9p

− 2
m+2

12
− 2p

− 2
m+2

13
− p

− 2
m+2

23

)
,

τ =
1

2

(
p
− 2

m+2

11
− 2p

− 2
m+2

12
+ p

− 2
m+2

13

)
,

φ =
1

2

(
p
− 2

m+2

11
− p

− 2
m+2

12
− p

− 2
m+2

13
+ p

− 2
m+2

23

)
,

D = {(i, j)|i < j, (i, j) � (1, 1), (1, 2), (1, 3), (2, 3)},
with respect to {pi j}, λ, {ψi j} and {λi j}. For the PaTS(m) model, we must maximize the Lagrangian

L =
r∑

i=1

r∑
j=1

ni j log pi j − λ
⎛⎜⎜⎜⎜⎜⎜⎝

r∑
i=1

r∑
j=1

pi j − 1

⎞⎟⎟⎟⎟⎟⎟⎠
−
∑∑
(i, j)∈E1

ψi j

(
p
− 2

m+2

i j − p
− 2

m+2

ji − ( j − i)p
− 2

m+2

12
+ ( j − i)p

− 2
m+2

21

)

−
∑∑
(i, j)∈E2

λi j

{
p
− 2

m+2

i j −
(
μ + αi + β j + τ(i2 + j2) + φi j

)}
,

where

μ =
1

2

(
11p

− 2
m+2

11
− 10p

− 2
m+2

12
+ 3p

− 2
m+2

13
− 3p

− 2
m+2

21
+ p

− 2
m+2

23

)
,

α =
1

2

(
−6p

− 2
m+2

11
+ 6p

− 2
m+2

12
− 2p

− 2
m+2

13
+ 3p

− 2
m+2

21
− p

− 2
m+2

23

)
,

β =
1

2

(
−6p

− 2
m+2

11
+ 8p

− 2
m+2

12
− 2p

− 2
m+2

13
+ p

− 2
m+2

21
− p

− 2
m+2

23

)
,

τ =
1

2

(
p
− 2

m+2

11
− 2p

− 2
m+2

12
+ p

− 2
m+2

13

)
,

φ =
1

2

(
p
− 2

m+2

11
− p

− 2
m+2

13
− p

− 2
m+2

21
+ p

− 2
m+2

23

)
,

E1 = {(i, j)|i < j, (i, j) � (1, 2)},
E2 = {(i, j)|i < j, (i, j) � (1, 1), (1, 2), (1, 3), (2, 3)},

with respect to {pi j}, λ, {ψi j} and {λi j}. For the PaETS(m) model, we must maximize the Lagrangian

L =
r∑

i=1

r∑
j=1

ni j log pi j − λ
⎛⎜⎜⎜⎜⎜⎜⎝

r∑
i=1

r∑
j=1

pi j − 1

⎞⎟⎟⎟⎟⎟⎟⎠
−
∑∑
(i, j)∈F1

ψi j

[
p
− 2

m+2

i j − p
− 2

m+2

ji +
( j − i)

2

{
(2i + 2 j − 8)(p

− 2
m+2

12
− p

− 2
m+2

21
)

−(i + j − 3)(p
− 2

m+2

13
− p

− 2
m+2

31
)
}]

−
∑∑
(i, j)∈F2

λi j

{
p
− 2

m+2

i j −
(
μ + α1i + β1 j + α2i2 + β2 j2 + φi j

)}
,

49



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 11, No. 5; 2022

where

μ =
1

2

(
11p

− 2
m+2

11
− 6p

− 2
m+2

12
+ p

− 2
m+2

13
− 7p

− 2
m+2

21
+ p

− 2
m+2

23
+ 2p

− 2
m+2

31

)
,

α1 =
1

2

(
−6p

− 2
m+2

11
+ p

− 2
m+2

13
+ 9p

− 2
m+2

21
− p

− 2
m+2

23
− 3p

− 2
m+2

31

)
,

β1 =
1

2

(
−6p

− 2
m+2

11
+ 8p

− 2
m+2

12
− 2p

− 2
m+2

13
+ p

− 2
m+2

21
− p

− 2
m+2

23

)
,

α2 =
1

2

(
p
− 2

m+2

11
− 2p

− 2
m+2

21
+ p

− 2
m+2

31

)
,

β2 =
1

2

(
p
− 2

m+2

11
− 2p

− 2
m+2

12
+ p

− 2
m+2

13

)
,

φ =
1

2

(
p
− 2

m+2

11
− p

− 2
m+2

13
− p

− 2
m+2

21
+ p

− 2
m+2

23

)
,

F1 = {(i, j)|i < j, (i, j) � (1, 2), (1, 3)},
F2 = {(i, j)|i < j, (i, j) � (1, 1), (1, 2), (1, 3), (2, 3)},

with respect to {pi j}, λ, {ψi j} and {λi j}. Setting the partial derivations of L equal to zero using the Newton-Raphson method,

we can obtain the maximum likelihood estimates of {mi j} under the PaS(m), PaTS(m) and PaETS(m) models.

5. Simulation Study

As described in Section 2, the PaS(m), PaTS(m) and PaETS(m) models may be appropriate for a square ordinal table

if it is reasonable to assume an underlying bivariate t-distribution having m degrees of freedom. We shall consider the

relationships between the proposed models and bivariate t-distribution in terms of simulation studies, and the comparison

between the proposed models and S, TS(m) and ETS(m) models.

Consider random variables U and V having a bivariate t-distribution with m degrees of freedom, meaning E(U) = 0,

E(V) = μ2, variances Var(U) = m/(m − 2),Var(V) = mσ2
2/(m − 2), and correlation coefficient Corr(U,V) = ρ. Suppose

that there are some conditions; m = 30, 100, μ2 = 0, 0.2, σ2
2 = 1, 1.2, ρ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, a 4 × 4 table of sample

size 5000 is formed using cut points for each variable at −0.7, 0, 0.7.

