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Abstract

Mean plausible values can be computed when Bayesian structural equation modeling (BSEM) is performed. As mean
plausible values do not preserve the factor inter-correlations, they yield path coefficients that are different from the
estimated path coefficients of the model. As it might be of interest to perform exactly the same predictions on the level
of mean plausible values that have been estimated by BSEM, correlation-preserving mean plausible values were
proposed. An example for the computation of the correlation preserving mean plausible values is given and the
corresponding syntax can be found in the Appendix.

Keywords: Bayesian structural equation modeling, plausible values, factor scores, prediction
1. Introduction
1.1 The Validity of Mean Plausible Values

Bayesian structural equation modeling (BSEM) has been proposed by Muthén and Asparouhov (2012) as an alternative
to conventional structural equation modeling and several improvements of BSEM have meanwhile been proposed and
realized (Asparouhov & Muthén, 2021; Asparouhov, Muthén, & Morin, 2015; Zitzmann & Hecht, 2019). Advantages of
BSEM are that it can be performed with relatively small samples (Bonafede, Chiorri, Azzolina, 2021) and that priors for
the variability of loadings can be specified. BSEM thereby allows to overcome problems of specifying fixed zero
loadings in the independent clusters model (Beauducel & Hilger, 2020) and it also allows for the specification of
complex loading patterns as, for example, circumplex models (Weide, Scheuble, & Beauducel, 2021).

As BSEM becomes more and more popular, the interest for score estimates of the latent variables or factors in these
models may also increase. Asparouhov and Muthén (2010a, b) proposed mean plausible values as factor score estimates
in the context of BSEM. Luo and Dimitrov (2018) found that even less than 500 imputations may be used in order to get
mean plausible values with an appropriate validity. Moreover, Beauducel and Hilger (in press) have shown that mean
plausible values of the exogenous factors P, based on 500 imputations have nearly the same coefficient of determinacy
as the best linear factor score estimate initially proposed by Thurstone (1935), which is also termed regression factor
score E*. As Ef has the maximum determinacy, the result of Beauducel and Hilger (in press) implies that P, based
on more than 500 imputations is a proxy of .

Using P, in the context of BSEM could be especially interesting in the context of the prediction of endogenous factors
by exogenous factors. In applied settings, individuals might be selected according to their individual scores on
exogenous factors (predictors). The selection of individuals according to their scores requires that the scores are valid
indicators of the latent predictors which implies that they represent the underlying prediction model quite well.
However, Skrondal and Laake (2001) have shown that using E® for exogeneous factors & and Ef for endogenous
factors M yields path coefficients that do not correspond to the path coefficients estimated by means of structural
equation modeling. As P, and P, based on a large number of imputations are proxies of E* and K, it is expected
that P, and P, yield biased path coefficients and factor inter-correlations (i.e., that the coefficients do not correspond
to the coefficients obtained by means of BSEM). It could, however, be of interest to compute factor score estimates that
allow for exactly the same predictions as the corresponding BSEM.

1.2 Aims of the Study

The aim of the present study was therefore to provide a method that allows to transform P, into scores resulting in
path coefficients corresponding exactly to the path coefficients estimated by means of BSEM. After some definitions
we provide the transformations for the correlation preserving mean plausible values and for the computation of their
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determinacy. Then, we provide an example based on a simulated data set to show the difference between conventional
and correlation-preserving mean plausible values. The syntax for the transformation is given in the Appendix.

2. Method
2.1 Definitions
We use the notation of Skrondal and Laake (2001), Joreskog (1977), and Joreskog and Sorbom (1989) with the latent
regression model

n=TIE+E, (D
where I'is the matrix of path coefficients for the prediction of the endogenous factors 1 by the exogeneous factors &
and { are the residuals, with E(£§ ) = 0. The measurement model for the exogenous factors is

x=AgE+9, )

where x represents the observed variables of the exogenous factors, A, is the matrix of factor loadings, and 0 are the
unique factors, with E(88) = diag(E(88)) =0, E(8&)=0,and E(&)=®,with diag(E(®)) =1, so that

E(xx)=%Z =A ®A_+0O,. 3)
The measurement model for the endogenous factors is
y=Amn+e, “4)

where y represents the observed variables of the exogenous variable, A, is the matrix of factor loadings, and ¢ are the
unique factors, with E(gg) = diag(E(ge)) =0,, E(8&)=0,and E(qn)=T®I +¥, with diag(E(qm))=1, so
that

E(yy)=X, =A (TOT +P)A +0,. 5)

2.2 Correlation-Preserving Mean Plausible Values

The combined matrix of all factorsis F = [%J , o that

C=E(FF’)=E([§J[§ n]):E(E‘z E:‘nD (6)

As all factors have unit variance, C is a correlation matrix. According to Equations 1 to 5 the elements of C can be
computed from the model parameter estimates

c=|® o | (7
ro r1or +vy

The regression factor score E* does not preserve the correlations in @ which follows from the covariances
E(F'E") =®A XA, ® (Skrondal & Laake, 2001, Eq. 9), so that the inter-correlation of the regression factor scores
is

Cpp = diag(®AZ A ®) DA E] A, D diag(PA,Z; A P) . (8)
Inserting Equation 8 instead of @ into Equation 7 results in biased estimates for E(vn)and EME). As P. and P,

based on a large number of imputations are proxies of Ffand EF, it follows that intercorrelations and path coefficients
that are based on P, and P, will be biased.

diag(P,]P,'])‘Van . . L
Let P= diag(P.P.)V2P and C, = E(PP’) so that mean plausible values preserving the correlations in C can
S 3
be defined as P. = CC;"?P, )

. P,
where 12 denotes the symmetric square-root, P. = [P::l and E(P.P) = E(C"C;?PP'C;2C"?)
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— CI/ZCEI/ZCPC;I/ZCI’Z =C.

If the mean plausible values approximate the regression factor score, Equation 9 can be computed directly from the
model parameters. For convenience, this is only illustrated for the exogenous factors, although it also holds for the
endogenous factors.

For exogenous factors Equation 9 can be written as
P, = ®"°C;2diag(PP,) " P., (10)
For P. =Ffit is possible to insert the right hand side of diag(FfF*)"F* = diag(®A LA, @) ®AX; for
diag(P.P,)"2P. and the right hand side of Equation 8 for C;!?in Equation 10. This yields
P, = O (diag(PA,Z;A @) OA LA @ diag(PA,ZA @) ") diag (DA LA D) ®A T, (11)

so that no mean plausible values but model parameters and the measured variables are needed to compute the
correlation preserving plausible values. For @ =1 Equation 11 can be transformed to

P. = diag(A, ;A" (AZIA, )2 diag(AZ7A,) " A,E:x

= (A EIA, A Ty, (12)
with E(PcéP'Cé) =(AZIA)"AZIA (A XA, =1L This is the orthogonal factor score proposed by Takeuchi,
Yanai, and Mukherjee (1982). As this score is already standardized, the correlation-preserving score for ® #1 can
simply be computed by a pre-multiplication of Takeuchi et al.’s factor score with @2 so that

P = @2 (AL A, ) ALK (13)

Note that Equations 11 and 13 describe the relationship between mean plausible values and correlation-preserving
scores for P, = F*, which depends on the number of imputations. For a small number of imputations P, # F* so that
O-12P;, # Py,

However, for any factor score and for any mean plausible value the determinacy should be computed. According to
Beauducel and Hilger (in press, Eq. 7) the determinacy of the mean plausible values P, for exogenous factors can be
estimated by means of

D.. = diag(P.P.. )" P.xL]'A, @, (14)
and the determinacy of mean plausible values for endogenous factors can be estimated by means of
D, = diag(P, P, )" P,y E]'A (T OI" +'P). (15)

3. Example

A simulated data set containing » = 10,000 cases, 15 normally distributed N(0,1) observed variables (x) as a
measurement model of three exogenous factors & and 10 normally distributed N(0,1) observed variables (y) as a
measurement model for two endogenous factors 1] were generated with IBM SPSS Version 26. The data file (csv) can
be found in the supplement. BSEM was performed with Mplus 8.4 (Muthén & Muthén, 2019) in order to estimate the
model parameters of the conceptual model presented in Figure 1 (Mplus syntax-file in Supplements).
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Figure 1. Conceptual model with three exogenous and two endogenous factors. The Bayesian model parameters are given

in Table 1

Factor variances were fixed to one and for each factor five salient loadings were freely estimated and non-salient
loadings were estimated with normally distributed priors with a zero mean and a variance of 6°=0.01. As no
model-misfit was simulated, the model fit was excellent (95" confidence-interval for difference between observed and
replicated x? [1670.88, 1798.32], posterior predictive p-value < 0.001, prior posterior predictive p-value < .001,
RMSEA = 0.027, CFI = 0.991). The model parameter estimates are given in Table 1 (data file, Mplus input and
output-file can be found in Supplements).

Table 1. BSEM Model parameter estimates (completely standardized solution)

X A, A,
X| 0.750 0.066 0.025 Vi 0.160 0.251
X5 0.845 0.049 0.002 V2 0.160 0.251
X3 0.938 0.031 -0.021 V3 0.999 -0.041
X4 0.845 0.049 0.002 V4 0.999 -0.041
X5 0.845 0.049 0.002 Vs 0.999 -0.041
Xg 0.031 0.762 0.023 0 -0.038 0.534
X7 0.008 0.858 0.001 y7 -0.038 0.534
xg  -0.015 0953  -0.022 Vs -0.037 0.533
X9 0.008 0.859 0.000 Yo -0.038 0.533
X10 0.008 0.858 0.001 Yio -0.038 0.534
X1 0.064 0.027 0.749 E(M)
X12 0.046 0.002 0.846 1.000 0.513
X13 0.029  -0.024 0.942 0.513 1.000
X14 0.047 0.002 0.846
X5 0.047 0.002 0.846 r
P Ny M1
1.000 0.275 0.270 & 0.270 0.000
0.275 1.000 0.324 & 0.000 0.037
0.270 0.324 1.000 &, 0.016 0.447

Note. Model parameters greater .40 are given in bold face
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The path coefficients for the prediction of the mean plausible values of the endogenous factors by the mean plausible
values of the latent exogenous factors are given in Table 2, together with the path coefficients for the
correlation-preserving mean plausible values. The SPSS Syntax for the computation of the mean plausible values and
the corresponding regression analyses are given in the Appendix.

Table 2. Standardized path coefficients (beta) based on mean plausible values and on the basis of correlation-preserving
mean plausible values

Pnl Pn2 PCnl PCnZ
Pgl 0.275 -0.038 chl 0.270 0.000
sz -0.079 0.005 Pcaz 0.000 0.037
P, 0053 0549 P, 0016 0447

Only for the correlation-preserving mean plausible values the path coefficients are identical to the path coefficients of
the model (Table 1). The coefficients of determinacy are given in Table 3. They are very similar for the mean plausible
values and for the correlation-preserving mean plausible values.

Table 3. Coefficients of determinacy for mean plausible values and for correlation-preserving mean plausible values

P, P, P, P, P,
97 97 97 97 85
Pee) Pees Pees Pey Pens
97 97 97 99 82

4. Discussion

As mean plausible values based on 500 or more imputations are a proxy of the regression factor score, which does not
preserve the inter-correlations of the factors (Skrondal & Laake, 2001), it was concluded that mean plausible values are
not correlation-preserving. It might, however, be of interest in the context of BSEM to compute correlation-preserving
mean plausible values with the same inter-correlations as the factors. Only correlation-preserving mean-plausible values
will result in the same path coefficients from exogenous factors to endogenous factors as the model estimates. Therefore,
correlation-preserving mean plausible values were proposed. An example demonstrates how correlation-preserving
mean plausible values can be computed from mean plausible values. It is also shown that only the
correlation-preserving mean plausible values yield the path coefficients that estimated by BSEM.

Factor score determinacies of mean plausible values and correlation-preserving mean plausible values were similar. It
should, however, be noted that the determinacy of correlation-preserving mean plausible values will typically be smaller
than the determinacy of the mean plausible values. This follows from the mean plausible value being a proxy of the
regression factor score, which has the largest possible determinacy in a given data set. However, as one can see in the
example, the prediction of the endogenous factors is different for the mean plausible values and for the
correlation-preserving mean plausible values. This may result in a larger determinacy of the correlation-preserving
mean plausible values for the endogenous factors. Further research may explore the conditions for the higher
determinacy of correlation-preserving mean plausible values for endogenous factors systematically.

When mean plausible values are equivalent to the regression factor score, the correlation-preserving mean plausible
values are equivalent to a correlation-preserving version of Takeuchi et al.’s (1982) orthogonal factor score. As Takeuchi
et al.’s factor score has been shown to be identical to Anderson-Rubin’s factor score (Anderson & Rubin, 1956;
Beauducel, 2015), this also implies that McDonald’s (1981) correlation-preserving factor score, will be equivalent to the
correlation-preserving mean plausible values under this condition. When equivalence of mean plausible values and
regression factor scores is obtained, mean plausible values need not to be computed and the scores can directly be
computed from the model parameters and the observed variables. A limitation of the present study is the focus on the
mean plausible values, whereas the median of the plausible values might also be of interest. Whether a
correlation-preserving version of the median plausible value might be of interest, especially with small samples, might
be explored in further studies.

In order to compute the correlation-preserving mean plausible values, the inter-factor correlations estimated by means
of BSEM and the mean plausible values should be entered into the example syntax provided in the Appendix. Therefore,
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the procedure proposed here can also be applied to mean plausible values that are based on a small number of
imputations. When the determinacies are to be computed, which is recommended, the loadings and inter-correlations of
the exogenous factors, the loadings and inter-correlations of endogenous factors can also be inserted into the example
syntax.
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Appendix A
IBM SPSS-Syntax.

* Encoding: UTF-8.

* Syntax for the example presented in the manuscript.
* For use in other contexts, enter location and name of the data-file containing mean

plausible values and adapt the variable number according to your model.

DATA LIST FILE="C:\Example data plausible values.dat" fixed records=1

/1 x1 to x15 (15F6.3) yl to yl10 (10F6.3)

Ksil _meanPlausible (F6.3) Ksil medianPlausible (F6.3) Ksil SD (F6.3) Ksil perc2p5 (F6.3) Ksil_perc97p5 (F6.3)
Ksi2_meanPlausible (F6.3) Ksi2 medianPlausible (F6.3) Ksi2 SD (F6.3) Ksi2 perc2p5 (F6.3) Ksi2 perc97p5 (F6.3)
Ksi3_meanPlausible (F6.3) Ksi3 medianPlausible (F6.3) Ksi3_SD (F6.3) Ksi3_perc2p5 (F6.3) Ksi3_perc97p5 (F6.3)
Etal _meanPlausible (F6.3) Etal medianPlausible (F6.3) Etal SD (F6.3) Etal_perc2p5 (F6.3) Etal_perc97p5 (F6.3)
Eta2_meanPlausible (F6.3) Eta2 medianPlausible (F6.3) Eta2_SD (F6.3) Eta2_ perc2p5 (F6.3) Eta2 perc97p5 (F6.3).
Dataset name datasetl.

save outfile="C:\Example data plausible values.sav".

