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* Encoding: UTF-8. 

 

* Syntax for the example presented in the manuscript. 

* For use in other contexts, enter location and name of the data-file containing mean  

  plausible values and adapt the variable number according to your model. 

 

DATA LIST FILE="C:\Example_data_plausible_values.dat" fixed records=1 

/1 x1 to x15 (15F6.3)   y1 to y10 (10F6.3) 

Ksi1_meanPlausible (F6.3)  Ksi1_medianPlausible (F6.3) Ksi1_SD (F6.3) Ksi1_perc2p5 (F6.3) Ksi1_perc97p5 (F6.3) 

Ksi2_meanPlausible (F6.3)  Ksi2_medianPlausible (F6.3) Ksi2_SD (F6.3) Ksi2_perc2p5 (F6.3) Ksi2_perc97p5 (F6.3)  

Ksi3_meanPlausible (F6.3)  Ksi3_medianPlausible (F6.3) Ksi3_SD (F6.3) Ksi3_perc2p5 (F6.3) Ksi3_perc97p5 (F6.3) 

Eta1_meanPlausible (F6.3)  Eta1_medianPlausible (F6.3) Eta1_SD (F6.3) Eta1_perc2p5 (F6.3) Eta1_perc97p5 (F6.3) 

Eta2_meanPlausible (F6.3)  Eta2_medianPlausible (F6.3) Eta2_SD (F6.3) Eta2_perc2p5 (F6.3) Eta2_perc97p5 (F6.3). 

Dataset name dataset1. 

save outfile="C:\Example_data_plausible_values.sav". 

 

 

MATRIX. 

 

get P_Ksi/variables= Ksi1_meanPlausible Ksi2_meanPlausible  Ksi3_meanPlausible  

/file='C:\Example_data_plausible_values.sav'. 

get P_Eta/variables= Eta1_meanPlausible Eta2_meanPlausible   

/file='C:\Example_data_plausible_values.sav'. 

 

get x/variables=  x1 to x15 

/file='C:\Example_data_plausible_values.sav'. 

get y/variables=  y1 to y10 

/file='C:\Example_data_plausible_values.sav'. 

 

 

* In the following matrices are the values that are also given in Table 1. 

* For use in other contexts, enter the corresponding values from your BSEM-OUTPUT:. 

 

* Loadings of measured variables on Ksi. 

compute Lx={ 

0.750, 0.066, 0.025; 

0.845, 0.049, 0.002; 

0.938, 0.031,-0.021; 

0.845, 0.049, 0.002; 

0.845, 0.049, 0.002; 
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0.031, 0.762, 0.023; 

0.008, 0.858, 0.001; 

-0.015, 0.953, -0.022; 

0.008, 0.859, 0.000; 

0.008, 0.858, 0.001; 

0.064, 0.027, 0.749; 

0.046, 0.002, 0.846; 

0.029,-0.024, 0.942; 

0.047, 0.002, 0.846; 

0.047, 0.002, 0.846}. 

 

* Intercorrelations of Ksi. 

compute Phi={ 

 1.000, 0.275, 0.270; 

 0.275, 1.000, 0.324; 

 0.270, 0.324, 1.000 

}. 

 

* Loadings of measured variables on Eta. 

compute Ly={ 

 0.160, 0.251; 

 0.160, 0.251; 

 0.999,-0.041; 

 0.999,-0.041; 

 0.999,-0.041; 

-0.038, 0.534; 

-0.038, 0.534; 

-0.037, 0.533; 

-0.038, 0.533; 

-0.038, 0.534 

}. 

 

* Path coefficients from Ksi to Eta. 

compute Gamma={ 

0.270,  0.000; 

0.000,  0.037; 

0.016,  0.447 

}. 

 

* Intercorrelations of Eta. 

compute Ceta = { 

1.000, 0.513; 

0.513, 1.000 
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}. 

 

* Computations. 

compute P_Ksi=t(P_Ksi). 

compute ncases=ncol(P_ksi). 

* Mean-centering of P_Ksi. 

compute mP=RSUM(P_Ksi)&/ncases. 

compute ones=make(nrow(P_Ksi),ncol(P_Ksi),1). 

compute mmP=Mdiag(mP)*ones. 

compute P_Ksi=P_Ksi-mmP. 

 

compute P_Eta=t(P_Eta). 

* Mean-centering of P_Eta. 

compute mP=RSUM(P_Eta)&/ncases. 

compute ones=make(nrow(P_Eta),ncol(P_Eta),1). 

compute mmP=Mdiag(mP)*ones. 

compute P_Eta=P_Eta-mmP. 

 

compute P={P_Ksi;P_Eta}. 

 

compute x=t(x). 

compute y=t(y). 

 

 

compute C_P=INV(Mdiag(diag( P*t(P)&/(ncases-1) ))&**0.5) * P*t(P)&/(ncases-1)  

* INV(Mdiag(diag( P*t(P)&/(ncases-1) ))&**0.5). 

print C_P/format=F5.2/Title="Correlation of mean plausible values". 

 

CALL Eigen(C_P, vec, eig). 

compute C_P12=vec*Mdiag(eig)&**0.5*t(vec). 

 

compute Gamma=t(Gamma). 

compute Cetaksi=(Gamma)*Phi. 

compute tcetaks=t(Cetaksi). 

 

compute C={ 

Phi, tCetaks; 

Cetaksi, Ceta }. 

 

Print C/format=F5.2/Title="Correlation of factors according to the model parameters of BSEM". 

 

CALL Eigen(C, vec, eig). 

compute C12=vec*Mdiag(abs(eig))&**0.5*t(vec). 
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* Compute correlation-preserving plausible values according to Equation 10. 

compute Pc=C12*INV(C_P12)*INV(Mdiag(diag( P*t(P)&/(ncases-1) ))&**0.5) *P. 

 

print {INV(Mdiag(diag( Pc*t(Pc) )&/(ncases-1))&**0.5)*Pc*t(Pc)&/(ncases-1) 

*INV(Mdiag(diag( Pc*t(Pc) )&/(ncases-1))&**0.5)} 

/format=F5.2/Title="Check: Correlation of correlation-preserving mean plausible values. Should be equal to correlation 

of factors". 

 

 

* Determinacy. 

 

compute Tdelta=Mdiag(diag( 1-Lx*Phi*t(Lx) )). 

compute Sig_x=Lx*Phi*t(Lx) + Tdelta. 

 

compute Tepsi=Mdiag(diag(1 - Ly*Ceta*t(Ly))). 

compute Sig_y=Ly*Ceta*t(Ly) + Tepsi. 

 

 

* Compute Determinacy of mean plausible values for Ksi. 

compute D_Ksi=INV(Mdiag(diag( P_Ksi*t(P_Ksi)&/(ncases-1) )))&**0.5 * P_Ksi  

* t(x)&/(ncases-1) * INV(Sig_x)*Lx*Phi. 

print {t(diag(D_Ksi))} /format=F5.2/Title="Determinacy of mean plausible values for Ksi". 

 

* Compute Determinacy of mean plausible values for Eta. 

compute D_Eta=INV(Mdiag(diag( P_Eta*t(P_Eta)&/(ncases-1) ))) * P_Eta 

*T(y)&/(ncases-1) * INV(Sig_y)*Ly*Ceta. 

print {t(diag(D_Eta))} /format=F5.2/Title="Determinacy of mean plausible values for Eta". 

 

* Compute Determinacy of correlation-preserving mean plausible values for Ksi (according Equation 14). 

compute PcKsi = {Pc(1,:);Pc(2,:);Pc(3,:)}. 

compute D_cKsi=INV(Mdiag(diag( PcKsi*t(PcKsi)&/(ncases-1) )))&**0.5 *PcKsi 

*T(x)&/(ncases-1)*INV(Sig_x)*Lx*Phi. 

print {t(diag(D_cKsi))} /format=F5.2/Title="Determinacy of correlation-preserving mean plausible values for Ksi 

(according to Equation 12)". 

 

* Compute Determinacy of correlation-preserving mean plausible values for Eta (according Equation 15). 

compute PcEta = {Pc(4,:);Pc(5,:)}. 

compute D_cEta=INV(Mdiag(diag( PcEta*t(PcEta)&/(ncases-1) ))) * PcEta 

*T(y)&/(ncases-1)*INV(Sig_y)*Ly*Ceta. 

print {t(diag(D_cEta))} /format=F5.2/Title="Determinacy of correlation-preserving mean plausible values for Eta 

(according to Equation 13)". 
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save {t(Pc)}/outfile="C:\Example_data_correlation_preserving_plausible_values.sav"/variables 

Pc_Ksi1 Pc_Ksi2 Pc_Ksi3 Pc_Eta1 Pc_Eta2. 

 

END MATRIX. 

 

 

* The following regression analyses are performed in order to check whether the 

  correlation-preserving mean plausible values yield the same standardized 

  coefficients as the BSEM model. 

 

* Compare regression-coefficients of conventional mean plausible values... 

 

Dataset activate Dataset1. 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10)  /NOORIGIN   /DEPENDENT Eta1_meanPlausible 

  /METHOD=ENTER Ksi1_meanPlausible Ksi2_meanPlausible  Ksi3_meanPlausible. 

 

Dataset activate Dataset1. 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10)  /NOORIGIN   /DEPENDENT Eta2_meanPlausible 

  /METHOD=ENTER Ksi1_meanPlausible Ksi2_meanPlausible  Ksi3_meanPlausible. 

 

 

* …with regression-coefficients of correlation-preserving mean plausible values:. 

 

get file="C:\Example_data_correlation_preserving_plausible_values.sav". 

Dataset name Dataset2. 

 

Dataset activate Dataset2. 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10)  /NOORIGIN   /DEPENDENT Pc_Eta1 

  /METHOD=ENTER Pc_Ksi1 Pc_Ksi2 Pc_Ksi3. 

 

Dataset activate Dataset2. 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10)  /NOORIGIN   /DEPENDENT Pc_Eta2 

  /METHOD=ENTER Pc_Ksi1 Pc_Ksi2 Pc_Ksi3. 
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Abstract 
Research results on the same subject, extracted from scientific papers or clinical trials, are combined to determine a 
consensus. We are primarily concerned with combining p-values from experiments that may be correlated. We have two 
methods, a non-Bayesian method and a Bayesian method. We use a model to combine these results and assume the 
combined results follow a certain distribution, for example, chi-square or normal. The distribution requires independent 
and identically distributed (iid) random variables. When the data are correlated or non-iid, we cannot assume such 
distribution. In order to do so, the combined results from the model need to be adjusted, and the adjustment is done 
“indirectly” through two test statistics. Specifically, one test statistic ( ) is obtained for the non-iid data and the 
other is the test statistic (TS) is obtained for iid data. We use the ratio between the two test statistics to adjust the model 
test statistic ( ) for its non-iid violation. The adjusted is named as “effective test statistics” (ETS), which is 
then used for statistical inferences with the assumed distribution. As it is difficult to estimate the correlation, to provide 
a more coherent method for combining p-values, we also introduce a novel Bayesian method for both iid data and 
non-iid data. The examples are used to illustrate the non-Bayesian method and additional examples are given to 
illustrate the Bayesian method.  

Keywords: assumed distribution, Correction ratio, Correlation, Model assumptions, P-values, Effective test statistic, 
Statistical inference 

1. Introduction 
Researchers use a model to combine the results, p-values or Z-scores, from sample surveys or clinical trials for the same 
subject or purpose. We consider these results are iid random variables and assume a certain distribution, for example 
normal, for statistical inference. Such a distribution requires iid-random variables. 

However, these variables are more likely correlated as they are from the similar sample surveys or clinical trials for a 
specific topic or purpose. For example, poll results of presidential election or clinical trial results of one medication 
executed from different locations, or from the repeated trials at a same place (see Example 1). These results are often 
reported as p-values. We do not consider the previous procedures in obtaining p-values, and the k p-values are really the 
random variables. However, we are attacking a problem that is, indeed, very difficult because no aspect of the 
correlation is known, and moreover, there is a single sample of p-values, thereby making it impossible to find Pearson 
correlation. 

The resulting p-values are non-iid random variables (see Example 1 and Appendix B). We present a method to show 
how an assumed distribution, which requires iid-random variables, can be applied to non-iid variables. To do so, non-iid 
variables need to be adjusted indirectly through its test statistics ( ). This adjustment is done by comparing two test 
statistics, one from the non-iid model and other from the iid model. The test statistic ( ) comes from a model with 
non-iid data, given null hypothesis, sample size and test level. Similarly, the other test statistic, (TS), comes from an 
assumed distribution with iid-random variables. We define correction factor as the ratio of to TS. Finally, we can 
get effective test statistic (ETS) of divided by the correction factor and this ETS is used to make statistical 
inference with the assumed distribution.  

We use one of the two methods to combine the non-iid results or  values, Non-Bayesian or Bayesian. We show two 
methods for non-Bayesian in Section  (3.1) show how to obtain ETS of correlated data (Choi and McHugh,1989), and 
in Section (3.2) show how to obtain ETS for of non-iid data, that involve not only correlation but also other 
non-iid-conditions, if any. Then, we use ETS with the assumed distribution. 
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The case of iid random variables to obtain TS 
TS is based on a test statistic. It is the standard test statistic with which two other test statistics,  or , are 
compared to measure the size of its deviation from TS, where is from a distribution of correlated variables and 

is from a distribution of non-iid variables. Below, we show how TS is obtained. 

Suppose, p = , 0  1, i=1,…, n, are iid random variables with a known distribution function  
One can make statistical inferences on p. Let the global null hypothesis : = …. =  =  against alternative 
hypothesis  for some i = 1, …, n. The hypothesis  is reasonable as all the tests are done for a same 
purpose. We assume that h(p| is a monotone function, and therefore it is optimal for combining p-values (Birnbaum, 
1954).  

We define test statistic (TS) as 

, ), 
where the rejection test level is obtained as  

= 1 –  dp. 

TS does not involve in hypothesis testing and it is based on the assumed distribution function  of iid 
p-values for given . For example,  is Normal( ), or chi-square 2n degrees of freedom. When 
we use  as base distribution of TS, we do not need actual p values, but the  implies p as iid random 
variables. For example, we only need sample size n and test level  to have table value of TS for , chi-square 2n 
degrees of freedom. The test level  is pre-selected by researcher. This TS is used only to compare to study test 
statistic, or to measure its deviation from TS, and they involve in testing a null hypothesis at the same sample 
sized n and test level  of TS. 

Above TS, based on  of iid-random variables p, is its own ETS. TS is compared to two study test statistics,  
based on correlated data and  based on non-iid variables. We ignore the pre-procedures to obtain these data, and 
consider these data are the variables of our interest. 

This paper has five more sections. In Section 2, we review pertinent literature. In Section 3, we present the 
non-Bayesian method. In Section 4, we show examples to illustrate the non-Bayesian method.  In Section 5, we 
present Bayesian method to find the posterior mean of the combined p-value and some additional examples are 
presented. Section 6 includes a brief conclusion.  

2. Pertinent Literature    
Yoon et al (2021) used Meta analyses to increase statistical power by combining statistics (e.g., effect sizes, z- scores, or 
p-values) from multiple studies when they share the same null hypothesis under the assumption that all the data in each 
study have an association with a given phenotype. However, specific experimental conditions in each study can result in 
independent statistics that are derived from a null distribution. They showed the power of Meta analysis rapidly 
decreases as they were combined, Fisher’s Method (Fisher, 1932), Weighted Fisher’s method (wFisher), and Ordered 
p-values (ordMeta) increased power. The last two methods (i.e., wFisher and ordMeta), outperformed existing 
Meta-analysis when only a small number of studies n=2 is combined. The weighted Fisher’s method (wFisher) assigned 
non-integer weights to each p-value, that are proportional to sample sizes. The wFisher and ordMeta are more robust 
than the test statistic of the Meta method.  

Vovk and Wang (2020) got the average of k p-values ,…,  to obtain one combined value without any parametric or 
distribution assumption. They reviewed previous results of arithmetic mean (AM ) by multiplying 2 as 2   and 
geometric mean (GM) replacing 2 by e (=2.718). They extended the recent risk aggregation technique to harmonic 
mean (HM) by multiplying log K for K scaling up by a factor of log k, where k is number of p-values. They also 
explore several other weighted averages of p-values. Note that the inequality of HM  GM AM, related to scaling 
factors, which is proved using Jensen’s inequality (Casella and Berger, 2002).  

Vovk and Wang (2020) showed several models to combine ,…,  into a single p-value. assuming, ,…, are 
independent random variables. The simplest way to combine them is the Bonferroni method, 

F( ,…, ,…, ), 
when F( ,…, exceed 1, it can be replaced by 1. Other method, used to smooth out overestimation of 
above-mentioned method, is a general average:  

,…, ) = [ ], 
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where is a continuous strictly monotonic function and [(0,1)]  is its inverse. For example, 
AM corresponds to the identity function = p, GM corresponds to = log p, and HM corresponds to = 1/p. 
They present more extensions of this basic idea.  

Loughin (2004) compared several methods, when only p-values are available, in combining p-values from independent 
tests under combined hypothesis heuristically through simulation. They are minimum value (Tippett, 1931), Chi-square 
combining model (Fisher, 1932), scaled normal (Liptak, 1958), maximum value (Wilkinson, 1951), combinatoric 
uniform (Edington, 1972) and approximately scaled logistic (Rastogi, 1979). 

Fisher’s Model (FM) (1932) is  2  to combine . 

FM assumes the null hypothesis distribution follows , chi-square with 2n degrees of freedom for n independent 

random variables. This is not true when are correlated. Other problem of FM arises when combining a large number 

of -values. When n , FM value , i.e., combined value of even non-significant p-values becomes significant 

for a large n (Choi and Nandram, 2021). 
Hess and Iyer (2007) used Fisher’s Score combining p-values to detect differential genes array using Affymetrix 
expression arrays. Others (Tippett,1931, and Wilkinson,1951, George,1977, Stouffer,1949) suggest non-parametric 
methods to combine p-values.  

Most methods, presented above, assumed independent p-values and did not address correlation or non-iid problems for 
statistical inference. Our research addresses a solution for this problem. However, this is a difficult problem because one 
cannot estimate the correlation in a straightforward manner, and this is an innovation in this paper as well. In a recent 
paper, Heard and Rubin-Delanchy (2018) showed how to choose between different methods to combine p-values. They 
also discussed the likelihood ratio for combining p-values and the weighted average of the logarithms of the p-values. 
However, there was no discussion about correlated p-values nor any discussion of the Bayesian approach, presumably 
there is none. 