We count the frequencies of acceptance (at the 0.05 significance level) based on the likelihood ratio chi-squared statistic

for testing the hypothesis that the models with the corresponding m degrees of freedom hold per 10000 times for 4 × 4

tables on each condition.

From Tables 1 and 2, we see that the ETS(m) model is a good fit for all conditions. Further the TS(m) model is a good fit

when σ2
2 = 1, and the S model gives good fit on when μ2 = 0 and σ2

2 = 1. In contrast, the PaS(m), PaTS(m) and PaETS(m)

models show a similar trend when ρ is close to 0. Thus, from the result of this simulation, we obtain that if it is reasonable

to assume an underlying bivariate t-distribution with a low correlation coefficient, the parsimonious models would fit the

data well.

6. Concluding Remarks

Each of the S, TS(m) and ETS(m) models is saturated on the main diagonal cells of the table, but the PaS(m), PaTS(m)

and PaETS(m) models are unsaturated on them. Thus, under the PaS(m), PaTS(m) and PaETS(m) models, the estimated

expected frequencies on the main diagonal are always not equal to the observed frequencies on the main diagonal. The

PaS(m), PaTS(m) and PaETS(m) models may be useful when we want to utilize the information on the main diagonal.

From Section 5, when observations are not so concentrated in the main diagonal cells, that is, a correlation coefficient

between row and column variables is close to 0, the proposed models (PaS(m), PaTS(m) and PaETS(m)) may be better for

application to a square table than the S, TS(m) and ETS(m) models.
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Table 1. The frequencies of acceptance (at the 0.05 significance level) per 10000 times for 4 × 4 tables based on the like-

lihood ratio chi-squared statistic for testing the hypothesis that the S, TS(30), ETS(30), PaS(30), PaTS(30) or PaETS(30)

model hold

μ2 σ2
2 ρ S TS(30) ETS(30) PaS(30) PaTS(30) PaETS(30)

0 1 0.1 9501 9520 9494 9156 9150 9116

0.2 1 0.1 0 9273 9241 0 8888 8837

0 1.2 0.1 1535 1308 9490 2403 2234 9082

0.2 1.2 0.1 0 1107 9289 0 1806 8927

0 1 0.2 9474 9460 9483 8589 8549 8489

0.2 1 0.2 0 9265 9246 0 8336 8304

0 1.2 0.2 1575 1317 9508 1936 1779 8462

0.2 1.2 0.2 0 1055 9294 0 1418 8258

0 1 0.3 9490 9493 9472 7417 7316 7171

0.2 1 0.3 0 9168 9137 0 7064 6935

0 1.2 0.3 1437 1212 9489 1237 1118 7124

0.2 1.2 0.3 0 983 9117 0 922 6765

0 1 0.4 9459 9505 9497 5159 4981 4751

0.2 1 0.4 0 9133 9058 0 4720 4565

0 1.2 0.4 1338 1111 9478 567 486 4599

0.2 1.2 0.4 0 901 9086 0 400 4390

0 1 0.5 9504 9491 9504 2349 2211 2025

0.2 1 0.5 0 9068 9003 0 2081 1866

0 1.2 0.5 1214 1017 9480 145 126 1888

0.2 1.2 0.5 0 765 8990 0 92 1755

0 1 0.6 9499 9487 9518 533 449 384

0.2 1 0.6 0 9028 8993 0 424 350

0 1.2 0.6 897 737 9455 7 7 315

0.2 1.2 0.6 0 636 8921 0 8 263

Table 2. The frequencies of acceptance (at the 0.05 significance level) per 10000 times for 4 × 4 tables based on the

likelihood ratio chi-squared statistic for testing the hypothesis that the S, TS(100), ETS(100), PaS(100), PaTS(100) or

PaETS(100) model hold

μ2 σ2
2 ρ S TS(100) ETS(100) PaS(100) PaTS(100) PaETS(100)

0 1 0.1 9486 9485 9495 9350 9350 9352

0.2 1 0.1 0 9271 9259 0 9117 9089

0 1.2 0.1 1525 1283 9502 2583 2412 9371

0.2 1.2 0.1 0 1062 9225 0 1840 9108

0 1 0.2 9480 9490 9486 8970 8951 8880

0.2 1 0.2 0 9242 9175 0 8647 8610

0 1.2 0.2 1469 1222 9489 2060 1897 8854

0.2 1.2 0.2 0 981 9247 0 1516 8585

0 1 0.3 9497 9483 9496 7942 7842 7739

0.2 1 0.3 0 9174 9154 0 7560 7445

0 1.2 0.3 1407 1168 9480 1397 1272 7700

0.2 1.2 0.3 0 921 9102 0 973 7252

0 1 0.4 9501 9521 9492 6038 5857 5672

0.2 1 0.4 0 9087 9049 0 5324 5151

0 1.2 0.4 1358 1145 9485 694 597 5407

0.2 1.2 0.4 0 785 8994 0 419 4833

0 1 0.5 9468 9470 9481 2880 2728 2508

0.2 1 0.5 0 8942 8847 0 2531 2337

0 1.2 0.5 1122 917 9465 165 141 2269

0.2 1.2 0.5 0 651 8881 0 110 1959

0 1 0.6 9529 9517 9512 669 609 541

0.2 1 0.6 0 8907 8844 0 525 467

0 1.2 0.6 838 651 9451 14 11 396

0.2 1.2 0.6 0 534 8764 0 6 326
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