MATRIX.

get P_Ksi/variables= Ksil meanPlausible Ksi2 meanPlausible Ksi3 meanPlausible
/file='C:\Example data plausible values.sav'.
get P_Eta/variables= Etal meanPlausible Eta2 meanPlausible

/file='C:\Example data plausible values.sav'.

get x/variables= xl1 to x15
/file='C:\Example data plausible values.sav'.
get y/variables= yl to yl0

/file='C:\Example data plausible values.sav'.

* In the following matrices are the values that are also given in Table 1.

* For use in other contexts, enter the corresponding values from your BSEM-OUTPUT:.

* Loadings of measured variables on Ksi.
compute Lx={

0.750, 0.066, 0.025;

0.845, 0.049, 0.002;

0.938, 0.031,-0.021;
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0.031, 0.762, 0.023;
0.008, 0.858, 0.001;
-0.015, 0.953, -0.022;
0.008, 0.859, 0.000;
0.008, 0.858, 0.001;
0.064, 0.027, 0.749;
0.046, 0.002, 0.846;

0.029,-0.024, 0.942;

0.047, 0.002, 0.846}.

* Intercorrelations of Ksi.
compute Phi={

1.000, 0.275, 0.270;
0.275, 1.000, 0.324;

0.270, 0.324, 1.000

* Loadings of measured variables on Eta.
compute Ly={
0.160, 0.251;
0.160, 0.251;
0.999,-0.041;
0.999,-0.041;
0.999,-0.041;
-0.038, 0.534;
-0.038, 0.534;
-0.037, 0.533;
-0.038, 0.533;

-0.038, 0.534

* Path coefficients from Ksi to Eta.
compute Gamma={

0.270, 0.000;

0.000, 0.037;

0.016, 0.447

* Intercorrelations of Eta.
compute Ceta = {
1.000, 0.513;

0.513, 1.000
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* Computations.

compute P_Ksi=t (P_Ksi).

compute ncases=ncol (P_ksi).

* Mean-centering of P_Ksi.

compute mP:RSUM(P_Ksi)&/ncases.

compute ones=make (nrow (P_Ksi),ncol (P_Ksi),1).
compute mmP=Mdiag (mP) *ones.

compute P_Ksi=P_Ksi-mmP.

compute P _Eta=t (P_Eta).

* Mean-centering of P_Eta.

compute mP:RSUM(PiEta)&/ncases.

compute ones=make (nrow(P_Eta),ncol (P_Eta),1).
compute mmP=Mdiag (mP) *ones.

compute P _Eta=P_Eta-mmP.

compute P={P Ksi;P Eta}.

compute x=t (x).

compute y=t (y).

compute C P=INV (Mdiag(diag( P*t (P)&/(ncases-1) ))&**0.5) * P*t(P)&/ (ncases-1)
* INV (Mdiag(diag( P*t (P)&/ (ncases-1) ))&**0.5).

print C_P/format=F5.2/Title="Correlation of mean plausible values".

CALL Eigen(C_P, vec, eig).

compute C Pl2=vec*Mdiag(eig) &**0.5*t (vec) .

compute Gamma=t (Gamma) .
compute Cetaksi=(Gamma) *Phi.

compute tcetaks=t (Cetaksi).

compute C={

Phi, tCetaks;

Cetaksi, Ceta }.

Print C/format=F5.2/Title="Correlation of factors according to the model parameters of BSEM".

CALL Eigen(C, vec, eig).

compute Cl2=vec*Mdiag (abs(eig))&**0.5*t (vec) .
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* Compute correlation-preserving plausible values according to Equation 10.

compute Pc=C12*INV(C_P12)*INV (Mdiag (diag( P*t (P) &/ (ncases-1) ))&**0.5) *P.

print {INV(Mdiag(diag( Pc*t(Pc) )&/ (ncases-1))&**0.5)*Pc*t (Pc) &/ (ncases-1

*INV (Mdiag(diag( Pc*t(Pc) )&/ (ncases-1))&**0.5)}

/format=F5.2/Title="Check: Correlation of correlation-preserving mean plausible values. Should be equal to correlation

of factors".

* Determinacy.

compute Tdelta=Mdiag(diag( 1-Lx*Phi*t(Lx) )).

compute Sig x=Lx*Phi*t (Lx) + Tdelta.

compute Tepsi=Mdiag(diag(l - Ly*Ceta*t(Ly))).

compute Sig y=Ly*Ceta*t (Ly) + Tepsi.

* Compute Determinacy of mean plausible values for Ksi.
compute D Ksi=INV(Mdiag(diag( P Ksi*t (P Ksi)&/(ncases-1) )))&**0.5 * P Ksi
* t(x)&/(ncases-1) * INV(Sig x)*Lx*Phi.

print {t(diag(D Ksi))} /format=F5.2/Title="Determinacy of mean plausible values for Ksi".

* Compute Determinacy of mean plausible values for Eta.
compute D Eta=INV(Mdiag(diag( P Eta*t (P Eta)&/(ncases-1) ))) * P Eta
*T(y) &/ (ncases-1) * INV(Sig y)*Ly*Ceta.

print {t(diag(D Eta))} /format=F5.2/Title="Determinacy of mean plausible values for Eta".

* Compute Determinacy of correlation-preserving mean plausible values for Ksi (according
compute PcKsi = {Pc(l,:);Pc(2,:);Pc(3,:)}.

compute D cKsi=INV (Mdiag(diag( PcKsi*t (PcKsi)&/ (ncases-1) )))&**0.5 *PcKsi

*T(x) &/ (ncases-1) *INV (Sig x) *Lx*Phi.

print {t(diag(D cKsi))} /format=F5.2/Title="Determinacy of correlation-preserving mean

(according to Equation 12)".

* Compute Determinacy of correlation-preserving mean plausible values for Eta (according
compute PcEta = {Pc(4,:);Pc(5,:)}.

compute D cEta=INV(Mdiag(diag( PcEta*t (PcEta)&/ (ncases-1) ))) * PcEta

*T (y) &/ (ncases-1) *INV (Sig y) *Ly*Ceta.

print {t(diag(D cEta))} /format=F5.2/Title="Determinacy of correlation-preserving mean

(according to Equation 13)".
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save (t(Pc))/outfile:"C:\Example_data_correlation_preserving_plausible_values.sav"/variables

Pc_Ksil Pc_Ksi2 Pc_Ksi3 Pc_Etal Pc_Eta2.

END MATRIX.

* The following regression analyses are performed in order to check whether the
correlation-preserving mean plausible values yield the same standardized

coefficients as the BSEM model.

* Compare regression-coefficients of conventional mean plausible values...

Dataset activate Datasetl.
REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT EtalimeanPlausible

/METHOD=ENTER Ksil meanPlausible Ksi2 meanPlausible Ksi3 meanPlausible.

Dataset activate Datasetl.
REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT Eta27meanPlausible

/METHOD=ENTER Ksil meanPlausible Ksi2 meanPlausible Ksi3 meanPlausible.

* .with regression-coefficients of correlation-preserving mean plausible values:.

get file="C:\Example data correlation preserving plausible values.sav".

Dataset name Dataset2.

Dataset activate Dataset2.
REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT Pc Etal

/METHOD=ENTER Pc Ksil Pc Ksi2 Pc Ksi3.

Dataset activate Dataset2.
REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT Pc Eta2

/METHOD=ENTER Pc Ksil Pc Ksi2 Pc Ksi3.

Copyrights
Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).
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Abstract

Research results on the same subject, extracted from scientific papers or clinical trials, are combined to determine a
consensus. We are primarily concerned with combining p-values from experiments that may be correlated. We have two
methods, a non-Bayesian method and a Bayesian method. We use a model to combine these results and assume the
combined results follow a certain distribution, for example, chi-square or normal. The distribution requires independent
and identically distributed (iid) random variables. When the data are correlated or non-iid, we cannot assume such
distribution. In order to do so, the combined results from the model need to be adjusted, and the adjustment is done
“indirectly” through two test statistics. Specifically, one test statistic (TS**) is obtained for the non-iid data and the
other is the test statistic (TS) is obtained for iid data. We use the ratio between the two test statistics to adjust the model
test statistic (TS**) for its non-iid violation. The adjusted TS** is named as “effective test statistics” (ETS), which is
then used for statistical inferences with the assumed distribution. As it is difficult to estimate the correlation, to provide
a more coherent method for combining p-values, we also introduce a novel Bayesian method for both iid data and
non-iid data. The examples are used to illustrate the non-Bayesian method and additional examples are given to
illustrate the Bayesian method.

Keywords: assumed distribution, Correction ratio, Correlation, Model assumptions, P-values, Effective test statistic,
Statistical inference

1. Introduction

Researchers use a model to combine the results, p-values or Z-scores, from sample surveys or clinical trials for the same
subject or purpose. We consider these results are iid random variables and assume a certain distribution, for example
normal, for statistical inference. Such a distribution requires iid-random variables.

However, these variables are more likely correlated as they are from the similar sample surveys or clinical trials for a
specific topic or purpose. For example, poll results of presidential election or clinical trial results of one medication
executed from different locations, or from the repeated trials at a same place (see Example 1). These results are often
reported as p-values. We do not consider the previous procedures in obtaining p-values, and the k p-values are really the
random variables. However, we are attacking a problem that is, indeed, very difficult because no aspect of the
correlation is known, and moreover, there is a single sample of p-values, thereby making it impossible to find Pearson
correlation.

The resulting p-values are non-iid random variables (see Example 1 and Appendix B). We present a method to show
how an assumed distribution, which requires iid-random variables, can be applied to non-iid variables. To do so, non-iid
variables need to be adjusted indirectly through its test statistics (T.S**). This adjustment is done by comparing two test
statistics, one from the non-iid model and other from the iid model. The test statistic (TS**) comes from a model with
non-iid data, given null hypothesis, sample size and test level. Similarly, the other test statistic, (TS), comes from an
assumed distribution with iid-random variables. We define correction factor as the ratio of TS**to TS. Finally, we can
get effective test statistic (ETS) of TS divided by the correction factor and this ETS is used to make statistical
inference with the assumed distribution.

We use one of the two methods to combine the non-iid results or p* values, Non-Bayesian or Bayesian. We show two
methods for non-Bayesian in Section (3.1) show how to obtain ETS of correlated data (Choi and McHugh,1989), and
in Section (3.2) show how to obtain ETS for TS** of non-iid data, that involve not only correlation but also other
non-iid-conditions, if any. Then, we use ETS with the assumed distribution.
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The case of iid random variables to obtain TS

TS is based on a test statistic. It is the standard test statistic with which two other test statistics, TS* or TS**, are
compared to measure the size of its deviation from TS, where TS*is from a distribution of correlated variables and
TS** is from a distribution of non-iid variables. Below, we show how TS is obtained.

Suppose, p = (py, -, Pn), 0< p; <1, i=1,..., n, are iid random variables with a known distribution function h(p|8).
One can make statistical inferences on p. Let the global null hypothesis H,: ;= .... = 6, = 6 against alternative
hypothesis H;: 0; = 6 for some i = 1, ..., n. The hypothesis H, is reasonable as all the tests are done for a same
purpose. We assume that h(p|@) is a monotone function, and therefore it is optimal for combining p-values (Birnbaum,
1954).

We define test statistic (TS) as

TSllor ta = T(h(ple),a: n)>
where the rejection test level a is obtained as

ty
a=1- [_% h(p|6) dp.

TS does not involve in hypothesis testing and it is based on the assumed distribution function h(p|0) of iid
p-values for given o and n. For example, h(p|@) is Normal(u, 0?), or x2, chi-square 2n degrees of freedom. When
we use h(p|B) as base distribution of TS, we do not need actual p values, but the h(p|6) implies p as iid random
variables. For example, we only need sample size n and test level a to have table value of TS for x2,, chi-square 2n
degrees of freedom. The test level a is pre-selected by researcher. This TS is used only to compare to study test
statistic, TS* or TS™, to measure its deviation from TS, and they involve in testing a null hypothesis at the same sample
sized n and test level a of TS.

Above TS, based on h(p|6) ofiid-random variables p, is its own ETS. TS is compared to two study test statistics, TS”
based on correlated data and TS*™ based on non-iid variables. We ignore the pre-procedures to obtain these data, and
consider these data are the variables of our interest.

This paper has five more sections. In Section 2, we review pertinent literature. In Section 3, we present the
non-Bayesian method. In Section 4, we show examples to illustrate the non-Bayesian method. In Section 5, we
present Bayesian method to find the posterior mean of the combined p-value and some additional examples are
presented. Section 6 includes a brief conclusion.

2. Pertinent Literature

Yoon et al (2021) used Meta analyses to increase statistical power by combining statistics (e.g., effect sizes, z- scores, or
p-values) from multiple studies when they share the same null hypothesis under the assumption that all the data in each
study have an association with a given phenotype. However, specific experimental conditions in each study can result in
independent statistics that are derived from a null distribution. They showed the power of Meta analysis rapidly
decreases as they were combined, Fisher’s Method (Fisher, 1932), Weighted Fisher’s method (wFisher), and Ordered
p-values (ordMeta) increased power. The last two methods (i.e., wFisher and ordMeta), outperformed existing
Meta-analysis when only a small number of studies n=2 is combined. The weighted Fisher’s method (wFisher) assigned
non-integer weights to each p-value, that are proportional to sample sizes. The wFisher and ordMeta are more robust
than the test statistic of the Meta method.

Vovk and Wang (2020) got the average of k p-values p;,....p; to obtain one combined value without any parametric or
distribution assumption. They reviewed previous results of arithmetic mean (AM p) by multiplying 2 as 2p and
geometric mean (GM) replacing 2 by e (=2.718). They extended the recent risk aggregation technique to harmonic
mean (HM) by multiplying log K for K> 2, scaling up by a factor of log k, where k is number of p-values. They also
explore several other weighted averages of p-values. Note that the inequality of HM< GM <AM, related to scaling
factors, which is proved using Jensen’s inequality (Casella and Berger, 2002).