There is virtually no Bayesian attempt on the specific problem we are considering in this 

paper. Specifically, we are combining a number of p-values, which may be dependent because the experiments are done 
under the same protocol, and similar procedures may be followed at the different experimental sites or laboratories. 
However, there is a sparse literature on the study of Bayesian p-values, not the combination of p-values. See Casella and 
Berger (1987) and the discussions that followed on reconciling Bayesian and frequentist evidence on the one-sided 
testing problem. 

3. Non-Bayesian Method 
Test statistics, for correlated variables and from non-iid variables, are compared by the standard rule, TS, for 
iid variables to see the size of their deviations from TS. We introduce these two test statistics, in (3.1) and in 
(3.2). We also present the correction factors, and , for and and its estimations. We also present Table 1 
to illustrate practical application to clinical data.  

In the introduction, we discussed the base test statistic TS for  with iid random variables p = .as a 
standard rule to which  or  are measured.  

In 3.1, the  of g( for correlated variables  for given sample size and test level is compared 
to the base test statistic TS of to find its difference, which is expressed as ratio, =  /TS. We call  
correction factor (CF) as it corrects the impact of correlation on .  

In 3.2, TS is now compared to for non-iid ), which may carry not only correlation but also all 
other non-iid violations, if any. The difference between these two test statistics expressed as the ratio =  /TS. 
Here  corrects the impacts not only correlation but all other violations of iid condition. 

In 3.3, we show how to estimate . Three candidates are presented. 

In 3.4, we illustrate TS, , and  in Table 1, using Fisher’s Model F for  and chi-square distribution C for 
TS. Table 1 is continuously used in the next Section 4. It shows for Fisher ’s Model users how to use the table values of 

 for possible violations of correlation or non-iid problem.  

3.1 Correlated Random Variables, Model 1 
Previously we introduced the base test statistic TS , ) for a known distribution  of iid random 
variables p = , 0  1, i=1,…, n, for given test level  and sample size n.  
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Now we consider. We can obtain the test statistic ( ) for the combining model g(  of these correlated variables, 
, for a given hypothesis , test level   correlation  and sample size n. We can 

assume g(  is its pseudo distribution and write  

 = T(g( ). 
Choi and McHugh (1989) discussed how to reduce the  for the correlated variables in Chi-square testing. The 
g(  is erroneously assumed to follow h(p| chi-square distribution  When the test statistic (TS) for 
distribution h(p|  is compaired to  of the actual model g(  the test statistic, is largely inflated because 
of the correlation. Hence  is reduced, dividing it by the correction factor = [1 + (n-1)] , is the positive 
correlation among -values, n is the sample size. 

Choi and McHugh (1989) showed how to obtain the effective test statistic (ETS) of test statistic  with this 
correction factor,  

ETS= , 

on 1 . It implies that the correlation of the variables  is indirectly adjusted by the 
correction factor . After such correction, we can now make statistical inference on the effective test statistic ETS 
with assumed distribution h(p| , for example chi-square distribution.  

We can also achieve the same goal through effective sample size of n,  =  to obtain ETS (Choi,1980). For 

example, for binomial variables, , i=1,…,n, that are correlated, its normal approximation of test statistic  under 

the null hypothesis is given as N(1,0)= . We can use the reduced sample size , to obtain 

effective test statistic, ETS =  

3.2 Non-iid Random Variables, Model 2 

In this section, we try to find the differences between the test statistic  and basic test statistic TS, 

TS= , ), and = T( g( ). Two types of differences can be considered: One is the 

correlation  in the variables , and other includes all other known or unknown differences such 

as    p, null hypothesis , , n .  

The model  in  is used to combine the non-iid variables . The distribution  

in TS is based on iid variables p= . Users of the model  assume that  follows the 

distribution  as if  = p. It is a wrong assumption if   p. The aim of this section is to correct the wrong 

assumption indirectly by adjusting the test statistic, , while TS of assumed distribution  remains the same.  

We have shown when TS is compared against  for correlated variables in 3.1. Here in 3.2, we 

compare TS to  for variables ), which is not only correlated but also violated non-iid and other 

conditions, if any.  

The total difference between the two test statistics,  and , is defined as the ratio of these two test statistics  

= 0  . 

Note that   (Appendix A) when   and    when 0   The turning point 
greater than 1 or less than 1 depends on the size of p-values and the number n of the p-values as well as on the different 
changing speed, increasing or decreasing, of the  and TS (see Table 1). We can ignore   when 0  

since we assume only positive correlation of  or consider only  to correct positive 
correlation and other violation of .  

To correct the impacts of non-iid and other violations, if any, we adjust  by as  
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Note  on the interval 1 Appendix A). The ETS** is the effective test statistic of the 
test statistic (TS**) on the interval,1  Here, the non-iid violation of the variables  is indirectly 
corrected through . 

Lemma   
The difference between the two test statistics,  and  TS can be expressed as the ratio , = / TS, 

the correction factor, , indirectly correct the correlation and other iid violations of . The effective test 
statistic is =  / , on 1  . Then, the effective test statistic  of test statistic, , is used 
for statistical inference with the originally assumed distribution .   

Proof is outlined in Appendix A 

3.3 Estimation of Correction Factor  

The correction factor indirectly measures all violations including non-iid condition of . In actual situation, it is 

difficult to obtain exact  and hence . To estimate  we compare TS = 

, ) of assumed iid random variables p =  to = T(g( ), of non-iid 

variables ). While the TS remains the same for given   the   can be estimated by 

how we use ) in the combing model g( . Below shows three ways of different use of these variables. 

The three candidates are (1) is to use the minimum value of ), expressed as  (2) uses the 

maximum value of ), expressed as , (3) is the sum of individual values of , expressed as 

, each term of is divided or individually weighted by all member weights (Example 1). All member weight is 

used because the weight of one member is one: when sample size is one (i.e., n=1), it is independent automatically 

regardless of the size of p-values, i.e., , )= T( g( ), 

for given ignoring the null hypothesis .as assumed distribution  is not 

involved in any null hypothesis. This is the only time the assumption is correct, or  = g(  (see First row, 

Table 1, Example 1). 

Three possible correction factors are , ,and  (Appendix C). The choice depends on researcher’s need. 

Thus, three different effective test statistics, =  / , can be obtained when  reduced by respective new 

correction factor: 

, 

where , because <  (see Example 1). We may have the extreme cases 
of  and  when -values of ) are widely spread out, and the minimum or 
maximum value of ) is comparatively very small or large, far away from the mean. In this situation, 
one may avoid the use of the two extreme cases and prefer to use middle value  for the statistical inference in 
combining the value of ). Note the weights  are each term weights for each  
of all member  (see Example 1, n=5 fifth row, for all 5 members, under each column of p-values). 

3.4 Table 1, Numerical Example of Correction Factors  
The Table 1 below shows the numerical calculation to construct the test statistic TS (C), , correction factors 

, using chi-square value (C) for TS and Fisher’s Model (F) for  and the clinical trial data for 
 (Example 1, Section 4). 

One reason of presenting Table 1 here is to remind the users of Fisher’s Model (FM) to be more careful if the data are 
correlated or non-iid variables. Often we find that, especially in medical journals, many people are still using FM 
without proper consideration of the problem as if data are iid random variables, Table 1 can be used to correct non-iid 
problems of their data when they use FM in combining p-values. Another reason to have Table 1 here is to help 
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understanding the text of next Section 4.  

Table 1 shows the three numbers, FM (F), Chi-square model (C), and correction factor , by the p-vales on the 
columns, i.e., p= 0.01,0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, and the 15 numbers on the rows, i.e., n =1, 2, 3, 4, 5, 6, 7 , 8, 
9,10,11,12,13,14,15, each n-number means the same n p-values.(See Appendix A for the reason why we use the same p 
for n times). Recall that 

 = T(g( ), test statistic for Fisher’s Model g( , for given , ,   

C = TS = , ) of assumed base distribution  given ,  

=  

 < , in the Table 1, is the correction factor expressed as ratio of F 

and C to compare them on the equal bases, (i.e.,  n=n**, and =  

except correlation  and the forms of models g(.) and h(.), on the interval,  < ,  

this condition implies that  shows only impacts of correlation and model difference. 

Note that here we use the five same values of p to induce the maximum correlation to F in =  , while C remains 

the same, hence giving larger , which, in turn, provides conservative or smaller = . Thus, users of , 

in Table 1 will have conservative effective test statistic, , when F is corrected by . 

To illustrate for the calculation of F, C, and in Table 1, we take one cell for n=5, the fifth row and p=0.05 on the 

third column, Fisher’s Model (FM), F = -2log 0.05 0.05 0.05 0.05 0.05)=29.96, using the same values five time for 

n=5 for the reason given above. The basic distribution, Chi-square value (C), C =18.31, for , 2n=10 degrees of 

freedom at =  =  = 0.05, from the table. The result is = = .=1.64 as shown in the 5th row, 

n=5, and third column p=0.05 in Table 1. Other cells in Table1 follow the same steps to obtain F, C, and . 

Note we set the sample size n=n**=5, test level = , to compare C and F on the equal bases except 
the correlation and the forms of two models, g(.) and h(.), i.e., g(.)  h(.). Thus, the  shows the impacts of 
correlation and the wrong assumption of the model F in comparison to C. 

We call C**=  < , correction factor as they are indirectly used to correct or reduce for the 

violation of iid conditions and model assumption, for the data = (05,.08, 0,09 0.10, 0.20), (see Appendix B). 

Effective Test Statistic ( = ) is finally used for statistical inference. Note   < . 

(Appendix A).  
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Table 1. shows Fisher’s Model F=  and Chi-square Table value C= TS, and Correction Factors C**= F/C by the 

size of the nine p’s, p=0.01, …, 0.9 on the columns, and the 15 numbers n=1,…,15 for the same n p-values on the rows  
n of p p  0.01 0.02 0.05 0.1 0.2 0.3 0.5 0.7 0.9 

n=1 F 9.21 7.82 5.99 4.61 3.22 2.41 1.39 0.71 0.21 
 C 9.21 7.82 5.99 4.61 3.22 2.41 1.39 0.71 0.21 
 C** 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
n=2 F 18.42 15.65 11.98 9.21 6.44 4.82 2.77 1.43 0.42 
 C 13.28 11.67 9.49 7.78 5.99 4.88 3.36 2.19 1.06 
 C** 1.39 1.34 1.26 1.18 1.07 0.99 0.83 0.65 0.40 
n=3 F 27.63 23.47 17.97 13.82 9.66 7.22 4.16 2.14 0.63 
 C 16.81 15.03 12.59 10.64 8.56 7.23 5.35 3.83 2.20 
 C** 1.64 1.56 1.43 1.30 1.13 1.00 0.78 0.56  0.29 
n=4 F 36.84 31.30 23.97 18.42 12.88 9.63 5.55 0.56  0.84 
 C 20.09 18.17 15.51 13.36 11.03 9.52 7.34 5.53  3.49 
 C** 1.83 1.72 1.55 1.38 1.17 1.01 0.76 5.53  0.24 
n=5 F 46.05 39.12 29.96 23.03 16.09 12.04 6.93 3.57 1.05 
 C 23.21 21.16 18.31 15.99 13.44 11.78 9.34 7.27 4.87 
 C** 1.98 1.85 1.64 1.44 1.20 1.02 0.74 0.49 0.22 
n=6 F 55.26 46.94 35.95 27.63 19.31 14.45 8.32 4.28 1.26 
 C 26.22 24.05 21.03 18.55 15.81 14.01 11.34 9.03 6.30 
 C** 2.11 1.95 1.71 1.49 1.22 1.03 0.73 0.47 0.20 
n=7 F 64.47 54.77 41.94 32.24 22.53 16.86 9.70 4.99 1.48 
 C 29.14 26.87 23.68 21.06 18.15 16.22 13.34 10.82 7.79 
 C** 2.21 2.04 1.77 1.53 1.24 1.04 0.73 0.46 0.19 
n=8 F 73.68 62.59 47.93 36.84 25.75 19.26 11.09 5.71 1.69 
 C 32 00 29.63 26.3 23.54 20.47 18.42 15.34 12.62 9.31 
 C** 2.30 2.11 1.82 1.56 1.26 1.05 0.72 0.45 0.18 
n=9 F 82.89 70.42 53.92 41.45 28.97 21.67 12.48 6.42 1.90 
 C 34.81 32.35 28.87 25.99 22.76 20.60 17.34 14.44 10.86 
 C** 2.38 2.18 1.87 1.59 1.27 1.05 0.72 0.44 0.17 
n=10 F 92.10 78.24 59.91 46.05 32.19 24.08 13.86 7.13 2.11 
 C 37.57 35.02 31.41 28.41 25.04 22.77 19.34 16.27 12.44 
 C** 2.45 2.23 1.91 1.62 1.29 1.06 0.72 0.44  0.17 
n=11 F 101.3 86.06 65.91 50.66 35.41 26.49 15.25 0.44  2.32 
 C 40.29 37.66 33.92 30.81 27.3 24.94 21.34 18.1 14.04 
 C** 2.51 2.29 1.94 1.64 1.30 1.06 0.71 0.43 0.17 
n=12 F 110.5 93.89 71.9 55.26 38.63 28.90 16.64 8.56 2.53 
 C 42.98 40.27 36.42 33.20 29.55 27.10 23.34 19.94 15.66 
 C** 2.57 2.33 1.97 1.66 1.31 1.07 0.71 0.43 0.16 
n=13 F 119.7 101.7 77.89 59.87 41.85 31.30 18.02 9.27 2.74 
 C 45.64 42.86 38.89 35.56 31.79 29.25 25.34 21.79 17.29 
 C** 2.62 2.37 2.00 1.68 1.32 1.07 0.71 0.43 0.16 
n=14 F 128.9 109.5 83.88 64.47 45.06 33.71 19.41 9.99 2.95 
 C 48.28 45.42 41.34 37.92 34.03 31.39 27.34 23.65 18.94 
 C** 2.67 2.41 2.03 1.70 1.32 1.07 0.71 0.42 0.16 
n=15 F 138.2 117.4 89.87 69.08 48.28 36.12 20.79 10.7 3.16 
 C 50.89 47.96 43.77 40.26 36.25 33.53 29.34 25.51 20.6 
 C** 2.71 2.45 2.05 1.72 1.33 1.08 0.71 0.42 0.15 

 

Note in Table 1, C** = F/C is increasing from1.39 to 2.71 when n=2 increases to n=15 on the first column of p=0.01. It 
means that F is increasing faster than C as the number n of same p-values is increasing. This trend is reversed in the 
seventh column of p=0.5, C** is decreasing from 0.83 to 0.71 when n=2 increases to n=15. i.e., F decreasing faster than 



 
 
http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                Vol. 11, No. 6; 2022 

19 

C. 

Similar trend exists on the rows, for the second-row n=2, C** is decreasing from 1.39 to 0.40 when p=0.01 increases to 
p=0.9. The change point C** greater than 1 to less than 1 is p=0.5, it is true for all the 15 rows.  

Note that we ignore when  =  < , it happens data are negatively correlated. or 

when  does not reduce the impacts of non-iid inflation on  

4. Examples  

Two examples are presented. (1) Effective Test Statistics ETS* of the Fisher’s Model (FM) to combine -values from 

clinical trial data at Minneapolis Veterans Administration (VA) Hospital. (2) Random group method for a large sample 

of n variables (Choi and Nandram, 2021). Using random grouping, we divide a large sample into k manageable random 

groups and obtain one p value from each group. Then the k p-values are combined, using FM. 

4.1 Example 1. Fisher’s Model (Fisher, 1932) to Combine Clinical Trial Results  
All Parkinson patients, visiting the Neurology Department of Minneapolis VA hospital, are the population during the 
study period in 1970 (Choi, 1970). In our example, a sample of 36 patients is randomly selected from all the visitors. 
The 36 patients randomly ordered and took either Symmetrel, a candidate for Parkinson medication, or placebo, for 20 
weeks crossover design, starting by coin toss, one week medication and one week placebo double blindly.  

After each week, they took 5 tests: walking, tremor, stiffness, arm movement, and eye movement, to measure the 
impacts of medication or placebo. These tests are equally weighted assuming no residual effects, and calibrated from 
one to ten, one for no effect and 10 for the best result. The differences of on and off weeks are measured. Each patient 
provides 10 differences during 20 trial weeks and obtain one mean difference for each patient.  

Again, find one mean differences from 36 patients for each of 5 tests, providing one mean difference from each of 5 
tests. Using student-t test for the mean differences under the null hypothesis of no difference, we have 5 p-values from 5 
tests, n=5, combined with Fisher’s Model (FM), assuming they are iid random variables and follow Chi-square 10 
degrees of freedom, . 

We have five values of t-test under the null hypothesis of no mean differences. Once we have p-values, we ignore the 
previous procedures to obtain them and they are the random variables of our interest and may have their own 
distribution. The five p values are = (05,.08, 0,09 0.10, 0.20). 

Fisher’s model (FM) combines these 5 p-values.  

FM = 2 log (0.05 x 0.08 x 0,09 x 0.10 x 0.2)  

=  2(log 0.05 + log 0.08 + log 0.09 + log 0.10 + log 0.20)  

=  - 2.5257 - 2.4080 - 2.3026 - 1.6094)  

=  23.6828.   

When we compare FM=23.6828 to the assumed Chi-square 10 degrees of freedom at = 0.01 = 23.209, FM is 
significant as 23.6828  23.209 at = 0.01 of . 

However, the clinical trial data  = (05,.08, 0,09 0.10, 0.20) are correlated (see Appendix B) or non-iid random 
variables, and thus, we cannot assume FM is distributed as chi-square 10 degrees of freedom. Therefore, FM  = 

should be reduced for the violations of iid condition of .   

Most data are correlated in the real world as there is hardly any independent data.  

But statisticians, in general, blindly assume their data are iid random variables. Thus, it is necessary to check out the 
independence and other characteristics of their data beforehand.   

The three candidates, , , and  of Correction Factor are introduced in 3.3. They are used to reduce FM 
for iid violations. 

, using minimum( )=0.05. 

(2) = 1.29, using maximum( )=0.2. 
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Since individual weights are =1 for n=1 (see first row, Table 1), we use an alternative weight. 

(3) 1.64, 1.52, 1.46, 1.44. 1.20 (see,  in Table 1, row 5 for n=5 and corresponding columns of p= 0.05, 

0.08, 0,09, 0.10, 0.20.                                                             

 for Fisher’s Model result (F) is adjusted by this correction factor ( ) to obtain the effective test statistics 
( ) as shown below.  

First, we find the minimum value of  = (05,.08, 0,09 0.10, 0.20, which is 0.05, and use 0.05 five times to find FM 
(F) as explained the reason why we use the same number 0.05 five times. Then adjust FM by =1.64 (Table 1, 
row n=5 and column p=0.05). We have 

FM(min=0.05) =  -2 log(0.05 0.05 0.05 0.05 0.05) = 2(5 x 2.99573) =29.9573, 

ETS**(min=0.05)= . 