Vovk and Wang (2020) showed several models to combine py,...,p, into a single p-value. assuming, py,...,p, are
independent random variables. The simplest way to combine them is the Bonferroni method,

F( plw"apk) =K min(pla'napk)a
when F(p,,...,py) exceed 1, it can be replaced by 1. Other method, used to smooth out overestimation of
above-mentioned method, is a general average:

@(p1}+,...,+®(px}]
K b

M(D,k(p19~"9pk) =9 [
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where @(0,1) - (—o0, ) is a continuous strictly monotonic function and ¢[(0,1)]- (0,1) is its inverse. For example,
AM corresponds to the identity function @(p)=p, GM corresponds to @(p)= log p, and HM corresponds to @(p)= 1/p.
They present more extensions of this basic idea.

Loughin (2004) compared several methods, when only p-values are available, in combining p-values from independent
tests under combined hypothesis heuristically through simulation. They are minimum value (Tippett, 1931), Chi-square
combining model (Fisher, 1932), scaled normal (Liptak, 1958), maximum value (Wilkinson, 1951), combinatoric
uniform (Edington, 1972) and approximately scaled logistic (Rastogi, 1979).

Fisher’s Model (FM) (1932) is g(p*|@) = =2 Y-, log(p;) = —2log(p; ...ps) = log 5 to combine p; ...p; .

_r
{pi-pn)

FM assumes the null hypothesis distribution follows x2,, chi-square with 2n degrees of freedom for n independent
random variables. This is not true when p* are correlated. Other problem of FM arises when combining a large number

of p*-values. When n — oo, FM value— oo, i.e., combined value of even non-significant p-values becomes significant

for a large n (Choi and Nandram, 2021).

Hess and Iyer (2007) used Fisher’s Score combining p-values to detect differential genes array using Affymetrix
expression arrays. Others (Tippett,1931, and Wilkinson,1951, George,1977, Stouffer,1949) suggest non-parametric
methods to combine p-values.

Most methods, presented above, assumed independent p-values and did not address correlation or non-iid problems for
statistical inference. Our research addresses a solution for this problem. However, this is a difficult problem because one
cannot estimate the correlation in a straightforward manner, and this is an innovation in this paper as well. In a recent
paper, Heard and Rubin-Delanchy (2018) showed how to choose between different methods to combine p-values. They
also discussed the likelihood ratio for combining p-values and the weighted average of the logarithms of the p-values.
However, there was no discussion about correlated p-values nor any discussion of the Bayesian approach, presumably
there is none.

There is virtually no Bayesian attempt on the specific problem we are considering in this

paper. Specifically, we are combining a number of p-values, which may be dependent because the experiments are done
under the same protocol, and similar procedures may be followed at the different experimental sites or laboratories.
However, there is a sparse literature on the study of Bayesian p-values, not the combination of p-values. See Casella and
Berger (1987) and the discussions that followed on reconciling Bayesian and frequentist evidence on the one-sided
testing problem.

3. Non-Bayesian Method

Test statistics, TS* for correlated variables and TS** from non-iid variables, are compared by the standard rule, TS, for
iid variables to see the size of their deviations from TS. We introduce these two test statistics, TS*in (3.1) and TS**in
(3.2). We also present the correction factors, C*and C**, for TS*and TS** and its estimations. We also present Table 1
to illustrate practical application to clinical data.

In the introduction, we discussed the base test statistic TS for h(p|6@) with iid random variables p = (py, ..., p,).as a
standard rule to which TS* or TS* are measured.

In 3.1, the TS* of g(p*|0) for correlated variables p* = (pj, ..., p;) for given sample size and test level is compared
to the base test statistic TS of h(p|0) to find its difference, which is expressed as ratio, C*= TS* /TS. We call C~
correction factor (CF) as it corrects the impact of correlation on TS™.

In 3.2, TS is now compared to TS** for non-iid p** = (p;*, ..., p,»), which may carry not only correlation but also all
other non-iid violations, if any. The difference between these two test statistics expressed as the ratio C**= TS** /TS.
Here C** corrects the impacts not only correlation but all other violations of iid condition.

In 3.3, we show how to estimate C**. Three candidates are presented.

In 3.4, we illustrate TS, TS**, and C** in Table 1, using Fisher’s Model F for TS** and chi-square distribution C for
TS. Table 1 is continuously used in the next Section 4. It shows for Fisher’s Model users how to use the table values of
C* for possible violations of correlation or non-iid problem.

3.1 Correlated Random Variables, Model 1

Previously we introduced the base test statistic TS = T(h(p|6),a,n) for a known distribution h(p|6) of iid random
variables p = (py, ..., pn), 0< p; <1,i=1,..., n, for given test level a and sample size n.
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Now we consider. We can obtain the test statistic (7S™) for the combining model g(p*|0) of these correlated variables,
p* =1, 1), 0 <p/ < 1, for a given hypothesis H, test level a¥, correlation p and sample size n. We can
assume g(p*|0) is its pseudo distribution and write

TS* =T(g(p*16), Hp, a*,p,n).

Choi and McHugh (1989) discussed how to reduce the TS* for the correlated variables in Chi-square testing. The
g(p*|0) is erroneously assumed to follow h(p|@), chi-square distribution x2,. When the test statistic (TS) for
distribution h(p|@) is compaired to TS* of the actual model g(p*|0), the test statistic, TS™ is largely inflated because
of the correlation. Hence TS* is reduced, dividing it by the correction factor C*= [1 + p(n-1)] , pis the positive
correlation among p*-values, n is the sample size.

Choi and McHugh (1989) showed how to obtain the effective test statistic (ETS) of test statistic TS* with this
correction factor, C*,

ETS=—,
c
on 1 <C*<oo. It implies that the correlation of the variables p* = (pj,...,p;), is indirectly adjusted by the
correction factor C*. After such correction, we can now make statistical inference on the effective test statistic ETS
with assumed distribution h(p|0), for example chi-square distribution.

We can also achieve the same goal through effective sample size n,of n, n, =g to obtain ETS (Choi,1980). For

example, for binomial variables, x;, i=1,...,n, that are correlated, its normal approximation of test statistic TS* under

the null hypothesis Hy.p = 0, is given as N(1,0)= \/%A_p). We can use the reduced sample size n, = n/C, to obtain
effective test statistic, ETS :%.

3.2 Non-iid Random Variables, Model 2

In this section, we try to find the differences between the test statistic TS™ and basic test statistic TS,
TS=T(h(p|6),a,n), and TS*= T( g(p**|0), Hy', a™*, p,n**). Two types of differences can be considered: One is the
correlation p in the variables p™ = (p;”, ..., p,=), and other includes all other known or unknown differences such
as h(p|8) #gp™|6), p™ # p, null hypothesis Hy", a # a™, n # n™.

The model g(p**|0) in TS™ is used to combine the non-iid variables p™ = (pi*, ..., py+). The distribution h(p|6)
in TS is based on iid variables p= (py,...,P,). Users of the model g(p**|6) assume that g(p**|0) follows the
distribution h(p|0) asif p*™ = p. It is a wrong assumption if p** # p. The aim of this section is to correct the wrong
assumption indirectly by adjusting the test statistic, TS**, while TS of assumed distribution h(p|@) remains the same.
We have shown when TS is compared against TS™ for correlated variables p* = (pi, ..., py,) in 3.1. Here in 3.2, we
compare TS to TS™ for variables p™* = (p;”, ..., p,), which is not only correlated but also violated non-iid and other
conditions, if any.

The total difference between the two test statistics, TS** and TS, is defined as the ratio of these two test statistics:

TS™ *ok
L,L0< C™ < oo,
TS

Note that TS™ =TS (Appendix A) when1l < C*™ < oo,and TS™ <TS when0< C"™ < 1. The turning point
greater than 1 or less than 1 depends on the size of p-values and the number n of the p-values as well as on the different
changing speed, increasing or decreasing, of the TS** and TS (see Table 1). We can ignore TS™ < TS when0< C*
< 1, since we assume only positive correlation of pi*, .., p.: or consider only TS*™ =TS to correct positive
correlation and other violation of TS™".

C**:

To correct the impacts of non-iid and other violations, if any, we adjust TS™ by C**as

ETs* =220 <¢* <o,
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Note ETS** > TS* > TS on the interval 1 < C** < oo (Appendix A). The ETS** is the effective test statistic of the
test statistic (TS**) on the interval,] < C* < oo, Here, the non-iid violation of the variables p;*, ..., p,*, is indirectly
corrected through C**.

Lemma

The difference between the two test statistics, TS™ and TS can be expressed as the ratio, C**=TS™/ TS, 0 < C* <
oo, the correction factor, C**, indirectly correct the correlation and other iid violations of TS**. The effective test
statistic is ETS™=TS** /C**, on 1 < C** < oo. Then, the effective test statistic ETS** of test statistic, TS™*, is used
for statistical inference with the originally assumed distribution h(p|8).

Proof is outlined in Appendix A
3.3 Estimation of Correction Factor C*™*

The correction factor C**indirectly measures all violations including non-iid condition of p**. In actual situation, it is
. . *k *k . *k S *
difficult to obtain exact TS*™ and hence C* . To estimate C* = TT—S, 1 <C* <oo, we compare TS =

T(h(p|0),a,n) of assumed iid random variables p = (pq,...,pp) to TS*= T(g(p**|6), H, a**, p,n**), of non-iid
variables p™* = (p;”, ..., p,,*). While the TS remains the same for given h(p|6), a,n, the TS™ can be estimated by
how we use (pi*, ..., p,+) in the combing model g(p**|0). Below shows three ways of different use of these variables.
The three candidates are (1) is to use the minimum value of p™ = (p;*, ..., p,*), expressed as Cyfi,, (2)uses the
maximum value of p™* = (p;*, ..., p,*), expressed as Cjyfyy, (3) is the sum of individual values of TS**, expressed as
Cpix> €ach term of TS™*is divided or individually weighted by all member weights (Example 1). All member weight is
used because the weight of one member is one: when sample size is one (i.e., n=1), it is independent automatically
regardless of the size of p-values, i.e., T(h(p|@),a,n=1)= T( g(p**|0),H), a™, p=0,n"=1), h(p|d) =
g(p™|0) for given a = a™ =p = p™, ignoring the null hypothesis, H;".as assumed distribution h(p|8) is not
involved in any null hypothesis. This is the only time the assumption is correct, or h(p|0) = g(p**|0) (see First row,
Table 1, Example 1).

Three possible correction factors are Cyjip, Crjux-and Cpie (Appendix C). The choice depends on researcher’s need.
Thus, three different effective test statistics, ETS™=TS** /C**, can be obtained when TS** reduced by respective new

correction factor:

N _ TS**
ETSmin = =
Min
TS**
* —
ETSmax = 7o,
Max
« _  TSY TSy
and ETSpix = ot eta
Mix,1 Mixn

*k

where ETSy 0, < ETSp < ETSp, because Cyfyy < Cppi <Chfax, (see Example 1). We may have the extreme cases
of ETSp and ETS;, when n*-values of p™ = (p;’,.., p,+) are widely spread out, and the minimum or
maximum value of p™ = (p;7, ..., p;+) is comparatively very small or large, far away from the mean. In this situation,
one may avoid the use of the two extreme cases and prefer to use middle value ETS,,;, for the statistical inference in
combining the value of p** = (pi”, ..., p,+). Note the weights Cpiy 1, ..., Cajixn are each term weights for each TS;”
of all member p;* (see Example 1, n=5 fifth row, for all 5 members, under each column of p-values).

3.4 Table 1, Numerical Example of Correction Factors C**

The Table 1 below shows the numerical calculation to construct the test statistic TS (C), TS™(F), correction factors
C™, using chi-square value (C) for TS and Fisher’s Model (F) for TS** and the clinical trial data for p™ =
(pi", .., py-) (Example 1, Section 4).

One reason of presenting Table 1 here is to remind the users of Fisher’s Model (FM) to be more careful if the data are
correlated or non-iid variables. Often we find that, especially in medical journals, many people are still using FM
without proper consideration of the problem as if data are iid random variables, Table 1 can be used to correct non-iid
problems of their data when they use FM in combining p-values. Another reason to have Table 1 here is to help
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understanding the text of next Section 4.

Table 1 shows the three numbers, FM (F), Chi-square model (C), and correction factor (C**), by the p-vales on the
columns, i.e., p=0.01,0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, and the 15 numbers on the rows, i.e., n=1,2,3,4,5,6,7,8,
9,10,11,12,13,14,15, each n-number means the same n p-values.(See Appendix A for the reason why we use the same p
for n times). Recall that

F =TS™ =T(g(p*|6), HS', a**, p,n*™"), test statistic for Fisher’s Model g(p**|0), for given p*™*, Hy*, a**, p,n*™",
C=TS= T(h(p|6),a,n) of assumed base distribution h(p|8) given a,n,

F TS*™
C**: —= 1
c TS

0 < C** <oo, in the Table 1, is the correction factor expressed as ratio of F
and C to compare them on the equal bases, (i.e., n=n** and a=a™ =p;",i=1,..,n"
except correlation p and the forms of models g(.) and h(.), on the interval,1 < C** <oo,

this condition implies that C** shows only impacts of correlation and model difference.
Note that here we use the five same values of p to induce the maximum correlation to F in C **:S , while C remains

F
c**"

the same, hence giving larger C**, which, in turn, provides conservative or smaller ETS*"= Thus, users of C**,

in Table 1 will have conservative effective test statistic, ETS™, when F is corrected by C**.
To illustrate for the calculation of F, C, and C**in Table 1, we take one cell for n=5, the fifth row and p=0.05 on the
third column, Fisher’s Model (FM), F = -2log 0.05 0.05 0.05 0.05 0.05)=29.96, using the same values five time for

n=>5 for the reason given above. The basic distribution, Chi-square value (C), C =18.31, for x2,, 2n=10 degrees of

freedom at a=a™ = p;* = p™ = 0.05, from the table. The result is C**= £= %FI.M as shown in the 5™ row,

n=5, and third column p=0.05 in Table 1. Other cells in Table1 follow the same steps to obtain F, C, and C**.

Note we set the sample size n=n**=35, test level a=a™ = p;* = 0.05, to compare C and F on the equal bases except
the correlation and the forms of two models, g(.) and h(.), i.e., g(.) # h(.). Thus, the C** shows the impacts of
correlation and the wrong assumption of the model F in comparison to C.

We call C**:g = %, 1 < C** <oo, correction factor as they are indirectly used to correct or reduce TS™* for the

violation of iid conditions and model assumption, for the data p:*= (05,.08, 0,09 0.10, 0.20), (see Appendix B).

TS:) is finally used for statistical inference. Note ETS™ >TS,1 < C*™ <oo.

Effective Test Statistic (ETS**:C

(Appendix A).
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Table 1. shows Fisher’s Model F=T'S™ and Chi-square Table value C= TS, and Correction Factors C**= F/C by the

size of the nine p’s, p=0.01, ..., 0.9 on the columns, and the 15 numbers n=1,...,15 for the same n p-values on the rows
nofp a =p— | 0.01 0.02 0.05 0.1 0.2 0.3 0.5 0.7 0.9
n=1 F 9.21 7.82 5.99 4.61 3.22 2.41 1.39 0.71 0.21
C 9.21 7.82 5.99 4.61 3.22 2.41 1.39 0.71 0.21
C** 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
n=2 F 18.42 15.65 11.98 9.21 6.44 4.82 2.77 1.43 0.42
C 13.28 11.67 9.49 7.78 5.99 4.88 3.36 2.19 1.06
C** 1.39 1.34 1.26 1.18 1.07 0.99 0.83 0.65 0.40
n=3 F 27.63 23.47 17.97 13.82 9.66 7.22 4.16 2.14 0.63
C 16.81 15.03 12.59 10.64 8.56 7.23 5.35 3.83 2.20
C** 1.64 1.56 1.43 1.30 1.13 1.00 0.78 0.56 0.29
n= F 36.84 31.30 23.97 18.42 12.88 9.63 5.55 0.56 0.84
C 20.09 18.17 15.51 13.36 11.03 9.52 7.34 5.53 3.49
C** 1.83 1.72 1.55 1.38 1.17 1.01 0.76 5.53 0.24
n=5 F 46.05 39.12 29.96 23.03 16.09 12.04 6.93 3.57 1.05
C 23.21 21.16 18.31 15.99 13.44 11.78 9.34 7.27 4.87
C** 1.98 1.85 1.64 1.44 1.20 1.02 0.74 0.49 0.22
n=6 F 55.26 46.94 35.95 27.63 19.31 14.45 8.32 4.28 1.26
C 26.22 24.05 21.03 18.55 15.81 14.01 11.34 9.03 6.30
C** 2.11 1.95 1.71 1.49 1.22 1.03 0.73 0.47 0.20
n=7 F 64.47 54.77 41.94 32.24 22.53 16.86 9.70 4.99 1.48
C 29.14 26.87 23.68 21.06 18.15 16.22 13.34 10.82 7.79
C** 2.21 2.04 1.77 1.53 1.24 1.04 0.73 0.46 0.19
n=38 F 73.68 62.59 47.93 36.84 25.75 19.26 11.09 5.71 1.69
C 3200 29.63 26.3 23.54 20.47 18.42 15.34 12.62 9.31
C** 2.30 2.11 1.82 1.56 1.26 1.05 0.72 0.45 0.18
n=9 F 82.89 70.42 53.92 41.45 28.97 21.67 12.48 6.42 1.90
C 34.81 32.35 28.87 25.99 22.76 20.60 17.34 14.44 10.86
C** 2.38 2.18 1.87 1.59 1.27 1.05 0.72 0.44 0.17
n=10 F 92.10 78.24 59.91 46.05 32.19 24.08 13.86 7.13 2.11
C 37.57 35.02 31.41 28.41 25.04 22.77 19.34 16.27 12.44
C** 2.45 2.23 1.91 1.62 1.29 1.06 0.72 0.44 0.17
n=11 F 101.3 86.06 65.91 50.66 35.41 26.49 15.25 0.44 2.32
C 40.29 37.66 33.92 30.81 27.3 24.94 21.34 18.1 14.04
C** 2.51 2.29 1.94 1.64 1.30 1.06 0.71 0.43 0.17
n=12 F 110.5 93.89 71.9 55.26 38.63 28.90 16.64 8.56 2.53
C 42.98 40.27 36.42 33.20 29.55 27.10 23.34 19.94 15.66
C** 2.57 2.33 1.97 1.66 1.31 1.07 0.71 0.43 0.16
n=13 F 119.7 101.7 77.89 59.87 41.85 31.30 18.02 9.27 2.74
C 45.64 42.86 38.89 35.56 31.79 29.25 25.34 21.79 17.29
C** 2.62 2.37 2.00 1.68 1.32 1.07 0.71 0.43 0.16
n=14 F 128.9 109.5 83.88 64.47 45.06 33.71 19.41 9.99 2.95
C 48.28 45.42 41.34 37.92 34.03 31.39 27.34 23.65 18.94
C** 2.67 2.41 2.03 1.70 1.32 1.07 0.71 0.42 0.16
n=15 F 138.2 117.4 89.87 69.08 48.28 36.12 20.79 10.7 3.16
C 50.89 47.96 43.77 40.26 36.25 33.53 29.34 25.51 20.6
C** 2.71 2.45 2.05 1.72 1.33 1.08 0.71 0.42 0.15

Note in Table 1, C** = F/C is increasing from1.39 to 2.71 when n=2 increases to n=15 on the first column of p=0.01. It
means that F is increasing faster than C as the number n of same p-values is increasing. This trend is reversed in the
seventh column of p=0.5, C** is decreasing from 0.83 to 0.71 when n=2 increases to n=15. i.e., F decreasing faster than
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C.

Similar trend exists on the rows, for the second-row n=2, C** is decreasing from 1.39 to 0.40 when p=0.01 increases to
p=0.9. The change point C** greater than 1 to less than 1 is p=0.5, it is true for all the 15 rows.

Note that we ignore when C** :%, 0 < C™ <1, it happens data are negatively correlated. or

TS** < TS which happens when C** does not reduce the impacts of non-iid inflation on TS*".
4. Examples

Two examples are presented. (1) Effective Test Statistics ETS* of the Fisher’s Model (FM) to combine p*-values from
clinical trial data at Minneapolis Veterans Administration (VA) Hospital. (2) Random group method for a large sample
of n variables (Choi and Nandram, 2021). Using random grouping, we divide a large sample into k manageable random

groups and obtain one p value from each group. Then the k p-values are combined, using FM.
4.1 Example 1. Fishers Model (Fisher, 1932) to Combine Clinical Trial Results

All Parkinson patients, visiting the Neurology Department of Minneapolis VA hospital, are the population during the
study period in 1970 (Choi, 1970). In our example, a sample of 36 patients is randomly selected from all the visitors.
The 36 patients randomly ordered and took either Symmetrel, a candidate for Parkinson medication, or placebo, for 20
weeks crossover design, starting by coin toss, one week medication and one week placebo double blindly.

After each week, they took 5 tests: walking, tremor, stiffness, arm movement, and eye movement, to measure the
impacts of medication or placebo. These tests are equally weighted assuming no residual effects, and calibrated from
one to ten, one for no effect and 10 for the best result. The differences of on and off weeks are measured. Each patient
provides 10 differences during 20 trial weeks and obtain one mean difference for each patient.

Again, find one mean differences from 36 patients for each of 5 tests, providing one mean difference from each of 5
tests. Using student-t test for the mean differences under the null hypothesis of no difference, we have 5 p-values from 5
tests, n=5, combined with Fisher’s Model (FM), assuming they are iid random variables and follow Chi-square 10
degrees of freedom, x%,.

We have five p values of t-test under the null hypothesis of no mean differences. Once we have p-values, we ignore the
previous procedures to obtain them and they are the random variables of our interest and may have their own
distribution. The five p values are pz = (05,.08, 0,09 0.10, 0.20).

Fisher’s model (FM) combines these 5 p-values.

FM = —21og (0.05x 0.08 x 0,09 x 0.10 x 0.2)

= — 2(log 0.05 + log 0.08 + log 0.09 + log 0.10 + log 0.20)
=—2(—2.9957 -2.5257 - 2.4080 - 2.3026 - 1.6094)

= 23.6828.

When we compare FM=23.6828 to the assumed Chi-square 10 degrees of freedom at ¢ = 0.01 = 23.209, FM is
significant as 23.6828 > 23.209 at a = 0.01 of x%,.

However, the clinical trial data p: = (05,.08, 0,09 0.10, 0.20) are correlated (see Appendix B) or non-iid random
variables, and thus, we cannot assume FM is distributed as chi-square 10 degrees of freedom. Therefore, FM =
23.6828 should be reduced for the violations of iid condition of pg.

Most data are correlated in the real world as there is hardly any independent data.

But statisticians, in general, blindly assume their data are iid random variables. Thus, it is necessary to check out the
independence and other characteristics of their data beforehand.

The three candidates, Cyi,, Cijux. and * Cyy, of Correction Factor are introduced in 3.3. They are used to reduce FM
for iid violations.

w _ F(min) _ -210g(0.05 0.05 0.05 0.05 0.05),a=0.05 __ . - o
(D Chin = e X7q (p=a=0051=5) = 1.64, using minimum(pz)=0.05.
Q) Cite = F(max) —210g(0.20.20.20.20.2),0=0.2 =1.29, using maximum(pZ)=0.2.

C(max) x%y (p=a=0.2,n=5)
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Since individual weights are C**=1 for n=1 (see first row, Table 1), we use an alternative weight.
(3) Ciixs = % =1.64, 1.52, 1.46, 1.44. 1.20 (see, C** in Table 1, row 5 for n=5 and corresponding columns of p= 0.05,

0.08, 0,09, 0.10, 0.20.

TS for Fisher’s Model result (F) is adjusted by this correction factor (C**) to obtain the effective test statistics
(ETS™") as shown below.

First, we find the minimum value of p:* = (05,.08, 0,09 0.10, 0.20, which is 0.05, and use 0.05 five times to find FM

(F) as explained the reason why we use the same number 0.05 five times. Then adjust FM by Cp;,=1.64 (Table 1,
row n=5 and column p=0.05). We have

FM(min=0.05) = -2 1og(0.05 0.05 0.05 0.05 0.05) =2(5 x 2.99573) =29.9573,

TS*(0.05) _ 29.9573

*k
Cmin=0.05 1.64

ETS**(min=0.05)= = 18.2667.

Second, similarly, the maximum value 0.2 is used five times in FM, and FM(max=0.2)

is adjusted by Cpx=02=1.29 (Table 1, row n=5 and column p=0.2). We have
FM(max=0.2)= -2 log(0.2 0.2 0.2 0.2 0.2)= 2(5x 1.60944)=16.0944.

ETS**(max=0.2)= T57(02) _ 16.0944

)
Cmax=0.2 1.29

=12.4763.

Third, we obtain FM(mix) of individual value adjusted by individual combined weights C;/* =
1.4,1.52,1.46,1.44,1.20 (Table 1, row 5, n =5 and columns corresponding to 0.05, 0.08, 0.09, 0.1, 0.2). The main
reason why we use individual combined weights is, when n=1, individual weights C**=1 regardless of p-vales. One
sample is always independent so both FM and assumed chi-square distribution remain the same for given test level
when sample size is one (see Table 1, row 1, C**=1 for all p=values). We have

FM(mix) = -2 {log 0.05 + log 0.08 + log 0.09 + log 0.1 +log 0.2}, and each term is divided by the corresponding
individual combined weight for the given reason. Hence, we have been

—2{log0.05} 4 —2{log 0.08} +—2 {log 0.09} +—2 {log 0.1} +—2 {log 0.2}

ETS**(mix)=
(mix) 1.64 1.52 1.46 1.44 1.20

2x2.99573 = 2x2.5257 . 2x2.408 = 2x2.3026 , 2x1.6094
1.64 1.52 1.46 1.44 1.20

5.99146 5.0514 4.816 | 4.6052 3.2188
= + e
1.64 1.52 1.46 1.44 1.20

=3.4521+3.3233 +3.2986 +3.1981 +2.6823 =15.9544.
Results show that

ETS**(max=0.2)= 12.4763 < ETS**(mix) =15.9544 <ETS** (min=0.05)= 18.2667.

ETS**(min=0.05)=18.2667 is significant at @ =0.05 of x%, (=18.307), but other two, ETS**(max=0.2)= 12.4763
and ETS**(mix) =15.9544 are not significant.

In the beginning of this example, Fisher’s Model gives FM=23.6826, without correction, which is significant at a =
0.01 of x%, (23.209). This FM is very much inflated when compared to above corrected results. Only one
not-corrected value 29.9537 of FM(min=0.05) is bigger than the not-corrected FT=23.6826.

When the Maximum, here 0.2 or Minimum, 0.05, of p-values are too far away from the mean or relatively too small
or too big, one may prefer the mixed value, ETS**(mix)=15.9544, for statistical inference, which is not significant at

a=0.01of x7; (23.209), evenat a =0.05 of xZ, (=18.307).
4.2 Example 2. P-values from Random Groups of a Large Sample

When the existing methods, for example normal test or student t-test, are used for statistical inference, we encounter the
large sample problems (Choi and Nandram, 2021). The reason is such test is the function of its variance, which in turn,
function of sample size. The variance becomes too small when the sample size is large or too large when sample size is
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too small. We consider the case of too large sample size, and test statistic becomes significant for the sample size over
certain level (Choi and Nandram, 2021).

4.2.1 The Large Sample Problem
We indicate the large sample problem and show a solution using Random Group Method (Choi and Nandram, 2021). A

concrete example is as follows. Let xq,x,, ...,x, be the realization of iid random variables X1, X,, ...,X,, distributed

2

as N(u, 02), where % is known and inference is required about . We test the null hypothesis Hy: u = p, against

alternative Hq: u < uy. Let Xy be observed value of the sample mean, X. Then the p-value of the test is
P(x <X, | Hy)

_pX—Ho _ Xo— Ho
B ( 0’/\/1'. = 0’/\/1[ |HO)
=®{n (To— Ko) }
Here ®(.) is the cdf of standard normal random variable. Therefore, if n is very large and Xy, < g, p-value = 0
which shows large sample problem (Choi and Nandram, 2021). We use the following steps to solve this problem.

Step one

We divide a large sample of size n into a number of random groups so that each can be tested by the usual method.
Let x, = x;, X3, ...., X, be a large sample of size n from N(u, 02). When n is a large number, we cannot do the
usual test. We want to divide the sample into h smaller samples of size m, 1< m < n, using Random Group Method.
The smaller samples enable us to perform a traditional test (e.g., Normal test, t-test) for testing a hypothesis, H,:
U = Uo. Choi and Nandram (2021) showed how to divide the large sample into h smaller samples. Each sample
provides one test statistic

ti=T(f(p| u, o), m;, Hy,a), m; =m, i=1,....h.
and the h test statistics provide h test scores p, ..., p, at the test level a; = «, =1, ... h.
Step two

When h p-values are iid variables, we can use Fisher’s Model is assumed to be chi-square 2h degrees of freedom. We
assume random groups are independent, we may assume h p-values are also independent, p = py, ..., p, are distributed
as chi-square distribution, f(p|@). We can make statistical inference with chi-square test result. However, If the p-values
are correlated, we can use the correction factor in Table 1, to correct such impacts on Fisher’s Model value.

Numerical example

A student presented data analysis of three sets of data; each includes 1500 persons’ dental records. All the three t-tests of
hypothesis H,: u = u, were significant due to large sample size. Suggestion was to randomly divide 1.500 into 50
groups of 30 persons. If out of 50 t-tests, 45 tests (90%) of the 50 tests were significant at p=0.05, then it is also 90%
significant for the 1500 persons’ data at the same level at p=0.05 (Choi and Nandram, 2021). Similarly, it can be done
for the remaining two groups.

5. Bayesian Model for Combining P-values

The Bayesian paradigm has the advantage of coherence, but the calculation of p-values is incoherent within the
Bayesian paradigm because the computation of a tail area of a posterior distribution is not coherent. This is why
Bayesians have hardly worked on this problem; see Casella and Berger (1987) and the discussions that followed. The
combined p-value is an appropriate posterior mean, u, say. However, note that y is a parameter in the Bayesian
paradigm, and it is a random variable.

It is not simple to include a correlation among the p-values since the sample of p-values is small. For the non-Bayesian
method, we have constructed a correlation based on a distance measure (see Appendix B); otherwise, it is impossible to
estimate this correlation. Here we will separate the data into groups to get an intra-cluster correlation.

The problem of combining a number of p-values, from the studies on the same subject, is one of data integration, which
is currently a hot topic, see, for example, Nandram et al (2021) for model-based methods using both non-Bayesian and
Bayesian approaches.

5.1 The Case of Independence

Suppose that we have the results of p-values p;,..., p, from n data sets, and these values are independent. We can also
use an appropriate prior to reflect previous procedures to obtain p-values.
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Letiid py..... pp ~Beta{u—,(1—m) =9} and E@;) = p, 0< pz < 1.

This is a useful reparameterization of the parameters of the Beta distribution in which both (y, z) lie in (0,1), which
leads to easy computation. See Nandram (2016) where this reparameterization was first introduced. A priori, we assume
that

t, z~U(0,1),
essentially a non-informative prior.

We want to make inference about yu, combined p values. Letting  p, = [[i2; ;, and p, = [, (1 — B;), the posterior
density of (p,z)is

1-z 1-z
N 1, () 1
m(w.z|p)~ [—)m Y= )] Pa ™ Py

For the samples from the posterior density, one can also use the Gibbs sampler (Casella and George,1992) to obtain u
and z for given p-values; but we use a random sampler that does not need any convergence monitoring.

,0<u,z < 1.

The posterior summaries we use are the posterior mean (PM), posterior standard distribution (PSD), posterior
coefficient of variation (PCV) and 95% highest density interval (HPDI).

Consider Example 1 on combining the five p-values, .05, .08, ,09, .10, .20. Applying our method based on the Beta
model to these p-values, we computed the combined p-value, u, and the posterior summaries are PM=.121,
PSD=.032, PCV=.266, HPDI=(.069, .191). Therefore, the null hypothesis is not significant at the 5% significant level
and perhaps not even at 10% significant level.

Table 2 has results of a small simulation study, which is used to provide many different examples. We generated n
p-values, n=10,...,100, and we compare the combined p-value, the posterior mean of p; we also look at z. Again, we
show posterior summaries in Table 2 of the two variables, u and Z, by sample size on the columns, and posterior mean
(PM), posterior standard deviations (PSD), coefficient of variations (PCV) and 95% HPDIs of y and z on the rows.
Again, not that u-values represent the posterior mean of the p-values, which range 0.05529 < u < 0.09157. Note that
the PSDs are decreasing as the sample size n increases. This also gives smaller PCVs and narrower 95% HPDIs e.g., at
n=2 the 95% HPDI for u is (.02945, .16355).

Table 2. Posterior summaries of u and z including intervals

Sample size n PM PSD PCV 95% Lower bound | 95% Upper bound
n=10 pu 0.09157 0.03414 0.37282 | 0.03945 0.16355
z 0.09908 0.05641 0.56934 | 0.02105 0.20441
n=20 pu 0.06136 0.01395 0.22729 | 0.04007 0.09056
z 0.05462 0.02196 0.40201 0.02156 0.09700
n=30 pu 0.05716 0.01028 0.17992 | 0.04096 0.07916
z 0.04721 0.01501 0.31800 | 0.02101 0.07358
n=40 pu 0.05810 0.00821 0.14122 | 0.04099 0.07149
z 0.03979 0.01092 0.27439 | 0.02117 0.06064
n=50 u 0.05596 0.00675 0.12061 | 0.04206 0.06934
z 0.03771 0.00901 0.23902 | 0.02110 0.05349
n=60 u 0.05545 0.00640 0.11540 | 0.04149 0.06795
z 0.03787 0.00818 0.21608 | 0.02107 0.05085
n=70 pu 0.05975 0.00616 0.10310 | 0.05117 0.07057
z 0.04001 0.00760 0.19006 | 0.03101 0.06021
n=80 pu 0.05529 0.00616 0.11149 | 0.04092 0.06617
z 0.04357 0.00808 0.18538 | 0.03098 0.05878
n=90 pu 0.05751 0.00571 0.09927 0.04879 0.07038
z 0.04436 0.00798 0.17976 | 0.03099 0.05867
n=100 u 0.05859 0.00573 0.09778 | 0.05099 0.07015
Z 0.04580 0.00778 0.16985 | 0.03101 0.05922

We may be able to include all information of first stage as prior replacing u, z~U(0,1). This
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Will be done in a future study. We can use independent Beta distributions with specified parameters, and this will
depend on the amount of information available.

To motivate the case, where we include an intra-class correlation, we provide another Bayesian analogue of Fisher’s
model of combining p-values. Let p; i=1,...,n, denote the n p-values, and let q; =log{p;/(1 — p;)},independent,
then a simple model is

q; | u,0* ~ Normal(8, a?)

1
(0, 0%) x =

This is a standard non-informative prior (a version of Jeffrey’s objective prior), but as always leading to proper posterior
distribution for (6, o?).

Here the combined p-value is @ = e?/(1 + e?). The posterior density of 6 is a Student’s t density, and inference
about @ is obtained by sampling the Student’s t density and computing @. For the example on the five p-values, for
inference about @, we have posterior summaries, which are PM=0.099, PSD=0.033, PCV=0.334, HPDI=(0.044, 0.162).
Again, the test is not significant at the 1 % significant level.

5.2 Including Correlation

We add an intra-cluster correlation as follows. We find all [ = n(n-1)/2 distinct pairs of q;, ...,q,, and we form a
Bayesian one-way random effect model, each cluster having just two values. Let y;;, y;,, i= 1,...,l, denote the distinct
pairs which form the clusters. Then we assume the model,

Yia» Yiz |t 0% md N({u;, (1- p)o?}
wl 6, % p nd N, pa?), i=1,...1,

(6, o2, p) « =

e
It is important to note that cor(y;;, yi | 9 , 02, p)= p in (0,1). We have actually used the traditional
non-informative prior for (8, o2, p); this prior causes no impropriety issues (see Nandram, Toto and Choi, 2011) for
proofs.

Also, note that we are actually assuming a composite likelihood because the pairs are not independent (i.e., each pair
has one common unit), for example, see Varin, Reid and Firth (2011) for a discussion of composite likelihood. Again,
the combined p-valueis @ = e?/(1 + e?). This is the same as for the case when no correlation is assumed.

Using Bayes’ Theorem, the joint posterior density is
mu, 0, o%p| Q)=

m(ul 0, o%p| @ m( 0| o%p| @ ms( o p| @ m( a?|p| Q) m(p| Q.
Here, m (u| 0, c%,p| q), m( 0 | 6%,p| q), and m3( 0% |p| q) , have simple forms, and m,(p| q) has
nonstandard form but it can be sampled using a grid method (e.g., Nandram, Toto and Choi, 2011). It is also true that
the joint posterior density is proper, provided [ > 2, see Nandram, Toto, and Choi (2011). Therefore, it is easy to
sample the posterior density of 8 and so @. To make inference about @, we draw 10,000 samples of the posterior
density of @. No monitoring is required because a Markov chain Monte Carlo sampler is not used.

As summaries of the posterior density of @, we have PM=0.078, PSD=0.017, PCV=0.217, and the 95% HPDI= (0.048,
0.112). Therefore, the combined test is not significant at 5% significant level. Note that when we assume no correlation,
PM=0.099 a bit larger, and the HPDI= (0.044, 0.162) a bit wider. The posterior summaries of p are PM=0.147,
PSD=0.125, PCV=0.851, 95% HPDI=(0.001, 0.603); so, there is a small correlation.

As another example, when we increased the number of p-values to 10 (i.e., duplicate the five p-values to get
05, .08, ,09, .10, .20, 05, .08, ,09, .10, .20); there is an increase in precision but the results remain essentially the same.
The posterior summaries of p are PM=0.147, PSD= 0.125, PCV= 0.851, 95% HPDI= (0.001, 0.393); so that there is a
small correlation, not much of a difference

6. Conclusion

We have used a model combine test scores on the same topic. Here, we assume a distribution for the data model. We
compare the two test statistics, one from assumed distribution h(.) of iid-data and other from pseudo-distribution g(.) of
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non-iid data. We define the differences between them as the ratio of the two. As the actual data may include impacts of
not only correlation but also other difference of iid and non-iid conditions. We describe how to reduce the test statistics
of non-iid data to make statistical inferences with the assumed distribution of iid variables.

We have considered two-stage procedure. The first stage is sampling and pre-processing to obtain the p-values. The
second stage is the analysis of the first stage results.

Suppose that h independent samples. y,, ..., Y, i=1,...,h, are randomly taken from the population for an investigation
on a same subject and suppose the sample follows true distribution f(y|@). Each sample provides one test result from
significant testing at a critical level a under a null hypothesis, providing test statistics.

tl = T(f(yllg)’ HO’“) nl)’ aL:a9 izl)"‘) h’

These test statistics provide h p*-values,

a=1- [ f(310) dy;,i=1,...h.

Some assume the two stages are connected and the second stage is a continuation of the first. If the information such as
sample design, sample, f(y;|0), Hy, @, and sample size n; are available, we can use this information in the second
stage to combine the p;-values to increase efficiency. Yoon et al.(2021) incorporate sample size n; to combine
p*-values. If one wants to include other information in Bayesian modeling, it is possible to use them as prior
information.

The validity check of these estimations can be added in the future extension using the variance or coefficient of
variation, and 95% confidence interval of each estimation through simulation.

It will be useful to carry out further study of the combination of correlated p-values in the Bayesian paradigm. For one
thing, it will allow us to incorporate further information that can improve posterior inference. When available,

information such as sample size and site covariates can be included in the combination of correlated p-values.
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Appendix A, outline for the proof of Lemma

Correlation, Model 1

Consider the correlated random variables p* = (py, ..., p5,)- Choi and McHugh (1989) show how to adjust the TS,
based on correlated variables in Chi-square testing. Test Statistic (T'S,) for correlated data p* is largely inflated and

corrected by the correction factor C=[1 + p(n-1)], p is the correlation among n p*-values. 1 < € < oo.

TSE

ETS, = PR ETS, can also be obtained by effective sample n, ofn, n, = % (Choi, 1980).

Non-iid case, correlation and other non-iid violations, Model 2
Here, we try to find the non-iid problem of p™* = (pi*, ..., p,>), indirectly through its test statistics TS™*, which is

compared to test statistic TS of iid variables. The total difference between the two test statistics, TS*™ and TS, can be
expressed as the ratio of these two, C** =% , is used to get effective test statistics (ETS), which is used for statistical

inference with h(p|0).

TS™ _ Tx(g@™0), Ho' a™ pn™),

¢ _TS - T(h(p|0),an)
The ratio, C** —TTSS ,0< C™ <o We consider C** only on 1 < C** < oo, for positive correlation or TS**> TS.
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We do not consider or ignore TS™ < TS on 0< C™ < 1, for it does not reduce inflated TS*™ for the impacts of
non-iid violation (see Proof below). It happens also for negative correlation in C=[1+ p(n-1)] (see Method 1).
To prove TS™> TS, consider two disjoint intervals, (0 < €™ <o )={(0< C"<1U A £C" < )}.

Let the effective test statistic be ETS™ = %, and correction factor be C** :%.
It is easy to see that ETS™ < TS™* from ETS™ = %, TS™ <TS from C** :T;S , on the interval (0 < C*™ < 1).

Similarly, ETS™ > TS™ and TS™ >TS, on the other interval (1 < C*™ < o0).

The difference between TS™ and TS, C** _I5T . Te@ 19).Ho a”pn )‘, C*™ is less than 1 or greater than 1
TS T(h(p|6),an)

depending also on n, p = a, and the increasing or decreasing speed of TS™* and TS (see Table 1).

If all the above conditions of TS™ and TS are same except p of p;™s, ignoring Hj, and @ = a™=p™,andn= n"",
the proof depends only on correlation p : 0< p(p;*,p;) <1, i # i',fori, i"=1,...,n. Model I can be used in this
case.

TS _ T(g@™10),a™pn™) _
TSq T(h(p|6),an)

is always independent, p = 0 and T(h(p|0),, a,n = 1)= (g(p**|0),,a*,p =0, n** =1) for g(.) =h(.)
and ¢ = a™=p**=p. This is the only time that FM for g(.) assumed correctly to be distributed as c
hi-square C for h(.)

(1) If p=0,0C"= 1,. It is also true C* =1 when n=1. The sample size one

(2) If 0< p <1 and 2<n, the correction factor C*=1+ p(n —1),1 < C* <o (Choi and McHugh 19
89) and, if ¢« = a™=p = p"i=1..,n",andn™ =n , the effective test statistic ETS =

TS e TS s
¢t 1+p(n-1)’

C* reduces the correlation impact of TS .

For example: If the correlation among the 5 p-values of data 0.05, 0.08, 0.09, 0.10, 0.20, is p=0.42 (Appendix
B). The correction factor € =1+ pn—1) = 1+ 042(5—1) = 2.68 and the Fisher’s Model Test

Statistic FM=  TS,%=23.68 is reduced as, ETS_ = %:8.8361, this effective Test Statistic not significant

at a =0.01 of x{, (=23.209).

If p=1,forn=5C=[1+pn—1)] = 1+ 1.0(5 —1) =5.00, which is the largest correction value for
any given n, and it ,in turn, gives the smallest ETS .~ = % =4,74.

(3) We can also use the effective sample size n;, n; = %, 1 <C* <o to obtain ETS* (Choi,

1980).

(4) The turning point also depends on the increasing or decreasing speed of TS, % and TS,, TS, < TS,
when 0 < C*™ <1land TS, > TS, when 1 <C™ <oo. We can ignore the case TS, < TS, on0 <
C*™ < 1, as it happens for negative correlation of p*™ variables. The change point from less than 1 to more than
1 also depends on the sample size n™ and size of p**, for example, Table 1 shows the turning point

is at p**= 0.5 in the column and for all n on the rows,
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Appendix B, the correlation of one sample
For one group of data including n variables py, ..., p,, currently there is no formula available to calculate p between the

1 Z?>,- Ipi—pjl . .
———— for the continuous variables, p;, ..., Pn.
[Pn-p1l n(n-1)/2

For example, p = (05,.08, 0,09, 0.10, 0.20),

_ (0.03+ 9.04+ 0.05+ 0.15)+( 0.01+ 0.02+ 0.12)+(0.01+ 0.11)+0.1 _ 0.27+40.15+0.1240.1 _ 0.64 __ 0.4207

Pwwy = 10.2-0.05)/|(5x4)/2 0.15x 10 15

variables. We define Pow) =

Appendix C, the three candidates of correction factor
TS = T(h(p|6),a,n) ofiid random variables p = (py, ..., p,) remain the same for given  test level @ and sample
size n, while TS**=T(g(p**10), Hy", a**, p,n**) on the non-iid variables p** = (pi", ..., pn+)
(1) Cpjin uses the minimum value of p™ = (p;7, ..., p,*) , all n** valuers are the same p,.;,,= Min(p™)

= Pmin,i» i=1,..., n*". to obtain the test statistic (TS**). The same minimum values are used to induc

e the maximum correlation and in turn conservative TS**. (see Example 1 and Table 1)

TSetmin _ TG (Pmin, -+ Pmin |0), HG', ™", p, ™

CH. =
Min TS, T(h(p|8), a,n)
(2) Cpfax uses the maximum value of p™ = (pi*, ..., p,*) , similarly all n** valuers are pyrg.=

ok

Max(p**) = Pmax,i i=1,..., n™.

o _ ISamax _ T(9Pmax, -+ Pmax |0), Ho', @™, p, 0™

Max — ]
TSy T(h(pl6),a,n)
*%
3) Imx= Clltl*ix,l—"_a'“’-’_ Mixn**>
TSi" _ (T(g(p{"]0), Hp.a** p.)) . -
where C; = == = L Li=1,..,n"
Mixit ™ rs, Ti(h(p;10).an*) T
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Abstract

The class of bivariate integer-valued time series models, described via copula theory, is gaining popularity in the
literature because of applications in health sciences, engineering, financial management and more. Each time series
follows a Markov chain with the serial dependence captured using copula-based distribution functions from the Poisson
and the zero-inflated Poisson margins. The copula theory is again used to capture the dependence between the two
series.

However, the efficiency and adaptability of the copula are being challenged because of the discrete nature of data and
also in the case of zero-inflation of count time series. Likelihood-based inference is used to estimate the model
parameters for simulated and real data with the bivariate integral of copula functions. While such copula functions offer
great flexibility in capturing dependence, there remain challenges related to identifying the best copula type for a given
application. This paper presents a survey of the literature on bivariate copula for discrete data with an emphasis on the
zero-inflated nature of the modelling. We demonstrate additional experiments on to confirm that the copula has potential
as greater research area.

Keywords: count time series, copula, Zero-Inflated, count data, Poisson distribution
Subject Classification: 62H05, 62H10

1. Introduction

In the study of multivariate distributions, copula functions are gaining popularity in recent years. They are attractive as
they can handle internal and mutual dependences among variables. The copula was first introduced in the Sklar (1954)
paper, a paper that Frechet helped publish. Hoffding (1940) is also credited for almost innovating the concept of copula .
Many problems in practical situations are modeled under related distributions using copula functions, in contrast to
classical multivariate (Gaussian) distributions for count data. As such, the literature shows a growing interest in the
investigation of dependence for sequences of counts in time series cases. The simplest of such sequences are bivariate
count time series data. Copula functions have gained popularity in building such bivariate and multivariate distributions
as the desire to understand the structure in massive time series count data is becoming more common. For diseases and
rare events, observed counts over time appear in a high frequency of zeros (zero inflation), which is discussed in MOller
et al. (2020) and Young et al. (2020).

Sklar (1959) introduced a method to build in the bivariate and multivariate distributions for two random variables. The
idea of joint distribution, especially in the bivariate case can be traced back to Frechet (1951, 1956, 1958). Morgensetrn
(1956), Plackett (1965), Farlie (1969) and many other authors could be included in this systematic approach of
constructing bivariate distributions with specific marginals and different dependence measures. See examples such as
Gumbel (1958) or Johnson and Tenenbein (1981). In that same line of thought, Cook and Johnson (1981) asked two
questions that are still of relevance. The questions are: 1) “Is there a distribution that appears to be the most promising
candidate for non-normal types of data?” 2) “Is the resulting distribution or model fit significantly better than that
obtained from the multivariate normal distribution?”

Finding a unique copula for a joint distribution requires one to know the form of the joint distribution. When using
copula, one can separately model the marginal distributions and the dependence structure, which makes the copula
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approach unique. Choosing the appropriate copula for a particular scenario means finding the one that best captures the
dependence in data. Many variants of copulas have been proposed in the literature where each of these is suitable for
different dependence structures. For example, Gaussian copula is flexible, and it allows for equally positive and
negative dependence. The Clayton copula cannot account for negative dependence, and it exhibits strong left tail
dependence. Similar to Gaussian copula, Frank copula allows for both positive and negative dependence between the
marginals.

Copulas offer a flexible framework to combine distributions. It is unique if marginal densities are continuous. However,
if some of the marginal distributions are discrete, the unicity cannot be obtained automatically.

Many copula functions have been identified, from the extreme of independent variables (the so-called independent
copula or the product) to the max or min copula. The dependence is then captured by a selection of parameters and
criteria associated with the range and properties of model parameters.

Moreover, high dimensional copulas have been introduced via bivariate copulas, under different decompositions and
structures. These structures are known as the canonical vine (C-vine) or drawable vine (D-vine). References to C and D
vines can be found in Bedford and Cooke (2002), Joe et al. (2010), and Aas et al. (2009). Griler (2014) proposed the
convex combination of bivariate copula densities incorporating the distance [between what?] as a parameter in the
spatial setting. The application of copula functions can be found in finances (Czado et al, 2012), hydrology (Yu et al.,
2020), transportation (Irannezhad et al, 2017), health care (Shi and Zhang, 2015), and more. The
Farlie-Gumbel-Morgenstern (FGM) family of copula can be used to establish relationship between predictors (Durante
and Sempi, 2016)).

Within the count time series, if we look at the binary data, there is a growing interest in the description of multivariate
distributions under pair copulas (Lin and Chaganty, 2021). Panagiotelis et al. (2012) presented pair copula constructions
for discrete multivariate data. Their algorithm is explained as a product of bivariate pair copula, demonstrating the great
potential of vine copula approaches. They stated that the model selection for C or D vine remains an important open
problem, with a particular emphasis on the conditional independence identification (Czado, 2019, Deng and Chaganty,
2021,). From there, the idea of using the D vine for modeling counts with excess zeros and temporal dependence is
presented in Sefidi et al. (2020). Perrone and Durante (2021) highlighted the link between the extreme discrete copula
and mathematical concept of convex polytope, which is an idea spinning from the class of bivariate distributions (Rao
and Subramanyam (1990).

There are numerous problems and interesting challenges related to time series of counts. Davis et al. (2016, 2021)
presented extensive literature and many examples of count time series. Fokianos (2021) and Armillota and Fokianos
(2021) presented a Poison network autoregression for counts. In the statistical process control, Fatahi et al. (2012)
proposed the monitoring of rare events under the copula based bivariate zero-inflated Poisson. van Den Heuvel et al.
(2020) proposed corrections to such results adding the negative correlation option.

With these studies and observations in mind, this paper presents reviews and updates related to the copula for bivariate
distributions of zero-inflated count time series  and highlights research directions. Motivated by multivariate datasets
acquired using correlation structures, our goal is to review the bivariate count and zero-inflated count time series for
inference and application purposes under copula modeling. We give some insights into the bivariate count copula and its
recent developments. We organize our discussion as follows. In Section 2, copulas for discrete count and zero-inflation
of discrete count time series data are described. The use of univariate and bivariate copula for discrete data is discussed
in Section 3. Extensions of discrete bivariate copulas are described in Section 4. We conclude this paper with an
extended discussion on future work.

2. Copula for Zero-inflated of Discrete and Count Time Series Data

This section introduces the general form for multivariate copula, and its Gaussian representation. We also give an
explicit definition of the zero inflated counts time series data.

2.1 Simple Gaussian Copula Example

Masarotto and Varin (2012) introduced a Gaussian copula model which can be used to model time series data in the
presence of covariates. The corresponding regression model can be written as follows.
Y. = g(X;, € 0),fort = 1,..,n,

where g(.) is a function of the covariates X, and €, which capture the serial dependence. The parameter @ is a vector
of marginal regression coefficients. The joint distribution function of the time series {Y;} fort =1,...,n can be
constructed using the Gaussian copula as follows.

Fi,y2,00¥0) =Py <91,Y2 Sy, Y Sy) = ch(p)(cD_l(Fl(yl ))'q’_l(Fz(h)) ey q)_l(Fn(J’n ))) (D
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Here, @~ is the inverse CDF of standard normal distribution, and ®p(py is the joint CDF of a multivariate normal

distribution with a mean vector of zeros and covariance matrix R.
2.2 Review of Copula for Discrete Data

Copula distributions are becoming increasingly popular in many areas of statistical data sciences. For example, in
engineering, copula distributions are used to model the shear fore for cantilever beams and for beams with multiple
point loads (Zhang and Lam, 2016). In pharmaceutical quality control, two correlated characteristics sample data are
presented in Fatahi et al. (2012). The authors describe the bivariate Poisson distribution with the evidence of
zero-inflation. Sukparungsee et al. (2021) developed a bivariate copula for control chart effectiveness. They show the
bivariate copula distribution on Hotelling’s T2 over the multivariate cumulative sum for positive, negative, weak,
moderate, and strong correlations when the assumption of multivariate normality is violated. Van den Heuvel et al.
(2020) extended the idea from Fatiha et al. (2012) and included negative correlation case, and an upper control limit on
the sum of bivariate random variables. Copulas are elegantly captured in the Genest and MacKay (1986), Genest
(1987) and also in Han and De Oliveira (2016 and 2020), among others. In the financial sector, a recent work by
Nikoloulopoulos and Moffatt (2019) reminds us of the need to study dependence structures. There are also more general
ambitions for the bivariate copula from a bigger perspective than we expect to show the aggregated effects in many
other areas.

The list of copula functions is very large. The work of Grofler and Okhrin (2021) presents a summary of bivariate
copula followed by the construction of multivariate copula using pair copula decompositions. They provide examples
for each copula family and provide an overview of how copula theory can be used in various fields of data science.

Yang et al. (2014) proposed the Ali-Mikhael-Haq (AMH) copula-based function to investigate the joint risk
probabilities of rainstorms, wind speeds, and storm surges. The proposed model was developed to assess the impact
based on marginal distributions of maximum daily rainfall and extreme gust velocity. Alqgawba et al. (2021) constructed
a class of bivariate integer-valued time series models using copula theory. Applying either the bivariate Gaussian copula
or the bivariate t copula functions, they jointly modeled two copula-based Markov time series models. They applied
their method on bivariate count time series data, where the marginals follow either a Poisson or zero-inflated Poisson
distribution.

Safari et al. (2020) proposed a bivariate copula regression model to analyze cervical cancer data. They applied a
bivariate copula to model and estimate joint distribution parameters. Nikoloulopoulos and Moffatt (2019) used
bivariate copulas to jointly model bivariate ordinal time-series responses with covariates for risks assessment of married
couples. They proposed a copula-based Markov modelling of ordinal time-series responses and used another copula to
couple their conditional (on the past) distributions at each time point. Copula families such as the Bivariate normal
(BVN), Frank, Gumbel and bivariate t-copula were used to model the univariate time series as well as to couple them
together.

The work of Nikoloulopoulos & Karlis (2010) presents a regression copula-based model where covariates are used not
only for the marginal but also for the copula parameters. They measured the effect of covariates on dependence
structure by building a fully parametric copula-based model while considering six one-parameter copula families,
namely Frank, Galambos, Gumbel, Mardia—Takahasi (M-T), and normal to build the dependence structure.

Karlis & Pedeli (2013) presented a bivariate integer-valued autoregressive process (BINAR(1)) in which the
cross-correlation was modeled using a copula to accommodate both positive and negative correlation. They presented
an application of the Frank and Gaussian copula to model dependence, and marginal time series were modeled using
Poisson and negative binomial INAR(1) distributions.

Ma et al. (2020) proposed a copula approach utilizing a Gaussian copula with random effects to model correlated
bivariate count data regression.

2.3 The Zero-Inflated Discrete Data

Zero inflation models can be found in many studies from Lambert (1992) to Hall (2000) and recently in Rigby et al.
(2019). The zero-inflated count regression models are described as follows.

e  Zero-Inflated Poisson (ZIP) Distribution (Lambert, 1992):

iy:
ye!©
e  Zero-Inflated Negative Binomial (ZINB) Distribution (Ridout et al, 2001):

Fy,(m) = w;+ (1 — wp)e ™ 200

2
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_ (l—wt)( K¢ )"f m  TOe+ye) A Ny,
Fy, (m) = w; + T(ie) \ke+ae Ye=0 yy (Kt+/1t) ’

e  Zero-Inflated Conway-Maxwell-Poisson (ZICMP) Distribution (Sellers and Raim, 2016):

_ (1-0) wm  A°
Fre (M) = 0ct 3 G 2720 e

exp(Z;y)

where A, = exp(Xif), w; = Trexp(Zly)’

and k, = exp(Wia)
are the associated covariate vectors affecting the intensity parameter A, the zero-inflation parameter w, and the
dispersion parameter i, , respectively.

Yt

A . .. .
The term Z;’zzo m is the normalizing function of the CMP.

Different variants of similar regression models have been proposed in the literature. A noteworthy use of copula for
zero-inflated data is studied in Shamma et al. (2020), where the inflation is built from a geometric count time series in
an integer-valued autoregressive (INAR) process.

3. Univariate and Bivariate Copula Models for Count Time Series Data
3.1 Univariate Copula-Based Model for Count Time Series Data
First order Markov model
Algawba, & Diawara (2021) introduced a class of Markov zero inflated count time series model where the joint
distribution function of the consecutive observations is constructed through copula functions. Suppose {Y;}
zero-inflated count time series first order Markov chains the multivariate joint density distribution of V;, Y,,..., ¥,
can be constructed as below.

PriVy =yi,..Yp=w) = Pr(Vy = y)) [lF<2 Pr(Ye = yelVeon = ye-1)
Using the copula theory, the joint distribution function of Yy, Y| can be written as below.

Fi(vi yvi) =C(F00), Fui(vey), 6) where & is bivariate copula parameter vector.

Hence, we can calculate the transition probability as below.

_Pr(Ye =y¢Ye—1=y¢-1)
ft-1Ve-1)

Pr(Y; = yelYie1 = Ye1)

Where Pr(Vi=y1,Yt 1 =Ye-1) =Fa Ve ,Ye-1 ) - Fro (e — Lyeq)
Fro VoY1 =D AF (e =1Ly — 1)

Likelihood and parameter estimation under first order Markov model

The likelihood function of the first order Markov model is given by

L@,y) =Pr(Yy =y, ;) [li=2 Pr(Yy = yelYeoq = ye-1;9) 3)
The log likelihood function (I(19; y)) is given by

n
l(0;y) =logPr(Y; =y,;6) + Z logPr(Y; = y¢lYi1 = ye—1;9)

t=2

Where 6 and § are the parameter vectors of the marginals and the dependence structure, respectively. For the Gaussian
copula family, the likelihood function involves a bivariate integral of the normal probability in C(.; §) which means
that the function is not in a closed form and we need approximations for the rectangle probabilities.

The simulation study was conducted using the R software by the ‘optim’ function in the “stats” package. We simulate
first order stationary Markov processes with joint distribution of consecutive observations following the bivariate
Gaussian copula. The marginal distributions are chosen to be the Poisson and ZIP distributions. We present the
simulation results for a first order Markov model with Poisson marginals. The parameter A represents the mean of a
marginal Poisson, w is the measure of zero inflation, and § is the serial dependence associated with time series data.
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We found that the estimate of these parameters is fairly stable where the precision increases with increasing sample size.
Table 1 and Table 2 show the estimates of copula parameters for positive and negative autocorrelations, respectively.
The estimates are described by standard measures of variation, including standard deviation, mean square error and
mean absolute error.

Univariate ZI count time series models
For positive serial dependence with 4=3, w=0.3, § =0.6

Table 1. Parameter estimates for the univariate ZI Poisson model with positive autocorrelation

Sample Size Parameters Estimate SE MSE MAE
A(3) 2.990 0.347 0.1200 0.282

100 w(0.3) 0.288 0.083 0.0070 0.006

6(0.6) 0.577 0.091 0.0080 0.073

A03) 3.013 0.192 0.037 0.152

300 w(0.3) 0.293 0.046 0.002 0.037

6(0.6) 0.596 0.046 1.433 1.196

A(3) 3.006 0.154 0.024 0.120

500 w(0.3) 0.295 0.035 0.001 0.028

6(0.6) 0.596 0.037 0.001 0.028

Source: Fernando, D., Alqgawba, M., Fernando, D., Diawara, N.& Samad, M. (2022).
For negative serial dependence with =3, ®=0.3, § =-0.6

Table 2. Parameter estimates for the univariate ZI Poisson model with negative autocorrelation

Sample Size Parameters Estimate SE MSE MAE
A03) 3.045 0.280 0.080 0.234
100 w(0.3) 0.299 0.046 0.002 0.036
6(-0.6) -0.618 0.087 0.0070 0.072
A3) 3.019 0.152 0.023 0.119
300 w(0.3) 0.298 0.030 0.0007 0.002
6(-0.6) -0.605 0.050 0.003 0.040
A(3) 3.014 0.112 0.0127 0.009
500 w(0.3) 0.299 0.019 0.0004 0.015
6(-0.6) -0.603 0.040 0.002 0.031

Source: Fernando, D., Algawba, M., Fernando, D., Diawara, N.& Samad, M. (2022).

Applications

Algawba & Diawara (2021) applied the proposed model to analyze monthly count of strong sandstorms recorded by the
AQI airport station in Eastern Province, Saudi Arabia. The data set consists of 348 monthly counts of strong sandstorms,
starting from January 1978 to December 2013. The bar plots suggest that both counts follow Zero inflated Poisson
distribution, whereas the ACFs indicate that the counts are serially dependent. Finally, to illustrate the superiority of the
proposed method they compare the method with zero-inflated integer-valuedautoregressive (ZIINAR) models.

3.2 Bivariate Copula-Based Model for Count Time Series Data

Copula based bivariate model

Suppose we have {Y;;} and {Y,;} jointly observed at timepoints t=1, 2, ..., n, with the assumption that each series {Y;;}
and {Y,,} follows a copula-based Markov process described on section 3.1. Let’s mean vector, correlation matrix of the
bivariate series as

and 7(t,t — 1) which are described as below.
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ue =EX) = E(Ylt)]

E(Y2)
COV(Yie, Yie-1) COV(Yie,Ype1)
COV(Ypr,Yip-1) COV(Yye, Y1)

Here the diagonal elements of the matrix represent the serial dependence between two series, while the off-diagonal
elements describe the cross-correlation between two time series.

(t,t —1) = COV(Y,Y_y) [

The joint distribution of Y;;and Y,, given Y;,_,, Y,,_4 for t=1, 2,...,n is given by

VTHEL) rVTHESY
f(J’u » Y2t |J’1t—1 Yat—1 ) = f J- V2 (21,2,R)d 2, dz,
v

_I(Fft) V_l(Fz_,c)

where V™1 is either the inverse cdf (Cumulative distribution function) of the normal distribution or the t-distribution
with V,(., R) being the bivariate normal or t-distribution, respectively. R is correlation matrix capturing the cross
correlation between two time series which is described below.

_[1 »p
R_[p 1

The limits of the bivariate integral can be calculated as below.
F = F(yir|Vie-1) and Fy = F(yir — 1|yie—1) , for i= 1,2 where,

F _Fo e Yie-1) = Fi Oie Yig-1 — 1)
(yi'tlyi't_l) B fe-1 WVie-1:60)

and

Fip (yi,t'yi,t—l) = C(Ft(yi,t)' Frq (yi,t—l - 1): 6)
C (.; &) represents the bivariate copula function with dependence parameter §, describing the

serial dependence in a single series, and @ is a vector of the marginal parameters.

Likelihood and parameter estimation for the bivariate model

Likelihood based inference were conducted with maximizing the log-likelihood function of the bivariate distribution.
The corresponding likelihood function for the joint distribution is given by,

L(,y) = f (Y11, Yor)- ITi=2 f (Ve Yaoe [ Yie-1, Yor—1) “)
Where 9 = (6,6;,8, ,p)" ,where 6 is the marginal parameter vector and &, ,§, are parameters associated with the
serial dependence in each time series respectively. The cross correlation between the two-time series is captured by p.

We can construct the log -likelihood function [(9,y) as below.

l@,y) = lOg(f(Ylt' er)) + Xtz log f (Vi Yar[Yie—1, Yar1).
The likelihood function (I(9,y)) contains either a bivariate normal or t-integral function which unable us to use the
standard maximization procedures to get the ML estimates. Due to this reason, we evaluated the bivariate integral
function using the standard randomized importance sampling method.

We present simulation results for the proposed bivariate model in Section 3.1 after expanding from univariate to
bivariate model. For each univariate time series, we considered a copula-based Markov model, where a copula family
was used for the joint distribution of subsequent observations, and then, coupled these two-time series using another
copula at each time point.

The parameters of the marginal Poisson distribution are shown in Table 3 and Table 4 for positive and negative cross
correlations, respectively. Here 4; and 4, denote the means, w; and w, denote zero inflation parameters, &, and
6, denote the serial dependence of marginal distributions. p is measure of the cross correlation between the two time
series distributions.

The Gaussian copula was used to construct marginal distributions for 300 replicates with sample sizes of 100,300 ,500
and the true parameter values are presented in brackets. The count time series with positive cross correlation is
presented in Figure 1, and the joint density is shown in Figure 2. When observing the parameter estimates displayed in
Table 3, we can state that the estimated values are more precise and converges to the true parameter values as the
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sample size increases.
Bivariate ZI count time series models

Table 2. Parameter estimates for the bivariate ZI Poisson model with positive cross correlation

Sample Size | Parameters Estimate SE MSE MAE
A E)) 3.4021 0.3887 0.3123 0.4599

w1(0.3) 0.3333 0.0835 0.0081 0.0701

1,(5) 5.1993 0.3832 0.1860 0.3337

100 w,(0.4) 0.4026 0.0686 0.0047 0.0537
61(0.6) 0.5425 0.0837 0.0103 0.0788

6,(0.49) 0.3628 0.0963 0.0106 0.0806

p0.5) 0.4822 0.0911 0.0086 0.0748

A0 3.4051 0.1974 0.2030 0.4082

w1(0.3) 0.3380 0.0447 0.0034 0.0471

42(5) 5.1816 0.2097 0.0768 0.2226

300 w,(0.4) 0.4065 0.0386 0.0015 0.0309
6,(0.6) 0.5540 0.0433 0.0040 0.0524

6,(0.49) 0.3669 0.0544 0.0040 0.0492

p(0.5) 0.4711 0.0493 0.0033 0.0441

13 3.4105 0.1721 0.1980 0.4108

w41(0.3) 0.3408 0.0365 0.0030 0.0456

42(5) 5.1843 0.1622 0.0602 0.2028

500 w,(0.4) 0.4084 0.0293 0.0009 0.0246
6,(0.6) 0.5558 0.0320 0.0030 0.0465

6,(0.4) 0.3700 0.0430 0.0027 0.0413

p(0.5) 0.4720 0.0392 0.0023 0.0379

Source: Fernando, D., Algawba, M., Fernando, D., Diawara, N.& Samad, M. (2022).

count time series rho=0.5
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Figure 1. Plot of individual ZI count time series with positive cross-correlation

Source: Fernando, D., Alqgawba, M., Fernando, D., Diawara, N.& Samad, M. (2022).
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Joint density function

Figure 2. Joint probability density function for the bivariate ZI model with positive cross-correlation
Source: Fernando, D., Algawba, M., Fernando, D., Diawara, N.& Samad, M. (2022).
There are times when the correlation is negative and table 4 shows the parameter estimates for such scenarios. The
Gaussian copula was again used in constructing marginal distributions for 300 replicates with sample sizes of 100, 300,
500 and the true parameter values are presented in brackets. The count time series with negative cross correlation is
illustrated in Figure 3, and the joint density is shown in Figure 4. The estimated parameters in Table 4 are more precise
and converge to the true parameter values with increasing sample size as observed before.

These results are new because a large body of the literature focuses on positive correlations. Therefore, our proposed
algorithm can handle less restrictive cases of ZI count time series data.

Table 3. Parameter estimates for the bivariate ZI Poisson model with negative cross correlation

Sample Size | Parameters Estimate St _Dev MSE MAE
2,03 3.417 0.388 0.324 0.474

w1(0.3) 0.341 0.084 0.074 0.074

A,(5) 5.225 0.382 0.196 0.354

100 w,(0.9) 0.408 0.070 0.056 0.056
461(0.6) 0.549 0.085 0.010 0.077

6,(0.49) 0.368 0.103 0.012 0.086

p(-0.4) -0.391 0.104 0.011 0.081

2,03 3.4072 0.2016 0.2063 0.4110

w4(0.3) 0.3378 0.0455 0.0035 0.0477

A,(5) 5.2100 0.1965 0.0826 0.2331

300 wy(0.49) 0.4077 0.0379 0.0015 0.0313
61(0.6) 0.5529 0.0458 0.0043 0.0534

6,(0.49) 0.3683 0.0537 0.0039 0.0499

p(-0.4) -0.3815 0.0559 0.0035 0.0465

A E) 3.4181 0.1727 0.2045 0.4182

w4(0.3) 0.3364 0.0348 0.0025 0.0412
;%) 5.1984 0.1575 0.0641 0.2138
500 wy(0.49) 0.4094 0.0304 0.0010 0.0254
6,(0.6) 0.5524 0.0321 0.0033 0.0493
6,(0.49) 0.3731 0.0417 0.0025 0.0388
p(-0.4) -0.3794 0.0460 0.0025 0.0414

Source: Fernando, D., Alqgawba, M., Fernando, D., Diawara, N.& Samad, M. (2022).
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Figure 3. Plot of individual ZI count time series data with negative cross-correlation
Source: Fernando, D., Alqgawba, M., Fernando, D., Diawara, N.& Samad, M. (2022)
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Figure 4. Joint probability density function for the bivariate ZI model with negative cross correlation

Source: Fernando, D., Alqgawba, M., Fernando, D., Diawara, N.& Samad, M. (2022).
Applications

The proposed class of method can be applied to model bivariate zero inflated count time series data in the presence of
both temporal dependence and cross correlation.

Wang et al. (2013) proposed a bivariate zero inflated poison model to analyze occupational injuries. Algawba et al.
(2021) applied this framework to model monthly counts of forgery and fraud in the 61st police car beat in Pittsburgh,
PA. Two count time series were selected to fit the proposed bivariate Poisson class of models under the clear evidence
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of the presence of serial dependence and cross correlation.
4. Extensions of the Bivariate Copula for Count Time Series Data

Many copulas have been proposed in the literature for the bivariate and multivariate distributions. The choice of the
copula is mainly dictated by the dependence structure.

As shown in GréBer and Okhrin (2021), the research on time series dependence and copula direction is productive and
has numerous applications. They showed examples of bivariate copulas. Count time series data are observed in several
applied disciplines such as environmental science, biostatistics, economics, public health, and finance. Sometimes, a
specific count, usually zero, may occur more often than other counts. Moreover, overlooking the frequent occurrence of
zeros could result in misleading inferences. A copula-based time series regression model for zero-inflated counts is
developed. Applying ordinary Poisson and Negative Binomial distributions to these time series of counts may not be
appropriate due to the frequent occurrence of zeros. A new form of ZI is called the Conway-Maxwell Poisson (CMP).

Algawba et al. (2021) have extended the work done by Masarotto (2012) to include a class of models that accounts for
Z1. The marginals are assumed to follow one of the ZIP, ZINB, and ZICMP distributions, and the serial dependence was
modeled by a Gaussian copula with a correlation matrix that of a stationary ARMA process. Likelihood inference was
carried out using sequential importance sampling. Simulated studies were conducted to evaluate the parameter
estimation procedures. Model description and parameter misspecification or unidentifiability are always concerns from
the data generation to real data analysis (Faugeras, 2017). Model assessment to check the goodness of fit for the
proposed models was done via residual analysis. The proposed models were applied to the occupational health data.
According to the residual analysis, the model fits the data adequately, but both ZINB and ZICMP seem to have a slight
advantage over ZIP distribution. Future direction is to consider different model construction methods from the marginal
regression such as Markov models to handle zero-inflated count time series data. Recently, the use of copula-based time
series for ZI counts in the presence of covariates has been proposed in Algawba et al. (2019) and Algawba and Diawara
(2020). The work considered the cases of ZIP, ZINB, and ZICMP distributed marginals. Likelihood-based inference is
considered under a sequential sampling method to estimate both the marginal regression parameters and copula
parameters. Improvements in the Bayesian Information Criteria were noted, as discussed in Joe (2014) and Dalla Valle
et al. (2018). The applications of these models include occupational injury counts, arson counts, and sandstorm counts.

5. Further Developments and Conclusion

Several high-dimensional copulas are obtained from the bivariate version seen in the previous section. The bivariate
time series copula becomes then very important. The vine copula is built from blocks of bivariate version of higher
dimension (Acar et al. 2019, Czado). We will only mention the Hierachical Archimedean copula, the Multivariate
Archimax copula, the Factor copula, and the Vine copula. Copula functions are particularly interesting in capturing
dependence with pairwise Kendall’s correlations for invariance to monotonic transformations of marginal distributions.
The copula is Archemedian and is applicable for higher than bivariate dimensions of the correlation between marginals
(McNeil and Neslehova, 2009). There is research on the symmetry of copula, and the family of measures under
non-degenerate asymptotic distributions (Quessy and Bahraoui, 2018). The disentangling of features with copula
transformation is also gaining popularity in so called deep Information bottleneck (DIB) to yield higher convergence
rates (Wieczorek et al. 2018, Wieczorek and Roth 2020). As a measure, the copula can be thought as a transformation
on a set, which is also a measure preserving transformation. Copulas are also obtained under non-monotonic
transformations. Bardossy and Li (2008) proposed a v-transformed copula.

The ideas of Levy processes modelled via copula offer many areas of research (Liu et al., 2021).

The spatio-temporal dependence will become more of a priority as the research evolves. See more in Krupskii and
Genton (2017). Bivariate time varying copulas are proposed in Acar et al. (2019). The dynamic vine copula is also
adapted to the Bayesian inference (Kreuzer and Czado, 2019).

In this review, we have shown statistical and computational methods for bivariate count time series data analyses using
copula distributions. The general framework for discrete count data and the bivariate nature of data are presented. The
copula structure is described with details on its analytic perspectives. The identifiability and the choice of copula are
very challenging in any discrete data setting and in the case of negative associations between components. As
mentioned in Genest et al. (2011), Faugeras (2017) and in Trivedi and Zimmer (2007, 2017), the copula may not
generate the perfect data distributions. Such concern is also pointed out in Durante and Sempi (2016). Copula can
model bivariate dependence that are invariant under monotonic transformation only (GréB8er and Okhrin, 2021).  When
the dependence is weak, the FGM copula offers great alternative, but determining the most appropriate type of FGM
copula to fit data is an open problem. Trivedi and Zimmer (2017) proposed several simulations to show these concerns.

Similar to any other functions, the copula functions cannot be deemed as the solution to all data problems. However,
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they offer a valuable alternative, especially in the case of discrete data. The research on discrete time series data is more
important in this class of functions, especially for bivariate cases as the characterization of bivariate count dependence
structure provides tools for may applied problems.
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Abstract

Throughout the history of our country, different policies have left an incentive for favorable changes, however, none by
itself has managed to combat the problems of chronic malnutrition, to which the current pandemic is added. The state of
Hidalgo is in a nutritional transition, with persistent child undernutrition and the predominance of chronic diseases
associated with malnutrition (undernutrition, overweight and obesity). Part of this research aims to contribute (in a
second phase) to the adequacy of current public policy in the fight against malnutrition and, of course, to the current
needs experienced by the SARS-CoV-2 infection contingency. This work develops the application of simple sampling
and the stages involved in this statistical tool, whose objective is to establish which part of the reality under study
should be studied in order to make inferences about a given population. From the period contemplated between April 28,
2020 and March 8, 2022, the 84 municipalities of the state of Hidalgo reported a total of 86,124 confirmed cases of
SARS-CoV-2 infection, from which a sample size of 1,054 subjects has been calculated (representativeness of 91.35%
of the target population). The correct application of mathematics in the context of health should allow us to enjoy good
health, especially if these results are focused on the promotion and prevention of diseases and their complications;
mathematics has surpassed the frontiers of knowledge in various areas and its implementation in this case with respect
to public policy and nutrition.

Keywords: cases, diseases, infections, malnutrition and public policy.
1. Introduction

Health problems have a multifactorial character that allows science, society, health professionals and other areas to
contribute their multidisciplinary and transdisciplinary perspectives (Salas-Perea, 2003) in the search for strategies to
combat diseases, which require compliance with ethical, social, economic and scientific aspects (Cortés et al., 2020).

Malnutrition (which includes obesity, overweight and desnutrition) represents a serious health problem that not only has
biological repercussions, unfortunately Mexico faces the consequences of these diseases because it is the first place in
overweight and obesity in adults and children, although undernutrition has not been fought either.

As the quarantine period ascended due to SARS-CoV-2 infection, social distancing and isolation, generated negative
changes in healthy eating; body weight and body mass index increased, which requires informing people about proper
nutrition management and the importance of regular exercise (Ates & Yesilkaya, 2021).

It has been described that the high risk of severe manifestations and mortality due to SARS-Cov-2 infection is presented
mainly by patients with chronic underlying diseases (although they have also been reported in any age, without previous
comorbidities), such as cardiovascular disease, diabetes, chronic kidney disease, obesity (Antezana Llaveta &
Arandia-Guzman, 2020), arterial hypertension and immunosuppression (lymphomas, active tumors or under
chemotherapy regimen) (Zetina-Tun & Careaga-Reyna, 2022).

In April 2022, the state of Hidalgo ranked ninth in national mortality, with a rate of 272 deaths per 100,000 inhabitants;
3 confirmed cases per 100,000 inhabitants (population size: 3,086,414) and a cumulative 93,111 confirmed cases related
to SARS-CoV-2 infection (Secretaria de Salud, 2021).

Long-term complications of this infection are described, including altered insulin sensitivity, pancreatic islet damage
with decreased insulin secretion, muscle weakness and atrophy with altered exercise capacity, changes in body
composition with increased fat mass and elevated triglycerides and circulating fatty acids, which could ultimately lead
to increased risk of future cardiovascular events (Ayres, 2020).

Various investigations in the world and national literature continue to provide valuable information on this historical
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pandemic event, but none specifically has characterized the population of Hidalgo in relation to malnutrition as a risk
factor for this infection, so this study is considered of great impact for society and its government.

A universe or population is the set of total elements that make up the interest of an analysis and on which inferences and
conclusions are made (Lopez-Roldan & Fachelli, 2017).

In this context, the objective is to choose the size of the representative sample of the universe generated by the 84
municipalities of Hidalgo, corresponding to the subjects confirmed with SARS-CoV-2 coronavirus infection, using the
simple sampling technique having as reference the state database belonging to the state of Hidalgo and considering a
given period of time.

The usefulness of a representative sample allows the study subjects to have the same opportunity to be chosen and
therefore, to be included in a study, achieving that the researcher extrapolates and extends his/hers results to a given
population, understanding that those selected are a numerical representation of the universe from which they come
(Otzen & Manterola, 2017).

The hypothesis of this exercise is that the greater the reduction of the dimension of the universe studied, the greater the
understanding of the phenomenon under study.

Understanding sampling as a scientific research tool whose objective is to determine that part of the population worthy
of study (Hernandez & Carpio, 2019), feeds a transcendental part in the research exercise of the next phase of this
publication called: evaluation of public policy in relation to malnutrition as a risk of SARS-CoV-2 in Hidalgo,
describing the hypothesis that malnutrition is an element that influences the mechanics of the disease, with the vision of
obtaining the necessary information to analyze, study and evaluate the current policy in the field of nutrition and food,
highlighting that illness and death affect the family economy, that of health systems and that of governments.

2. Method

Sampling makes it possible to analyze fragments of a phenomenon with the advantages of reduced costs and more
accurate, faster, flexible and more supervised results. Simple sampling is a method of selecting n units in a set of N so
that each of the NCn different samples has the same possibility of being elected. In practice, random sampling is
performed unit by unit, that is, the units from 1 to N are listed, then a series of n random numbers between 1 and N is
extracted, because through a computer program (R, Python or Julia) a table of random numbers is created, where each
extraction is chosen randomly, the units that carry these n numbers constitute the sample (Cochran, 1977).

The sample size, a guide to the follow-up of a certain procedure described below (Portela & Villeta, 2007).

Stage 1. Approach to the problem (in which the phenomenon to be studied is identified, raising all the characteristics
that encompass it).

Stage 2. Sample frame (a list of elements that make up the population of the phenomenon under study, known as sample
units, is outlined).

Stage 3. Selection of the sampling technique (from a sample frame, the ideal technique is chosen to estimate the sample
size).

Stage 4. Sample size (based on the sampling technique, the sample size and its proportional distribution for each of its
elements are calculated).

Stage 5. Feasibility of the sample size (which means determining the degree of reliability of the sampling).

2.1 Sample Frame

The complexity of the universe under study, due to the large amount of data emanating from it, requires the selection of
a sample, which reduces the use of resources such as financial, human, material and intangible resources such as time.
By simplifying the size of the population from which we wish to analyze a series of variables, the time in which data are
generated that contribute to a more accurate knowledge of a phenomenon, its behavior and prevention in terms of health,
is compromising; the pandemic has given us several lessons on the right or wrong actions of governments and their
effect on citizens; numbers have that power.

The size of the reported population corresponds to 86,124 subjects, confirmed with SARS-CoV-2 infection, according
to the state database, collected thanks to the Epidemiology area of the State Health Secretariat (Table 1).
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Table 1. Confirmed cases of SARS-CoV-2 by municipality in the state of Hidalgo

Municipalities Registered cases
1. Acatlan 26
2. Acaxochitlan b
3. Actopan 2,506
4. Agua Blanca de Iturbide 0
5. Ajacuba 214
6. Alfajayucan 132
7. Almoloya 9
8. Apan 1,851
9. EI Arenal 24
10. Atitalaquia 231
11. Atlapexco 93
12. Atotonilco el Grande 172
13. Atotonilco de Tula 1279
14. Calnali 156
15. Cardonal 174
16. Cuautepec de Hinojosa 495
17. Chapantongo 270
18. Chapulhuacan 48
19. Chilcuautla 117
20. Eloxochitlan 25
21. Emiliano Zapata 261
22. Epazoyucan 3
23. Francisco I. Madero 25
24. Huasca de Ocampo 57
25. Huautila 0
26. Huazalingo 75
27. Huehuetla 289
28. Huejutla de Reyes 2275
29. Huichapan 1,602
30. Ixmiquilpan 1,831
31. Jacala de Ledezma 78
32. Jaltocan 14
33. Juarez Hidalgo 5
34. Lolotla 29
35. Metepec 367
36. San Agustin Metzquititlan 49
37. Metztitlan 208
38. Mineral del Chico 37
39. Mineral del Monte 266
40. La Mision 33
41. Mixquiahuala de Juarez 1,682
42. Molango de Escamilla 384
43. Nicolas Flores 47
44. Nopala de Villagran 225
45. Omitlan de Juarez 30
46. San Felipe Orizatlan 1
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47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
71.
78.
79.
80.
81.
82.
83.
84.

Pacula

Pachuca de Soto
Pisaflores

Progreso de Obregon
Mineral de la Reforma
San Agustin Tlaxiaca
San Bartolo Tutotepec
San Salvador

Santiago de Anaya
Santiago Tulantepec de Lugo de Guererero
Singilucan

Tasquillo

Tecozautla

Tenango de Doria
Tepeapulco
Tepehuacan de Guerrero
Tepeji del Rio de Ocampo
Tepetitlan

Tetepango

Villa de Tezontepec
Tezontepec de Aldama
Tianguistengo
Tizayuca

Tlahuelilpan
Tlahuiltepa

Tlanalapa

Tlanchinol

Tlaxcoapan

Tolcayuca

Tula de Allende
Tulancingo de Bravo
Xochiatipan
Xochicoatlan
Yahualica

Zacualtipan de Angeles
Zapotlan de Juarez
Zempoala

Zimapan

Total

44
35,433
41

30
1,433
4

99

52

75
1,900

225
206
581
4,153
108
3,299
79

60

64
151
43
5,523
127
51

76
165
1,492
173
5,360
5,996

71

641
61
72

390
86,124

Note. Period contemplated from April 28, 2020 to March 8, 2022; personal elaboration.

2.2 Selection of the Sampling Technique

Assuming that the target population is finite (since the total number of observation units that compose it is known), we
have that (Aguilar-Barojas, 2005):

N*ZZPQ

n=————->-—
E2(N-1)+Z2PQ
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Where:
e n=Sample size.
e N = Total population size.

e Zo = Confidence level at 0.95 and with a significance level at 0.05. Below the curve of the normal distribution is
1.96.

e P =Probability of success.
e Q=(1-P)=Probability of failure.
e E = FError admitted in the sample.

It is important to clarify that N is the 86,124 subjects and n, the revealing sample size calculation; P, explains the
possibility of being selected as part of the sample and that Q is the probability of not being selected (or known as
failure), so it assigns 50% versus 50% (0.5+0.5=1); that is, both P and Q have the same probability of being selected.

Its main estimators are the following (Pérez, 2005):

e  Sample size by item:
n = (—')*n; i =123,k @)

Where:

e N; = Any of the states, i.e., the size of the population of each municipality.
e N = Total population size.

e n=Sample size.

o k=1,2,34. .k As the total number of municipalities.

e  Estimator of the total of the sample:

Y =nY (3)
Where:
Y = Populati