Second, similarly, the maximum value 0.2 is used five times in FM, and FM(max=0.2)  

is adjusted by =1.29 (Table 1, row n=5 and column p=0.2). We have 

FM(max=0.2)= -2 log(0.2 0.2 0.2 0.2 0.2)= 2(5x 1.60944)=16.0944. 

ETS**(max=0.2)= =  = 12.4763. 

Third, we obtain FM(mix) of individual value adjusted by individual combined weights = 
Table 1, row 5, n =5 and columns corresponding to 0.05, 0.08, 0.09, 0.1, 0.2). The main 

reason why we use individual combined weights is, when n=1, individual weights =1 regardless of p-vales. One 
sample is always independent so both FM and assumed chi-square distribution remain the same for given test level 
when sample size is one (see Table 1, row 1, =1 for all p=values). We have 

FM(mix) = -2 {log 0.05 + log 0.08 + log 0.09 + log 0.1 +log 0.2}, and each term is divided by the corresponding 
individual combined weight for the given reason. Hence, we have been  

ETS**(mix)=  +  +  +  +  

=   

=   +   +  +  +  

=3.4521+3.3233 +3.2986 +3.1981 +2.6823 =15.9544. 
Results show that  

ETS**(max=0.2)= 12.4763  < ETS**(mix) =15.9544  < ETS** (min=0.05)= .  

ETS**(min=0.05)=18.2667 is significant at 0.05 of  (=18.307), but other two, ETS**(max=0.2)= 12.4763 
and  ETS**(mix) =15.9544 are not significant.  

In the beginning of this example, Fisher’s Model gives FM=23.6826, without correction, which is significant at = 

0.01 of  (23.209). This FM is very much inflated when compared to above corrected results. Only one 

not-corrected value 29.9537 of FM(min=0.05) is bigger than the not-corrected FT=23.6826.    

When the Maximum, here 0.2 or Minimum, 0.05, of p-values are too far away from the mean or relatively too small 

or too big, one may prefer the mixed value, ETS**(mix)=15.9544, for statistical inference, which is not significant at 

= 0.01 of  (23.209), even at 0.05 of  (=18.307). 

4.2 Example 2. P-values from Random Groups of a Large Sample 
When the existing methods, for example normal test or student t-test, are used for statistical inference, we encounter the 
large sample problems (Choi and Nandram, 2021). The reason is such test is the function of its variance, which in turn, 
function of sample size. The variance becomes too small when the sample size is large or too large when sample size is 
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too small. We consider the case of too large sample size, and test statistic becomes significant for the sample size over 
certain level (Choi and Nandram, 2021). 

4.2.1 The Large Sample Problem  

We indicate the large sample problem and show a solution using Random Group Method (Choi and Nandram, 2021). A 

concrete example is as follows. Let  …,  be the realization of iid random variables  …, , distributed 

as N( , ), where  is known and inference is required about . We test the null hypothesis :  against 

alternative : Let  be observed value of the sample mean, . Then the p-value of the test is 

P(     ) 

= P( | ) 

=    
Here  is the cdf of standard normal random variable. Therefore, if n is very large and  , p-value  
which shows large sample problem (Choi and Nandram, 2021). We use the following steps to solve this problem.  

Step one 
We divide a large sample of size n into a number of random groups so that each can be tested by the usual method. 
Let  = , , …. ,  be a large sample of size n from N( , ). When n is a large number, we cannot do the 
usual test. We want to divide the sample into h smaller samples of size m, 1< m < n, using Random Group Method. 
The smaller samples enable us to perform a traditional test (e.g., Normal test, t-test) for testing a hypothesis, : 

. Choi and Nandram (2021) showed how to divide the large sample into h smaller samples. Each sample 
provides one test statistic 

= T( (p| , , , ),  =m,  i= 1,…,h. 

and the h test statistics provide h test scores  at the test level , i=1, …,h. 

Step two 
When h p-values are iid variables, we can use Fisher’s Model is assumed to be chi-square 2h degrees of freedom. We 
assume random groups are independent, we may assume h p-values are also independent, p =  are distributed 
as chi-square distribution, f(p| ). We can make statistical inference with chi-square test result. However, If the p-values 
are correlated, we can use the correction factor in Table 1, to correct such impacts on Fisher’s Model value.  

Numerical example 
A student presented data analysis of three sets of data; each includes 1500 persons’ dental records. All the three t-tests of 
hypothesis :  were significant due to large sample size. Suggestion was to randomly divide 1.500 into 50 
groups of 30 persons. If out of 50 t-tests, 45 tests (90%) of the 50 tests were significant at p=0.05, then it is also 90% 
significant for the 1500 persons’ data at the same level at p=0.05 (Choi and Nandram, 2021). Similarly, it can be done 
for the remaining two groups.  

5. Bayesian Model for Combining P-values 
The Bayesian paradigm has the advantage of coherence, but the calculation of p-values is incoherent within the 
Bayesian paradigm because the computation of a tail area of a posterior distribution is not coherent. This is why 
Bayesians have hardly worked on this problem; see Casella and Berger (1987) and the discussions that followed. The 
combined p-value is an appropriate posterior mean,  say. However, note that  is a parameter in the Bayesian 
paradigm, and it is a random variable. 

It is not simple to include a correlation among the p-values since the sample of p-values is small. For the non-Bayesian 
method, we have constructed a correlation based on a distance measure (see Appendix B); otherwise, it is impossible to 
estimate this correlation. Here we will separate the data into groups to get an intra-cluster correlation. 

The problem of combining a number of p-values, from the studies on the same subject, is one of data integration, which 
is currently a hot topic, see, for example, Nandram et al (2021) for model-based methods using both non-Bayesian and 
Bayesian approaches. 

5.1 The Case of Independence 
Suppose that we have the results of p-values ,…,  from n data sets, and these values are independent. We can also 
use an appropriate prior to reflect previous procedures to obtain p-values.  



 
 
http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                Vol. 11, No. 6; 2022 

22 

Let iid ,…,  Beta{ and E( , 0 . 

This is a useful reparameterization of the parameters of the Beta distribution in which both ( ) lie in (0,1), which 
leads to easy computation. See Nandram (2016) where this reparameterization was first introduced. A priori, we assume 
that 

U(0,1), 
essentially a non-informative prior.  

We want to make inference about , combined p values. Letting  , and , the posterior 
density of  ) is 

( , , 0  . 

For the samples from the posterior density, one can also use the Gibbs sampler (Casella and George,1992) to obtain  
and  for given p-values; but we use a random sampler that does not need any convergence monitoring.  

The posterior summaries we use are the posterior mean (PM), posterior standard distribution (PSD), posterior 
coefficient of variation (PCV) and 95% highest density interval (HPDI). 

Consider Example 1 on combining the five p-values, .05, .08, ,09, .10, .20. Applying our method based on the Beta 
model to these p-values, we computed the combined p-value, , and the posterior summaries are  PM=.121, 
PSD=.032, PCV=.266, HPDI=(.069, .191). Therefore, the null hypothesis is not significant at the 5% significant level 
and perhaps not even at 10% significant level. 

Table 2 has results of a small simulation study, which is used to provide many different examples. We generated n 
p-values, n=10,…,100, and we compare the combined p-value, the posterior mean of ; we also look at z. Again, we 
show posterior summaries in Table 2 of the two variables,  by sample size on the columns, and posterior mean 
(PM), posterior standard deviations (PSD), coefficient of variations (PCV) and 95% HPDIs of  and z on the rows. 
Again, not that -values represent the posterior mean of the p-values, which range 0.05529 <  < 0.09157. Note that 
the PSDs are decreasing as the sample size n increases. This also gives smaller PCVs and narrower 95% HPDIs e.g., at 
n=2 the 95% HPDI for  is (.02945, .16355). 

Table 2. Posterior summaries of  including intervals 

Sample size n  PM PSD PCV 95% Lower bound 95% Upper bound 
n=10   0.09157 0.03414 0.37282 0.03945 0.16355 

  0.09908 0.05641 0.56934 0.02105  0.20441 
n=20   0.06136  0.01395 0.22729 0.04007  0.09056 

  0.05462  0.02196 0.40201 0.02156  0.09700 
n=30   0.05716 0.01028 0.17992 0.04096  0.07916 

  0.04721 0.01501 0.31800 0.02101 0.07358 
n=40   0.05810 0.00821 0.14122  0.04099 0.07149 

  0.03979 0.01092 0.27439 0.02117 0.06064 
n=50   0.05596 0.00675 0.12061 0.04206 0.06934 

  0.03771 0.00901  0.23902 0.02110   0.05349 
n=60   0.05545 0.00640 0.11540 0.04149 0.06795 
  0.03787 0.00818 0.21608 0.02107 0.05085 
n=70   0.05975 0.00616 0.10310 0.05117 0.07057 

  0.04001 0.00760  0.19006 0.03101 0.06021 
n=80   0.05529 0.00616 0.11149 0.04092  0.06617 
     0.04357 0.00808  0.18538 0.03098 0.05878 
n=90   0.05751 0.00571 0.09927  0.04879 0.07038 

   0.04436 0.00798  0.17976 0.03099 0.05867 
n=100  0.05859 0.00573 0.09778 0.05099  0.07015 

 Z 0.04580 0.00778 0.16985 0.03101 0.05922 
We may be able to include all information of first stage as prior replacing U(0,1). This 
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Will be done in a future study. We can use independent Beta distributions with specified parameters, and this will 

depend on the amount of information available. 

To motivate the case, where we include an intra-class correlation, we provide another Bayesian analogue of Fisher’s 

model of combining p-values. Let  i= 1,…,n, denote the n p-values, and let  = log{ , 

then a simple model is 

                                    |   Normal( , )  

                                   , )   . 

This is a standard non-informative prior (a version of Jeffrey’s objective prior), but as always leading to proper posterior 
distribution for , ). 

Here the combined p-value is  = . The posterior density of  is a Student’s t density, and inference 
about  is obtained by sampling the Student’s t density and computing . For the example on the five p-values, for 
inference about , we have posterior summaries, which are PM=0.099, PSD=0.033, PCV=0.334, HPDI=(0.044, 0.162). 
Again, the test is not significant at the 1 % significant level. 

5.2 Including Correlation  
We add an intra-cluster correlation as follows. We find all  = n(n-1)/2 distinct pairs of , …, , and we form a 
Bayesian one-way random effect model, each cluster having just two values. Let , , i= 1,…, , denote the distinct 
pairs which form the clusters. Then we assume the model,   

,  | ,  ( , (1- )  

| ,    N( , ),  i= 1,…, , 

, , )  . 

It is important to note that cor( ,  |  , , ) =  in (0,1). We have actually used the traditional 

non-informative prior for , , ); this prior causes no impropriety issues (see Nandram, Toto and Choi, 2011) for 

proofs. 

Also, note that we are actually assuming a composite likelihood because the pairs are not independent (i.e., each pair 

has one common unit), for example, see Varin, Reid and Firth (2011) for a discussion of composite likelihood. Again, 

the combined p-value is  = . This is the same as for the case when no correlation is assumed. 

Using Bayes’ Theorem, the joint posterior density is  

                                       ,  q) =  

                     ,  q) (  |  q) (  q) (  q) (  q).  
Here,   ,  q), (  |  q), and  (  q) , have simple forms, and (  q)  has 
nonstandard form but it can be sampled using a grid method (e.g., Nandram, Toto and Choi, 2011).  It is also true that 
the joint posterior density is proper, provided ,  see Nandram, Toto, and Choi (2011). Therefore, it is easy to 
sample the posterior density of  and so . To make inference about , we draw 10,000 samples of the posterior 
density of . No monitoring is required because a Markov chain Monte Carlo sampler is not used. 

As summaries of the posterior density of , we have PM=0.078, PSD=0.017, PCV=0.217, and the 95% HPDI= (0.048, 
0.112). Therefore, the combined test is not significant at 5% significant level. Note that when we assume no correlation, 
PM=0.099 a bit larger, and the HPDI= (0.044, 0.162) a bit wider. The posterior summaries of  are PM=0.147, 
PSD=0.125, PCV=0.851, 95% HPDI=(0.001, 0.603); so, there is a small correlation.  

As another example, when we increased the number of p-values to 10 (i.e., duplicate the five p-values to get 
05, .08, ,09, .10, .20, 05, .08, ,09, .10, .20); there is an increase in precision but the results remain essentially the same.  
The posterior summaries of  are PM= 0.147, PSD= 0.125, PCV= 0.851, 95% HPDI= (0.001, 0.393); so that there is a 
small correlation, not much of a difference 

6. Conclusion 
We have used a model combine test scores on the same topic. Here, we assume a distribution for the data model. We 
compare the two test statistics, one from assumed distribution h(.) of iid-data and other from pseudo-distribution g(.) of 
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non-iid data. We define the differences between them as the ratio of the two. As the actual data may include impacts of 
not only correlation but also other difference of iid and non-iid conditions. We describe how to reduce the test statistics 
of non-iid data to make statistical inferences with the assumed distribution of iid variables.  

We have considered two-stage procedure. The first stage is sampling and pre-processing to obtain the p-values. The 
second stage is the analysis of the first stage results. 

Suppose that h independent samples. , …, , i=1,…,h, are randomly taken from the population for an investigation 
on a same subject and suppose the sample follows true distribution f(y| ). Each sample provides one test result from 
significant testing at a critical level  under a null hypothesis, providing test statistics. 

, , ), = , i=1,…, h, 

These test statistics provide h p*-values,  

= 1 -  d , i = 1,…,h. 

Some assume the two stages are connected and the second stage is a continuation of the first. If the information such as 

sample design, sample,  and sample size  are available, we can use this information in the second 

stage to combine the -values to increase efficiency. Yoon et al.(2021) incorporate sample size  to combine 

p*-values. If one wants to include other information in Bayesian modeling, it is possible to use them as prior 

information.  

The validity check of these estimations can be added in the future extension using the variance or coefficient of 

variation, and 95% confidence interval of each estimation through simulation. 

It will be useful to carry out further study of the combination of correlated p-values in the Bayesian paradigm. For one 

thing, it will allow us to incorporate further information that can improve posterior inference.  When available, 

information such as sample size and site covariates can be included in the combination of correlated p-values. 
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Appendix A, outline for the proof of Lemma  

Correlation, Model 1 
Consider the correlated random variables  Choi and McHugh (1989) show how to adjust the  

based on correlated variables in Chi-square testing. Test Statistic (  for correlated data  is largely inflated and 

corrected by the correction factor C= [1 + (n-1)] , is the correlation among n -values. 1   

 = .  can also be obtained by effective sample of n,  = . (Choi, 1980).  

Non-iid case, correlation and other non-iid violations, Model 2  

Here, we try to find the non-iid problem of ), indirectly through its test statistics , which is 

compared to test statistic TS of iid variables. The total difference between the two test statistics,  and  TS, can be 

expressed as the ratio of these two,  =  , is used to get effective test statistics (ETS), which is used for statistical 

inference with  

 =  = .  

The ratio,  = , 0   We consider  only on , for positive correlation or > TS. 
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We do not consider or ignore  < TS on 0   for it does not reduce inflated  for the impacts of 

non-iid violation (see Proof below). It happens also for negative correlation in C= [1 + (n-1)]  (see Method 1).  

To prove > TS, consider two disjoint intervals, (0  ) ={(0  )}. 

Let the effective test statistic be , and correction factor be  = . 

It is easy to see that  from ,  < TS from  =  , on the interval (0   

Similarly,  and  > TS, on the other interval   

The difference between and TS,  =  =. ,  is less than 1 or greater than 1 

depending also on n, p = , and the increasing or decreasing speed of  and TS (see Table 1). 

If all the above conditions of  and TS are same except  of , ignoring , and  = = , and n = , 

the proof depends only on correlation  : 0 ,  i , for i, = 1, …, n. Model 1 can be used in this 

case. 

(1)  If  = 0, = .=  = 1,. It is also true  when n=1. The sample size one

 is always independent,  = 0 and =  for g(.) =h(.)

 and  = = =p. This is the only time that FM for g(.) assumed correctly to be distributed as c

hi-square C for h(.) 

(2)  If 0    and 2 , the correction factor C*=  (Choi and McHugh 19

89) and, if  = = p =   , the effective test statistic = 

 reduces the correlation impact of .  

For example: If the correlation among the 5 p-values of data 0.05, 0.08, 0.09, 0.10, 0.20, is =0.42 (Appendix 

B). The correction factor  and the Fisher’s Model Test 

Statistic FM=  =23.68 is reduced as, =  =8.8361, this effective Test Statistic not significant 

at 0.01 of  (=23.209).  

    

  If , for n , C= [  =  = 5.00, which is the largest correction value for 

any given n, and it ,in turn, gives the smallest  =   = 4,74. 

      (3) We can also use the effective sample size ,   =  to obtain  (Choi, 

1980)  

 

(4) The turning point also depends on the increasing or decreasing speed of  and ,  <  

when and  > when 1 . We can ignore the case  < 
as it happens for negative correlation of  variables. The change point from less than 1 to more than 

1 also depends on the sample size and size of , for example, Table 1 shows the  turning point 

is = 0.5 in the column and for all n on the rows,  
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Appendix B, the correlation of one sample 
For one group of data including n variables , currently there is no formula available to calculate  between the 

variables. We define   for the continuous variables, . 

 For example, = (05,.08, 0,09, 0.10, 0.20), 

   

 
Appendix C, the three candidates of correction factor  

TS = ,  of iid random variables p =  remain the same for given   test level  and sample 

size n, while TS**= T(g( ) on the non-iid variables )   

(1) uses the minimum value of ) , all n** valuers are the same =  

, i=1,…, . to obtain the test statistic (TS**). The same minimum values are used to induc

e the maximum correlation and in turn conservative TS**. (see Example 1 and Table 1)  

 

(2) uses the maximum value of ) , similarly all n** valuers are  = 

 , i=1,…, .  

 

+,…, + ,  

.   
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Abstract 
The class of bivariate integer-valued time series models, described via copula theory, is gaining popularity in the 
literature because of applications in health sciences, engineering, financial management and more. Each time series 
follows a Markov chain with the serial dependence captured using copula-based distribution functions from the Poisson 
and the zero-inflated Poisson margins. The copula theory is again used to capture the dependence between the two 
series. 

However, the efficiency and adaptability of the copula are being challenged because of the discrete nature of data and 
also in the case of zero-inflation of count time series. Likelihood-based inference is used to estimate the model 
parameters for simulated and real data with the bivariate integral of copula functions. While such copula functions offer 
great flexibility in capturing dependence, there remain challenges related to identifying the best copula type for a given 
application.  This paper presents a survey of the literature on bivariate copula for discrete data with an emphasis on the 
zero-inflated nature of the modelling. We demonstrate additional experiments on to confirm that the copula has potential 
as greater research area. 

Keywords: count time series, copula, Zero-Inflated, count data, Poisson distribution 
Subject Classification: 62H05, 62H10 

1. Introduction 
In the study of multivariate distributions, copula functions are gaining popularity in recent years. They are attractive as 
they can handle internal and mutual dependences among variables. The copula was first introduced in the Sklar (1954) 
paper, a paper that Frechet helped publish. Hoffding (1940) is also credited for almost innovating the concept of copula . 
Many problems in practical situations are modeled under related distributions using copula functions, in contrast to 
classical multivariate (Gaussian) distributions for count data. As such, the literature shows a growing interest in the 
investigation of dependence for sequences of counts in time series cases. The simplest of such sequences are bivariate 
count time series data. Copula functions have gained popularity in building such bivariate and multivariate distributions 
as the desire to understand the structure in massive time series count data is becoming more common. For diseases and 
rare events, observed counts over time appear in a high frequency of zeros (zero inflation), which is discussed in MÖller 
et al. (2020) and Young et al. (2020).  

Sklar (1959) introduced a method to build in the bivariate and multivariate distributions for two random variables. The 
idea of joint distribution, especially in the bivariate case can be traced back to Frechet (1951, 1956, 1958). Morgensetrn 
(1956), Plackett (1965), Farlie (1969) and many other authors could be included in this systematic approach of 
constructing bivariate distributions with specific marginals and different dependence measures. See examples such as 
Gumbel (1958) or Johnson and Tenenbein (1981). In that same line of thought, Cook and Johnson (1981) asked two 
questions that are still of relevance. The questions are: 1) “Is there a distribution that appears to be the most promising 
candidate for non-normal types of data?” 2) “Is the resulting distribution or model fit significantly better than that 
obtained from the multivariate normal distribution?” 

Finding a unique copula for a joint distribution requires one to know the form of the joint distribution. When using 
copula, one can separately model the marginal distributions and the dependence structure, which makes the copula 
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approach unique. Choosing the appropriate copula for a particular scenario means finding the one that best captures the 
dependence in data.  Many variants of copulas have been proposed in the literature where each of these is suitable for 
different dependence structures. For example, Gaussian copula is flexible, and it allows for equally positive and 
negative dependence. The Clayton copula cannot account for negative dependence, and it exhibits strong left tail 
dependence. Similar to Gaussian copula, Frank copula allows for both positive and negative dependence between the 
marginals.  

Copulas offer a flexible framework to combine distributions. It is unique if marginal densities are continuous. However, 
if some of the marginal distributions are discrete, the unicity cannot be obtained automatically.  

Many copula functions have been identified, from the extreme of independent variables (the so-called independent 
copula or the product) to the max or min copula. The dependence is then captured by a selection of parameters and 
criteria associated with the range and properties of model parameters. 

Moreover, high dimensional copulas have been introduced via bivariate copulas, under different decompositions and 
structures. These structures are known as the canonical vine (C-vine) or drawable vine (D-vine). References to C and D 
vines can be found in Bedford and Cooke (2002), Joe et al. (2010), and Aas et al. (2009). Gräler (2014) proposed the 
convex combination of bivariate copula densities incorporating the distance [between what?] as a parameter in the 
spatial setting. The application of copula functions can be found in finances (Czado et al, 2012), hydrology (Yu et al., 
2020), transportation (Irannezhad et al., 2017), health care (Shi and Zhang, 2015), and more. The 
Farlie-Gumbel-Morgenstern (FGM) family of copula can be used to establish relationship between predictors (Durante 
and Sempi, 2016)). 

Within the count time series, if we look at the binary data, there is a growing interest in the description of multivariate 
distributions under pair copulas (Lin and Chaganty, 2021). Panagiotelis et al. (2012) presented pair copula constructions 
for discrete multivariate data. Their algorithm is explained as a product of bivariate pair copula, demonstrating the great 
potential of vine copula approaches. They stated that the model selection for C or D vine remains an important open 
problem, with a particular emphasis on the conditional independence identification (Czado, 2019, Deng and Chaganty, 
2021,). From there, the idea of using the D vine for modeling counts with excess zeros and temporal dependence is 
presented in Sefidi et al. (2020). Perrone and Durante (2021) highlighted the link between the extreme discrete copula 
and mathematical concept of convex polytope, which is an idea spinning from the class of bivariate distributions (Rao 
and Subramanyam (1990). 

There are numerous problems and interesting challenges related to time series of counts. Davis et al. (2016, 2021) 
presented extensive literature and many examples of count time series. Fokianos (2021) and Armillota and Fokianos 
(2021) presented a Poison network autoregression for counts. In the statistical process control, Fatahi et al. (2012) 
proposed the monitoring of rare events under the copula based bivariate zero-inflated Poisson. van Den Heuvel et al. 
(2020) proposed corrections to such results adding the negative correlation option. 

With these studies and observations in mind, this paper presents reviews and updates related to the copula for bivariate 
distributions of zero-inflated count time series   and highlights research directions. Motivated by multivariate datasets 
acquired using correlation structures, our goal is to review the bivariate count and zero-inflated count time series for 
inference and application purposes under copula modeling. We give some insights into the bivariate count copula and its 
recent developments. We organize our discussion as follows. In Section 2, copulas for discrete count and zero-inflation 
of discrete count time series data are described. The use of univariate and bivariate copula for discrete data is discussed 
in Section 3. Extensions of discrete bivariate copulas are described in Section 4. We conclude this paper with an 
extended discussion on future work.  

2. Copula for Zero-inflated of Discrete and Count Time Series Data 
This section introduces the general form for multivariate copula, and its Gaussian representation. We also give an 
explicit definition of the zero inflated counts time series data. 

2.1 Simple Gaussian Copula Example 
Masarotto and Varin (2012) introduced a Gaussian copula model which can be used to model time series data in the 
presence of covariates.  The corresponding regression model can be written as follows.  

 

where g(.) is a function of the covariates  and , which capture the serial dependence. The parameter θ is a vector 
of marginal regression coefficients. The joint distribution function of the time series  can be 
constructed using the Gaussian copula as follows. 

  (1) 
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Here,  is the inverse CDF of standard normal distribution, and  is the joint CDF of a multivariate normal 

distribution with a mean vector of zeros and covariance matrix R. 
2.2 Review of Copula for Discrete Data 
Copula distributions are becoming increasingly popular in many areas of statistical data sciences. For example, in 
engineering, copula distributions are used to model the shear fore for cantilever beams and for beams with multiple 
point loads (Zhang and Lam, 2016). In pharmaceutical quality control, two correlated characteristics sample data are 
presented in Fatahi et al. (2012). The authors describe the bivariate Poisson distribution with the evidence of 
zero-inflation. Sukparungsee et al. (2021) developed a bivariate copula for control chart effectiveness. They show the 
bivariate copula distribution on Hotelling’s T^2 over the multivariate cumulative sum for positive, negative, weak, 
moderate, and strong correlations when the assumption of multivariate normality is violated. Van den Heuvel et al. 
(2020) extended the idea from Fatiha et al. (2012) and included negative correlation case, and an upper control limit on 
the sum of bivariate random variables.  Copulas are elegantly captured in the Genest and MacKay (1986), Genest 
(1987) and also in Han and De Oliveira (2016 and 2020), among others. In the financial sector, a recent work by 
Nikoloulopoulos and Moffatt (2019) reminds us of the need to study dependence structures. There are also more general 
ambitions for the bivariate copula from a bigger perspective than we expect to show the aggregated effects in many 
other areas. 

The list of copula functions is very large. The work of Größer and Okhrin (2021) presents a summary of bivariate 
copula followed by the construction of multivariate copula using pair copula decompositions. They provide examples 
for each copula family and provide an overview of how copula theory can be used in various fields of data science.  

Yang et al. (2014) proposed the Ali-Mikhael-Haq (AMH) copula-based function to investigate the joint risk 
probabilities of rainstorms, wind speeds, and storm surges. The proposed model was developed to assess the impact 
based on marginal distributions of maximum daily rainfall and extreme gust velocity. Alqawba et al. (2021) constructed 
a class of bivariate integer-valued time series models using copula theory. Applying either the bivariate Gaussian copula 
or the bivariate t copula functions, they jointly modeled two copula-based Markov time series models. They applied 
their method on bivariate count time series data, where the marginals follow either a Poisson or zero-inflated Poisson 
distribution. 

Safari et al. (2020) proposed a bivariate copula regression model to analyze cervical cancer data. They applied a 
bivariate copula to model and estimate joint distribution parameters.  Nikoloulopoulos and Moffatt (2019) used 
bivariate copulas to jointly model bivariate ordinal time-series responses with covariates for risks assessment of married 
couples. They proposed a copula-based Markov modelling of ordinal time-series responses and used another copula to 
couple their conditional (on the past) distributions at each time point. Copula families such as the Bivariate normal 
(BVN), Frank, Gumbel and bivariate t-copula were used to model the univariate time series as well as to couple them 
together.  

The work of Nikoloulopoulos & Karlis (2010) presents a regression copula-based model where covariates are used not 
only for the marginal but also for the copula parameters. They measured the effect of covariates on dependence 
structure by building a fully parametric copula-based model while considering six one-parameter copula families, 
namely Frank, Galambos, Gumbel, Mardia–Takahasi (M-T), and normal to build the dependence structure.  

Karlis & Pedeli (2013) presented a bivariate integer-valued autoregressive process (BINAR(1)) in which the 
cross-correlation was modeled using a copula to accommodate both positive and negative correlation. They presented 
an application of the Frank and Gaussian copula to model dependence, and marginal time series were modeled using 
Poisson and negative binomial INAR(1) distributions. 

Ma et al. (2020) proposed a copula approach utilizing a Gaussian copula with random effects to model correlated 
bivariate count data regression. 

2.3 The Zero-Inflated Discrete Data 
Zero inflation models can be found in many studies from Lambert (1992) to Hall (2000) and recently in Rigby et al. 
(2019). The zero-inflated count regression models are described as follows. 

� Zero-Inflated Poisson (ZIP) Distribution (Lambert, 1992): 

.        (2) 

� Zero-Inflated Negative Binomial (ZINB) Distribution (Ridout et al, 2001): 
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  . 

� Zero-Inflated Conway-Maxwell-Poisson (ZICMP) Distribution (Sellers and Raim, 2016): 

,  

where  and  

are the associated covariate vectors affecting the intensity parameter , the zero-inflation parameter and the 
dispersion parameter  respectively. 

The term  is the normalizing function of the CMP. 

Different variants of similar regression models have been proposed in the literature.  A noteworthy use of copula for 
zero-inflated data is studied in Shamma et al. (2020), where the inflation is built from a geometric count time series in 
an integer-valued autoregressive (INAR) process. 

3. Univariate and Bivariate Copula Models for Count Time Series Data 
3.1 Univariate Copula-Based Model for Count Time Series Data 
First order Markov model 

Alqawba, & Diawara (2021) introduced a class of Markov zero inflated count time series model where the joint 

distribution function of the consecutive observations is constructed through copula functions. Suppose { } 

zero-inflated count time series first order Markov chains the multivariate joint density distribution of , ,…,  
can be constructed as below. 
                    =  

Using the copula theory, the joint distribution function of Yt, Yt-1 can be written as below.  

                 F12(yt  yt-1) = C (Ft(yt), Ft-1(yt-1); )    where  is bivariate copula parameter vector.  

Hence, we can calculate the transition probability as below.  

 =  

Where                (  ) - ( ) 

- ( ) + ( ) 
Likelihood and parameter estimation under first order Markov model 
The likelihood function of the first order Markov model is given by  

     (3) 
The log likelihood function ( ) is given by 

 

Where are the parameter vectors of the marginals and the dependence structure, respectively. For the Gaussian 
copula family, the likelihood function involves a bivariate integral of the normal probability in which means 
that the function is not in a closed form and we need approximations for the rectangle probabilities.  

The simulation study was conducted using the R software by the ‘optim’ function in the “stats” package. We simulate 
first order stationary Markov processes with joint distribution of consecutive observations following the bivariate 
Gaussian copula. The marginal distributions are chosen to be the Poisson and ZIP distributions. We present the 
simulation results for a first order Markov model with Poisson marginals. The parameter  represents the mean of a 
marginal Poisson,  is the measure of zero inflation, and  is the serial dependence associated with time series data. 
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We found that the estimate of these parameters is fairly stable where the precision increases with increasing sample size. 
Table 1 and Table 2 show the estimates of copula parameters for positive and negative autocorrelations, respectively. 
The estimates are described by standard measures of variation, including standard deviation, mean square error and 
mean absolute error. 
Univariate ZI count time series models 
For positive serial dependence with =3, =0.3,  =0.6 
Table 1. Parameter estimates for the univariate ZI Poisson model with positive autocorrelation 

Sample Size Parameters Estimate SE MSE MAE 

100 
(3) 2.990 0.347 0.1200 0.282 

(0.3) 0.288 0.083 0.0070 0.006 

(0.6) 0.577 0.091 0.0080 0.073 

300 
(3) 3.013 0.192 0.037 0.152 

(0.3) 0.293 0.046 0.002 0.037 

(0.6) 0.596 0.046 1.433 1.196 

500 
(3) 3.006 0.154 0.024 0.120 

(0.3) 0.295 0.035 0.001 0.028 

(0.6) 0.596 0.037 0.001 0.028 

Source: Fernando, D., Alqawba, M., Fernando, D., Diawara, N.& Samad, M. (2022). 

For negative serial dependence with =3, =0.3,  =-0.6 
Table 2. Parameter estimates for the univariate ZI Poisson model with negative autocorrelation 

Sample Size Parameters Estimate SE MSE MAE 

100 
(3) 3.045 0.280 0.080 0.234 

(0.3) 0.299 0.046 0.002 0.036 

(-0.6) -0.618 0.087 0.0070 0.072 

300 
(3) 3.019 0.152 0.023 0.119 

(0.3) 0.298 0.030 0.0007 0.002 

(-0.6) -0.605 0.050 0.003 0.040 

500 
(3) 3.014 0.112 0.0127 0.009 

(0.3) 0.299 0.019 0.0004 0.015 

(-0.6) -0.603 0.040 0.002 0.031 

Source: Fernando, D., Alqawba, M., Fernando, D., Diawara, N.& Samad, M. (2022). 

Applications  
Alqawba & Diawara (2021) applied the proposed model to analyze monthly count of strong sandstorms recorded by the 
AQI airport station in Eastern Province, Saudi Arabia. The data set consists of 348 monthly counts of strong sandstorms, 
starting from January 1978 to December 2013. The bar plots suggest that both counts follow Zero inflated Poisson 
distribution, whereas the ACFs indicate that the counts are serially dependent. Finally, to illustrate the superiority of the 
proposed method they compare the method with zero-inflated integer-valuedautoregressive (ZIINAR) models.  

3.2 Bivariate Copula-Based Model for Count Time Series Data 

Copula based bivariate model 

Suppose we have { } and { } jointly observed at timepoints t=1, 2, …, n, with the assumption that each series { } 

and { } follows a copula-based Markov process described on section 3.1. Let’s mean vector, correlation matrix of the 

bivariate series as  

and which are described as below.  
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Here the diagonal elements of the matrix represent the serial dependence between two series, while the off-diagonal 
elements describe the cross-correlation between two time series.  

The joint distribution of and given , for t=1, 2,…,n is given by 

 

where  is either the inverse cdf (Cumulative distribution function) of the normal distribution or the t-distribution 
with V2(., R) being the bivariate normal or t-distribution, respectively. R is correlation matrix capturing the cross 
correlation between two time series which is described below.  

R=  

The limits of the bivariate integral can be calculated as below. 

 , for i= 1,2 where, 

 

and  

 
C (.; ) represents the bivariate copula function with dependence parameter , describing the 

serial dependence in a single series, and is a vector of the marginal parameters. 

Likelihood and parameter estimation for the bivariate model 
Likelihood based inference were conducted with maximizing the log-likelihood function of the bivariate distribution. 
The corresponding likelihood function for the joint distribution is given by, 

    (4)  

Where  ,where  is the marginal parameter vector and are parameters associated with the 
serial dependence in each time series respectively. The cross correlation between the two-time series is captured by . 

We can construct the log -likelihood function   as below. 

. 

The likelihood function ( ) contains either a bivariate normal or t-integral function which unable us to use the 
standard maximization procedures to get the ML estimates. Due to this reason, we evaluated the bivariate integral 
function using the standard randomized importance sampling method.  

We present simulation results for the proposed bivariate model in Section 3.1 after expanding from univariate to 
bivariate model. For each univariate time series, we considered a copula-based Markov model, where a copula family 
was used for the joint distribution of subsequent observations, and then, coupled these two-time series using another 
copula at each time point. 

The parameters of the marginal Poisson distribution are shown in Table 3 and Table 4 for positive and negative cross 
correlations, respectively. Here  and  denote the means,  and  denote zero inflation parameters,  and 

 denote the serial dependence of marginal distributions.  is measure of the cross correlation between the two time 
series distributions.  

The Gaussian copula was used to construct marginal distributions for 300 replicates with sample sizes of 100,300 ,500 
and the true parameter values are presented in brackets. The count time series with positive cross correlation is 
presented in Figure 1, and the joint density is shown in Figure 2. When observing the parameter estimates displayed in 
Table 3, we can state that the estimated values are more precise and converges to the true parameter values as the 
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sample size increases.  

Bivariate ZI count time series models 

Table 2. Parameter estimates for the bivariate ZI Poisson model with positive cross correlation 

Sample Size Parameters Estimate SE MSE MAE 

100 

(3) 3.4021 0.3887 0.3123 0.4599 
(0.3) 0.3333 0.0835 0.0081 0.0701 
(5) 5.1993 0.3832 0.1860 0.3337 

(0.4) 0.4026 0.0686 0.0047 0.0537 
 0.5425 0.0837 0.0103 0.0788 

(0.4) 0.3628 0.0963 0.0106 0.0806 
(0.5) 0.4822 0.0911 0.0086 0.0748 

300 

(3) 3.4051 0.1974 0.2030 0.4082 
(0.3) 0.3380 0.0447 0.0034 0.0471 
(5) 5.1816 0.2097 0.0768 0.2226 

(0.4) 0.4065 0.0386 0.0015 0.0309 
 0.5540 0.0433 0.0040 0.0524 

(0.4) 0.3669 0.0544 0.0040 0.0492 
(0.5) 0.4711 0.0493 0.0033 0.0441 

500 

(3) 3.4105 0.1721 0.1980 0.4108 
(0.3) 0.3408 0.0365 0.0030 0.0456 
(5) 5.1843 0.1622 0.0602 0.2028 

(0.4) 0.4084 0.0293 0.0009 0.0246 
 0.5558 0.0320 0.0030 0.0465 

(0.4) 0.3700 0.0430 0.0027 0.0413 
(0.5) 0.4720 0.0392 0.0023 0.0379 

Source: Fernando, D., Alqawba, M., Fernando, D., Diawara, N.& Samad, M. (2022). 

 
Figure 1. Plot of individual ZI count time series with positive cross-correlation 

Source: Fernando, D., Alqawba, M., Fernando, D., Diawara, N.& Samad, M. (2022). 
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Figure 2. Joint probability density function for the bivariate ZI model with positive cross-correlation 

Source: Fernando, D., Alqawba, M., Fernando, D., Diawara, N.& Samad, M. (2022). 

There are times when the correlation is negative and table 4 shows the parameter estimates for such scenarios. The 
Gaussian copula was again used in constructing marginal distributions for 300 replicates with sample sizes of 100, 300, 
500 and the true parameter values are presented in brackets. The count time series with negative cross correlation is 
illustrated in Figure 3, and the joint density is shown in Figure 4. The estimated parameters in Table 4 are more precise 
and converge to the true parameter values with increasing sample size as observed before. 

These results are new because a large body of the literature focuses on positive correlations. Therefore, our proposed 
algorithm can handle less restrictive cases of ZI count time series data. 

Table 3. Parameter estimates for the bivariate ZI Poisson model with negative cross correlation 

Sample Size Parameters Estimate St_Dev MSE MAE 

100 

(3) 3.417 0.388 0.324 0.474 
(0.3) 0.341 0.084 0.074 0.074 
(5) 5.225 0.382 0.196 0.354 

(0.4) 0.408 0.070 0.056 0.056 
 0.549 0.085 0.010 0.077 

(0.4) 0.368 0.103 0.012 0.086 
(-0.4) -0.391 0.104 0.011 0.081 

300 

(3) 3.4072 0.2016 0.2063 0.4110 
(0.3) 0.3378 0.0455 0.0035 0.0477 
(5) 5.2100 0.1965 0.0826 0.2331 

(0.4) 0.4077 0.0379 0.0015 0.0313 
 0.5529 0.0458 0.0043 0.0534 

(0.4) 0.3683 0.0537 0.0039 0.0499 
(-0.4) -0.3815 0.0559 0.0035 0.0465 

500 

(3) 3.4181 0.1727 0.2045 0.4182 
(0.3) 0.3364 0.0348 0.0025 0.0412 
(5) 5.1984 0.1575 0.0641 0.2138 

(0.4) 0.4094 0.0304 0.0010 0.0254 
 0.5524 0.0321 0.0033 0.0493 

(0.4) 0.3731 0.0417 0.0025 0.0388 
(-0.4) -0.3794 0.0460 0.0025 0.0414 

Source: Fernando, D., Alqawba, M., Fernando, D., Diawara, N.& Samad, M. (2022). 
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Figure 3. Plot of individual ZI count time series data with negative cross-correlation 

Source: Fernando, D., Alqawba, M., Fernando, D., Diawara, N.& Samad, M. (2022) 

 

 
Figure 4. Joint probability density function for the bivariate ZI model with negative cross correlation 

Source: Fernando, D., Alqawba, M., Fernando, D., Diawara, N.& Samad, M. (2022). 
Applications  
The proposed class of method can be applied to model bivariate zero inflated count time series data in the presence of 
both temporal dependence and cross correlation. 

Wang et al. (2013) proposed a bivariate zero inflated poison model to analyze occupational injuries. Alqawba et al. 
(2021) applied this framework to model monthly counts of forgery and fraud in the 61st police car beat in Pittsburgh, 
PA. Two count time series were selected to fit the proposed bivariate Poisson class of models under the clear evidence 
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of the presence of serial dependence and cross correlation.  

4. Extensions of the Bivariate Copula for Count Time Series Data 
Many copulas have been proposed in the literature for the bivariate and multivariate distributions. The choice of the 
copula is mainly dictated by the dependence structure.   

As shown in Größer and Okhrin (2021), the research on time series dependence and copula direction is productive and 
has numerous applications. They showed examples of bivariate copulas. Count time series data are observed in several 
applied disciplines such as environmental science, biostatistics, economics, public health, and finance. Sometimes, a 
specific count, usually zero, may occur more often than other counts. Moreover, overlooking the frequent occurrence of 
zeros could result in misleading inferences. A copula-based time series regression model for zero-inflated counts is 
developed. Applying ordinary Poisson and Negative Binomial distributions to these time series of counts may not be 
appropriate due to the frequent occurrence of zeros. A new form of ZI is called the Conway-Maxwell Poisson (CMP). 

Alqawba et al. (2021) have extended the work done by Masarotto (2012) to include a class of models that accounts for 
ZI. The marginals are assumed to follow one of the ZIP, ZINB, and ZICMP distributions, and the serial dependence was 
modeled by a Gaussian copula with a correlation matrix that of a stationary ARMA process. Likelihood inference was 
carried out using sequential importance sampling. Simulated studies were conducted to evaluate the parameter 
estimation procedures. Model description and parameter misspecification or unidentifiability are always concerns from 
the data generation to real data analysis (Faugeras, 2017). Model assessment to check the goodness of fit for the 
proposed models was done via residual analysis. The proposed models were applied to the occupational health data. 
According to the residual analysis, the model fits the data adequately, but both ZINB and ZICMP seem to have a slight 
advantage over ZIP distribution. Future direction is to consider different model construction methods from the marginal 
regression such as Markov models to handle zero-inflated count time series data. Recently, the use of copula-based time 
series for ZI counts in the presence of covariates has been proposed in Alqawba et al. (2019) and Alqawba and Diawara 
(2020). The work considered the cases of ZIP, ZINB, and ZICMP distributed marginals. Likelihood-based inference is 
considered under a sequential sampling method to estimate both the marginal regression parameters and copula 
parameters. Improvements in the Bayesian Information Criteria were noted, as discussed in Joe (2014) and Dalla Valle 
et al. (2018). The applications of these models include occupational injury counts, arson counts, and sandstorm counts. 

5. Further Developments and Conclusion 
Several high-dimensional copulas are obtained from the bivariate version seen in the previous section. The bivariate 
time series copula becomes then very important. The vine copula is built from blocks of bivariate version of higher 
dimension (Acar et al. 2019, Czado). We will only mention the Hierachical Archimedean copula, the Multivariate 
Archimax copula, the Factor copula, and the Vine copula. Copula functions are particularly interesting in capturing 
dependence with pairwise Kendall’s correlations for invariance to monotonic transformations of marginal distributions. 
The copula is Archemedian and is applicable for higher than bivariate dimensions of the correlation between marginals 
(McNeil and Nešlehová, 2009). There is research on the symmetry of copula, and the family of measures under 
non-degenerate asymptotic distributions (Quessy and Bahraoui, 2018). The disentangling of features with copula 
transformation is also gaining popularity in so called deep Information bottleneck (DIB) to yield higher convergence 
rates (Wieczorek et al. 2018, Wieczorek and Roth 2020). As a measure, the copula can be thought as a transformation 
on a set, which is also a measure preserving transformation. Copulas are also obtained under non-monotonic 
transformations. Bardossy and Li (2008) proposed a v-transformed copula.  

The ideas of Levy processes modelled via copula offer many areas of research (Liu et al., 2021). 

The spatio-temporal dependence will become more of a priority as the research evolves. See more in Krupskii and 
Genton (2017). Bivariate time varying copulas are proposed in Acar et al. (2019). The dynamic vine copula is also 
adapted to the Bayesian inference (Kreuzer and Czado, 2019). 

In this review, we have shown statistical and computational methods for bivariate count time series data analyses using 
copula distributions. The general framework for discrete count data and the bivariate nature of data are presented. The 
copula structure is described with details on its analytic perspectives. The identifiability and the choice of copula are 
very challenging in any discrete data setting and in the case of negative associations between components. As 
mentioned in Genest et al. (2011), Faugeras (2017) and in Trivedi and Zimmer (2007, 2017), the copula may not 
generate the perfect data distributions. Such concern is also pointed out in Durante and Sempi (2016).  Copula can 
model bivariate dependence that are invariant under monotonic transformation only (Größer and Okhrin, 2021).  When 
the dependence is weak, the FGM copula offers great alternative, but determining the most appropriate type of FGM 
copula to fit data is an open problem. Trivedi and Zimmer (2017) proposed several simulations to show these concerns.  

Similar to any other functions, the copula functions cannot be deemed as the solution to all data problems. However, 
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they offer a valuable alternative, especially in the case of discrete data. The research on discrete time series data is more 
important in this class of functions, especially for bivariate cases as the characterization of bivariate count dependence 
structure provides tools for may applied problems. 
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Abstract 
Throughout the history of our country, different policies have left an incentive for favorable changes, however, none by 
itself has managed to combat the problems of chronic malnutrition, to which the current pandemic is added. The state of 
Hidalgo is in a nutritional transition, with persistent child undernutrition and the predominance of chronic diseases 
associated with malnutrition (undernutrition, overweight and obesity). Part of this research aims to contribute (in a 
second phase) to the adequacy of current public policy in the fight against malnutrition and, of course, to the current 
needs experienced by the SARS-CoV-2 infection contingency. This work develops the application of simple sampling 
and the stages involved in this statistical tool, whose objective is to establish which part of the reality under study 
should be studied in order to make inferences about a given population. From the period contemplated between April 28, 
2020 and March 8, 2022, the 84 municipalities of the state of Hidalgo reported a total of 86,124 confirmed cases of 
SARS-CoV-2 infection, from which a sample size of 1,054 subjects has been calculated (representativeness of 91.35% 
of the target population). The correct application of mathematics in the context of health should allow us to enjoy good 
health, especially if these results are focused on the promotion and prevention of diseases and their complications; 
mathematics has surpassed the frontiers of knowledge in various areas and its implementation in this case with respect 
to public policy and nutrition. 

Keywords: cases, diseases, infections, malnutrition and public policy. 

1. Introduction 
Health problems have a multifactorial character that allows science, society, health professionals and other areas to 
contribute their multidisciplinary and transdisciplinary perspectives (Salas-Perea, 2003) in the search for strategies to 
combat diseases, which require compliance with ethical, social, economic and scientific aspects (Cortés et al., 2020). 

Malnutrition (which includes obesity, overweight and desnutrition) represents a serious health problem that not only has 
biological repercussions, unfortunately Mexico faces the consequences of these diseases because it is the first place in 
overweight and obesity in adults and children, although undernutrition has not been fought either.  

As the quarantine period ascended due to SARS-CoV-2 infection, social distancing and isolation, generated negative 
changes in healthy eating; body weight and body mass index increased, which requires informing people about proper 
nutrition management and the importance of regular exercise (Ateş & Yeşilkaya, 2021). 

It has been described that the high risk of severe manifestations and mortality due to SARS-Cov-2 infection is presented 
mainly by patients with chronic underlying diseases (although they have also been reported in any age, without previous 
comorbidities), such as cardiovascular disease, diabetes, chronic kidney disease, obesity (Antezana Llaveta & 
Arandia-Guzmán, 2020), arterial hypertension and immunosuppression (lymphomas, active tumors or under 
chemotherapy regimen) (Zetina-Tun & Careaga-Reyna, 2022). 

In April 2022, the state of Hidalgo ranked ninth in national mortality, with a rate of 272 deaths per 100,000 inhabitants; 
3 confirmed cases per 100,000 inhabitants (population size: 3,086,414) and a cumulative 93,111 confirmed cases related 
to SARS-CoV-2 infection (Secretaría de Salud, 2021). 

Long-term complications of this infection are described, including altered insulin sensitivity, pancreatic islet damage 
with decreased insulin secretion, muscle weakness and atrophy with altered exercise capacity, changes in body 
composition with increased fat mass and elevated triglycerides and circulating fatty acids, which could ultimately lead 
to increased risk of future cardiovascular events (Ayres, 2020). 

Various investigations in the world and national literature continue to provide valuable information on this historical 
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pandemic event, but none specifically has characterized the population of Hidalgo in relation to malnutrition as a risk 
factor for this infection, so this study is considered of great impact for society and its government. 

A universe or population is the set of total elements that make up the interest of an analysis and on which inferences and 
conclusions are made (López-Roldán & Fachelli, 2017). 

In this context, the objective is to choose the size of the representative sample of the universe generated by the 84 
municipalities of Hidalgo, corresponding to the subjects confirmed with SARS-CoV-2 coronavirus infection, using the 
simple sampling technique having as reference the state database belonging to the state of Hidalgo and considering a 
given period of time. 

The usefulness of a representative sample allows the study subjects to have the same opportunity to be chosen and 
therefore, to be included in a study, achieving that the researcher extrapolates and extends his/hers results to a given 
population, understanding that those selected are a numerical representation of the universe from which they come 
(Otzen & Manterola, 2017). 

The hypothesis of this exercise is that the greater the reduction of the dimension of the universe studied, the greater the 
understanding of the phenomenon under study. 

Understanding sampling as a scientific research tool whose objective is to determine that part of the population worthy 
of study  (Hernández & Carpio, 2019), feeds a transcendental part in the research exercise of the next phase of this 
publication called: evaluation of public policy in relation to malnutrition as a risk of SARS-CoV-2 in Hidalgo, 
describing the hypothesis that malnutrition is an element that influences the mechanics of the disease, with the vision of 
obtaining the necessary information to analyze, study and evaluate the current policy in the field of nutrition and food, 
highlighting that illness and death affect the family economy, that of health systems and that of governments.  

2. Method  
Sampling makes it possible to analyze fragments of a phenomenon with the advantages of reduced costs and more 
accurate, faster, flexible and more supervised results. Simple sampling is a method of selecting n units in a set of N so 
that each of the NCn different samples has the same possibility of being elected. In practice, random sampling is 
performed unit by unit, that is, the units from 1 to N are listed, then a series of n random numbers between 1 and N is 
extracted, because through a computer program (R, Python or Julia) a table of random numbers is created, where each 
extraction is chosen randomly, the units that carry these n numbers constitute the sample (Cochran, 1977).  

The sample size, a guide to the follow-up of a certain procedure described below (Portela & Villeta, 2007). 

Stage 1. Approach to the problem (in which the phenomenon to be studied is identified, raising all the characteristics 
that encompass it).  

Stage 2. Sample frame (a list of elements that make up the population of the phenomenon under study, known as sample 
units, is outlined). 

Stage 3. Selection of the sampling technique (from a sample frame, the ideal technique is chosen to estimate the sample 
size). 

Stage 4. Sample size (based on the sampling technique, the sample size and its proportional distribution for each of its 
elements are calculated). 

Stage 5. Feasibility of the sample size (which means determining the degree of reliability of the sampling). 

2.1 Sample Frame 
The complexity of the universe under study, due to the large amount of data emanating from it, requires the selection of 
a sample, which reduces the use of resources such as financial, human, material and intangible resources such as time. 
By simplifying the size of the population from which we wish to analyze a series of variables, the time in which data are 
generated that contribute to a more accurate knowledge of a phenomenon, its behavior and prevention in terms of health, 
is compromising; the pandemic has given us several lessons on the right or wrong actions of governments and their 
effect on citizens; numbers have that power. 

The size of the reported population corresponds to 86,124 subjects, confirmed with SARS-CoV-2 infection, according 
to the state database, collected thanks to the Epidemiology area of the State Health Secretariat (Table 1). 
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Table 1. Confirmed cases of SARS-CoV-2 by municipality in the state of Hidalgo 

Municipalities Registered cases 
1. Acatlán 26 
2. Acaxochitlán 2 
3. Actopan 2,506 
4. Agua Blanca de Iturbide 0 
5. Ajacuba 214 
6. Alfajayucan 132 
7. Almoloya 96 
8. Apan 1,851 
9. El Arenal 24 
10. Atitalaquia 231 
11. Atlapexco 93 
12. Atotonilco el Grande 172 
13. Atotonilco de Tula 1,279 
14. Calnali 156 
15. Cardonal 174 
16. Cuautepec de Hinojosa 495 
17. Chapantongo 270 
18. Chapulhuacan 48 
19. Chilcuautla 117 
20. Eloxochitlán 25 
21. Emiliano Zapata 261 
22. Epazoyucan 3 
23. Francisco I. Madero 25 
24. Huasca de Ocampo 57 
25. Huautila 0 
26. Huazalingo 75 
27. Huehuetla 289 
28. Huejutla de Reyes 2,275 
29. Huichapan 1,602 
30. Ixmiquilpan 1,831 
31. Jacala de Ledezma 78 
32. Jaltocán 14 
33. Juárez Hidalgo 5 
34. Lolotla 29 
35. Metepec 367 
36. San Agustín Metzquititlán 49 
37. Metztitlán 208 
38. Mineral del Chico 37 
39. Mineral del Monte 266 
40. La Misión 33 
41. Mixquiahuala de Juárez 1,682 
42. Molango de Escamilla 384 
43. Nicolás Flores 47 
44. Nopala de Villagrán 225 
45. Omitlán de Juárez 80 
46. San Felipe Orizatlán 1 
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47. Pacula 44 
48. Pachuca de Soto 35,433 
49. Pisaflores 41 
50. Progreso de Obregón 30 
51. Mineral de la Reforma 1,433 
52. San Agustín Tlaxiaca 4 
53. San Bartolo Tutotepec 99 
54. San Salvador 52 
55. Santiago de Anaya 75 
56. Santiago Tulantepec de Lugo de Guererero 1,900 
57. Singilucan 0 
58. Tasquillo 225 
59. Tecozautla 206 
60. Tenango de Doria 581 
61. Tepeapulco 4,153 
62. Tepehuacán de Guerrero 108 
63. Tepeji del Río de Ocampo 3,299 
64. Tepetitlán 79 
65. Tetepango 60 
66. Villa de Tezontepec 64 
67. Tezontepec de Aldama 151 
68. Tianguistengo 43 
69. Tizayuca 5,523 
70. Tlahuelilpan 127 
71. Tlahuiltepa 51 
72. Tlanalapa 76 
73. Tlanchinol 165 
74. Tlaxcoapan 1,492 
75. Tolcayuca 173 
76. Tula de Allende 5,360 
77. Tulancingo de Bravo 5,996 
78. Xochiatipan 6 
79. Xochicoatlán 77 
80. Yahualica 0 
81. Zacualtipán de Ángeles 641 
82. Zapotlán de Juárez 61 
83. Zempoala 72 
84. Zimapán 390 

       Total  86,124 
 

Note. Period contemplated from April 28, 2020 to March 8, 2022; personal elaboration. 
2.2 Selection of the Sampling Technique  

Assuming that the target population is finite (since the total number of observation units that compose it is known), we 

have that (Aguilar-Barojas, 2005): 

                              (1) 
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Where: 

� n = Sample size.  

� N = Total population size. 

� Zα = Confidence level at 0.95 and with a significance level at 0.05. Below the curve of the normal distribution is 
1.96. 

� P = Probability of success. 

� Q = (1 – P) = Probability of failure.  

� E = Error admitted in the sample. 

It is important to clarify that N is the 86,124 subjects and n, the revealing sample size calculation; P, explains the 
possibility of being selected as part of the sample and that Q is the probability of not being selected (or known as 
failure), so it assigns 50% versus 50% (0.5+0.5=1); that is, both P and Q have the same probability of being selected. 

Its main estimators are the following (Pérez, 2005): 

� Sample size by item: 

                               (2) 

Where: 

� Ni = Any of the states, i.e., the size of the population of each municipality. 

� N = Total population size. 

� n = Sample size.  

� k =1,2,3,4...k As the total number of municipalities. 

� Estimator of the total of the sample: 

                                         (3) 

Where: 

 = Population size of each municipality. 

Sample meaner: 

(4) 

Σk = The average number of objects within each sample, starting from municipality 1 to minucipality 84. 

Yi = Sample size in any municipality. 

� Confidence intervals: 

(5) 

� Expansion factor (Ackoff & Sasieni, 1977): 

                                           (6) 

� Variance of the sample: 

                                       (7) 

� Variance of the average: 

                                      (8) 

� Absolute error: 

                                    (9) 
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� Degree of adjustment: 

(10) 

For the calculation of the sample and its estimators, we start from a confidence level of 0.95 and a significance level of 
0.05, with an error of 0.03. 

2.3 Sample Size 
Based on the algebraic expression (3) and based on the following data: 

� N = 86124 

� Z = 1.96 

� P = 0.50 

� Q = 0.50 

� E = 0.03 

Substituting in the algebraic expression (1): 

(11) 

Therefore, the sample size is: 

 (12) 

Based on the sample size and applying the algebraic expression (6), the results are shown in Table 2 below. 

Table 2. Sample size of confirmed SARS-CoV-2 cases in each municipality of the state of Hidalgo. 

Municipalities Sampling 
1. Acatlán 0 
2. Acaxochitlán 0 
3. Actopan 31 
4. Agua Blanca de Iturbide 0 
5. Ajacuba 3 
6. Alfajayucan 2 
7. Almoloya 1 
8. Apan 23 
9. El Arenal 0 
10. Atitalaquia 3 
11. Atlapexco 1 
12. Atotonilco el Grande 2 
13. Atotonilco de Tula 16 
14. Calnali 2 
15. Cardonal 2 
16. Cuautepec de Hinojosa 6 
17. Chapantongo 3 
18. Chapulhuacan 1 
19. Chilcuautla 1 
20. Eloxochitlán 0 
21. Emiliano Zapata 3 
22. Epazoyucan 0 
23. Francisco I. Madero 0 
24. Huasca de Ocampo 1 
25. Huautila 0 
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26. Huazalingo 1 
27. Huehuetla 4 
28. Huejutla de Reyes 28 
29. Huichapan 20 
30. Ixmiquilpan 22 
31. Jacala de Ledezma 1 
32. Jaltocán 0 
33. Juárez Hidalgo 0 
34. Lolotla 0 
35. Metepec 4 
36. San Agustín Metzquititlán 1 
37. Metztitlán 3 
38. Mineral del Chico 0 
39. Mineral del Monte 3 
40. La Misión 0 
41. Mixquiahuala de Juárez 21 
42. Molango de Escamilla 5 
43. Nicolás Flores 1 
44. Nopala de Villagrán 3 
45. Omitlán de Juárez 1 
46. San Felipe Orizatlán 0 
47. Pacula 1 
48. Pachuca de Soto 434 
49. Pisaflores 1 
50. Progreso de Obregón 0 
51. Mineral de la Reforma 18 
52. San Agustín Tlaxiaca 0 
53. San Bartolo Tutotepec 1 
54. San Salvador 1 
55. Santiago de Anaya 1 
56. Santiago Tulantepec de Lugo de Guererero 23 
57. Singilucan 0 
58. Tasquillo 3 
59. Tecozautla 3 
60. Tenango de Doria 7 
61. Tepeapulco 51 
62. Tepehuacán de Guerrero 1 
63. Tepeji del Río de Ocampo 40 
64. Tepetitlán 1 
65. Tetepango 1 
66. Villa de Tezontepec 1 
67. Tezontepec de Aldama 2 
68. Tianguistengo 1 
69. Tizayuca 68 
70. Tlahuelilpan 2 
71. Tlahuiltepa 1 
72. Tlanalapa 1 
73. Tlanchinol 2 
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74. Tlaxcoapan 18 
75. Tolcayuca 2 
76. Tula de Allende 66 
77. Tulancingo de Bravo 73 
78. Xochiatipan 0 
79. Xochicoatlán 1 
80. Yahualica 0 
81. Zacualtipán de Ángeles 8 
82. Zapotlán de Juárez 1 
83. Zempoala 1 
84. Zimapán 5 
   Total  1,054 

Note. Random selection, personal elaboration. 

Calculating the variance of the sample: 

(13) 

Based on the above, the variance of the sample mean: 

 

 

 

By Calculating your confidence interval, you have to: 

� S2 = 188.71. 
� Z  = 1.96. 
� = 12.55. 
�  1.085. 

Replacing: 

(16) 

 

Such that: 

1232                                       (17) 
 

With a confidence level of 0.95 and a significance level of 0.05, the sample size will range between 875 and 1232. 

Feasibility of sample size 
Based on the size of the population and the sample, the expansion factor of the selected units is 82, that is: 

 

Each individual who is randomly selected has the ability to answer 82 individuals in the population. 

Calculating the relative error from the algebraic expression (9): 

(19) 
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Obtained the degree of adjustment: 

Gr = 100- Ea(Y ̅ )=100 - 8.65 = 91.35 %                           (20) 
3. Results  
The universe constituted by the 84 municipalities of the state of Hidalgo, corresponds to the subjects confirmed with 
SARS-CoV-2 coronavirus infection, in a period contemplated between April 28, 2020 and March 8, 2022, according to 
the database of the Epidemiology area of the State Health Secretariat. 

Regarding the calculation of the sample and its estimators, a confidence level of 0.95 and a significance level of 0.05 
were used, with an error of 0.03, which, after calculation, yields a sample size of 1,054 subjects. 

By applying the simple random sampling technique, the individuals in the study population will all have the same 
probability of being selected.  

Regarding the expansion factor, this describes that each randomly selected subject has the power to respond to 82 
individuals in the population, therefore, "it does not matter which subject is chosen", as long as it meets the selection 
criteria of the population to be sampled, i.e., belonging to the state records referred to above and also includes those 
subjects for whom there is a total number of responses for each of the variables of interest for the study. 

The relative error of 8.65% describes that this percentage of the selected sample would not provide the relevant 
information for the study. Finally, the sample size can range between 875 and 1232 subjects, having a representativeness 
of 91.35% of the target population. 

For the purposes of this research, it has been decided to obtain the greatest possible representativeness of the sample, so 
the upper limit range of subjects under study will be taken, that is, 1232, in addition to not excluding any municipality 
in the same, adjusting the sampling revealed here (except those municipalities that report with 0 registered cases). 

The realization of this sampling implies the construction of two other models where the first one focuses on the 
reduction of the dimension of the variables and the second one in reference to the estimation of the evolution of the 
health status of the subjects. 

4. Discussion 
Simple sampling is a vital tool for the research proposed here; it is necessary to evaluate public policies focused on 
malnutrition in Mexico and the state of Hidalgo, in order to obtain the necessary information to optimize, propose and 
act on real proposals, generated precisely in the heart of this population. 

In Mexico, a double burden of disease effect has been described, where poor diet quality is responsible for both obesity 
and malnutrition (Barquera et al., 2001). 

Throughout the history of our country, different policies and proposals have left an incentive for favorable changes, 
however, none alone has managed to combat the problems of malnutrition that to date have worsened and moved to a 
state of chronicity, which imposes the current challenges to which are added adversities such as the current pandemic.  

Nutritional status and diet are determinants of health and, in the case of SARS-CoV-2, could play a transcendental role 
in the prevention and development of complications, since, in recent decades, there have been multiple changes in the 
dietary patterns of Mexican families. Together with sociocultural transformations, product of a globalized economic 
model, occupations and physical activity habits have been modified, people have become more sedentary and devote 
much of their time to television and device screens (Castro et al., 2020).  

Despite the fact that 1 in 5 people who contract SARS-CoV-2 ends up presenting a severe picture and experiencing 
respiratory difficulties, it is known that in our country a large part of the population is within the risk group not 
necessarily because they are older people, but because of the presentation of previous medical conditions such as 
arterial hypertension, cardiac or pulmonary problems, diabetes or cancer (Rivas et al., 2020). 

Poor metabolic control, together with an elevated body mass index or excess adipose tissue, appear to be risk factors for 
SARS-CoV-2 complications. Prevention is mainly based on the promotion of healthy habits and the effective and 
persistent control of these behaviors. In this population, inadequate or insufficient nutrition may result in increased 
susceptibility to infection (Vecilla et al., 2020). 

Our country is facing a pandemic that puts at risk the advances in social development and with it the health of the 
population, which are affecting various sectors of the population to a greater or lesser degree, some due to economic 
deprivation, others due to their health status, loss of employment, food insecurity, educational deficiencies, inequity and 
lack of equality, in addition to a long list of social afflictions. The question is, How long will it take for the country to 
recover, or even to think about whether or not it will be able to overcome the situation it is going through?; isolated 
solutions are unthinkable, coordination between sectors is needed. 
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5. Conclusion  
The proper application of mathematics in the context of health should allow us to enjoy good health and therefore a 
positive economic impact (Serrano et al., 2020), especially if these results were focused on the promotion and 
prevention of diseases and their complications. The research and execution of medicine in conjunction with 
mathematics has contributed to the knowledge of risk factors and the way in which various pathologies behave (Olmedo 
& Ariza, 2012), including the chronic conditions highlighted here. For example, the use of mathematical models makes 
it possible to pose and test hypotheses about the use of certain treatments or to personalize therapies, run simulations 
and predict the behavior of human biology (Pérez-García et al., 2016). 

The initial objective of choosing a representative sample size has been achieved; mathematics has surpassed the 
frontiers of knowledge in different areas and its application in this case to public policy, medicine and nutrition; the 
mathematical models of the second phase will be a fundamental part in the continuity of this research that in the near 
future will characterize the population of Hidalgo in terms of malnutrition and SARS-CoV-2 infection, factor analysis 
and multidisciplinary scaling are made visible. 
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Abstract 
The class of bivariate integer-valued time series models, described via copula theory, is gaining popularity in the 
literature because of applications in health sciences, engineering, financial management and more. Each time series 
follows a Markov chain with the serial dependence captured using copula-based distribution functions from the Poisson 
and the zero-inflated Poisson margins. The copula theory is again used to capture the dependence between the two 
series. 

However, the efficiency and adaptability of the copula are being challenged because of the discrete nature of data and 
also in the case of zero-inflation of count time series. Likelihood-based inference is used to estimate the model 
parameters for simulated and real data with the bivariate integral of copula functions. While such copula functions offer 
great flexibility in capturing dependence, there remain challenges related to identifying the best copula type for a given 
application. This paper presents a survey of the literature on bivariate copula for discrete data with an emphasis on the 
zero-inflated nature of the modelling. We demonstrate additional experiments on to confirm that the copula has potential 
as greater research area. 

Keywords: count time series, copula, Zero-Inflated, count data, Poisson distribution 
Subject Classification: 62H05, 62H10 

1. Introduction 
In the study of multivariate distributions, copula functions are gaining popularity in recent years. They are attractive as 
they can handle internal and mutual dependences among variables. The copula was first introduced in the Sklar (1954) 
paper, a paper that Frechet helped publish. Hoffding (1940) is also credited for almost innovating the concept of copula. 
Many problems in practical situations are modeled under related distributions using copula functions, in contrast to 
classical multivariate (Gaussian) distributions for count data. As such, the literature shows a growing interest in the 
investigation of dependence for sequences of counts in time series cases. The simplest of such sequences are bivariate 
count time series data. Copula functions have gained popularity in building such bivariate and multivariate distributions 
as the desire to understand the structure in massive time series count data is becoming more common. For diseases and 
rare events, observed counts over time appear in a high frequency of zeros (zero inflation), which is discussed in MÖller 
et al. (2020) and Young et al. (2020).  

Sklar (1959) introduced a method to build in the bivariate and multivariate distributions for two random variables. The 
idea of joint distribution, especially in the bivariate case can be traced back to Frechet (1951, 1956, 1958). Morgensetrn 
(1956), Plackett (1965), Farlie (1969) and many other authors could be included in this systematic approach of 
constructing bivariate distributions with specific marginals and different dependence measures. See examples such as 
Gumbel (1958) or Johnson and Tenenbein (1981). In that same line of thought, Cook and Johnson (1981) asked two 
questions that are still of relevance. The questions are: 1) “Is there a distribution that appears to be the most promising 
candidate for non-normal types of data?” 2) “Is the resulting distribution or model fit significantly better than that 
obtained from the multivariate normal distribution?” 

Finding a unique copula for a joint distribution requires one to know the form of the joint distribution. When using 
copula, one can separately model the marginal distributions and the dependence structure, which makes the copula 
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approach unique. Choosing the appropriate copula for a particular scenario means finding the one that best captures the 
dependence in data.  Many variants of copulas have been proposed in the literature where each of these is suitable for 
different dependence structures. For example, Gaussian copula is flexible, and it allows for equally positive and 
negative dependence. The Clayton copula cannot account for negative dependence, and it exhibits strong left tail 
dependence. Similar to Gaussian copula, Frank copula allows for both positive and negative dependence between the 
marginals.  

Copulas offer a flexible framework to combine distributions. It is unique if marginal densities are continuous. However, 
if some of the marginal distributions are discrete, the unicity cannot be obtained automatically.  

Many copula functions have been identified, from the extreme of independent variables (the so-called independent 
copula or the product) to the max or min copula. The dependence is then captured by a selection of parameters and 
criteria associated with the range and properties of model parameters. 

Moreover, high dimensional copulas have been introduced via bivariate copulas, under different decompositions and 
structures. These structures are known as the canonical vine (C-vine) or drawable vine (D-vine). References to C and D 
vines can be found in Bedford and Cooke (2002), Joe et al. (2010), and Aas et al. (2009). Gräler (2014) proposed the 
convex combination of bivariate copula densities incorporating the distance [between what?] as a parameter in the 
spatial setting. The application of copula functions can be found in finances (Czado et al, 2012), hydrology (Yu et al., 
2020), transportation (Irannezhad et al., 2017), health care (Shi and Zhang, 2015), and more. The 
Farlie-Gumbel-Morgenstern (FGM) family of copula can be used to establish relationship between predictors (Durante 
and Sempi, 2016)). 

Within the count time series, if we look at the binary data, there is a growing interest in the description of multivariate 
distributions under pair copulas (Lin and Chaganty, 2021). Panagiotelis et al. (2012) presented pair copula constructions 
for discrete multivariate data. Their algorithm is explained as a product of bivariate pair copula, demonstrating the great 
potential of vine copula approaches. They stated that the model selection for C or D vine remains an important open 
problem, with a particular emphasis on the conditional independence identification (Czado, 2019, Deng and Chaganty, 
2021). From there, the idea of using the D vine for modeling counts with excess zeros and temporal dependence is 
presented in Sefidi et al. (2020). Perrone and Durante (2021) highlighted the link between the extreme discrete copula 
and mathematical concept of convex polytope, which is an idea spinning from the class of bivariate distributions (Rao 
and Subramanyam (1990). 

There are numerous problems and interesting challenges related to time series of counts. Davis et al. (2016, 2021) 
presented extensive literature and many examples of count time series. Fokianos (2021) and Armillota and Fokianos 
(2021) presented a Poison network autoregression for counts. In the statistical process control, Fatahi et al. (2012) 
proposed the monitoring of rare events under the copula based bivariate zero-inflated Poisson. van Den Heuvel et al. 
(2020) proposed corrections to such results adding the negative correlation option. 

With these studies and observations in mind, this paper presents reviews and updates related to the copula for bivariate 
distributions of zero-inflated count time series   and highlights research directions. Motivated by multivariate datasets 
acquired using correlation structures, our goal is to review the bivariate count and zero-inflated count time series for 
inference and application purposes under copula modeling. We give some insights into the bivariate count copula and its 
recent developments. We organize our discussion as follows. In Section 2, copulas for discrete count and zero-inflation 
of discrete count time series data are described. The use of univariate and bivariate copula for discrete data is discussed 
in Section 3. Extensions of discrete bivariate copulas are described in Section 4. We conclude this paper with an 
extended discussion on future work.  

2. Copula for Zero-inflated of Discrete and Count Time Series Data 
This section introduces the general form for multivariate copula, and its Gaussian representation. We also give an 
explicit definition of the zero inflated counts time series data. 

2.1 Simple Gaussian Copula Example 
Masarotto and Varin (2012) introduced a Gaussian copula model which can be used to model time series data in the 
presence of covariates.  The corresponding regression model can be written as follows.  

 

where g(.) is a function of the covariates  and , which capture the serial dependence. The parameter θ is a vector 
of marginal regression coefficients. The joint distribution function of the time series  can be 
constructed using the Gaussian copula as follows. 

  (1) 
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Here,  is the inverse CDF of standard normal distribution, and  is the joint CDF of a multivariate normal 

distribution with a mean vector of zeros and covariance matrix R. 
2.2 Review of Copula for Discrete Data 
Copula distributions are becoming increasingly popular in many areas of statistical data sciences. For example, in 
engineering, copula distributions are used to model the shear fore for cantilever beams and for beams with multiple 
point loads (Zhang and Lam, 2016). In pharmaceutical quality control, two correlated characteristics sample data are 
presented in Fatahi et al. (2012). The authors describe the bivariate Poisson distribution with the evidence of 
zero-inflation. Sukparungsee et al. (2021) developed a bivariate copula for control chart effectiveness. They show the 
bivariate copula distribution on Hotelling’s T^2 over the multivariate cumulative sum for positive, negative, weak, 
moderate, and strong correlations when the assumption of multivariate normality is violated. Van den Heuvel et al. 
(2020) extended the idea from Fatiha et al. (2012) and included negative correlation case, and an upper control limit on 
the sum of bivariate random variables.  Copulas are elegantly captured in the Genest and MacKay (1986), Genest 
(1987) and also in Han and De Oliveira (2016 and 2020), among others. In the financial sector, a recent work by 
Nikoloulopoulos and Moffatt (2019) reminds us of the need to study dependence structures. There are also more general 
ambitions for the bivariate copula from a bigger perspective than we expect to show the aggregated effects in many 
other areas. 

The list of copula functions is very large. The work of Größer and Okhrin (2021) presents a summary of bivariate 
copula followed by the construction of multivariate copula using pair copula decompositions. They provide examples 
for each copula family and provide an overview of how copula theory can be used in various fields of data science.  

Yang et al. (2014) proposed the Ali-Mikhael-Haq (AMH) copula-based function to investigate the joint risk 
probabilities of rainstorms, wind speeds, and storm surges. The proposed model was developed to assess the impact 
based on marginal distributions of maximum daily rainfall and extreme gust velocity. Alqawba et al. (2021) constructed 
a class of bivariate integer-valued time series models using copula theory. Applying either the bivariate Gaussian copula 
or the bivariate t copula functions, they jointly modeled two copula-based Markov time series models. They applied 
their method on bivariate count time series data, where the marginals follow either a Poisson or zero-inflated Poisson 
distribution. 

Safari et al. (2020) proposed a bivariate copula regression model to analyze cervical cancer data. They applied a 
bivariate copula to model and estimate joint distribution parameters.  Nikoloulopoulos and Moffatt (2019) used 
bivariate copulas to jointly model bivariate ordinal time-series responses with covariates for risks assessment of married 
couples. They proposed a copula-based Markov modelling of ordinal time-series responses and used another copula to 
couple their conditional (on the past) distributions at each time point. Copula families such as the Bivariate normal 
(BVN), Frank, Gumbel and bivariate t-copula were used to model the univariate time series as well as to couple them 
together.  

The work of Nikoloulopoulos & Karlis (2010) presents a regression copula-based model where covariates are used not 
only for the marginal but also for the copula parameters. They measured the effect of covariates on dependence 
structure by building a fully parametric copula-based model while considering six one-parameter copula families, 
namely Frank, Galambos, Gumbel, Mardia–Takahasi (M-T), and normal to build the dependence structure.  

Karlis & Pedeli (2013) presented a bivariate integer-valued autoregressive process (BINAR(1)) in which the 
cross-correlation was modeled using a copula to accommodate both positive and negative correlation. They presented 
an application of the Frank and Gaussian copula to model dependence, and marginal time series were modeled using 
Poisson and negative binomial INAR(1) distributions. 

Ma et al. (2020) proposed a copula approach utilizing a Gaussian copula with random effects to model correlated 
bivariate count data regression. 

2.3 The Zero-Inflated Discrete Data 
Zero inflation models can be found in many studies from Lambert (1992) to Hall (2000) and recently in Rigby et al. 
(2019). The zero-inflated count regression models are described as follows. 

� Zero-Inflated Poisson (ZIP) Distribution (Lambert, 1992): 

.        (2) 

� Zero-Inflated Negative Binomial (ZINB) Distribution (Ridout et al, 2001): 
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  . 

� Zero-Inflated Conway-Maxwell-Poisson (ZICMP) Distribution (Sellers and Raim, 2016): 

,  

where  and  

are the associated covariate vectors affecting the intensity parameter , the zero-inflation parameter and the 
dispersion parameter  respectively. 

The term  is the normalizing function of the CMP. 

Different variants of similar regression models have been proposed in the literature.  A noteworthy use of copula for 
zero-inflated data is studied in Shamma et al. (2020), where the inflation is built from a geometric count time series in 
an integer-valued autoregressive (INAR) process. 

3. Univariate and Bivariate Copula Models for Count Time Series Data 
3.1 Univariate Copula-Based Model for Count Time Series Data 
First order Markov model 

Alqawba, & Diawara (2021) introduced a class of Markov zero inflated count time series model where the joint 

distribution function of the consecutive observations is constructed through copula functions. Suppose { } 

zero-inflated count time series first order Markov chains the multivariate joint density distribution of , ,…,  
can be constructed as below. 
                    =  

Using the copula theory, the joint distribution function of Yt, Yt-1 can be written as below.  

                 F12(yt  yt-1) = C (Ft(yt), Ft-1(yt-1); )    where  is bivariate copula parameter vector.  

Hence, we can calculate the transition probability as below.  

 =  

Where                (  ) - ( ) 

- ( ) + ( ) 
Likelihood and parameter estimation under first order Markov model 
The likelihood function of the first order Markov model is given by  

     (3) 
The log likelihood function ( ) is given by 

 

Where are the parameter vectors of the marginals and the dependence structure, respectively. For the Gaussian 
copula family, the likelihood function involves a bivariate integral of the normal probability in which means 
that the function is not in a closed form and we need approximations for the rectangle probabilities.  

The simulation study was conducted using the R software by the ‘optim’ function in the “stats” package. We simulate 
first order stationary Markov processes with joint distribution of consecutive observations following the bivariate 
Gaussian copula. The marginal distributions are chosen to be the Poisson and ZIP distributions. We present the 
simulation results for a first order Markov model with Poisson marginals. The parameter  represents the mean of a 
marginal Poisson,  is the measure of zero inflation, and  is the serial dependence associated with time series data. 
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We found that the estimate of these parameters is fairly stable where the precision increases with increasing sample size. 
Table 1 and Table 2 show the estimates of copula parameters for positive and negative autocorrelations, respectively. 
The estimates are described by standard measures of variation, including standard deviation, mean square error and 
mean absolute error. 
Univariate ZI count time series models 
For positive serial dependence with =3, =0.3,  =0.6 
Table 1. Parameter estimates for the univariate ZI Poisson model with positive autocorrelation 

Sample Size Parameters Estimate SE MSE MAE 

100 
(3) 2.990 0.347 0.1200 0.282 

(0.3) 0.288 0.083 0.0070 0.006 

(0.6) 0.577 0.091 0.0080 0.073 

300 
(3) 3.013 0.192 0.037 0.152 

(0.3) 0.293 0.046 0.002 0.037 

(0.6) 0.596 0.046 1.433 1.196 

500 
(3) 3.006 0.154 0.024 0.120 

(0.3) 0.295 0.035 0.001 0.028 

(0.6) 0.596 0.037 0.001 0.028 

Source: Fernando, D., Alqawba, M., Fernando, D., Diawara, N.& Samad, M. (2022). 

For negative serial dependence with =3, =0.3,  =-0.6 
Table 2. Parameter estimates for the univariate ZI Poisson model with negative autocorrelation 

Sample Size Parameters Estimate SE MSE MAE 

100 
(3) 3.045 0.280 0.080 0.234 

(0.3) 0.299 0.046 0.002 0.036 

(-0.6) -0.618 0.087 0.0070 0.072 

300 
(3) 3.019 0.152 0.023 0.119 

(0.3) 0.298 0.030 0.0007 0.002 

(-0.6) -0.605 0.050 0.003 0.040 

500 
(3) 3.014 0.112 0.0127 0.009 

(0.3) 0.299 0.019 0.0004 0.015 

(-0.6) -0.603 0.040 0.002 0.031 

Source: Fernando, D., Alqawba, M., Fernando, D., Diawara, N.& Samad, M. (2022). 

Applications  
Alqawba & Diawara (2021) applied the proposed model to analyze monthly count of strong sandstorms recorded by the 
AQI airport station in Eastern Province, Saudi Arabia. The data set consists of 348 monthly counts of strong sandstorms, 
starting from January 1978 to December 2013. The bar plots suggest that both counts follow Zero inflated Poisson 
distribution, whereas the ACFs indicate that the counts are serially dependent. Finally, to illustrate the superiority of the 
proposed method they compare the method with zero-inflated integer-valuedautoregressive (ZIINAR) models.  

3.2 Bivariate Copula-Based Model for Count Time Series Data 

Copula based bivariate model 

Suppose we have { } and { } jointly observed at timepoints t=1, 2, …, n, with the assumption that each series { } 

and { } follows a copula-based Markov process described on section 3.1. Let’s mean vector, correlation matrix of the 

bivariate series as  

and which are described as below.  
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Here the diagonal elements of the matrix represent the serial dependence between two series, while the off-diagonal 
elements describe the cross-correlation between two time series.  

The joint distribution of and given , for t=1, 2,…,n is given by 

 

where  is either the inverse cdf (Cumulative distribution function) of the normal distribution or the t-distribution 
with V2(., R) being the bivariate normal or t-distribution, respectively. R is correlation matrix capturing the cross 
correlation between two time series which is described below.  

R=  

The limits of the bivariate integral can be calculated as below. 

 , for i= 1,2 where, 

 

and  

 
C (.; ) represents the bivariate copula function with dependence parameter , describing the 

serial dependence in a single series, and is a vector of the marginal parameters. 

Likelihood and parameter estimation for the bivariate model 
Likelihood based inference were conducted with maximizing the log-likelihood function of the bivariate distribution. 
The corresponding likelihood function for the joint distribution is given by, 

    (4)  

Where  ,where  is the marginal parameter vector and are parameters associated with the 
serial dependence in each time series respectively. The cross correlation between the two-time series is captured by . 

We can construct the log -likelihood function   as below. 

. 

The likelihood function ( ) contains either a bivariate normal or t-integral function which unable us to use the 
standard maximization procedures to get the ML estimates. Due to this reason, we evaluated the bivariate integral 
function using the standard randomized importance sampling method.  

We present simulation results for the proposed bivariate model in Section 3.1 after expanding from univariate to 
bivariate model. For each univariate time series, we considered a copula-based Markov model, where a copula family 
was used for the joint distribution of subsequent observations, and then, coupled these two-time series using another 
copula at each time point. 

The parameters of the marginal Poisson distribution are shown in Table 3 and Table 4 for positive and negative cross 
correlations, respectively. Here  and  denote the means,  and  denote zero inflation parameters,  and 

 denote the serial dependence of marginal distributions.  is measure of the cross correlation between the two time 
series distributions.  

The Gaussian copula was used to construct marginal distributions for 300 replicates with sample sizes of 100,300 ,500 
and the true parameter values are presented in brackets. The count time series with positive cross correlation is 
presented in Figure 1, and the joint density is shown in Figure 2. When observing the parameter estimates displayed in 
Table 3, we can state that the estimated values are more precise and converges to the true parameter values as the 
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sample size increases.  

Bivariate ZI count time series models 

Table 2:Parameter estimates for the bivariate ZI Poisson model with positive cross correlation 

Sample Size Parameters Estimate SE MSE MAE 

100 

(3) 3.4021 0.3887 0.3123 0.4599 
(0.3) 0.3333 0.0835 0.0081 0.0701 
(5) 5.1993 0.3832 0.1860 0.3337 

(0.4) 0.4026 0.0686 0.0047 0.0537 
 0.5425 0.0837 0.0103 0.0788 

(0.4) 0.3628 0.0963 0.0106 0.0806 
(0.5) 0.4822 0.0911 0.0086 0.0748 

300 

(3) 3.4051 0.1974 0.2030 0.4082 
(0.3) 0.3380 0.0447 0.0034 0.0471 
(5) 5.1816 0.2097 0.0768 0.2226 

(0.4) 0.4065 0.0386 0.0015 0.0309 
 0.5540 0.0433 0.0040 0.0524 

(0.4) 0.3669 0.0544 0.0040 0.0492 
(0.5) 0.4711 0.0493 0.0033 0.0441 

500 

(3) 3.4105 0.1721 0.1980 0.4108 
(0.3) 0.3408 0.0365 0.0030 0.0456 
(5) 5.1843 0.1622 0.0602 0.2028 

(0.4) 0.4084 0.0293 0.0009 0.0246 
 0.5558 0.0320 0.0030 0.0465 

(0.4) 0.3700 0.0430 0.0027 0.0413 
(0.5) 0.4720 0.0392 0.0023 0.0379 

Source: Fernando, D., Alqawba, M., Fernando, D., Diawara, N.& Samad, M. (2022). 

 
Figure 1. Plot of individual ZI count time series with positive cross-correlation 

Source: Fernando, D., Alqawba, M., Fernando, D., Diawara, N.& Samad, M. (2022). 
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Figure 2. Joint probability density function for the bivariate ZI model with positive cross-correlation 

Source: Fernando, D., Alqawba, M., Fernando, D., Diawara, N.& Samad, M. (2022). 

There are times when the correlation is negative and table 4 shows the parameter estimates for such scenarios. The 
Gaussian copula was again used in constructing marginal distributions for 300 replicates with sample sizes of 100, 300, 
500 and the true parameter values are presented in brackets. The count time series with negative cross correlation is 
illustrated in Figure 3, and the joint density is shown in Figure 4. The estimated parameters in Table 4 are more precise 
and converge to the true parameter values with increasing sample size as observed before. 

These results are new because a large body of the literature focuses on positive correlations. Therefore, our proposed 
algorithm can handle less restrictive cases of ZI count time series data. 

Table 3. Parameter estimates for the bivariate ZI Poisson model with negative cross correlation 

Sample Size Parameters Estimate St_Dev MSE MAE 

100 

(3) 3.417 0.388 0.324 0.474 
(0.3) 0.341 0.084 0.074 0.074 
(5) 5.225 0.382 0.196 0.354 

(0.4) 0.408 0.070 0.056 0.056 
 0.549 0.085 0.010 0.077 

(0.4) 0.368 0.103 0.012 0.086 
(-0.4) -0.391 0.104 0.011 0.081 

300 

(3) 3.4072 0.2016 0.2063 0.4110 
(0.3) 0.3378 0.0455 0.0035 0.0477 
(5) 5.2100 0.1965 0.0826 0.2331 

(0.4) 0.4077 0.0379 0.0015 0.0313 
 0.5529 0.0458 0.0043 0.0534 

(0.4) 0.3683 0.0537 0.0039 0.0499 
(-0.4) -0.3815 0.0559 0.0035 0.0465 

500 

(3) 3.4181 0.1727 0.2045 0.4182 
(0.3) 0.3364 0.0348 0.0025 0.0412 
(5) 5.1984 0.1575 0.0641 0.2138 

(0.4) 0.4094 0.0304 0.0010 0.0254 
 0.5524 0.0321 0.0033 0.0493 

(0.4) 0.3731 0.0417 0.0025 0.0388 
(-0.4) -0.3794 0.0460 0.0025 0.0414 

Source: Fernando, D., Alqawba, M., Fernando, D., Diawara, N.& Samad, M. (2022). 
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Figure 3. Plot of individual ZI count time series data with negative cross-correlation 

Source: Fernando, D., Alqawba, M., Fernando, D., Diawara, N.& Samad, M. (2022) 

 

 
Figure 4. Joint probability density function for the bivariate ZI model with negative cross correlation 

Source: Fernando, D., Alqawba, M., Fernando, D., Diawara, N.& Samad, M. (2022). 
Applications  
The proposed class of method can be applied to model bivariate zero inflated count time series data in the presence of 
both temporal dependence and cross correlation. 

Wang et al. (2013) proposed a bivariate zero inflated poison model to analyze occupational injuries. Alqawba et al. 
(2021) applied this framework to model monthly counts of forgery and fraud in the 61st police car beat in Pittsburgh, 
PA. Two count time series were selected to fit the proposed bivariate Poisson class of models under the clear evidence 
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of the presence of serial dependence and cross correlation.  

4. Extensions of the Bivariate Copula for Count Time Series Data 
Many copulas have been proposed in the literature for the bivariate and multivariate distributions. The choice of the 
copula is mainly dictated by the dependence structure.   

As shown in Größer and Okhrin (2021), the research on time series dependence and copula direction is productive and 
has numerous applications. They showed examples of bivariate copulas. Count time series data are observed in several 
applied disciplines such as environmental science, biostatistics, economics, public health, and finance. Sometimes, a 
specific count, usually zero, may occur more often than other counts. Moreover, overlooking the frequent occurrence of 
zeros could result in misleading inferences. A copula-based time series regression model for zero-inflated counts is 
developed. Applying ordinary Poisson and Negative Binomial distributions to these time series of counts may not be 
appropriate due to the frequent occurrence of zeros. A new form of ZI is called the Conway-Maxwell Poisson (CMP). 

Alqawba et al. (2021) have extended the work done by Masarotto (2012) to include a class of models that accounts for 
ZI. The marginals are assumed to follow one of the ZIP, ZINB, and ZICMP distributions, and the serial dependence was 
modeled by a Gaussian copula with a correlation matrix that of a stationary ARMA process. Likelihood inference was 
carried out using sequential importance sampling. Simulated studies were conducted to evaluate the parameter 
estimation procedures. Model description and parameter misspecification or unidentifiability are always concerns from 
the data generation to real data analysis (Faugeras, 2017). Model assessment to check the goodness of fit for the 
proposed models was done via residual analysis. The proposed models were applied to the occupational health data. 
According to the residual analysis, the model fits the data adequately, but both ZINB and ZICMP seem to have a slight 
advantage over ZIP distribution. Future direction is to consider different model construction methods from the marginal 
regression such as Markov models to handle zero-inflated count time series data. Recently, the use of copula-based time 
series for ZI counts in the presence of covariates has been proposed in Alqawba et al. (2019) and Alqawba and Diawara 
(2020). The work considered the cases of ZIP, ZINB, and ZICMP distributed marginals. Likelihood-based inference is 
considered under a sequential sampling method to estimate both the marginal regression parameters and copula 
parameters. Improvements in the Bayesian Information Criteria were noted, as discussed in Joe (2014) and Dalla Valle 
et al. (2018). The applications of these models include occupational injury counts, arson counts, and sandstorm counts. 

5. Further Developments and Conclusion 
Several high-dimensional copulas are obtained from the bivariate version seen in the previous section. The bivariate 
time series copula becomes then very important. The vine copula is built from blocks of bivariate version of higher 
dimension (Acar et al. 2019, Czado). We will only mention the Hierachical Archimedean copula, the Multivariate 
Archimax copula, the Factor copula, and the Vine copula. Copula functions are particularly interesting in capturing 
dependence with pairwise Kendall’s correlations for invariance to monotonic transformations of marginal distributions. 
The copula is Archemedian and is applicable for higher than bivariate dimensions of the correlation between marginals 
(McNeil and Nešlehová, 2009). There is research on the symmetry of copula, and the family of measures under 
non-degenerate asymptotic distributions (Quessy and Bahraoui, 2018). The disentangling of features with copula 
transformation is also gaining popularity in so called deep Information bottleneck (DIB) to yield higher convergence 
rates (Wieczorek et al. 2018, Wieczorek and Roth 2020). As a measure, the copula can be thought as a transformation 
on a set, which is also a measure preserving transformation. Copulas are also obtained under non-monotonic 
transformations. Bardossy and Li (2008) proposed a v-transformed copula.  

The ideas of Levy processes modelled via copula offer many areas of research (Liu et al., 2021). 

The spatio-temporal dependence will become more of a priority as the research evolves. See more in Krupskii and 
Genton (2017). Bivariate time varying copulas are proposed in Acar et al. (2019). The dynamic vine copula is also 
adapted to the Bayesian inference (Kreuzer and Czado, 2019). 

In this review, we have shown statistical and computational methods for bivariate count time series data analyses using 
copula distributions. The general framework for discrete count data and the bivariate nature of data are presented. The 
copula structure is described with details on its analytic perspectives. The identifiability and the choice of copula are 
very challenging in any discrete data setting and in the case of negative associations between components. As 
mentioned in Genest et al. (2011), Faugeras (2017) and in Trivedi and Zimmer (2007, 2017), the copula may not 
generate the perfect data distributions. Such concern is also pointed out in Durante and Sempi (2016).  Copula can 
model bivariate dependence that are invariant under monotonic transformation only (Größer and Okhrin, 2021).  When 
the dependence is weak, the FGM copula offers great alternative, but determining the most appropriate type of FGM 
copula to fit data is an open problem. Trivedi and Zimmer (2017) proposed several simulations to show these concerns.  

Similar to any other functions, the copula functions cannot be deemed as the solution to all data problems. However, 
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they offer a valuable alternative, especially in the case of discrete data. The research on discrete time series data is more 
important in this class of functions, especially for bivariate cases as the characterization of bivariate count dependence 
structure provides tools for may applied problems. 
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Abstract 
A similarity and a difference between bivariate negative binomial distribution and bivariate geometric distribution is 
presented. The distribution of negative binomial difference and geometric difference and the corresponding 
characteristic function are presented. 

Keywords: Negative Binomial, Geometric, Bivariate, Difference 

1. Introduction 
As a bivariate extension of two exponential distributions, Freund (1961) created his model. A family of bivariate 
distributions produced by the bivariate Bernoulli distributions were explored by Marshall and Olkin (1985). Bivariate 
exponential and geometric distributions were explored by Nair and Nair (1988). In Basu and Dhar (1995) presented the 
BGD (B&D) bivariate geometric model, which is comparable to the Marshall and Olkin (1985) bivariate distribution. A 
new discrete analog of Freund's model, called BGD (F), was developed by Dhar (1998). 

In their 2008 study, Ong et al. studied at the distribution of two discrete random variables from the Panjer family. A 
skewed distribution known as the generalized discrete Laplace distribution was introduced by Lekshmi and Sebastian 
(2014). In their 2014 study, Nastic et al. presented the negative binomial difference distribution with an equal chance of 
success using the INAR model with discrete Laplace marginal distribution. The difference between two independent 
negative binomial random variables with various parameters was taken into consideration by Song and Smith (2011). 

The distribution of  when  and  are drawn from one of the following bivariate negative binomial 
distributions or one of the following bivariate geometric distributions is what we are examining in this paper. 

2. Bivariate Negative Binomial Distributions 
2.1 Double Negative Binomial 
The probability density function for the bivariate negative binomial distribution of  and  is given by 

 

where . 

where the probability distribution of  is given by 

 

and  ,  be two independent random variables with negative binomial distributions. 

The characteristic function provided by  

2.2 Chou Bivariate Negative Binomial 
A bivariate negative binomial distribution is proposed by Chou et al. (2011) as a combination of bivariate Poisson and 
Gamma distributions. Given by is the joint probability density function. 
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where . The marginal mass function is given by 

 

with correlation coefficient 

 

and the characteristic function given by  

2.3 Dependent Bivariate Negative Binomial  

Dependent two-variate negative binomial distribution with  correlation. Given is the probability density 

function.  

 

where . 

with the characteristic function presented by  

2.4 Arbous and Sichel Bivariate Negative Binomial 
A symmetric bivariate negative binomial distribution with a probability mass function was first introduced by Arbous 
and Sichel (1954) 

 

where . 

The characteristic function defined by  

and the marginal probability mass function of  

 

2.5 Lundberg’s Bivariate Negative Binomial 

The bivariate negative binomial distributions created by Arbous and Sichel (1954) are a special case of those created by 

Lundberg (1940), where  represents for the bivariate negative binomial distributions with the probability mass 

function  

 

where . 

and the characteristic function . 
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2.6 Rao Bivariate Negative Binomial 

Rao et al. (1973) gave a bivariate negative binomial distribution with probability mass function 

 

where . 

With the characteristic function given by  

2.7 Bivariate Negative Binomial by Redaction Method 

Suppose that  and  have a negative binomial distribution, where , and 

 are independent. The joint probability mass function is given by 

 

for , where  and . 

with the characteristic function given by  

Conclusion 1. When we compare the characteristic function, we find that there are only differences between double 
negative binomial distributions and dependent bivariate negative binomial distributions. We can find the other bivariate 
distributions by reparametrized double negative binomial distributions or dependent bivariate negative binomial 
distributions. 

Proof. The characteristic function for each bivariate is given by: 

Chou bivariate negative binomial distribution:   

Dependent bivariate negative binomial distribution:  

Arbous and Sichel bivariate negative binomial distribution:  

Lundberg bivariate negative binomial distribution:  

Rao bivariate negative binomial distribution:  

By comparing characteristic functions, we find that: 

If  and , then  

If , then  

If , then  

If , then  

Thus, the joint distributions according to dependent, Chou, Arbous and Sichel, Lundberg and Rao bivariate negative 
binomial distributions are corresponding distributions. 

The characteristic function for the independent bivariate negative binomial distribution and the bivariate one using the 
redaction method given by 
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we find that, if ,  and , then the independent bivariate negative binomial 
distribution and the bivariate with the redaction method are corresponding distributions. 

Then we only need to define two different distributions for the negative binomial difference distribution.  

3. Negative Binomial Difference Distributions 
3.1 Independent Negative Binomial Difference 
If  and  are jointly distributed by double negative binomial distribution, then the random variable  
has the negative binomial difference distribution. The probability distribution is given by Ong, et. Al (2008): 

 

and  

or  

 

The characteristic function is given by .  

The expected value is , while the variance is . 

If  

 

 

3.2 Dependent Negative Binomial Difference 
Let  and  be jointly distributed dependent bivariate negative binomial distribution, then the probability 
distribution for the difference  random variable be given by  

 

The characteristic function is given by . The expected value is , and the 

variance is . 

Conclusion 2. The negative binomial difference between  and  is the same for any bivariate negative binomial 

distribution. 
Proof. The characteristic function from both negative binomial differences is compared, and we discover that, for every 

, or  , there are  , then, 

, where . 
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4. Bivariate Geometric Distributions 
4.1 Independent Bivariate Geometric 
Let X and Y be independent, bivariate geometric distributions, and  

 

be their probability density function. 

The provided characteristic function. 

4.2 Dependent Bivariate Geometric 
Let X and Y be dependent bivariate geometric distributions, where 

 

where . 

denotes the probability density function and  denotes the characteristic function. 

4.3 Omey and Minkova Bivariate Geometric 
A bivariate geometric distribution with a probability density function supplied by  

 

where  

and a characteristic function defined by  was proposed by Omey and 

Minkova (2013). 
4.4 Bao Bivariate Geometric 

Bao (2011) suggested a bivariate geometric distribution with the characteristic function denoted by 

 and a probability density function denoted by 

 

where . 
4.5 Basu and Dhar Bivariate Geometric 

A bivariate geometric model (BGD (B&D)) similar to Marshall and Olkin's (1967) bivariate distribution with the pmf  

 

where ,  

and characteristic function given by 

 was 

proposed by Basu and Dhar (1995). 
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Conclusion 3. There are only two different bivariate geometric distributions, and by reparametrizing these two, we can 
identify the remaining bivariate distributions. 

Proof. According to separately, Omey and Minkova, Bao and Basu, and Dhar, the joint distributions are the equivalent 
distributions. 

By displaying the distinctive properties of each distribution, which include 

 

at , then 

 

 

Bao:  

If and , then at 

. 

Basu and Dhar Bivariate Geometric: 

 

If , then at  

5. Geometric Difference Distributions 
5.1 Independent Geometric Difference 
The probability distribution for the difference  is a random variable if X and Y are simultaneously 
distributed according to an independent bivariate geometric distribution. 

 

The characteristic function is . The expected value is , while the 

variance is . 

which corresponds to the Laplace distribution. 

5.2 Dependent Geometric Difference 
If  and  are jointly distributed according to a dependent bivariate geometric distribution. 

The probability distribution for the difference  random variable is given by  

 

The characteristic function is given by . The expected value is , while the 

variance is . 



 
 
http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                Vol. 11, No. 6; 2022 

71 

Conclusion 4. The Laplace distribution is the same geometric difference between  and  if they come from any 
bivariate geometric distribution. 

Proof. For any , or  , there are  , 

then, ,  

where . 

6. New formula of  Hypergeometric Function 
For the hypergeometric function  that is readily obtained from the negative binomial distribution, the 
following theorem provides additional relations. 

For any ,  and .  

1. 

 

i.  

ii. 

 

iii.  

2. 

 

 

 

i.  

ii. 
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3. 

 

 

 

i. 

 

ii.  

iii.  

iv. 

 

4. 

 

i. 

 

ii.  

iii.  

iv.  

v. 
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5.  

6. 

 

References 
Albert, W., Marshall, & Ingram, O. (1985). A family of bivariate distributions generated by the bivariate bernoulli 

distribution. Journal of the American Statistical Association, 80(390), 332–338. 
https://doi.org/10.1080/01621459.1985.10478116 

Arbous, A. G., & Sichel, H. S. (1954). New Techniques for the Analysis of Absenteeism Data. Biometrika, 41, 77–90. 
https://doi.org/10.1093/biomet/41.1-2.77  

Bao, N. H. (2011). On the Stability of the Bivariate Geometric Composed Distribution’s Characterization. Stud. Univ. 
Babes-Bolyai Math, 1, 135-140. 

Basu. A. P., & Dhar, S. (1995). Bivariate Geometric Distribution. Journal Applied Statistical Science, 2(1), 33-44. 

Dhar, S. K. (1998). Data analysis with discrete analog of freund's model. Journal of Applied Statistical Science, 7, 
169-183. 

Freund, J. E. (1961) A bivariate extension of the exponential distribution. Journal of the American Statistical 
Association, 56, 971–977. https://doi.org/10.1080/01621459.1961.10482138 

Lekshmi, S., & Sebastian, S. (2014) A Skewed Generalized Discrete Laplace Distribution. International Journal of 
Mathematics and Statistics Invention, 2, 5-102. 

Li, J., & Dhar, S. (2010). Modeling with Bivariate Geometric Distributions. Preprint submitted to New Jersey Institute 
of Technology. 

Lundberg, O. (1940). On Random Processes and Their Application to Sickness and Accident Statistics. Uppsala: 
Almquist and Wicksell. 

Nair, K. R., Muraleedharan, & Nair, U. (1988). On characterizing the bivariate exponential and geometric distributions. 
Annals of the Institute of Statistical Mathematics, 40(2), 267–271. https://doi.org/10.1007/BF00052343 

Nastic, A. S., Ristic, M. M., & Djordjevic, M. S. (2014). An INAR model with discrete Laplace marginal distributions. 
Preprint submitted to Brazilian Journal of Probability and Statistics. 

Omey, E., & Minkova, L. D. (2013). Bivariate Geometric Distributions. Hub Research Papers, 2013/02, Economics & 
Business Science. 

Ong, S. H., Shimizu, K., & Ng, C. M. (2008). A Class of Discrete Distributions Arising from Difference of Two 
Random Variables. Computational Statistics & Data Analysis, 52, 1490-1499. 
https://doi.org/10.1016/j.csda.2007.04.009 

Rao, B. R., Mazumdar, S., Waller, J. M., & Li, C. C. (1973). Correlation Between the Numbers of Two Types of 
Children in a Family. Biometrics, 29, 271-279. https://doi.org/10.2307/2529391 

Song, Q., & Smith, A. D. (2011). Identifying dispersed epigenomic domains from ChIP-Seq data. Bioinformatics., 27, 
870-871. https://doi.org/10.1093/bioinformatics/btr030 

Sunil, K. D. (1998). Data analysis with discrete analog of freund’s model. Journal of Applied Statistical Science, 7, 
169–183. 

 
Copyrights 
Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/4.0/). 



International Journal of Statistics and Probability; Vol. 11, No. 6; November 2022 
ISSN 1927-7032   E-ISSN 1927-7040 

Published by Canadian Center of Science and Education 

74 

Reviewer Acknowledgements 

International Journal of Statistics and Probability wishes to acknowledge the following individuals for their 
assistance with peer review of manuscripts for this issue. Their help and contributions in maintaining the quality 
of the journal is greatly appreciated. 

Many authors, regardless of whether International Journal of Statistics and Probability publishes their work, 
appreciate the helpful feedback provided by the reviewers.  

Reviewers for Volume 11, Number 6 

 

Besa Shahini, University of Tirana, Albania 

Chin-Shang Li, School of Nursing, USA 

Emmanuel Akpan, Federal School of Medical Laboratory Technology, Nigeria 

Gerardo Febres, Universidad Simón Bolívar, Venezuela 

Krishna K. Saha, Central Connecticut State University, USA 

Mohieddine Rahmouni, University of Tunis, Tunisia 

Philip Westgate, University of Kentucky, USA 

Poulami Maitra, NORC at the University of Chicago, India 

Renisson Neponuceno de Araujo Filho, Universidade Federal do Tocantins, Brazil 

Soukaina Douissi, National School of Applied Sciences (ENSA) Cadi Ayyad University, Morocco 

 

Wendy Smith 

On behalf of,  

The Editorial Board of International Journal of Statistics and Probability 

Canadian Center of Science and Education 



Canadian Center of Science and Education 

 CCSENET.ORG

ACADEMIC AND OPEN ACCESS 

��
International Journal of Statistics and Probability� ��� �� 4���#�����>��� <	���
�� 4�
��'��� ���
(��������(������	��������������%�����	���E'��<	���
�4�
��'����������'�4�4��������

���4�����	��

���������������4�	����
�����E'�� <	���
� �������
��
�� ����
����	�����	�������	�<����	��>��'� ����4�����

�����	���.

������
���������������������
��
���	��������	>�
	���	�
�����

C���������F��)��������	����	���	��'�	���)��������.

��������4����'	
�����>����������%�)
��'��

*������4�����	��$   U9   �>	�������
��)�'�����4����������.

��������4����'	
�����4��4��������

=�E�W�	��*�#C	����	�������������������	�
�����	��������	5��<�4X��������	�)�

��.���<�/�	������������/�����8����	����

�@� �������	�� ��F�	>
��)������� ��� �	� ������ �������4�� 	�
����� �	� >�

� �������� ��

�������	����F�	>
��)������
���������������'��	�
�������������	������

���J	������
��������	���

�'������	��	������	���
���������������������#���
�	���	��������	���	��'���������	�N����'	��>��'���

	����	��'����>	�F��)�����������	����
� �	����������'����	��������	���4
������'��F��	���
F�����
�

�	,�	���	�������'������	���
������������

�@� +����� �����>�� E'�� ����	�� 	�� ����	���
� ���������� �����������>'��'��� �'���������4�� ����� �'��

<	���
N�� �	��� ���� ��	4��� .��� �'��� �'��F� �'�� ����
������ ����� ?(�	��('��F�� 4	>����� ���

�E'��������@�� .��� �������4��� 	�� 	�� �'�� <	���
N�� ��	4�� 	�� �	�������)� 4
�)�������� ���
���)�

��
�#4
�)�������������<������� �

�@� �����7����>��C��������	�
�#�
������������	��4���� �����>���	�'� �����>���N�������'	��N�

��������������������	���	���E'������������������4��>�

���������>���������
������>	��,4����5�

	�������	���
�����������������>�

����	����	��'�����,�����
������>�����E'�������>�4�	�����������F��

�	���	�����>��F���

�@� *�F���'��������	���E'��������	���	�����4��	����<������������
�����������	���'���))����	���	��

�����>����� ��� ������������ 	�� 	4���	�� 	���� ���>���� �����>����� �'�� ����	�#��#�'���� >�

� >��)'� �

�

�	������� ���� ������� ��� �� ��
������ ������	�� ������ 	�� �

� �	�������� 	�� �� ���	��� �	��� 	�� 4����

�����>�������������������

�@� �	��������	��	���'�����
��	�������>��E'�����
��	�������>�>�

��������� �	��'���	����4	����)�

��'	�������	�>�������	�	�'�����'	������������>�����

�@� �����'�������
��4�	������)��'��)�������'���������	���������4������'����'	����������4�4�������

4����'�������
��4�	������)��'��)��?�	�������)�����'	����)@��

)@� %#<	���
��������
��
���%#<	���
�����DJ��������
��
��	���'��<	���
N��>��4�)��������	���'��)��

�	���	>�
	��������	�������'��4�������<	���
�����4	����4
�����	��������

'��45;;>>>���������	�);<	���
;����,�4'4;�<�4;��	��;'���(	4�����

'@� ��
�����	���	������E'����'	���������������>�

�����	��������������������	�������	��>�������

�	���'����>
��4�
��'��������
���� �

�������:��-������

%#���
5��<�4X��������	�)�

C������5�'��45;;�<�4���������	�)� �

��4����������	��3���5�'��45;;�<�4#��'	����������	�)� �

7�����������	��7����>���5�'��45;;>>>���������	�);<	���
;����,�4'4;�<�4;����	�;�����������

��
E	�	��������F� �������4
������	������ �'�� <	���
�����	��������F���	�� �'������
���
����	�� <	���
���

K	� ���� 4��� ��� ������� ������ �����
�� ���� ���F� ���������� ��� �	� '���� ���� -����	��� ��)�����)�

4��������4
������	��	��'���������	��	�������'��<	���
�����	��	������	���
������������

�����5�Y& �  �2�D;�	4�� � � � � � � � � � � � � � � � � � �'�44��)����5�Y� �  �2�D;�	4��

.+:2E�((�%�

*����	��

��
���

�

�

�

�

(:�E.(E�2��

�

�8!8���,�����'�.���������$ ��� �

7��'�	���1�

��:�����	��=&+�$�!�� �

(������

E�
5��#&��#�&�#�� ��

%#���
5����	X��������	�)�

C������5�>>>���������	�)�

�




