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Abstract

In this paper the left Bol split extension method is used to build left Bol Lie loops from the Lie groups H and K such

that H is a Lie subgroup of Aut(K). Furthermore, we investigated some of the properties of those loops constructed in

this way. Examples are given for finite and infinite dimensional left Bol Lie loops. Moreover, we showed that the twisted

semidirect product of Lie algebras is an Akivis algebra.

Keywords: loops and quasigroups, semidirect product, twisted semidirect product, Lie loops.

1. Introduction

Non-associative semidirect product of groups are investigated in the last decades intensively in (Johnson & Sharma,1980;

Kinyon & Jones, 2000; Nagy & Strambach, 2008; Johnson & Smith, 2010; Greer & Raney, 2014). The twisted semidirect

product of groups is also a known object in loop theory, its first appearance is in (Johnson & Sharma, 1980), where they

called the method the left Bol split extension. The construction method was further surveyed and generalized by Johnson

and Smith (Johnson & Smith, 2010). In this paper the left Bol Lie loops that are formed by the twisted semidirect product

of Lie groups are investigated. We also explore examples of infinite dimensional left Bol Lie loops that are raised by the

action of Lie subgroups of GL(H) on the Hilbert space H over C.

It is well-known that semidirect product of Lie algebras is a Lie algebra, so we naturally asked this question for the twisted

semidirect product of Lie algebras of the Lie groups. We showed that twisted semidirect product of Lie algebras of the

Lie groups is a Lie algebra which turned out to an Akivis algebra.

2. Preliminaries

We use the function evaluation in the backwards. If α : X → Y is a function, then the function evaluation of α at the

point x ∈ X is denoted by (x)α or xα. Let β : Y → Z be another function, then the composition of α and β is the function

γ := αβ such that (x)αβ := (xα)β for all x in the domain of α. Let G be a group. The elements a, b of G is said to conjugate

if there exists a g ∈ G such that g−1ag = b where g−1ag := ag.

The nonempty set L with a binary operation, ⊕, is called a loop if there exists e ∈ L such that for all a ∈ L a⊕e = e⊕a = a,

and the equations a ⊕ x = b and y ⊕ a = b have always unique solutions x := a\b and y := b/a in L whenever a and b
are given in L. The uniqueness of x and y lead us to define two new maps that are called the left division \ : L × L → L
(a, b) �→ a\b, and the right division / : L × L → L (a, b) �→ b/a such that a ⊕ (a\b) = b and (b/a) ⊕ a = b.

Let (L,⊕) be a loop. Given any x ∈ L, let Lx : L → L and Rx : L → L be two maps defined by (a)Rx := a⊕ x, (b)Lx := x⊕b
where a, b ∈ L. The maps Lx and Rx are called the left and the right translation maps respectively for x. It is well known

that if (L,⊕) is a loop, then the left and the right translation maps are bijective. The loop (L,⊕) is called a left Bol loop if

the left Bol identity given in (1) is valid for all a, b, and c in L:

a ⊕ (b ⊕ (a ⊕ c)) = (a ⊕ (b ⊕ a)) ⊕ c. (1)

Further readings on Bol loops can be found in (Robinson, 1966; Pflugfelder, 1990; Kiechle 2002). Next we define some

groups acting on L, namely right multiplication group and left multiplication group. Right multiplication group, Rmlt(L),

of L is the permutation group generated by all right translations of L. The left multiplication group, Lmlt(L), is defined

similarly. The multiplication group of L, Mlt(L), is the permutation group generated by all right and left translations of L.

Hence, Mlt(L) = 〈La,Rb : a, b ∈ L〉.
G is called a Lie group if G is a group and G is a smooth manifold such that multiplication and inversion maps are smooth

(Knapp, 2016). A Lie loop L is a loop and a smooth manifold such that multiplication, right and left division maps are all

smooth (Nagy & Strambach, 2008). In this paper we mainly focus on the examples of Lie loops that are obtained from

the twisted semidirect product of matrix Lie groups.

1
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Let M(n,C) be the set of matrices of size n by n with complex entries and let GL(n,C) be the general linear group. A

matrix Lie group is a closed subgroup of GL(n,C). The list of matrix Lie groups can be found in (Wallach, 1988; Hein,

1990). The left, the right and the middle nuclei of (L,⊕) can be defined respectively as follows:

Nl = {a ∈ L|(a ⊕ x) ⊕ y = a ⊕ (x ⊕ y); ∀x, y ∈ L} . (2)

Nr = {a ∈ L|(x ⊕ y) ⊕ a = x ⊕ (y ⊕ a); ∀x, y ∈ L} . (3)

Nm = {a ∈ L|(x ⊕ a) ⊕ y = x ⊕ (a ⊕ y); ∀x, y ∈ L} . (4)

Note that Nl,Nr, and Nm are all subgroups of L. The nucleus, N(L), and the centrum, C(L), of (L,⊕) are defined as follow:

N(L) : = Nl ∩ Nr ∩ Nm. (5)

C(L) : = {x ∈ L| x ⊕ y = y ⊕ x ∀y ∈ L} . (6)

The center of L is denoted by Z(L) such that Z(L) := C(L) ∩ N(L). It is well known that the nucleus and the center of L
are subgroups of L, see (Pflugfelder, 1990).

Let G be a group and A be a set, and suppose G acts on A from the right. We use A f f (A,G) to denote the set of maps,

f(a,g), such that (b) f(a,g) = a + b.g where a, b ∈ A and g ∈ G. If G acts on A by function evaluation, then (b) f(a,g) = a + bg.

2.1 Semidirect and Twisted Semidirect Products

Let H and K be groups such that H ≤ Aut(K) and consider G := K × H as a set and define the multiplication, �, on G as

follow:

(k1, h1) � (k2, h2) = (k1k2
h1

−1

, h1h2). (7)

Note that we used juxtapositions for the product in K and H. It is well known that (G,�) is a new group with the identity

element (eK , eH). The product given in (7) is called semidirect product of K by H and denoted by G = K � H, see

(Hall, 1999). Note that if H is acting on K trivially, then the semidirect product is the usual direct product. The sets

KG = {(k, eH) : k ∈ K} and HG = {(eK , h) : h ∈ H} have a trivial intersection, and KG � K and HG � H such that KG is

normal subgroup of G.

If we replace h−1
1 with h1 in (7), then we obtain a new binary operation � on K × H as given in (8). Johnson and Sharma

(1980) named the K × H with � the left Bol split extension and they showed that if H is a non-abelian group of Aut(K),

then (K ×H,�) is a left Bol loop. In the current paper we use the term twisted semidirect product for the binary operation

�.

(k1, h1)�(k2, h2) = (k1k2
h1 , h1h2). (8)

Each element of H is an automorphism from K to K and the notation k2
h1 stands for the image of k2 under h1. In general

the twisted semidirect product is not necessarily associative.

2.2 Lie Algebra and Akivis Algebra

A Lie algebra, see (Humphreys, 1972; Knapp, 2016), is a vector space g over a field F that endowed with bracket operation

[., .] : g × g→ g, (x, y) �→ [x, y] that satisfies the following axioms:

1. The bracket operation is bilinear.

2. [x, x] = 0 for all x ∈ g.

3. [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

The last axiom is called the Jacobi identity. Note that combining the first two axioms yields that [x, y] = −[y, x] for all

x, y ∈ g. Therefore, the bracket operation is skew-symmetric in a Lie algebra. A homomorphism, φ, of Lie algebras from

g1 to g2 is a linear map that preserves the brackets that is ([x, y])φ = [(x)φ, (y)φ] for x, y ∈ g1. A derivation of a Lie

algebra g over a field F is a linear map f : g→ g such that ([x, y]) f = [(x) f , y]+ [x, (y) f ] for all x, y ∈ g (Hein, 1990). The

set of all derivation of g over F is denoted by DerF(g). The derivation is a Lie algebra if the bracket operation is defined

as [ f , g] = g f − f g for f , g ∈ DerF(g). A Lie subalgebra h is a vector subspace of g such that h is closed under bracket

operation. A Lie subalgebra h of g is called an ideal of g if [h, g] ⊆ h.

An Akivis algebra (A, [., .], 〈., ., .〉) is a real vector space with a bilinear skew-symmetric map (x, y) �→ [x, y] : A×A → A,

called the commutator map, and a trilinear map (x, y, z) �→ 〈x, y, z〉 : A × A × A → A, called the associator map, such

that the following identity (called the Akivis identity) holds (Figula & Strambach, 2007).

2
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[[x, y], z] + [[y, z], x] + [[z, x], y] = 〈x, y, z〉 + 〈y, z, x〉 + 〈z, x, y〉 − (〈x, z, y〉 + 〈y, x, z〉 + 〈z, y, x〉) (9)

If A is a Lie algebra, then the left hand-side of the equality is zero by the Jacobi identity.

Let k, h be Lie algebras over the same field F, and suppose ρ : h → DerF(k), h �→ (h)ρ and k �→ (k)(h)ρ, be a Lie algebra

homomorphism. The set k × h is a Lie algebra endowed with the bracket operation given in (10).

[(k1, h1), (k2, h2)] = ([k1, k2] + (k1)(h2)ρ − (k2)(h1)ρ, [h1, h2]) (10)

The new Lie algebra with the bracket defined in (10) is called a semidirect product of k and h, and it is denoted by k�ρl.
The following result is well known; see for example (Hein, 1990).

Theorem 2.1. Let h and k be two Lie algebras over the field F, and let ρ : h→ DerF(k) be a Lie algebra homomorphism.
Then,

1. l = k�ρh is a Lie algebra.

2. k = {(k, 0) : k ∈ k} � k such that k is an ideal of l, i.e., [k, l] ⊆ k.

3. h = {(0, h) : h ∈ h} � h such that h is a subalgebra of l, i.e., [h, h] ⊆ h.

We obtain a new bracket operation from (10) by interchanging k1
h2 and k2

h1 in (10). We call this new bracket operation,

given in (11), the twisted semidirect product of k and h. The set k× h with twisted semidirect product is denoted by k�ρh.

[(k1, h1), (k2, h2)] = ([k1, k2] + (k2)(h1)ρ − (k1)(h2)ρ, [h1, h2]) (11)

3. Main Results

Theorem 3.1. Let H and K be Lie groups with H ≤ Aut(K) such that the evaluation map ev : K × H → K, (k, h) �→ kh is
smooth. If L := (K × H,�), then

1. L is a Lie group if and only if H is an abelian Lie group.

2. If H is not abelian, then L is a left Bol Lie loop, not a Lie group.

Proof. We first prove the first argument. If L is a Lie group, then its group product � is associative. That is the equation

(12) holds for all (k1, h1), (k2, h2), and (k3, h3) in L
[(k1, h1)�(k2, h2)]�(k3, h3) = (k1, h1)�[(k2, h2)�(k3, h3)] (12)

The left hand side of the equation (12) is equal to (k1kh1

2
k3

h1h2 , (h1h2)h3) and the right hand side is equal to (k1kh1

2
k3

h2h1 , h1(h2h3)).

Two sides are equal if and only if k3
h1h2 = k3

h2h1 , but this forces that H is an abelian Lie group. Conversely, suppose that H
is an abelian Lie group, then L is a smooth manifold as a cartesian product of smooth manifolds K ×H. Let eK and eH be

the identity elements of K and H respectively, then it can be verified that (eK , eH) is the identity element of L. Moreover,

for any arbitrary element (k, h) of L the following equation is satisfied, hence the two sided inverse of (k, h) exists.

(k, h)�((k−1)h−1

, h−1) = ((k−1)h−1

, h−1)�(k, h) = (eK , eH). (13)

The group product � of L is associative as shown below:

[(k1, h1)�(k2, h2)]�(k3, h3) = (k1kh1

2
, h1h2)�(k3, h3) (14)

= ((k1kh1

2
)k3

h1h2 , (h1h2)h3) (15)

= ((k1kh1

2
)k3

h2h1 , (h1h2)h3) (16)

= (k1(kh1

2
k3

h2h1 ), h1(h2h3)) (17)

= (k1(kh1

2
(k3

h2 )h1 ), h1(h2h3)) (18)

= (k1(k2kh2

3
)h1 , h1(h2h3)) (19)

= (k1, h1)�(k2kh2

3
, h2h3) (20)

= (k1, h1)�[(k2, h2)�(k3, h3)]. (21)
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Note that we used the assumption that H is abelian in (16) to write h1h2 = h2h1, and we used the fact that h1 is an

automorphism over K to write kh1

2
k3

h2h1 = (k2kh2

3
)h1 in (19). We conclude that L satisfies all group axioms, so it is a group

besides its smooth manifold structure. To show it is actually a Lie group requires to show that the group product and the

inversion maps are smooth.

Let μL : L × L → L such that ((k1, h1), (k2, h2))μL = (k1k2
h1 , h1h2) and i : L → L such that (k, h)i = ((k−1)h−1

, h−1). Let

μK and μH be the multiplication maps of K and H respectively and let iK and iH be the inversion maps of K and H. By

assumption μK , μH and iK , iH are all smooth maps. Observe that

((k1, h1), (k2, h2))μL = ((k1, k
h1

2
)μK , (h1, h2)μH) (22)

= (((k1)id, (k2, h1)ev)μK , (h1, h2)μH) (23)

= (((k1, (k2, h1)(id × ev))μK , (h1, h2)μH) (24)

= ((k1, (k2, h1))((id × ev) ◦ μK), (h1, h2)μH) (25)

= ((k1, (k2, h1)), (h1, h2))((id × ev) ◦ μK) × μH . (26)

μL is smooth since the direct product of smooth maps and composition of smooth maps are smooth. Similar to multipli-

cation the inversion map is also smooth that can be shown below.

(k, h)iL = ((k−1)h−1

, h−1) (27)

= (((k)iK , (h)iH)ev, (h)iH) (28)

= ((k, h)(iK × iH) ◦ ev), (h)iH) (29)

= ((k, h), h))((iK × iH) ◦ ev) × iH . (30)

Therefore, L is a Lie group.

For the proof of the second argument let H be a non-abelian subgroup of Aut(K), then (K × H,�) is a left Bol loop which

has been shown in (Johnson & Sharma, 1980). For the convenience of readers we prefer to provide the proof. Suppose

that H is non-abelian, then there exists h1, h2 ∈ H such that h1h2 � h2h1. That means there exists a k3 ∈ K such that

k3
h1h2 � k3

h2h1 , then for nonzero k1, k2 ∈ K, (k1k2
h1 )k3

h1h2 � (k1k2
h1 )k3

h2h1 which is equivalent to:

[(k1, h1)�(k2, h2)]�(k3, h3) � (k1, h1)�[(k2, h2)�(k3, h3)]. (31)

Therefore, if H is not abelian, then the product on L is not associative, so L is not a Lie group. On the other hand, L is a

smooth manifold as the cartesian product of smooth manifolds K and H. Moreover, for all (k, h) ∈ L
(k, h)�(eK , eH) = (eK , eH)�(k, h) = (k, h) (32)

hence (eK , eH) is the neutral element of L. We can always find unique (xk, xh) and (yk, yh) in L that satisfy the given

equations in (33) and (34).

(k1, h1)�(xk, xh) = (k2, h2) where (xk, xh) := (k1, h1)\(k2, h2). (33)

(yk, yh)�(k2, h2) = (k1, h1) where (yk, yh) := (k1, h1)/(k2, h2). (34)

The solutions (xk, xh) = ((k−1
1 k2)h−1

1 , h−1
1 h2) and (yk, yh) = ((k1(k−1

2 )h1h−1
2 , h1h−1

2 ) can be derived easily. We conclude that L
is a loop. To show it is a Lie loop we also need to show that the twisted semidirect product, the left and the right division

maps are all smooth. Based on (33) and (34) the right and the left division maps are derived as follow:

\ : L × L → L such that ((k1, h1), (k2, h2)) �→ ((k−1
1 k2)h−1

1 , h−1
1 h2) (35)

/ : L × L → L such that ((k1, h1), (k2, h2)) �→ ((k1(k−1
2 )h1h−1

2 , h1h−1
2 ) (36)

We have already showed in the proof of first argument that the twisted semidirect product is smooth. On the other hand,

the left and the right division maps can be written as direct products of smooth maps, thus they are also smooth as given

below:

(k1, h1)\(k2, h2) = (((k1, k2), h1), (h1, h2))(((iK × idK)μK) × idH)ev × (iH × idH)μH (37)

(k1, h1)/(k2, h2) = (k1, (k2, (h1, h2)))(idK × ((iK × (idH × iH)μH)ev)μK × (idH × iH)μH (38)

We conclude that if H is non-abelian, then L is a left Bol Lie loop that is not a Lie group. �
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Notice that if we set h1 = h2 in (35) and k1 = k2 in (36), then the following corollary is obtained.

Corollary 3.1.1. Let H and K be groups such that H ≤ Aut(K) and let L := (K × H,�). Then

1. (k1, h1)\(k2, h2) = (eK , h−1
1 h2) if k1 = k2.

2. (k1, h1)/(k2, h2) = (k1k−1
2 , eH) if h1 = h2.

Example 3.2. Let C be the field of complex numbers and let n be a positive integer. It is well known that Cn is an additive
Lie group and GL(n,C) � Aut(Cn) after fixing a basis of Cn. Suppose φ : GL(n,C) → Aut(Cn) is the isomorphism and
i : G → GL(n,C) be the inclusion map, where G is a non-abelian closed subgroup of GL(n,C). A closed subgroup of
GL(n,C) is a Lie group, hence G is a Lie group. The map Φ := i ◦ φ is a homomorphism of Lie groups from G to Aut(Cn).
On the other hand, the evaluation map is smooth since matrix multiplication is smooth. Therefore, (Cn × G,�) is a left
Bol Lie loop by Theorem 3.1.

Example 3.3. For any matrix A ∈ M(n,C) we use A� and A∗ to denote the transpose of A and conjugate transpose of A

respectively. Let p, q ∈ N and p + q ≥ 1 and let α :=

[
Ip 0

0 −Iq

]
and β :=

[
0 In

−In 0

]
, where Ip, Iq, and In are the identity

matrices. The pseudo-unitary group U(p, q) and the symplectic group S p(n,C) are well-known non-abelian classical Lie
groups given below:

U(p, q) =
{
A ∈ GL(p + q,C) : AαA� = α

}
. (39)

S p(n,C) = {A ∈ GL(2n,C) : AβA∗ = β} . (40)

Similar to example 3.2, (Cp+q × U(p, q),�) and (C2n × S p(n,C),�) are both left Bol Lie loops.

Example 3.4. Let a, b, and c be arbitrary real numbers. The Heisenberg group, H, consists of 3 by 3 matrices in form of⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 a b
0 1 b
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (41)

Heisengerg group is a closed subgroup of GL(3,R), so it is a matrix Lie group. The evaluation map, ev : R3 × H → R
3,

(v, A) �→ v�A is smooth. It can be checked that the matrix multiplication in H is not commutative. Therefore, (R3 × H,�)

is a left Bol Lie loop.

Corollary 3.4.1. Let V be either finite or infinite dimensional linear space over a field F and let G be any non-abelian
subgroup of Aut(V), then L := (V ×G,�) is a left Bol loop such that:

1. Lmlt(L) ⊆ A f f (V,G) ×G.

2. N(L) = {0} × Z(G).

3. Z(L) = {(0, id)}.

Proof. L is a left Bol loop is immediate by Theorem 3.1 since G is a non-abelian subgroup of Aut(V) and V is a linear

space that means V is an additive group. The twisted semidirect product over V ×G is written as below:

(v1, g1)�(v2, g2) = (v1 + (v2
g1 ), g1g2)

We first prove (1). Let L(v,g) be any left translation of Lmlt(L), and let (w, h) be any element of L. Then

(w, h)L(v,g) = (v, g)�(w, h) (42)

= (v + wg, gh) (43)

= ((w)φ(v,g), (h)Lg) (44)

= (w, h)(φ(v,g) × Lg). (45)

For each (w, h) ∈ L, (w, h)L(v,g) = (w, h)(φ(v,g)×Lg), thus L(v,g) = φ(v,g)×Lg, and this implies Lmlt(L) ⊆ A f f (V,G) × Lmlt(G).

Note that Lmlt(G) = G since G is a group, so Lmlt(L) ⊆ A f f (V,G) ×G.
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To see (2), we will determine the left, the middle and the right nuclei of L. Let (v1, g1) and (v2, g2) be arbitrary elements

of L.

Nl(L) =
{
(w, h) ∈ L : [(w, h)�(v1, g1)]�(v2, g2) = (w, h)�[(v1, g1)�(v2, g2)]

}
=

{
(w, h) ∈ L : (w + v1

h, hg1)�(v2, g2) = (w, h)�(v1 + v2
g1 , g1g2)

}
=

{
(w, h) ∈ L : (w + v1

h + v2
hg1 , (hg1)g2) = (w + v1

h + v2
g1h, h(g1g2))

}
=

{
(w, h) ∈ L : v2

hg1 = v2
g1h

}
.

The condition v2
hg1 = v2

g1h is independent from w, so w can be anything in V . Moreover, if v2
hg1 = v2

g1h for all v2 in V ,

then hg1 = g1h for all g1 ∈ G, thus h ∈ Z(G). Therefore, Nl(L) = V × Z(G). In left Bol loops the left and the right nuclei

are same (Robinson, 1966), hence we only need to find Nr(L).

Nr(L) =
{
(w, h) ∈ L : [(v1, g1)�(v2, g2)]�(w, h) = (v1, g1)�[(v2, g2)�(w, h)]

}
=

{
(w, h) ∈ L : (v1 + v2

g1 , g1g2)�(w, h) = (v1, g1)�[(v2 + wg2 , g2h)
}

= {(w, h) ∈ L : (v1 + v2
g1 + wg1g2 , (g1g2)h) = (v1 + v2

g1 + wg2g1 , g1(g2h))}
= {(w, h) ∈ L : wg1g2 = wg2g1 } .

wg1g2 = wg2g1 for all g1, g2 ∈ G, so w = 0. On the other hand, wg1g2 = wg2g1 is independent from h, so h can be anything in

G, thus Nr(L) = {0} ×G.

The nucleus of L is the intersection of left, right and middle nuclei. Therefore, N(L) = {0} × Z(G).

Finally, let (w, h) be in the center of L, then (w, h) is in the nucleus of L. Therefore w = 0 and h ∈ Z(G), but (0, h) is also

in the centrum, hence (0, h)�(v, g) = (v, g)�(0, h) for all (v, g) ∈ L. That is (vh, hg) = (v, gh) if and only if vh = v for all

v ∈ V if and only if h is the identity operator in G. Therefore, Z(L) = {(0, idV )} where idV is the identity map from V to

V . �

Example 3.5. Let GL(H) be the group of invertible operators inside the space of bounded linear operators L(H), where
H is an infinite dimensional Hilbert space over C. The infinite dimensional Hilbert space H over C is an additive group
with the neutral element 0. It is an infinite dimensional manifold since it is locally homeomorphic to itself, and the addition
and inversion maps are smooth. On the other hand, the group of invertible operators GL(H) is open in L(H) with respect
to operator norm, so it is a Banach-Lie group. Therefore, H × GL(H) is a smooth manifold as a cartesian product of
smooth manifolds. Furthermore, if the evaluation map ev : H × GL(H) → H; (h,T ) �→ hT is smooth, then the twisted
semidirect product, the left and the right division maps are smooth, hence (H ×GL(H),�) is an infinite dimensional left
Bol Lie loop by corollary 3.4.1.

Lemma 3.6. Any Lie algebra l, is an Akivis algebra with the trilinear operation defined by 〈x, y, z〉 : l × l × l → l;
(x, y, z) �→ [[x, y], z] − [x, [y, z]].

Proof. Let l be a Lie algebra, then there exists a bilinear skew-symmetric operation, [., .] : l × l → l; (x, y) �→ [x, y]. To

see that l is indeed an Akivis algebra, we need to verify the Akivis identity: [[x, y], z]+ [[y, z], x]+ [[z, x], y] = α−β where

α and β given below.

α = 〈x, y, z〉 + 〈y, z, x〉 + 〈z, x, y〉 (46)

β = 〈x, z, y〉 + 〈y, x, z〉 + 〈z, y, x〉 (47)

Let γ = [[x, y], z]+ [[y, z], x]+ [[z, x], y], then we want to show that γ = α−β. Since l is a Lie algebra it satisfies the Jacobi

identity and this forces that γ = 0, hence we only need to show that α = β

α = [[x, y], z] − [x, [y, z]] + [[y, z], x] − [y, [z, x]] + [[z, x], y] − [z, [x, y]]

= ([[x, y], z] + [[y, z], x] + [[z, x], y]) − ([x, [y, z]] + [y, [z, x]] + [z, [x, y]])

= 2([[x, y], z] + [[y, z], x] + [[z, x], y])

= 2(0) = 0

We can similarly show that β = 0, so α = β = 0. Therefore, any Lie algebra l is an Akisvis algebra if the trilinear operation

defined as in Lemma 3.6. �
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Theorem 3.7. Let h and k be two Lie algebras over the field F, and let ρ : h→ DerF(k) be a Lie algebra homomorphism.
Then,

1. l = k�ρh is an Akivis algebra with bracket and trilinear operations given in (48) and (49) below respectively.

[(k1, h1), (k2, h2)] = ([k1, k2] + (k2)(h1)ρ − (k1)(h2)ρ, [h1, h2]) for all k1, k2 ∈ k and h1, h2 ∈ h. (48)

〈x, y, z〉 = [[x, y], z] − [x, [y, z]] for all x, y, z ∈ l. (49)

2. k = {(k, 0) : k ∈ k} � k is an ideal of l, i.e., [k, l] ⊆ k.

3. h = {(0, h) : h ∈ h} � h is a subalgebra of l, i.e., [h, h] ⊆ h.

Proof. 1. The bracket on l is skew symmetric as follows:

[(k1, h1), (k2, h2)] = ([k1, k2] + (k2)(h1)ρ − (k1)(h2)ρ, [h1, h2]) (50)

= (−[k2, k1] − ((k1)(h2)ρ − (k2)(h1 )ρ),−[h2, h1]) (51)

= −([k2, k1] + (k1)(h2)ρ − (k2)(h1)ρ, [h2, h1]) (52)

= −[(k2, h2), (k1, h1)] (53)

The bracket on l is bilinear since the bracket operations on k and h are bilinear. On the other hand (h)ρ is linear

for each h ∈ h. Therefore, we only need to verify the Jacobi identity on l, and this can be seen as follow: Let

x = [[(k1, h1), (k2, h2)], (k3, h3)], y = [[(k2, h2), (k3, h3)], (k1, h1)], and z = [[(k3, h3), (k1, h1)], (k2, h2)]. We want to show

that x + y + z = (0, 0). Notice that:

x = [[(k1, h1), (k2, h2)], (k3, h3)] (54)

= [([k1, k2] + (k2)(h1)ρ − (k1)(h2)ρ, [h1, h2]), (k3, h3)] (55)

= ([[k1, k2] + (k2)(h1)ρ − (k1)(h2)ρ, k3] + (k3)([h1,h2])ρ − ([k1, k2] + (k2)(h1)ρ − (k1)(h2)ρ)(h3)ρ, [[h1, h2], h3]) (56)

= ([[k1, k2], k3] + [k2
(h1)ρ, k3] − [k1

(h2)ρ, k3] + k3
([h1,h2])ρ − [k1, k2](h3)ρ − k2

(h1)ρ(h3)ρ + k1
(h2)ρ(h3)ρ, [[h1, h2], h3]). (57)

The map ρ is a Lie algebra homomorphism, so ([h1, h2])ρ = [(h1)ρ, (h2)ρ], and [(h1)ρ, (h2)ρ] = (h2)ρ(h1)ρ − (h1)ρ(h2)ρ
since DerF(k) is a Lie algebra with [ f , g] = g f − f g for each f , g ∈ DerF(k). Therefore,

k3
([h1,h2])ρ = k3

(h2)ρ(h1)ρ − k3
(h1)ρ(h2)ρ (58)

On the other hand, (h)ρ is a derivation on k, so (h)ρ preserves the Leibniz rule, and this gives that:

[k1, k2](h3)ρ = [k1
(h3)ρ, k2] + [k1, k2

(h3)ρ] (59)

If we let x = (x1, x2), then x1 and x2 coordinates are written as follow.

x1 = [[k1, k2], k3]+[k2
(h1)ρ, k3]−[k1

(h2)ρ, k3]+k3
(h2)ρ(h1)ρ−k3

(h1)ρ(h2)ρ−[k1
(h3)ρ, k2]−[k1, k2

(h3)ρ]−k2
(h1)ρ(h3)ρ+k1

(h2)ρ(h3)ρ (60)

x2 = [[h1, h2], h3] (61)

We can similarly find y = (y1, y2) and z = (z1, z2) such that

y1 = [[k2, k3], k1]+[k3
(h2)ρ, k1]−[k2

(h3)ρ, k1]+k1
(h3)ρ(h2)ρ−k1

(h2)ρ(h3)ρ−[k2
(h1)ρ, k3]−[k2, k3

(h1)ρ]−k3
(h2)ρ(h1)ρ+k2

(h3)ρ(h1)ρ (62)

y2 = [[h2, h3], h1]) (63)

z1 = [[k3, k1], k2]+[k1
(h3)ρ, k2]−[k3

(h1)ρ, k2]+k2
(h1)ρ(h3)ρ−k2

(h3)ρ(h1)ρ−[k3
(h2)ρ, k1]−[k3, k1

(h2)ρ]−k1
(h3)ρ(h2)ρ+k3

(h1)ρ(h2)ρ (64)

z2 = [[h3, h1], h2] (65)

The second coordinate of x+ y+ z is x2 + y2 + z2 = [[h1, h2], h3]+ [[h2, h3], h1]+ [[h3, h1], h2] = 0 since h is a Lie algebra.

Moreover, a part of the first coordinate of x+ y+ z is [[k2, k3], k1]+ [[k2, k3], k1]+ [[k3, k1], k2] = 0 since k is a Lie algebra.

The rest of the first coordinate of x + y + z is rewritten as:

7
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([k2
(h1)ρ, k3] − [k2

(h1)ρ, k3]) + (−[k1
(h2)ρ, k3] − [k3, k1

(h2)ρ]) + (k3
(h2)ρ(h1)ρ − k3

(h2)ρ(h1)ρ) + (−k3
(h1)ρ(h2)ρ + k3

(h1)ρ(h2)ρ)

+ (−[k1
(h3)ρ, k2] + [k1

(h3)ρ, k2]) + (−[k1, k2
(h3)ρ] − [k2

(h3)ρ, k1]) + (−k2
(h1)ρ(h3)ρ + k2

(h1)ρ(h3)ρ) + (k1
(h2)ρ(h3)ρ − k1

(h2)ρ(h3)ρ)

+ ([k3
(h2)ρ, k1]− [k3

(h2)ρ, k1])+ (k1
(h3)ρ(h2)ρ − k1

(h3)ρ(h2)ρ)+ (k2
(h3)ρ(h1)ρ − k2

(h3)ρ(h1)ρ), and this sum is zero since the sum in each

parentheses is zero. Therefore, x + y + z = (0, 0), and we conclude that the twisted semidirect product of Lie algebras is a

Lie algebra. Therefore, l is an Akivis Algebra by Lemma 3.6.

2. The first claim, k � k, is clear. We will show that [k, l] ⊆ k. Let (k, 0) ∈ k, and let (k∗, h) ∈ l. Then, [(k, 0), (k∗, h)] =

([k, k∗] + (k∗)(0)ρ − (k)(h)ρ, [0, h]) where (k∗)(0)ρ = (k∗)id = k∗ and [0, h] = 0, so [(k, 0), (k∗, h)] = ([k, k∗] − k∗ + ((k)(h)ρ, 0) =

(k∗∗, 0) ∈ k, where k∗∗ = [k, k∗] − k∗ + (k)(h)ρ. Therefore, k is an ideal of l.

3. h � h is clear. Let (0, h), (0, h∗) ∈ h, then [(0, h), (0, h∗)] = ([0, 0] + (0)(h)ρ − (0)(h∗)ρ, [h, h∗]) = (0, h∗∗) ∈ h. Therefore,

[h, h] ⊆ h, so h is a subalgebra of l. �
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1. Introduction

Throughout this paper R denotes an associative ring with center Z(R). Recall, a ring R is said to be prime ring if for any

a, b ∈ R, aRb = (0) implies either a = 0 or b = 0 and is semiprime ring if aRa = (0) implies a = 0. For any x, y ∈ R, we

shall denote the commutator and anti-commutator by the symbols [x, y] = xy − yx and (x ◦ y) = xy + yx respectively. We

shall frequently use the basic commutator and anti-commutator identities : [xy, z] = x[y, z]+[x, z]y, [x, yz] = y[x, z]+[x, y]z
and (x ◦ yz) = (x ◦ y)z− y[x, z] = y(x ◦ z)+ [x.y]z, (xy ◦ z) = x(y ◦ z)− [x, z]y = (x ◦ z)y+ x[y, z]. An additive map f : R → R
is called a derivation of R if f (xy) = f (x)y + x f (y) holds for all x, y ∈ R. Let F : R → R be a map together with another

map f : R → R so that F(xy) = F(x)y + x f (y) for all x, y ∈ R. If F is additive and f a derivation of R, then F is

called generalized derivation of R and if f = 0, then F is called left multiplier of R. The notion of generalized derivation

was introduced by Brešar (Brešar, 1991) . In (Havala, 1998), author gave an algebraic study of these mappings in prime

rings. Obviously, every derivation is a generalized derivation. In this way generalized derivation covers both concepts of

derivation and left multiplier of R. Let K be a nonempty subset of R, a map f : K → R is said to be centralizing on K, if

[ f (x), x] ∈ Z(R) for all x ∈ K. In particular, if [ f (x), x] = 0 for all x ∈ K, then f is called commuting on K.

In the literature, a number of authors have discussed the commutativity of prime rings and semiprime rings admitting

derivations and generalized derivations satisfying certain algebraic identities, see (Ali, Kumar & Miyan, 2011), (Ali, Dhara

& Fos̆ner, 2011), (Andima & Pajoohesh, 2010), (Ashraf et al, 2007, 2001), (Daif & Bell, 1992), (Dhara & Pattanayak,

2011), (Hongan, 1997), where further references can be found.

Let us swing to the foundation examination of multiplicative (generalized)-derivations of associative rings. Inspired by

the work of Martindale III (Martindale, 1969), Daif (Daif, 1991) introduced the concept of multiplicative derivations.

Accordingly, a map f : R → R is called multiplicative derivation of R if f (xy) = f (x)y + x f (y) holds for all x, y ∈ R.

Of course, these maps are not necessarily additive. Goldmann and Sěmrl (Goldmann & Sěmrl, 1996) presented complete

description of these maps. Further, Daif and Tammam-El-Sayiad (Daif & Tammam-El-Sayiad, 1997) extended the notion

of multiplicative derivation to multiplicative generalized derivation as follows: A map F : R → R is called multiplicative

generalized derivation of R if F(xy) = F(x)y + x f (y) holds for all x, y ∈ R, where f is a derivation of R. Recently, Dhara

and Ali (Dhara & Ali, 2013) made a slight generalization in above definition of multiplicative generalized derivation by

relaxing the conditions on f . A map F : R → R (not necessarily additive) is said to be a multiplicative (generalized)-

derivation if F(xy) = F(x)y + x f (y) holds for all x, y ∈ R, where f can be any map (not necessarily additive nor a

derivation). For convenience we denote it by a pair (F, f ). In the previous couple of years many outcomes has been

gotten in prime and semi-prime rings involving multiplicative (generalized)-derivations, see (Ali et al, 2015), (Ali et

al, 2014), (Dhara & Ali, 2013), (Dhara et al, 2014) and (Khan, 2016). As multiplicative (generalized)-derivation is an

extended notion of generalized derivation, so it is noteworthy to demonstrate the consequences of generalized derivations

for multiplicative (generalized)-derivations.

The main objective of this paper is to take care of the issue raised by author in (Khan, 2016) and investigate the

commutativity of R. Precisely, we concentrate on the following central-valued conditions: f (x)F(y) ± yx ∈ Z(R),

f (x)F(y)± xy ∈ Z(R), f (x)F(y)± (x◦y) ∈ Z(R), f (x)F(y)± [x, y] ∈ Z(R), F(xy)±F(x)F(y) ∈ Z(R), F[x, y]± (x◦y) ∈ Z(R),

F(x ◦ y) ± [x, y] ∈ Z(R), F[x, y] ± xy ∈ Z(R), F(x ◦ y) ± xy ∈ Z(R), F[x, y] ± f (x) ◦ y ∈ Z(R), F(x ◦ y) ± [ f (x), y] ∈ Z(R)

where x and y are from an appropriate subset of R.
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2. Main Results

Theorem 1. Let R be a semiprime ring and I a nonzero ideal of R. Suppose that (F, f ) is a multiplicative (generalized)-
derivation of R. If f (x)F(y) ± yx ∈ Z(R)for all x, y ∈ I, then f is commuting on I and I is commutative.

Proof. We consider

f (x)F(y) ± yx ∈ Z(R) for all x, y ∈ I. (1)

Replace y by yz in (1) to get ( f (x)F(y) ± yx)z + f (x)y f (z) ± y[z, x] ∈ Z(R) for all x, y, z ∈ I. On commuting with z we

obtain

[ f (x)y f (z), z] ± [y[z, x], z] = 0 for all x, y, z ∈ I. (2)

In particular, putting x = z to obtain

[ f (z)y f (z), z] = 0 for all y, z ∈ I. (3)

Which implies that

f (z)y f (z)z = z f (z)y f (z) for all x, y, z ∈ I (4)

Substituting y f (z)w for y in (4), we have

f (z)y f (z)w f (z)z = z f (z)y f (z)w f (z) for all x, y, z,w ∈ I. (5)

Using (4) in (5), we obtain f (z)yz f (z)w f (z) = f (z)y f (z)zw f (z) for all x, y, z,w ∈ I. That is x f (z)y[ f (z), z]w f (z) = 0 for all

x, y, z,w ∈ I. It implies that x[ f (z), z]y[ f (z), z]w[ f (z), z] = 0 for all x, y, z,w ∈ I. Therefore, (I[ f (z), z])3 = (0) for all z ∈ I.

But R has no nonzero nilpotent ideal, we conclude that I[ f (z), z] = (0) for all z ∈ I. Thus, [ f (z), z] = 0 for all z ∈ I(See,

(Herstein, 1976)).

Now, Replace y by yz in (2) and we get

[ f (x)yz f (z), z] ± [yz[z, x], z] = 0 for all x, y, z ∈ I. (6)

Right multiply (2) by z and subtract (6) from it, we obtain [ f (x)y[ f (z), z], z] ± [y[[z, x], z], z] = 0 for all x, y, z ∈ I. Using

the fact that I[ f (z), z] = (0) for all z ∈ I, we get

[y[[z, x], z], z] = 0 for all x, y, z ∈ I. (7)

Replace y by xy in (7), we obtain

x[y[[z, x], z], z] + [x, z]y[[z, x], z] = 0 for all x, y, z ∈ I. (8)

Using (7), it reduces to

[x, z]y[[z, x], z] = 0 for all x, y, z ∈ I. (9)

Replace y by zy in (9), we get

[x, z]zy[[x, z], z] = 0 for all x, y, z ∈ I (10)

Left multiply (9) by z and subtract from (10), we get [[x, z], z]y[[x, z], z] = 0 for all x, y, z ∈ I. That is [[x, z], z]I[[x, z], z] =

(0) for all x, z ∈ I. Semiprimeness of I yields that

[[x, z], z] = 0 for all x, z ∈ I. (11)

Linearizing (11) with respect to z and using (11), we have

[[x, z], t] + [[x, t], z] = 0 for all x, t, z ∈ I. (12)

Replace z by zt in (12), we get z[[x, t], t] + [z, t][x, t] + ([[x, z], t] + [[x, t], z])t + z[[x, t], t] = 0 for all x, t, z ∈ I. Using (11)

and (12), we obtain

[z, t][x, t] = 0 for all x, t, z ∈ I. (13)

Replace x by xy in (13) to get [z, t]x[y, t] + [z, t][x, t]y = 0 for all x, y, t, z ∈ I. Using (13), we obtain [z, t]x[y, t] = 0 for all

x, y, t, z ∈ I. In particular, [y, t]I[y, t] = (0) for all y, t ∈ I. It implies that [y, t] = 0 for all y, t ∈ I. Hence, [I, I] = (0) as

desired.

Theorem 2. Let R be a semiprime ring and I a nonzero ideal of R. Suppose that (F, f ) is a multiplicative (generalized)-
derivation of R. If f (x)F(y) ± xy ∈ Z(R) for all x, y ∈ I, then f is commuting on I.
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Proof. We consider

f (x)F(y) ± xy ∈ Z(R) for all x, y ∈ I. (14)

Replace y by yz in (14), we get

( f (x)F(y) ± xy)z + f (x)y f (z) ∈ Z(R) for all x, y, z ∈ I. (15)

On commuting with z in (15), we obtain [ f (x)y f (z), z] = 0 for all x, y, z ∈ I. In particular, put x = z, we get [ f (z)y f (z), z]

for all y, z ∈ I. It coincides with (3), hence Theorem 1. insures the conclusion.

Theorem 3. Let R be a semiprime ring and I a nonzero ideal of R. Suppose that (F, f ) is a multiplicative (generalized)-
derivation of R. If f (x)F(y) ± (x ◦ y) ∈ Z(R)for all x, y ∈ I, then f is commuting on I and I is commutative.

Proof. We consider

f (x)F(y) ± (x ◦ y) ∈ Z(R) for all x, y ∈ I (16)

Replace y by yz in (16) to obtain ( f (x)F(y) ± (x ◦ y))z + f (x)y f (z) ∓ y[x, z] ∈ Z(R) for all x, y, z ∈ I. On commuting both

sides by z, we get [ f (x)y f (z), z] ∓ [y[z, x], z] = 0 for all x, y, z ∈ I. It coincides with (2), hence Theorem 1. insure the

conclusions.

Theorem 4. Let R be a semiprime ring and I a nonzero ideal of R. Suppose that (F, f ) is a multiplicative (generalized)-
derivation of R. If f (x)F(y) ± [x, y] ∈ Z(R)for all x, y ∈ I, then f is commuting on I and I is commutative.

Proof. We consider

f (x)F(y) ± [x, y] ∈ Z(R) for all x, y ∈ I (17)

Replace y by yz in (17) to obtain ( f (x)F(y) ± [x, y])z + f (x)y f (z) ± y[x, z] ∈ Z(R) for all x, y, z ∈ I. On commuting both

sides by z, we have

[ f (x)y f (z), z] ± [y[x, z], z] = 0 for all x, y, z ∈ I (18)

Substituting x = z and we get [ f (z)y f (z), z] = 0 this is same as (3) so by theorem 1, we obtain [ f (z), z] = 0 for all z ∈ I.

Replace y by yz in (18), we get

[ f (x)yz f (z), z] ± [yz[x, z], z] = 0 for all x, y, z ∈ I (19)

Right multiply (18) by z and subtract (19) from it and we get [ f (x)y[ f (z), z], z]± [y[[x, z], z], z] = 0 for all x, y, z ∈ I. Using

the fact that I[ f (z), z] = 0 for all z ∈ I, we obtain [y[[x, z], z], z] = 0 for all x, y, z ∈ I. It coincides with (7), hence Theorem

1. insures the conclusion.

Corollary 5. Let R be a semiprime ring. If (F, f ) is a multiplicative (generalized) -derivation of R such that any one of the
following

i. f (x)F(y) ± [x, y] ∈ Z(R)

ii. f (x)F(y) ± (x ◦ y) ∈ Z(R)

iii. f (x)F(y) ± yx ∈ Z(R)

holds for all x, y ∈ R, then R is commutative.

Theorem 6. Let R be a semiprime ring and I a nonzero left ideal of R. Suppose that (F, f ) is a multiplicative (generalized)-
derivation of R. If F(xy) ± F(x)F(y) ∈ Z(R) holds for all x, y ∈ I, then I[ f (z), z] = (0) for all z ∈ I.

Proof. We consider

F(xy) ± F(x)F(y) ∈ Z(R) for all x, y, z ∈ I. (20)

Replace y by yz in (20), we get (F(xy) ± F(x)F(y))z + xy f (z) ± F(x)y f (z) ∈ Z(R) for all x, y, z ∈ I. On commuting with z
and using (20), we obtain

[xy f (z), z] ± [F(x)y f (z), z] = 0 for all x, y, z ∈ I. (21)

Replace x by xz in (21) to get

[xzy f (z), z] ± [F(x)zy f (z), z] ± [x f (z)y f (z), z] = 0 for all x, y, z ∈ I. (22)

Replace y by zy in (21) and subtract it from (22), we have

[x f (z)y f (z), z] = 0 for all x, y, z ∈ I. (23)
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Substitute f (z)x for x in (23), we get f (z)[x f (z)y f (z), z] + [ f (z), z]x f (z)y f (z) = 0 for all x, y, z ∈ I. Relation (23) reduce it

to

[ f (z), z]x f (z)y f (z) = 0 for all x, y, z ∈ I. (24)

Replace x by xz in (24) and we get

[ f (z), z]xz f (z)y f (z) = 0 for all x, y, z ∈ I. (25)

Replace y by yz in (24), we have

[ f (z), z]x f (z)zy f (z) = 0 for all x, y, z ∈ I (26)

Subtract (25) from (26)to obtain [ f (z), z]x[ f (z), z]y f (z) = 0 for all x, y, z ∈ I. It implies that (I[ f (z), z])3 = (0) for all z ∈ I.

Hence, we conclude that I[ f (z), z] = (0) for all z ∈ I.

Corollary 7. Let R be a semiprime ring and (F, f ) a multiplicative (generalized)-derivation of R. If F(xy) ± F(x)F(y) ∈
Z(R) holds for all x, y ∈ R, then f is a commuting map.

Theorem 8. Let R be a semiprime ring and I a nonzero left ideal of R. Suppose that (F, f ) is a multiplicative (generalized)-
derivation of R. If F[x, y] ± (x ◦ y) ∈ Z(R) for all x, y ∈ I, then I[x, f (x)] = (0) or I[x, f (Z(R))] = (0) for all x ∈ I.

Proof. We consider

F[x, y] ± (x ◦ y) ∈ Z(R) for all x, y ∈ I. (27)

If Z(R) = (0) then

F[x, y] ± (x ◦ y) = 0 for all x, y ∈ I. (28)

Replace y by yx in (28) and we get (F[x, y] ± (x ◦ y))x + [x, y] f (x) = 0 for all x, y ∈ I. It reduces to

[x, y] f (x) = 0 for all x, y ∈ I (29)

Replace y by f (x)y in (29), we have f (x)[x, y] f (x) + [x, f (x)]y f (x) = 0 for all x, y ∈ I. Using (29), we obtain

[x, f (x)]y f (x) = 0 for all x, y ∈ I. (30)

Replace y by yx in (30) and we get

[x, f (x)]yx f (x) = 0 for all x, y ∈ I. (31)

Right multiply (30) by x and subtract from (31), to obtain [x, f (x)]y[x, f (x)] = 0 for all x, y ∈ I. Since I is a left ideal of

R, so we have y[x, f (x)]Ry[x, f (x)] = (0) for all x, y ∈ I. Semiprimeness of R yields that y[x, f (x)] = 0 for all x, y ∈ I.

Hence, we conclude that I[x, f (x)] = (0) for all x ∈ I.

If Z(R) � (0) then there exist 0 � t ∈ Z(R). Replace y by yt in (27), we get (F[x, y] ± (x ◦ y))t + [x, y] f (t) ∈ Z(R) for all

x, y ∈ I. Using (27), we get [x, y] f (t) ∈ Z(R) for all x, y ∈ I. On commuting with r ∈ R, we have

[[x, y] f (t), r] = 0 for all x, y ∈ I and r ∈ R. (32)

Replace x by yx in (32), we get [y[x, y] f (t), r] = y[[x, y] f (t), r] + [y, r][x, y] f (t) = 0 for all x, y ∈ I and r ∈ R. Using (32),

we obtain

[y, r][x, y] f (t) = 0 for all x, y ∈ I and r ∈ R. (33)

Replace r by pr in (33) where p ∈ R, we get p[y, r][x, y] f (t) + [y, p]r[x, y] f (t) = 0 for all x, y ∈ I and r, p ∈ R.

Using (33), we get [y, p]r[x, y] f (t) = 0 for all x, y ∈ I and r, p ∈ R. Substitute f (t)r for r and in particular, we get

[x, y] f (t)R[x, y] f (t) = (0) for all x, y ∈ I. Semiprimeness of R implies that

[x, y] f (t) = 0 for all x, y ∈ I. (34)

Replace y by f (t)y in (34), we get f (t)[x, y] f (t)+[x, f (t)]y f (t) = 0 for all x, y ∈ I. Equation (34) forces that [x, f (t)]y f (t) =
0 for all x, y ∈ I. It implies [x, f (t)]y[x, f (t)] = 0 for all x, y ∈ I. Since I is a left ideal of R so we have y[x, f (t)]Ry[x, f (t)] =
(0) for all x, y ∈ I. Semiprimeness of R yields that y[x, f (t)] = 0 for all x, y ∈ I and t ∈ Z(R). Hence, we conclude that

I[x, f (Z(R))] = (0) for all x ∈ I.
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Theorem 9. Let R be a semiprime ring and I a nonzero left ideal of R. Suppose that (F, f ) is a multiplicative (generalized)-
derivation of R. If F(x ◦ y) ± [x, y] ∈ Z(R) for all x, y ∈ I, then I[x, f (x)] = (0) or I[x, f (Z(R))] = (0) for all x ∈ I.

Proof. We consider

F(x ◦ y) ± [x, y] ∈ Z(R) for all x, y ∈ I. (35)

If Z(R) = (0) then

F(x ◦ y) ± [x, y] = 0 for all x, y ∈ I. (36)

Replace y by yx in (36), we get (F(x ◦ y) ± [x, y])x + (x ◦ y) f (x) = 0 for all x, y ∈ I. Using (36) to obtain

(x ◦ y) f (x) = 0 for all x, y ∈ I (37)

Replace y by f (x)y in (37) and we get f (x)(x ◦ y) f (x) + [x, f (x)]y f (x) = 0 for all x, y ∈ I. Relation (37) implies that

[x, f (x)]y f (x) = 0 for all x, y ∈ I. (38)

Replace y by yx in (38), we obtain

[x, f (x)]yx f (x) = 0 for all x, y ∈ I. (39)

Right multiply (38) by x and subtract from (39), we get [x, f (x)]y[x, f (x)] = 0 for all x, y ∈ I. Since I is a left ideal of

R, so we have y[x, f (x)]Ry[x, f (x)] = (0) for all x, y ∈ I. Semiprimeness of R yields that y[x, f (x)] = 0 for all x, y ∈ I.

Hence, we conclude that I[x, f (x)] = (0) for all x ∈ I.

If Z(R) � (0) then there exist 0 � t ∈ Z(R). Replace y by yt in (27) to get (F[x, y] ± (x ◦ y))t + (x ◦ y) f (t) ∈ Z(R) for all

x, y ∈ I. Using (27), we left with (x ◦ y) f (t) ∈ Z(R) for all x, y ∈ I. On commuting with r ∈ R, we obtain

[(x ◦ y) f (t), r] = 0 for all x, y ∈ I and r ∈ R. (40)

Replace y by xy in (40), we get x[(x ◦ y) f (t), r] + [x, r](x ◦ y) f (t) = 0 for all x, y ∈ I and r ∈ R. Equation (40) reduce it to

[x, r](x ◦ y) f (t) = 0 for all x, y ∈ I and r ∈ R. (41)

Replace y by py in (41) where p ∈ R, we have [x, r]p(x ◦ y) f (t) + [x, r][x, p]y f (t) = 0 for all x, y ∈ I and r, p ∈ R. Using

the fact that (x ◦ y) f (t) ∈ Z(R) for all x, y ∈ I, we get [x, r](x ◦ y) f (t)p + [x, r][x, p]y f (t) = 0 for all x, y ∈ I and r, p ∈ R.

Using (41) to obtain

[x, r][x, p]y f (t) = 0 for all x, y ∈ I and r, p ∈ R. (42)

Replacing r by sr where s ∈ R in (42) and we have s[x, r][x, p]y f (t) + [x, s]r[x, p]y f (t) = 0 for all x, y ∈ I and p, r, s ∈ R.

Using (42) to obtain

[x, s]r[x, p]y f (t) = 0 for all x, y ∈ I and p, r, s ∈ R. (43)

Replace y by yx in (43), we get

[x, s]r[x, p]yx f (t) = 0 for all x, y ∈ I and p, r, s ∈ R. (44)

Right multiply (43) by x and subtract from (44) to get [x, s]r[x, p]y[x, f (t)] = 0 for all x, y ∈ I and p, r, s ∈ I.

Replace r by ry and y by ry, we obtain [x, s]ry[x, p]ry[x, f (t)] = 0 for all x, y ∈ I and p, r, s ∈ I. In particular,

[x, f (t)]ry[x, f (t)]ry[x, f (t)] = 0 for all x, y ∈ I, r ∈ I and t ∈ Z(R). It implies (Ry[x, f (Z(R))])3 = (0) for all x, y ∈ I. But R

has no nonzero nilpotent ideal, so we have Ry[x, f (Z(R))] = (0) for all x, y ∈ I. Hence, we conclude that I[x, f (Z(R))] = (0)

for all x ∈ I.

Theorem 10. Let R be a semiprime ring and I a nonzero left ideal of R. Suppose that (F, f ) is a multiplicative (generalized)-
derivation of R. If F[x, y] ± xy ∈ Z(R) holds for all x, y ∈ I, then I[x, f (x)] = (0) or I[x, f (Z(R))] = (0) for all x ∈ I.

Proof. We consider

F[x, y] ± xy ∈ Z(R) for all x, y ∈ I. (45)

If Z(R) = (0) then it is easy to prove that I[x, f (x)] = (0) for all x ∈ I.

If Z(R) � (0) then there exist 0 � t ∈ Z(R). Replace y by yt in (45) to obtain (F[x, y] ± xy)t + [x, y] f (t) ∈ Z(R) for all

x, y ∈ I. Using (45), we get [x, y] f (t) ∈ Z(R) for all x, y ∈ I. On commuting with r ∈ R, we have [[x, y] f (t), r] = 0 for all

x, y ∈ I and r ∈ R. It coincides with (32), hence Theorem 9. insure the conclusions.
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Theorem 11. Let R be a semiprime ring and I a nonzero left ideal of R. Suppose that (F, f ) is a multiplicative (generalized)-
derivation of R. If F(x ◦ y) ± xy ∈ Z(R) holds for all x, y ∈ I, then I[x, f (x)] = (0) or I[x, f (Z(R))] = (0) for all x ∈ I.

Proof. We consider

F(x ◦ y) ± xy ∈ Z(R) for all x, y ∈ I. (46)

If Z(R) = (0) then it is easy to prove that I[x, f (x)] = (0) for all x ∈ I.

If Z(R) � (0) then there exist 0 � t ∈ Z(R). Replace y by yt in (46) and we get (F[x, y] ± xy)t + (x ◦ y) f (t) ∈ Z(R) for all

x, y ∈ I. Using (46), we get (x ◦ y) f (t) ∈ Z(R) for all x, y ∈ I. On commuting with r ∈ R, we obtain [(x ◦ y) f (t), r] = 0 for

all x, y ∈ I and r ∈ R. It coincides with (40), hence Theorem 10. insure the conclusions.

Theorem 12. Let R be a semiprime ring and I a nonzero left ideal of R. Suppose that (F, f ) is a multiplicative (generalized)-
derivation of R. If F[x, y] ± f (x) ◦ y ∈ Z(R) holds for all x, y ∈ I, then I[x, f (x)] = (0) or I[x, f (Z(R))] for all x ∈ I.

Proof. We consider

F[x, y] ± f (x) ◦ y ∈ Z(R) for all x, y ∈ I. (47)

If Z(R) = (0) then we have

F[x, y] ± f (x) ◦ y = 0 for all x, y ∈ I. (48)

Substitute yx for y in (48) to get (F[x, y] ± f (x) ◦ y)x + [x, y] f (x) ∓ y[ f (x), x] = 0 for all x, y ∈ I. By (48), it reduces to

[x, y] f (x) ∓ y[ f (x), x] = 0 for all x, y ∈ I. (49)

Replace y by f (x)y in (49), we get

f (x)[x, y] f (x) + [x, f (x)]y f (x) ∓ f (x)y[ f (x), x] = 0 for all x, y ∈ I. (50)

Left multiply (49) by f (x) and subtract from (50), we obtain [x, f (x)]y f (x) = 0 for all x, y ∈ I.. Since I is a left ideal in R,

it implies that y[x, f (x)]Ry[x, f (x)] = (0) for all x, y ∈ I. Semiprimeness of R yields that y[x, f (x)] = 0 for all x, y ∈ I.We

conclude that I[x, f (x)] = (0) for all x ∈ I.

If Z(R) � (0) then there exist some 0 � t ∈ Z(R). Replace y by yt in (47), we get (F[x, y] + f (x) ◦ y)t + [x, y] f (t) ∈ Z(R)

for all x, y ∈ I. Using (47) to obtain [x, y] f (t) ∈ Z(R) for all x, y ∈ I. That is [[x, y] f (t), r] = 0 for all x, y ∈ I and r ∈ R. It

coincides with (32), hence Theorem 9. yields that I[x, f (Z(R))] = (0) for all x ∈ I.

Theorem 13. Let R be a semiprime ring and I a nonzero left ideal of R. Suppose that (F, f ) is a multiplicative (generalized)-
derivation of R. If F(x ◦ y) ± [ f (x), y] ∈ Z(R) holds for all x, y ∈ I, then I[x, f (x)] = (0) or I[x, f (Z(R))] = (0)for all
x ∈ I.

Proof. We consider

F(x ◦ y) ± [ f (x), y] ∈ Z(R) for all x, y ∈ I. (51)

If Z(R) = (0) then we have

F(x ◦ y) ± [ f (x), y] = 0 for all x, y ∈ I. (52)

Replace y by yx in (52) and we obtain F(x ◦ y)x + (x ◦ y) f (x) ± [ f (x), y]x ± y[ f (x), x] = 0 for all x, y ∈ I. Using (52), we

left with

(x ◦ y) f (x) ± y[ f (x), x] = 0 for all x, y ∈ I. (53)

Replace y by f (x)y in (53) and we get

f (x)(x ◦ y) f (x) + [x, f (x)]y f (x) ± f (x)y[ f (x), x] = 0 for all x, y ∈ I. (54)

Left multiply (53) by f (x) and subtract it from (54), we obtain [x, f (x)]y f (x) = 0 for all x, y ∈ I. It implies that

[x, f (x)]y[x, f (x)] = (0) for all x, y ∈ I. Semiprimeness of R yields that y[x, f (x)] = (0) for all x, y ∈ I. We conclude that

I[x, f (x)] = (0) for all x ∈ I.

If If Z(R) � (0) then there exist some 0 � t ∈ Z(R). Replace y by yt in (51), we get (F(x◦y)+ [ f (x), y])t+ (x◦y) f (t) ∈ Z(R)

for all x, y ∈ I. Using (51), we obtain (x ◦ y) f (t) ∈ Z(R) for all x, y ∈ I. That is [(x ◦ y) f (t), r] = 0 for all x, y ∈ I and r ∈ R.

It coincides with (40), hence Theorem 10. yields that I[x, f (Z(R))] = (0) for all x ∈ I.

14



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 2; 2017

Corollary 14. Let R be a semi-prime ring. Suppose that (F, f ) is a multiplicative (generalized)-derivation of R. If any one

of the following

i. F[x, y] ± (x ◦ y) ∈ Z(R)

ii. F(x ◦ y) ± [x, y] ∈ Z(R)

iii. F[x, y] ± xy ∈ Z(R)

iv. F(x ◦ y) ± xy ∈ Z(R)

v. F[x, y] ± ( f (x) ◦ y) ∈ Z(R)

vi. F(x ◦ y) ± [ f (x), y] ∈ Z(R)

holds for all x, y ∈ R, then either f is commuting map or f (Z(R)) ⊆ Z(R).

3. Examples

In this section, we build a few examples to show that the condition of semiprimeness in our results is not superfluous.

Example 1. Consider

R =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 a b
0 0 c
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ : a, b, c ∈ S

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

where S is any arbitrary ring.

We define maps F, f : R → R by

F

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 a b
0 0 c
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 a
0 0 bc
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , f

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 a b
0 0 c
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 c2

0 0 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠,

it is verified that F is a multiplicative (generalized)-derivations associated with the maps f and it is easy to see that the

identities f (x)F(y) ± [x, y] ∈ Z(R), f (x)F(y) ± (x ◦ y) ∈ Z(R) and f (x)F(y) ± yx ∈ Z(R) are satisfied for all x, y ∈ R. Here

R is not a semiprime ring because

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1 1

0 0 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ R

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1 1

0 0 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = (0).

Note that R is not commutative. Hence, the condition of semi-primeness in Corollary 5. can not be omitted.

Example 2. Consider R =
{(

a b
0 c

)
: a, b, c ∈ Z2

}
be a ring over integers modulo 2 and let I =

{(
a b
0 0

)
: a, b, c ∈ Z2

}
,

be a left ideal in R. We define maps F, f : R → R by

F
(

a b
0 c

)
=

(
a nb
0 0

)
, f

(
a b
0 c

)
=

(
0 (n − 1)b
0 0

)
,

where n is any positive integer. Then it is verified that F is a multiplicative (generalized)-derivations associated with the

maps f and it is easy to see that the identities F(xy) ± F(x)F(y) ∈ Z(R) are satisfied for all x, y ∈ I. Here R is not a

semiprime ring, but observe that I[ f (x), x] � (0) for all x ∈ I. Hence, the condition of semiprimeness in Theorem 6. is

essential.

Example 3. Consider R =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 a b
0 0 c
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ : a, b, c ∈ Z

⎫⎪⎪⎪⎬⎪⎪⎪⎭, where Z stands for the ring of integers. We define maps F, f :

R → R by
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F

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 a b
0 0 c
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 bc
0 0 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , f

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 a b
0 0 c
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 b a2

0 0 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

Then it is verified that F is a multiplicative (generalized)-derivations associated with the maps f and it is easy to see that

the identities F[x, y]±(x◦y) ∈ Z(R),F(x◦y)±[x, y] ∈ Z(R),F[x, y]±xy ∈ Z(R), F(x◦y)±xy ∈ Z(R), F[x, y]±( f (x)◦y) ∈ Z(R)

and F(x ◦ y) ± [ f (x), y] ∈ Z(R) are satisfied for all x, y ∈ R. Clearly, R is not a semiprime ring. Note that f is neither

commuting on R nor maps Z(R) into Z(R). Hence, the condition of semiprimeness in Corollary 14. can not be removed.
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Abstract

The present article is motivated by the theorem of Cartan-Dieudonné which states that every orthogonal transformation is

a product of reflections. Its purpose is to determine, for each orthogonal transformation, the minimal number of factors

in a decomposition into a product of reflections, and to propose an effective algorithm giving such a decomposition. With

the orthogonal transformations g of a quadratic space (V, q), it associates couples (S , φ) where S is a subspace of V , and

φ an non-degenerate bilinear form on S such that φ(y, y) = q(y) for every y in S . In general, the minimal decompositions

of g into a product of reflections correspond to the bases of S in which the matrix of φ is lower triangular. Therefore, we

need an algorithm of triangularization of bilinear forms. Affine isometries are also taken into consideration.

Keywords: orthogonal transformations, bilinear forms.

Let V be a vector space of finite dimension n over a field K, q a quadratic form on V which is momentarily assumed to

be non-degenerate, and O(V, q) the group of its orthogonal transformations. Since the characteristic of K may be 2, the

associated bilinear form bq is defined in this way:

∀x, y ∈ V, bq(x, y) = q(x + y) − q(x) − q(y) ;

thus bq(x, x) = 2q(x) for all x. Every non-isotropic vector v ∈ V determines a reflection R(v):

∀x ∈ V, R(v)(x) = x − bq(x, v)

q(v)
v .

The theorem of Cartan-Dieudonné (see (Dieudonné, 1958)) states that every g ∈ O(V, q) is a product of reflections, where

the number of reflections is ≤ n. Nevertheless, there are exceptions when the field K is isomorphic to Z/2Z. When q is

anisotropic (for instance when K = R and q is euclidean), it is easy to prove that the minimal number of reflections for a

particular g is the dimension of im(g − 1), the image of g − 1V (where 1V is the identity mapping of V , also denoted by 1
if this short notation is clear enough). The determination of this minimal number is much more difficult when there are

non-zero isotropic vectors x (such that q(x) = 0). Here this minimal number proves to be the dimension of im(g−1) when

it is not totally isotropic, and dim(im(g − 1)) + 2 when it is totally isotropic; because of the above mentioned exceptions,

K is assumed not to be isomorphic to Z/2Z.

I first tackled this problem with the Clifford algebra Cl(V, q) (the associative and unital algebra generated by the elements

x of V with the relations x2 = q(x)); but in this article, contrary to (Helmstetter 2017), I present only the part of my

research that can be explained without mentioning Clifford algebras. Nevertheless, the Clifford algebras suggested new

points of view and new definitions that I shall explain at once. Firstly, the hypothesis that q is non-degenerate has been

removed, because it causes a dreadful loss of effectiveness in the treatment of Clifford algebras. We must pay attention

to ker(bq), the subspace of all x ∈ V such that bq(x, y) = 0 for all y ∈ V , and to ker(q), the subspace of all x ∈ ker(bq)

such that q(x) = 0; since bq(x, x) = 2q(x), the equality ker(q) = ker(bq) holds whenever the characteristic of K is � 2.

When ker(q) � ker(bq), q is said to be defective. Secondly, we must distinguish Iso(V, q), the group of isometries of (V, q),

and its subgroup O(V, q), the group of orthogonal transformations; a linear transformation g of V is an isometry if (by

definition) q(g(x)) = q(x) for all x ∈ V; an isometry g is an orthogonal transformation if ker(g−1) ⊃ ker(bq). For instance,

every reflection R(v) is an orthogonal transformation, and im(R(v)−1) is the line spanned by v (except when q is defective

and v ∈ ker(bq)). A linear transformation g is an isometry if and only if it extends to an automorphism of Cl(V, q); it

is an orthogonal transformation if and only if it extends to a twisted inner automorphism of Cl(V, q) according to this

definition which involves the parity gradation of Cl(V, q): the twisted inner automorphism determined by an invertible,

even or odd element a ∈ Cl(V, q) is b �−→ aba−1 if a or b is even, b �−→ −aba−1 if a and b are odd. Thirdly, every

orthogonal transformation g can be determined by a couple (S , φ) where S is a subspace of V containing im(g − 1), and φ
is a non-degenerate bilinear form on S such that φ(y, y) = q(y) for all y ∈ S . Since we shall meet plenty of such couples
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(S , φ), I propose to call them transformers of (V, q). When q is non-degenerate (in other words, ker(bq) = 0), then g
admits only one transformer (S , φ), and S = im(g − 1). But in other cases, there may be plenty of transformers over each

g ∈ O(V, q), sometimes of various dimensions; therefore, the determination of their minimal dimension is important:

minimal dim(S ) = dim(im(g − 1)) + dim(im(g − 1) ∩ ker(q)) .

This minimal dimension s gives the minimal number of factors in a decomposition of g into a product of reflections; it is

s when q admits a minimal-dimensional transformer (S , φ) that is not totally isotropic; in the other cases, it is s + 2 (only

s + 1 if q is defective).

The quadratic space (V, q) is said to be embedded in (W, q̃) if there is an injective linear mapping f : V → W such

that q̃( f (x)) = q(x) for all x; for convenience, V will be treated as a subspace of W, and q̃ as an extension of q. Such

an embedding is especially interesting if q̃ is non-degenerate; indeed, we shall realize that an isometry g of (V, q) is an

orthogonal transformation if and only if it extends to an orthogonal transformation g̃ of (W, q̃) such that im(g̃ − 1W ) ⊂ V;

in other words, O(V, q) is the image of the subgroup of all g̃ ∈ O(W, q̃) such that im(g̃ − 1W ) ⊂ V; the image of each g̃ is

its restriction to V; moreover, the suitable extensions g̃ of g are in bijection with the transformers (S , φ) over g.

Example. When q is the null quadratic form on V , then Iso(V, q) is the linear group GL(V) whereas O(V, q) is the trivial

group {1V }. There is a non-degenerate embedding (W, q̃) where W is the direct sum of V and the dual space V∗, and where

q̃(x, �) = �(x) for all x ∈ V and all � ∈ V∗. Every g ∈ GL(V) has extensions g̃ in O(W, q̃), and there is a canonical extension

(x, �) �−→ (g(x), � ◦ g−1); but im(g̃ − 1W ) is not contained in V if g � 1V ; indeed, Lemma 1.2 (here below) shows that the

conditions im(g̃−1W ) ⊂ V is equivalent to ker(g̃−1W ) ⊃ V . When g = 1V , the extensions g̃ are well known: see (Chevalley,

1954), section III.1.7; they are in bijection with the elements ω of
∧2(V); if ω =

∑r
i=1 yi ∧ zi, the associated orthogonal

transformation F(ω) maps each (x, �) to (x +
∑

i(�(yi) zi − �(zi) yi), �). Thus F(ω) ◦ F(ω′) = F(ω + ω′). The calculation

of the transformer (S , φ) associated with F(ω) (according to Theorem 2.2 below) is easy when (y1, z1, y2, z2, . . . , yr, zr) is

linearly independant: S is the subspace with basis (y1, z1, . . . , yr, zr), and φ is the alternate bilinear form on S such that

φ(yi, zi) = 1, φ(yi, z j) = 0 if i � j, and φ(yi, y j) = φ(zi, z j) = 0 for all i and j. Thus we obtain a bijection between the

elements of
∧2(V) and the transformers (S , φ) of (V, 0).

Let us suppose that the orthogonal transformation g is a product of reflections R(v1)R(v2) · · · R(vs) involving s linearly

independent vectors; then g admits the transformer (S , φ) where S is the subspace with basis (v1, . . . , vs), and where φ has

a lower triangular matrix in this basis; in other words, φ(vi, v j) = 0 whenever i < j; since φ(y, y) = q(y) for all y ∈ S , this

property completely determines φ. Conversely, if (S , φ) is a transformer for g, and if the matrix of φ is lower triangular in

some basis (v1, . . . , vs) of S , then g = R(v1) · · · R(vs). Thus we are led to the problem which shall be the subject of the

second part of this article: if φ is a bilinear form on a vector space S (of finite dimension s), are there bases of S where

the matrix of φ is lower triangular, and how can we calculate one of them?

Although every transformer (S , φ) involves a non-degenerate bilinear form φ, I will solve the problem of triangularization

even when φ is degenerate; in the frame of Clifford algebras, there are at least two problems that require triangularisation

even for degenerate bilinear forms. When φ is a non-zero alternate bilinear form, its matrix is alternate in every basis of S ;

therefore, it cannot be triangularized. All other bilinear forms can be triangularized, except when K is isomorphic to Z/2Z.

Bilinear forms over Z/2Z are outside the scope of this article; here, I do not more than showing (just below) a bilinear

form over Z/2Z that cannot be triangularized although it is not alternate. I shall present an algorithm of triangularization

where every phase is almost trivial, except the “correction procedure”; this procedure is the only phase that requires K not

to be isomorphic to Z/2Z; therefore, the presence of this unpleasant procedure is not the result of a clumsiness.

Example. Here, exceptionally, K is the field Z/2Z. Let us consider the following non-degenerate bilinear form φ on K3:

φ((ξ1, ξ2, ξ3), (ζ1, ζ2, ζ3)) = (ξ1ζ2 − ξ2ζ1) + (ξ2 + ξ3)ζ3 .

If the matrix of φ is triangular in a basis (v1, v2, v3), then φ(v1, v1), φ(v2, v2) and φ(v3, v3) are all � 0 because φ is non-

degenerate. Unfortunately, only two vectors of K3 are not isotropic for the quadratic form v �−→ φ(v, v): (0, 0, 1) and

(1, 0, 1). Therefore, φ cannot be triangularized.

1. Preliminary Lemmas

The first lemma is useful only in characteristic 2.

Lemma 1.1. For every g ∈ Iso(V, q) we have im(g − 1) ∩ ker(bq) ⊂ ker(q); in other words, im(g − 1) ∩ ker(bq) =

im(g − 1) ∩ ker(q).

Proof. If g(x) − x is in ker(bq), then

q(x) = q(g(x)) = q(x) + q(g(x) − x) + bq(x, g(x) − x) = q(x) + q(g(x) − x),
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whence q(g(x) − x) = 0. �
Lemma 1.1 implies that O(V, q) = Iso(V, q) if and only if ker(q) = 0.

For every subspace U of V , U⊥ is the subspace of all x ∈ V such that bq(x, u) = 0 for all u ∈ U.

Lemma 1.2. For every g ∈ Iso(V, q), the subspaces ker(g − 1) and im(g − 1) are orthogonal. When ker(q) = 0, then
ker(g − 1) = (im(g − 1))⊥.

Proof. For all x, y ∈ V we have

bq(x, g(y) − y) = −bq(g(x) − x, g(y)) ;

therefore, every x in ker(g − 1) is orthogonal to every g(y) − y in im(g − 1). Conversely, if x is orthogonal to all g(y) − y,

then g(x) − x is in ker(bq), therefore in ker(q); and x ∈ ker(g − 1) if ker(q) = 0. �
When q is non-degenerate, the orthogonal group O(V, q) contains a normal subgroup SO(V, q) of index 2 which no reflec-

tion R(v) can belong to. The same holds true when q is degenerate but non-defective; indeed, q induces a non-degenerate

quadratic form q′′ on the quotient V ′′ = V/ ker(q), every g ∈ O(V, q) gives a transformation g′′ ∈ O(V ′′, q′′), and SO(V, q)

is the inverse image of SO(V ′′, q′′) by the homomorphism g �−→ g′′. If g is a product of reflections, the parity of the num-

ber of reflections depends on whether g is, or not, in the subgroup SO(V, q). All this is null and void when q is defective;

in this case, ker(bq) contains vectors v such that q(v) � 0 and R(v) = 1V .

Now we consider a bilinear form φ on some vector space S , and we define the quadratic form q by q(y) = φ(y, y) for all

y ∈ S . Consequently,

∀x, y ∈ S , φ(x, y) + φ(y, x) = bq(x, y) . (1.1)

Let RKer(φ) (resp. LKer(φ)) be the subspace of all x ∈ S such that φ(v, x) = 0 (resp. φ(x, v) = 0) for all v ∈ S . If U is a

subspace of S , we denote by R⊥
φ (U) (resp. L⊥φ (U)) the subspace of all x ∈ S such that φ(u, x) = 0 (resp. φ(x, u) = 0) for

all u ∈ U. When U ⊂ ker(bq), then R⊥
φ (U) = L⊥φ (U), and the notation LR⊥

φ (U) is allowed.

Lemma 1.3. Let U1 and U3 be two subspaces of S such that φ(U1,U3) = 0 and such that the restrictions of φ to U1 and
U3 are non-degenerate. Then we have S = U1 ⊕ U2 ⊕ U3 if U2 = R⊥

φ (U1) ∩ L⊥φ (U3).

Proof. For every x ∈ S , there is a unique x1 ∈ U1 (resp. x3 ∈ U3) such that φ(u, x) = φ(u, x1) for all u ∈ U1 (resp.

φ(x, u) = φ(x3, u) for all u ∈ U3). If we set p1(x) = x1 and p3(x) = x3, then p1 and p3 are projectors such that

im(p1) = U1, ker(p1) = R⊥
φ (U1), im(p3) = U3, ker(p3) = L⊥φ (U3). Since φ(U1,U3) = 0, we have p1 p3 = p3 p1 = 0. Thus,

if we set p2 = 1 − p1 − p3, we obtain a projector on ker(p1) ∩ ker(p3) = U2. �.

Lemma 1.3 can be applied when U1 = 0 or U3 = 0, because the unique bilinear form on {0} is non-degenerate.

The next lemma, motivated by the frequent presence of g− 1, does not require V to be a vector space; it holds true already

for an additive group.

Lemma 1.4. Let g1 and g2 be homomorphisms from an additive group V into itself, and g = g1g2 their product. Let us
consider these four assertions:

(im) : im(g1 − 1) ∩ im(g2 − 1) = 0 ;

(Im) : im(g1 − 1) + im(g2 − 1) = im(g − 1) ;

(ker) : ker(g1 − 1) + ker(g2 − 1) = V ;

(Ker) : ker(g1 − 1) ∩ ker(g2 − 1) = ker(g − 1) .

The following four implications hold true:

(im) ⇒ (Ker) , (ker) ⇒ (Im) ; (1.2)

(im) & (Im) ⇐⇒ (ker) & (Ker) . (1.3)

Proof. I will prove only (1.2) because we shall never use (1.3) which is mentioned here only because it would be a pity to

mutilate Lemma 1.4; yet the proof of (1.3) is more difficult. The two inclusions

im(g1 − 1) + im(g2 − 1) ⊃ im(g − 1) and ker(g1 − 1) ∩ ker(g2 − 1) ⊂ ker(g − 1)

are obvious consequences of

g − 1 = (g1 − 1) g2 + (g2 − 1) = g1 (g2 − 1) + (g1 − 1) .
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Let us prove (im) ⇒ (Ker). If (im) is true and g(x) = x, then (g1 − 1)g2(x) = (g2 − 1)(x) = 0, whence g2(x) = x = g1(x);

this means that (Ker) is true. Now let us prove that (ker) implies im(g1 − 1) ⊂ im(g − 1); since im(g2 − 1) ⊂ im(g − 1)

for the same reasons, (Im) follows. Let us consider y = (g1 − 1)(x) and let us write x = x1 + x2 where g1(x1) = x1 and

g2(x2) = x2; thus y = (g1 − 1)(x2) = g1(g2 − 1)(x2) + (g1 − 1)(x2) = (g − 1)(x2). �
Remark. When dim(V) is infinite, which properties of an isometry g ensure that it extends to a twisted inner automorphism

of Cl(V, q)? The necessary condition ker(g−1) ⊃ ker(bq) is no longer sufficient. Indeed, an isometry g extends to a twisted

inner automorphism (and is called an orthogonal transformation) if and only if the codimension of ker(g− 1) is finite, and

if ker(g − 1) is orthogonally closed according to this definition: a subspace U of V is orthogonally closed if U⊥⊥ = U.

I recall that U⊥⊥ ⊃ U and U⊥⊥⊥ = U⊥ for every subspace U. When the codimension of ker(bq) is infinite, the property

ker(g − 1) ⊃ ker(bq) is much weaker. When ker(q) = 0, then ker(g − 1) is orthogonally closed for every isometry g
because Lemma 1.2 is always valid. But if ker(q) contains a vector u � 0, then every � ∈ V∗ determines an isometry

g : x �−→ x + �(x) u such that ker(g − 1) = ker(�); and g is an orthogonal transformation if and only if there is v ∈ V
such that �(x) = bq(v, x) for all x ∈ V; even when ker(�) ⊃ ker(bq), the existence of v is exceptional. Besides, for every

orthogonal transformation g, there is an orthogonal decompostion V = V1 ⊕ V2 such that dim(V1) is finite, im(g − 1) ⊂ V1

and ker(g − 1) ⊃ V2; it reduces the study of g to the finite-dimensional case. Nothing interesting will occur as long as no

other concept and no other hypothesis (for instance, the presence of a topology) is introduced.

2. The Main Theorems for Transformers

A transformer of (V, q) is a couple (S , φ) where φ is a non-degenerate bilinear form on a subspace S of V , and satisfies the

condition φ(y, y) = q(y) for all y ∈ S . The following two theorems justify this definition.

Theorem 2.1. Let (S , φ) be a transformer of (V, q). There is a unique linear endomorphism g of V such that im(g−1) ⊂ S ,
and such that

∀x ∈ V, ∀y ∈ S , φ(g(x) − x, y) = −bq(x, y) ; (2.1)

it is an orthogonal transformation of (V, q). Moreover,

ker(g − 1) = S ⊥ , (2.2)

im(g − 1) = LR⊥
φ (S ∩ ker(bq)) ; (2.3)

dim(S ) ≥ dim(im(g − 1)) + dim(im(g − 1) ∩ ker(q)) ; (2.4)

∀y, z ∈ S , φ(g(y), g(z)) = φ(y, z) . (2.5)

The reverse transformer (S , φ†), where φ† is defined by φ†(x, y) = φ(y, x), gives the inverse transformation g−1.

Proof. Since φ is non-degenerate, it is clear that (2.1) determines an endomorphism g. Every x ∈ ker(g) must be in S , and

φ(x, y) = bq(x, y) for all y ∈ S , whence φ(y, x) = 0 because of (1.1), and x = 0 since φ is non-degenerate. Therefore, g is

bijective. Let us prove that it is an isometry; for all x ∈ V , we have g(x) = x + (g(x) − x), whence

q(g(x)) − q(x) = q(g(x) − x) + bq(x, g(x) − x)

= q(g(x) − x) − φ(g(x) − x, g(x) − x) = q(y) − φ(y, y) if y = g(x) − x ;

thus q(g(x)) = q(x) as expected. From (2.1) we deduce that g(x) − x = 0 if and only if x ∈ S ⊥; consequently, (2.2) holds

true, and g is an orthogonal transformation. If � is a linear form on S , there is x ∈ V such that �(y) = −bq(x, y) for all y ∈ S
if and only if � vanishes on S ∩ ker(bq). On another side, a vector z of S belongs to im(g− 1) if and only if the linear form

y �−→ φ(z, y) is equal to y �−→ −bq(x, y) for some x ∈ V; this occurs if and only if z ∈ L⊥φ (S ∩ ker(bq)); this proves (2.3).

Since φ is non-degenerate,

dim(S ) = dim(S ∩ ker(bq)) + dim(L⊥φ (S ∩ ker(bq)))

≥ dim(im(g − 1) ∩ ker(q)) + dim(im(g − 1)) ,

in accordance with (2.4). The fact that g−1 can be derived from (S , φ†) is equivalent to the following fact:

∀y ∈ S , ∀x ∈ V, φ(y, g(x) − x) = bq(y, g(x)) ; (2.6)

this formula (2.7) is a consequence of (1.1) and (2.1):

φ(y, g(x) − x) = bq(g(x) − x, y) − φ(g(x) − x, y) = bq(g(x) − x, y) + bq(x, y) = bq(g(x), y) .

Finally, we derive (2.5) from (2.1) and (2.6); for all y, z ∈ S ,

φ(g(y), g(z)) − φ(y, z) = φ(g(y) − y, g(z)) + φ(y, g(z) − z) = −bq(y, g(z)) + bq(y, g(z)) = 0.
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The proof of Theorem 2.1 is complete. �
When q is non-degenerate, the equality (2.3) means that im(g − 1) = S . A transformer (S , φ) gives the transformation 1
if and only if S ⊂ ker(bq). The trivial transformer (0, 0) (on the null subspace {0}) always gives 1. Now we come to the

reciprocal theorem.

Theorem 2.2. Every g ∈ O(V, q) admits a transformer (S , φ) such that

dim(S ) = dim(im(g − 1)) + dim(im(g − 1) ∩ ker(q)) . (2.7)

We can require S not to be totally isotropic, except in these two cases:

if im(g − 1) ∩ ker(q) = 0 and im(g − 1) is totally isotropic;

if im(g − 1) ∩ ker(q) � 0 and (ker(g − 1))⊥ is totally isotropic.

Proof. There is an easy case and a difficult case.

The easy case: im(g − 1) ∩ ker(q) = 0. In this case, (2.7) means that S = im(g − 1). Let us prove that the equation

(2.1) determines a bilinear form φ; we must verify that every equality g(x) − x = g(x′) − x′ implies bq(x, y) = bq(x′, y)

for all y ∈ S ; indeed, this equality means x − x′ ∈ ker(g − 1); therefore, x − x′ is orthogonal to im(g − 1) = S and

bq(x − x′, y) = 0. This bilinear form φ is non-degenerate; indeed, if φ(z, y) = 0 for all z ∈ S , then bq(x, y) = 0 for all

x ∈ V , therefore y ∈ ker(bq), whence y ∈ S ∩ ker(bq) = im(g − 1) ∩ ker(q) = 0. When y = g(x) − x, we can prove that

q(g(x)) − q(x) = q(y) − φ(y, y) as we did it in the proof of Theorem 2.1; and here, this equality implies φ(y, y) = q(y) for

all y ∈ S .

The difficult case: im(g−1)∩ker(q) � 0. Let (b1, . . . , bt) be a basis of S 0 = im(g−1)∩ker(q), and S ′ a subspace such that

im(g − 1) = S 0 ⊕ S ′. Moreover, let V ′ be a subspace such that V = ker(bq) ⊕ V ′ and V ′ ⊃ S ′. Since q is non-degenerate

on V ′, there is an orthogonal transformation g′ of V ′ and there is (c1, . . . , ct) in V ′ such that

∀x ∈ V ′, g(x) = g′(x) +

t∑
i=1

bq(x, ci) bi . (2.8)

In V ′ we can find a linearly independent sequence (a1, . . . , at) such that g(ai) − ai = bi for i = 1, 2, . . . , t. Consequently,

g′(ai) = ai and bq(ai, ci) = 1 for i = 1, 2, . . . , t, but bq(ai, c j) = 0 if i � j. This proves that (c1, . . . , ct) spans a subspace

S 1 of dimension t which bq puts in duality with the space spanned by (a1, . . . , at). Moreover, S 1 ∩ (S 0 ⊕ S ′) = 0 because

S 0 ⊕ S ′ (that is im(g − 1)) is orthogonal to the subspace spanned by (a1, . . . , at); indeed, for all x ∈ V ,

bq(ai, g(x) − x) = −bq(g(ai) − ai, g(x)) = −bq(bi, g(x)) = 0 .

Let us set S = S 0 ⊕ S ′ ⊕ S 1. This subspace S is orthogonal to ker(g − 1); indeed, we already know that S 0 ⊕ S ′ (that is

im(g−1)) is orthogonal to ker(g−1); since ker(g−1) ⊃ ker(bq), it suffices to prove that S 1 is orthogonal to V ′ ∩ker(g−1);

this follows from (l2.8), where the equality g(x) = x implies implies bq(x, ci) = 0 for i = 1, 2, . . . , t.

Now we construct φ. The equation (2.1) involves only the restriction of φ to (S 0 ⊕ S ′) × S , and as in the previous easy

case, it actually determines this restriction, because every equality g(x)− x = g(x′)− x′ implies that x− x′ is in ker(g− 1),

therefore orthogonal to S . Since S 0 ⊂ ker(bq), it is clear that φ vanishes on (S 0 ⊕ S ′) × S 0. Since the vectors ai are

orthogonal to S 0 ⊕ S ′ (see above), φ vanishes on S 0 × (S 0 ⊕ S ′) too:

φ(bi, y) = φ(g(ai) − ai, y) = −bq(ai, y) = 0 if y ∈ S 0 ⊕ S ′.

Since φ(bi, c j) = φ(g(ai) − ai, c j) = −bq(ai, c j), we have φ(bi, ci) = −1, but φ(bi, c j) = 0 if i � j. On another side, the

restriction of φ to S ′ is non-degenerate; indeed, if y is an element of S ′ such that φ(z, y) = 0 for all z ∈ S ′, then φ(z, y) = 0

for all z ∈ S 0 ⊕ S ′; therefore, bq(x, y) = −φ(g(x) − x, y) = 0 for all x ∈ V , whence y ∈ S ′ ∩ ker(bq) = 0. Since the

equation (2.1) is now satisfied, we can deduce the equality q(g(x)) − q(x) = q(y) − φ(y, y) from y = g(x) − x as above, and

claim that φ(y, y) = q(y) for all y ∈ S 0 ⊕ S ′. To complete the construction of φ, we have only to worry about the equalities

φ(y, y) = q(y) and φ(y, z) + φ(z, y) = bq(y, z) when y is in S 1. Since S 0 and S 1 are orthogonal, we realize that φ(ci, bi) = 1

for i = 1, 2, . . . , t, but φ(ci, b j) = 0 if i � j. Let us choose a basis (d1, . . . , dr) of S ′, and consider the matrix Φ of φ in the

basis (b1, . . . , bt, d1, . . . , dr, c1, . . . , ct) of S :

Φ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 −1t

0 M N
1t N′ P

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ;
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the submatrix M is invertible since it gives the restriction of φ to S ′; consequently the matrixΦ is invertible. The submatrix

N′ is determined by N and the restriction of bq to S 1 × S ′; but when t ≥ 2, the submatrix P is not completely determined

by the condition φ(y, y) = q(y) for all y ∈ S 1.

It remains to prove that there are non totally isotropic choices of S if and only if ker(g− 1)⊥ is not totally isotropic. When

q is defective, there is u ∈ ker(bq) such that q(u) � 0; since ker(g − 1)⊥ contains u, it is never totally isotropic, and we

must prove that there is always a non totally isotropic choice of S ; indeed, the equality (2.8) remains true if we replace c1

with c1 + u; since q(c1 + u) = q(c1) + q(u) � q(c1), we can choose c1 in such a way that q(c1) � 0. Now let us suppose

that ker(q) = ker(bq). Since (2.2) implies S ⊂ ker(g − 1)⊥, every choice of S is totally isotropic if ker(g − 1)⊥ is totally

isotropic. Conversely, let the above constructed subspace S be totally isotropic, and let us prove that V ′ ∩ ker(g − 1)⊥ is

totally isotropic (therefore, ker(g − 1)⊥ too). From (2.8) we deduce that V ′ ∩ ker(g − 1) is the intersection of V ′ ∩ S ⊥
1 and

ker(g′ −1V ′ ), and also that im(g′ −1′V ′ ) = S ′. Since q is non-degenerate on V ′, ker(g′ −1V ′ ) = V ′ ∩S ′⊥. Thus V ′ ∩ker(g−1)

is the intersection of V ′ ∩ S ′⊥ and V ′ ∩ S ⊥
1 , whence V ′ ∩ ker(g − 1)⊥ = S ′ ⊕ S 1. If S is totally isotropic, the same is true

for S ′ ⊕ S 1 and ker(g − 1)⊥. �

When q is non-degenerate, the correspondance between transformers and orthogonal transformations is bijective. In

Section 4, it is explained that the same is true for a non-defective q such that dim(ker(q)) = 1. Whatever q may be,

if (V, q) → (W, q̃) is an embedding such that V ⊂ W, every transformer (S , φ) of (V, q) is also a transformer of (W, q̃);

consequently, every g ∈ O(V, q) has an extension g̃ ∈ O(W, q̃) such that im(g̃−1W ) ⊂ V . Conversely, if q̃ is non-degenerate,

every g̃ ∈ O(W, q̃) such that im(g̃ − 1W ) ⊂ V admits a transformer (S , φ) such that S ⊂ V; thus there is a bijection between

the transformers of (V, q) and the elements g̃ ∈ O(W, q̃) such that im(g̃ − 1W ) ⊂ V . This fact gives a structure of group

on the set of transformers of (V, q). This structure does not depend on the choice of the embedding; indeed, if (V, q) is

embedded in (W, q̃) and in (W′, q̃′) (with non-degenerate q̃ and q̃′), then (W, q̃) and (W ′, q̃′) can be embedded in the same

non-degenerate space (W′′, q̃′′) in such a way that we get twice the same embedding (V, q) → (W ′′, q̃′′); it is easy to

construct (W ′′, q̃′′) (despite a little difficulty when q is defective).

When K is the field R of real numbers, the groups under consideration are Lie groups. The dimension of the group of

transformers is always n(n − 1)/2; indeed, there is canonical bijection from
∧2(W) onto the Lie algebra of O(W, q̃) which

maps every y ∧ z to the operator x �−→ bq̃(x, y) z − bq̃(x, z) y, and the image of
∧2(V) is actually the Lie algebra of the

subgroup determined by the condition im(g̃ − 1W ) ⊂ V . The dimension of O(V, q) depends on k = dim(ker(q)); it is

(n(n − 1) − k(k − 1))/2 = (n − k)(n + k − 1)/2. The group Iso(V, q) is isomorphic to a semi-direct product of O(V, q) and

GL(ker(q)).

Theorem 2.3 gives an example of a product of transformers.

Theorem 2.3. Let (S 1, φ1) and (S 2, φ2) be two transformers of (V, q) such that S 1 ∩ S 2 = 0, and let g1 and g2 be the
associated orthogonal transformations. Their product g = g1g2 admits the following transformer (S , φ): S = S 1 ⊕ S 2 ;
φ coincides with φ1 on S 1, with φ2 on S 2, and for all y1 ∈ S 1 and y2 ∈ S 2 we have φ(y1, y2) = 0 (whence φ(y2, y1) =

bq(y1, y2)).

Proof. Since (V, q) can be embedded in a non-degenerate space (W, q̃), it suffices to prove Theorem 2.3 when q is non-

degenerate. This hypothesis implies im(g1−1) = S 1 and ker(g1−1) = S ⊥
1 , and similarly im(g2−1) = S 2 and ker(g2−1) =

S ⊥
2 . Since S 1 ∩ S 2 = 0 , we have S ⊥

1 + S ⊥
2 = V , consequently, ker(g1 − 1) + ker(g2 − 1) = V , and Lemma 1.4 implies that

im(g − 1) = im(g1 − 1) + im(g2 − 1). It follows that S = S 1 ⊕ S 2.

Let us consider vectors x, y1 and y2 respectively in V , S 1 and S 2. Let us calculate φ(g(x) − x, y2) when g(x) − x is in S 2;

from g − 1 = (g1 − 1)g2 + (g2 − 1) and S 1 ∩ S 2 = 0, we deduce g(x) − x = g2(x) − x; consequently,

φ(g(x) − x, y2) = −bq(x, y2) = φ2(g2(x) − x, y2) = φ2(g(x) − x, y2) ;

therefore, φ coincides with φ2 on S 2. Now we suppose that g(x) − x is in S 1; for the same reasons as above, this implies

g2(x) = x and g(x) − x = g1(x) − x; consequently,

φ(g(x) − x, y1) = −bq(x, y1) = φ1(g1(x) − x, y1) = φ1(g(x) − x, y1) ,

φ(g(x) − x, y2) = −bq(x, y2) = φ2(g2(x) − x, y2) = 0 ;

therefore, φ coincides with φ1 on S 1, and φ(S 1, S 2) = 0. �
Corollary 2.4. Let (S 1, φ1) and (S 2, φ2) be two transformers of (V, q) such that S 1 ⊂ S 2, and φ1(y, z) = φ2(z, y) for all
y, z ∈ S 1. Let g1 and g2 be the associated orthogonal transformations. Their product g = g1g2 admits the following
transformer (S , φ): S = R⊥

φ2
(S 1) and φ is the restriction of φ2 to S . And their product g′ = g2g1 admits the following

transformer (S ′, φ′): S ′ = L⊥φ2
(S 1) and φ′ is the restriction of φ2 to S ′.
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Proof. The equalities g = g1g2 and g′ = g2g1 are equivalent to g2 = g−1
1 g and g2 = g′g−1

1 , and g−1
1 is given by the

reverse transformer (S 1, φ
†
1
) where φ†

1
coincides with the restriction of φ2 to S 1. Since φ1 is non-degenerate, we have

S 2 = S 1 ⊕ R⊥
φ2

(S 1) and S 2 = L⊥φ2
(S 1) ⊕ S 1 (see Lemma 1.3). With Theorem 2.3, it is easy to verify that g2 = g−1

1 g and

g2 = g′g−1
1

if g and g′ are determined by the transformers described in Corollary 2.4. �
3. Products of Reflections

Let (S , φ) be a transformer of (V, q) such that dim(S ) = 1; thus S is spanned by a non-zero vector v and φ(v, v) = q(v);

since φ is non-degenerate, we have q(v) � 0 and v determines a reflection R(v); and since φ(R(v)(x) − x, v) = −bq(x, v)

for all x ∈ V , we realize that R(v) admits (S , φ) as a transformer. Thus the reflections are the orthogonal transformations

determined by the one-dimensional transformers. The following theorem is an immediate consequence of Theorem 2.3

and Corollary 2.4.

Theorem 3.1. Let us consider a reflection R(v) and the orthogonal transformation h determined by a transformer (T, ψ).
The products g = R(v) h and g′ = h R(v) admit the following transformers (S , φ) and (S ′, φ′):

if v is outside T , then S = S ′ = T ⊕ Kv, the restrictions of φ and φ′ to T coincide with ψ, and φ(v, y) = φ′(y, v) = 0 for
all y ∈ T (whence φ(y, v) = φ′(v, y) = bq(v, y); and of course, φ(v, v) = φ′(v, v) = q(v));

if v belongs to T , then S = R⊥
ψ (v) and S ′ = L⊥ψ (v), and φ and φ′ are the restrictions of ψ to S and S ′ respectively.

Corollary 3.2. For every g ∈ O(V, q) and for every sequence (v1, v2, . . . , vs) of linearly independent vectors in V, these
two assertions are equivalent:

g = R(v1) R(v2) · · · R(vs) ;

g admits the transformer (S , φ) where (v1, . . . , vs) is a basis of S , and φ has a lower triangular matrix in this basis.

Theorem 3.1 and its corollary provide an effective method to calculate the product (S , φ) of two transformers (S 1, φ1) and

(S 2, φ2) when a triangularizing basis is known for one factor. Since S ⊂ S 1 + S 2, the product can be calculated in the

subspace S 1 + S 2 without worrying about the non-degenerate embeddings that were previously necessary to prove that it

is well defined. For instance, if (S , φ) is the transformer for a product of reflections R(w1) · · ·R(wk), then S is contained

in the subspace spanned by (w1, . . . ,wk).

Section 5 shall be devoted to the proof of the next theorem, and to the construction of an effective algorithm of triangular-

ization; this theorem requires the hypotheses that K is not isomorphic to Z/2Z.

Theorem 3.3. If φ is a bilinear form on some space S , and if φ is not alternate, there are bases of S where the matrix of
φ is lower triangular.

In Theorem 3.3, it is clear that φ is alternate if and only if S is totally isotropic for the quadratic form y �−→ φ(y, y).

The previous statements enable us to prove that every g ∈ O(V, q) can be decomposed into a product of reflections, and

to evaluate the minimal number of reflections in such a decomposition. The minimal dimension of a transformer for g is

given by (2.7); as in the proof of Theorem 2.2, we consider two cases (and we suppose g � 1V ).

In the easy case im(g− 1)∩ ker(q) = 0, the unique minimal transformer involves S = im(g− 1), and we set s = dim(S ). If

S is not totally isotropic, the minimal number of reflections is s. If S is totally isotropic, the minimal number of reflections

is > s; if v is any non-isotropic vector (therefore, outside S ), the transformer for R(v) g (or g R(v)) involves the subspace

S ⊕ Kv which is not totally isotropic; consequently, it is a product of s + 1 reflections, and g itself is a product of s + 2

reflections. If q is non-defective, g cannot be a product of s+ 1 reflections, because the parity of the number of reflections

is determined by g. On the contrary, if q is defective, we have R(w) = 1V for every non-isotropic w ∈ ker(bq), and the

equality g = R(w) g proves that g is a product of s + 1 reflections.

In the difficult case im(g−1)∩ker(q) � 0, the dimension s of a minimal transformer (S , φ) is dim(im(g−1))+dim(im(g−
1) ∩ ker(q)), and we can require S not to be totally isotropic if and only if ker(g − 1)⊥ is not totally isotropic; if it is not,

the minimal number of reflections is s. On the contrary, if ker(g− 1)⊥ is totally isotropic, the same is true for its subspace

ker(bq); this means that q is non-defective; and the same argument (involving R(v) g or g R(v)) proves that the minimal

number of reflections is s + 2.

Remark. When the support S of a transformer (S , φ) is totally isotropic, the dimension s of S is even, because φ is a non-

degenerate and alternate bilinear form on S . There is a basis (y1, z1, . . . , yr, zr) of S (where r = s/2) such that φ(yi, zi) = 1

for i = 1, 2, . . . , r, but φ(yi, z j) = 0 whenever i � j, and φ(yi, y j) = φ(zi, z j) = 0 for all i and j; and it is convenient to
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consider ω =
∑r

i=1 yi ∧ zi in
∧2(S ) because the transformation determined by (S , φ) is the transformation F(ω) such that

∀x ∈ V, F(ω)(x) = x +
r∑

i=1

(
bq(x, yi) zi − bq(x, zi) yi

)
. (3.1)

If q is non-degenerate, then 4r = 2s ≤ n; therefore, a totally isotropic S (such that S � 0) can appear only when n ≥ 4.

This explains that s+2 ≤ n. Nevertheless, when q is degenerate, it may happen that s+2 > n, as in the following example.

Example. Let (V, q) be the space with basis (u1, u2, u3) over R, provided with the quadratic form q such that q(ξ1u1+ξ2u2+

ξ3u3) = ξ1ξ2; thus ker(q) is the line Ru3. Let g be the orthogonal transformation such that

g(ξ1u1 + ξ2u2 + ξ3u3) = ξ1(u1 + u3) + ξ2u2 + ξ3u3 . (3.2)

It is determined by the transformer (S , φ) such that (u2, u3) is a basis of S , φ is alternate and φ(u2, u3) = 1; this agrees

with (3.1). Therefore, when g is expressed as a product of reflections, the minimal number of reflections is 4. Let us

calculate the transformer (T, ψ) for h = R(u1 + u2) g. Since T = R(u1 + u2) ⊕ S , we have T = V; since ψ(u1 + u2, u2) =

ψ(u1 + u2, u3) = 0, we have ψ(u1, u2) = 0 and ψ(u1, u3) = −1; the matrix Ψ of ψ in the basis (u1, u2, u3) is written below.

In this example, it is easy to find a basis (v1, v2, v3) where the matrix Ψ′ of ψ is lower triangular; for instance,⎧⎪⎪⎪⎨⎪⎪⎪⎩
v1 = u1 + u2 + u3 ,
v2 = u1 + 2u2 ,
v3 = u1 + 2u2 − 2u3 ,

Ψ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 −1

1 0 1

1 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , Ψ′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0

3 2 0

3 4 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
The result of this calculation is

g = R(u1 + u2) R(u1 + u2 + u3) R(u1 + 2u2) R(u1 + 2u2 − 2u3) . (3.3)

There is an non-degenerate embedding (W, q̃) with a basis (u1, . . . , u4) such that q̃(
∑4

i=1 ξiui) = ξ1ξ2 + ξ3ξ4. The extension

g̃ maps u4 to u4 − u2; and (3.3) gives a decomposition of g̃ if the reflections operate on W.

Remark. When K = Z/2Z, the group O(V, q) is different from the subgroup OR(V, q) generated by the reflections in the

following two exceptional cases (see (Helmstetter & Micali, 2008), section 5.7). Dieudonné’s exceptional case occurs

when V is the direct sum of ker(q) (perhaps reduced to 0) and a hyperbolic subspace of dimension 4 (with a basis

(u1, . . . , u4) such that q(
∑

i ξiui) = ξ1ξ2 + ξ3ξ4); in this case, the quotient O(V, q)/OR(V, q) is a group of order 2. The other

case occurs when V is the direct sum of ker(q) and a hyperbolic space of dimension 2; in this case, O(V, q)/OR(V, q) is

isomorphic to the additive group ker(q); it is exceptional only if ker(q) � 0 (an eventuality which Dieudonné did not

accept in (Dieudonné, 1958)). If we use (3.2) to define an orthogonal transformation g over Z/2Z, then g is not a product

of reflections; and neither is its extension g̃ to a hyperbolic space of dimension 4.

4. The Non-defective Case dim(ker(q)) = 1

It is sensible to ask whether an orthogonal transformation g of (V, q) may admit several transformers. By means of a non-

degenerate embedding (W, q̃), this question is easily reduced to the following one: does 1V admit several transformers,

in other words, are there non-trivial transformers (S , φ) such that S ⊂ ker(bq)? When q is defective, the answer is

obviously “yes” because the reflection associated with each non-isotropic v ∈ ker(bq) is equal to 1V , and it admits the one-

dimensional transformer spanned by v. When q is not defective, the condition S ⊂ ker(bq) implies that dim(S ) is even,

and it can be satisfied by a non-trivial transformer if and only if dim(ker(bq)) ≥ 2. Thus we have proved the following

theorem.

Theorem 4.1. The correspondance between the orthogonal transformations and the transformers is bijective (only) in
these two cases:

when q is non-degenerate (in other words, ker(bq) = 0);

when q is non-defective and dim(ker(q)) = 1.

The non-defective case dim(ker(q)) = 1 deserves some attention because it can be used in the study of the affine isometries

of an affine space E provided with a non-degenerate quadratic form χ. An affine space E is a set on which a vector space
�E operates in a simply transitive way (by translations); the non-degenerate quadratic form χ is defined on �E; every affine

transformation g of E has a linear part �g in GL(�E), and g is an affine isometry if and only if �g ∈ O(�E, χ); the set of all

affine isometries is the group Af.Iso(E, χ). For convenience, we set n = dim(E) + 1, and we suppose that E = �E; thus

O(E, χ) is the subgroup of all g ∈ Af.Iso(E, χ) such that g(0) = 0. For every a ∈ E, let a� be the linear form on E such

that a�(b) = bχ(a, b) for all b ∈ E; the mapping a �−→ a� is a linear bijection E → E∗, and the inverse bijection is denoted

25



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 2; 2017

by � �−→ ��; moreover, we define a dual quadratic form χ∗ on E∗ by setting χ∗(�) = χ(��). Let V be the space of all affine

forms x : E → K; thus E∗ is the subspace of all � ∈ V such that �(0) = 0, and every x ∈ V has a linear part �x ∈ E∗ such that

�x(a) = x(a) − x(0). Let q be the quadratic form on V defined by q(x) = χ∗(�x) = χ(�x �). Thus V is a space of dimension n
provided with a non-defective quadratic form q such that dim(ker(q)) = 1; indeed, ker(q) is the set of all constant functions

E → K. Every affine transformation g of E determines a linear transformation g� of V which maps every x ∈ V to the

affine form a �−→ x(g(a)). From this definition, it follows that (g1g2)� = g�
2
g�

1
. Besides, ker(g� − 1) ⊃ ker(q) because g�

leaves invariant every constant function E → K. It is easy to prove that the mapping g �−→ g� induces an anti-isomorphism

from Af.Iso(E, χ) onto O(V, q). The inverse anti-isomorphism is denoted by h �−→ h�.

By this anti-isomorphism �, the reflections in (V, q) are in bijection with the affine reflections in (E, χ); if v is a non-

isotropic element of V , the set of all a ∈ E such that v(a) = 0 is an affine hyperplane of E, and (R(v))� is the affine

reflection determined by this affine hyperplane:

∀a ∈ E, (R(v))�(a) = a − v(a)

q(v)
�v � . (4.1)

Thus the decomposition into products of affine reflections in Af.Iso(E, χ) is reduced to the decomposition into products

of reflections in O(V, q).

Let g be an element of Af.Iso(E, χ) (other than 1E). We must find out whether im(g� −1)∩ker(q) is reduced to 0 or not. If

it is, there is a hyperplane H of V that contains im(g� − 1) but not ker(q); since H does not contain ker(q), there is a point

p ∈ E such that H is the subset of all x ∈ V such that x(p) = 0; and since H contains im(g� − 1), we have g�(H) = H and

g(p) = p. Conversely, if g(p) = p for some p ∈ E, then g�(x)(p) = x(g(p)) = x(p) for all x ∈ V , and (g� − 1)(x) cannot be

a constant function � 0. Therefore, the easy case im(g� − 1) ∩ ker(q) = 0 occurs if and only if g(p) = p for some p ∈ E.

If g(p) = p, then g = T �g T−1 where T is the translation a �−→ a + p, and the decomposition of g into a product of affine

reflections is reduced to the decomposition of �g into a product of reflections in O(E, χ).

Now we consider the difficult case im(g� − 1) ⊃ ker(q). We have g(a) = �g(a) + g(0) for all a ∈ E, and g(0) is not in

im(�g−1E) because the equality g(0) = �g(b)−b is equivalent to g(−b) = −b, which is only possible in the above easy case.

According to Theorem 2.2, we must find out whether ker(g� − 1)⊥ is totally isotropic or not; since it contains ker(q), it is

determined by its image by the mapping x �−→ �x �. For all x ∈ V and all a ∈ E, we have:

(g� − 1)(x)(a) = bχ
(
�x �, (�g − 1E)(a) + g(0)

)
;

therefore, x is in ker(g� − 1) if and only if �x � is orthogonal to im(�g− 1E) and g(0); and y is in ker(g� − 1)⊥ if and only if �y �

is in the direct sum of im(�g − 1E) and the line Kg(0). Consequently, ker(g� − 1)⊥ is totally isotropic in (V, q) if and only if
im(�g − 1E) ⊕ Kg(0) is totally isotropic in (E, χ).

We must also know how to deduce s = dim(S ) from d = dim(im(�g − 1E)). The dimensions of im(�g − 1E) ⊕ Kg(0)

and ker(g� − 1)⊥ are d + 1 and d + 2. The dimension of im(g� − 1) is d + 1 because of this fact: the sum of the

dimensions of ker(g� − 1) and im(g� − 1) is n, but the sum of the dimensions of ker(g� − 1) and ker(g� − 1)⊥ is n + 1

because ker(g� − 1) ⊃ ker(q). From (2.7) we deduce s = d + 2. Since s ≤ n, we have d ≤ n − 2, in agreement with

g(0) � im(�g − 1E).

When im(�g − 1E) ⊕ Kg(0) is totally isotropic, may it occur that s + 2 > n? The example below shows that it occurs when

n = 3 and d = 0. But other occurences are only possible with d > 0. Since χ is non-degenerate, we have 2(d + 1) ≤ n − 1

when im(�g − 1E) ⊕ Kg(0) is totally isotropic; moreover, d is even like s; consequently, n ≥ 7 if d > 0; and it is easy to

realize that s + 2 < n when n ≥ 7 and 2(d + 1) ≤ n − 1.

Example. Let (E, χ) be the vector space with basis (e1, e2) over R, where χ(ξ1e1 + ξ2e2) = ξ1ξ2; and let g be the translation

of vector e1. In general, a translation is a product of two reflections; but here we shall need four reflections because e1 is

isotropic. With the notation used just above, we have n = 3, d = 0 because �g = 1E , and s = 2; but since S will prove to

be totally isotropic in (V, q), we need s + 2 reflections. Let u1, u2 and u3 be the affine forms that map every ξ1e1 + ξ2e2

respectively to ξ1, ξ2 and 1; thus (u1, u2, u3) is a basis of V . The mapping x �−→ �x � maps u1, u2, u3 respectively to e2, e1, 0;

consequently, q(ξ1u1 + ξ2u2 + ξ3u3) = ξ1ξ2. An easy calculation shows that g� maps u1, u2, u3 respectively to u1 + u3, u2,

u3; thus g� coincides with the orthogonal transformation defined by (3.2). We already know that S is spanned by (u2, u3),

and we translate (3.3) here in this way:

g = (R(u1 + 2u2 − 2u3))�(R(u1 + 2u2))�(R(u1 + u2 + u3))�(R(u1 + u2))� ;

(R(u1 +2u2 −2u3))�(R(u1 +2u2))� is the translation of vector 2e1 + e2, and (R(u1 +u2 +u3))�(R(u1 +u2))� is the translation

of vector −e1 − e2.
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5. An Algorithm of Triangularization

Theorem 3.3 states that there are bases (v1, . . . , vs) of S where the matrix of φ is lower triangular, provided that φ is not

alternate; this must be proved when s ≥ 2, and to prove it, I propose an algorithm of triangularization. There are two

standard versions of this algorithm; the left side version calculates the vectors vi in the increasing order of the indices i; as

a by-product, it gives a basis of RKer(φ). When the dimension t of LKer(φ) and RKer(φ) is � 0, it gives a triangularizing

basis (v1, . . . , vs) where φ(vi, vi) � 0 for i = 1, 2, . . . , s− t, and (vs−t+1, . . . , vs) is a basis of RKer(φ). The right side version

calculates the vectors vi in the decreasing order of the indices, and when t � 0, then (v1, . . . , vt) is a basis of LKer(φ). Each

version requires s − 1 steps if t = 0, and s − t steps if t ≥ 1.

The space (S , φ) is given by a basis (u1, . . . , us) and the matrix of φ in this basis. When the k-th step of the left side

algorithm begins, we know a sequence (v1, . . . , vk−1, v̇k) such that φ(vi, vi) � 0 for i = 1, 2, . . . , k − 1, φ(v̇k, v̇k) � 0,

φ(vi, v j) = 0 whenever i < j, and φ(vi, v̇k) = 0 for i = 1, 2, . . . , k − 1. In particular, the first step begins with a vector v̇1

such that φ(v̇1, v̇1) � 0; such a vector v̇1 exists because φ is not alternate. In general, the instructions of this algorithm order

to set vk = v̇k; but sometimes, the vector v̇k must be “corrected” (replaced by a suitable vk); the “correction procedure”

(the instruction ((8)) below) is the only phase that may fail when K � Z/2Z. The k-th step is performed according to the

following eight instructions.

((1)) In the basis (u1, u2, . . . , us) we choose a subsequence (x1, x2, . . . , xs−k) such that (v1, . . . , vk−1, v̇k, x1, . . . , xs−k) is

a basis of S .

((2)) For j = 1, 2, . . . , s− k, and as long as the “stop rule” (written just below) does not interrupt the calculations, we

calculate the scalars ξ1, . . . , ξk that let the vector y j = ξ1v1 + · · · + ξk−1vk−1 + ξkv̇k + x j satisfy the following conditions:

φ(v1, y j) = φ(v2, y j) = · · · = φ(vk−1, y j) = φ(v̇k, y j) = 0 ; (5.1)

the properties of the sequence (v1, . . . , v̇k) show that (5.1) is a regular system of k linear equations with a lower triangular

matrix; therefore, the calculation of ξ1, . . . , ξk is easy. When k = s − 1, we have to calculate only one vector y1, and then

we go to ((3)). When k ≤ s − 2, the stop rule interrupts the calculations in these two cases:

when we find a vector y j such that φ(y j, y j) � 0, we go to ((4));

when we find two vectors yi and y j such that φ(yi, yi) = φ(y j, y j) = 0 and φ(yi, y j) + φ(y j, yi) � 0, we go to ((5)).

When the stop rule never interrupts the calculations, we go to ((6)).

((3)) When k = s − 1, we set vs−1 = v̇s−1 and vs = y1. Thus we have found a triangularizing basis (v1, . . . , vs). If

φ(vs, vs) � 0, then φ is non-degenerate. If φ(vs, vs) = 0, then RKer(φ) is the line spanned by vs.

In the next instructions, we have k ≤ s − 2.

((4)) When φ(y j, y j) � 0, we set vk = v̇k and v̇k+1 = y j, and we start the (k + 1)-th step (we return to ((1)) where we

replace k with k + 1).

((5)) When φ(yi, yi) = φ(y j, y j) = 0 and φ(yi, y j) + φ(y j, yi) � 0, we set vk = v̇k and v̇k+1 = yi + y j, and we start the

(k + 1)-th step.

((6)) When the stop rule never interrupts the calculations, the restriction of φ to the subspace spanned by (y1, . . . , ys−k)

(that is R⊥
φ (v1, . . . , v̇k)) is alternate. If there is a couple (i, j) such that φ(yi, y j) � 0, we go to ((8)). If all φ(yi, y j) (with

i, j ∈ {1, 2, . . . , s − k}) vanish, we go to ((7)).

((7)) If all φ(yi, y j) vanish, then we set vk = v̇k, vk+1 = y1, vk+2 = y2, . . . , vs = ys−k. Thus we have found a

triangularizing basis (v1, . . . , vs), where (vk+1, . . . , vs) is a basis of RKer(φ); therefore, t = s − k.

((8)) Let (i, j) be a couple (with i � j) such that

φ(yi, yi) = φ(y j, y j) = 0 and φ(yi, y j) = −φ(y j, yi) � 0. (5.2)

We look for scalars κ, λ, μ that ensure the three properties required from the vectors vk = v̇k+κyi and v̇k+1 = v̇k+λyi+μy j.

Here are these properties:

φ(vk, v̇k+1) = φ(v̇k, v̇k) + κ φ(yi, v̇k) + κμ φ(yi, y j) = 0 , (5.3)

φ(vk, vk) = φ(v̇k, v̇k) + κ φ(yi, v̇k) � 0 , (5.4)

φ(v̇k+1, v̇k+1) = φ(v̇k, v̇k) + λ φ(yi, v̇k) + μ φ(y j, v̇k) � 0 . (5.5)

(8a) If φ(yi, v̇k) = 0, the condition (5.4) is void. We set λ = 0, we choose an invertible μ compatible with (5.5), and we

calculate κ by means of (5.3). When vk and v̇k+1 have been calculated, we start the (k + 1)-th step.
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(8b) If φ(yi, v̇k) � 0, we choose an invertible κ compatible with (5.4), we calculate μ by means of (5.3), and we choose

λ compatible with (5.5); in general, the choice λ = 0 is correct. When vk and v̇k+1 have been calculated, we start the

(k + 1)-th step. If φ(yi, v̇k) � 0 and φ(y j, v̇k) = 0, it is preferable (but not indispensable) to permute i and j and to apply

(8a) instead of (8b).

These instructions involve the correction procedure ((8)) as rarely as possible (it is involved only when the restriction of

φ to R⊥
φ (v1, . . . , v̇k) is alternate and � 0); this choice is suggested by an algorithm elaborated for a similar problem which

involves a very painful correction procedure. Since here the correction procedure is not so painful, it is acceptable to

modify the stop rule in such a way that ((8)) is involved as frequently as possible. When k ≤ s − 2, the new stop rule

interrupts the calculations in ((2)) as soon as we meet a non-zero φ(yi, y j); when i = j, we go to ((4)); when i � j and

φ(yi, yi) = φ(y j, y j) = 0, we go to ((5)), except when (5.2) is true; when (5.2) is true, we go to ((8)). Thus the instruction

((6)) becomes superfluous; if the new stop rule never interrupts the calculation, the restriction of φ to R⊥
φ (v1, . . . , v̇k) is

completely null, and we go directly to ((7)).

The right side algorithm requires symmetric instructions. The k-th step starts with a sequence (v̇s−k+1, vs−k+2, . . . , vs)

satisfying obvious conditions. In the instruction ((2)), we set y j = x j + ξ1v̇s−k+1 + ξ2vs−k+2 + · · · + ξkvs, and the unknown

scalars ξ1, . . . , ξk are determined by a system of k liner equations with an upper triangular matrix. In the correction

procedure ((8)), we set vs−k+1 = κyi + v̇s−k+1 and v̇s−k = λyi + μy j + v̇s−k+1; and the unknown scalars κ, λ, μ must satisfy

φ(v̇s−k, vs−k+1) = κ φ(v̇s−k+1, yi) − κμ φ(yi, y j) + φ(v̇s−k+1, v̇s−k+1) = 0 ,

φ(vs−k+1, vs−k+1) = κ φ(v̇s−k+1, yi) + φ(v̇s−k+1, v̇s−k+1) � 0 ,

φ(v̇s−k, v̇s−k) = λ φ(v̇s−k+1, yi) + μ φ(v̇s−k+1, y j) + φ(v̇s−k+1, v̇s−k+1) � 0 .

The left and right side versions are the ordered versions. But there are plenty of disordered versions where the vectors

of a triangularizing basis are calculated in an arbitrary disorder; there is only one restriction in the choice of this disorder

when t ≥ 2: the last step produces simultaneously t isotropic vectors which give a connected subsequence in the resulting

basis (v1, . . . vs) (not necessarily at the beginning or at the end). Lemma 1.3 (which involves two subspaces U1 and U2

of S on which φ is non-degenerate) is the foundation of all these versions; the left side version uses it when U2 = 0, the

right side version when U1 = 0, and the disordered versions use it in its full generality. There is an example of disordered

algorithm in Section 7.

6. Orthogonal Transformations Inside (S , φ)

The notation is the same as in Section 5; here we emphasize the quadratic form q on S such that q(y) = φ(y, y) for all

y ∈ S . When T is a subspace of S , the notation (T, φ) means the subspace T provided with the restriction of φ to T . When

this restriction is non-degenerate, (T, φ) is a transformer for (S , q), and induces an orthogonal transformation g on S such

that im(g − 1S ) ⊂ T . Besides, Lemma 1.3 implies S = T ⊕ R⊥
φ (T ) = L⊥φ (T ) ⊕ T .

Theorem 6.1. If the restriction of φ to T is non-degenerate, the orthogonal transformation g induced by (T, φ) maps
R⊥
φ (T ) onto L⊥φ (T ); moreover,

∀x, y ∈ R⊥
φ (T ), φ(g(x), g(y)) = φ(x, y) . (6.1)

Proof. When bq(x, y) = φ(x, y) + φ(y, x), the equation (2.1) gives

∀x ∈ S , ∀y ∈ T, φ(g(x), y) = −φ(y, x) ;

therefore, g(x) is in L⊥φ (T ) if and only if x is in R⊥
φ (T ). For all x, y ∈ S ,

φ(x, g(y)) − φ(g−1(x), y) = φ(x, g(y) − y) − φ(g−1(x) − x, y) ;

both g(y) − y and g−1(x) − x belong to T ; when x and y belong respectively to L⊥φ (T ) and R⊥
φ (T ), then φ(x, g(y) − y) and

φ(g−1(x) − x, y) vanish, and φ(x, g(y)) = φ(g−1(x), y) in accordance with (6.1). �
The equality (6.1) is also true when x and y belong to T : see Theorem 2.1, formula (2.5); in general, it is false when x and

y are arbitrary elements of S .

When φ is degenerate, Theorem 6.1 gives a property of LKer(φ) and RKer(φ); as in Section 5, their dimension is denoted

by t. The restriction of φ to a subspace T of dimension s−t is non-degenerate if and only if LKer(φ)∩T = T∩RKer(φ) = 0;

when it is non-degenerate, then LKer(φ) = L⊥φ (T ) and RKer(φ) = R⊥
φ (T ); therefore, the orthogonal transformation induced

by (T, φ) maps RKer(φ) bijectively onto LKer(φ).

Theorem 6.1 also enables us to perform operations on a triangularizing basis (v1, . . . , vs) of (S , φ). Let us consider a

subsequence (vh+1, vh+2, . . . , vh+c+d) where h, c, d are integers such that c > 0, d > 0 and 0 ≤ h ≤ s − c − d. Let T1 be
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the subspace spanned by (vh+1, . . . , vh+c), T2 the subspace spanned by (vh+c+1, . . . , vh+c+d), and S ′ = T1 ⊕ T2. When v j is

never isotropic for h < j ≤ h + c, let g1 be the orthogonal transformation of (S ′, q) induced by the transformer (T1, φ);
it is equal to the product of the reflections R(v j) with j = h + 1, h + 2, . . . , h + c. And when v j is never isotropic for

h + c < j ≤ h + c + d, let g2 be the orthogonal transformation of (S ′, q) induced by the reverse transformer (T2, φ
†); it is

the product of the reflections R(v j) with j = h+ c+ d, h+ c+ d− 1, . . . , h+ c+ 1. We obtain another triangularizing basis

if we replace the subsequence (vh+1, . . . , vh+c+d) with

(g1(vh+c+1), . . . , g1(vh+c+d), vh+1, . . . , vh+c) or (vh+c+1, . . . , vh+c+d, g2(vh+1), . . . , g2(vh+c)) .

7. Examples

First example: a rotation in a euclidean plane

Let (V, q) be a euclidean plane over R, provided with a basis (e1, e2) such that q(ξ1e1 + ξ2e2) = ξ2
1
+ ξ2

2
, whence bq(ξ1e1 +

ξ2e2, ζ1e1 + ζ2e2) = 2(ξ1ζ1 + ξ2ζ2). Let g be the rotation of angle 2θ such that sin(θ) � 0 (so that g � 1); its matrix G
is written below. Since g − 1 is a bijection V → V , the formula (2.1) gives φ(x, y) = −bq((g − 1)−1(x), y); therefore, the

matix Φ of φ is obtained by transposition of −2(G − 1)−1:

G =
(
cos(2θ) − sin(2θ)
sin(2θ) cos(2θ)

)
, Φ =

1

sin(θ)

(
sin(θ) cos(θ)
− cos(θ) sin(θ)

)
.

Let us consider v1 = cos(λ)e1 + sin(λ)e2 and v2 = cos(μ)e1 + sin(μ)e2; which are the couples (λ, μ) for which g =
R(v1) R(v2) ? According to Corollary 3.2, this is true if and only if φ(v1, v2) = 0; let us verify that this equation agrees

with the answer that has been known for already more than 2000 years:

φ(v1, v2) =
(

cos(λ) sin(λ)
)
Φ

(
cos(μ)
sin(μ)

)
=

sin(θ − λ + μ)
sin(θ)

;

thus g = R(v1) R(v2) if and only if λ − μ = θ modulo π.

Second example with a correction procedure

Here (V, q) is given by the basis (e1, e2, e3, e4) over R, and the quadratic form q such that q(
∑4

i=1 ξiei) = ξ1ξ2 + ξ3ξ4. Let us

apply the left and right side algorithms to the orthogonal transformation g of (V, q) described by the matrix G just below.

This matrix G determines over the field Z/2Z an orthogonal transformation that is not a product of reflections (it belongs

to Dieudonné’s exceptional case). The image of g−1 is the subspace S spanned by (e1, e3, e4); g−1 maps e3 − e4, e2 − e3,

−e2 respectively to e1, e3, e4, and the matrix Φ of φ in the basis (e1, e3, e4) easily follows:

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0 −1

0 1 0 0

0 0 0 −1

0 −1 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , Φ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1 −1

−1 0 1

1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Let us begin the left side algorithm with v̇1 = e3 + e4. Since this choice of v̇1 is also acceptable for the field Z/2Z, we

are sure to need a correction; indeed, the predictable failure of the algorithm over Z/2Z can be explained only by its

failure during a correction procedure. By means of the basis (v̇1, e1, e3) of S , we start the calculation of a basis (y1, y2)

of R⊥
φ (v̇1). For y1 = ξ1v̇1 + e1, the condition φ(v̇1, y1) = 0 gives ξ1 = 0, whence y1 = e1 and φ(y1, y1) = 0. Therefore,

we also calculate y2 = ξ1v̇1 + e3; the condition φ(v̇1, y2) = 0 gives again ξ1 = 0, whence y2 = e3, φ(y2, y2) = 0, and

φ(y1, y2) = −φ(y2, y1) = 1. Since this agrees with (5.2), a correction is necessary; since φ(y1, v̇1) = 0 and φ(y2, v̇1) = 1,

we follow (8a) in the instruction ((8)). We set v1 = v̇1 + κy1 (whence φ(v1, v1) = 1) and v̇2 = v̇1 + μy2; the condition

φ(v1, v̇2) = 0 gives 1 + κμ = 0, and the condition φ(v̇2, v̇2) � 0 gives 1 + μ � 0. As it was predictable, these two conditions

cannot be satisfied over the field Z/2Z. But over R, they are satisfied with μ = 1 and κ = −1. Consequently, we start the

second step of the algorithm with v1 = −e1 + e3 + e4 and v̇2 = 2e3 + e4.

Since (v1, v̇2, e4) is a basis of S , we set y1 = ξ1v1 + ξ2v̇2 + e4 and we calculate ξ1 and ξ2 with the equations φ(v1, y1) =

φ(v̇2, y1) = 0, which give ξ1 + 2 = 3ξ1 + 2ξ2 + 2 = 0, whence ξ1 = −2 and ξ2 = 2. According to the instruction ((3)), we

set v2 = v̇2 and v3 = y1 = −2v1 + 2v2 + e4. Here is the basis (v1, v2, v3) and the matrix Φ′ of φ in this basis:⎧⎪⎪⎪⎨⎪⎪⎪⎩
v1 = −e1 + e3 + e4 ,
v2 = 2e3 + e4 ,
v3 = 2e1 + 2e3 + e4 ,

Φ′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0

3 2 0

3 4 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

29



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 2; 2017

The conclusion of this calculation is g = R(v1) R(v2) R(v3).

Now let us start the right side algorithm with v̇3 = e3 + e4 and the basis (e1, e3, v̇3) of S . The calculation of y1 = e1 + ξ1v̇3

such that φ(y1, v̇3) = 0 gives ξ1 = 0 and y1 = e1. Therefore, we also calculate y2 = e3+ξ1v̇3 such that φ(y2, v̇3) = 0; we find

ξ1 = −1 and y2 = −e4. Thus φ(y1, y1) = φ(y2, y2) = 0 and φ(y1, y2) = −φ(y2, y1) = 1; and a correction is necessary. Since

φ(v̇3, y1) = 0 and φ(v̇3, y2) = −1, we set v3 = κy1+ v̇3 (whence φ(v3, v3) = 1) and v̇2 = μy2+ v̇3. The conditions φ(v̇2, v3) = 0

and φ(v̇2, v̇2) � 0 give −κμ + 1 = 0 and −μ + 1 � 0; they are satisfied with μ = κ = −1. Thus we start the second step

with v̇2 = e3 + 2e4 and v3 = −e1 + e3 + e4, and with the basis (e4, v̇2, v3) of S . We must calculate y1 = e4 + ξ1v̇2 + ξ2v3

with the conditions φ(y1, v̇2) = φ(y1, v3) = 0; they give the equations 2ξ1 + 3ξ2 = −1 + ξ2 = 0, and determine ξ2 = 1 and

ξ1 = −3/2. Here is the final result of this calculation:⎧⎪⎪⎪⎨⎪⎪⎪⎩
v1 = −e1 − 1

2
e3 − e4 ,

v2 = e3 + 2e4 ,
v3 = −e1 + e3 + e4 ,

Φ′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1/2 0 0

−2 2 0

−3/2 3 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
As above, g = R(v1) R(v2) R(v3).

Third example (an ordinary example)

Let (V, q) be the space over R determined by the orthogonal basis (e1, . . . , e6) such that q(ei) = 1 for i = 1, 2, 3, 4, and

q(ei) = −1 for i = 5, 6; and let g be the orthogonal transofrmation of (V, q) given by the following matrix:

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3/10 −3/5 −4/5 2/5 0 −1/2
−2/5 −1/5 2/5 4/5 0 0

−1 0 −1 0 0 −1

−1 −2 0 −1 2 −1

1/5 −2/5 4/5 −2/5 1 1

−11/10 −9/5 −2/5 −4/5 2 −3/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The kernel of g − 1 is spanned by 2e1 − e2 − e3 and e1 − e2 − e4 + 2e5 − e6. There are well known algorithms to find a

convenient basis (u1, . . . , u4) of S = im(g − 1); then the matrix Φ of φ in this basis is calculated with (2.1):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
u1 = (g − 1)(−2e1 − e4 − 2e5) = e1 + 2e3 − e6 ,

u2 =
1
2
(g − 1)(e3 + 2e4 + 2e5) = e2 − e3 + e6 ,

u3 =
1
2
(g − 1)(e5) = e4 + e6 ,

u4 =
1
2
(g − 1)(−2e2 − 3e4 − 5e5) = e5 − 2e6 .

Φ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
4 0 2 −4

−2 1 −2 2

0 0 0 1

0 2 3 −5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Let us first experiment with the left side algorithm. We begin with v̇1 = u1, and the basis (v̇1, u2, u3, u4) of S . We calculate

y1 = ξ1v̇1 + u2 with the condition φ(v̇1, y1) = 0; immediately, we obtain y1 = u2. We begin the second step with v1 = u1,

v̇2 = u2, and the basis (v1, v̇2, u3, u4). We calculate y1 = ξ1v1 + ξ2v̇2 + u3 with the conditions φ(v1, y1) = φ(v̇2, y1) = 0,

which give the equations 4ξ1 + 2 = −2ξ1 + ξ2 − 2 = 0, whence ξ1 = −1/2, ξ2 = 1, and y1 = − 1
2
u1 + u2 + u3. Unfortunately,

φ(y1, y1) = 0 and we must calculate also y2 = ξ1v1 + ξ2v̇2 + u4; the equations 4ξ1 − 4 = −2ξ1 + ξ2 + 2 = 0 give ξ1 = 1,

ξ2 = 0 and y2 = u1 + u4. Since φ(y2, y2) = −5, we begin the third step with v1 = u1, v2 = u2 and v̇3 = u1 + u4. In this final

step, we calculate y1 = ξ1v1 + ξ2v2 + ξ3v̇3 + u3; the wanted conditions give the equations

4ξ1 + 2 = −2ξ1 + ξ2 − 2 = 4ξ1 + 2ξ2 − 5ξ3 + 5 = 0 ; (7.1)

consequently, ξ1 = −1/2 and ξ2 = ξ3 = 1. Here is the resulting basis (v1, . . . , v4) and the matrix Φ′ of φ in this basis:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
v1 = u1 ,
v2 = u2 ,
v3 = u1 + u4 ,

v4 =
1
2
u1 + u2 + u3 + u4 ,

Φ′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
4 0 0 0

−2 1 0 0

4 2 −5 0

0 3 2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
We have g = R(v1)R(v2)R(v3)R(v4) with v1 = e1 + 2e3 − e6, v2 = e2 − e3 + e6, v3 = e1 + 2e3 + e5 − 3e6, v4 =
1
2
e1 + e2 + e4 + e5 − 1

2
e6.

Now let us experiment with the disordered algorithm that gives the vectors of a triangularizing basis in the disorder

(v1, v4, v2, v3). To take advantage of the vanishing of φ(u4, u1), we begin with v̇1 = u4, the basis (v̇1, u1, u2, u3) and

y1 = ξ1v̇1 + u1; the condition φ(v̇1, y1) = 0 gives immediately y1 = u1. Therefore, we start the second step with v1 = u4,
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v̇4 = u1 and with the basis (v1, u2, u3, v̇4); we calculate y1 = ξ1v1 + u3 + ξ2v̇4 with the conditions φ(v1, y1) = φ(y1, v̇4) = 0.

The resulting equations −5ξ1 + 3 = 4ξ2 = 0 give ξ1 = 3/5, ξ2 = 0 and y1 = u3 +
3
5
u4, whence φ(y1, y1) = 3/5. Therefore,

we start the third (and last) step with v1 = u4, v̇2 = u3 +
3
5
u4, v4 = u1, and with the basis (v1, v̇2, u2, v4). We calculate

y1 = ξ1v1 + ξ2v̇2 + u2 + ξ3v4 with the conditions φ(v1, y1) = φ(v̇2, y1) = φ(y1, v4) = 0, which give the equations

−5ξ1 + 2 = −2ξ1 +
3

5
ξ2 +

6

5
= −2 + 4ξ3 = 0 ; (7.2)

consequently, ξ1 = 2/5, ξ2 = −2/3, ξ3 = 1/2. Here is the resulting basis (v1, v2, v3, v4), and the matrix of φ in this basis:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
v1 = u4,

v2 = u3 +
3
5
u4,

v3 =
1
2
u1 + u2 − 2

3
u3,

v4 = u1,

Φ′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−5 0 0 0

−2 3/5 0 0

−2/3 −7/5 5/3 0

−4 −2/5 2/3 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Thus g = R(v1)R(v2)R(v3)R(v4) with v1 = e5 − 2e6, v2 = e4 +
3
5
e5 − 1

5
e6, v3 =

1
2
e1 + e2 − 2

3
e4 − 1

6
e6, v4 = e1 + 2e3 − e6.

To compare these two versions, we compare the square matrices associated with the systems of equations (7.1) and (7.2):⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
4 0 0

−2 1 0

4 2 −5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ and

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
−5 0 0

−2 3/5 0

0 0 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
The first matrix is just a lower triangular matrix, with 6 meaningful entries. Along the diagonal of the second matrix, there

is a lower triangular submatrix of order 2, and a submatrix of order 1 which would appear to be upper triangular if it were

larger; the main fact is that the second matrix contains only 4 meaningful entries. For a space S of arbitrary dimension s,

the calculation is shorter if we calculate the vectors of a triangularizing basis (v1, . . . , vs) in this disorder: firstly v1 and vs

(either (v1, vs) or (vs, v1)), secondly v2 and vs−1 (either (v2, vs−1) or (vs−1, v2)), thirdly v3 and vs−2, and so forth. . .
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Abstract  
Student t distribution has been widely applied in the course of statistics. In this paper, we focus on finding a geodesic 
equation of the two parameter student t distributions. To find this equation, we applied both the well-known Darboux 
Theorem and a triply of partial differential equations taken from Struik D. J. (Struik, D. J., 1961) or Grey A (Grey A., 
1993), As expected, the two different approaches reach the same type of results. The solution proposed in this paper could 
be used as a general solution of the geodesic equation for the student t distribution.  

Mathematical Subject Classification 62E99 
Keywords: Darboux theorem, geodesic equation, small sample, size, student t distribution, triply partial differential 
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1. Introduction 
The student t distribution was first discovered by W.S. Gosset. Since the Irish brewery for which Gosset was working did 
not want the other breweries to know the statistical method they were using, Gosset published under the pseudonym of a 
student. Most statistical textbooks describe the t distribution in the following way: If n21 X,......X,X  are  

independent, identically distributed, random variables, each having the same normal distribution with the expected value 
u  and standard deviation v , then v/)uX(n �  has a unit normal distribution. This statistic can be used in the 
construction of tests and confidence intervals relating to the value of u  , provided that v  is known. If v  is not known, 
it is reasonable to replace it by the sample estimator “ s ”, given the statistic s/)uX(nT �� . This process has been 
used for some time without allowing for differences between the distribution of v/)uX(n �  and s/)uX(n � . 
Statisticians realized that the two distributions are not identical, but the determination of the actual distribution had 
difficulties. Gosset obtained the distribution of 1n/T'T ��  and gave a short table of it’s cumulative distribution 

function. We can show that T’ is distributed as a ratio of a unit normal variable, z , and Chi, )1n( �� , where the two 
variables are mutually independent. The divisor 1n �  was introduced by Fisher(1925a) who defined t with �  degree 
of freedom as the distribution of .)(zt 2

12 �

�
�
��

�  This quantity is usually called student t and the corresponding 
distribution is called the student t distribution. In this paper, we used two different algorithms to find the geodesic equation 
of the student t distribution. 

2. List the Fundamental Tensor 
The probability density function for the student t distribution is given by: 

�
1

 
2 2

1
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2

r
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x uf x
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where u  is a location parameter, v  is a scale parameter and r is defined as the degree of freedom. 
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From above equation (2.1), we derive the first and second partial derivatives: 
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Then we take the expected values of (2.2),(2.3)and (2.4) to derive the metric tensor components for the student t 
distribution: 
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3 3
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More detailed proof for equation (2.5), (2.6) and (2.7) can be found in Chen W.W.S.[3]. Using the above results we can 
further derive their derivatives and six well known Christoffel Symbols as follows: 

u v3 3
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3. The Geodesic Equation 
To find the geodesic equation of the student t distribution, we solve a triply of partial differential equations, given in the 
appendix I. We seek its solution in the following section. 

2
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d 2
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We only need two out of above three equations to find the student t model geodesic equation. We will choose the first (3.1) 
and the third (3.3) equations. To simplify the notation, we let 

du dp 2
      then  ( ) 0  

ds ds

dvp p
v ds
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Integrate (3.5) on both sides with respect to p, to get 
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Where 1C  is an arbitrary constant and tA  is a temperary constant. We will define its value later. Finally, we derive: 
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Substitute equation (3.6) into equation (3.3) 
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Then take the square root of equation (3.7), to get 
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Integrate the equation on both sides to derive the geodesic equation of the student t distribution as follows: 
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Where tA  and B are an arbitrary constant. 

Alternatively, we can find the geodesic equation of the student t distribution by solving one partial differential equation. 
This idea originated from the French mathematician Darboux and is now known as Darboux’s theory. 
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From (3.9), we derive  
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Then (3.10) separated into two parts as follows; 
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We put (3.11) and (3.12) together to find one general solution for equation (3.9): 
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Now, to find the Geodesic equation of the student t distribution we only need to differentiate equation (3.13) by the 
constant A.  
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A
Z  .e.i �
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r Avdvu B
r A v r
r
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�                         (3.14) 

We found that equations (3.8) and (3.14) are of the same type. The difference is only by a constant. The difference may be 
adjusted by using the constant tA . 

4. Concluding Remarks 
Rao(1945) presented a “geodesic distance” (or “Rao distance”), which has outstanding theoretical properties.  

However,it was based on a demanding differential geometrical approach. This “geodesic distance” concept, a 

generalization of the well-known Mahalanobis distance, had to wait until more interest in differential geometry was raised 
by Efron.  This paper uses a simple econometric problem to demonstrate the reason the student t geodesic equation is 
useful. Let A be a stock represented by its yield ),(N~y 2

0�� , with the unknown expected yield �  and the known risk 
2
0� . Assume we  

want to test 0a00   H  versus   H ���� ��  where 0�  is some specified value with a sample size of one. The optimal 
test in this situation has a critical region 02/10  tx /:xH �� ����� . The test seeks to answer the question: Is the 
distance between the two normal populations ),(N 2

00 ��  and ),x(N 2
0� , big enough to reject ?H0  The answer 

depends on �  and on the distributional assumption. If we let �  tend to infinitely large,then the distance between 
),(N 2

0 ��  and ),x(N 2�  should converge to zero. For �  to tend to zero,then the distance will become infinitely 
large. For this reason, the family of t distribution should not be identified with a flat plane but with a curved surface. This 
is why the geodesic equation should be used instead of the t distribution. 
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Appendix I 
We list the six well known Christoffel Symbols as follows. For detail derivation see Struik or Grey. 
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In general, the solution of the geodesic equation depends upon a pair of partial differential equations as below.  
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Abstract

The aim of this study was to increase the resistance to noise of an observer of a non-linear MISO system transformed

into canonical regulation form of order n. For this, the principle idea was to add n observers on the output equations of

the main observer. By adjusting the time scale of the output observers, the resistance to noise of the final estimates is

considerably increased. The proposed method is illustrated by model simulations based on a non-linear Sludge Activation

Model (SAM)

Keywords: non-linear systems, state observers, continuous time

1. Introduction

State observers have been intensely exploited since (Luenberger, 1966), to model, control or identify linear and non-linear

systems, including the studies of (Krener & Isidori, 1983; Zheng, Boutat, & Barbot, 2009) relating to non-linear systems

transformable into a canonical form. The key idea in such approaches is to produce approximate measures of non-linearity

of order 1, as in Extended Luenberger Observers (ELO) (Ciccarella, Mora, & Germani, 1993). Approximations of non-

linearities in the canonical form (which results in ELO) have already been suggested (Bestle & Zeitz, 1983), and this

approach can be extended to higher order approximations (Röbenack & Lynch, 2004). An observer using a partial non-

linear observer canonical form (POCF) (Röbenack & Lynch, 2006) has weaker observability and integrability existence

conditions than the well-established non-linear observer canonical form (OCF). Non-linear sliding mode observers use

a quasi-Newtonian approach, applied after pseudo-derivations of the output signal (Efimov & Fridman, 2011). State

observers using Extended Kalman Filters (EKF) provide another method of transforming non-linear systems (Boker &

Khalil, 2013), (Rauh, Butt, & Aschemann, 2013). Finding an appropriate method for parameter synthesis remains one of

the major difficulties with state observers for non-linear systems. (Tornambè, 1992), (Mobki, Sadeghia, & Rezazadehb,

2015) proposed high-gain state observers to deal with this problem. High-gain state observers reduce observation errors

for a range of predetermined amplitudes or fluctuations by making the observations independent of parameters. The weak

point of this method is its sensitivity to noise and uncertainty.

In network identification and encryption, observers with delays are used to synchronize chaotic oscillators, as shown

in several studies (Ibrir, 2009; Martínez-Guerra, et al., 2011). Noise and uncertainty are not critical factors in such a

context. This can be very different in the case of industrial processes, as shown in a recent study (Bodizs, 2011), where

the performances of observers using ELO, EKF or Integrated Kalman Filters (IKF) are compared. The influence of noise

and uncertainty on these observer types was emphasized, with more reliable results produced by ELO observers, which

permit the exact state reconstruction of highly perturbed systems. For PI and ELO observer classes, (Söffker, et al.,

2002) demonstrated a compensation effect on measurement errors ; (Khalifa & Mabrouk, 2015) addressed the problem

of uncertainty of non-linear models. One way of overcoming the problem of parametric uncertainty is to use adaptive

observers (Tyukina, et al., 2013; Farza, et al., 2014) in the particular case where the measurements are only available

at discrete instants and have disturbances. Another approach (Mazenc & Dinh, 2014; Thabet, et al., 2014) consists of

defining interval observers. Modeling observer systems by Takagi-Sugeno decomposition (Bezzaoucha, et al., 2013;

Guerra, et al., 2015) is another possibility, as is the use of models using symmetries and semi-invariants (Menini &

Tornambè, 2011), or the use of immersible techniques for systems transformed into a non-linear observer form (Back &

Seo, 2008).

A large number of non-linear MISO systems with multiple inputs and a single output can be transformed into state
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equations using the form :

9zptq “ sptq (1a)

yptq “ dT zptq ` Φptq (1b)

sptq “
»– s1

“
zptq, u1ptq ‰
. . .

sn
“

zptq, u1ptq ‰
fifl (1c)

dT “ “
d1 . . . dn

‰
(1d)

with the following definitions :

n : the order of the system of non-linear differential equations

m : number of independant inputs

u1ptqT
: the vector ru11ptq, . . . um1ptqs of the m independent inputs

yptq : the measurable output variable

zT ptq : the state vector r z1ptq . . . znptq s
dT : the vector of the output parameters of the system

Φptq : the non-linear function of vector u1ptq of the inputs

si
“

zptq, u1ptq ‰
: one of the n non-linear functions of the state vector sptq.

Such systems are often found in nonlinear robotic systems in the form of trigonometric functions. Other systems con-

tain non-linear polynomials (strange attractors, Bernouilli functions, non-linear springs), polynomial fractions, or various

common simple functions . . .

The n non-linear functions of vector sptq employ a vector of m independent inputs u1ptq, as well as the state vector zptq
as input variables. Such a procedure allows amongst other possibilities the description of bi-linear systems. We limited

ourselves in this study to continuous functions in all points of type C1.

One considers that the measurable output is a linear combination of zptq, superimposed on a non-linear functionΦ
“

u1ptq ‰
.

For an engineer or physicist, many applications have such a form. Often, non-linear systems (1) are transformable in a

regulation canonical form concieved by (Fliess, 1990), and are written :

9xptq “ A xptq ` f ptq (2a)

yptq “ cT xptq ` Φptq (2b)

A “ δi j j “ i ` 1, i “ 1 . . . n ´ 1 (2c)

cT “ “
c1 . . . cn

‰
(2d)

f ptqT “ “
0 . . . 0 Ψ r xptq, Uptq s ‰

(2e)

with the following definitions :

uiptq : the pi ´ 1q ´ th temporal derivative of the vector u1ptq, either uiptqT “ r u1iptq, . . . umiptq s i “ 2 . . . n
Uptq “ “

u1ptq . . . unptq ‰
: the n ˆ m input matrix, with the group of n vectors uiptq

xiptq : pi ´ 1q th temporal derivative of x1ptq
xT ptq : state vector r x1ptq, . . . xnptq s
c : the output parameters vector of the transformed system

θ ď n : index of last coefficient ci ‰ 0

Ψ r xptq,Uptq s : a scalar non-linear C1 function

A : the n ˆ n matrix of which the last line is zero.

Conversion of the transformed version (2) to the initial representation (1) is performed using :

zptq “ gptq (3a)

gptqT “ “
g1 r xptq,Uptq s . . . gn r xptq,Uptq s ‰

(3b)

with gptq : the vector of n non-linear inverted transformation functions gi r xptq, Uptq s which link xptq to zptq.

In (Schwaller, Ensminger, Dresp-Langley, & Ragot, 2016) a new observer was proposed which was adapted to this

transformed form, and which provided non-biased robust estimates of xptq. This is not always the case for estimates of

zptq. Functions gi rxptqs (1b) permit linking xptq to zptq (2c) and are called inverted transformations. Because of the non-

linearity of gptq, small perturbations of estimates of xptq may be considerably increased and strongly disturb estimates
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of zptq. The main aim of this study was to solve this type of situation, by introducing the inverted observer transform

functions gi rxptqs. Doing this, the resistance to observer noise is affected (Bodizs et al., 2011), and one obtains a tool

capable of limiting its impact on estimates of zptq.

Definition 1 Let us define, for the moment, a normalised pulse ωo “ 2π{To, which introduces a new time scale τ for the
representation of the transformed state of the system :

9xpτq “ A xpτq ` f pτq (4a)

ypτq “ rcT xpτq ` Φpτq (4b)rcT “ “ rc1 . . . rcn
‰

(4c)

f pτqT “ “
0 . . . 0 rΨ r xpτq,Upτqs ‰

(4d)

and for the inverse transformation system :

zpτq “ gpτq (5a)

gpτqT “ “
g1 r xpτq,Upτq s . . . gn r xpτq,Upτq s ‰

(5b)

with :

τ “ ωo t, 9xnptq “ 9xnpτq ωo
n (6a)

ui jptq “ ui jpτq ωo
i´1, xiptq “ xipτq ωo

i´1 (6b)rci “ ci ωo
i´1, ziptq “ zipτq, i “ 1 . . . n (6c)

f pτq and gpτq are vectors with dimension n. In (4b), Φpτq “ Φ “
u1pτq ‰ “ Φ “

u1ptq ‰
. Equations (6) define time

dilatation or retraction of the state representation and its new parameters, without changing the pattern of the signal xipτq.

For the function Ψ, this is translated by the relation of changing the following scale representation :

Ψ r xptq,Uptqs “ ωo
n rΨ r xpτq,Upτqs (7)

The function rΨ r xpτq,Upτq s is obtained by replacing every state or command variable by the corresponding one in (6)

and dividing everything by ωo
n.

Afterwards, the procedure can be separated into several steps: in section 2, the estimation of the state of the transformed

system (4) is dealt with ; in section 3 a new observation method of the inverse transformation functions which permit

estimation of state variables (1) is presented ; in section 4 this new approach is applied to observe a system of management

of activated sludge in a purification station ; the study is concluded in section 5.

2. Structure of the Observer in Canonical Form

To begin with, let us isolate the componant x1pτq of (4b) which will subsequently serve to determine the observation error.

To obtain y1pτq, the estimation of variable x1pτq, three cases may be distinguished. For θ “ 1 :

y1pτq “ ypτq ´ Φpτqrc1

(8)

For θ “ 2, it becomes :

9y1pτq “ ´rc1rc2

y1pτq ` ypτq ´ Φpτqrc2

(9)

In the most general case where θ ą 2, ypτq ´ Φpτq is filtered by :

9wpτq “ K wpτq ` k r ypτq ´ Φpτq s (10a)

K “

»———–
0 1 0 . . .
0 0 1 . . .
. . . 0 0 1

´rc1rcθ . . . . . . ´rcθ´1rcθ

fiffiffiffifl (10b)

wpτqT “ “
y1pτq . . . yθ´1pτq ‰

, wp0q “ 0 (10c)

kT “ “
0 . . . 0 1{rcθ ‰

(10d)
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To analyze the effect of the filter, we rewrite (4b) in scalar form, ignoring rcθ`1 . . . rcn, which are all zero :

ypτq ´ Φpτq “
θÿ

i“1

rci xipτq (11)

If (11) is inserted in (10a), (9) or (8) as a function of θ, it becomes :

θÿ
i“1

rci yipτq “
θÿ

i“1

rci xipτq (12a)

9yθ´1pτq “ yθpτq θ ě 2 (12b)

The Laplace transformation of (12a) gives the transfer function :

y1psq{x1psq “ 1 (13)

To develop the rest, y1pτq is used to determine the observer error.

Definition 2 To generate state estimates vpτq for the system (4), a PI observer structure is defined in (Schwaller, Ens-
minger, Dresp-Langley, & Ragot, 2016) with :

9qxpτq “ A qxpτq ` rf pτq ` qh Δy1pτq (14a)

9pxpτq “ A pxpτq ` qA qxpτq ` ph Δy1pτq (14b)

Δy1pτq “ x1pτq ´ px1pτq (14c)rf pτqT “ “
0 . . . 0 rf pτq ‰

(14d)

9I0pτq “ h0 Δy1pτq (14e)rf pτq “ I0pτq ` rΨ r vpτq,Upτq s (14f)qxpτqT “ “ qx2pτq . . . qxnpτq ‰
(14g)pxpτqT “ “ px1pτq . . . pxn´1pτq ‰
(14h)

vpτqT “ “ px1pτq qxpτqT ‰
(14i)pxp0q “ qxp0q “ 0, I0p0q “ 0 (14j)qhT “ “

0T h1

‰
(14k)phT “ “

hn . . . h2

‰
(14l)

hT “
” phT
, h1

ı
(14m)

A “ δi j, j “ i ` 1, i “ 1 . . . n ´ 1 (14n)

qA “

»————–
0 . . . . . . 0
...
. . . . . .

...
... 0

...
0 . . . . . . 1

fiffiffiffiffifl (14o)

with qxpτq (14g) and pxpτq (14h) as two distinct state vectors of dimension n ´ 1, coupled using the matrices A (14n) and qA
(14o) of dimension pn ´ 1q ˆ pn ´ 1q. The vectors qh and ph are also of dimension n ´ 1. The matrix A is constructed using
the Kronecker operator which puts the upper diagonal at 1. The parameters hi, i “ 0 . . . n are the gains of the observer.

Figure 1 illustrates the functional diagram of such an observer of third order.

The augmented vector vpτq (14i),(14h) and (14g) is used as estimation of xpτq and as variable of the function rΨ r vpτq,Upτq s
(14f). The state pxpτq (14b) is an observer exploiting the observation error Δy1pτq (14c) via the gains hi (14m) serving to

correct the state distances between the system and its observer.
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ωo
s

vpτq
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Figure 1. Third order observer

In figure 1, for example, we have : pxpτqT “ “ px1pτq px2pτq ‰
qxpτqT “ “ qx2pτq qx3pτq ‰
vpτqT “ “ px1pτq qx2pτq qx3pτq ‰

phT “ “
h3 h2

‰
qhT “ “

0 h1

‰
The choice of using two state variables pxpτq and qxpτq is motivated by the n ´ 1 successive integrations of 9qxnpτq in which

no ph Δy1pτq re-injection error is involved. This allows an increase in the robustness of the estimations to the measurement

noise, which in general affects the variable y1pτq. One thus overcomes a common weak point of high gain observations, i.e.

their sensitivity to measurement noise. The second advantage comes from the non-linear function rΨ rvpτq,Upτqs which

is no longer subjected to the restrictive conditions used in (Schwaller, Ensminger, Dresp-Langley, & Ragot, 2013), and

covers the ensemble of the systems described by (Fliess, 1990). The vector rf pτq (14d), of dimension n ´ 1, compensates

the effects of f pτq, and of possible external exogenous disturbance of (2) using the integral component I0pτq (14e). One

notes that at the second order, for a gain h0 “ 0 inhibiting the integrator I0, the observer becomes similar to that proposed

by (Gauthier, Hammouri, & Othman, 1992) for a SISO system.

In (Schwaller, Ensminger, Dresp-Langley, & Ragot, 2016), a full analysis was performed in order to determine the dy-

namics of the observation error Δy1pτq (14c) and its successive derivatives, to characterise stability conditions and also

the exponential convergent nature of estimates vpτq. A mthod to synthesize parameters h0 . . . hn was also proposed.

3. Observation of the Original System via the Inverted Transformation Functions

3.1 New observers definitions

In (5b), the inverted transform functions gpτq allow converting the system in the canonical form of regulation back to the

original form (1). Using the estimates vpτq reconstructed by the observer (14), it is possible to define : (15)

pziptq “ pgi r vpτq, Upτq s i “ 1 . . . n (15a)pzptqT “ “ pz1ptq . . . pznptq ‰
(15b)

One thus obtains estimatespzptq of zptq (1). If the stability conditions (Theorem 1 of (Schwaller, Ensminger, Dresp-Langley,

& Ragot, 2016)) are respected, pzptq Ñ zptq when Δy1ptq Ñ 0. Similarly, 9pzptq Ñ 9zptq when Δy1ptq Ñ 0. One then has :

lim
Δy1ptq Ñ 0

9pzptq “ 9zptq (16a)

9pzptqT “ “ ps1ptq . . . psnptq ‰
(16b)psiptq “ si

“ pzptq, u1ptq ‰
i “ 1 . . . n (16c)
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“
Upτq, vpτq ‰

U

v

1 2

-

qz1I1

qznu1

. . .

ω1

s
ω1

s

Δz1 pz1

s1

“
u1ptq, qzptq ‰ {ωi

Figure 2. Observer of inverse function pz1pτ1q

The n estimates pziptq can be used as reference inputs to observe n state variables qziptq which tend towards (15a). Their

temporal derivatives tend towards 9pzptq, which themselves tend towards 9zptq (16). With the model (14), one defines n first

order observers. Each is normalised by a pulse ωi which leads to its dimensionless time definition (17e), possesses its

own Lipschitz constant, and its specific stability conditions that we have to find. Synthesising the gains hi (subsection 2.4

of (Schwaller, Ensminger, Dresp-Langley, & Ragot, 2016)) gives h0 “ 1 and h1 “ 2. The n observers are written :

9qzipτiq “ Iipτiq ` 2 Δzipτiq ` qsipτiq (17a)

9Iipτiq “ Δzipτiq i “ 1 . . . n (17b)

Δzipτiq “ pzipτiq ´ qzipτiq (17c)qsipτiq “ si
“ qzptq, u1ptq ‰ { ωi (17d)

τi “ ωi t (17e)

with qzptq “ “ qz1ptq . . . qznptq ‰
the vector of the estimations of pzptq ; qsipτiq is the normalised non-linear function of

9qzipτiq. Figure 2 illustrates (15) and (17).

The general calculation procedure is as follows :

• estimation of vpτq (14i) after treatment of (14);

• estimation of pzptq (15) ;

• estimation of the n state distances (17c) ;

• determination of the n non-linear functions qsipτiq (17d) to access the n terms 9qzipτiq (17a) and 9Iipτiq (17b) ;

• integration of the n equations (17a) to obtain qzptq.

The temporal derivative of (17c) and inserting (17a) in the rest obtained enables one to obtain the expression of Δ9zipτq :

Δ9zipτiq “ 9pzipτiq ´ 9qzipτiq i “ 1 . . . n (18a)

“ ΔrΨipτiq ´ Iipτiq ´ 2 Δzipτiq (18b)

ΔrΨipτiq “ psipτiq ´ qsipτiq (18c)psipτiq “ si
“ pzptq, u1ptq ‰ { ωi (18d)

3.2 Dynamics of the Observer Errors

We now characterise the dynamics of the observer errors by searching the n differential equations of the distances Δzipτiq.

Due to the presence of integrators Iipτiq, an extra temporal derivative is necessary to obtain the differential equation of the
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distances Δzipτiq. To do this, it is necessary to define the following augmented vectors :

Υpτiq “ “
u1pτiq u2pτiq

‰
(19a)

pzipτiqT “
” pzipτiq 9pzipτiq

ı
i “ 1 . . . n (19b)

qzipτiqT “
” qzipτiq 9qzipτiq

ı
(19c)

ΔzipτiqT “ “
Δzipτiq Δ9zipτiq

‰
(19d)pZpτiqT “ “ pz

1
pτiq . . . pznpτiq ‰

(19e)qZpτiqT “ “ qz
1
pτiq . . . qznpτiq ‰

(19f)

ΔZpτiqT “ “
Δz

1
pτiq . . . Δznpτiq ‰

(19g)

The temporal derivative of (18b) is written :

Δ:zipτiq “ Δ 9rΨipτiq ´ Δzipτiq ´ 2 Δ9zipτiq i “ i . . . n (20a)

Δ
9rΨipτiq “ 9si

” pZpτiq,Υpτiq
ı

´ 9si

” qZpτiq,Υpτiq
ı

(20b)

and gives the scalar expression of the differential equations of the observation errors. Using notations (19) gives the

matricial writing of (20a) in the form of state equations :

Δ9zipτiq “ Ai Δzipτiq ` Δ 9rΨipτiq i “ 1 . . . n (21a)

Ai “
„

0 1

´1 ´2

j
(21b)

Δ
9rΨipτiq “

«
0

Δ
9rΨipτiq

ff
(21c)

Assuming that the non-linear functions 9si are at least locally Lipschitz in Zpτiq, and uniformly bounded in Υpτiq in an

invariant set, they are associated with a Lipschitz constant Li :››› Δ 9rΨipτiq
››› ď Li } ΔZpτiq } i “ 1 . . . n (22)

Applying the Lipschitz inequality to (20b) permits reduction to ΔZpτiq the number of useful variables to characterise the

perturbing difference Δ
9rΨipτiq. For many systems, if functions 9si are not globally of a Lipschitz type, they can be locally

or be transformed adequately into the Lipschitz type.

3.3 Convergence of State Observations

Now let us try to analyse the globally asymptotic development of the observation errors and to characterise the limiting

stability conditions of each observer (17).

Theorem 1 Let us consider a MISO system decomposable as described in (4), for which the observer structures (14) and
(17) are used, and related to each other by the inverted transform function (15a). If the system function 9si

” pZpτiq,Υpτiq
ı

is locally of the Lipschitz type in pZpτiq and uniformly bounded in Υpτiq in an invariant set, with a Lipschitz constant Li

(22), then the observer (17) will be locally stable if the Lipschitz constant Li satisfies the following conditions :

Li
2 ď 2 σi φi1 ´ 1

4 n σi
2 φi1

ˆ
λi

2

φi1
` φi1

4

˙ (23a)

Li
2 ď 2 σi p 4 φi2 ´ φi1 q ´ 1

4 n σi
2 φi2

ˆ
φi2 ` φi1

2

4 φi2

˙ (23b)

λi ą 0, σi ą 0, φi1 ą 0, φi2 ą 0 i “ 0 . . . n (23c)
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If the system function 9si

” pZpτiq,Υpτiq
ı

is globally of the Lipschitz type, and if the Lipschitz constant Li satisfy (23), then
the observers (17) will be globally asymptotically stable.

Proof. The proof of theorem 1 can be demonstrated by proving the stability of (21a) using an appropriate positive

Lyapunov function, like the following quadratic function :

qVnpτiq “
nÿ

i“1

vipτiq (24a)

vipτiq “ ΔzipτiqT Pi Δzipτiq (24b)

Pi “
„
λi 0

φi1 φi2

j
(24c)

The Pi lower triangular matrix are defined as positive and satisfying the Sylvester criteria, with (24c). The proof of

convergence is linked to the study of the sign of the derivative of the candidate for a Lyapunov function. This is obtained

after temporal derivation of (24a), and after placing (21a) in the result obtained for terms Δ9zipτiq :

9qVnpτiq “
nÿ

i“1

9vipτiq (25a)

9vipτiq “ ΔzipτiqT Q
i
Δzipτiq ` Nipτiq i “ 0 . . . n (25b)

Q
i

“ Ai
T Pi ` Pi Ai

“
„ ´φi1 0

2pλi ´ φi1q ´ φi2 φi1 ´ 4φi2

j
(25c)

Nipτiq “ ΔzipτiqT S i Δ
9rΨipτiq (25d)

S i “ Pi ` Pi
T (25e)

An appropriate choice of φi1, φi2 can provide negative diagonal coefficients for Q
i
. The criterion of semi-negativity of

Sylvester is then respected, and the successive minors of Q
i

will be of opposite sign, ensuring the semi-negativity of the

first member on the right of (25b). Verifying the sign of the second member on the right of (25b) involves increasing

Nipτiq using the inequalities of Schwartz and Lipschitz (22) :

Nipτiq ď
››› ΔzipτiqT S i Δ

9rΨpτiq
››› (26a)

ď
››› ΔzipτiqT S i

››› ››› Δ 9rΨpτiq
››› (26b)

ď
››› ΔzipτiqT S i

››› L
›› Δzipτiq

›› (26c)

To determine the sign of 9vipτiq function, one applies the following inequality :››› apτiqT bpτiq
››› ď n σi

2
apτiqT apτiq ` 1

2 n σi
bpτiqT bpτiq (27a)

apτiq “ L S i
T zipτiq (27b)

bpτiq “ Δzipτiq (27c)

to (26c) to obtain the desired increase of Nipτiq :

Nipτiq ď ΔzipτiqT Ri Δzipτiq i “ 1 . . . n (28a)

Ri “ n σiLi
2

2
S i S i ` I

2 n σi
(28b)

In (28a) yields a positive lower triangular matrix Ri (28b), the diagonal elements of which are written :

r j j “

$’&’%
2 n σi Li

2
`
λi

2 ` φi1
2{4

˘ ` 1

2σi
j “ 1

2 n σi Li
2

`
φi2

2 ` φi1
2{4

˘ ` 1

2σi
j “ 2

(29)
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The inequality (28a) permits deduction of (25b) :

9vipτiq ď ΔzipτiqT Mi Δzipτiq (30a)

Mi “ Q
i
` Ri (30b)

With negative functions 9vipτiq, adding together the diagonal terms of (25c) and (29), and imposing Q
i

` Ri ď 0, one

obtains the conditions (23). The sum Q
i
` Ri yields an inferior triangular matrix that satisfies Sylvester criteria of semi-

negativity if inequalities (23a) and (23b) are satisfied. Then, if Δ
9rΨipτiq (20b) is Lipschitz (22), 9vipτiq is semi-negative and

(21a) is globally and asymptotically stable ; (21a) is locally stable if (22) is locally Lipschitz �
Using the (theorem 2, section 2.3, (Schwaller, Ensminger, Dresp-Langley, & Ragot, 2016)), it is easy to demonstrate that

the observers (17) will be exponentially convergent.

4. Application to a Sludge Activation Model

Let us now illustrate the proposed observation method by applying it to a non-linear example with multiple inputs.

4.1 Original Model

For this we choose a simplified treatment model for activated sludge ASM1 similar to that used by (Nagy-Kiss et al.,

2010), and structurally of the same types as (1) :

9ziptq “ siptq i “ 1 . . . 3 (31a)

y1ptq “ z1ptq y2ptq “ z2ptq (31b)

with :

s1ptq “ k1 �1ptq ` k2 z3ptq ´ k3 �2ptq z3ptq (32a)

s2ptq “ k4 �3ptq ´ k1 �4ptq ´ k5 �2ptq z3ptq (32b)

s3ptq “ k9 �5ptq ´ k6 �6ptq ´ k7 z3ptq ` k8 �2ptq z3ptq (32c)

and non-linear functions :

�1ptq “ u11ptq p u31ptq ´ z1ptq q (33a)

�2ptq “ z1ptq z2ptq
p k10 ` z1ptq q p k11 ` z2ptq q (33b)

�3ptq “ u21ptq r k12 ´ z2ptq s (33c)

�4ptq “ u11ptq z2ptq (33d)

�5ptq “ u11ptq u41ptq (33e)

�6ptq “ u11ptq z3ptq (33f)

u1ptq “ “
u11ptq . . . u41ptq ‰

(33g)

The constants used are given by :

k1 “ 5 ¨ 10´11 k2 “ 1, 08 ¨ 10´5 k3 “ 2.872 ¨ 10´4

k4 “ 3.5 10´4 k5 “ 9 ¨ 10´5 k6 “ 1.316 ¨ 10´12

k7 “ 4.8 ¨ 10´6 k8 “ 7.47 ¨ 10´5 k9 “ 8 ¨ 10´11

k10 “ 20 k11 “ 0.2 k12 “ 10

(34)

u1ptq (33g) represent the inputs of the system (figures 3(a),(b),(c),(d) page 10), respectively the input flow of waste water,

the flow of injected air, the concentration soluble carbonated substrate recycled, the particle concentration of recycled

heterotrophic biomass. All abscissas of the figures are expressed in hours.

The variables z1ptq, z2ptq z3ptq represent the state of the reactor (figures 3(e),(f),(g)), respectively the concentration of

rapidly biodegradable substrate, the concentration of dissolved oxygen, the particle concentration of biomass, with (34)

its parameters, all known, and z1p0q “ 4.1, z2p0q “ 3.0, z3p0q “ 867 the initial conditions. The sizes y1ptq, y2ptq (31b)

represent the measurable outputs.
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(g) z3ptq, concentration of biomass

Figure 3. Input variables and state variables of the bioreactor
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4.2 Model Transformed in a Canonical Form of Regulation

We now transform the two first order differential equations (32b) and (32c) into a single second order differential equation.

With this one we determine a function Ψ r xptq, Uptq s and a new differential equation in a canonical form of regulation.

As this application of the general procedure of transformation permits passage from systems (1) to (2) (Fliess, 1990) it

will permit the use of an observer similar to that proposed in (14), associated with inverted transformation (15) and with

observers (17).

In our example we try to observe the measured output y2ptq and its successive derivatives, to subsequently determine an

estimation of the immeasurable variable z3ptq. From s2ptq (32b) we deduce z3ptq :

z3ptq “ k4 �3ptq ´ k1 �4ptq ´ 9z2ptq
k5 �2ptq (35)

The temporal derivative of (35) gives an expression of 9z3ptq which can be equated to s3ptq (32c). We thus deduce :

9x1ptq “ x2ptq (36a)

9x2ptq “ Ψ r xptq, Uptq s (36b)

Ψ r xptq, Uptq s “ k4
9�3ptq ´ k1

9�4ptq ´ k5 �7ptq (36c)

�2ptq “ z1ptq x1ptq
p k10 ` z1ptq q p k11 ` x1ptq q

“ nptq{dptq (36d)

�3ptq “ u21ptq r k12 ´ x1ptq s (36e)

�4ptq “ u11ptq x1ptq (36f)

�6ptq “ u11ptq z3ptq (36g)

�7ptq “ z3ptq 9�2ptq ` s3ptq �2ptq (36h)

z2ptq “ x1ptq (36i)

System (36) is made up of a second order differential equation, in a canonical regulation form structurally of the same

type as that described in (2). The derived functions 9�3ptq, 9�4ptq of (36c), and 9�2ptq, s3ptq of (36h) are defined by :

9�2ptq “ 9nptq dptq ´ 9dptq nptq{dptq2
(37a)

9nptq “ s1ptq x1ptq ` z1ptq x2ptq (37b)

9dptq “ s1ptq pk11 ` x1ptqq ` x2ptq pk10 ` z1ptqq (37c)

s1ptq “ k1 �1ptq ` k2 g3ptq ´ k3 �2ptq g3ptq (37d)

9�3ptq “ u22ptq p k12 ´ x1ptq q ´ u21ptq x2ptq (37e)

9�4ptq “ u12ptq x1ptq ` u11ptq x2ptq (37f)

s3ptq “ k9 �5ptq ´ k6 �6ptq ´ k7 g3ptq ` k8 �2ptq g3ptq (37g)

Equation 9z1ptq “ s1ptq defined in (31a) is conserved, and the integration of s1ptq provides z1ptq, which is the measured

output variable defined in (31b). The system of equation of functions of inverted transforms (3b) should permit in our

example determination of z3ptq. It is written :

z1ptq “ g1ptq (38a)

z2ptq “ g2ptq (38b)

z3ptq “ g3ptq “ k4 �3ptq ´ k1 �4ptq ´ x2ptq
k5 �2ptq (38c)

and permits linking xptq to zptq: z3ptq is a non-linear function of Uptq and xptq through �2ptq, �3ptq and �4ptq.
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4.3 Time Scaling of rΨ rUptq, xptqs, Observation of z2ptq in Canonical Form of Regulation and Determination of the Inverted
Transform System

Using (7), one can temporally normalise (36b), putting for rΨpτq the definition of the following input-output variables :rΨpτq “ rΨ “
vaptq,Uptq ‰ {ωo

2 (39a)

vaptqT “ “ qz1ptq vptq ‰
(39b)

vptqT “ “ px1ptq qx2ptq ‰
(39c)qx2ptq “ ωo qx2pτq px1ptq “ px1pτq (39d)

Uptq “ “
u1ptq u2ptq ‰

(39e)

The scaling pulse chosen for (39) is ωo “ 3.927 10´2 rd{s. In (39b) we define vaptq as the vector vptq (14i) augmented

by variable qz1ptq, itself resulting from observation of the measured variable y1ptq.

Note that vptq contains two second order terms because of (36). Equation (39d) allows conversion of time scaled state

variables to temporal variables. Taking (7) and definitions (39) into account, function rΨpτq in scaled time used in (39a) is

written :

rΨpτq “
´

k4
9p�3ptq ´ k1

9p�4ptq ´ k5
p�7ptq

¯
{ωo

2 (40a)p�1ptq “ u11ptq p u31ptq ´ qz1ptq q (40b)p�2ptq “ pnptq{pdptq (40c)p�3ptq “ u21ptq r k12 ´ px1ptq s (40d)p�4ptq “ u11ptq px1ptq (40e)p�5ptq “ u11ptq u41ptq (40f)p�6ptq “ u11ptq pz3ptq (40g)p�7ptq “ pz3ptq 9p�2ptq ` 9pz3ptq p�2ptq (40h)pnptq “ qz1ptq px1ptq (40i)pdptq “ p k10 ` qz1ptq q p k11 ` px1ptq q (40j)

The derived functions
9p�3ptq, 9p�4ptq of (40a) and

9p�2ptq, 9pz3ptq of (40h) are defined by :

9p�2ptq “
9pnptq pdptq ´ 9pdptq pnptqpdptq2

(41a)

9pnptq “ 9pz1ptq px1ptq ` qz1ptq qx2ptq (41b)

9pdptq “ 9pz1ptq p k11 ` px1ptq q ` qx2ptq p k10 ` qz1ptq q (41c)

9p�3ptq “ u22ptq p k12 ´ px1ptq q ´ u21ptq qx2ptq (41d)

9p�4ptq “ u12ptq px1ptq ` u11ptq qx2ptq (41e)

9pz1ptq “ k1
p�1ptq ` k2 pz3ptq ´ k3

p�2ptq pz3ptq (41f)

9pz3ptq “ k9
p�5ptq ´ k6

p�6ptq ´ k7 pz3ptq ` k8
p�2ptq pz3ptq (41g)

The observer in canonical form of regulation of the system(36) is written :

9px1pτq “ qx2pτq ` h2 Δy1pτq (42a)

9qx2pτq “ I0pτq ` h1 Δy1pτq ` rΨpτq (42b)

9I0pτq “ h0 Δy1pτq (42c)

Δy1pτq “ y2pτq ´ px1pτq (42d)

with y2pτq (31b) used to form the observation error Δy1pτq (14c).
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Figure 5. State distances without measurement noise
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Figure 6. State distances with measurement noise

The estimate pz3ptq of z3ptq used in (40h), (41f) and (41g) and also the estimate pz2ptq of z2ptq are defined by the following

inverted transform functions :

pz1ptq “ y1ptq (43a)pz2ptq “ px1ptq (43b)

pz3ptq “ k4
p�3ptq ´ k1

p�4ptq ´ qx2ptq
k5

p�2ptq (43c)

pzptq “ “ pz1ptq pz2ptq pz3ptq ‰
(43d)

4.4 Observation of the Inverted Transformation System

The inverted transformation system (43) serves to form the errors (14c) of three first order observers of the same type as

those defined in (17), in order to estimate pzptq.

The observed outputs and the scaling pulsation choices are given by :

qzptq “ “ qz1ptq qz2ptq qz3ptq ‰
(44a)

qsipτiq “ si
“
u1ptq,qzptq‰
ωi

i “ 1 . . . 3 (44b)

ω1 “ωo ω2 “ ω3 “ ωo{5 (44c)
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the observer of pz1ptq is written :

9qz1pτ1q “ I1pτ1q ` 2 Δz1pτ1q ` qs1pτ1q (45a)

qs1pτ1q “ k1
p�1ptq ` k2 qz3ptq ´ k3

q�2ptq qz3ptq
ω1

(45b)

q�2ptq “ qz1ptq qz2ptq
p k10 ` qz1ptq q p k11 ` qz2ptq q (45c)

9I1pτ1q “ Δz1pτ1q (45d)

Δz1pτ1q “ pz1ptq ´ qz1pτ1q (45e)

That of pz2ptq :

9qz2pτ2q “ I2pτ2q ` 2 Δz2pτ2q ` qs2pτ2q (46a)

qs2pτ2q “ k4
q�3ptq ´ k1

q�4ptq ´ k5
q�2ptq qz3ptq

ω2

(46b)

q�3ptq “ u21ptq r k12 ´ qz2ptq s (46c)q�4ptq “ u11ptq qz2ptq (46d)

9I2pτ2q “ Δz2pτ2q (46e)

Δz2pτ2q “ pz2ptq ´ qz2pτ2q (46f)

that of pz3ptq :

9qz3pτ3q “ I3pτ3q ` 2 Δz3pτ3q ` qs3pτ3q (47a)

qs3pτ3q “
„

k9
p�5ptq ´ k6 u11ptq qz3ptq

´k7 qz3ptq ` k8
q�2ptq qz3ptq

j
{ω3 (47b)

9I3pτ3q “ Δz3pτ3q (47c)

Δz3pτ3q “ pz3ptq ´ qz3pτ3q (47d)

The observer (45) is there to counteract the effect of measurement noise superimposed on z1ptq, which has sometimes a

very great impact on the estimates pz3ptq (43c), due to the term p�2ptq in the denominator.

The scaling of (46b) and (47b), parts of (45b) is defined in (44c). This has for effect to strongly reduce the noise on

estimates qz2ptq and qz3ptq.

We now try to determine the Lipschitz constants that subsequently will allow defining the stability conditions of each

observer. We thus start by looking for L in (36) using the same calculation method as that explained in ((Schwaller,

Ensminger, Dresp-Langley, & Ragot, 2016), section 3.1).

With (31)-(34) and (38c) we get x2ptq by using zptq, �2ptq �3ptq and �4ptq. Then it is possible with (36c) and (38b) to

calculate xptq and then rΨ rxptq,Uptqs {ωo
2.

Using the initial conditions zp0q with the same method of calculation, we can determine rΨ rxp0q,Uptqs {ωo
2. We then

calculate the state distance Δ9ypτq. Numerical derivation of rΨ rxptq,Uptqs {ωo
2´ rΨ rxp0q,Uptqs {ωo

2 permits determination

of the augmented vector y
a
pτq of observation error and to obtain a Lipschitz constant adapted to the observer (42). Figure

4 (b) page 13 illustrates this procedure and allows choosing a constant L “ 0.15. The abscissa is represented only

for the first three hours of recording, the region where convergence of observers is expected. using the same stability

conditions explained in ((Schwaller, Ensminger, Dresp-Langley, & Ragot, 2016), section 2.3 and 2.4), we fix parameter

φ3 “ 2, φ2 “ 2, φ1 “ 4. We choose λ “ 1{8, σ “ 1 and obtain the limiting conditions to respect to synthesise the gains

hi :

h0 ě 0.273 h1 ě 0.512 h2 ě 1.3175 (48)

Using ν “ 1 and n “ 2, we get :

ha “ “
1 3 3

‰
(49)

which respects the conditions (48).
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We now try to determine constants L1, L2, L3 of inverted transformation observer functions. We use a similar procedure

to estimate ΔZpτiq, Δ 9rΨipτiq and their respective modules. Figures 4(a),(c) and (d) allows the choice of Lipschitz constants

L1 “ 0.1, L2 “ L3 “ 0.02 (22).

If we fix φi1 “ φi2 “ 2, σi “ 1, n “ 3, λi “ 1{8 for i “ 1 . . . 3 the stability conditions (23) are respected, and the three

observers of pgpτq will be stable and properly damped.

4.5 Simulations and Results Obtained

The aim of the simulation is to observe the overall stabilisation of observers to an initial difference in biomass concentra-

tion.

The initial conditions of (39) are fixed at

I0p0q “ 0, qx2p0q “ ´0.164, px1p0q “ z2p0q “ 3

Those of (45) at qz1p0q “ z1p0q “ 4.1, those of (46) at qz2p0q “ 3, those of (47) at qz3p0q “ 600.

In figures 5(a)- 5(c) the exponential convergent reduction of the state distances ziptq ´ qziptq are visualised for zero mea-

sured noise on the outputs y1ptq and y2ptq. The same test is performed by adding two bandwidth limited white noise to

outputs y1ptq and y2ptq. These uncorrelated noises have an amplitude of 1% on each of the variables. Figure 4(h) permits

verification that the dynamics of convergence of qz3ptq is conserved. The normative pulse ωo chosen for (39) and (45) allow

reduction of residual noise by about 10% compared with the measured variables and to contain that still present in pz3ptq.

This setting permits however to have a rate of convergence of qz1ptq and px1ptq of the same order as the abrupt variations

that are seen in z1tq and z2ptq.

In figures 6(a)-(c) page 14 the smoothing effect on the estimates of observer (46) and (47) is illustrated : division by 5 on

the noise on y2ptq for qz2ptq and fluctuations of 2% on superimposed noise compared with the full scale for qz3ptq.

5. Conclusions and Perspectives

Observation in canonical form of regulation that is proposed in (Schwaller, Ensminger, Dresp-Langley, & Ragot, 2016)

did not take into account the effect of measurement noise on the inverted transformation, which allowed passing from

the observation of transformed systems to the non-transformed state space. Certain non-linear functions, because of

their nature, can greatly amplify the effect of extraneous perturbations on the final estimations. Observers of inverted

transformation functions limit this type of effect. The time scale of each observer affects the stability conditions of

each observer, via the value of the Lipschitz constant. This also greatly influences the existing noise on the estimated

variables. By reducing the pulse ωi of the observers (17), the Lipschitz constant Li is reduced, and similarly the magnitude

of remaining noise on estimates qziptq and one increases the convergence time. Setting the rate of convergence of each

observer can be done independently.

Observer stability and synthesising observer gains employ demonstrations published in the previous study.

The proposed technique can be applied to other observers (Gauthier, Hammouri, & Othman, 1992) or to different high

gain observers. Observation of inverted transformation functions opens the route to identification on line of parameters of

n equation of the state of vector sptq (1c). In fact, it is possible to consider using the n functional distances between 9pziptq
and si

“
u1ptq,qzptq‰

to identify parameters of the n functions si
“

u1ptq, zptq ‰
(1c). This could provide a means of dealing

with parametric uncertainty in state equations of the system (1), as well as external perturbations, which are already

compensated by the integral component of the observer (14e).

Finally, by slightly modifying the filter (8)-(10), it can be envisaged to extend the proposed method to multivariable

MIMO systems with multiple outputs.
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Abstract

Consider homogeneous linear recurring sequences over a finite field Fq, based on the irreducible characteristic polynomial

of degree d and order m. We give upper and lower bounds, and in some cases the exact values of the cardinality of the set

of zeros of the sequences within its least period. We also prove that the cyclotomy bound introduced here is the best upper

bound as it is reached in infinitely many cases. In addition, the exact number of occurrences of zeros is determined using

the correlation with irreducible cyclic codes when (qd − 1)/m follows the quadratic residue conditions and also when it

has the form q2a − qa + 1 where a ∈ N.

Keywords: linear recurring sequences, irreducible cyclic codes, weights of cyclic codes.

1. Introduction

Let Fq be the finite field with q elements where q = pm for prime p. Let k be a positive integer, and let a0, a1, . . . , ak−1 be

given elements of Fq. A sequence s0, s1, . . . of elements of Fq satisfying the relation

sn+k = ak−1sn+k−1 + ak−2sn+k−2 + . . . + a0sn f or n = 0, 1, . . . (1)

is called a (kth-order) homogeneous linear recurring sequence in Fq. The terms s0, s1, . . . sk−1, which determine the com-

plete sequence uniquely, are referred to as the initial values. A relation in the form of (1) is called a (kth-order) homoge-

neous linear recurrence relation. Let s0, s1, . . . be a kth order homogeneous linear recurring sequence in Fq satisfying the

linear recurrence relation (1), where a j ∈ Fq for 0 ≤ j ≤ k − 1. The polynomial

f (x) = xk − ak−1xk−1 − ak−2xk−2 − . . . − a0 ∈ Fq[x]

is called a characteristic polynomial of the linear recurring sequence. For s0, s1, . . . homogeneous linear recurring se-

quence in Fq, m(x) ∈ Fq[x] is said to be the minimal polynomial of the sequence if it has the following property: a monic

polynomial f (x) ∈ Fq[x] of positive degree is a characteristic polynomial of s0, s1, . . . if and only if m(x) divides f (x).

Definition Let f ∈ Fq[x] be a non zero polynomial. If f (0) � 0, then the least positive integer e for which f (x) divides
xe − 1 is called the order of f which is denoted by ord( f ).

Theorem 1. (Lidl & Niederreiter, 1994) Let s0, s1, ... be a homogeneous linear recurring sequence in Fq with minimal
polynomial m(x) ∈ Fq[x]. Then the least period of the sequence is equal to ord(m(x)).

Linear recurring sequences were discussed for many years with a substantial development in the study of examining

zeros and determining effective bounds for the set of zeros over infinite fields (Everest, Poorten, Shparlinski & Ward,

2003). Here we will consider homogeneous linear recurring sequences over finite fields based on irreducible minimal

polynomials of certain degree d and order m. Let P(d,m) be the set of all irreducible polynomials over Fq of degree d and

order m. For f ∈ P(d,m) and I ∈ (Fd
q)∗ = (Fd

q) \ {0}, let S (I, f ) := {sn(I, f )|1 ≤ n ≤ m} be the first m terms (terms within

the least period) of the homogeneous linear recurring sequence S over Fq. Let A := {Z(S (I, f ))|I ∈ (Fd
q)∗, f ∈ P(d,m)}

be the set of zeros. Let t = (qd − 1)/m. We will always assume that t > 1. If t = 1 then the polynomials in P(d,m)

are primitive and the number of zeros in the sequence is qd−1 − 1 (Lidl & Niederreiter, 1994). However, in the general

case such an equitable distribution of zeros cannot be expected. Theorem 6.84 in Lidl and Niederreiter (1994) provides

an estimate for the number of occurrences of zeros based on Gaussian sums and Mullen and Panario (2013) provides an

improved bound. Table 1 gives some observations on the number of zeros of some linear recurring sequences over F2

computed via MAPLE (Kottegoda, 2010, Appendix I-VIII) with the degrees and orders of their corresponding irreducible
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minimal polynomials. In this paper, in addition to explaining why there are so few choices for the number of zeros, we

will give an accurate bound for the cardinality of the set of zeros, also providing formulas for the exact number of zeros

when t has the form q2a − qa + 1 where a ∈ N.

Table 1. Zeros of some homogeneous linear recurring sequences over F2 based on degree d and order m irreducible

minimal polynomials.

d m Number of zeros Cardinality

8 51 27, 19 2

8 85 37, 45 2

9 73 33, 37, 45 3

10 93 45, 61 2

10 341 181, 165 2

11 89 49, 41, 33 3

12 65 39, 37, 35, 33, 31, 29, 27, 25 8

12 91 55, 51, 47, 43, 39 5

12 105 73, 57, 49 3

12 195 107, 99, 91 3

12 273 153, 141, 133, 129 4

12 315 155, 187 2

12 455 231, 199 2

12 585 305, 289, 281 3

12 819 435, 403 2

12 1365 693, 661 2

14 381 253, 189 2

14 5461 2773, 2709 2

15 1057 573, 553, 537, 525, 517, 513 6

15 4681 2361, 2345, 2265 3

16 3855 1807, 1935 2

16 771 411, 395, 387, 379, 363, 355 6

16 1285 669, 653, 645, 637, 621, 613, 581 7

16 4369 2225, 2185, 2177, 2169, 2097 5

Section 2 proves that the cardinality of the set of zeros is at most the number of q-cyclotomy classes in Zt, namely, the

cyclotomy bound.

In section 3, results on irreducible cyclic codes are used to show | A |= 2 if t has the form q2a − qa + 1 and also gives the

exact values forA in this case. We also get a lower bound on | A |when q = 2 using results from Wolfmann (2005). Exact

values for | A | when t follows the quadratic residue conditions are also discussed. Lastly, we show that the cyclotomy

bound given in section 2 is the best bound as it is reached infinitely often, assuming the Generalized Riemann Hypothesis.

2. Cyclotomy Bound

2.1 Construction of the Cyclotomy Bound

First we will define the following equivalence relation on Zt.

Definition For a, b ∈ Zt define a ∼ b iff qua ≡ b (mod t) for some u ∈ Z.

Definition Let t be relatively prime to q. The cyclotomy class of q (or q-cylcotomy coset) modulo t containing i is defined
by

Ci = {(iq j (mod t)) ∈ Zt | j = 0, 1, . . .}
which is the equivalence class that contains i in the above mentioned equivalence relation.

Let C denote the set of all equivalence classes. The following theorem explains that when the characteristic polynomial is

irreducible, a suitable trace form can be used to represent the terms of the linear recurring sequence S .

Theorem 2. (Lidl & Niederreiter, 1994) Let s0, s1, . . . be a kth-order homogeneous linear recurring sequence in K = Fq

whose characteristic polynomial f (x) is irreducible over K. Let α be a root of f (x) in the extension field F = Fqk . Then
there exists a uniquely determined θ ∈ F such that

sn = TrF/K (θαn) f or n = 0, 1, . . .
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Theorem 3 below gives the upper bound for the cardinality of the set of zeros.

Theorem 3. Consider the homogeneous linear recurring sequences over Fq based on an irreducible minimal polynomial
of degree d and order m. Set t = (qd − 1)/m. Then for the set of numbers of zeros A, we have | A |≤| C |.
Proof.

Let f ∈ P(d,m). By Theorem 2, there exists a root of f , β ∈ Fqd and θ ∈ F
∗
qd such that the nth term of the sequence S is

given by,

sn(I, f ) = TrFqd /Fq (θβn), f or all n, 1 ≤ n ≤ m.

Fix a primitive element α ∈ Fqd . Then order of β = m and hence β = αrt where t = (qd − 1)/m and (r,m) = 1. Define

sn(θ, t) := TrFqd /Fq (θαtn).

Hence

sn(I, f ) = TrFqd /Fq (θβn) = TrFqd /Fq (θαrtn) = sn(θ, rt).

Therefore,

A = {Z(S (θ, rt)) | θ ∈ F
∗
qd , t = (qd − 1)/m, (r,m) = 1} (2)

Lemma 1. First Reduction : For (r,m) = 1, Z(S (θ, t)) = Z(S (θ, rt)).

Proof. Since (r,m) = 1, there exists a u such that ur ≡ 1 (mod m) and then urt ≡ 1 (mod qn − 1). Hence

sk(θ, t) = TrK/F(θαtk) = TrK/F(θαkurt) = sku(θ, rt)

and sk(θ, rt) is simply sk(θ, t) in a new order. Therefore

Z(S (θ, t)) = Z(S (θ, rt)).

�
Now A in (2) can be given as follows:

A = {Z(S (θ, t)) | θ ∈ F
∗
qd , t = (qd − 1)/m} (3)

Define

rn(a, t) := TrFqd /Fq (αa+tn), f or some a ∈ N.

Since θ ∈ F
∗
qd , let θ = αk. Then

sn(θ, t) = TrFqd /Fq (θαnt) = TrFqd /Fq (αk+tn) = rn(k, t).

Hence A in (3) can be written as the following

A = {Z(R(k, t)) | t = (qd − 1)/m, 0 ≤ k ≤ qd − 1} (4)

where R denotes the sequence r1, r2, . . .

Lemma 2. Second Reduction : If k1 ≡ k2(mod t) then Z(R(k1, t)) = Z(R(k2, t)).

Proof. If k2 = k1 + tu for some u ∈ Z, then

rn(k2, t) = TrFqd /Fq (αk2+tn) = TrFqd /Fq (αk1+(n+u)t) = rn+u(k1, t)

Hence rn(k2, t) is a shifted version of rn(k1, t). Therefore,

Z(R(k1, t)) = Z(R(k2, t)).

�
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Using Lemma 2, A in (4) can be given as follows:

A = {Z(R(k, t)) | t = (qd − 1)/m, 0 ≤ k < t}
Therefore

| A |≤ t.

Lemma 3. Third Reduction : Z(R(k,t)) = Z(R(qk,t)).

Proof.
rn(k, t) = TrFqd /Fq (αk+tn) = TrFqd /Fq ((αk+tn)q) = TrFqd /Fq (αqk+qnt) = rqn(qk, t)

Hence

Z(R(k, t)) = Z(R(qk, t)).

Therefore

A = {Z(R(k, t)) | t = (qd − 1)/m and Ck ∈ C}.

Hence | A |≤| C | .
2.2 Properties of Cyclotomy Classes

Here we discuss some properties of the cyclotomy classes where we will be able to find the exact value for the cyclotomy

bound and give the exact upper bound for the cardinality of the set of zeros | A |, under specific conditions. Let orda(b)

be the smallest positive integer c such that ac ≡ 1 (mod a). By the equivalence relation defined in section 2, C1 =

{1, q, q2, . . . , qk−1} (mod t) where k = ordt(q). Hence | C1 |= ordt(q).

Proposition 1. If t is a composite and l | t, then there exists Cl ∈ C.

Proof. Let l ∈ Ca for some a ∈ Zt. Then by the definition of Ca, l ≥ a and l ≡ qra (mod t) for some r ∈ Z. Since

l | t ⇒ l | qra and t | qd − 1 ⇒ (t, q) = 1, hence (l, q) = 1. Therefore l | a and hence l ≤ a. Hence l = a and Cl ∈ C.

�
The following well known result and the corollaries give the exact values for the cyclotomy bound | C | and hence the

exact upper bound for the cardinality of the set of zeros | A |.
Proposition 2. Let t ∈ N and t and q are relatively prime. Then

| C |=
∑
d|t

ϕ(t/d)

ordt/d(q)
.

Corollary 1. If t is a prime then | C |= t−1
k + 1.

Corollary 2. Let t be a prime power (say pk) where p is an odd prime. If 2 is a primitive root of Z∗p2 , then | C |= k + 1.

3. Coding Theory Approach

Weight distributions of irreducible cyclic codes were studied by Baumert and McEliece (1972), Baumert and Mykkeltveit

(1973), Aubrey and Langevin (2005), Wolfmann (2005), Vega (2007), Aubrey and Langevin (2008) and Ding (2009). We

will use these results to determine the exact occurrences of zeros in some cases, and determine the cardinality of the set

of zeros of homogeneous linear recurring sequences based on irreducible minimal polynomials of fixed degree and order.

First we set notations and review the basic facts as found on Lidl and Niederreiter (1994).

Let f (x) ∈ Fq[x] be an irreducible polynomial of degree d and order m. Let S = {sn} be a homogeneous linear recurring

sequence over Fq based on f as its minimal polynomial. By Theorem 2, sn = TrK/F(θαn), where F = Fq, K = Fqd , α ∈ K
is a root of f and θ ∈ K∗. Define the vector

c(θ, α) = [TrK/F(θα), TrK/F(θα2), . . . , TrK/F(θαm)],

where the entries represent the terms of the sequence S within its least period m. Set

C(α) = {c(θ, α) : θ ∈ K}.
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C(α) is then a cyclic code whose words represent the terms of each sequence S within its least period, based on f (x).

Thus C(α) has length m and dimension d. The generator polynomial of C(α) is the reciprocal of (xm − 1)/ f (x), so that

C(α) is in fact an irreducible cyclic code.

Note that the weight wt(c(θ, α)), the number of non zero entries of the code word c(θ, α) is m − Z(S ). The reductions

of Theorem 3 show that all sequences based on irreducible minimal polynomials of degree d and order m have the same

number of zeros. Hence

number o f non − zero weights o f C(α) =| A | .
We say a code is a N-weight code if it has N non-zero weights and hence for this case, N =| A |.
3.1 Lower Bounds for the Cardinality of the Set of Number of Zeros of Hhomogeneous Linear Recurring Sequences

Theorem 4. (Wolfmann, 2005) Let C be an [n, k] linear code over Fq. If C is a 1-weight code with weight w and if the
weight of the dual code is at least 2, then there exists λ ∈ N such that

n = λ
qk − 1

q − 1
, w = λqk−1.

Corollary 3. Let C be an irreducible cyclic 1-weight code with length m and dimension d. Set t = (qd − 1)/m. Then t
divides q − 1.

Proof. We first check that the dual code C⊥ does not have minimal weight one. Suppose it has a minimal weight of one.

As C⊥ is also cyclic, the existence of a codeword of weight 1 in C⊥ implies that all vectors of weight 1 are in C⊥ and

hence C⊥ = F
m
q . But then C = {0}, which is not a 1-weight code.

We can thus apply Theorem 4 to get m = λ(qd − 1)/(q − 1) for some λ. Hence q − 1 = λ(qd − 1)/m = λt.

�
Corollary 4. For q = 2, | A |≥ 2 unless the minimal polynomial is primitive.

Proof. Let f (x) be an irreducible polynomial of degree d and order m. Set t = (2d − 1)/m. If | A |= 1 then C(α), where α
is a root of f (x), is a 1-weight irreducible cyclic code. By Corollary 3, t divides q − 1 = 1 so that t = 1 and f is primitive.

�
3.2 Kasami-Welch approach

Theorem 5. (Wolfmann, 2005) Let C be an irreducible cyclic code of length m over Fq. Let Fqd be the splitting field of
xm − 1 over Fq. Let t be the integer such that mt = qd − 1. If d = 2e and if there exists a divisor r of e such that qr ≡ −1

(mod t), then C is a 2-weight code with weights

w1 = (q − 1)qe−1

(
qe + (t − 1)ε

t

)
w2 = (q − 1)qe−1

(
qe − ε

t

)
,

where ε is 1 or −1.

Theorem 6. Let q = 2. Consider sequences based on an irreducible, non-primitive polynomial of degree d and order m.
Set t = (2d − 1)/m. Suppose t is prime and 2 is a primitive root modulo t. Then

| A |= 2 =| C |
where C is the set of 2-cylcotomic classes in Zt. In fact, d is even (say d = 2e) and A consists of

m − 2e−1(2e + (t − 1)ε)

t
and m − 2e−1(2e − ε)

t
,

where ε is 1 or -1, determined by 2e ≡ ε (mod t).

Proof. C1 is the subgroup of Z∗t generated by 2, hence C1 = Z
∗
t . So there are exactly two cyclotomy classes, represented

by 0 and 1. We have ordt(2) = t − 1 is even and 2d ≡ 1 (mod t) so that t − 1 divides d. Write d = 2e. For r = t−1
2

we have

r | e and 2r ≡ −1 (mod t). So by Theorem 5, | A |= 2 and its values are as given.

�
Example 1. Let q = 2. Consider sequences based on an irreducible polynomials of degree 10 and order 93 ( f (x) =

x10 + x5 + x4 + x2 + 1 is one such polynomial). Then t = (210 − 1)/93 = 11. As 2 is a primitive root modulo 11, Theorem

6 gives | A |= 2. In fact, using e = 5 and ε = −1, we have A = {45, 61}. This explains the result on line 4 in Table 1.
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Assuming the Generalized Riemann Hypothesis (GRH), Hooley (1967) proved the Artin Conjecture and in particular,

that there are infinitely many primes t such that 2 is a primitive root modulo t. Together with Theorem 6, we thus get the

following corollary that proves the cyclotomy bound determined in section 2 is the best bound for | A |.
Corollary 5. Assume the GRH. For q = 2, the cyclotomy bound is achieved infinitely often.

Theorem 7. (Kasami-Welch case) Consider sequences based on an irreducible polynomial over Fq of degree d and
order m. Set t = (qd − 1)/m. If t has the form q2a − qa + 1 for some integer a (a ≥ 2 if q = 2) then d = 2e is even and
| A |= 2. In fact: A consists of

m − (q − 1)qe−1

(
qe + (t − 1)ε

t

)
m − (q − 1)qe−1

(
qe − ε

t

)
,

where ε = ±1.

Proof.

Let k = ordt(q). We Claim that k = 6a. The basic equation is:

q3a + 1 = (qa + 1)(q2a − qa + 1) = (qa + 1)t. (5)

Then q6a ≡ 1 (mod t) and so k | 6a. Thus k has the form x, 2x, 3x or 6x for some divisor x of a. Note that if k = x or 3x
then q3a ≡ 1 (mod t) while (5) gives q3a ≡ −1 (mod t). Hence k = 2x or 6x.

Suppose k has the form 2x. Then q2a ≡ 1 (mod t) and since t = q2a − qa + 1, we have q2a ≡ qa − 1 (mod t). So t divides

qa − 2. If q = 2, we assume that a ≥ 2 and hence qa − 2 � 0. Therefore,

t = q2a − qa + 1 ≤ qa − 2 ⇒ q2a ≤ 2qa − 3 < 2qa ⇒ qa < 2,

which is impossible.

Thus k has the form 6x. Write a = xy. We have (q3x)2 ≡ 1 (mod t) and by (2), (q3x)y ≡ −1 (mod t). Then y must be odd

and q3x ≡ −1 (mod t). Then

t = q2a − qa + 1 ≤ q3x + 1 ⇒ qa < qa(qa − 1) ≤ q3x.

Hence a = xy < 3x and y < 3. Suppose y = 2. Then

q2x(q2x − 1) ≤ q3x ⇒ q2x − 1 ≤ qx ⇒ qx ≤ 1 + q−x < 2,

which is impossible. So y = 1, a = x and k = 6a, proving the Claim.

Fix an irreducible polynomial f (x) ∈ Fq[x] of degree d and order m. Let α be a root of f . We wish to apply Theorem 5 to

C(α). Now t | qd − 1 so that the order of q modulo t, namely 6a, divides d. So d is even; write d = 2e. Set r = 3a. Then r
divides e and by (2), qr ≡ −1 (mod t). Thus C(α) is a 2-weight code and | A |= 2. We have wt[c(θ, α)] = m − Z(S (θ, α))

so Theorem 5 proves the elements of | A | are as stated.

�
Remark 1 When F is a finite field of even characteristic, the terms of the homogeneous linear recurring sequence take the

form of the well known Kasami-Welch function TrK/F(x22a−2a+1).

Example 2. Let q = 2. Consider sequences based on an irreducible polynomial of degree 12 and order 315 ( f =
x12 + x4 + x2 + x + 1 is one such polynomial). Then t = (212 − 1)/315 = 13 has the form 22a − 2a + 1 for a = 2. The

number of zeros in such a sequence is thus

315 − 25

(
26 + 12ε

13

)
or 315 − 25

(
26 − ε

13

)
,

where ε = ±1. To get integers we must take ε = −1. We get | A |= {155, 187}. This explains the values on line 12 in Table

1.

Theorem 8. Consider sequences based on an irreducible polynomial over Fq of degree d and order m. Set t = (qd−1)/m.
Suppose
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1. t is a prime where t ≡ 1 (mod 4),

2. ordt(q) = 1
2
(t − 1).

Then d = 2e is even and | A |= 2 and A consists of

m − (q − 1)qe−1

(
qe + (t − 1)ε

t

)
m − (q − 1)qe−1

(
qe − ε

t

)
,

where ε = ±1.

Proof.

Fix an irreducible polynomial f (x) ∈ Fq[x] of degree d and order m. Let α be a root of f . We will apply Theorem 5 to

C(α). Now t | qd − 1 and hence ordt(q) = 1
2
(t − 1) divides d. Since t ≡ 1 (mod 4), ordt(q) is even and hence d is even;

d =
1

2
(t − 1)k = 2e

where e = 1
4
(t−1)k. Set r = 1

4
(t−1). Then r | e. By the definition of t, t | (q

q−1
2 −1) and since (t, q−1

4
+1) = 1, t | (q

q−1
4 +1).

Therefore qr ≡ −1 (mod t).

Then C(α) is a 2-weight code by Theorem 5 and | A |= 2. We have wt[c(θ, α)] = m − Z(S (θ, α)) and Theorem 5 gives the

elements of A as stated above.

�
Example 3. Let q = 2. Consider sequences based on an irreducible polynomial of degree 16 and order 3855. Then t =
(216−1)/3855 = 17 and ord17(2) = 1

2
(17−1). A particular polynomial that can be considered is f = x16+ x14+ x11+ x3+1.

To get integers, take ε = 1. Hence the values for A are:

3855 − 27(
28 + 16

17
) = 1807

3855 − 27(
28 − 1

17
) = 1935.

Hence | A |= 2 which is explains another observation in Table 1.

So far we have only computed A using Theorem 5 which gives | A |= 2. We will now discuss two other cases providing

conditions for which | A |= 3.

Theorem 9. Let q = 2. Consider sequences based on an irreducible polynomial of degree d and order m. Set t =
(2d − 1)/m. Suppose

1. t is a prime not equal to 3,

2. t ≡ 3 (mod 4),

3. ordt(2) = 1
2
(t − 1).

Then | A |= 3.

Proof. We have | C |= 3 by Corollary 1 and hence| A |≤ 3 by Theorem 3. | A |� 1 by Corollary 4. Pick a particular

polynomial f of degree d and order m. Let α be a root of f . The three conditions on t imply C(α) is not a 2-weight code

by Proposition 2 in Aubrey and Langevin (2005). Hence | A |� 2 and therefore | A |= 3.

�
Example 4. Let q = 2 Consider sequences based on an irreducible polynomial of degree 9 and order 73 (x9 + x + 1 is one

such polynomial). Then t = (29 − 1)/73 = 7, which satisfies all three conditions of Theorem 9. Hence | A |= 3. As given

in the third observation of Table 1, a computer computation yields that in fact A = {33, 37, 45}.
Theorem 10. Consider sequences based on an irreducible polynomial of degree d and order m over Fq. Set t = (qd−1)/m.
Suppose
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1. t is a prime not equal to 3,

2. t ≡ 3 (mod 4),

3. ordt(q) = 1
2
(t − 1).

Then | A |= 2 or 3.

Proof. By Corollary 1, | C |= 3. Hence | A |≤ 3. Let f be a polynomial of degree d and order m and let α be a root

of f . If the irreducible cyclic code C(α) of length m and dimension d is 1-weight, then by Corollary 3, t | q − 1. Hence

ordt(q) = t−1
2
= 1 =⇒ t = 3 which contradicts the first condition above. Therefore | A |= 2 or 3.

�
The following result can be given using Theorem 10 and Theorem 8 in Aubrey and Langevin (2008).

Corollary 3.4. Suppose t satisfies the conditions given in Theorem 10. If t ≡ 7 (mod 8) then | A |= 3.

4. Conclusion

The main purpose here was to give an accurate bound for the cardinality of the set of zeros of homogeneous linear

recurring sequences over Fq based on irreducible minimal polynomials of given degree and order. This was achieved

by the cyclotomy bound defined here and it was proved to be the best bound as it is reached in infinitely many cases.

Besides determining a lower bound for sequences over F2, the exact number of zeros were given for Kasami Welch and

the quadratic residue cases based on results on weights of irreducible cyclic codes. The work here was restricted to

analyzing the conditions for the existence of A = 2 and 3. This will be extended to an investigation of higher cardinality

in the future.
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Abstract

We present general results of consistency and normality of a real-valued-longitudinal random variable. We suppose that

this random variable is some formed weighted averages of α-mixing data. The results can be applied to within-subject

covariance function.

Keywords: longitudinal data, α-mixing data, weighted averages, within-subject covariance function.

1. Introduction

Longitudinal data analysis involves irregularly-spaced and infrequent measurements. So, there is often relatively little

information available about each subject. Repeated binary measurements models have been discusses in Heagerty (Hea-

gerty, 1999). The repeated measurements take place on a few scartered observational times points for each subject.

Recent innovation in measurements recorded machine and data collected methods have facillited the collection of longi-

tudinal data. Longitudinal data are observed at sparsely distributed time points and are often subject of experimental error

(Diggle, et al., 2002, Yao, 2007).

The case of independent and identically distributed observations using kernel-based estimation has received considerable

attention in recent years with contribution (Hart & Wehrly, 1986; Lin & Caroll, 2000; Yao, 2007; Hall, et al., 2008;

Degras, 2008; Soro & Hili, 2012).

Yao (Yao, 2007) has proved the asymptotic normality of mean and covariance functions estimators. Also, Degras (Degras,

2008) has proved the asymptotic normality of estimator of the mean function under a mean-square continuous process.

However, the literature on influence of within-subject correlation on asymptotic results is not developped. For instance,

see Hart & Wehrly (1986) for the study of Gasser-Müler estimator. Yao (Yao, 2007) has proved that the within-subject

correlation can be ignored in deriving the asymptotic variance. His results are obtained for independent data with argu-

ments that the data were formed by weighted averages of longitudinal or functional data. Soro & Hili (Soro & Hili, 2012)

extended the results of Yao (Yao, 2007) for a continuous univariate stochastic process.

The main purpose of this article is to extend the results of Soro & Hili (Soro & Hili, 2012) to α-mixing longitudinal

data. Our results can be applied to within-subject covariance function introduced by Soro & Hili (Soro & Hili, 2012) with

mixing arguments.

We give general asymptotic properties for real-valued function that we assume to be formed from weighted averages of

α-mixing data.

The paper is organised as follows. Section 2 contains the definition of the estimator and some assumptions. Sections 3

and 4 are the main results of the paper. They respectively establish the consistency and the asymptotic normality of the

estimator.
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2. Definition of the Estimator and Some Assumptions

We consider for 1 ≤ i ≤ n, N triples {(Ti j, Xi j,Yi j), 1 ≤ j ≤ N} identically distributed as (T, X,Y) such that the sequence

(Xi,Yi.) is α-mixing. Yi j is the jth observation of the random variable Xi, measured at the random time Ti j. The number

of observations N(n) depend on the sample size n. For simplicity, N(n) will be noted N. We assume that X is defined on

a probability space (Ω,A,P) whereas Y is a real random variable. Let νi, 1 ≤ i ≤ 3 and ki, 1 ≤ i ≤ 3 be some given

integers. Denote by ν, k the multi-indices ν = (ν1, ν2, ν3) and k = (k1, k2, k3). Let |ν| = ν1 + ν2 + ν3, |k| = k1 + k2 + k3;

ν! = ν1!ν2!ν3! and k! = k1!k2!k3!. As most kernel-based nonparametric estimators can be written as function of averages,

then we consider averages (introduced in Soro & Hili (2012)) of the form:

Γλn = Γλn(r, s, t)

=
1

nN(N − 1)(N − 2)h|ν|+3
n

n∑
i=1

∑
1≤ j�k�l≤N

γλ(Ti j,Tik,Til, Yi j,Yik,Yil)

×K3

(
r − Ti j

hn
,

s − Tik

hn
,

t − Til

hn

)
,

for 1 ≤ λ ≤ l.
For instance, the non-parametric regression model for repeated measurements, which is typically used for longitudinal

data treatement, and dose-response curves:

Yi j = Xi(Ti j) + εi j, 1 ≤ i ≤ n, 1 ≤ j ≤ N.

Some applications of this model are given in Hart & Wehrly (1986) for biostatistics, Müler (1988) in human growth curve

study, Ramsay & Ramsey (2002) for monthly index of nondurable goods production.

Let

σ2
λ = σ2

λ(r, s, t)

= ‖K3‖2

∫
R3

γ2
λ(r, s, t, y1, y2, y3)g3(r, s, t, y1, y2, y3)dy1dy2dy3, for 1 ≤ λ ≤ l.

(Ti j,Yi j), i = 1, ..., n, j = 1, ...,N, are assumed to have the joint density g(t, y). The observation times Ti j are assumed to

be i.i.d. with a marginal density f (t).

Let f3(r, s, t) be the joint density of (Ti j,Tik,Til), g3(r, s, t, y1, y2, y3) be the joint density of (Ti j,Tik,Til,Yi j,Yik, Yil) and

g6(r, s, t, r′, s′, t′, y1, y2, y3, y′1, y
′
2, y

′
3) be the joint density of the 12-uple (Ti j,Tik,Til,Ti j′ ,Tik′ ,Til′ ,Yi j,Yik,Yil,Yi j′ ,Yik′ ,Yil′ )

where j � k � l, and ( j, k, l) � ( j′, k′, l′).

To establish the properties of our random variable Γλn, we need the following assumptions.

Assumptions K.

(K.1) K3(., ., .) : R3 −→ R is symmetric and has a compact support.

(K.2) ‖K3‖2
2 =

∫
R3 K2

3 (u, v,w)dudvdw < ∞.

(K.3) K3 is a kernel function of order (|ν|, |k|), that is,

∫
R3

u�1 v�2 w�3 K3(u, v,w)dudvdw =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0, 0 ≤ |�| < |k|, |�| � |ν|.

(−1)|ν|ν!, |�| = |ν|,
C, |�| = |k|. (1)

where C is a non null constant.

Assumptions B.

(B.1) hn −→ 0, nN(N−1)(N−2)h|ν|+3
n −→ ∞, nN(N−1)(N−2)h2|ν|+3

n −→ a2, where a is a positive constant, as n −→ +∞.
(B.2) nh|ν|+3

n −→ ∞ and N(N − 1)(N − 2)h|ν|n −→ ∞, as n −→ ∞.

Assumptions D.

The following conditions are assumed, where N(r, s, t) is some neighborhood of {(r, s, t)}.
(D.1) d|k|

duk1 dvk2 dwk3
f3(u, v,w) exists and is continuous for (u, v,w) ∈ N(r, s, t) and f3(u, v,w) > 0 for all arguments (u, v,w) ∈

N(r, s, t);
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(D.2) g3(u, v,w, y1, y2, y3) is continuous for (u, v,w) ∈ N(r, s, t), uniformly for (y1, y2, y3) ∈ R
3;

(D.3) d|k|
duk1 dvk2 dwk3

g3(u, v,w, y1, y2, y3) exists and is continuous for

(u, v,w) ∈ N(r, s, t), uniformly for (y1, y2, y3) ∈ R
3;

(D.4) g6(u, v,w, u′, v′,w′, y1, y2, y3) is continuous for (u, v,w, u′, v′,w′)

∈ N(r, s, t)2, uniformly for (y1, y2, y3) ∈ R
3.

The collection {γλ}λ=1,...,l of real functions γλ : R6 −→ R, λ = 1, ..., l, satisfies:

(D.5) γλ(r, s, t, y1, y2, y3) is continuous for (r, s, t) uniformly for

(y1, y2, y3) ∈ R
3,

(D.6) d|k|
drk1 dsk2 dtk3

γλ(r, s, t, y1, y2, y3) exists for all arguments (r, s, t, y1, y2, y3) ∈ R
6.

The process {Xi, Yi} is strongly mixing:

Let F b
a be the sigma algebra generated by the random variables {Xi,Yi.}bi=a. Set

α(�) = sup
t

sup
A∈F t−∞,B∈F∞

t+�

|P(A ∩ B) − P(A)P(B)|.

The mixing coefficient satistfies:

Assumption M.

(M.1)
∑∞
�=1 �

a[α(�)]1−2/δ < ∞ for some a > 1 − 2/δ, for some δ > 2.

3. Consistency of the Estimator

The folowing theorem gives the consistency of our estimator.

Theorem3.1. If assumptions (K), (B) and (D) are satisfied, we have

Γλn(r, s, t) − mλ(r, s, t)
P−→ B(r, s, t), (2)

where

mλ(r, s, t) =
d|ν|

drν1 dsν2 dtν3

∫
R3

γλ(r, s, t, y1, y2, y3)g3(r, s, t, y1, y2, y3)dy1dy2dy3,

λ = 1, ..., l and

B(r, s, t) =
(−1)|k|

k!

{∫
R3

uk1 vk2 wk3 K3(u, v,w)dudvdw

× d|k|

drk1 dsk2 dtk3

∫
R3

γλ(r, s, t, y1, y2, y3)g3(r, s, t, y1, y2, y3)dy1dy2dy3

}
.

Proof.

We obtain the consistency of our estimator via the bias-variance decomposition which follows

E[(Γλ(r, s, t) − mλ(r, s, t))2] = var(Γλ(r, s, t)) + {E[Γλ(r, s, t)] − mλ(r, s, t)}2.
(3)
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Let prove that the second term in (3) goes to 0 when n goes to +∞. We have

E(Γλn(r, s, t)) =
1

nN(N − 1)(N − 2)h|ν|+3
n

E

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n∑

i=1

∑
1≤ j�k≤l�N

γλ(Ti j,Tik, Til,Yi j,Yik,Yil)

× K3

(
r − Ti j

hn

s − Tik

hn
,

t − Til

hn

)}

=
1

N(N − 1)(N − 2)h|ν|+3
n

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

1≤ j�k≤l�N

E

[
γλ(T1 j,T1k,T1l,Y1 j,Y1k,Y1l)

× K3

(
r − T1 j

hn
,

s − T1k

hn
,

t − T1l

hn

)]}

=
1

h|ν|+3
n

E
{
γλ(T11,T12,T13,Y11,Y12,Y13)K3

(
r − T11

hn
,

s − T12

hn
,

t − T13

hn

)}

= mλ(r, s, t) +
(−1)|k|

k!

{∫
R3

uk1 vk2 wk3 K3(u, v,w)dudvdw

× d|k|

drk1 dsk2 dtk3

∫
R3

γλ(r, s, t, y1, y2, y3)g3(r, s, t, y1, y2, y3)dy1dy2dy3 × h|k|−|ν|n

}
+o(h|k|−|ν|n ). (4)

So

EΓλn(r, s, t) − mλ(r, s, t) −→ B(r, s, t). (5)

Now, we prove that var(Γλn(r, s, t)) −→ 0.

var(Γλn(r, s, t)) =

1

nN(N − 1)(N − 2)h2|ν|+6
n

var
[
γλ(T11,T12,T13,Y11,Y12,Y13)K3

(
r − T11

hn
,

s − T12

hn
,

t − T13

hn

)]
+

1

(nN(N − 1)(N − 2)h|ν|+3
n )2

n∑
i=1
i�i′

n∑
i′=1

∑
1≤ j�k�l≤N

∑
1≤ j′�k′�l′≤N

cov
{
γλ(Ti j,Tik,Til,Yi j,Yik, Yil)K3

(
r − Ti j

hn
,

s − Tik

hn
,

t − Til

hn

)
,

γλ(Ti′ j′ ,Ti′k′ ,Ti′l′ ,Yi′ j′ ,Yi′k′ ,Yi′l′)K3

(
r − Ti′ j′

hn
,

s − Ti′k′

hn
,

t − Ti′l′

hn

)}
=

I1 + I2
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I1 =
1

nN(N − 1)(N − 2)h2|ν|+6
n

var
[
γλ(T11, T12,T13,Y11,Y12,Y13)K3

(
r − T11

hn
,

s − T12

hn
,

t − T13

hn

)]

=
1

nN(N − 1)(N − 2)h|ν|+3
n

×
{
E

[
1

h|ν|+3
n

γ2
λ(T11,T12,T13,Y11,Y12,Y13)K2

3

(
r − T11

hn
,

s − T12

hn
,

t − T13

hn

)]

− E
2

[
1

h|ν|+3
n

γλ(T11,T12,T13, Y11,Y12,Y13)K3

(
r − T11

hn
,

s − T12

hn
,

t − T13

hn

)]}

=
1

nN(N − 1)(N − 2)h|ν|+3
n

×
{

1

h|ν|+3
n

∫
R6

g3(t1, t2, t3, y1, y2, y3)γ2
λ(t1, t2, t3, y1, y2, y3)

K2
3

(
r − t1

hn
,

s − t2
hn
,

t − t3
hn

)
dt1dt2dt3dy1dy2dy3

−
[

1

h|ν|+3
n

∫
R6

g3(t1, t2, t3, y1, y2, y3)γλ(t1, t2, t3, y1, y2, y3)

K3

(
r − t1

hn
,

s − t2
hn
,

t − t3
hn

)
dt1dt2dt3dy1dy2dy3

]2
⎫⎪⎪⎬⎪⎪⎭

=
1

nN(N − 1)(N − 2)h|ν|+3
n

{
1

h|ν|n

∫
R6

g3(r − hnu, s − hnv, t − hnw, y1, y2, y3)×

γ2
λ(r − hnu, s − hnv, t − hnw, y2, y3)K2

3 (u, v,w) dudvdwdy1dy2dy3

− h3
n

[
1

h|ν|n

∫
R6

g3(r − hnu, s − hnv, t − hnw, y1, y2, y3)

γλ(r − hnu, s − hnv, t − hnw, y2, y3)K3 (u, v,w) dudvdwdy1dy2dy3

]2
}

=
1

nN(N − 1)(N − 2)h|ν|+3
n

{
σ2
λ(r, s, t) + o(1)

}
−→ 0, n −→ +∞. (6)

Let consider I2. We use the fact that triples {Yi j,Yik,Yil} and {Yi j′ ,Yik′ ,Yil′ } are independent and equidistributed.

I2 =
[N(N − 1)(N − 2)]2

[nN(N − 1)(N − 2)h|ν|+3
n ]2

n∑
i=1
i�i′

n∑
i′=1

cov

⎧⎪⎪⎨⎪⎪⎩γλ(T (1)
i1 ,T

(2)
i1 ,T

(3)
i1 , Y

(1)
i1 ,Y

(2)
i1 ,Y

(3)
i1 )K3

⎛⎜⎜⎜⎜⎜⎝ r − T (1)
i1

hn
,

s − T (2)
i1

hn
,

t − T (3)
i1

hn

⎞⎟⎟⎟⎟⎟⎠ ,
γλ(T

(1)
i′2 ,T

(2)
i′2 ,T

(3)
i′2 ,Y

(1)
i′2 ,Y

(2)
i′2 ,Y

(3)
i′2 )K3

⎛⎜⎜⎜⎜⎜⎝ r − T (1)
i′2

hn
,

s − T (2)
i′2

hn
,

t − T (3)
i′2

hn

⎞⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

=
1

n2h2|ν|+6
n

n∑
i=1
i�i′

n∑
i′=1

cov(Rλ,i,Rλ,i′).

Let S = {(i, i′) : 0 ≤ |i − i′| < dn, i, i′ = 1, ..., n, i � i′}.

I2 =
1

n2h2|ν|+6
n

n∑
i=1
i�i′

n∑
i′=1

cov(Rλ,i,Rλ,i′ )

=
1

n2h2|ν|+6
n

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n∑

i,i′=1

∑
(i,i′)∈S

cov(Rλ,i,Rλ,i′) +
n∑

i,i′=1

∑
(i,i′)�S

cov(Rλ,i,Rλ,i′ )

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= I21 + I22.
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By Holder inequality,

|cov(Rλ,i,Rλ,i′ )| ≤ (E[R2
λ,i]E[R2

λ,i′ ])
1/2 + [E|Rλ,i′ |]2,

so

|I21| ≤ 1

n2h|ν|+3
n

n∑
i,i′=1

∑
(i,i′)∈S

{
1

h|ν|+3
n

(E[R2
λ,i]E[R2

λ,i′])
1/2 +

1

h|ν|+3
n

[E|Rλ,i′ |]2

}

=
1

n2h|ν|+3
n

n∑
i,i′=1

∑
(i,i′)∈S

{
σ2
λ(r, s, t) + o(1)

}
.

Since Card(S ) ≤ ndn, we obtain

|I21| ≤ ndn

n2h|ν|+3
n

{
σ2
λ(r, s, t) + o(1)

}
≤ dn

nh|ν|+3
n

{
σ2
λ(r, s, t) + o(1)

}
.

Choosing dn = (ln ln n)2 ln n, hn =
ln ln n
ln n , it comes,

dn −→ ∞, hn −→ 0, nh|ν|+3
n −→ ∞ and

dn

nh|ν|+3
n

−→ 0.

Hense

I21 −→ 0, as n −→ +∞. (7)

Now consider I22. By Davydov’s lemma (see Hall & Heyde, Corrollary A.2), and (K.1) we have

|cov(Rλ,i,Rκ,i′ )| ≤ 8[E|Rλ,i|δ]2/δ[α(|i − i′|)]1−2/δ

≤ 8C
[
h|ν|+3

n

]2/δ
[α(|i − i′|)]1−2/δ.

It follows that

|I22| ≤
8C

[
h|ν|+3

n

]2/δ

n2h2|ν|+6
n

n∑
i,i′=1

∑
(i,i′)�S

[α(|i − i′|)]1−2/δ

≤ 8C

n2h(2|ν|+3)(3−1/δ)
n

n∑
i,i′=1

∑
(i,i′)�S

[α(|i − i′|)]1−2/δ.

Reducing the double sum above to a single sum, it follows that

|I22| ≤ 8C

n2h(2|ν|+3)(3−1/δ)
n

n∑
�=dn+1

�a[α(�)]1−2/δ

≤ 8Cn

n2h(2|ν|+3)(3−1/δ)
n

n∑
�=dn+1

�a[α(�)]1−2/δ

≤ 8C

nh(2|ν|+3)(3−1/δ)
n

∞∑
�=dn+1

�a[α(�)]1−2/δ.

Since δ ≥ 2, then (3 − 1/δ) > 0 and from assumption (M), one has

I22 −→ 0, as n −→ +∞. (8)

Combining (6), (7) and (8), we conclude that var(Γλ(r, s, t)) goes to 0 as n goes to +∞. So Theorem 3.1 is proved. �
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4. Asymptotic Normality of the Estimator

The asymptotic normality of our estimator is given by the following theorem.

Theorem 4.1. If assumptions (K), (B), (D) and (M) are satisfied, we have√
nN(N − 1)(N − 2)h|ν|+3

n (Γλn − EΓλn) −→ N(0, σ2
λ(r, s, t)). (9)

Proof.

First, recall that √
nN(N − 1)(N − 2)h|ν|+3

n (Γλn − EΓλn) =

√
nN(N − 1)(N − 2)h|ν|+3

n

nN(N − 1)(N − 2)h|ν|+3
n

n∑
i=1∑

1� j�k�l≤N

[
γλ(Ti j,Tik, Til,Yi j,Yik,Yil)K3

(
r − Ti j

hn

s − Tik

hn
,

t − Til

hn

)

− Eγλ(Ti j,Tik,Til, Yi j,Yik,Yil)K3

(
r − Ti j

hn

s − Tik

hn
,

t − Til

hn

)]

=
1√

nN(N − 1)(N − 2)h3
n

n∑
i=1∑

1≤ j�k�l≤N

[
γλ(Ti j,Tik, Til,Yi j,Yik,Yil)K3

(
r − Ti j

hn

s − Tik

hn
,

t − Til

hn

)

− Eγλ(Ti j,Tik,Til, Yi j,Yik,Yil)K3

(
r − Ti j

hn

s − Tik

hn
,

t − Til

hn

)]

=

n∑
i=1

∑
1≤ j�k�l≤N

1√
nN(N − 1)(N − 2)h|ν|+3

n[
γλ(Ti j, Tik, Til,Yi j,Yik,Yil)K3

(
r − Ti j

hn

s − Tik

hn
,

t − Til

hn

)

− Eγλ(Ti j,Tik,Til,Yi j,Yik,Yil)K3

(
r − Ti j

hn

s − Tik

hn
,

t − Til

hn

)]
.

Denote

Zi jkl =
1√

nN(N − 1)(N − 2)h|ν|+3
n

γλ(Ti j,Tik,Til,Yi j, Yik,Yil)K3

(
r − Ti j

hn

s − Tik

hn
,

t − Til

hn

)
.

Then √
nN(N − 1)(N − 2)h|ν|+3

n (Γλn − EΓλn) =

n∑
i=1

∑
1≤ j�k�l≤N

(Zi jkl − EZi jkl).

Denote Zn,i =
∑

1≤ j�k�l≤N(Zi jkl − EZi jkl). Hence

√
nN(N − 1)(N − 2)h|ν|+3

n (Γλn − EΓλn) =

n∑
i=1

Zn,i.

We now introduce Bernstein’s big-block and small-block decomposition. We partition the set {1, 2, ..., n} into 2kn + 1 sub-

sets with large blocks of size un and small blocks of size vn and we set kn =
⌊

n
un+vn

⌋
, where un =

⌊
nN(N − 1)(N − 2)h|ν|+3

n

⌋
and vn = o(nN(N − 1)(N − 2)h|ν|+3

n ). The symbol �.� is integer part. Using (B.2), one has

vn

un
−→ 0,

un

n
−→ 0 ,

nN(N − 1)(N − 2)

unh3
n

−→ 0,
n
un
α(vn) −→ 0, as n −→ +∞.

(10)
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Let Um, Vm and Wm be defined as follows:

Um =

m(un+vn)+un∑
i=m(un+vn)+1

Zn,i, 0 ≤ m ≤ kn − 1 (11)

Vm =

(m+1)(un+vn)∑
i=m(un+vn)+un+1

Zn,i, 0 ≤ m ≤ kn − 1 (12)

Wm =

n∑
i=kn(un+vn)+1

Zn,i. (13)

Then, we obtain the decomposition

Tn =

n∑
i=1

Zn,i =

kn−1∑
m=0

Um +

kn−1∑
m=0

Vm +Wm (14)

= S n,1 + S n,2 + S n,3. (15)

Now, let start the proof of theorem 4.1.

The main idea is to show that as n −→ ∞,

A1 = E[S 2
n,2] −→ 0 (16)

A2 = E[S 2
n,3] −→ 0 (17)

A3 =

∣∣∣∣∣∣∣E[exp(iuS n,1) −
kn−1∏
m=0

E[exp(iuUm)]

∣∣∣∣∣∣∣ −→ 0 (18)

A4 = E[U2
m] −→ σ2

λ(r, s, t) (19)

A5 =

kn−1∑
m=0

E

[
U2

mI {|Um| > εσλ(r, s, t)}
]
−→ 0,∀ε > 0. (20)

Remark: Relations (16) and (17) imply that S n,2 and S n,3 are asymptotically negligeable; (18) shows that the summands

{Um} in S n,1 are asymptotically independent; (19) and (20) are Lindeberg-Feller conditions for asymptotic normality of

S n,1 under dependence. Expressions (16)-(18) entail the asymptotic normality

Tn
L−→ N(0, σ2

λ(r, s, t)) (21)

(i) Proof of (16)

E[S 2
n,2] = var

⎛⎜⎜⎜⎜⎜⎜⎝
kn−1∑
m=0

Vm

⎞⎟⎟⎟⎟⎟⎟⎠
=

kn−1∑
m=0

var(Vm) +

kn−1∑
m=0
m�m′

kn−1∑
m′=0

cov(Vm,Vm′)

= A11 + A12. (22)

To control A11, we get

var(Vm) = var

⎛⎜⎜⎜⎜⎜⎜⎝
(m+1)(un+vn)∑

i=m(un+vn)+un+1

Zn,i

⎞⎟⎟⎟⎟⎟⎟⎠
=

(m+1)(un+vn)∑
i=m(un+vn)+un+1

var(Zn,i) +

(m+1)(un+vn)∑
i=m(un+vn)+un+1

i�i′

(m+1)(un+vn)∑
i′=m(un+vn)+un+1

cov(Zn,i,Zn,i′ )

(23)
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and using the second-order stationarity and the fact that {Zi jkl} and {Zi j′k′l′ } are independent,

var(Vm) =

vn∑
i=1

var(Zn,i) +

vn∑
i= 1

i�i′

vn∑
i′=1

cov(Zn,i, Zn,i′ )

= vnvar(Zn,1) +

vn∑
i= 1

i�i′

vn∑
i′=1

cov(Zn,i,Zn,i′)

=
vn

n
σ2
λ(r, s, t)(1 + o(1)). (24)

Because

var(Zn,1) = var

⎛⎜⎜⎜⎜⎜⎜⎝ ∑
1≤ j�k�l≤N

(Z1 jkl − EZ1 jkl)

⎞⎟⎟⎟⎟⎟⎟⎠
= var

⎛⎜⎜⎜⎜⎜⎜⎝ ∑
1≤ j�k�l≤N

(Zjkl − EZjkl)

⎞⎟⎟⎟⎟⎟⎟⎠
=

∑
1≤ j�k�l≤N

var
(
Zjkl − EZjkl

)
= N(N − 1)(N − 2)var(Z111 − EZ111)

= N(N − 1)(N − 2)
{
E(Z111 − (EZ111)2

}
= N(N − 1)(N − 2)

⎧⎪⎨⎪⎩ σ2
λ(r, s, t)

nN(N − 1)(N − 2)
(1 + o(1))

⎫⎪⎬⎪⎭
=
σ2
λ(r, s, t)

n
(1 + o(1)).

And also,

|cov(Zn,i,Zn,i′)| ≤ N(N − 1)(N − 2)

n

∣∣∣∣∣∣ 1

h|ν|+3
n

cov(Rλ,i,Rλ,i′ )

∣∣∣∣∣∣
≤ N(N − 1)(N − 2)

n

{
σ2
λ(r, s, t) + o(1)

}
vn∑

i= 1
i�i′

vn∑
i′=1

|cov(Zn,i,Zn,i′)| ≤ vn

n

{
vnN(N − 1)(N − 2)[σ2

λ(r, s, t) + o(1)]
}

=
vn

n
{o(n)}

= vno(1).

Then, we get

|A11| ≤
kn−1∑
m=0

⎧⎪⎨⎪⎩vn
σ2
λ(r, s, t)

n
(1 + o(1)) + vno(1)

⎫⎪⎬⎪⎭
= kn

⎧⎪⎨⎪⎩vn
σ2
λ(r, s, t)

n
(1 + o(1)) + vno(1)

⎫⎪⎬⎪⎭
= knvn

⎧⎪⎨⎪⎩σ2
λ(r, s, t)

n
(1 + o(1)) + o(1)

⎫⎪⎬⎪⎭
= knvn

⎧⎪⎨⎪⎩σ2
λ(r, s, t)

n
(1 + o(1))

⎫⎪⎬⎪⎭
= kn

vn

n
σ2
λ(r, s, t)(1 + o(1))
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=

⌊
n

un + vn

⌋
vn

n
σ2
λ(r, s, t)(1 + o(1))

∼ n
un

vn

n
σ2
λ(r, s, t)(1 + o(1))

=
vn

un
σ2
λ(r, s, t)(1 + o(1))

−→ 0, by (10).

Now

A12 =

kn−1∑
m=0
m�m′

kn−1∑
m′=0

cov(Vm,Vm′)

=

kn−1∑
m=0
m�m′

kn−1∑
m′=0

(m+1)(un+vn)∑
i=m(un+vn)+un+1

i�i′

(m′+1)(un+vn)∑
i=m′(un+vn)+un+1

cov(Zn,i,Zn,i′ )

=

kn−1∑
m=0
m�m′

kn−1∑
m′=0

vn∑
i= 1

i�i′

vn∑
i=1

cov(Zn,m(un+vn)+un+i,Zn,m′(un+vn)+un+i′)

=

kn−1∑
m=0
m�m′

kn−1∑
m′=0

vn∑
i= 1

i�i′

vn∑
i=1

cov(Zn,λm+i, Zn,λm′+i′)

since |λm − λm′ + i − i′| ≥ un then we reduce the sums and we write

|A12| ≤
n∑

i= 1
|i−i′ |≥un

n∑
i=1

|cov(Zn,i,Zn,i′ )|

≤ N(N − 1)(N − 2)

nh|ν|+3
n

8C[h|ν|+3
n ]2/δ

∞∑
�=1

�a[α(�)]1−2/δ.

=
8CN(N − 1)(N − 2)

nh(|ν|+3)(1−2/δ)
n

∞∑
�=1

�a[α(�)]1−2/δ

= o(1).

Therefore A12 −→ 0, as n −→ +∞. (25)

Combining (23) and (24), it follows that E[S 2
n,2] −→ 0 and

S n,2 −→ 0 in probability.

This achieves the proof of (16).

(ii) Proof of (17) Using the same arguments as in the proof of (16), one has

E[S 2
n,3] = var(

kn−1∑
m=0

Um)

≤ un + vn

n

{
σ2
λ(r, s, t) + o(1)

}
.

∼ un

n

{
σ2
λ(r, s, t) + o(1)

}
.

−→ 0. (26)

(iii) Proof of (18) The proof is based on the Lemma of Volkonskii & Rozanov (1959).

Here note that Um is {Fi1,...,iun
}-mesurable with i1 = m(un + vn) + 1 and iun = m(un + vn) + un and taking Vm = exp(iuUm)
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as in the Lemma of Volkonskii & Rozanov, we have∣∣∣E[exp(iuS n,1) − E[exp(iuUm)]
∣∣∣ ≤ 16knα(vn + 1)

∼ 16
n
un
α(vn + 1)

−→ 0 by (10). (27)

(iv) Proof of (19) Replacing un by vn we have

var(Um) = var

⎛⎜⎜⎜⎜⎜⎜⎝
m(un+vn)+un∑
i=m(un+vn)+1

Zn,i

⎞⎟⎟⎟⎟⎟⎟⎠
=

m(un+vn)+un∑
i=m(un+vn)+1

var(Zn,i) +

m(un+vn)+un∑
i=m(un+vn)+1

i�i′

m(un+vn)+un∑
i′=m(un+vn)+1

cov(Zn,i,Zn,i′ )

= unσ
2
λ(r, s, t)(1 + o(1)). (28)

So that

kn−1∑
m=0

E[U2
m] = kn

un

n
σ2
λ(r, s, t)(1 + o(1))

∼ un

un
σ2
λ(r, s, t)(1 + o(1))

−→ σ2
λ(r, s, t).

(v) Proof of (20) We need a truncation argument. Let τn be a fixed truncation point. We can replace γλ(Ti j,Tik,Til,Yi j,Yik,Yil)

with the truncated process

γλ(Ti j, Tik,Til,Yi j,Yik,Yil)I(|γλ(Ti j,Tik,Til,Yi j,Yik,Yil)| ≤ τn) in (Yi j,Yik,Yil). Denote

Zτn
i jkl =

1√
nN(N − 1)(N − 2)h|ν|+3

n

γλ(Ti j,Tik,Til, Yi j,Yik,Yil)I(|γλ(Ti j,Tik,Til,Yi j,Yik,Yil)| ≤ τn)

K3

(
r − Ti j

hn

s − Tik

hn
,

t − Til

hn

)
,

Zτnn,i =
∑

1≤ j�k�l≤N

(Zτn
i jkl − EZτni jkl).

Define T τnn =
∑n

i=1 Zτnn,i and

T ∗τn
n =

n∑
i=1

(Zn,i − Zτn
n,i) =

n∑
i=1

Zn,iI(|γλ(Ti j,Tik,Til,Yi j,Yik,Yil)| > τn). (29)

Since |γλ(Ti j, Tik,Til,Yi j,Yik,Yil)| ≤ τn and from (K.1), it follows that

|Zτnn,i| ≤ 2C
N(N − 1)(N − 2)τn√

nN(N − 1)(N − 2)h|ν|+3
n

and

max
0≤m≤kn−1

|Uτnm | ≤ 2C
N(N − 1)(N − 2)unτn√
nN(N − 1)(N − 2)h|ν|+3

n

.

Therefore if we take τn and un such that

unτn =
n1/2h|ν|+3

n

(N(N − 1)(N − 2))1/2
,
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then,

max
0≤m≤kn−1

|Uτn
m | ≤ 2C

N(N − 1)(N − 2)unτn√
nN(N − 1)(N − 2)h|ν|+3

n

−→ 0.

Hence, for n sufficiently large, the set {|Uτnm | > εσ2
λ(r, s, t)} becomes empty for all ε > 0. Thus, P(|Uτnm | > εσ2

λ(r, s, t)) = 0

for large n, for all ε > 0 so
kn−1∑
m=0

E

[
U2

mI {|Um| > εσr(r, s, t)}
]
= 0, for all ε > 0.

Hence

T τn
n

L−→ N(0, σ2
λ,τn

(r, s, t)). (30)

In order to complete the proof, namely to establish. (21) for the general case, it suffices to show that as first n −→ +∞ and

τn −→ +∞ (see Masry, 2005 or Fan & Masry, 1992) we have

var(T ∗τn
n ) −→ 0. (31)

Indeed, ∣∣∣E exp(iuTn) − exp(−u2σ2
λ(r, s, t)/2)

∣∣∣
=

∣∣∣E exp(iu(T τnn + T ∗τn
n )) − exp(−u2σ2

λ,τn
(r, s, t)/2)

+ exp(−u2σ2
λ,τn

(r, s, t)/2) − exp(−u2σ2
λ(r, s, t)/2)

∣∣∣
≤ ∣∣∣E exp(iuT τnn ) − exp(−u2σ2

λ,τn
(r, s, t)/2)

∣∣∣ + E ∣∣∣exp(iu(T ∗τn
n ) − 1

∣∣∣
+

∣∣∣exp(−u2σ2
λ,τn

(r, s, t)/2) − exp(−u2σ2
λ(r, s, t)/2)

∣∣∣ .
Letting n −→ +∞, the first term goes to zero by (30), for every τn > 0; the second term converges to zero by (31), because

first n −→ +∞ and then τn −→ +∞; the third term goes to zero as τn −→ +∞ by the dominated convergence theorem.

Therefore, it remains to prove (31). Note that by (29), T ∗τn
n has the same structure as T τnn except that Zτnn,i is replace by

(Zn,i −Zτn
n,i). Applying the Lemma 2.3 in Fan & Masry (1992) or the same arguments as in Masry (2005) we conclued that,

for all fixed τn > 0, one has (31).

Then, it suffices to choose τn sufficiently large, such that the non-troncated part becomes asymptotically negligeable. �

Theorem 4.2. Under assumptions of theorems 3.1 and 4.1, we have√
nN(N − 1)(N − 2)h|ν|+3

n (Γλn − mλn) −→ N(B(r, s, t), σ2
λ(r, s, t)). (32)

Proof. Theorem 4.2 follows from theorem 3.1 and theorem 4.1.�

Under the assumptions of theorem 3.1 and theorem 4.1, we rewrite theorem 2.1 in Soro & Hili (2012) with mixing

arguments.

Let H : Rl −→ R be a function with continuous second order derivatives. We denote the gradient vector ( ∂H
∂x1

(v), ..., ∂H
∂xl

(v))T

by DH(v).

Let

mλ = mλ(r, s, t) =
d|ν|

drν1 dsν2 dtν3

∫
R3

γλ(r, s, t, y1, y2, y3)g3(r, s, t, y1, y2, y3)dy1dy2dy3,

1 ≤ λ ≤ l,

B(r, s, t) =
(−1)|k|a

k!

l∑
λ=1

{∫
R3

uk1 vk2 wk3 K3(u, v,w)dudvdw

× d|k|

drk1 dsk2 dtk3

∫
R3

γλ(r, s, t, y1, y2, y3)g3(r, s, t, y1, y2, y3)dy1dy2dy3

}

×
{
∂H
∂mλ

(m1, ...,ml)
T
}
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and

δλk = δλk(r, s, t)

= ‖K3‖2

∫
R3

γλ(r, s, t, y1, y2, y3)γk(r, s, t, y1, y2, y3)g3(r, s, t, y1, y2, y3)dy1dy2dy3,

Ξ = (δkλ)1≤λ,k≤l the variance-covariance matrix,

Theorem 4.3. Assume assumptions of theorems 3.1 and 4.1 hold. Then√
nN(N − 1)(N − 2)h|ν|+3

n [H(Γ1n, ..., Γln) − H(m1, ...,ml)]

L−→ N(B(r, s, t), [DH(m1, ...,ml)]
TΞ[DH(m1, ...,ml)]). (33)

Proof.

A l-dimensional Taylor expansion of H around (m1, ...,ml)
T of order 1 combined with (2) gives√

nN(N − 1)(N − 2)h|ν|+3
n [H(EΓ1n, ...,EΓln) − H(m1, ...,ml)]

P−→ B(r, s, t).

(34)

Applying the Cramér-Wold device to (9) it comes√
nN(N − 1)(N − 2)h|ν|+3

n (H(Γ1n, ..., Γln) − H(EΓ1n, ...,EΓln))

−→ N(0, [DH(m1, ...,ml)]
TΞ[DH(m1, ...,ml)]). (35)

Finally, (34) and (35) lead to (33). �
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Abstract

In this paper, we generalize to n-Lie algebras a corollary of the well-known Engel’s theorem which offers some justifica-

tion for the terminology ”nilpotent” and we construct a nilpotent ordinary Lie algebra from a nilpotent n-Lie algebra.

Keywords: Lie algebra, n-Lie algebra, nilpotency

1. Introduction

(Filipov, 1985) Introduced a generalization of a Lie algebra, which he called an n-Lie algebra. The Lie product is taken be-

tween n elements of the algebra instead of two. This new bracket is n-linear, anti-symmetric and satisfies a generalization

of the Jacobi identity.

(Bossoto,Okassa, & Omporo, 2013) Associate to an n-Lie algebra, a Lie algebra called the ordinary Lie algebra.

In this paper, we generalize to n-Lie algebras a corollary of the well-known Engel’s theorem and we construct a nilpotent

ordinary Lie algebra from a nilpotent n-Lie algebra.

1.1 n-Lie Algebra Structure

In the following, K will denote a commutative field with characteristic zero.

An n-Lie algebra G over K is a vector space together with a multilinear fully skewsymmetric map

{, ..., } : Gn = G × G × ... × G −→ G, (x1, x2, ..., xn) �−→ {x1, x2, ..., xn} ,

such that

{x1, x2, ..., xn−1, {y1, y2, ..., yn}} =
n∑

i=1

{y1, y2, ..., yi−1, {x1, x2, ..., xn−1, yi} , yi+1, ..., yn}

for all x1, x2, ..., xn−1, y1, y2, ..., yn elements of G.

The above equation is called the generalized Jacobi Identity.

A subspace G0 of G is called an n-Lie subalgebra if for any y1, y2, ..., yn ∈ G0, {y1, y2, ..., yn} ∈ G0.

Let G1,G2, ...,Gn be subalgebras of n-Lie algebra G and let {G1,G2, ...,Gn} denote the subspace of G generated by all

vectors {x1, x2, ..., xn}, where xi ∈ Gi for i = 1, 2, ..., n. The subalgebra {G,G, ...,G} is called the derived algebra of G, and

is denoted by G1. If G1 = 0, then G is called an abelian n-Lie algebra.

Using the derivation ad(x1, x2, ..., xn−1) : G −→ G, y �−→ {x1, x2, ..., xn−1, y}, we can rephrase this definition as follows:

A vector subspace G0 of G is an n-Lie subalgebra of G if ad(x1, x2, ..., xn−1)(G0) ⊂ G0 for any x1, x2, ..., xn−1 ∈ G0.That is,

ad(G0,G0, ...,G0)(G0) ⊂ G0.

A subspace I of G is called an ideal if {x, y1, y2, ..., yn−1} ∈ I for any x ∈ I, and for any y1, y2, ..., yn−1 ∈ G. That is

equivalent to say that ad(G, ...,G)(I) ⊂ I.

1.2 The Ordinary Lie Algebra of an n-Lie Algebra

Let G be an n-Lie algebra over a field K. (Bossoto et al., 2013) associate to G a Lie algebra called the ordinary Lie algebra.

This construction goes as presented below:

Consider the map

Gn−1 −→ DerK(G), (x1, x2, ..., xn−1) �−→ ad(x1, x2, ..., xn−1),
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where DerK(G) denote the set of K−derivations of G.

Denote by Λn−1
K (G), the (n − 1)-exterior power of the K-vector space G, there exists a unique K-linear map

adG : Λn−1
K (G) −→ DerK(G)

such that

adG(x1Λx2Λ...Λxn−1) = ad(x1, x2, ..., xn−1)

for all x1, x2, ..., xn−1 ∈ G.

When f : W −→ W is an endomorphism of a K-vector space W and when ΛK(W) is the K-exterior algebra of W, then

there exists a unique derivation of degree zero

Df : ΛK(W) −→ ΛK(W)

such that, for p ∈ N,

Df (w1Λw2Λ...Λwp) =

p∑
i=1

w1Λw2Λ...Λwi−1Λ f (wi)Λwi+1Λ...Λwp

for all w1,w2, ...,wp elements of W.

Proposition 1 For all s1 and s2 elements of Λn−1
K (G), then we have simultaneously

[
adG(s1), adG(s2)

]
= adG

(
DadG(s1)(s2)

)
and [

adG(s1), adG(s2)
]
= adG

(
−DadG(s2)(s1)

)
where [, ] denotes the usual bracket of endomorphisms.

We denote by VK(G) the K-subspace of Λn−1
K (G) generated by the elements of the form DadG(s1)(s2) + DadG(s2)(s1) where

s1 and s2 describe Λn−1
K (G).

Let

Λn−1
K (G) −→ Λn−1

K (G)/VK(G), s �−→ s,

be the canonical surjection. Given the foregoing, we conclude that

adG [VK(G)] = 0.

We denote by

ãdG : Λn−1
K (G)/V(G) −→ DerK(G)

the unique linear map such that

ãdG(s) = adG(s)

for all s ∈ Λn−1
K (G).

Theorem 2 When (G, {, ..., }) is a n-Lie algebra, then the map

[, ] :
[
Λn−1

K (G)/VK(G)
]2 −→ Λn−1

K (G)/VK(G), (s1, s2) �−→ DadG(s1)(s2),

depends only on s1 and s2, and defines an ordinary Lie algebra structure on Λn−1
K (G)/VK(G).

Proposition 3 If a subspace G0 of an n-Lie algebra G is stable for the representation

ãdG : Λn−1
K (G)/VK(G) −→ DerK(G), s �−→ adG(s),

then G0 is an ideal of the n-Lie algebra G.
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2. Nilpotency of the Ordinary Lie Algebra

An n-Lie algebra G is nilpotent if G satisfies Gr = 0 for some r ≥ 0, where G0 = G and Gr is defined by induction,

Gr+1 = [Gr,G,G,···,G] for r ≥ 0.

Proposition 4 Let G be an n-Lie algebra over a field K. If G �0 is nilpotent then Z(G) � 0.

Proof. Let us suppose Z(G) =0.

Nilpotency of G implies that there exists an integer k ≥ 0 such that Gk−1 � 0 and Gk = 0.

0 = Gk =
{
Gk−1,G,G, ...,G

}
=

{
G,G, ...,G,Gk−1

}
= ad(G,G, ...,G)(Gk−1)

= 0

Then Gk−1⊂ Z(G).

Therefore 0 � Gk−1⊂ Z(G) =0 which is impossible.

Thus Z(G) � 0.

Below we give the statement of the Engel’s theorem and its corollary for Lie algebras:

Theorem 5 (Engel) Let ρ : G → End(V) be a linear representation of G on the vector space V such that ρ(x) is nilpotent

for each x ∈ G. If V � (0), then there

exists v ∈ V, v � 0 such that ρ(x)v = 0 for all x ∈ G.
Corollary 6 G is nilpotent if and only if adx is nilpotent for each x ∈ G.

Now we’re going to give a generalization to n-Lie algebras of the above corollary:

Theorem 7 Let G be an n-Lie algebra over a field K. G is nilpotent if and only if ad(x1, x2, ..., xn−1) is nilpotent for any

x1, x2, ..., xn−1 ∈ G.

To prove the Theorem, one needs some Lemmas:

Lemma 8 Let G be an n-Lie algebra, Z(G) the center of G and π : G → G/Z(G) the canonical surjection. For any

x1, x2, ..., xn−1 ∈ G, if ad(x1, x2, ..., xn−1) : G → G is nilpotent, then the unique linear map

adG(x1, x2, ..., xn−1) : G/Z(G) → G/Z(G),ȳ �→ {x1, x2, ..., xn−1, y}

such that π◦ adG(x1, x2, ..., xn−1) = adG(x1, x2, ..., xn−1) ◦ π is nilpotent.

Proof. It’s clear that ad(x1, x2, ..., xn−1)[Z(G)] = 0. We denote by

adG(x1, x2, ..., xn−1) : G/Z(G) → G/Z(G),ȳ �→ {x1, x2, ..., xn−1, y}

the unique linear map such that π◦ adG(x1, x2, ..., xn−1) = adG(x1, x2, ..., xn−1) ◦ π.
ad(x1, x2, ..., xn−1) nilpotent, then there exists k ≥ 0 such that (adG(x1, x2, ..., xn−1))k = 0. We have: ( adGh)k ◦ π =
π◦(adGh)k = 0. Since π is surjective ⇒( adG(x1, x2, ..., xn−1))k = 0 ie adG(x1, x2, ..., xn−1) is nilpotent.

Lemma 9 If for any x1, x2, ..., xn−1 ∈ G, ad(x1, x2, ..., xn−1) : G → G is nilpotent, then Z(G) � (0).

Proof. Using the well-known Engel’s theorem, there exists u ∈ G, u � 0, such that

ad(x1, x2, ..., xn−1)(u) = 0, for any x1, x2, ..., xn−1 ∈ G. That implies u ∈ Z(G). And as u � 0, thus Z(G) � (0).We are

done.

The set
{
ad(x1, x2, ..., xn−1)/ad(x1, x2, ..., xn−1) is nilpotent for any x1, x2, ..., xn−1 ∈ G}

is a Lie subalgebra of Endk(G).

Proof. ” ⇒ ”:

G nilpotent implies that there exists k ≥ 0 such that Gk−1 � 0 and Gk = 0.
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0 = Gk=
{
G,G, ...,G,Gk−1

}
= ad(G,G, ...,G)(Gk−1)

= ad(G,G, ...,G)
{
G,G, ...,G,Gk−2

}
= ad(G,G, ...,G)

[
ad(G,G, ...,G)(Gk−2)

]
= [ad(G,G, ...,G) ◦ ad(G,G, ...,G) ◦ ad(G,G, ...,G) ◦ ... ◦ ad(G,G, ...,G)]︸������������������������������������������������������������������������������������������︷︷������������������������������������������������������������������������������������������︸

k−times

(G)

= [ad(G,G, ...,G)]k (G)

i.e [ad(x1, x2, ..., xn−1)]k = 0 for any x1, x2, ..., xn−1 ∈ G.

Thus ad(x1, x2, ..., xn−1) is nilpotent.

”⇐= ” we prove by induction on the dimension of G.

• dimG =1, ad(x1, x2, ..., xn−1) : G → G is nilpotent ⇒ ad(x1, x2, ..., xn−1)(y) = 0 for any x1, x2, ..., xn−1, y ∈ G, that is G is

commutative. Thus ad(Gn−1) (G) = 0 ie G1 = 0.Therefore G is nilpotent.

• Suppose the assumption true for dimG =n.Let’s verify the assumption for dimG =n + 1.

ad(x1, x2, ..., xn−1) nilpotent for any x1, x2, ..., xn−1 ∈ G, then from Lemma 8,adG(x1, x2, ..., xn−1) : G/Z(G) → G/Z(G)

is nilpotent for any x1, x2, ..., xn−1 ∈ G.⇒ G/Z(G) is nilpotent and Z(G) � 0 from Lemma 9. G/Z(G) nilpotent, there

exists k ≥ 0 such that [G/Z(G)]k = 0. As π : G → G/Z(G), then [G/Z(G)]k = π(Gk) = 0 since π is surjective. Thus

Gk ⊂ Z(G). Gk+1 = ad(Gn−1)(Gk) ⊂ ad(Gn−1)(Z(G)) = 0.Therefore G is nilpotent.That ends the proof.

Below we give the statement of the main theorem we obtained:

Theorem 10 If G is a nilpotent n-Lie algebra over a field k and if ãdG : Λn−1
K (G)/VK(G) −→ DerK(G), s �−→ adG(s),is

the canonical representation of Λn−1
K (G)/VK(G) in G, then

[
Λn−1

K (G)/VK(G)
]
/KerãdG is a nilpotent Lie algebra.

Proof. Let G be an n-Lie algebra. Then the mapping

Gn−1 −→ DerK(G), (x1, x2, ..., xn−1) �−→ ad(x1, x2, ..., xn−1),

induces a representation ãdG : Λn−1
K (G)/VK(G) −→ DerK(G), s �−→ adG(s) of Λn−1

K (G)/VK(G) in G. When G is a

nilpotent n-Lie algebra then ãdG(Λn−1
K (G)/VK(G)) is a Lie subalgebra of DerK(G) whose all elements are nilpotent.Thus

ãdG(Λn−1
K (G)/VK(G)) is a nilpotent Lie algebra. Therefore

[
Λn−1

K (G)/VK(G)
]
/KerãdG is a nilpotent Lie algebra.
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Abstract

In this paper, we focus on lattice covering of centrally symmetric convex body on R
2. While there is no constraint on

the lattice in many other results about lattice covering, in this study, we only consider lattices congruent to a given lattice

to retain more information on the lattice. To obtain some upper bounds on the infimum of the density of such covering,

we will say a body is a coverable body with respect to a lattice if such lattice covering is possible, and try to suggest a

function of a given lattice such that any centrally symmetric convex body whose area is not less than the function is a

coverable body. As an application of this result, we will suggest a theorem which enables one to apply this to a coverable

body to suggesting an efficient lattice covering for general sets, which may be non-convex and may have holes.

Keywords: lattice covering, centrally symmetric convex body, density of covering, minkowski sum

1. Introduction

The covering problem of centrally symmetric convex bodies, especially related to the density of covering, is a famous

problem in discrete geometry. In this paper, we will deal with lattice coverings, which is fundamental when we deal with

centrally symmetric convex bodies. For a body A and a lattice Λ, C = {A + λ|λ ∈ Λ} is called a lattice arrangement. If the

members of C cover the whole plane, C is called a lattice covering. The density of a lattice covering can be expressed as
S (A)
detΛ

(Pach & Agarwal, 2011), where S (A) is the area of A and detΛ is the area of the smallest lattice parallelogram of Λ.

There are many studies about the upper bounds on the infimum of the density of lattice covering when A is a given body

and Λ is any lattice. Because we may choose an appropriate Λ for minimizing the density of covering, the upper bounds

are near 1(Fary, 1950). Especially when A is a centrally symmetric convex body, it is well known that it is 2π√
27
 1.2092

(Pach & Agarwal, 2011). In this study, we will consider the same problem when A is a given centrally symmetric convex

body and Λ is any lattice congruent with a given lattice Λ0. Since the condition of Λ is stronger, this upper bound is a lot

bigger than 1.2092. This cannot be a constant, since it can be arbitrarily big depending on the given lattice. Thus, we aim

to suggest a function of Λ0 and S (A) which is always less than or equal to

inf
A+Λ=R2,Λ≡Λ0

S (A)

detΛ

This is equivalent to suggesting a function f of lattice Λ such that for every centrally symmetric convex body A whose

area is not less than f (Λ), there exists Λ′ ≡ Λ such that A+Λ′ = R
2. We will call A a coverable body with respect to Λ if

A is a centrally symmetric convex body and there exists a lattice Λ′ ≡ Λ such that A + Λ′ = R
2.

To suggest the function f , we will first prove some properties of centrally symmetric convex bodies. Then, we will define

several new functions related to Λ and prove some properties of them. Using these, we will prove the main result of this

paper, which gives the function f .

The condition that the lattice is congruent to a given lattice can be used to suggesting an efficient lattice covering of

general sets which need not be convex and may have holes. This will be discussed in the application chapter of this paper.

2. Results

2.1 Geometric Properties of Centrally Symmetric Convex Bodies

In this section, some properties of centrally symmetric convex bodies, which are important lemmas for the main results,

are suggested.

The next lemma states a method to determine whether a given set A satisfies A + Λ = R
2.

Lemma 1. Given a lattice Λ ⊂ R
2, the followings hold:
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(i) Given a closed connected set A, if A + Λ = R
2, there exists Λ′ ≡ Λ and a lattice triangle XYZ of Λ′ such that

X,Y,Z ∈ A.

(ii) Given a centrally symmetric convex set A, if there exists a lattice triangle XYZ ⊂ A, A + Λ = R
2.

Proof. (i) For any set S , denote its boundary by ∂S . For any two distinct points P,Q,
←→
PQ denotes the line containing

both of them, and PQ may denote either the segment connecting P,Q or the length of such segment.

Since A is closed, there exist λ1, λ2 ∈ Λ such that (A + λ1) ∩ (A + λ2) � ∅. Let L be
←−→
λ1λ2 ∩ Λ. Let A1 be a

connected component of A + L which includes A + {λ1, λ2}. Since A + {λ1, λ2} ⊂ A1 and ∂A1 ⊂ ∂(A + L) ⊂ ∂A + L,

it can be shown that there exist u, v ∈ L such that (∂A + u) ∩ (∂A + v) ∩ ∂A1 � ∅. Let p be an element of the

intersection. Then since p ∈ ∂A1 ⊂ ∂(A+ L), any neighborhood of p contains a point p′ such that p′ � A+ L, while

p′ ∈ R
2 = A + Λ. Then p ∈ A + (Λ \ L), there exists w ∈ Λ \ L such that p ∈ A + w. Then p ∈ A + u, A + v, A + w,

thus −u + p,−v + p,−w + p ∈ A. Also, since w � L =←→uv ∩Λ, u, v,w form a triangle. Thus, −u + p,−v + p,−w + p
form a lattice triangle of −Λ + p ≡ Λ.

(ii) Since A is centrally symmetric, it can be shown that there exists a hexagon H = XY ′ZX′YZ′ such that H ⊂ A,

XYZ ≡ X′Y ′Z′ and XY ‖ X′Y ′, which shall be degenerated. Then R
2 = H + Λ ⊂ A + Λ can be shown as the

following figure.

�

Figure 1. H + Λ = R
2

The following is a corollary of Lemma 1 (ii).

Corollary 2. If A is a centrally symmetric convex body and there exists a triangle in A which is congruent to a lattice
triangle of a lattice Λ, A is a coverable body with respect to Λ.

From now, we will denote Ω as a centrally symmetric convex body.

Lemma 3. There exist polar coordinates such that the origin O is the center of Ω and the four rays θ = πk
2
, k = 0, 1, 2, 3

divide Ω into four parts of the same area.

Proof. First consider polar coordinates whose origin is O. For φ ∈ R, let f (φ) be S (Ω ∩ {(r, θ)|θ ∈ (φ, φ + π
2
)}) − S (Ω ∩

{(r, θ)|θ ∈ (φ − π
2
, φ)}). Since Ω is centrally symmetric, f (0) = − f ( π

2
). Thus there exists t ∈ [0, π

2
] such that f (t) = 0.

Therefore, by rotating the polar coordinates through t, we obtain the polar coordinates satisfying this lemma. �

In this section, we will always use the polar coordinates suggested in Lemma 3.

Lemma 4. If S (Ω) = π
2
, there exists an inscribed rhombus PQRS such that PQ = 1.

Proof. Since Ω is centrally symmetric,

π

2
= S (Ω) =

1

2

� 2π

0

r(θ)2dθ =
� π

2

0

r(θ)2 + r(θ +
π

2
)
2

dθ ,
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thus there exists φ such that r(φ)2 + r(φ + π
2
)2 = 1. Let W, X,Y,Z the intersections of the boundary of Ω and the rays

θ = φ + πk
2
, k = 0, 1, 2, 3. Then WX = XY = YZ = ZW = 1, since

�
r(φ)2 + r(φ +

π

2
)
2

=

�
r(φ +

π

2
)
2

+ r(φ + π)2 = 1

�

The following lemma is a key theorem in showing the existence of a certain inscribed parallelogram.

Lemma 5. For any function f : [0, π
8
] → (0, π) such that its derivative f ′ exists and is continuous on [0, π

8
], and

f (0) = f ( π
8
) = π

2
, the following holds: � π

8

0

�
64sin2 f (x) + f ′(x)2dx ≥ π

Proof. Since

� π
8

0

�
64sin2 f (x) + f ′(x)2dx =

� π
16

0

�
64sin2 f (x) + f ′(x)2dx +

� π
16

0

�
64sin2 f

�π
8
− x
�
+ f ′

�π
8
− x
�2

dx ,

it is sufficient to prove
� π

16

0

�
64sin2 y + y′2dx ≥ π

2
for all function y : [0, π

16
] → (0, π) such that its derivative y′ exists and

is continuous on [0, π
16

] and y(0) = π
2
.

Let y0(x) be π
2
−� x

0 |y′(t)|dt. If
� π

16

0 |y′(t)|dt ≥ π
2
,
� π

16

0

�
64sin2 y + y′2dx ≥ π

2
also holds, thus we will suppose

� π
16

0 |y′(t)|dt <
π
2
. Then for all x ∈ [0, π

16
], ���π

2
− y0(x)

��� =
� x

0

|y′(t)|dt ≥
����
� x

0

y′(t)dt
���� =

���π
2
− y(x)

��� ,
thus sin y(x) ≥ sin y0(x). For all x, since |y′(x)| = |y0

′(x)|,
�

64 sin2 y + y′2 ≥
�

64 sin2 y0 + y0
′2. Therefore, it is sufficient

to prove
� π

16

0

�
64sin2 y0 + y0

′2dx ≥ π
2
. Suppose that this y0 doesn’t satisfy this inequality.

For any t, let yt be yt(x) = y0(x) − tx. Since

lim
t→0

� π
16

0

�
64 sin2 yt + yt

′2dx =
� π

16

0

�
64 sin2 y0 + y0

′2dx <
π

2

there exists a > 0 such that � π
16

0

�
64 sin2 ya + ya

′2dx <
π

2

Since y0 is a decreasing function, ya is a strictly decreasing function.

Let z be π
2
− ya and let h be z( π

16
). Since z is a strictly increasing function and z(0) = π

2
− ya(0) = π

2
− y0(0) = 0,

� π
16

0

�
64sin2 ya +

	
dya

dx


2

dx =
� π

16

0

�
64cos2 z +

	
dz
dx


2

dx =
� h

0

�
64

	
dx
dz


2

cos2 z + 1dz

Define a function v of z as

�
64
�

dx
dz

2
cos2 z + 1. Since dz

dx = −
�

dy0

dx − a


is bounded and continuous, v is bounded,

continuous and infz∈[0,h] v ≥ 1.

Since
� h

0 sec z
√

v2 − 1dz = 8
� h

0

�
dx
dz


dz = π

2
, it is sufficient to prove the following statement for bounded continuous

function v whose infimum is at least 1. � h

0

sec z
√

v2 − 1dz =
π

2
⇒
� h

0

vdz ≥ π
2

Then, it is sufficient to prove the following:

� h

0

vdz <
π

2
⇒
� h

0

sec z
√

v2 − 1dz <
π

2
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Since
� h

0 vdz < π
2

and v ≥ 1, h < π
2
. Thus there exists τ ∈

�
max

�
h,
� h

0 vdz
�
, π

2

�
. For all n ∈ N, let

Dn :=

�
(a1, ..., an)|h

n

n�
k=1

ak ≤ τ, a1, ..., an ≥ 1

�

Since Dn is a compact set, there exists a pair (b1, ..., bn) ∈ Dn such that for all (a1, ..., an) ∈ Dn,

n�
k=1

sec
hk
n

	
b2

k − 1 ≥
n�

k=1

sec
hk
n

	
a2

k − 1

It can be easily shown that h
n


n
k=1 bk = τ. If there exist i, j ∈ {1, ..., n} such that

d sec hi
n

	
b2

i − 1

dbi
>

d sec h j
n

	
b2

j − 1

db j

then for sufficiently small ε > 0, it can be shown that

n�
k=1

sec
hk
n

	
b2

k − 1 <
�

k<n,k�i, j

sec
hk
n

	
b2

k − 1 + sec
hi
n

	
(bi + ε)2 − 1 + sec

h j
n

	
(b j − ε)2 − 1

Therefore, the values of
d sec hk

n

√
b2

k−1

dbk
, 1 ≤ k ≤ n should be a constant cn(possibly infinite). If cn = ∞, then b1 = ... = bn = 1,

h = τ. Thus cn is a finite constant.

Solving the equation we obtain bk =
cn√

c2
n−sec2 hk

n

, where cn is the solution of h
n


n
k=1

cn√
c2

n−sec2 hk
n

= τ.

As n goes to infinity, cn converges to the solution c of
� h

0
c√

c2−sec2 z
dz = τ. Here since τ < π

2
, c > sec h. Thus

lim
n→∞

h
n

n�
k=1

sec
hk
n

	
b2

k − 1 =

� h

0

sec z

�
c√

c2 − sec2 z

�2

− 1dz <
π

2

can be shown.

Meanwhile, since
� h

0 vdz < τ, h
n


n
k=1 v( hk

n ) ≤ τ holds for sufficiently big n. Therefore

� h

0

sec z
√

v2 − 1dz = lim
n→∞

h
n

n�
k=1

sec
hk
n

�
v


hk
n

�2

− 1 ≤ lim
n→∞

h
n

n�
k=1

sec
hk
n

	
b2

k − 1 <
π

2

�

Theorem 6. If S (Ω) = π
2
, there exists an inscribed parallelogram PQRS such that S (PQRS ) ≥ 1 and PR,QS divide Ω

into four parts of the same area.

Proof. Let f (x) be 1
2

� x
0 r2(θ)dθ, let g be its inverse, let ψ(x) be the parallelogram whose vertices are the intersections of

the lines whose directions are g(x), g(x + π
8
) and the boundary of Ω, and let s(x) be S (ψ(x)).

Suppose that s(x) < 1 holds for all x. Define functions p, q as p(x) = g(x) + g(x + π
8
) , q(x) = g(x + π

8
) − g(x). Then since

s(x) = 4 · 1

2
sin
�

g(x +
π

8
) − g(x)

�
· 1	

1
2
g′(x + π

8
)
· 1	

1
2
g′(x)

=
8 sin q(x)�

p′(x)2 − q′(x)2
,

	
64 sin2 q(x) + q′(x)2 < p′(x) always holds. Therefore,� π

2

0

	
64 sin2 q(x) + q′(x)2dx <

� π
2

0

p′(x)dx = p(
π

2
) − p(0) = 4π

Since q( nπ
8

) = π
2

holds by Lemma 3 for all n ∈ Z, by Lemma 5, the following inequality holds:

� π
2

0

	
64 sin2 q(x) + q′(x)2dx =

3�
n=0

� (n+1)π
8

nπ
8

	
64 sin2 q(x) + q′(x)2dx ≥ 4π

This is a contradiction, thus there exists x such that s(x) ≥ 1. It can be easily shown that ψ(x) satisfies the theorem. �

87



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 2; 2017

As it is proved above that there exists an inscribed parallelogram ψ such that S (ψ) ≥ 1 and the two diagonals of ψ divide

a given centrally symmetric convex body Ω into four parts of equal areas, we will try to constrict ψ to satisfy S (ψ) = 1.

However, not all Ω satisfy such property, thus we will call Ω admissible if there exists an inscribed parallelogram ψ such

that S (ψ) = 1 and the two diagonals of ψ divideΩ into four parts of equal areas. From now, we will focus on the properties

of the bodies which are not admissible.

Let S (XY) denote the area of the arc XY for any chord XY of Ω and let X∗ denote the reflection of X with respect to O for

any point X. By Theorem 4 and Theorem 6, there exists an inscribed rhombus P1Q1P1
∗Q1

∗ such that P1Q1 = 1 and an

inscribed parallelogram P2Q2P2
∗Q2

∗ such that S (P2Q2P2
∗Q2

∗) ≥ 1, S (P2Q2) = S (Q2P2
∗).

In the following lemmas, for all t, the intersection of the boundary of Ω and the ray θ = t is denoted by X(t).

Lemma 7. If S (Ω) = π
2

and Ω is not admissible, for all chord PQ such that S (PQ) ≥ π
8
− 1

4
, S (P∗Q) < π

8
− 1

4
.

Proof. Suppose that S (P∗Q) ≥ π
8
− 1

4
. Let T be a point on �PQ ∪�QP∗ such that S (PT ) = S (P∗T ). Since S (PT ) ≥

S (PQ) or S (P∗T ) ≥ S (P∗Q), S (PT ) = S (P∗T ) ≥ π
8
− 1

4
, thus S (PT P∗T ∗) ≤ 1. For all t, let Y(t) be the point on the

boundary of Ω such that S (X(t)Y(t)) = S (X∗(t)Y(t)), then let ψ(t) be X(t)Y(t)X∗(t)Y∗(t). Let α, β be the angles such that

ψ(α) = PT P∗T ∗, ψ(β) = P2Q2P2
∗Q2

∗. Since S (ψ(α)) ≤ 1 ≤ S (ψ(β)), there exists γ such that S (ψ(γ)) = 1, thus Ω is

admissible. �

Lemma 8. If S (Ω) = π
2

and Ω is not admissible, there exists an inscribed parallelogram PQP∗Q∗ such that PQ = 1 and
S (PQP∗Q∗) ≥ 1.

Proof. Without loss of generality, suppose ∠P1Q1P1
∗ ≥ π

2
. Since P1Q1 = P1

∗Q1 = 1, S (P1Q1P1
∗Q1

∗) ≤ 1, thus without

loss of generality we may assume S (P1Q1) ≥ π
8
− 1

4
. By Lemma 7, S (P1

∗Q1) < π
8
− 1

4
. Let α, β be the angles such that

X(α) = P1, X(β) = Q1. For θ between α and β, since ∠P1Q1P1
∗ ≥ π

2
, there exists Y(θ) ∈�P1

∗Q1 such that X(θ)Y(θ) = 1.

Let ψ(θ) be X(θ)Y(θ)X∗(θ)Y∗(θ). Since S (X(α)Y(α)) ≥ π
8
− 1

4
≥ S (X(β)Y(β)), there exists φ such that S (X(φ)Y(φ)) = π

8
− 1

4
.

By Lemma 7, S (X(φ)Y∗(φ)) ≤ π
8
− 1

4
, thus S (ψ(φ)) ≥ 1. Therefore, ψ(φ) satisfies this lemma. �

Lemma 9. If S (Ω) = π
2
, there exists an inscribed parallelogram PQP∗Q∗ such that P∗Q ≥ 1, S (PQP∗Q∗) ≥ 1, S (PQ)

S (PQP∗Q∗) =
π
8
− 1

4
.

Proof. If Ω is admissible, there exists ABA∗B∗ such that S (AB) = S (BA∗) = π
8
− 1

4
. Since AB · A∗B ≥ S (ABA∗B∗) = 1,

without loss of generality assume that A∗B ≥ 1. Then ABA∗B∗ satisfies this lemma. Therefore, we will suppose that Ω is

not admissible.

Without loss of generality, suppose S (P1Q1) ≥ S (P1
∗Q1). Since S (P1Q1P1

∗Q1
∗) ≤ P1Q1 · P1

∗Q1 = 1, S (P1Q1) ≥ π
8
− 1

4
.

By Lemma 7, S (P1
∗Q1) < π

8
− 1

4
. Let α be the angle such that X(α) = P1. For all t, let Y(t) be the point on the boundary

of Ω such that X∗(t)Y(t) ‖ P1
∗Q1 and let ψ(t) be the parallelogram X(t)Y(t)X∗(t)Y∗(t). Since S (X∗(α)Y(α)) < π

8
− 1

4
, there

exists β such that S (X∗(β)Y(β)) = π
8
− 1

4
,�X∗(α)Y(α) ⊂�X∗(β)Y(β). Then by Lemma 7, S (X(β)Y(β)) < π

8
− 1

4
, S (ψ(β)) ≥ 1.

Since S (X(α)Y(α))
S (ψ(α))

≥ π
8
− 1

4
≥ S (X(β)Y(β))

S (ψ(β))
, there exists γ between α, β such that S (X(γ)Y(γ))

S (ψ(γ))
= π

8
− 1

4
. Since S (X∗(β)Y(β)) = π

8
− 1

4

and�X∗(γ)Y(γ) ⊂�X∗(β)Y(β), S (X∗(γ)Y(γ)) ≤ π
8
− 1

4
. Then 2S (X(γ)Y(γ)) + S (ψ(γ)) ≥ π

4
+ 1

2
, S (ψ(γ)) ≥ 1. Since

�X∗(α)Y(α) ⊂�X∗(γ)Y(γ) and X∗(α)Y(α) ‖ X∗(γ)Y(γ), X∗(γ)Y(γ) ≥ X∗(α)Y(α) = 1. Thus ψ(γ) satisfies all conditions of

this lemma. �

2.2 Upper Bounds on the Area of Non-coverable Set

In this section, we will suggest a function f such that for any given lattice Λ, any centrally symmetric convex body Ω is

a coverable body with respect to Λ if S (Ω) ≥ f (Λ). Also, for more efficient covering, we will suggest a certain lattice Λ∗
such that detΛ∗ = 1 and any centrally symmetric convex body Ω is a coverable body with respect to Λ∗ if S (Ω) ≥ π

2
.

The followings are definitions related to the lattice, which are required to construct the function f .

Definition 10. An elementary segment is a segment connecting two lattice points X,Y such that no lattice point exists on
XY \ {X,Y}. An elementary triangle is a triangle whose vertices are lattice points X,Y,Z such that no lattice point exists
on XYZ \ {X,Y,Z}.
For any lattice Λ, define elementary segments d1, d2, ... as follows:
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For all i ∈ N, di is a shortest segment among all the elementary segments which are not parallel with d1, ..., di−1.

Definition 11. For any lattice Λ, D(Λ) is the set of the lengths of d2, d3, d4, d5....

For any set S of positive real numbers, if S = {s1, s2, ...} and s1 < s2 < ..., μ(S ) := sup si+1

si
.

The length of d1 is excluded from D(Λ) to make μ(D(Λ)) be bounded. The next theorem shows an upper bound of

μ(D(Λ)).

Theorem 12. For all lattice Λ, μ(D(Λ)) ≤ √
3.

Proof. Let X,Y be the points such that OX = d1,OY = d2,OX ‖ d1,OY ‖ d2, 0 < ∠XOY ≤ π
2
. For all k, denote Yk

as Y + kX. Since OY ≤ OY−1 ≤ OY1 ≤ OY−2 ≤ OY2 ≤ ... and all these segments are in D, it is sufficient to show
OYk

OY−k
, OY−k

OYk−1
≤ √

3 for every k ∈ N. Let Y ′ be the midpoint of YY−1. Let W,W′ be the points such that WW′Y ′Y is a

rectangle and W ∈ OX. Since W′Y ′2 = WY2
= OY2

sin2 ∠XOY ≥ 3
4
OX2

, the followings can be shown:

OYk

OY−k
≤ W′Yk

W ′Y−k
=

�
(k + 1

2
)2OX2

+W′Y ′2
�

(k − 1
2
)2OX2

+W′Y ′2
≤
�

(k + 1
2
)2 + 3

4�
(k − 1

2
)2 + 3

4

≤ √
3

OY−k

OYk−1

≤ WY−k

WYk−1

=

�
k2OX2

+WY2

�
(k − 1)2OX2

+WY2
≤

�
k2 + 3

4�
(k − 1)2 + 3

4

≤ √
3

�

Figure 2. Proof of Theorem 12

Lemma 13. Let O be a point and let l be a line such that O � l. Let H be the foot of the perpendicular from O to l. Let
A, B,C,D ∈ l be the points in order A, B,H,C,D, such that AB = CD, AH ≤ DH. If ∠BOD ≥ π

2
, OD

OA
≤ OC

OB
.

Proof. Let a, b, c, d, h be AH, BH,CH,DH,OH, respectively. Since ∠BOD ≥ π
2
, h2 ≤ bd. Also, a − b = d − c and

b ≤ c ≤ a ≤ d hold by the given conditions. Thus (h2 + b2)(h2 + d2) ≤ (h2 + a2)(h2 + c2) can be shown, and this is

equivalent to OD
OA

≤ OC
OB

. �

The following theorem shows how to find μ(D(Λ)) in finite steps.

89



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 2; 2017

Theorem 14. Let center O be a lattice point and let OX,OY be the shortest two elementary segments such that OX ≤ OY
and ∠XOY ≤ π

2
. Let D′(Λ) = D(Λ) ∩ {OP|OP < 12d2}. Then μ(D(Λ)) = μ(D′(Λ)).

Proof. For k ∈ N, let Y2k−1 be Y−kX and Y2k be Y+kX. Let Z be Y+Y1. Let n be the integer such that OYn ≤ OZ < OYn+1.

Suppose there exists k ≥ max{4, n} such that ∠Yk−2OYk+1 <
π
2
. Since OYk+1 > OZ ≥ 2OH, ∠OYk+1H < π

6
. Then

∠OYk−2H > π
3
, thus Yk+1H > 3Yk−2H. This contradicts Yk+1H ≤ k+2

2
YY1 and Yk−2H ≥ k−2

2
YY1. Thus ∠Yk−2OYk+1 ≥ π

2
,

and by Lemma 13, OYk+1

OYk
≤ OYk−1

OYk−2
holds for all k ≥ max{4, n}.

Meanwhile, it can be shown that d1, d2, d3, d4, d5 are OX,OY ,OY1,OY2,OY3, respectively. Thus we only need to consider

the following cases.

(i) n ≥ 4 : Since OY1, ...,OYn are the smallest elements of D(Λ) and OYn

OYn−1
≥ OYn+2

OYn+1
≥ ... and OYn−1

OYn−2
≥ OYn+1

OYn
≥ ... hold,

μ(D(Λ)) = μ({OY1, ...,OYn}). Since OYn ≤ OZ ≤ 2d2 + d1 < 12d2, μ(D′(Λ)) = μ(D(Λ)).

(ii) n = 3 : OY5

OY4
≤ OY3

OY2
≤ μ(D(Λ)). Also, it can be easily shown that d5 = OY3, d6 = OZ, d7 = OY4. Thus

OY5

OY3
= OY5

OY4

OY4

OZ
OZ
OY3

≤ μ(D(Λ))3. Since HY5
2
= OY5

2 − OH2
> OZ2 − OH2 ≥ 3OH2

and HY5 ≥ 3
2
HY3,

μ(D(Λ)) ≥ 3

�
OY5

OY3

=
6

�
HY5

2
+ OH2

HY3
2
+ OH2

≥ 6

�
HY5

2
+ 1

3
HY5

2

HY3
2
+ 1

3
HY5

2
≥ 6

�
12

7
>

12

11

Let S be {OY2k |k ≥ 11}. Then since S ⊂ D(Λ), S ∩ D′(Λ) � ∅ and μ(S ) ≤ 12
11
< μ(D(Λ)), μ(D′(Λ)) = μ(D(Λ)).

�

Figure 3. Arrangement of O, X,Y1,Y2,Y3...

Example 15. Let Λ3 be {m[1, 0] + n[ 1
2
,
√

3
2

]|m, n ∈ Z} and let Λ4 be Z
2. Then μ(D(Λ3)) =

√
3, μ(D(Λ4)) =

√
5√
2

can be
shown using Theorem 14.

The next lemma shows two inequalities related to the chords of Ω. For any two sets X,Y ⊂ R
2 we will denote d(X,Y) as

the distance between X,Y .

Lemma 16. Suppose S (Ω) = π
2
. Let PQRS be an inscribed parallelogram such that S (PQRS ) ≥ 1, S (PQ)

S (PQRS )
= π

8
− 1

4
.

Given α ∈ [1, π
4
+ 1

2
] and β ∈ [ 1

2
, 1], let U1V1 be a chord between

←→
PQ and

←−→
MN such that U1V1 ‖ PQ, U1V1 = αPQ and let

XY be a chord such that XY ‖ PQ, XY = βPQ, which is nearer to
←→
RS than

←→
PQ. Then the followings hold:

d(
←−−→
U1V1,

←→
PQ) ≤ α − 1

π − 2
S (PQRS ) · 1

PQ
, d(

←→
XY ,

←→
RS ) ≥ (1 − β)

�
π

2
−
�
π

4
+

1

2

�
S (PQRS )

�
· 1

PQ

Proof. Let l0 be the line such that l0 ‖ PQ and O ∈ l0. Let UV be a chord between
←→
PQ and l0 such that UV ‖ PQ,

d(
←→
UV ,

←→
PQ) = α−1

π−2
d(
←→
PQ,

←→
RS ). Let L,M,N be

←→
RX ∩←→S Y , l0 ∩←→PU, l0 ∩←→QV , respectively.
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Figure 4. Proof of Lemma 16

Let u, v, x, y be the tangent lines of Ω at U,V, X,Y , respectively. Let M′,N′, P′,Q′,R′, S ′, L′ be u ∩ ←−→MN, v ∩ ←−→MN, u ∩←→
PQ, v ∩←→PQ, x ∩←→QR, y ∩←→PS , x ∩ y, respectively. Since d(

←→
PQ,

←→
UV) ≤ d(

←→
UV ,

←−→
MN),

1

2
(MN+PQ)d(

←→
PQ,

←−→
MN) = S (MNQP) ≥ S (M′N′Q′P′) ≥ S (Ω)

2
−S (PQ) =

�
π

8
+

1

4

�
S (PQRS ) =

�
π

4
+

1

2

�
PQ·d(

←→
PQ,

←−→
MN)

Thus MN ≥ π
2

PQ. Then since

UV =
2(α − 1)

π − 2
MN +

�
1 − 2(α − 1)

π − 2

�
PQ ≥ αPQ = U1V1 ,

d(
←−−→
U1V1,

←→
PQ) ≤ d(

←→
UV ,

←→
PQ) = α−1

π−2
d(
←→
PQ,

←→
RS ) = α−1

π−2
S (PQRS ) · 1

PQ
.

Meanwhile, since 2XY ≥ RS ,

RS · d(L,
←→
RS ) = 2S (S LR) ≥ 2S (S S ′L′R′R) ≥ 2S (RS ) =

π

2
− S (PQRS )

�
π

4
+

1

2

�
,

d(
←→
RS ,

←→
XY) = (1 − β)d(L,

←→
RS ) ≥ (1 − β)

�
π

2
− S (PQRS )

�
π

4
+

1

2

��
· 1

RS
�

Definition 17. Given an elementary segment XY of a lattice Λ, let l be a line such that l ‖ XY and d(l, XY) = 1

XY
detΛ.

Let T be the union of l∩Λ and its reflection with respect to the orthogonal bisector of XY. Let k be the maximum distance
between two adjacent points in T . Then the lattice rate of XY is k

XY
.

Remark 18. Let Z be a point on l∩Λ such that ∠ZXY ,∠ZYX ≤ π
2

and let H be the point on XY such that ZH ⊥ XY. Let

H′ be the reflection of H with respect to the midpoint of XY. Then since the projection of T onto
←→
XY is {H + i(Y − X)|i ∈

Z} ∪ {H′ + i(Y − X)|i ∈ Z}, the lattice rate of XY is

max{HH′, XY − HH′}
XY

Theorem 19. For any latticeΛ,Ω is a coverable body if S (Ω) is not less than f (Λ) = π
2

max
��

detΛ
d1

�2
, d1

2,
�

d2

τμ

�2
, detΛ
τ2μ

�
,

where μ := μ(D(Λ)), τ := π
π−2+2μ

.

Proof. Consider a scaling which transforms the area of Ω to π
2
. It is sufficient to prove that Ω is a coverable body with

respect to Λ if S (Ω) = π
2

and max
��

detΛ
d1

�2
, d1

2,
�

d2

τμ

�2
, detΛ
τ2μ

�
≤ 1.

Suppose that Ω is not admissible. Then by Lemma 8, there exists a parallelogram P0Q0R0S 0 ⊂ Ω such that P0Q0 = 1 and

S (P0Q0R0S 0) ≥ 1. Since d1 ≤ 1 and d1 ≥ detΛ, it can be shown that there exists a parallelogram WXYZ ⊂ P0Q0R0S 0
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such that S (WXYZ) = detΛ and WX = d1. Since the lattice rate of d1 is at most 1 and d(
←−→
WX,

←→
YZ) = 1

d1
detΛ, there exists

a point T ∈ YZ such that WXT is congruent to a lattice triangle. Then by Corollary 2, Ω is a coverable body, thus we will

now suppose Ω is admissible.

Since Ω is admissible, there exists an inscribed parallelogram PQRS such that S (PQRS ) = 1 and S (PQ) = S (QR).

Without loss of generality, suppose PQ ≥ QR. Since PQ · QR ≥ S (PQRS ) = 1, PQ ≥ 1. Since d2

τμ
≤ 1 ≤ PQ, there exists

u ∈ D(Λ) such that α := u
PQ

∈ [τ, τμ]. We will consider two cases : when α ≥ 1 and when α < 1.

(i) When α ≥ 1 : Since 1 < μ <
√

3, α ≤ τμ < 1
2
+ π

4
. Thus by Lemma 16, there exists a chord X1Y1 such that

X1Y1 ‖ PQ, X1Y1 = u, d(
←−−→
X1Y1,

←→
PQ) ≤ α−1

π−2
· 1

PQ
. Then S (X1Y1X1

∗Y1
∗) = X1Y1d(

←−−→
X1Y1,

←−−−→
X1

∗Y1
∗) = αPQ(d(

←→
PQ,

←→
RS ) −

2d(
←−−→
X1Y1,

←→
PQ)) ≥ α

�
1 − 2 · α−1

π−2

�
= α(π−2α)

π−2
≥ τμ(π−2τμ)

π−2
= τ2μ ≥ detΛ.

(ii) When α < 1 : Since 1 < μ <
√

3, 1
2
< τ ≤ α. Thus by Lemma 16, there exists a chord X2Y2 such that

X2Y2 ‖ PQ, X2Y2 = u, d(
←−−→
X2Y2,

←→
RS ) ≥ (1 − α)

�
π
4
− 1

2

�
· 1

PQ
. Then S (X2Y2X2

∗Y2
∗) = X2Y2d(

←−−→
X2Y2,

←−−−→
X2

∗Y2
∗) =

αPQ(d(
←→
PQ,

←→
RS ) + 2d(

←−−→
X2Y2,

←→
RS )) = α

�
1 + (1 − α)

�
π
2
− 1

��
≥ τ

�
1 + (1 − τ)

�
π
2
− 1

��
= τ2μ ≥ detΛ.

Therefore, there exists a parallelogram XYX′Y ′ ⊂ Ω such that XY = u, S (XYX′Y ′) = detΛ. Since XY ∈ D(Λ), d(
←→
XY ,

←−→
X′Y ′) =

1

XY
detΛ and the lattice rate of XY is at most 1, there exists a point W ∈ X′Y ′ such that WXY is congruent to a lattice

triangle. Therefore, by Corollary 2, Ω is a coverable body. �

Figure 5. Proof of Theorem 19

The following example shows how we apply this theorem and the theorem’s accuracy.

Example 20. If S (Ω) ≥ (π−2+2
√

3)2

4π
 1.69, by Theorem 19 and Example 15, Ω is a coverable body with respect to Λ3.

Similarly, if S (Ω) ≥ (π−2+
√

10)2√
10π

 1.86, by Theorem 19 and Example 15, Ω is a coverable body with respect to Λ4.

Let Ω3 be
�

(x, y)|x2 + y2 < 3
4
, y2 < 3

16

�
and let Ω4 be

�
(x, y)|x2 + y2 < 1

2

�
. Then it can be shown that no lattice triangle

can be inscribed in each of these, thus Ω3, Ω4 are not coverable bodies. Since S (Ω3) = π
4
+ 3

√
3

8
> 1.43 and S (Ω4) = π

2
>

1.57, S (Ω) should be at least 1.43, 1.57 to certify that Ω is always a coverable body with respect to Λ3, Λ4, respectively,
while the constants we obtained from Theorem 19 were 1.69 and 1.86.

To find out an efficient covering, we may apply Theorem 19 to an appropriate lattice. However, there exists a certain

lattice which enables us get a more efficient covering. The followings are the processes of suggesting such lattice, denoted

by Λ∗, and showing that Ω whose area is π
2

is always a coverable body with respect to Λ∗.

Definition 21. Λ∗ is a lattice such that detΛ∗ = 1, d2 =
√

2 d1 and ‖d1 + d2‖ = 4
√

2 ‖d1 − d2‖, where d1, d2 are the
vectors satisfying d1 ‖ d1, ‖d1‖ = d1, d2 ‖ d2, ‖d2‖ = d2, d1 · d2 > 0.

Theorem 22. A centrally symmetric convex body Ω is a coverable body with respect to Λ∗ if S (Ω) = π
2
.

Proof. Let Φ be A ∪ B, where A, B are the following sets :

A := {pd1 + qd2|0 ≤ p ≤ 6, q = ±1, p, q ∈ Z} ∪ {4d2 + (4p ± 1)d1|1 ≤ p ≤ 3, p ∈ Z} ,
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B := {4d2 + (4p ± 1)d1|p ≥ 3, p ∈ Z}
For all t ≥ 6, since ‖4d2 + (2t + 1)d1‖−‖4d2 + (2t − 1)d1‖ ≤ 2 ‖d1‖ < 1

5
‖4d2 + 11d1‖, ‖4d2 + (2t + 1)d1‖ < 6

5
‖4d2 + (2t − 1)d1‖.

Thus μ(B) < 6
5
. Also, μ(A) < 6

5
can be shown by checking all elements. Therefore, μ(Φ) < 6

5
.

For any p ≥ 3, let X,Y,Z be the lattice points such that
←→
XY = 4d2+ (4p±1)d1,

←→
XZ = d2+ pd1 and let H be the point on XY

such that ZH ⊥ XY . Let H′ be the reflection of H with respect to the midpoint of XY . Since S (XYZ) = 1
2
, d(Z,

←→
XY) = 1

XY
.

Since ����1

4
− XH

XY

���� =
����1

4
− (4d2 + (4p ± 1)d1) · (d2 + pd1)

‖4d2 + (4p ± 1)d1‖2

���� = (4d2 + (4p ± 1)d1) · d1

4 ‖4d2 + (4p ± 1)d1‖2
≤ ‖d1‖

4 ‖4d2 + (4p ± 1)d1‖ ≤
1

16
,

max{HH′, XY −HH′} ≤ 3
4
XY . Also, since

←→
XZ ·←→ZY ≥ (d2 + pd1) · (3d2 + (3p± 1)d1) ≥ 0, ∠XYZ ≥ π

2
, ∠ZXY ,∠ZYX ≤ π

2
.

Thus the lattice rate of XY is at most 3
4
. Also, it can be shown that the lattice rate of any element of A is at most 3

4
by

checking all elements. Therefore, every element of Φ has lattice rate not bigger than 3
4
.

By Lemma 9, there exists an inscribed parallelogram PQRS such that S (PQRS ) ≥ 1, S (PS )
S (PQRS )

= π
8
− 1

4
and PQ ≥ 1. Let s

be S (PQRS ). Since 5
6
d2 < 1 ≤ PQ and d2 ∈ Φ and μ(Φ) < 6

5
, there exists di ∈ Φ such that PQ ≤ di <

6
5
PQ.

Let XY be a chord between
←→
PQ and O such that XY ‖ PQ and XY = di. Let X′Y ′ be a chord such that X′Y ′ ‖ PQ and

X′Y ′ = 3
4
di. Let t be di

PQ
. Then by Lemma 16,

d(
←→
XY ,

←−→
X′Y ′) = d(

←−→
X′Y ′,

←→
RS ) + d(

←→
PQ,

←→
RS ) − d(

←→
XY ,

←→
PQ) ≥

�
1 − 3

4
t
��
π

2
−
�
π

4
+

1

2

�
s
�

1

PQ
+

s
PQ

− t − 1

π − 2
· s

PQ

Thus, d(
←→
XY ,

←−→
X′Y ′)di ≥ t

�
(1 − 3

4
t)
�
π
2
−
�
π
4
+ 1

2

�
s
�
+ s − t−1

π−2
s
�

and this is always bigger than 1, since t ∈ [1, 6
5
) and s ≥ 1.

Since Ω is convex, there exists X1Y1 ⊂ Ω such that d(
←−−→
X1Y1,

←→
XY)di = 1, X1Y1 ‖ XY and X1Y1 = X′Y ′ = 3

4
di. Since the

lattice rate of di is at most 3
4

and X1Y1 =
3
4
XY , it can be shown that there exists a point Z ∈ X1Y1 such that XYZ is

congruent to a lattice triangle. Since XYZ ⊂ Ω, by Corollary 2, Ω is a coverable body. �

Figure 6. Proof of Theorem 22

2.3 Application

An interesting property of the coverable body is that we can suggest a reasonable upper bound on the infimum of the

density of lattice covering with the minkowski sum of a coverable body and an uniformly coverable set with respect to the

same lattice. Here, the uniformly coverable set is a new definition, which indicates any bounded closed set A ⊂ R
2 such

that for all Λ′ ≡ Λ, A + Λ′ = R
2.

Theorem 23. Let A be a coverable body and let B be an uniformly coverable set with respect to the same given lattice Λ.
Then there exists a lattice covering of A + B whose density is S (A+B)

3 detΛ
.

Proof. Since A is a coverable body with respect toΛ, there existsΛ′ ≡ Λ such that A+Λ′ = R
2. By Lemma 1, there exists

Λ1 ≡ Λ such that A includes a lattice triangle of Λ1. Since A is convex, there also exists an elementary triangle LMN ⊂ A.

Let T be the lattice {pL + qM + rN |p + q + r = 0, p ≡ q ≡ r mod 3}. Then since Λ1 = {pL + qM + rN |p + q + r = 1},
Λ1 = T + {L,M,N}, thus Λ1 ⊂ T + A. Therefore, R2 = B +Λ1 ⊂ B + T + A = (A + B) + T , {A + B + t|t ∈ T } is a covering

whose density is S (A+B)
det T =

S (A+B)
3 detΛ1

. �
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This theorem is beneficial to general sets, since the uniformly coverable set needs not be connected and may have holes.

The following is an example of this.

Example 24. Let A be Γ \ Γ′, where Γ :=
�

P|OP ≤ 2√
3

�
, Γ′ :=

�
P|OP <

√
3

2

�
. We will show that A is an uniformly

coverable body with respect to Λ3. Let X be any point on the plane. For i, j ∈ {0, 1}, let Λ(i, j) be the lattice {(2m +
i)[1, 0] + (2n + j)[ 1

2
,
√

3
2

] |m, n ∈ Z}. Since a right triangle congruent to a lattice triangle of Λ(i, j) can be inscribed in
Γ, by Corollary 2, there exists λ ∈ Λ(i, j) such that X ∈ Γ + λ. Meanwhile, since the diameter of Γ′ is

√
3, it can be

shown that there are at most three elements of {λ|X ∈ Γ′ + λ, λ ∈ Λ3}. Therefore, there exists a lattice point λ such that
X ∈ (Γ \ Γ′) + λ = A + λ. Thus A + Λ3 = R

2. Since A is the region between two concentric circles, A + Λ′ = R
2 holds for

all Λ′ ≡ Λ3, thus A is an uniformly coverable set with respect to Λ3.

Let B be any centrally symmetric convex body whose area is bigger than (π−2+2
√

3)2

4π
. B is a coverable body with respect

to Λ3, as it was shown in Example 20. Thus by Theorem 23, there exists a lattice covering of A + B whose density is
S (A+B)
3 detΛ3

= 2

3
√

3
S (A + B).

Figure 7. Covering by Γ′

3. Conclusion

In this paper, we suggested a function f such that any centrally symmetric convex bodyΩ is a coverable body with respect

to a lattice Λ if S (Ω) ≥ f (Λ). Also, we discovered a lattice Λ∗ such that any centrally symmetric convex body Ω is a

coverable body with respect to Λ∗ if S (Ω) ≥ π
2
. To apply the coverable body to more general problems, we also suggested

a method to prove the existence of an efficient lattice covering using a coverable body.
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Abstract

In this paper, we study partially the automorphisms groups of four-dimensional division algebra. We have proved that

there is an equivalence between Der(A) = su(2) and Aut(A) = S O(3). For an unitary four-dimensional real division

algebra, there is an equivalence between dim(Der(A)) = 1 and Aut(A) = S O(2).

Keywords: division algebra, derivations, automorphisms, mutation, isotope.

1. Introduction

The finited-dimensional real division algebra A, an actuel problem, takes its origin with the quaternion’s discovery H, by

Hamilton in 1843. One of the fundementals results of a n-dimensional real division algebra affirms that n ∈ {1, 2, 4, 8}(Bott

& Milnor, 1958; Kervaire, 1958). For n ∈ {1, 2}, the real division algebra A is known (Althoen & Kugler, 1983; Hübner &

Peterson, 2004; Dieterich, 2005). However the problem persists for the others cases. One of the method of determining

the algebra A is to know its derivations and/or its automorphisms. Benkart and Osborn have classified Lie algebra of

derivations Der(A) (Benkart & Osborn, 1981). It’s well known that if A is finite dimensional ,then the automorphism

group Aut(A) is a group of Lie, whose associated Lie algebra and Lie algebra Der(A) coincide. In dimension 1, the group

Aut(A) is trivial. In dimension 2, Dieterich has classified Aut(A), (Dieterich, 2005). However the problem persists for

the others cases. This paper is a contribution to the advancement of the determination of the group Aut(A). In the first

part, we give some preliminaries results on the automorphism of an algebra A. In the second part, we characterize the

4-dimensional real division algebra A whose Aut(A) = S O(3). Finally, we characterize also an unitary 4-dimensional real

division algebra whose Aut(A) = S O(2).

2. Preliminary

An algebra is said to be mutation α of A denoted Aα, the vector space A which has as product: x •α y = αxy+ (1−α)yx, x,

y ∈ A. If λ, μ ∈ R we have
(
Aλ

)μ
= Aα with α = 2λμ−λ−μ+1. The product of Hλ in the basic e = 1, e1 =

i
2λ−1
, e2 =

j
2λ−1
,

e3 =
k

2λ−1
, is given by: een = ene = en; e2

n =
1

(2λ − 1)2
e; e1e2 = −e2e1 = e3; e1e3 = −e3e1 = −e2; e2e3 = −e3e2 = e1.

Where {1, i, j, k} in the canonical basis of the quaternions algebra H.We denote Aut(A) = { f : A −→ A, linear bijection:

f (xy) = f (x) f (y), ∀x y ∈ A} the automorphism group of A. We denote Der(A) = {∂ : A −→ A, linear mapping:

∂(xy) = ∂(x)y + x∂(y), ∀x y ∈ A} the Lie algebra of derivations of A. The algebra A is called division if for all x ∈ A − {0}
the linears mapping Lx and Rx are bijective. Let x, y ∈ A, [x, y] = xy − yx is the commutator of x and y. We recall that

I(A) = {x ∈ A : x2 = x}. Let φ, ψ the linears bijections, we call isotopy of A denoted Aφ,ψ, the algebra whose product is:

x � y = φ(x)ψ(y), x, y ∈ A.

Example The mutation λ ∈ R of C, Cλ is isomorphic to C. The mutation 1
2

of H, H
1
2 is commutative and it’s not of

division, called the symtrization, one notes it H+

Lemma 1 Let A be a real algebra, then the following assertions are equivalent:

1. f ∈ Aut(A) and [ f , ϕ] = [ f , ψ] = 0;

2. f ∈ Aut
(
Aφ,ψ

)
and [ f , ϕ] = [ f , ψ] = 0.
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Proof. Let f ∈ Aut(Aφ,ψ), for all x and y ∈ A we have:

f (x � y) = f (x) � f (y)

⇔ f
(
φ(x) · ψ(y)

)
= ϕ

(
f (x)

) · ψ( f (y)
)

⇔ f
(
φ(x) · ψ(y)

)
= f

(
φ(x)

) · f
(
ψ(y)

)
. Then f ∈ Aut(A).

Lemma 2 Let A be an algebra and λ ∈ R, so Aut
(
A
) ⊂ Aut

(
A(λ)). Furthermore if λ � 1

2
then Aut

(
A
)
= Aut

(
A(λ)).

Proof. It’s easy to show that Aut(A) ⊂ Aut
(
A(λ)). If λ � 1

2
, we have Aut

(
A(λ)) ⊂ Aut

(
(A(λ))

λ
2λ−1

)
= Aut(A)

3. Characterization of Four-dimensional Real Division Algebra with S O(3) as Its Automorphic Group

In (Benkart & Osborn, (1981)2), we have the following result:

Theorem 1 A is an four-dimensional real division algebra with su(2) as its derivation algebra if and only if A has a basis
{e, e1, e2, e3} with multiplication given by (1.1) for some real numbers α, β, γ such that αβγ > 0.

e2 = e, eei = αei, eie = βei e2
i = −γe f or all i ∈ {1, 2, 3}

e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1, e3e1 = −e1e3 = e2 . (1.1)

Remark 1 Let x = λ0e + λ1e1 + λ2e2 + λ3e3, y = λ′0e + λ′1e1 + λ
′
2e2 + λ

′
3e3 ∈ A, we have:

xy =
(
λ0λ

′
0 − γλ1λ

′
1 − γλ2λ

′
2 − γλ3λ

′
3

)
e +

(
αλ0λ

′
1 + βλ1λ

′
0 + λ2λ

′
3 − λ3λ

′
2

)
e1

+
(
αλ0λ

′
2 + βλ2λ

′
0 + λ3λ

′
1 − λ1λ

′
3

)
e2 +

(
αλ0λ

′
3 + βλ3λ

′
0 + λ1λ

′
2 − λ2λ

′
1.
)
e3

We defined ψα : A −→ A; ψα(λe + u) = λe + 1
α

u with (α, λ) ∈ R
∗ × R and u ∈ lin{e1, e2, e3}.

Theorem 2 Let A be an 4-dimensional real division algebra with su(2) as its derivation algebra, then the isotope Aψα,ψβ
of A is isomorphic to H

μ with μ = 1
2
√
αβγ
+ 1

2
.

Proof. Let A be an algebra of theorem 1. The multiplication of Aψβ,ψα in the basis {e, e1, e2, e3} is given by (1.2)

e � e = e, e � ei = ei � e = ei, ei � ei = − γ
αβ

e f or all i ∈ {1, 2, 3}

e1 � e2 = −e2 � e1 =
1

αβ
e3, e2 � e3 = −e3 � e2 =

1

αβ
e1, e3 � e1 = −e1 � e3 =

1

αβ
e2 . (1.2)

Setting e′ = e, e′1 = αβe1, e′2 = αβe2 and e′3 = αβe3, we obtain, an algebra isomorphic to H
μ with μ = 1

2
√
αβγ
+ 1

2
.

Corollary 1 Every four-dimensional real division algebra with su(2) as its derivation algebra is isotope to the algebra
H
λ.

Lemma 3 Let A be an 4-dimensional real division algebra with su(2) as its derivation algebra. Then A has a basis
{e, e1, e2, e3} with multiplication given by (1.1). Then we have

I(A) =
{
e
}
∪

{ 1

α + β
e +

3∑
i=1

λiei;

3∑
i=1

λ2
i =

1 − (α + β)

γ(α + β)2

}
, i f α + β � 0 and

1 − (α + β)

γ
> 0,

I(A) =
{
e
}
, otherwise.

Proof. Let x = λ0e + λ1e1 + λ2e2 + λ3e3 ∈ A, we have:

x2 = x ⇐⇒
⎧⎪⎨⎪⎩ λ2

0
− γ(λ2

1
+ λ2

2
+ λ2

3
) = λ0

λi

(
(α + β)λ0 − 1

)
= 0, i ∈ {1, 2, 3}

We obtain I(A) by resolving the system and discussing on α + β and
1−(α+β)
γ
.

96



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 2; 2017

Corollary 2 Let A be an real algebra of theorem 1. Let u and v ∈ A linearly independent. Then the following assertions
are equivalent:

1. x ∈ I(A), u2 = v2 = −γx, xu = αu, ux = βu, xv = αv, and vx = βv

2. x = e and u, v ∈ {
λ1e1 + λ2e2 + λ3e3; with λ2

1 + λ
2
2 + λ

2
3 = 1

}
.

Proof. (1) =⇒ (2) the proof will be reduce in the case α + β � 0 and 1−(α+β)
γ
> 0.

Suppose that x = 1
α+β

e + λ1e1 + λ2e2 + λ3e3 ∈ I(A) with
∑3

i=1 λ
2
i =

1−(α+β)
γ(α+β)2 .

Let u = Σ3
i=0
λ′i ei, and v = Σ3

i=0
λ′′i ei ∈ A satisfied the equations of (a). We have:

u2 = v2 = −γx =⇒ λi = −α+βγ λ′0λ′i = −α+βγ λ′′0λ′′i i ∈ {1, 2, 3}. (E.1)

And xu = αu, xv = αv =⇒ λ′20 = λ′′
2
0 =

αγ
(
1−(α+β)

)
β(α+β)2 . Consequently λ′0 = ελ

′′
0 with ε2 = 1. We have u = εv

according to (E.1), which is adsurd since u and v are linearly independent, then x = e. It’s easily shown that the equations

u2 = v2 = −γe, eu = αu, ue = βu, ev = αv, and ve = βv gives λ′0 = λ
′′
0 = 0 and Σ3

i=0
λ′i

2 = Σ3
i=0
λ′′i

2 = 1.

(2) =⇒ (1) the proof is evident.

Proposition 1 Let A be a 4-dimensional real division algebra with su(2) as its derivation algebra and f ∈ Aut(A), then
f (e) = e and f (lin{e1, e2, e3}) ⊆ lin{e1, e2, e3}. Moreover [ f , ψα] = 0.

Proof. We notice that f (e) ∈ I(A) and f (ei) for all i ∈ {1, 2, 3}, satisfy to (a) of corollary 1. Then f (e) = e and

f (ei) ∈ lin{e1, e2, e3}. It’s easy to show that [ f , ψα] = 0.

Theorem 3 Let A be a 4-dimensional real division algebra with su(2) as its derivation algebra, then the following propo-
sitions are equivalent:

1. Aut(A) � S O(3);

2. Der(A) � su(2);

3. Aψα,ψβ is isomorphic to H
μ with μ = 1

2
√
αβγ
+ 1

2
.

Proof. (1) =⇒ (2) Der(A) = Lie(Aut(A)) = Lie(S O(3)) � so(3) � su(2).

(2) =⇒ (3) See the Theorem 2.

(3) =⇒ (1) All automorphisms of A commute with ψα and ψβ according to Proposition 1 and also all automorphisms of

Aψα,ψβ commute with ψα and ψβ according to theorem 2, then Aut(A) = Aut(Aψα,ψβ ).
The Lemmas 1 and 2 give Aut(A) = Aut(Aψβ,ψα ) = Aut(Hμ) = Aut(H) � S O(3).

4. Characterization Unitary 4-dimensional Real Division Algebra with S O(2) as Its Automorphisms Groups

In (Diabang & all, (2016)1), we have the following result:

Theorem 4 Let A be an unital 4-dimensional real division algebra having a non-trivial derivation ∂, then there exists a
basis B1 = {e, e1, e2, e3} of A for which the multiplication is given by the table (1.3):

� e e1 e2 e3

e e e1 e2 e3

e1 e1 −e α1e2 + α2e3 −α2e2 + α1e3

e2 e2 α3e2 + α4e3 α5e + α6e1 α7e + α8e1

e3 e3 −α4e2 + α3e3 −α7e − α8e1 α5e + α6e1

(1.3)

for some real numbers αi, i ∈ {1, . . . , 7}.
Corollary 3 Let A be an four-dimensional real unital division algebra A having a non-trivial derivation, then the following
propositions are equivalent:

1. α1 = α3 = α6 = α7 = 0, α5 < 0, α2 = −α4 � 0 and α8 = −α2α5 � 0;

2. A is quadratic and flexible;

3. Der(A) = su(2);
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4. Aut(A) = S O(3);

5. A is isotope to H
μ.

Proof. (1) ⇐⇒ (2) ⇐⇒ (3) results of Theorem 2 in (Diabang & all, (2016)1).

(3) ⇐⇒ (4) ⇐⇒ (5) results of Theorem 3.

Lemma 4 Let A be an unital four-dimensional real division algebra having a non-trivial derivation ∂ such that A isn’t
quadratic or isn’t flexible. If f ∈ Aut(A), then f (e) = e and f (e1) = εe1 with ε2 = 1.

Proof. f being bijective then for all y ∈ A there is x ∈ A such that f (x) = y. We have f (e)y = f (e) f (x) = f (ex) = f (x) = y
and y f (e) = f (x) f (e) = f (xe) = f (x) = y, then f (e) is an unitary element of A, therefore f (e) = e. The subalgebra of

A generated by f (e1), denoted < f (e1) >, is isomorphic to B0 = ker ∂. As dim(Der(A)) = 1 then for all x ∈< f (e1) >,

∂(x) = 0 consequently f (e1) ∈ B0. The equation f (e1)2 = −e gives f (e1) = εe1.

Remark 2 Let A be an unital 4-dimensional real division algebra having a non-trivial derivation. Let x = λ0e + λ1e1 +

λ2e2 + λ3e3 ∈ A, we have:

x2 = −e ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
λ2

0 − λ2
1 + α5(λ2

2 + λ
2
3) = −1 (E.2)

2λ0λ1 + α6(λ2
2 + λ

2
3) = 0, (E.3)

2λ0λ2 + (α1 + α3)λ1λ2 − (α2 + α4)λ1λ3 = 0, (E.4)

2λ0λ3 + (α2 + α4)λ1λ2 + (α1 + α3)λ1λ3 = 0. (E.5)

λ2E.4 + λ3E.5 =⇒
(
2λ0 + (α1 + α3)λ1

)
(λ2

2 + λ
2
3) = 0 (E.6)

λ3E.4 + λ2E.5 =⇒ (α2 + α4)λ1(λ2
2 + λ

2
3) = 0 (E.7)

There are four possible cases:
Cas 1. If α6(α2 + α4) � 0, then x2 = −e ⇐⇒ x = εe1.
Cas 2. If α6 = 0 and α2 + α4 � 0, then

x2 = −e ⇐⇒
{

x ∈ {εe1} ∪ {λ2e2 + λ3e3; λ2
2 + λ

2
3 = − 1

α5
}, I f α5 < 0

x = εe1 otherwise,

Cas 3. If α6 = α2 + α4 = 0, then

x2 = −e ⇐⇒
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x ∈ {λ1e1 + λ2e2 + λ3e3; λ2
1 = 1 + α5λ

2
2 + α5λ

2
3}, I f α1 + α3 = 0

x ∈ {εe1} ∪ {λ2e2 + λ3e3; λ2
2 + λ

2
3 = − 1

α5
}, I f α1 + α3 � 0 and α5 < 0

x = εe1, I f α1 + α3 � 0 and α5 ≥ 0

Cas 4. If α6 � 0 and α2 + α4 = 0, then

x2 = −e ⇐⇒
{

x ∈ {εe1} ∪ {koe + ε
√

k1e1 + λ2e2 + λ3e3; λ2
2
+ λ2

3
=
α1+α3

α6
k1}, I f α1+α3

α6
> 0, k1 > 0

x = εe1, otherwise

with k1 =
4α6

4α6 − 4α5(α1 + α3) − α6(α1 + α3)2
, k0 = −ε(α1 + α3)

√
k1

2
and ε ∈ {−1, 1}.

Proposition 2 Let A be an unital four-dimensional real division algebra having a non-trivial derivation ∂ such that A isn’t
quadratic or isn’t flexible. If f ∈ Aut(A), then

M( f ,B1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 cos(θ) − sin(θ)
0 0 sin(θ) cos(θ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

with θ ∈ R so Aut(A) � S O(2).

Proof. The lemma 4, gives f (e) = e and f (e1) = εe1. By the definition of the automorphism f and the equations

(E.2), . . . (E.7), we obtains the result.
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Definition 1 (Unit-duplication process) Let B be an real algebra having an unit element e and let ρ, σ, φ, ψ : B −→ B be
linear mappings such that φ(e) = ψ(e) = e.We define on the space B × B the produit:

(x, y) � (x′, y′) =
(
xx′ + ρ(σ(y′)y); yφ(x′) + y′ψ(x)

)
(2.1)

The algebra resulting has an unit element (e, 0) and contains B × {0} as sub-algebra. It is said to be obtained from B and
�, by unit-duplication process and is denoted by UDPB(ρ, σ, φ, ψ). This generalizes the classical Cayley-Dickson process
as-well as the process given.

Theorem 5 Let A be an unital 4-dimensional real division algebra having a non-trivial derivation such that A isn’t
quadratic or isn’t flexible, then the following propositions are equivalent:

1. Aut(A) � S O(2);

2. dim(Der(A)) = 1;

3. A is obtained from the unital real algebra C by unit-duplication process.

Proof. (1) =⇒ (2) Der(A) = Lie(Aut(A)) = Lie(S O(2)) = so(2), so dim(Der(A)) = 1.

(2) =⇒ (3) See Corollary 1 in (Diabang & all, (2016)1).

(3) =⇒ (1) A admits a nonzero derivation, then A satisfies the hypotheses of the Theoreml 4. The proposition 2 completes

the proof.

Remark 3 Let A be a finite-dimensional real division algebra, whose Lie algebra of derivations is trivial, then the group
Aut(A) is finite.

Problem 1 Let A be an four-dimensional real division algebra, whose group Aut(A) is finite. Is there an upper limit to the
order of the group Aut(A)?.
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Abstract

The product of the first n terms of an arithmetic progression may be developed in a polynomial of n terms. Each one of

them presents a coefficient Cnk that is independent from the initial term and the common difference of the progression.

The most interesting point is that one may construct an ”Arithmetic Triangle”, displaying these coefficients, in a similar

way one does with Pascal’s Triangle. Moreover, some remarkable properties, mainly concerning factorials, characterize

the Triangle. Other related ’triangles’ – eventually treated as matrices – also display curious facts, in their linear modus
operandi, such as successive ”descendances”.

Keywords: arithmetic progression, factorials of order k, arithmetic triangle, descendant matrices, progressive matrix,

matrix column product, harmonic numbers.

1. Introduction

What is the product of the first n terms of an arithmetic progression? Contrary to geometrical progressions, where simple

equations allow to calculate the sum or the product of its first n terms, the issue concerning the product for an arithmetic

progression is not so easy. However, its study brings some fascinating results and, to my knowledge, new concepts in

Linear Algebra. I propose a little journey on this subject.

First of all, I discovered that it relates to the starting point of a paper of mine, on “Integer Binomial Plan”, published in this

same journal, in August 2010 (Ferreira), presenting a generalization on factorials and binomial coefficients to all integers.

Since then I never returned to the subject till recently, when a student asked me if I knew a formula for the product of the

first n terms of an arithmetic progression:

a1 , a2 = a1 + d , a3 = a1 + 2d , . . . , an = a1 + (n − 1) d, . . . . (1)

I didn’t; but then we began thinking on the problem. Let Pn = a1 · a2 · . . . · an. Following a simple procedure, remarking

that Pn = Pn−1 · [a1 + (n − 1)d] and beginning with P1 = a1, we soon found out that Pn may be expressed by a sum

of n terms concerning powers of a1 and d multiplied by n coefficients, which are independent from those variables. We

followed the procedure up to n = 5:

P1 = 1 · a1

P2 = 1 · a2
1 + 1 · a1d

P3 = 1 · a3
1
+ 3 · a2

1d + 2 · a1d2

P4 = 1 · a4
1 + 6 · a3

1
d + 11 · a2

1d2 + 6 · a1d3

P5 = 1 · a5
1
+ 10 · a4

1d + 35 · a3
1
d2 + 50 · a2

1d3 + 24 · a1d4,

so we could establish the coefficients triangle

1

1 1

1 3 2

1 6 11 6

1 10 35 50 24

1 . . . . . . . . . . . . . . .
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This reminds Newton’s Binomial and Pascal’s Triangle. The question which naturally arises is: may one built this “Arith-

metic Triangle” in a similar way one does with binomial coefficients? To eventually achieve this goal, one must find and

understand the pattern underneath, which is not self-evident. But the answer to the question is affirmative. In fact, later

that day, I found out that we may indeed construct the triangle progressively, in a similar way we do with Pascal’s triangle.

To my surprise, however, this issue brought back complete and incomplete factorials.

The search for an answer and some collateral results are the subject of this article.

I must point out that – also surprisingly – the solution found corresponds closely to the unsigned Stirling numbers of
the first kind, which I didn’t know. Several papers have been recently produced concerning Stirling numbers and cyclic

groups, for instance (Broder, 1984) and (Deveci & Akuzum, 2014); or Pascal matrices (Deveci & Karaduman, 2012) and

(Hiller, 2016). But they don’t seem especially relevant to this article, which essentially deals with basic stuff.

2.1. Factorial of Order k

Consider a real number x and an integer k, along with the special case 0! = 1; the x factorial of order k is defined by

(read “x k factorial”)

x(k)! =
x!

(x − k)!
, (2)

or, for k > 0,

x(k)! =

k∏
i=1

(x − i + 1) = x · (x − 1) · . . . · (x − k + 1) ; (2.a)

in this case, x(k)! is an ‘incomplete factorial’, the product of the k major values of x!.

We assume that the definition above may be extended to negative order numbers; but then we conclude that

x(−k)! =
1

(x + k)(k)!
. (3)

Remark that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(0)! = 1

x(x)! = x!

x(1)! = x , for x � 0

x(−1)! =
1

x+1
, for x � −1.

This proofs to be quite consistent. Generally speaking, as I explained in (Ferreira), factorials of order k must be seen as

limits of a quotient. Besides, as presupposed in the generalization of x(k)! from positive to negative numbers x, if k > 0

this factorial represents the product of the k values presented in equation (2.a) even for x < 0, where x! = ∞. For instance,

(−8)(3)! =
(−8)!

(−11)!
=

(−8) · (−9) · (−10) · (−11)!

(−11)!
= (−8) · (−9) · (−10) = −720 ;

if k < 0, then, according to (3), n(k)! represents the inverse of a product of k factors:

(−8)(−3)! =
1

(−5)(3)!
=

1

(−5) · (−6) · (−7)
= − 1

210
.

In these terms, of course (
n
k

)
=

n(k)!

k!
(4)

is a generalized binomial coefficient and so, the development in MacLaurin series of the function y = (1 + x)n may be

written as

(1 + x)n =

+∞∑
k=0

(
n
k

)
. xk =

+∞∑
k=0

n(k)!

k!
xk.

2.2 Rising and Falling Factorials

In a rapid web research, these days, I found out that the concept of x(k)! was already known, with other name and

symbol(s), since the end of the 19th Century; it has been introduced by Leo A. Pochhammer with the notation (x)k. I was

quite surprised but, anyway, Pochhammer doesn’t consider negative integers for k.
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I also discovered the useful concept of rising factorial – in contrast with falling factorial, this is, x(k)! –, which I’ll note

by x(k)! ; for x � 0 and positive integer k:

x(k)! =

k∏
i=1

(x + i − 1) = x · (x + 1) · . . . · (x + k − 1) . (5)

It’s easy to see that

x(k)! = (x + k − 1)(k)! or x(k)! = (x − k + 1)(k)! ; (5.a)

For instance, 7(4)! = 10(4)! = 7 · 8 · 9 · 10. Based on the assumption that the equality (5.a) must stand for any values of x
and k and keeping in mind the equation (2), we’ll generically define the rising factorial x(k)! by

x(k)! =
(x + k − 1)!

(x − 1)!
. (6)

Therefore, as particular cases, we obtain ⎧⎪⎪⎨⎪⎪⎩ x(0)! = 1

1(k)! = k!.

Besides, we’ll consider (5.a) also valid for negative order number −k; but then, according to (3):

x(−k)! =
1

(x − 1)(k)!
. (7)

Finally: to simplify, we may read x(k)! and x(k)! respectively as “x down k factorial” and “x up k factorial”.

2.3 New Generalization on Factorials

Let’s resume the arithmetic progression

a1 = a , a2 = a1 + d , a3 = a1 + 2d , . . . , an = a1 + (n − 1) d, . . . ,

where a1 is the initial term. The constant d is usually known as the common difference of successive members; I will call

it the increment of the progression.

Let Pn be the product of the first n terms of this arithmetic progression. It’s quite evident that:

• for a1 = d = 1 : Pn = n! ;

We’ll say that this is an unitary arithmetic progression (u.a.p.) on basis 1 (its initial term).

• for a1 = a and d = 1 : Pn = a(n)! = (a + n − 1)(n)!.

Now, we may put the n-th term of the progression above in the form

an = d
[a
d
+ (n − 1)

]
and the expression between brackets corresponds to an u.a.p. on basis a/d. In this case,

Pn =

n∏
i=1

ai = dn
n∏

i=1

[a
d
+ (i − 1)

]

and we’ll identify Pn with the a rising factorial of increment d and order n, noted by a(d ; n)! (read “a up d n factorial”):

a(d ; n)! = dn
(a
d

)(n)

! . (8)

This relates to the a falling factorial of increment d and order n, noted by a(d ; n)! (read “a down d n factorial”) as

follows:

a(d ; n)! = dn
(a
d

)
(n)

! , (9)
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in such a way that

a(d ; n)! = [a − (n − 1) d](d ; n)! and a(d ; n)! = [a + (n − 1) d](d ; n)! ,

As a particular case, from (8):

a = d ⇒ a(a ; n)! = an 1(n)! = ann! .

Of course, making d = 1, we recover the simple rising and falling factorials a(1 ; n)! = a(n)! and a(1 ; n)! = a(n)!.

3. Arithmetic Coefficients

The key point to discover the rule for building the Arithmetic Triangle is to notice that, because of the linear nature of an

arithmetic progression, each Pn proceeds from the precedent Pn−1 in a similar linear way.

Our goal is to discover the n coefficients Cnk (or Cn;k) that allow us to write, making a1 = a, the product Pn as

Pn =

n∑
k=1

Cnk an−k+1dk−1 = Cn1 and0 +Cn2 an−1d1 + · · · +Cnk an−k+1dk−1 + · · · +Cnn a1dn−1. (10)

We’ll call these Cnk the arithmetic coefficients for the product Pn. Since the coefficients Cnk are independent from a and

d, we’ll make d = 1 in the following deduction [the numbers in bold correspond to n − 1 in each case].

P1 = a ⇒ C11 = 1.

P2 = C11 a ·
⎛⎜⎜⎜⎜⎜⎜⎜⎝a + n − 1︸︷︷︸

1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ = C11 a2 + 1 C11 a ⇒
⎧⎪⎪⎨⎪⎪⎩ C21 = C11 = 1

C22 = (n − 1) C11

P3 =
(
C21 a2 +C22 a

)
·
⎛⎜⎜⎜⎜⎜⎜⎜⎝a + n − 1︸︷︷︸

2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= C21 a3 + (2 C21 +C22) a2 + 2 C22a ⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
C31 = C21 = 1

C32 = (n − 1) C21 +C22

C33 = (n − 1) C22

P4 =
(
C31 a3 +C32 a2 +C33 a

)
·
⎛⎜⎜⎜⎜⎜⎜⎜⎝a + n − 1︸︷︷︸

3

⎞⎟⎟⎟⎟⎟⎟⎟⎠

= C31 a4 + (3 C31 +C32) a3 + (3 C32 +C33) a2 + 3 C33a ⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

C41 = C31 = 1

C42 = (n − 1) C31 +C32

C43 = (n − 1) C32 +C33

C44 = (n − 1) C33.

This is enough to recognize the pattern. We see that Cn1 = 1, for every n, and we obtain the general rule:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Cn1 = 1

Cnk = (n − 1) Cn−1; k−1 +Cn−1; k

Cnn = (n − 1) Cn−1; n−1, for n > 1.

(11)

A more formal demonstration follows the same path, as we’ll see in the sequence. As a matter of fact, the single line

Cnk = (n − 1) Cn−1; k−1 +Cn−1; k

is sufficient if we understand that it must be

Cnk = 0 for k < 1 or k > n . (12)

This is because k < 1 corresponds to the ‘left wing’ – this is, the ‘negative-increment’ terms – and k > n to upper terms

in the progression; in both cases, these terms are out of the product Pn. The last condition also corresponds to the empty

spaces in the Arithmetic Triangle.

Furthermore, we’ll generalize Cn1 = 1 to n = 0, resulting C11 = 0 ·C00︸�︷︷�︸
0

+ C01︸︷︷︸
1

= 1.

103



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 2; 2017

Theorem 1. If Pn is the product of the first n terms of the arithmetic progression given by ak = a1 + (n − 1) k, then

Pn =
∑n

k=1 Cnk an−k+1dk−1 with Cnk = (n − 1) Cn−1; k−1 +Cn−1; k . (13)

Proof. It’s a proof by induction:

1) The equation above is obviously valid for P1 = 1 · a.

2) Let Pn−1 =
∑n−1

k=1 Cn−1; k an−kdk−1.

3) Then, Pn = Pn−1 · [a − (n − 1) d]

For each k in the resulting sum, we’ll have two terms:

Cn−1; k an−k+1dk−1 +Cn−1; k an−kdk

So, if we make k = i − 1 and k = i, we’ll get⎧⎪⎪⎨⎪⎪⎩ k = i − 1 : Cn−1; i−1 an−1+2d1−2 + (n − 1) Cn−1; i−1 an−i+1di−1

k = i : Cn−1; i an−i+1di−1 + (n − 1) Cn−1; i an−idi

Remark that the second term for (i − 1) combines with the first one for i :[
(n − 1) Cn−1; i−1 +Cn−1; i

]
an−i+1di−1

This is valid for every i, therefore for every k ; but the indexes of Cnk relates to the product an−k+1dk−1 and, so, the

expression between brackets corresponds to Cnk, which means that Cnk = (n − 1) Cn−1; k−1 +Cn−1; k. �

Based on (13) or (11), one can progressively construct the Arithmetic Triangle:

n=1 1

n=2 1 1

n=3 1 3 2

n=4 1 6 11 6

n=5 1 10 35 50 24

n=6 1 15 85 225 274 120

n=7 1 21 175 735 1624 1764 720

n=8 1 28 322 1960 6769 13132 13068 5040

n=9 1 36 546 4536 22449 67284 118124 109584 40320

n=10 1 45 870 9450 63273 269325 723680 1172700 1026576 362880

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(14)

Each set of Arithmetic Coefficients – this is, for each value of n – displays the following remarkable properties:

• ∑n
k=1 Cnk = n!

• Cnn = (n − 1)!

• For n > 1 :
∑n−1

k=1 Cnk = n! − (n − 1)! = (n − 1) · (n − 1)!

• For n > 1 :
∑n

k=1 (−1)(k−1) Cnk = 0 .

The first equality is self-evident because, as we have seen, making a1 = d = 1 (u.a.p. on basis 1), Pn is the product of the

n integers from 1 to n, this is, n factorial. The second comes from a recurrence relation: from (13) and (12), remembering
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that C11 = 1 = 0!, we get, for n > 1, since Cn−1; n = 0: Cnn = (n − 1) Cn−1; n−1; so,

C22 = 1 ·C11 = 1!

C33 = 2 ·C22 = 2 · 1! = 2!

C44 = 3 ·C33 = 3 · 2! = 3!

. . .

Cnn = (n − 1) ·Cn−1; n−1 = (n − 1)! .

The third equality results from combining the previous two. Finally, the fourth equality – which we may call an alternate
sum – comes from the fact that, if we consider the ‘left wing’ of the u.a.p. on basis 1 (by simply making d = −1), it

results a2 = 0 and, so, for n > 1, each product Pn includes the zero.

For instance, making n = 6:

• ∑6
k=1 C6k = 1 + 15 + 85 + 225 + 274 + 120 = 720 = 6!

• C66 = 5! = 120

• ∑5
k=1 C6k = 1 + 15 + 85 + 225 + 274 = 600 = 5 · 5!

• ∑6
k=1 (−1)(k−1) C6k = 1 − 15 + 85 − 225 + 274 − 120 = 0.

An important feature here is that the use of the Arithmetic Coefficients transform products, n!, into sums, both with n
terms. Concerning these coefficients, here’s another interesting fact:

• ∏n
k=1 Ckk =

∏n−1
k=1 (n − k)! =

∏n−1
k=1 k!.

This is the product of the diagonal terms of the Arithmetic Triangle up from 1 to n. Following Neil Sloane and

Simon Plouffe, it may be useful to define, for a positive integer n, the n superfactorial – I’ll note n!∗ instead of

sf(n) – as

n!∗ = n! (n − 1)!∗ =
∏n

k=1 k! = n! (n − 1)! (n − 2)! . . . 2! 1! , (15)

which is equivalent to

n!∗ =
n∏

k=1

kn−k+1 = n · (n − 1)2 · (n − 2)3 . . . 2n−1 · 1n. (15.a)

This last equality also results from a recurrence relation; informally:

2!∗ = 2! 1!

3!∗ = 3!︸︷︷︸
3·2!

2! 1! = 3 · (2!)2 1! = 3 · ( 2!︸︷︷︸
2·1!

)2 1! = 3 · 22 · 13

4!∗ = 4!︸︷︷︸
4·3!

3!∗ = 4 (3 · 2 · 1)
(
3 · 22 · 13

)
= 4 · 32 · 23 · 14

. . .

n!∗ = n!︸︷︷︸
n·(n−1)!

(n − 1)!∗ = n (n − 1)! (n − 1)!∗ = n · (n − 1)2 · (n − 2)3 . . . 2n−1 · 1n.

We may write, then:
∏n

k=1 Ckk = (n − 1)!∗

For instance, for n = 6:
∏6

k=1 Ckk = 5!∗ = 5 · 42 · 33 · 24 · 15 = 34560.

Consider now some other cases for the arithmetic progression:

1. a = d : an−k+1dk−1 = an and Pn = an ∑n
k=1 Cnk = ann! .

2. As a particular case, a = d = −1 : Pn = (−1)n ∑n
k=1 Cnk = (−1)n n! = (−1)(n)! = (−n)(n)!

according to Theorem 2 in (Ferreira) and equation (5.a) above.
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3. As another particular case, a = d = 2 :

2 4 6 8 10 . . . 2k . . . ;

this is the set of even numbers and it results 2(2;n)! = (2n)!! = Pn = 2n ∑n
k=1 Cnk = 2nn! [where (2n)!! is the

double factorial of m = 2n].

For instance, 8!! = P4 = 24 (1 + 6 + 11 + 6) = 244! = 16 · 24 = 384.

4. a = 1 and d = 2 :

1 3 5 7 9 . . . 2k − 1 . . . ;

this is now the set of odd numbers and it results 1(2;n)! = (2n − 1)!! = Pn =
∑n

k=1 2k−1Cnk [where (2n − 1)!!

is the double factorial of m = 2n − 1].

For instance, 9!! = P5 = 1 · 1 + 2 · 10 + 4 · 35 + 8 · 50 + 16 · 24 = 1 + 20 + 140 + 400 + 384 = 945.

5. Making d = 1 : Pn =
∑n

i=1 Cni an−i+1 = an (n)! = a(n)! , for a given a or an = a + n − 1.

For instance, making a5 = 10, then a = 6, this corresponding to the progression

6 7 8 9 10 11 . . . ,

then P5 =
∑5

i=1 C5i · 66−i = 7776 + 12960 + 7560 + 1800 + 144 = 30240 = 10(5)! = 6(5)!

4. Direct Determination of Arithmetic Coefficients
4.1 Sum-factorials

My goal here was to establish an explicit equation (or equations) allowing to directly obtain whatever coefficient

Cnk, independently from the Arithmetic Triangle (as one does with binomial numbers). Unfortunately, I haven’t

been able to induce a simple formula; in the end, for k > 4, we stumble on a recursive method of the kind. Anyway,

some interesting results appear. So, first of all, it is convenient to define the x sum-factorial (also known as “x-th
triangular number”) as

x † =
x∑

i=1

i = 1 + 2 + 3 + · · · + (x − 1) + x =
(x + 1)(2)!

2
, (16)

or x † = x + (x − 1) †, together with the special case 0† = 0; and, for a non-negative integer k, the x sum-factorial
of order k as

x(k)† = x † − (x − k) †
=

∑k
i=1 (x − i + 1) = x + (x − 1) + · · · + (x − k + 1)

= k
2

(2x − k + 1) ,

(17)

this is, the sum of the k major values of x †. As for product-factorials x(k)!, we’ll consider that the definition of x(k) †
also stands for negative integers −k; the result is

x(−k)† = − [(x + k) † − x †]

= − (x + k)(k) †
= − k

2
(2x + k + 1) .

(18)

It’s easy to see that, as particular cases, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(0)† = 0

x(x)† = x †
x(1)† = x

x(−1)† = − (x + 1) .

The infinite sequence of u j = j † is

1 3 6 10 15 21 28 36 45 55 66 78 . . .

Finally, as a curiosity, if we consider x(k) † as a falling sum-factorial, then the x rising sum-factorial is

x(k)† =
∑k

i=1 (x + i − 1) = x + (x + 1) + · · · + (x + k − 1)

= k
2

(2x + k − 1) .
(19)
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4.2 Obtaining Arithmetic Coefficients

Coming back to the Cnk issue, rather than providing exhaustive proofs, we’ll take an inductive path. This, I think,

is enough for the moment and more instructive. We’ll proceed step by step, each column at a time, increasing the

value of k, always keeping in mind that Cnk = 0 for k > n and the recursive relation

Cnk = (n − 1) Cn−1; k−1 +Cn−1; k .

1. First of all, we know that Cn1 = 1. Then, it’s easy to conclude that, for k = 2:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C22 = 1 + 0 = 1

C32 = 2 C21 +C22 = 2 + 1

C42 = 3 C31 +C32 = 3 + 2 + 1

C52 = 4 C41 +C42 = 4 + 3 + 2 + 1

... ,

this is,

Cn2 = (n − 1) † = n−1
2

(1 + n − 1) ⇒ Cn2 =
1
2

n(2)! =

⎛⎜⎜⎜⎜⎝ n

2

⎞⎟⎟⎟⎟⎠ . (20)

2. We’ll proceed in the same way for k = 3:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C23 = 0

C33 = 2 C22 +C23 =
1
2

2 · 2(2)!

C43 = 3 C32 +C33 =
1
2

[
3 · 3(2)! + 2 · 2(2)!

]
C53 = 4 C42 +C43 =

1
2

[
4 · 4(2)! + 3 · 3(2)! + 2 · 2(2)!

]
... ,

this is,

Cn3 =
1
2

∑n−1
j=2 j · j(2)! =

∑n−1
j=2 F j , (21)

where

F j =
1

2
j · j(2)! = j ·

⎛⎜⎜⎜⎜⎝ j

2

⎞⎟⎟⎟⎟⎠ . (22)

These are the values for the F j , j from 1 to 12:

F1 = 0 F2 = 2 F3 = 9 F4 = 24 F5 = 50 F6 = 90

F7 = 142 F8 = 224 F9 = 324 F10 = 450 F11 = 605 F12 = 792.
(22.a)

So, for instance, C73 =
∑6

j=2 F j = 2 + 9 + 24 + 50 + 90 = 175.

3. Let’s examine now the case of k = 4:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C34 = 0

C44 = 3 C33 +C34 = 3F2

C54 = 4 C43 +C44 = 4F3 + (4 + 3) F2 = 4(1)† · F3 + 4(2)† · F2

C64 = 5 C53 +C54 = 5(1)† · F4 + 5(2)† · F3 + 5(3)† · F2

... ,

this is,

Cn4 =
∑n−3

i=1 (n − 1)(i) † · Fn−i−1 . (23)

We’ll write this as

Cn4 =

n−3∑
i=1

Ai
n4 · Fn−i−1 ; (23.a)
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making

Ai
n4 = (n − 1)(i) † = i

2
(2n − i − 1) . (24)

where i is not an exponent but an upper index. Remark that

A0
n4
= 0, A1

n4 = n − 1 and, for n > 4, Ai
n4
= Ai−1

n4
+ (n − i) .

The values for Ai
n4

(where 1 ≤ i ≤ n − 3) are:

i 1 2 3 4 5 6 7 8 9 . . .

n=4 3

n=5 4 7

n=6 5 9 12

n=7 6 11 15 18

n=8 7 13 18 22 25

n=9 8 15 21 26 30 33

n=10 9 17 24 30 35 39 42

n=11 10 19 27 34 40 45 49 52

n=12 11 21 30 38 45 51 56 60 63

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(25)

For instance, making n = 8, we get

C84 =
∑5

i=1 Ai
84
· Fn−i−1

= A1
84 · F6 + A2

84 · F5 + A3
84
· F4 + A4

84 · F3 + A5
84
· F2

= 7 · 90 + 13 · 50 + 18 · 24 + 22 · 9 + 25 · 2 = 1960.

OBS.: we’ll necessarily note Cn;k or Ai
n;k in the case of n or k being two digits numbers, like A5

12; 4
= 45.

4. Following a similar path, we’ll come now to k = 5; and then generalize the result to k ≥ 4.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C45 = 0

C55 = 4 C44 +C45 = 4A1
44 · F2

C65 = 5 C54 +C55 = 5A1
54

F3 +
(
5A2

54
+ 4A1

44

)
F2

C75 = 6 C64 +C65 = 6A1
64

F4 +
(
6A2

64
+ 5A1

54

)
F3 +

(
6A3

64
+ 5A2

54
+ 4A1

44

)
F2

... .

Take for instance, n = 7; if we put ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
A1

75
= 6A1

64

A2
75
= 6A2

64
+ 5A1

54

A3
75
= 6A3

64
+ 5A2

54
+ 4A1

44
,

this corresponding to diagonal product/sums of i terms in the table (25), we’ll write

C75 = A1
75 · F4 + A2

75 · F3 + A3
75 · F2,

which is an analogous equation to (23.a).

We deal here with a recursive process; so, for k ≥ 5, it must be

Ai
nk =

i∑
j=1

(n − j) Ai− j+1

n− j ; k−1
. (26)
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Remark that the number of terms for Cnk is always equal to n − k + 1 ; on the other hand, the smallest term

of the Fb is F2 and, so, the biggest one is Fn−k+2. We are therefore able to write a general recursive equation,

for k ≥ 4:
Cnk =

∑n−k+1
i=1 Ai

nk · F(n−k+3)−i

= A1
nk · Fn−k+2 + A2

nk · Fn−k+1 + · · · + An−k+1
nk · F2.

(27)

Because of its recursive nature, this is mainly of theoretical interest, from an algebraic point of view. Its

application to real cases becomes quite fastidious, as k increases. Consider, for instance, the above-mentioned

case C75; the first step is easy, deriving directly from table (25):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
A1

75
= 6 · 5 = 30

A2
75
= 6 · 9 + 5 · 4 = 74

A3
75
= 6 · 12 + 5 · 7 + 4 · 3 = 119

⇒ C75 = 30 · 48 + 74 · 9 + 119 · 2 = 1624.

Now, for k = 6, to compute the two Ai
76

, we are obliged to previously calculate A1
65

, A2
65

and A1
55

because⎧⎪⎪⎨⎪⎪⎩ A1
76
= 6A1

65

A2
76
= 6A2

65
+ 5A1

55
.

We get ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
A1

65
= 5A1

54
= 5 · 4 = 20

A2
65
= 5A2

54
= 5 · 7 + 4 · 3 = 47

A1
55
= 4A1

44
= 4 · 3 = 12

⇒
⎧⎪⎪⎨⎪⎪⎩ A1

76
= 6 · 20 = 120

A2
76
= 6 · 47 + 5 · 12 = 342;

so, finally:

C76 = A1
76 · F3 + A2

76 · F2 = 120 · 9 + 342 · 2 = 1764.

For the last term, C77, there is a single A:

C77 = A1
77 · F2︸︷︷︸

2

;

but

A1
77 = 6 A1

66︸︷︷︸
5A1

55

= 6(2)! A1
55︸︷︷︸

4A1
44

= 6(3)! · 4 = 6(4)! ,

which means that C77 = 6(4)! · 2 = 6!, as we already knew.

4.3 Matrix Calculation

Of course, the calculus of a certain Cnk becomes less fastidious if one previously (and automatically) calculates the

several Ai
nk by means of appropriate definitions and rules.

Let Ak be an infinite square matrix, where we’ll put Ai
nk for its entry in the supposed n-th row and the supposed i-th

column; supposed because we’ll make

Ai
nk = Ai0+Δi

n0+Δn ; k ,

where Δn and Δi are integers we’ll call row and column increments respectively; n0 and i0 are the effective row
and column numbers. For our purposes, we’ll make Δn = 3 and Δi = 0; therefore, A1

4k is the entry in the effective

first row and first column.

We’ll define Ak+1 as the (first) diagonal descendant matrix of Ak – which is its diagonal ascendant – if

Ai
n; k+1 =

i∑
j=1

(n − j) Ai− j+1

n− j ; k . (28)

This is an equivalent equation to (26). The idea is to present A5 as the descendant of A4 [the matrix corresponding

to the table (25)]. Naturally, the second diagonal descendant of Ak is Ak+2, the descendant of Ak+1; generally

speaking, Ak+r is the r-th diagonal descendant of Ak.

109



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 2; 2017

So, if we define the matrix A4 following the equation (24), just like the table (25), in which we’ll make all empty

entries equal to zero, we get

A4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0 0 0 0 0 0 0 0 . . .

4 7 0 0 0 0 0 0 0 . . .

5 9 12 0 0 0 0 0 0 . . .

6 11 15 18 0 0 0 0 0 . . .

7 13 18 22 25 0 0 0 0 . . .

8 15 21 26 30 33 0 0 0 . . .

9 17 24 30 35 39 42 0 0 . . .

10 19 27 34 40 45 49 52 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (29)

The first diagonal descendant of A4 is, then, the matrix

A5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 . . .

12 0 0 0 0 0 0 0 0 . . .

20 47 0 0 0 0 0 0 0 . . .

30 74 119 0 0 0 0 0 0 . . .

42 107 179 618 0 0 0 0 0 . . .

56 146 251 1361 29858 0 0 0 0 . . .

72 191 235 2688 6136 9616 0 0 0 . . .

90 242 431 4857 11702 19214 26036 0 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (30)

The modus operandi, for A2
75

and A3
75

, as we saw before, is signalized respectively by the box and the double box

on both matrices. Using the same simple routine, we obtain the second diagonal descendant:

A6 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 . . .

0 0 0 0 0 0 0 0 0 . . .

60 0 0 0 0 0 0 0 0 . . .

120 342 0 0 0 0 0 0 0 . . .

210 638 1175 0 0 0 0 0 0 . . .

336 1066 2070 1361 22697 0 0 0 0 . . .

504 1650 3325 75841 265632 0 0 0 0 . . .

720 2414 5000 208899 815505 4240576 0 0 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; (31)

and so on. We see that the null rows increase from the top, one by one, as we ‘descend’ from the original matrix;

related to that, at the same time the number of non-null entries diminishes in each row.

As an example, with a spreadsheet, we may use the matrix A6 to (automatically) compute C76 and C96:⎧⎪⎪⎨⎪⎪⎩ C76 =
∑2

i=1 Ai
76
· F4−i = 120 · 9 + 342 · 2 = 1764

C96 =
∑4

i=1 Ai
96
· F6−i = 336 · 50 + 1066 · 24 + 2070 · 9 + 3135 · 2 = 67284.
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5. Stirling and Harmonic Numbers
Some days after obtaining most of the precedent results (this is, except all the previous section), I learned about the

so-called Stirling numbers. Then I found out that the arithmetic coefficients are equivalent to the unsigned Stirling

numbers of the first kind
⎡⎢⎢⎢⎢⎣ n

k

⎤⎥⎥⎥⎥⎦ as follows:

⎡⎢⎢⎢⎢⎣ n

k

⎤⎥⎥⎥⎥⎦ = Cn; n−k+1 or Cnk =

⎡⎢⎢⎢⎢⎣ n

n − k + 1

⎤⎥⎥⎥⎥⎦ (32)

and that one may generate a triangle formed by these numbers, using a similar recurrence relation to the one

established by theorem 1, which is essentially symmetrical to the Arithmetic Triangle!

I discovered these peculiar numbers – concerning permutations according to their number of cycles – by chance,

related to the n-th harmonic number Hn, this is, the sum of the reciprocals of the first n natural numbers:

Hn = 1 +
1

2
+

1

3
+ · · · + 1

n
=

n∑
k=1

1

k
.

And I looked for harmonic numbers precisely because they corresponds to the sequence of the reciprocals of natural

numbers and I had just proved the following theorem, which I found interesting.

Theorem 2. If Hn is the n-th harmonic number, then, for n > 1,

Hn =
Cn+1; n

Cn+1; n+1

=
Cn+1; n

n!
. (33)

Proof. It is, once again, a proof by induction:

1) The equation is valid for n = 2: H2 = 1 + 1
2
= 3

2
=

C32

C33
.

2) Suppose Hn−1 =
Cn; n−1

Cn; n
=

Cn; n−1

(n−1)!
.

3) Then,

Hn = Hn−1 +
1

n
=

n Cn; n−1 +Cnn

n!
=

Cn+1; n

Cn+1; n+1

,

according to theorem 1. �

For instance, H5 =
C65

C66
= 274

120
= 137

60
= 2, 2833 . . . .

It has been proved that the harmonic series roughly approximate the natural logarithm function (Harmonic). In fact,

it is quite simple to prove, using the MacLaurin-Cauchy integral test, that the series is divergent. But this means

that

limn→∞ Hn = limn→∞
Cn; n−1

Cnn
+ lim

n→∞
1

n︸︷︷︸
0

= ∞ ⇒ limn→∞
Cn; n−1

Cnn
= ∞,

which is coherently obvious since the last quotient represents Hn−1. But one may also understand that this means

that Cn; n−1 grows faster then Cnn; and this is because of the double recurrence relation:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Cn; n−1 = (n − 1) Cn−1; n−2︸�������������︷︷�������������︸
�0

+Cn−1; n−1︸���︷︷���︸
�0

; and

Cnn = (n − 1) Cn−1; n−1︸�������������︷︷�������������︸
�0

+Cn−1; n︸�︷︷�︸
0

= (n − 1) Cn−1; n−1

⇒ Cn; n−1

Cn; n
=

Cn−1; n−2

Cn−1; n−1
+ 1

n−1
.

The last equation correspond to Hn−1 = Hn−2 +
1

n−1
, this is, (33) applied to Hn−1. But one clearly sees that there is a

surplus of 1
n−1

for
Cn; n−1

Cn; n
in relation to

Cn−1; n−2

Cn−1; n−1
. This generically makes Cn; n−1 grow faster then Cnn, with n → ∞. On

the other hand, the growth is attenuated as n increases because the same happens with 1/n.
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6. Further Matrix Representation

If we form a lower triangular matrix of order n with the Ci j, 1 ≤ i, j ≤ n,

Cn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0

1 1 0 . . . 0

1 3 2 . . . 0

1 . . . . . . . . . . . .

1 Cn2 Cn3 . . . Cnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(34)

then
∏n

i=1 Cii = (n − 1)!∗ is its determinant.

We may use a matrix representation for the first equation in (13), either in the ‘individual’ form (for each n)

Pn = Cnn · An this is, [Pn] =
[

Cn1 Cn2 . . . Cnn

]
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

an

an−1d

. . .

adn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

or using the square matrix Cn above. For this purpose, however, we must introduce the concepts of progressive
matrix and matrix column product.

1. A progressive matrix M̌n on variables x and y is an upper triangular matrix of order n defined by⎧⎪⎪⎨⎪⎪⎩ M̌i j = x j−iyi−1 for j ≥ i ;

M̌i j = 0 for j < i.
(35)

Explicitly:

M̌n =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x x2 x3 . . . xn−1

0 y xy x2y . . . xn−2y

0 0 y2 xy2 . . . xn−3y2

0 0 0 y3 . . . xn−4y3

0 . . . . . . . . . . . . . . .

0 0 0 0 . . . yn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(16.a)

We see that the determinant of this matrix is given by
∣∣∣M̌∣∣∣ =∏n−1

i=0 y i = y
n(2)!

2 .

Two special cases deserve attention:

(a) For x = 0 and y = 1, M̌n turns into the identity matrix of order n.

(b) Making x = y = 1, we obtain Ľn: ⎧⎪⎪⎨⎪⎪⎩ Ľi j = 1 for j ≥ i ;

Ľi j = 0 for j < i.

2. Given two square matrices of the same order n, B and A, the column product B %A is the n × 1 matrix given

by

(B % A)i =

n∑
j=1

Bi jA ji . (36)

This means that each row i of B doesn’t multiply but the column of the same order i of A, thus producing a

column matrix.

Now, coming back to the use of the Arithmetic Triangle in the form of Cn, we’ll make x = a and y = d; furthermore,

we’ll multiply the matrix M̌n by the initial term a, in such a way that we’ll write for the n × 1 matrix Pn, which

elements are Pi (1 ≤ i ≤ n):

Pn = Cn % a · M̌n, (37)
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keeping in mind that

a · M̌i j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a j−i+1

a j−id1

a j−i−1d2

. . .

ad j−1

0

. . .

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

On the other hand:

Cn % Ľn = [i !]n . (38)

As an example, let a = 2 and d = 3; well have the progression

2 5 8 11 14 17 20 23 26 29 32 35 . . .

and, for limit n = 6,

P6 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

1 1 0 0 0 0

1 3 2 0 0 0

1 6 11 6 0 0

1 10 35 50 24 0

1 15 85 225 274 120

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
%

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 4 8 16 32 64

0 6 12 24 48 96

0 0 18 36 72 144

0 0 0 54 108 216

0 0 0 0 162 324

0 0 0 0 0 486

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2

10

80

880

12320

209440

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Remark that these concepts of progressive matrix and matrix column product are quite useful, for example, to represent

Newtons binomial, S n = (x + y)n, as

Sn = Bn+1 % M̌n+1,

where Bn+1 is the (n + 1) × (n + 1) matrix of the binomial coefficients

(
n
k

)
= Bn+1; k+1, called Pascal matrix of order

n + 1; or yet to express the equality, for n > 0,

Qn = xn − yn = (x − y)

n∑
i=1

xn−iyi−1

as

Qn =
[
x − y

]
n % M̌n,[

x − y
]
n being the n × n matrix which elements are all equal to x − y.

7. Conclusion

The study of the product of the first n terms of an arithmetic progression leads to an infinite numerical triangle – called

Arithmetic Triangle – formed by certain coefficients, Cnk and which may be progressively built. One discovers that the

Cnk correspond to the so-called Unsigned Stirling Numbers of the First Kind, which also generate a numerical triangle,

essentially symmetrical to the one displaying the Cnk.

We established several proprieties and propositions concerning the Arithmetic Triangle and factorials. On the way, we

generalized the concepts of factorial of order k, rising and falling factorials, and introduced the concepts of sum-factorial,

descendant matrix, progressive matrix and matrix column product.

Aknowledgment

I wish to thank my pupil Tomás Pacheco for bringing up this issue and also for showing all the willingness and enthusiasm

of youth. It is quite refreshing!

113



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 2; 2017

References

Ferreira, Luı́s D. (2010). Integer Binomial Plan: a generalization on Factorials and Binomial Coefficients. Journal of
Mathematics Research, 2(3), 18-35. https://doi.org/10.1016/0012-365X(84)90161-4

Broder, Andrei Z. (1984). The r-Stirling numbers. Discrete Mathematics 49(3), 241-259.

Deveci O., & Akuzum Y. (2014), The Cyclic Groups and the Semigroups via MacWilliams and Chebyshev Matrices.

Journal of Mathematics Research, 6(2), 55-58

Deveci O., & Karaduman E. (2012), The cyclic groups via the Pascal matrices and the generalized Pascal matrices. Linear
Algebra and its Applications, 437, 2538-2545.

Hiller, J. (2016). Old Friends in Unexpected Places: Pascal (and Other) Matrices in GLn(C). The American Mathematical
Monthly , 161-167.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

114



Journal of Mathematics Research; Vol. 9, No. 2; April 2017 
ISSN 1916-9795   E-ISSN 1916-9809 

Published by Canadian Center of Science and Education 

115 

On The Twistor Method for Treating Differential Equations 

Yasmeen S. Osman1, Mohammed A. Basheer 2 & Tarig A. Abdelhaleem3 

1 Department of Mathematics and Physics, Faculty of Education, University of Gezira, Khartoum, Sudan 
2 Department of Mathematics, faculty of sciences, University of Alnillin, Khartoum, Sudan 

3 Department of Mathematics, Collage of Applied and industrial sciences, University of Bahri, Khartoum, Sudan 

Correspondence: Yasmeen S. Osman, Department of Mathematics and Physics, Faculty of Education, University of 
Gezira, Sudan. E-mail yasmeensirag@gmail.com 

 

Received: October 21, 2016   Accepted: February 9, 2017   Online Published: March 23, 2017 

doi:10.5539/jmr.v9n2p115          URL: https://doi.org/10.5539/jmr.v9n2p115 

 

Abstract 
In this research we utilized complex structure in  to construct geometrical solutions for Laplace equation, wave 
equation and monopole equation. The complex space used is the so called mini – twistor space and the solutions in all 
the above cases is given by a contour integral of a twistor function over a bundle space of one – dimensional complex 
projective space. 

Keywords: Laplace equation, wave equation, monopole equation, the complex space, mini–twistor space, a twistor 
function. 
1. Introduction 
Twistors were introduced by Sir Roger Penrose and his associates since 1960, as a new way of describing the geometry of 
space-time where the ordinary space – time concepts can be translated into twistor terms. The primary geometrical object 
is not a point in Minkowiski space but a null straight line (a twistor) or, more generally, a twisting congruence of null lines. 
It turns out that twitor algebra has the same type of universality in relation to the Lorentz group. Thus, twistor theory is a 
applicable to quantum field theory and free fields of zero- rest- mass. It also formulates other fields such as Yang Mills 
fields. Recently the twistor programme has been utilized in the integrability of differential equations. It was initiated by 
Atiyah and Ward (Ward, R. S., 1977; Ward, R. & Tabor, M., 1985) and further extended by Nick Woodhouse, Lionel 
Mason, George, Sparling and others (Murray, M. K., 2002; Hitchin, N., 1982).  
In this paper, we discuss the twistor space and some applications for differential equations representing the non Abielian 
monopole equation. The structure of this paper is as follows. In section (1) we introduced the basic concepts used in this 
paper, such as complex projective space C  and holomorphic line bundle. Section (2) dealt with a complex structure on 

. In this section we defined the twistor space to be the space of oriented lines in , it is infact the non- trivial tangent 
bundle . Differential equations in  in terms of twistor functions have been treated in section (3). In this section we 
motivated Penrose transform by introducing the solution of the wave equation by a closed contour integral of a twistor 
function. Similarly integrating of an appropriate twistor function along a closed contour integral delivers a solution of a 
harmonic equation. The closed contour on both cases is in the one – dimensional complex projective space. The last 
section provided a twistor solution to the monopole equation. This equation is infact shown to be the itegrability 
conditions for linear Lax equations that were interpreted geometrically as null 2- planes that correspond to the points of 
the twistor space  via the incidence relation given by equation (30) that yields two affine coordinates  where 

 and  correspond to the homogenous coordinates  on the twistor space . Thus we 
constructed holomorphic vector bundle over the twistor space . 

2. Preliminaries 
2.1 Complex Projective Space 
Consider the set of all complex lines through the origin. It forms a complex differentiable manifold which is the n- 
dimensional complex projective space denoted by C . The complex line through  is denoted by ( Barth, W., et al., 
2015), and it is in fact 

λ                         (1) 

The numbers   are called the homogeneous co-ordinates of the line. It can be shown that C  is a complex 
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differentiable manifold.  

2.2 Holomorphic Line Bundle (Jacob, A. & Yau, S.-T., 2014) 
A holomorphic line bundle is defined by a triple  such that  satisfies the following properties: 

 is called a fiber over the base manifold. It is one-dimensional complex vector space 

  is covered with open sets , such that there exist a bi-holomorphic maps  and 
 is a linear isomorphism  

If  is holomorphic bundle then we define the holomorphic section of   as a holomorphic map: 

 with                               (2) 

for  and ,  in . 

There are holomorphic maps  

                                (3) 

Called the transition functions such that  

   on   .                             (4) 

3. Complex Structure on  
The three-dimensional Euclidean space  may be represented as a two-dimensional complex manifold which in fact 
interpreted as a simple twistor space. To see this, consider the space of all oriented lines  in  of the form  = 

 where ,  is a unit vector in the direction of  and  is orthogonal to . Then let  

                          (5) 

 

It is a four –dimensional space which may be regarded as (Glover, R. & Sawon, J., 2014). 

Reversing the orientation of lines induces a map  given by . The points  in 
 correspond to two spheres in T given by τ -invariant maps 

                           (6) 

which are sections of the projection . 

4. Differential Equations and Twistor Functions 
On an open set  not containing the point  define a local holomorphic coordinates by  

,                      (7) 

the corresponding complex coordinates ( ) in  containing  may also be defined On the overlap region  

, 

                                        (8) 

Then  
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.                                  (9) 

From equation (6) we get the τ -invariant holomorphic map  

.                       (10) 

This is map (Dunajski, M., 2009). For real valued function  on , and an oriented line  in   

We define  as 

                                      (11) 

Equivalently  

                        (12) 

so we have  

                                    (13) 

We see that smooth solutions to above equation arise from some function on . In twistor theory a twistor function 
yields solution to a differential equation on space-time. After the change of coordinates 

, 

, 

, 

                                        (14) 

Produce the wave equation.  

4.1 Penrose Transforms 
The following formula for solutions to the wave equation in Minkowski space was provided by penrose  

                 (15) 

Here  is a closed contour and the function  is holomorphic on  except some number of poles. 
Differentiating the RHS verifies that 

                                (16) 

One could modify a contour and add a holomorphic function inside the contour to  without changing the solution . 
The proper description uses sheaf cohomology which considers equivalence classes of functions and contours(Baston, R. 
J. & M. G., 2015). 

4.2 Harmonic Functions(Karp, L., 2016) 

To find a harmonic function at , restrict a twistor function f (λ, η) defined on  to a line 
 and Integrate along a closed contour integral we have  

                       (17) 

Then Differentiate under the integral to verify 

                                      (18) 
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4. 3 Abelian Monopole Equation(Atiyah, M. F. & Hitchin, N., 2014) 

We can now consider the A belian monopole equation a function   and a magnetic potential  of the 
form 

                                        (19)  

This a first order linear equation that is related to our above construction of the twistor contour integral  

Geometrically, the one-form  is a connection on a principal bundle over , and  is a section of the 
adjoin bundle. Taking the curl of both sides of this equation implies that  is harmonic, and conversely given a 
harmonic function  locally one can always find a one-form  such that the Abelian monopole equation holds. 

4.4 Non-abelian Monopoles and Hitchin Correspondence(Shibata, A., et al., 2015) 

We can generalize equation (19) using a non Abelian lie group such as . The generalized equations in  results 
if we consider the anti- Hermitian  matrices . The generalized non-abelian monopole equation is given by  

                                                             (20) 

where  is the non-abelian magnetic field 

                       (21) 

The pair  transform as 

 , 

 

for  

                                  (22) 

 

5. Twistor Solution to the Monopole Equation 
A brief description of the twistor solution to the monopole equation goes as follows(Shibata, A., et al., 2015):  

For the potentials  we solve the matrix ODE along each line   

                               (23) 

The space of solutions at  is a complex vector space , thus giving rise to a complex vector bundle over  
with patching matrix . 

The monopole equation (20) on   holds if and only if this vector bundle is holomorphic, i.e. the  

Cauchy–Riemann equations 

,  

                                          (24) 

hold. 

We now introduce a metric and a volume forms on  

, 

                                      (25) 
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where the coordinates are real  

With we define . The monopole equations become  

                             

, 

                                        (26) 

Where  

We notice that the above equations are the integrability conditions for an overdetermined system of linear Lax equations 

,  

where  

,                         (27) 

And  takes values in  

For , equation (27) provide a gauge , and , with matrix  such that 

, 

                                 (28) 

The above gauge and (26) yield the integrable chiral model 

                             (29) 

The Lax representation (27) can be interpreted geometrically: given a pair of real numbers (η, λ) the plane 

                                    (30)  

is null with respect to the Minkowski metric on , infact all null planes are of this form with . 

We see that  is the two-dimensional complex twistor space  in which points of  are the 2-planes in  
via the incidence relation 

                                      (31) 

Here  are homogeneous coordinates on  as , where  In the affine 
coordinates  equation (31) gives (30). 

The homogeneous coordinates are denoted by  , and the two-set covering of  lifts to a covering of 

the twistor space T 

 ,              

                                       (32) 

The functions ,  are the inhomogeneous coordinates in and , respectively. It then follows that 
 

Conversely for a holomorphic vector bundle we can construct a monopole. The construction is as in the following 
theorm.  

5.1 Theorem 

There exists a one-to-one correspondence between the gauge equivalence classes of complex solutions to (26) in the 

complexified Minkowski space  with the gauge group   and holomorphic rank  vector bundles  over 

the twistor space  which are trivial on the holomorphic sections of .  

Proof 

We first outline how a holomorphic rank  vector bundle with connection (A, ) can be constructed. Have (A, ) is a 
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solution to (26). Integrating the pair of linear PDEs , where   are given by (27), we get an n- 
dimensional vector space to each null plane  in a complexified Minkowski space. The null plane  corresponds to a 
point in  which is a fiber of a holomorphic vector bundle : E → T. The fibres of  at   can be 
identified and therefore  is trivial on each section.  

Conversely if  is a vector bundle over  which is trivial on each sectional  we can utilize 
Birkhoff–Grothendieck theorem to get 

                            (33) 

where the space of sections restricted to  is . Let us now construct a pair (A, ) on this bundle that satisfies (26). 
First cover the twistor space with two open sets  and  so that we have local trivializations  

,               

                                             (34) 

The holomorphic patching is simply   on . F can be split: 

,                                        (35) 

Then  implies that  

                                (36) 

Since both sides of the above equation are homogenous of degree 1 in  and holomorphic around  and 
, respectively we see that the decomposing of  as  

                                    (37) 

gives a one-form  and a scalar field  on the complexified Minkowski space, i.e. 

                                   (38) 

The Lax pair (27) becomes 

                                                                   (39) 

Where  , so that 

                              (40) 

and  is a solution to the Lax equations regular around . Let us show explicitly that (26) holds. 
Differentiating (36) with respect to  yields 

                          (41) 

which holds for all  if 

                                       (42) 

Where . Equation (42) is the Yang Mills spinor form equation. 

The vector bundle  need to be compatible with (10) and therefore , this a mounts to Euclidean reality 

conditions for non abelian monopole. We shoud also have  

                                     (43) 

Where  and * denotes the Hermitian conjugation. 

To determent  the Lorentzian reality conditions, the bundle must be invariant under the involution (41). Below we shall 
demonstrate how the gauge choices leading to the integrable chiral model (29) can be made at the twistor level. 

Let 

 , 

                                             (44) 
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So that  

 , 

                                               (45) 

H is defined up to a multiple by an inverse of a non-singular matrix  independent of   

 , 

                                                            (46) 

We choose g such that  so 

                                   (47) 

And  

                                (48) 

i.e. 

                                   (49) 

giving the Ward gauge with  . With respect to this gauge, the system (42) becomes 

                                      (50) 

which is (29). The solution is given by 

                              (51) 

Where  is a solution of the Lax pair. 

Setting  for some f, the nonlinear splitting (35) reduces to the additive splitting of . This can be done 
using Cauchy integral formula, taking 	 as a real contour in a rational curve . The Higgs field satisfies 
the wave equation and given by  

                                  (52) 
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Abstract

We study the absolute valued algebras containing a central element non necessary idempotent. We determine the absolute

valued algebras containing a central element if we add some requirements. Also we gives a classification of finite-

dimensional absolute valued algebras containing a generalized left unit and central element.

Keywords: Absolute valued algebra, central element, left unit and generalized left unit.

Mathematics Subject Classification: 17A35, 17A36

1. Introduction

The absolute valued algebras are introduced by Ostrowski in 1918. It’s the normed algebra A such that ‖xy‖ = ‖x‖‖y‖ for all

x, y in A. An algebra is called division if and only if Rx and Lx are bijective for all x in A. The category of finite-dimensional

absolute valued algebra is a full subcategory of the category of division algebra. If A is a finite dimensional absolute valued

algebra, then A has dimension 1, 2, 4 or 8 (Bott, et al., 1958; Kervaire, 1958), A is isotopic to R, C, H or O and the norm

of A comes from an inner product(Albert, 1947). We have in
(
Beslimane & Moutassim, 2011; Diankha, et al., 2013) a

classification of absolute valued algebras with left unit and containing a central element. The norm of absolute valued

algebra containing a central idempotent c, comes from to an inner product and the isometric map x �→ x� := 2(x|c)c − x
is an involution (El-Mallah, 1990). For ‖u‖ = 1, we recall the following notations Hu := HTu,u , and Ou := OTu,u . Let

a, b ∈ H such that ‖a‖ = ‖b‖ = 1, we recall that H(a, b) := (H, �1), with x �1 y = axyb and �H(a, b) := (H, �2), with

x �2 y = xayb (Ramirez, 1999). Let A be an algebra, we note that Z(A) = {a ∈ A : ax = xa f or all x ∈ A}. In this work

we give a characterization of finite dimensional absolute valued algebra containing a central element. We determine the

finite-dimensional absolute algebra containing a genaralized left unit and central element. We classify the absolute valued

algebra containing a central element if we add some conditions.

2. Preliminary

Let f , g, f ′, g′ be linear isometries of euclidean space A ∈ {R,C,H,O} fixing 1, and let Φ : A → A be a linear mapping.

Then it is easy to see that Φ : A f ,g → A f ′,g′ is an algebra isomorphism fixing 1 if and only if Φ : A → A is an algebra

automorphism and ( f ′, g′) = (Φ ◦ f ◦ Φ−1,Φ ◦ g ◦ Φ−1) (Calderon, et al., 2011).

Let A be one of the unital absolute valued algebras R, C, H of dimension m. Consider the caley dickson product � in

A × A, we define on the space A × A the product

(x, y) � (x′, y′) = ( f1(x), f (x)) � (g1(x′), g(y′)).

With f1, g1, f , g be linear isometries of A and f1(1) = g1(1) = 1. We obtain a 2m-dimensional absolute valued real algebra

A × A( f1, f ),(g1,g). The process is called the duplication process (Calderon, & et al., 2011). Note that the algebra is left unit

if g1 = g = IA and this case we note the algebra by A × A( f1, f ) (Rochdi, 2003).

Theorem 1 The finite-dimensional absolute valued real algebras with left unit are precisely those of the form Aϕ, where
A ∈ {R, C, H, O} and ϕ is an isometric of the euclidien espace A fixed 1, and Aϕ denotes the absolute valued real
algebra obtained by endowing the normed space of A with the product x � y := ϕ(x)y. Moreover, given linear isometries
ϕ, φ : A→ A fixing 1, the algebras Aϕ and Aφ are isomorphic if and only if there exists an algebra automorphism ψ of A
satisfying φ = ψ ◦ ϕ ◦ ψ−1 ((Rochdi, 2003)).
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3. Finite Dimensional Absolute Valued Algebra Containing a Central Element

An element c in A is called central if Lc = Rc. In this paragraph, the central element is non necessary idempotent. As A
isalternative, Artin’s theorem (Schafer, 1996) shows that for any x, y ∈ A, the set {x, y, x, y} is contained in an associative

subalgebra of A.

Theorem 2 Let A be an finite dimensional absolute valued algebra with nonzero central element c. Then A is precisely R,

C,
�

C or of the form Aϕ,ψ, with A = {H,O}, ϕ a linear isometry of the euclidien space A fixing 1 and ψ = Lϕ(c) ◦ Rϕ(c) ◦ ϕ.
Moreover for dim(A) ≥ 4, if ψ = IA, then A is isomorphic to H(c, 1) or Oc.

Proof. If dim(A) ≤ 2, the result is clear. Assume now dim(A) ≥ 4. Then the algebra A is of the form Aϕ,ψ, where ψ, ϕ
are the linear isometries of the euclidien space A ∈ {H,O} such that ψ(1) = ϕ(1) = 1 (Calderon, at al., 2011). Using now

x � c = c � x, for all x in A⇔ ϕ(x)ψ(c) = ϕ(c)ψ(x), for all x in A.

For x = 1, we have ψ(c) = ϕ(c).

ϕ(x)ψ(c) = ϕ(c)ψ(x), f or all x in A ⇒ ϕ(x)ϕ(c) = ϕ(c)ψ(x), f or all x in A

⇒ ψ(x) = ϕ(c)ϕ(x)ϕ(c), f or all x in A

⇒ ψ(x) =
(
Lϕ(c) ◦ Rϕ(c) ◦ ϕ)(x), f or all x in A

⇒ ψ = Lϕ(c) ◦ Rϕ(c) ◦ ϕ.

Moreover if ψ = IA, then A is left unit and ϕ = Lc ◦ Rc (Diankha, et al., 2013). For the algebra Hc, we have the following

isomorphism of algebra Φ : H(c, 1) → Hc x �→ xc.�
Theorem 3 Let A be an finite-dimensional absolute valued algebra containing a central idempotent c. Then c ∈ {1} ∪
{− 1

2
+ u: u ∈ Im(A) and ‖u‖ =

√
3

2
}.

Proof. Using Theorem 3.3., A is of the form Aϕ,ψ, where ϕ is a linear isometric of A fixing 1 and ψ = Lϕ(c) ◦Rϕ(c) ◦ ϕ. We

remark also ϕ(c) = ψ(c), hence c� c = ϕ(c)ψ(c) = ϕ(c)2. Assume now c = α+ u ∈ S (A) (with A = R⊕ Im(A): Frobenius

decomposition). We note that if u ∈ 1⊥ = Im(A), < 1, ϕ(u) >=< ϕ(1), ϕ(u) >=< 1, u >= 0. Hence we have ϕn(1⊥) ⊆ 1⊥,

with n ∈ N and ϕ(1⊥)n ∈ R if and only if n ∈ 2N.

Hence c � c = c and ‖c‖ = 1 are equivalent to

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α2 + ϕ(u)2 = α (1)

2αϕ(u) = u (2)

‖ϕ(c)‖ = 1 (3)

The assertions (2) and (3) imply that 1
4α2 u2 = α2 − 1 (4). Otherwise the assertions (1) and (2) implies that α2 + ( 1

2α
u)2 = α

(5). The equality between (4) and (5) gives α = 1 or − 1
2
.

If α = 1, this is equivalent to c = 1.

Assume now α = − 1
2
, hence c = − 1

2
+ u. Then

‖c‖2 = < −1

2
+ u,−1

2
+ u >

= < −1

2
,−1

2
> + < u, u >

=
1

4
+ ‖u‖2

= 1

This implies that ‖u‖ =
√

3
2

.�
Lemma 1 Let A be an absolute valued algebras containing a nonzero central element c. The following assertions are
equivalent:

1. x2c = x2, for all x ∈ A

2. A is finite dimensional and is isomorphic to R, C, H or O.

Proof. 2) ⇒ 1) is clear.

Now assume 1), Using the equality (x+c)2c = (x+c)2 for all x in A, we have (xc−x)c = 0 for all x in A. Then Lc = Rc = IA

and A is isomorphic to R, C, H or O (Urbanik & Wright, 1960).
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The group G2 acts transitively on the sphere S (Im(O)) := S 6, that is the mapping G2 → S 6 Φ �→ Φ(i) is surjective

(Postnikov, 1985).

Definition 1 An element e ∈ A is called strongly left unit, if it’s left unit and square root of right unit: Le = R2
e = IA (Diouf,

2017).

Theorem 4 Let A be an absolute valued algebra with strongly left unit and containing a central element c. Then c ∈
S (R) ∪ 1⊥ and A is finite dimensional and isomorphic to R, C, H, H(i, 1), O or Oi.

Proof. It’s clear that A is of finite dimensional. If dim(A) ≤ 2, the result is clear that A is isomorphic to R or C. Assume

now dim(A) ≥ 4 and A contains a central element c (Diankha, et al., 2013) proves that A is of the form Aϕ, where

A ∈ {H,O}, c ∈ S (A) and ϕ = Lc ◦ Rc.

Otherwise we have R2
e = IA ⇔ (x � 1) � 1 = x. Hence

x = (x � 1) � 1

= c(cxc)c

= c2xc2 Artin′s theorem

The equality c2x = xc2, implies that c2 ∈ S (R) = {−1, 1}.
If c2 = 1, then c = ±1 and A is isomorphic to H or O.

If c2 = −1, then c ∈ S (Im(A)).

There exists u ∈ S (Im(A)) such that ucu = i and let the automorphism Φ := Tu,u of A = {H,O}, with Φ−1 = Tu,u. We have

Φ ◦ Tc,c ◦ Φ−1 = Tu,u ◦ Tc,c ◦ Tu,u

= Tucu,ucu

= Ti,i

Then ATc,c and ATi,i
are isomorphic (Theorem 2.1) and (Diouf, 2017), we have HTi,i

is isomorphic to H(i, 1).

I’s clear that if dim(A) ≥ 2, theirs algebras can be obtained by using the duplication process.

Corollary 1 Let A be an absolute valued algebra containing two elements e and c. The following assertions are equivalent:

1. e is left unit and c central orthogonal to e,

2. A is isomorphic to C, Hi or Oi.�

Definition 2 An element e is called generalyzed left unit if it satisfies to [Le, Lx] = 0, for all x in A (Chandid & Rochdi,

2008).

We give a generalisation of the papier (Diankha, et al., 2013).

Theorem 5 Let A be an finite dimensional absolute valued algebra contains generalized left unit e and central element c.
Then A is precisely R, C, H(a, b) or Oc.

Proof. If dim(A) ∈ {1, 2, 8}, then A is isomorphic to R, C, Oc
(
(Diankha & all, 2013), (Chandid & Rochdi, 2008)

)
. The

algebras H(a, b) and �H(a, b) are the unique four-dimensional absolute valued algebras containing a generalized left unit

(Diouf, 2014). Without loss of generality, assume that ‖c‖ = 1.

For the algebra H(a, b),

c is central ⇔ x �1 c = c �1 x, f or all x in H

⇔ axcb = acxb, f or all x in H

⇔ xc = cx, f or all x in H

⇔ c ∈ Z(H) ∩ S (R) = {−1, 1}.
Then the algebra H(a, b) contains a central element.

For the algebra �H(a, b),

c is central ⇔ x �2 c = c �2 x, f or all x in H

⇔ xacb = caxb, f or all x in H

⇔ xac = cax (∗), f or all x in H
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For x = 1, we have ac = ca and (∗) imply xac = acx (∗∗), f or all x in H.

New put x = ac, we have (ac)2 = ‖ac‖2 = ‖a‖2‖c‖2 = 1. Hence ac = ±1 and (∗∗) imply x = x, for all x in H, which is

absurd. Then the algebra �H(a, b) does not contain a central element.�
Proposition 1 Let A be an absolute valued algebra containing a generalized left unit e and a central idempotent element
c such that e ∈ c⊥. Then A(e, c) is finite dimensional and isomorphic to C.

Proof. The norm ‖.‖ of A comes from an inner product and x �→ x� := 2 < c, x > c− x is an involution (El-Mallah, 1990).

Without loss of generality, assume that ‖e‖ = 1. We have ce = ec = ec2 = c(ec). This implies ec = ce = e. The element e
is orthogonal to c, then e2 = −‖e‖2c = −c (El-Mallah, 1990).

Problem 1 Let A be an absolute valued algebra containing a generalized left unit e and a central element c. Is A a finite

dimensional? This problem is solved partialy if e is idempotent (Calderon, et al., Preprint).�
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Abstract

In this paper, we study a special matrix used in OFDM technology including the pilot vector. This is based on the property

of ’column mean vanishing’ and orthogonal columns. We study the spectral decomposition. Using this, we suggest a new

method of generating such matrices. Numerical examples are included.

Keywords: pilot, orthogonal columns, column mean vanishing property, SVD

1. Introduction

Recently, there have arisen a large necessity of developing a new technology in wireless communications. An OFDM or

its generalization is a big trend (O. Edfors, et al., 1998; Frederiksen, F. B. & Prasad, R., 2002; Myungsup, K. & Kwak, D.

Y.). In this paper, we review the algorithm developed in (Myungsup, K. & Kwak, D. Y.) and study some properties of the

OFDM matrix. Based on this we propose a simple method to generate the matrix. In the resulting matrix, we see the pilot

column has only two nonzero entries which correspond to zero rows, so that the pilot does not interfere with other data.

Definition 1.1. We say a matrix A has a column mean vanishing (CMV) property if the sum of each column is zero.

2. Generation of CMV Matrix Having Orthonormal Columns

Let L = n & N. Recall the scheme introduced in (Myungsup, K. & Kwak, D. Y.):

Algorithm Orth-pilot

1. Given a N × (N − 2) initial matrix Kp with orthonormal columns.

2. Multiply by L × N matrix P obtaining A = PKp.

3. Perform IFFT to obtain F−1(PKp).

4. Subtract the first row from all the rows, the result is Φ ◦ F−1(PKp).

5. Perform FFT to get F ◦Φ ◦ F−1(PKp).

6. Multiply PT to obtain K̂ := PT ◦ F ◦Φ ◦ F−1(PKp).

7. Let G = UVH where UΣVH is the SVD of K̂.

A Ǎ A0 Â O(·)
Kp > > > > > K̂ > G

P F−1 Φ F PT

Figure 1: Signal flow diagram for matrix generation. ( ) is orthonormaFigure 1. Signal flow diagram for matrix generation. O(·) is orthonormalization operator.

Now we will explain more details of the algorithm:
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Step (2). Permute and Pad Zeros

Assume N = 2m + 1 is odd. Set M = N − 2, L = n & N. Starting from an N × M initial matrix, we construct an L × M
matrix as follows: Move the last m+ 1 rows of Kp to the first m+ 1 rows of Kp. Next fill it with pad with L−M zero rows

(called zero padding). This process can be expressed as PKp where

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0(m+1)×m Im+1

0 0
...

...
0 0

Im 0m×(m+1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (1)

Steps (3) and (4) : IFFT Followed by Subtraction of the First Row

Let us use the notation K = (ki j) and K1 = (k1
i j) := PKp. Let Ǩ1 = F−1(PKp) be the inverse FFT of PKp. By definition of

IFFT the first row of Ǩ1 is

ǩ1 =
[
ǩ11, ǩ12, · · · , ǩ1M

]
=

1

n

⎡⎢⎢⎢⎢⎢⎣n−1∑
i=0

k1
i1,

n−1∑
i=0

k1
i2, · · · ,

n−1∑
i=0

k1
iM

⎤⎥⎥⎥⎥⎥⎦ . (2)

Hence the matrix after step (4) is

Ǩ1
′
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ǩ11 ǩ12 · · · ǩ1M

ǩ21 ǩ22 · · · ǩ2M
...

... · · · ...

ǩn,1 ǩn,2 · · · ǩn,M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ −
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ǩ11 ǩ12 · · · ǩ1M

ǩ11 ǩ12 · · · ǩ1M
...

... · · · ...

ǩ11 ǩ12 · · · ǩ1M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ≡ Ǩ1 − Ǩ∗
1
. (3)

Here Ǩ∗
1 is the matrix all of whose rows are the vector ǩ1.

Lemma 2.1. The sum of all entries of each column of the matrix K̂ is zero.

Proof. Clear from (2) and (3). �

Step (7) - Nearest Orthogonal Matrix

The scheme to find the nearest orthogonal matrix (Higham, N. J. 1986; R. -C. Li., 1995; Ji-Guang, S., 1995; Banerjee,

2014) is given by

G = UVH = K̂
(
K̂HK̂

)−1/2
, (4)

where UΣVH is the SVD of K̂.

Theorem 2.1. The matrix G obtained in step (7) satisfies CMV property:

Proof. Let �1 = [1, · · · , 1]. Then by Lemma 2.1, we have

�1 · K̂ = [0, 0, · · · , 0].

Hence by (4) we see

�1 ·G = �1 · K̂
(
K̂H K̂

)−1/2
= [0, 0, · · · , 0].

�
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3. Simplification of the Algorithm

In this paper we simplify the algorithm above. We apply the algorithm to an initial matrix having CMV property. First

consider the case N = 2m + 1 is odd. We will explain with m = 2, general case follows easily from this. Consider the

following N × (N − 1) initial matrix.

K∗ =
1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 1

0 0 1 1 0 0

1 1 0 0 0 0

0 0 0 0 0 0

1 −1 0 0 0 0

0 0 1 −1 0 0

0 0 0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

Using this matrix we will generate a pilot included matrix having the desired properties. We remove a specified column

(3rd, say) consisting of two 1’s and move the next column to the first to get N × (N − 2) matrix

Kt1 =
1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1

0 0 1 0 0

1 1 0 0 0

0 0 0 0 0

1 −1 0 0 0

0 0 −1 0 0

0 0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒ Kt2 =

1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1

1 0 0 0 0

0 1 1 0 0

0 0 0 0 0

0 1 −1 0 0

−1 0 0 0 0

0 0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)

Then subtract the row vector
[
0 2 0 2 0

]
from the center row, to get

Kp,e =
1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1

1 0 0 0 0

0 1 1 0 0

0 −2 0 −2 0

0 1 −1 0 0

−1 0 0 0 0

0 0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

In general it looks like this:

Kp,e =
1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1

1 . .
.

1 1

1 1

−2 0 −2

1 −1

1 −1

−1
. . .

1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

Next, we see the case N = 2m (even). We start from (N + 1) × N matrix. For example, when we want 8 × 6 matrix, we

start from a 9 × 8 matrix

1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 1 1

0 0 0 0 1 1 0 0

0 0 1 1 0 0 0 0

1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)
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Remove the zero row in the center from (9) and remove first column. Then we remove a specified column (5-th, say) and

move the next one to first to get N × (N − 2) matrix

Kt1 =
1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 1

0 0 0 1 1 0 0

0 1 1 0 0 0 0

1 0 0 0 0 0 0

−1 0 0 0 0 0 0

0 1 −1 0 0 0 0

0 0 0 1 −1 0 0

0 0 0 0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒ Kt2 =

1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 1

1 0 0 0 0 0

0 0 1 1 0 0

0 1 0 0 0 0

0 −1 0 0 0 0

0 0 1 −1 0 0

−1 0 0 0 0 0

0 0 0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

Then subtract the row vector [0, 0, 1, 0, 1, 0] from 4-th and 5-th rows. The resulting matrix is the initial for pilot included

matrix.

Kp,e =
1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 1

1 0 0 0 0 0

0 0 1 1 0 0

0 1 −1 0 −1 0

0 −1 −1 0 −1 0

0 0 1 −1 0 0

−1 0 0 0 0 0

0 0 0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

Lemma 3.1. If the initial matrix Kp (Kp,e or Kp,o) satisfies CMV property, then steps (1)-(7) is simplified as

Algorithm Orth-pilot-CMV

1. Given a N × (N − 2) initial CMV matrix Kp with orthonormal columns.

2. Let G = UVH where UΣVH is the SVD of K̂ = Kp.

4. Property of Odd Columns

We assume N is odd. The case of even is similar. Let ki and gi and denote the i-th column of the matrix Kp and G
respectively.

Lemma 4.1. The odd columns of Kp are orthogonal to all other columns of Kp. As a consequence, for all odd j, the
vector e j = [0, · · · , 1, · · · , 0]T is an eigenvector of KH

p Kp corresponding to the eigenvalue 1.

Proof. The orthogonality of odd columns of Kp comes from that of K∗ of (5) since during the transformation of K∗ to

Kp in (5), (7), the odd columns did not change essentially(only the orders are permuted). Let Kp = [k1, · · · ,kN−2]. Then

Kpe j = k j and hence the j -th column of K̂H
p K̂p satisfies

K̂H
p K̂pe j = KH

p Kpe j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
kT

1
...

kT
N−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ k j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
kT

1 · k j
...

kT
N−1 · k j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = e j. (12)

This means that when j is odd, the j-th columns of Kp are orthogonal to all other columns of Kp. Clearly (12) implies the

second assertion of the lemma. �

Example 4.1. For N = 5 we see

KH
p Kp =

1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 −1

0 1 −2 1 0

0 1 0 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 1

0 −2 0

0 1 −1

−1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
2 0 0

0 6 0

0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (13)

Note that the zeros in the box keep the odd columns of Kp orthogonal to other columns. In view of (12), KH
p Kp has two

eigenvectors e j, j = 1, 3 corresponding to the eigenvalue 1.
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Theorem 4.2. The odd columns of G = Kp(KH
p Kp)−1/2 are the same as those of Kp.

Proof. From the spectral decomposition of Kp = UΣVH we have that of KH
p Kp:

KH
p Kp = VΣHΣVH := VΛVH(VH = V−1), (14)

where by (12) Λ and V have the following form:

Λ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0

0 λ2 0 · · · 0

0 0 1 0

· · · · · · . . . 0

0 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Λ−1/2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0

0 1
λ2

0 · · · 0

0 0 1 0

· · · · · · . . . 0

0 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, V = [e1, v2, · · · , eM−1, vM] . (15)

Note that for j odd Ve j = e j and for each odd j,

Kp(KH
p Kp)−1/2e j = KpVΛ−1/2V−1e j

= KpVΛ−1/2e j

= KpVe j

= Kpe j.

This is the same as j-th column of Kp (normalization does not change even columns). �

5. Numerical Example

Example 5.1. Let N = 7. We have, from initial matrix (7)

Gp =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0000 −0.1954 0.0000 0.5117 0.7071

0.7071 0.0000 0.0000 0.0000 0.0000

0.0000 0.5117 0.7071 −0.1954 0.0000

0.0000 −0.6325 0.0000 −0.6325 0.0000

0.0000 0.5117 −0.7071 −0.1954 0.0000

−0.7071 0.0000 0.0000 0.0000 0.0000

0.0000 −0.1954 0.0000 0.5117 −0.7071

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Example 5.2 (Even N). When N = 8,M = 6 we start from the initial matrix

Kp =
1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 1

1 0 0 0 0 0

0 0 1 1 0 0

0 1 −1 0 −1 0

0 −1 −1 0 −1 0

0 0 1 −1 0 0

−1 0 0 0 0 0

0 0 0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
to get

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0000 0.0000 −0.1494 0.0000 0.5577 0.7071

0.7071 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.5577 0.7071 −0.1494 0.0000

0.0000 0.7071 −0.4082 0.0000 −0.4082 0.0000

0.0000 −0.7071 −0.4082 0.0000 −0.4082 0.0000

0.0000 0.0000 0.5577 −0.7071 −0.1494 0.0000

−0.7071 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 −0.1494 0.0000 0.5577 −0.7071

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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In these matrices, we observe that rows corresponding to the nonzero entries of pilot vector (blue) are zeros (red) except

the first entry.
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Abstract

In this paper, the approximate solutions for quadratic integral equations (QIEs) are given by the variational iteration

method (VIM) and homotopy perturbation method (HPM). These methods produce the solutions in terms of convergent

series without needing to restrictive assumptions, to illustrate the ability and credibility of the methods, we deal with some

examples that show simplicity and effectiveness.

Keywords: Quadratic Integral Equations, Variational Iteration Method, Homotopy Perturbation Method.
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1. introduction

Quadratic integral equations (QIEs) are often applied in the radiative transfer, neutron transport, kinetic theory of gases

and in the traffic theories.

The QIEs are studied in many papers and monographs (Bana’s, et al., 2005; Bana’s, et al., 1998; Bana’s & Martinon,

2004; El-sayed & Hashem, 2009a; El-Sayed & Hashem, 2009b).

Recently, the different analytical and numerical methods are applied to reach the approximate solutions of QIEs. As

there is no exact solutions for the most QIEs, many different kinds of researches are focusing on the effective of QIEs

properties like the existence, uniqueness, positive solutions and monotonic solutions of this class of equations (Argyros,

1985; Bana’s et, al., 1998; Bana’s & Martinon, 2004; El-Sayed & Rzepka, 2006). There are few papers which have dealt

with the numerical solutions of QIEs such as Elsayed (El-Sayed et al., 2010) used the classical method of successive

approximations Picard and Adomian decomposition method for solving QIEs, Avazzadeh (Avazzadeh, 2012) used the

radial basis functions to obtain the approximate solutions of QIEs of Urysohn’s type. (He, 1999a; He, 1999b; He, 2000;

He, 2003) was the first one who proposed the VIM and HPM to find the solutions of linear and nonlinear problems.

Widely, the VIM is used in the literature in different scientific applications in (Abdou & Soliman, 2005; Abulwafa et al.,

2006; He & Wu, 2007). This method presents significant enhancements over existing numerical and analytic technique

like the perturbation, Adomian, Galerkin, finite differences methods, etc. These methods have dealt with ordinary, partial

differential equations, the integro-differential equations (IDEs) and integral equations, in a direct way without needing to

any specific restriction which may give the closed form of exact solution if there is an exact solution. The VIM has no

specific restrictions for nonlinear terms which involve in the equation.

The homotopy perturbation method deforms a difficult problem under study into a simple one which is easy to solve.

Most perturbation methods assume there is a small parameter, but there is no small parameter at all in the most nonlinear

problems. Many new methods are proposed to eliminate the small parameter (He, 1999b; Liao, 1995). Also, the HPM

is employed for solving several kinds of integral equations. Such as, Fredholm, nonlinear Volterra-Fredholm integral

equations and Volterra integro-differential equations.

The aim of the present paper is extending the application of HPM and VIM to give some approximate solutions for the

following QIE whereA(t) is given and F (s, x(s)) is any nonlinear functions. We want to point out that this work is applied

for first time on these kind of equations.

x(t) = A(t) + G(t, x(t))

t∫
0

F (s, x(s))ds. (1)

It is clear that the results reveal the effectively and simplicity for the presented two methods.
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2. Variational Iteration Method

Consider the following differential equation where L and N are linear and nonlinear operators respectively, and g(x) is

the inhomogeneous source term

L[u(x)] +N[u(x)] = g(x). (2)

The VIM presents a correction functional for eq.(2) in the following form:

un+1(x) = un(x) +

x∫
0

λ(ζ)[Lun(ζ) +N ũn(ζ) − g(ζ)]dζ, (3)

where λ is a general Lagrange multiplier, noting that in this method λ may be a constant or a function, which can be

identified perfectly by the variational theory and the subscript n denotes the nth-order approximation, ũn is considered as

a restricted value that means it behaves as a constant, i.e. δũn = 0.

It was found in (Abdou & Soliman, 2005; Abulwafa et al., 2006; He & Wu, 2007). the general formula for λ(x) for the

nth order differential equation

u(n) + f
(
u(ζ), u′(ζ), u′′(ζ), ...., u(n)(ζ)

)
= 0, (4)

has the form

λ(x) = (−1)n 1

(n − 1)!
(ζ − x)(n−1). (5)

The solution given by

u(x) = lim
n→∞ un(x).

3. Homotopy Perturbation Method

Consider the differential equation (2) with following the boundary conditions where B is a boundary operator, Γ is the

boundary of the domain Ω and x ∈ Ω

B

(
u,
∂u

∂n

)
= 0, x ∈ Γ. (6)

The He’s homotopy perturbation technique (He, 1999a), (He, 2000) defines the homotopy ν(x, p) : Ω × [0, 1] →' which

satisfies

H(ν, p) = (1 − p)[L(ν) − L(u0)] + p[L(ν) +N(ν) − g(x)] = 0, (7)

or

H(ν, p) = [L(ν) − L(u0)] + pL(u0) + p[N(ν) − g(x)] = 0, (8)

where x ∈ Ω and p ∈ [0, 1] is an impeding parameter, u0 is an initial approximation which satisfies the boundary conditions,

from eq’s.(7) and (8), we have

H(ν, 0) = L(ν) − L(u0) = 0, (9)

H(ν, 1) = L(ν) +N(ν) − g(x) = 0. (10)

The p process of changing from zero to unity is just that of ν(x, p) from u0 to u(x). In topology, this is called deformation,

L(ν) − L(u0) and L(ν) +N(ν) − g(x) are homotopic. The solutions of eq.(7) and eq.(8) can be defined as a power series

in p

ν = ν0 + pν1 + p2ν2 + ...., (11)

when p → 1, corresponding to (7) becomes the approximate solution is

u = ν0 + ν1 + ν2 + ...., (12)

the convergence of the series (12) has been proved in (He, 1999a; He, 2000).
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4. Numerical Examples

In this part, we study some examples and apply the VIM and HPM methods for comparison reasons.

Example 1. solve the QIE (El-Sayed et al., 2010)

x(t) =
(
t2 − t10

35

)
+

t
5

x(t)

t∫
0

s2x2(s)ds, (13)

with exact solution x(t) = t2.

as beginning we have to convert volterra QIE to an equivalent volterra IDE. We can do this by differentiating two sides of

the QIEs, we should used the Leibnitz rule for differentiating the QIEs at the right side.

x′(t) = 2t − 10

(
t9

35

)
+

t3

5
x3(t) +

(
1

5
x(t) +

t
5

x′(t)
) t∫

0

s2x2(s)ds, x(0) = 0, (14)

we can get the initial condition x(0) = 0 by substituting x = 0 in eq.(13), the correction functional for Equation (14) is

xn+1(t) = xn(t) +

t∫
0

λ(ζ)

(
x′n(ζ) − 2ζ + 10

ζ9

35
− ζ

3

5
x3

n(ζ) −
(

1

5
xn(ζ) +

ζ

5
x′n(ζ)

)

ζ∫
0

r2x2(r)dr

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ dζ. (15)

We substitute the value of λ(ζ) = −1 in eq.(15) which is identified by the variational theory, also, we can use the initial

value x(0) = 0 to obtain the zeroth approximation x0(t) and by using Equation (15) we get the successive approximations,

x0(t) = 0, (16)

x1(t) = t2 − 1

35
t10, (17)

x2(t) = t2 − 1

4930625
t34 +

61

2113125
t26 − 29

18375
t18, (18)

and so on, and the solution given by

x(t) = lim
n→∞ xn(t).

Table 1. Comparison of the numerical results with the exact solution x(t)

t Approximate Solution Exact Solution Absolute error

0.10 0.01000000 0.01000000 3.008×10−40

0.20 0.04000000 0.04000000 5.168×10−30

0.30 0.09000000 0.09000000 5.017×10−24

0.40 0.16000000 0.16000000 8.879×10−20

0.50 0.25000000 0.25000000 1.751×10−16

0.60 0.36000000 0.36000000 8.617×10−14

0.70 0.49000000 0.49000000 1.626×10−11

0.80 0.64000000 0.64000000 1.521×10−9

0.90 0.80999992 0.81000000 8.311 ×10−8

1.00 0.99999704 1.00000000 0.0000029606
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Figure 1. Comparison of the approximate solution by VIM with the exact solution

Table 1 shows the approximate solution for n = 4, also it is obvious that we can improve the accuracy of solutions by

computing more terms of the approximate solutions. We can construct the following homotopy according to HPM,

H(u, p) = (1 − p)(u(t) − g(t)) + p

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝u(t) −
(
t2 − t10

35

)
− t

5
u(t)

t∫
0

s2u2(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = 0, (19)

such that g(t) =
(
t2 − t10

35

)
then

H(u, p) = u(t) −
(
t2 − t10

35

)
− p

t
5
u(t)

t∫
0

s2u2(s)ds = 0, (20)

substituting (11) into (20) and equating the terms with the same identical powers of p we have

p0 : u0(t) =

(
t2 − t10

35

)
, (21)

p1 : u1(t) =
t
5
u0(t)

t∫
0

s2H0(s)ds, (22)

p2 : u2(t) =
t
5
u0(t)

t∫
0

s2H1(s)ds +
t
5
u1(t)

t∫
0

s2H0(s)ds, (23)

p3 : u3(t) =
t
5
u0(t)

t∫
0

s2H2(s)ds +
t
5
u1(t)

t∫
0

s2H1(s)ds

+
t
5
u2(t)

t∫
0

s2H0(s)ds, (24)

and so on, where Hi are He’s polynomials of the nonlinear term x2, and the solution will be,

u(t) =
n∑

i=0

ui(t).
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Tbale 2. Comparison of the numerical results with the exact solution x(t)

t Approximate Solution Exact Solution Absolute error

0.10 0.01000000 0.01000000 4.992×10−49

0.20 0.04000000 0.04000000 2.195×10−36

0.30 0.09000000 0.09000000 5.462×10−29

0.40 0.16000000 0.16000000 9.655×10−24

0.50 0.25000000 0.25000000 1.134×10−19

0.60 0.36000000 0.36000000 2.398×10−16

0.70 0.49000000 0.49000000 1.549×10−13

0.80 0.64000000 0.64000000 4.181×10−11

0.90 0.80999999 0.81000000 5.745×10−9

1.00 0.99999954 1.00000000 4.554×10−7

Figure 2. Comparison of the approximate solution by HPM with the exact solution

Table 2 shows the approximate solution for n = 4, also it is obvious that we can improve the accuracy of solutions by

computing more terms of the approximate solutions.

Example 2. Solve the QIE (El-Sayed et al., 2010)

x(t) =
(
t3 − t19

100
− t20

110

)
+

t3

10
x2(t)

t∫
0

(s + 1)x3(s)ds, (25)

with exact solution x(t) = t3.

as beginning we have to convert volterra QIE to an equivalent volterra IDE. We can do this by differentiating two sides of

the QIEs, we should used the Leibnitz rule for differentiating the QIEs at the right side.

x′(t) =

(
3t2 − 19

t18

100
− 20

t19

110

)
+ 3

t2

10
x2(t)

t∫
0

(s + 1)x3(s)ds +
t3

10
(2x(t)x′(t))

t∫
0

(s + 1)x3(s)ds

+
t3

10
(t + 1)x5(t)ds, x(0) = 0, (26)

we can get the initial condition x(0) = 0 by substituting x = 0 in eq.(25), the correction functional for Equation (26) is

xn+1(t) = xn(t) +

t∫
0

λ(ζ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝x′n(ζ) − 3ζ2 + 19
ζ18

100
+ 20

ζ19

110
− 3
ζ2

10
x2

n(ζ)

ζ∫
0

(r + 1)x3
n(r)dr

− ζ
3

10
(2xn(ζ)x′n(ζ))

ζ∫
0

(r + 1)xn
3(r)dr − ζ

3

10
(ζ + 1)x5

n(ζ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ dζ, (27)

138



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 2; 2017

We substitute the value of λ(ζ) = −1 in eq.(27) which is identified by the variational theory, also, we can use the initial

value x(0) = 0 to obtain the zeroth approximation x0(t) and the solution given by

x(t) = lim
n→∞ xn(t).

Table 3. Comparison of the numerical results with the exact solution x(t)

t Approximate Solution Exact Solution Absolute error

0.10 0.00100000 0.00100000 1.112×10−56

0.20 0.00800000 0.00800000 3.189×10−41

0.30 0.02700000 0.02700000 3.813×10−32

0.40 0.06400000 0.06400000 1.105×10−25

0.50 0.12500000 0.12500000 1.175×10−20

0.60 0.21600000 0.21600000 1.540×10−16

0.70 0.34300000 0.34300000 4.749×10−13

0.80 0.51200000 0.51200000 5.066 ×10−10

0.90 0.72899976 0.72900000 2.393×10−7

1.00 0.99994142 1.00000000 0.0000585810

Figure 3. Comparison of the approximate solution by VIM with the exact solution

Table 3 shows the approximate solution for n = 3, also it is obvious that we can improve the accuracy of solutions by

computing more terms of approximate solutions. We can construct the following homotopy according to HPM,

H(u, p) = (1 − p)(u(t) − g(t)) + p
(
u(t) −

(
t3 − t19

100
− t20

110

)

− t3

10
x2(t)

t∫
0

(s + 1)x3(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = 0, (28)

such that g(t) =
(
t3 − t19

100
− t20

110

)
, then

H(u, p) = u(t) −
(
t3 − t19

100
− t20

110

)
− p

t3

10
x2(t)

t∫
0

(s + 1)x3(s)ds = 0, (29)
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substituting (11) into (29) and equating the terms with identical powers of p we have

p0 : u0(t) = t3 − t19

100
− t20

110
, (30)

p1 : u1(t) =
t3

10
A0(t)

t∫
0

(s + 1)B0(s)ds, (31)

p2 : u2(t) =
t3

10
A0(t)

t∫
0

(s + 1)B1(s)ds +
t3

10
A1(t)

t∫
0

(s + 1)B0(s)ds, (32)

p3 : u3(t) =
t3

10
A0(t)

t∫
0

(s + 1)B2(s)ds +
t3

10
A1(t)

t∫
0

(s + 1)B1(s)ds

+
t3

10
A2(t)

t∫
0

(s + 1)B0(s)ds, (33)

and so on, where Ai and Bi are He’s polynomials of the nonlinear terms x2 and x3 respectively, and the solution will be,

u(t) =
n∑

i=0

ui(t),

Table 4. Comparison of the numerical results with the exact solution x(t)

t Approximate Solution Exact Solution Absolute error

0.10 0.00100000 0.00100000 1 ×10−73

0.20 0.00800000 0.00800000 1.611×10−53

0.30 0.02700000 0.02700000 1.363×10−41

0.40 0.06400000 0.06400000 4.227×10−33

0.50 0.12500000 0.12500000 1.704×10−26

0.60 0.21600000 0.21600000 4.389×10−21

0.70 0.34300000 0.34300000 1.688×10−16

0.80 0.51200000 0.51200000 1.607×10−12

0.90 0.72899999 0.72900000 5.210×10−9

1.00 0.99999316 1.00000000 0.0000068386

Figure 4. Comparison of the approximate solution by HPM with the exact solution

Table 4 shows the approximate solution for n = 3, also it is obvious that we can improve the accuracy of solutions by

computing more terms of approximate solutions.
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Example 3. Solve the QIE (Bana’s et al., 2005)

x(t) = t3 +

(
1

4
x(t) +

1

4

) ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
t∫

0

t + cos
(

x(s)

1 + x2(s)

)⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ds. (34)

According to the VIM, differentiating both sides of eq.(34) ones with respect to t gives the IDE

x′(t) = 3t2 +
1

2
tx(t) +

1

4
t2x′(t) +

1

4
x(t)cos

(
x(t)

1 + x2(t)

)

+
1

4
x′(t)

t∫
0

cos
(

x(s)

1 + x2(s)

)
ds +

1

2
t +

1

4
cos

(
x(t)

1 + x2(t)

)
, (35)

The correction functional for eq.(35) is

xn+1(t) = xn(t) −
t∫

0

(
x′n(ζ) − 3ζ2 − 1

2
ζxn(ζ) − 1

4
ζ2x′n(ζ) − 1

4
xn(ζ)cos

(
xn(ζ)

1 + x2
n(ζ)

)

−1

4
x′n(ζ)

ζ∫
0

cos
(

xn(r)

1 + x2
n(r)

)
dr − 1

2
ζ − 1

4
cos

(
xn(ζ)

1 + x2
n(ζ)

)
dζ, (36)

we can use the initial value x(0) = 0 to obtain the zeroth approximation x0(t) and by using the eq.(36) we get the successive

approximations

x0(t) = 0, (37)

x1(t) =
1

4
t + t3 +

1

4
t2, (38)

x2(t) =
1

4
t +

431

384
t3 +

5

16
t2 − 1

56
t10 − 5

336
t9 − 71

3360
t8 − 1499

53760
t7

− 269

15360
t6 +

3599

15360
t5 +

473

1536
t4, (39)

and so on, and the solution given by

x(t) = lim
n→∞ xn(t).

We can construct the following homotopy according to HPM,

H(u, p) = (1 − p)(u(t) − t3) + p

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝u(t) − t3 −
(

1

4
u(t) +

1

4

) t∫
0

t + cos

(
u(s)

1 + u2(s)

)
ds

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = 0, (40)

H(u, p) = u(t) − t3 − p
(

1

4
u(t) +

1

4

) t∫
0

t + cos

(
u(s)

1 + u2(s)

)
ds = 0, (41)
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substituting (11) into (41) and equating the term with identical powers of p we have

p0 : u0(t) = t3, (42)

p1 : u1(t) =
1

4
u0(t)

t∫
0

(t + H0(s))ds +
1

4

t∫
0

(t + H0(s))ds, (43)

p2 : u2(t) =
1

4
u0(t)

t∫
0

H1(s)ds +
1

4

t∫
0

H1(s)ds

+
1

4
u1(t)

t∫
0

(t + H0(s))ds, (44)

p3 : u3(t) =
1

4
u0(t)

t∫
0

H2(s)ds +
1

4

t∫
0

H2(s)ds +
1

4
u1(t)

t∫
0

H1(s)ds

+
1

4
u2(t)

t∫
0

(t + H0(s))ds, (45)

and so on, where Hi are He’s polynomials of the nonlinear term cos( x(s)

1+x2(s)
) and the solution will be

u(t) =
n∑

i=0

ui(t),

Table 5. Approximate solution x(t) by VIM and HPM for n = 1

t VIM solution HPM solution

0.10 0.02930184 0.02930216

0.20 0.07228471 0.07229271

0.30 0.13761286 0.13768016

0.40 0.23575023 0.23610759

0.50 0.37941576 0.38085479

0.60 0.58374728 0.58851618

0.70 0.86560555 0.87921321

0.80 1.24089607 1.27522943

0.90 1.71800041 1.79569813

1.00 2.28475926 2.44303370

(a) (b)

Figure 5. Approximate solutions by using (VIM) and (HPM)
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Example 4. Solve QIE (Bana’s & Martinon, 2004)

x(t) = e−t + x(t)

t∫
0

t2 ln(1 + s|x(s)|)
2e(t+s)

ds, 0 < t ≤ 2. (46)

According to VIM, differentiating both sides of Equation (46) ones with respect to t gives the IDE

x′(t) = −e−t + x′(t)
t∫

0

t2 ln(1 + s|x(s)|)
2e(t+s)

+ x(t)
(

t2

2e2t ln(1 + t|x(t)|)

+

t∫
0

−2t2e(t+s) + 4te(t+s)

4e(t+s)2
ln(1 + s|x(s)|)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , x(0) = 1. (47)

The correction functional for eq.(47) is

xn+1 = xn(t) −
t∫

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝x′n(ζ) + e−ζ − x′n(ζ)

ζ∫
0

ζ2

2e(ζ+r)
ln(1 + r|xn(r)|)dr

−xn(ζ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ζ
2

2e2ζ
ln(1 + ζ |xn(ζ)|) +

ζ∫
0

−2ζ2e(ζ+r) + 4ζe(ζ+r))

4e(ζ+r)2
ln(1 + r|xn(r)|)dr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ dζ,

the zeroth approximation x0(t) can be selected by using the initial value x(0) = 1. We can construct the following

homotopy according to HPM,

H(u, p) = u(t) − e−t − pu(t)

t∫
0

t2 ln(1 + s|u(s)|)
2e(t+s)

= 0, (48)

substituting (11) into (48) and equating the terms with identical powers of p we have

p0 : u0(t) = e−t, (49)

p1 : u1(t) = u0(t)

t∫
0

t2

2e(t+s)
H0(s)ds, (50)

p2 : u2(t) = u0(t)

t∫
0

t2

2e(t+s)
H1(s)ds + u1(t)

t∫
0

t2

2e(t+s)
H0(s)ds, (51)

and so on, where Hi are He’s polynomials of the nonlinear term ln(1 + s|x(s)|).

Table 6. Approximate solution x(t) by VIM and HPM for n = 1

t VIM solution HPM solution

0.10 0.90486075 0.90485481

0.20 0.81907560 0.81892557

0.30 0.74240511 0.74151336

0.40 0.67478739 0.67187791

0.50 0.61603248 0.60924288

0.60 0.56560069 0.55284340

0.70 0.52254959 0.50196629

0.80 0.48565135 0.45597253

0.90 0.45360274 0.41430435

1.00 0.42522512 0.37648238
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(c) (d)

Figure 6. Approximate solution by using (VIM) and (HPM)

5. Conclusion

We have been successfully applied the VIM and HPM to find the approximate solutions for nonlinear QIEs. We have found

out that the two methods are applicable and efficient technique, also the HPM is better than VIM in finding the accurate

solutions. We have been observing that the accuracy can be improved by computing more n-terms off approximate

solutions or by taking more terms in the Taylor expansion of the nonlinear terms. To find the calculations we have used

the Maple package (2015).
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Abstract

Boundary value problems are formulated on infinite-genus surfaces. These are solved for a variety of boundary conditions.

The symbol calculus for differential operators is developed further for solution of parabolic differential equations at infinite

genus.
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1. Introduction

The theory of partial differential equations with given boundary conditions has developed from series solutions and in-

tegral transforms to an operator calculus (Hormander, 1985). The matrix algebra formed from the symbols representing

a set of operators for a pseudodifferential equation defined at the interior and the boundary can be used to evaluate the

inverse for elliptic boundary value problems (Boutet de Monvel, 1971). A framework for this derivation may be given

with this symbolic calculus for parabolic boundary value problems. The Volterra pseudodifferential differential equations

were solved for a given set of boundary conditions (Piriou, 1970). It had been proven that an isomorphism existed between

a normed space of solutions to elliptic boundary value problems with these boundary conditions in the complex plane on

the real line to a normed space of solutions to a corresponding parabolic differential equation (Agronovich and Vishik,

1964). The exponential long-time asymptotics on a noncompact manifold in the elliptic problem (Schuss, 1973) similarly

may be transformed to asymptotics in a parabolic problem.

The existence and uniqueness of solutions to parabolic differential equations with exponential asymptotics in the t → ∞
limit have been established (Krainer, 2002). External states in string amplitudes are known to be described by semi-

infinite cylinders and the solutions to equations on these ends in the Euclidean formalism may be related to the parabolic

boundary value problems through a generalized inverse Laplace transform. Therefore, the asymptotics of solutions in

string theory would be represented. The t → ∞ limit, however, does not necessarily arise for infinite-genus surfaces

with accumulating handles. Exponentially decaying solutions at t = −∞ are not required for the semi-infinite cylinders

representing the propagation of external states. Nevertheless, a change of coordinates equivalent to r = e−t again maps

the boundary conditions at t = ∞ to the origin of a punctured disk at r = 0.

The methods for solving differential equations of field theories at the ideal boundaries of surfaces will be given. Ideal

boundaries may consist of discrete sets of points or a continuum. An example of a series solution to an elliptic differential

equation on a surface with a boundary with an infinite number of ends is provided in §2. The uniqueness of the function

which represents the harmonic measure with a given set of boundary values follows. The path to ideal boundary will be

parameterized by a coordinate t tending to infinity, and the mapping from infinity to the origin can have an image that is

a discrete set or the real line. When it is not the real line, by the uniformization of surfaces of genus g ≥ 2, there is a

formalism based on the automorphic functions defined on the entire upper half plane instead of a fundamental region for

a Fuchsian group, and boundary conditions may be specified on the real line. Infinite-genus surfaces in the class OG are

parabolic and have a countable number of ends. The mapping to a surface with one end to a finite region would yield a

surface with handles accumulating to only one point. Therefore, the boundary is not identified with a continuum. The

boundary value problem shall be solved through the above method of functions invariant under the uniformizing group.

Analytic function theory on infinite-genus surfaces is necessary for the set of conditions (Widom,1971) required for a

convergent representation of the Green function as a product over elements of the uniformizing group (Pommerenke, 1976)

The convergence of the series for theta functions similarly can be proven for spectral curves of the parabolic heat equation.

Nontrivial solutions ψ ∈ L∞loc(R2) to the heat equation
(
∂
∂t − ∂2

∂x2
2

)
ψ + q(x1, x2)ψ = 0 and ψ(x1 + ω1, x2 + ω2) = ξ1ψ(x1, x2)

and ψ(x1, x2+2π) = ξ2ψ(x1, x2) for q ∈ L2(R2/Γ), where Γ = (0, 2π)Z⊕(ω1, ω2)Z, may be mapped to functions that satisfy
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the Kadomtsev-Petviashvili equation on R
2/Γ (Feldman, Knorrer Trubowitz, 2003). The pseudodifferential calculus for

this parabolic boundary value problem in §3 then yields a solution for the Kadomtsev-Petviahshvili equation in terms of

this theta function through the mapping to the hyperbolic space the covering transformation of the surface.

2. The Harmonic Measure of the Ideal Boundary

The Dirichlet problem may be formulated for an infinite-genus surface. If (u = 0 with specified values at the boundary,

w(z, ∂Σ,Σ), which equals the Perron solution at z, gives the probability of random motion beginning at z and exiting

through ∂Σ (Kakutani, 1944). It equals the harmonic measure of the ideal boundary. Random motion does not produce a

flux to the embedding space unless the the capacity is non-zero, and the surface does not belong to OG. This result would

complement the introduction of exceptional group gauge symmetries through the intersection matrix (Davis, 2014).

The capacity of the ideal boundary is cβ = e−kβ , where

kβ = limn→∞
∫
∂En

sn ∗ dsn, (1)

with sn = ln|z|+ϕn(z) relative to some origin z = 0 and ϕn(z) being harmonic on En, an nth order approximation of the end

E (Sario Nakai, 1970). When there is a null boundary, there is no second source for the Green function and ϕn(z) will

not cancel ln|z| in the limit z → ∂En and n → ∞. If the ideal boundary has non-zero harmonic measure, the equivalent of

the second source is sufficient for a cancellation with ln|z| and the remainder is finite. The integral 1
2π

∫
β

sβ ∗ dsβ would be

finite and cβ � 0.

The harmonic measure of an end with respect to the ideal boundary is defined to be a solution to (w = 0 with w|α = 0

and w|β = 1. Uniqueness of the harmonic measure follows if it is an H̃D-minimal function, since another function may be

selected to be either less than or greater than u in an entire neighbourhood of the ideal boundary. Any harmonic function

with finite Dirichlet norm in H̃D(Σ) may be expressed as
∫

D P(z, p) f (p)dμ(p), where P(z, p) is the harmonic kernel, f (p)

is a boundary function and μ(p) is the harmonic measure (Sario Nakai, 1970).

An example of a surface in OHD−OG is Toki’s surface. If D0 is the slit disk D−∪m,n,νS νm,n, where S νmn = {z = reiθ |−2−2μ ≤
log r ≤ −2−2μ+1, θ = ν · 2π · 2−2μ, ν = 1, ..., 22μ, μ = 2m−1(2n − 1)}, the Riemann surface is constructed by joining the

copies of the disks Σ(i +m j) with Σ′(i +m +m j) for even j and Σ(i +m j) with Σ′(i −m +m j) for odd j cross along every

slit S νmn, n = 1, 2, ..., ν = 1, ..., 22μ (Toki, 1962). The Dirichlet problem may be solved on this surface by the integral

ϕ(z) = −
∫
∂Σ

dσϕ0(σ)
∂G
∂n

(2)

where ϕ|∂Σ = ϕ0 and G(z, z′) is the Green function (Poincare, 1890). The solution on Tôki’s surface for the harmonic

measure would satisfy the boundary condition φ0(σ) = 1 at each of the slits in S νmn.

Theorem 1. The harmonic measure of Tôki’s surface may be given in series form.

Proof.

Given the Green function on the upper half plane G(z, z′) = − 1
4π

ln (x−x′)2+(y−y′)2

(x−x′)2+(y+y′)2 , the normal derivative may be found on the

unit disk. Let us define a group ΓT generated by translations θν → θν+1, ν = 1, ..., 22ν − 1, θ22μ → θ1 and m → m + 1,

n → n + 1. The Green function then can be evaluated by the method of images

G(z, z′) = − 1

4π

∑
γ∈ΓT

ln
(x − γx′)2 + (y − γy′)2

(x − γx′)2 + (y + γy′)2
, (3)

where the slit, − 1
4
≤ log r ≤ 1

8
, θ = π

4
is aligned with the y axis. At each slit, the normal vector is perpendicular to the

direction given by γ(S 1
11) or S νmn. It is sufficient to establish the angle of the perpendicular relative to the adjusted y-axis,

which is π
2
+ θνmn − π4 = π4 + ν(2π)2−2m(2n−1). The effect of γs1

ν γ
s2
m γ

s3
n on this angle is

γs1
ν γ

s2
m γ

s3
n (θνmn) = θ

(ν+s1)
σ(22(m+s2)(2(n+s3)−1)

) (4)

=
π

4
+ (ν + s1)

σ(22(m+s2)(2(n+s3)−1)
)
(2π)2−2(m+s2)(2(n+s3)−1)

where σ(N) represents cyclic permutation with respect to N. The gradient vector perpendular to γs1
ν γ

s2
m γ

s3
n (S νmn) is
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cos
(
π

4
+ (ν + s1)

σ(22(m+s2)(2(n+s3)−1)
)
(2π)2−2(m+s2)(2(n+s3)−1)

)
∂

∂x
(5)

+ sin
(
π

4
+ (ν + s1)

σ(22(m+s2)(2(n+s3)−1)
)
(2π)2−2(m+s2)(2(n+s3)−1)

)
∂

∂y

Consequently,

∂G
∂n
= − 1

4π

∞∑
m=1

∞∑
n=1

2m(2n−1)∑
ν=1

(6)

{
cos

(
π

4
+ (ν + s1)

σ(22(m+s2)(2(n+s3)−1)
)
(2π)2−2(m+s2)(2(n+s3)−1)

)
∂

∂x

+ sin
(
π

4
+ (ν + s1)

σ(22(m+s2)(2(n+s3)−1)
)
(2π)2−2(m+s2)(2(n+s3)−1)

)
∂

∂y

}

ln
(x − γs1

ν γ
s2
m γ

s3
n x′)2 + (y − γs1

ν γ
s2
m γ

s3
n y′)2

(x − γs1
ν γ

s2
m γ

s3
n x′)2 + (y + γs1

ν γ
s2
m γ

s3
n y′)2

.

where the action of γs1
ν γ

s2
m γ

s3
n on points in the disk may be defined by the rotation and radial translation required from the

mapping of the midpoint of slit S 1
11 to the midpoint of S 1+s1

1+s2, 1+s3
. Then the formula (2) with the Dirichlet boundary

condition yields

φ(z) =
1

4π

∫
(x′,y′)∈S 1

11

∞∑
m=1

∞∑
n=1

2m(2n−1)∑
ν=1

(7)

{
cos

(
π

4
+ (ν + s1)

σ(22(m+s2)(2(n+s3)−1)
)
(2π)2−2(m+s2)(2(n+s3)−1)

)
∂

∂x

+ sin
(
π

4
+ (ν + s1)

σ(22(m+s2)(2(n+s3)−1)
)
(2π)2−2(m+s2)(2(n+s3)−1)

)
∂

∂y

}

ln
(x − γs1

ν γ
s2
m γ

s3
n x′)2 + (y − γs1

ν γ
s2
m γ

s3
n y′)2

(x − γs1
ν γ

s2
m γ

s3
n x′)2 + (y + γs1

ν γ
s2
m γ

s3
n y′)2

.

The uniqueness of this solution follows from evaluating the difference of two harmonic measures with same boundary

conditions to be a harmonic function vanishing everywhere on the boundary. By the maximum modulus principle, this

harmonic function vanishes and the two series are equal.

3. Solutions Spaces for Parabolic Surfaces of Infinite Genus

The identification of theta function on the Riemann surface of infinite genus and periodic solutions to the Kadomtsev-

Petviashvilli equation on R
2 reflects an embedding into a calculus of symbols for this parabolic differential equation that

would unify the two analytic function spaces.

The solutions to differential equations on surfaces of infinite genus belong to Sobolev spaces W p
s . Given that the Hilbert

spaces H and H̃ admit a scaling group action, Λ is a conical manifold and the norm is 〈ξ, λ〉� = (1 + |ξ|2� + ||2)
1
2� , which

satisfies a linear convexity relation, the space of L(H , H̃) anisotropic symbols of order μ, Λ (Krainer, 2002) is

S μ;�(Rn × Λ;H , H̃) =
{
a ∈ C∞(Rn × Λ,L(H , H̃);∀k ∈ N0 :

sup (x,λ)∈Rn×Λ
|β|�≤k

‖ κ̃−1
〈ξ,λ〉�∂

β
(ξ,λ)a(ξ, λ)κ〈ξ,λ〉� ‖ 〈ξ, λ〉−μ+|β|��

< ∞
}

where κρ ∈ L(H) and κ̃ρ ∈ L(H̃) with ρ ∈ R
+, while the

space of classical symbols is S μ;�cl (H2 × Λ;H , H̃) =
{
a ∈ S μ;�(H2 × Λ,H , H̃); a ∼ ∑∞

k=0 χa(μ−k)

}
and χ ∈ C∞(H2 ×

Λ) =
{

0 (x,λ)=(0,0)
1 x→∞ and a(μ−k) ∈ C∞(H2 × Λ\{(0, 0)},L(H , H̃) consist of anisotropic functions of degree μ − k, with

f (ρξ, ρ�λ) = ρμκ̃ρ f (ξ, λ)κ−1
ρ (Krainer, 2002).

The norm may be defined on the product of the fundamental domain of the uniformizing Fuchsian group of the surface

with Λ, FΓ × Λ = H
2/Γ × Λ to be

〈ξ, λ〉Σ,� = (1 + |ξ|2�
H
+ |λ|2)

1
2� . (8)

The metric in H
2 is

dx2+dy2

|y|2 and has isometries given by the fractional linear transformations z → az+b
cz+d and fractional

antilinear transformations z → cz̄+d
az̄+b with ad − bc = 1. The composition of two pure translations z → z + b1 and
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z → z + b2 yields the pure translation z → z + b1 + b2 with b1, b2 ∈ R. The product of the two groups is isomorphic to

PS L(2;R)× PS L(2;R). It may be noted that fractional linear transformations with complex coefficients are isometries of

H
3. Since hyperbolic Riemann surfaces would represent boundary components of the space H

3/G, where G is a discrete

subgroup of PS L(2;C), the restriction to the boundary yields a complex isometry on the covering space H2 if it preserves

the upper half plane. The set of translations z → z + b where Im b > 0 have an image in H
2 the composition defines a

group. The composition of two translations along geodesics, by contrast, yields a mapping along another geodesic which

is not related directly by translation either in H
2 or the unit disk with the hyperbolic metric. The first type of translations

will be considered in proving the convexity of the anisotropic norm.

Lemma 1. The norm on H
2/Γ satisfies the inequality

〈ξ1 + ξ2, λ1 + λ2〉|s|Σ,� ≤ c|s|〈ξ1, λ1〉|s|� 〈ξ2, λ2〉|s|� .

with c = max
(
3, 1 + 3c1

max(|ξ1 |2H,|ξ2 |2H,2|ξ1 |H |ξ2 |H)

)
and

[
|ξ1|2�1H

|ξ2|2�2H
(
√

2|ξ1|
1
2

H
|ξ2|H)2�3

] 1
� ≤ c1.

Proof.

The absolute value of γ(ξ1 + ξ2) in the hyperbolic plane is

|γ(ξ1 + ξ2)|H = |ξ1 + ξ2|E
|Im(ξ1 + ξ2)|2E

≤ |ξ1|E
|Im(ξ1)|2 +

|ξ2|E
|Im(ξ2)|2 = |γ(ξ1)|H + |γ(ξ2)|H. (9)

for any γ ∈ Γ. It follows that the norm 〈ξ, λ〉Σ,� is invariant under the action of Γ and can be defined on the fundamental

domain. The inequalities

〈ξ1 + ξ2, λ1 + λ2〉|s|� = (1 + |ξ1 + ξ2|2� + |λ1 + λ2|2)
|s|
2� (10)

=

[
1 +

( |ξ1 + ξ2|E
|Im(ξ1 + ξ2)|2

)2�

+ |λ1 + λ2|2
] |s|

2�

≤
[
1 +

⎛⎜⎜⎜⎜⎝ |ξ1|E
|Im(ξ1)|2E

+
|ξ2|E

|Im(ξ2)|2E

⎞⎟⎟⎟⎟⎠2�

+ 1 + |λ1|2 + |λ2|2 + |λ1λ2|2
] |s|

2�

≤
[
2 +

⎛⎜⎜⎜⎜⎝ |ξ1|2E
|Im(ξ1)|4 +

|ξ2|2E
|Im(ξ2)|4 + 2

|ξ1ξ2|E
|Im(ξ1)Im(ξ2)|2E

⎞⎟⎟⎟⎟⎠�

+ |λ1|2 + |λ2|2 + |λ1λ2|2
] |s|
�

≤
[
2 +

(
|ξ1|2H + |ξ2|2H + 2|ξ1||H|ξ2|H

)�
+ |λ1|2 + |λ2|2 + |λ1λ2|

] |s|
2�

and

|ξ1 + ξ2|2�H ≤
[
|ξ1|2H + |ξ2|2H + 2|ξ1|H|ξ2|H

]�
(11)⎛⎜⎜⎜⎜⎝1 +

3c1

|ξ1|2H + |ξ2|2H + 2|ξ1|H|ξ2|H

⎞⎟⎟⎟⎟⎠� ,
where

|ξ1|2�1H
|ξ2|2�2 (|ξ1|H|ξ2|H)2�3 ≤ c�1, (12)

yield
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〈ξ1 + ξ2, λ1 + λ2〉|s|� ≤ c|s|
[
3 + |λ1|2 + |λ2|2 + |λ1λ2|2 + |ξ1|2�H + |ξ2|2�H (13)

+ (|ξ1|Hξ2|H)2� + |λ1|2|ξ2|2�H + |λ2|2|ξ1|2�H
] |s|

2�

≤ c|s|〈ξ1, λ1〉|s|� 〈ξ2, λ2〉|s|�

with c = max
(
3, 1 + 3c1

max(|ξ1 |2H,|ξ2 |2H,2|ξ1 |H |ξ2 |H)

)
.

�

The space of Volterra symbols is defined by the space of classical symbols with the parameter space Λ equal to H. The

Volterra symbols are given by

a(ξ, ζ) =
∑∞

k=1 χ
(
ξ
ck
, ζc�k

)
ak(ξ, ζ) =

∑∞
k=1(H(ϕ(ckt)ak)(ξ, ζ), ck → ∞ as k → ∞, and

(H(ϕ)b)(ξ, ζ) =

∫
H2

e−itτϕ(t)b(ξ, η − τ)dtdτ
∼
V

∞∑
j=0

(−1) j

j!
Dj

tϕ(0)

)
∂

j
ζb(ξ, ζ) (14)

and the translation operator is (Tiτa)(ξ, ζ) = a(ξ, ζ + iτ) (Krainer, 2002). The operator product for the symbols would

modified to

a#b(x, ξ, ζ) =
∫ ∫

e−iyηa(x, ξ + η, ζ)b(x + y, ξ, ζ)
dy

|Im(y)|2 dη
∼
V

∑
α∈Nn

0

1

α!
(∂αa)(Dxb). (15)

The operator algebra is defined such that each symbol a has an inverse p with a#p − 1 and p#a − 1 is a symbol of order

−∞ belonging to S −∞:�(H2 × Λ,H, H̃) =
{
a ∈ C∞(H2 × Λ,L(H, H̃));∀k ∈ N0 : sup (ξ,λ)∈H2×Λ

|β|�≤k
‖ κ̃−1

〈ξ,λ〉�∂
β
(ξ,λ)a(ξ, λ)κ〈ξ,λ〉� ‖

〈ξ, λ〉∞� < ∞
}
. Given that ‖ κ̃−1

〈ξ,λ〉−1
�

∂
β
(ξ,λ)a(ξ, λ)κ〈ξ,λ〉�‖>0, 〈ξ, λ〉� ≤ 1 and |ξ|2�

H
= |λ| = 0. Since |ξ|H = |ξ|E

|Im(ξ)|2 , either Im ξ = ∞.

Consequently, it is only necessary to establish that

‖ κ̃−1
〈σ±i∞,0〉∂

β
(σ+i∞,0)

a(σ + i∞, 0)κ〈σ+i∞,0〉 ‖ =‖ κ̃−1
1 ∂
β
σa(σ + i∞, 0)κ1 ‖ (16)

=‖ ∂βσa(σ + i∞, 0) ‖< ∞.
since 1 + |β|2 ≤ k includes β = 0. Then a(ξ, 0) must be bounded at infinity in all directions in the upper half plane.

Furthermore, if ξ ∈ FΓ has finite coordinates, 〈ξ, λ〉� > 1 and

‖ κ̃−1
〈ξ,λ〉�∂

β
(ξ,λ)a(ξ, λ)κ〈ξ,λ〉 ‖= 0 (17)

and a(ξ, λ) must vanish in this space.

The operator symbol with respect to a boundary parameterized by x is

opx(a) : S μ;�cl (H2 ×H
2 × Λ;CN− ,C−) → S μ;�(R × R × Λ; Hs,δ(R+,C

N−),Hs−μ,δ(CN−)) (18)

s > −1

2
, δ ∈ R.

Near r = 0, the smoothing Mellin operator is

opγ−1

M (h)u(r) =
1

2πi

∫
Γ 3

2
−γ

∫
R+

( r
r′

)−s
h(r, z)u(r′)

dr′

r′
dz (19)

The calculus of classical symbols includes singular Green, trace, potential and boundary symbols (Schrohe, 2001). The

operator for the Green function can be expanded as g =
∑d

j=0 g j∂
j
x ∈ S μ;�cl (R ×R ×Λ, S ′(R+), S (R+) ⊗L(CN− ,CN+)), with

S(R+)  pro j − lims,δ∈RHs,δ(R+) and S ′(R+)  ind − lims,δ∈RHs,δ
0

(R̄+) and g j is a symbol of order μ − j and type 0, the

trace symbol of order μ and type d equals t =
∑d

j=0 t j∂
j
x ∈ S μ;�cl (R×R×Λ,S′(R+),C)⊗L(CN− ,CM+)), where t j is a symbol

of order μ − j and type 0, the potential symbol of order μ, k ∈ S μ;�cl (R × R;C, S (R+) ⊗ L(CM− ,CN+), with N−,N+ and

M−,M+ being the complex dimension of the domain and range of symbols satisfies the transmission condition (Boutet
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de Monvel, 1971), requiring an upper bound for derivatives with homogeneous components, and the more general class,

respectively, and the boundary symbol of order μ and type d is given by

a0 =

(
opx(a) + g k

t s

)
(20)

with the classical symbols being defined to be automorphic with respect to Γ, a(Γξ, λ) = a(ξ, λ) (Krainer, 2002). It can be

proven that g =
∑d−1

j=0 k jγ j + g0, where k j is a potential symbol of order μ − j − 1
2
, γν( f ) = ∂νx f is a trace symbol of order

ν + 1
2
,

a0#b0 =

(
opx(a#xb) + g̃ k̃

t̃ s̃

)
(21)

a boundary symbol of order μ1+μ2 and type d = max(μ2+d1, d2) with a0 =

(
opx(a) + g1 k1

t1 s1

)
and b0 =

(
opx(b) + g2 k2

t2 s2

)
are boundary symbols of order and type (μ1, d1) and (μ2, d2) respectively.

Boundary value problems on a manifold X of dimension n would be formulated on a boundary Y of dimension n − 1.

The space of classical symbols have been defined with X and Y chosen to be H
2 and R respectively. The ideal boundary

of a Riemann surface is given by (F ∩ R)/Γ. A differential operator A =
∑M

j=0 Aj(t)∂
j
t =

∑M
j=0 Aj(−ln r)(−r∂r)

j and

the solutions to Au = f has the form
∑

j
∑mj

k=0
c̃ j,klogk(r)r−p j as r → 0. The data at the boundary determine the Mellin

asymptotic type {(p j,mj, Lj), j ∈ Z}, where mj ∈ N0, Lj are finite-dimensional operators of B−∞,d(X) and p j ∈ C such

that a(z) =
∑mj

k j=0
νk j (z − p j)

−(k j+1) + a0(z).

Given a matrix (
A K
T Q

)
(22)

and the inverse (
P̂ K̂
T̂ Q̂

)
. (23)

provides a solution to the differential equation. Letting ωAω̃ = opγ−1

M (h) + AM+G near r = 0, ω, ω̃ ∈ C∞
0 (R̄+), AM+G is

a Green operator of type d, h̃ = (Hγ−1h′)(r, z) is the interior symbol, P′ = ω1opγ−1

M (h̃)ω2 + (1 − ω1)opr(ã(1 − ω3), with

χ[0,T̃1] < ω3 < ω1 < ω2 < χ0,T̃1], P̃ = P′ + ωopγ−1
M (g)ω, where g = σ0

M(A)−1 − σ0
M(P′) ∈ M−∞,t′

V,Q (X;H 3
2
−γ), P = P̃(1 + D1)

or P = (1 + D2)P̃ satisfies PA = 1 (Krainer, 2002). Then u = P−1 f .

This technique easily transposes between R
2 and H

2 since the classical symbols had been defined initially for X = R
n.

The following lemma provides a mapping between solutions of elliptic and parabolic boundary value problems restricted

by conditions on the function in the upper half plane.

Lemma 2. The solution to a parabolic boundary value problem with conditions on the real line is given by a generalized

Fourier transform of a function satisfying an elliptic differential equation.

Proof.

Let u(x, t) be a solution to an elliptic equation
∂2u
∂t2
+ k
∂2u
∂x2
= 0. (24)

Let U(x, p) be defined such that
∂U(x,p)

∂p is the inverse Laplace transform of ∂u(x,t)
∂t such that

U(x, p) =
1

2πi

∫ p

0

dp̃
∫ ρ+i∞

ρ−i∞
ep̃t ∂u(x, t)

∂t
dt. (25)

where t is generalized to be a complex variable and the line Re t = ρ is located to the right of any singularities of ∂u(x,t)
∂t .

Suppose that
∂U(p, x)

∂p
= κ
∂2U(p, x)

∂x2
. (26)

Then ∫ ρ+i∞

ρ−i∞
ept ∂u(x, t)

∂t
dt = κ

∫ ρ+i∞

ρ−i∞
ept ∂

2u(x, t)
∂t2

dt (27)
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and
1

p

∫ ρ+i∞

ρ−i∞
∂

∂t
(ept)
∂u(x, t)
∂t

dt = κ
∫ ρ+i∞

ρ−i∞
ept ∂

2u(x, t)
∂t2

dt. (28)

After integration by parts, setting the boundary terms equal to zero,

− 1

p

∫ ρ+i∞

ρ−i∞
ept ∂

2u(x, t)
∂t2

dt = κ
∫ ρ+i∞

ρ−i∞
ept ∂

2u(x, t)
∂t2

dt. (29)

The equation derived from the integrand is

1

p
∂2u(x, t)
∂t2

+ κ
∂2u(x, t)
∂x2

= 0 (30)

which is the elliptic equation with k = κp. The space of functions with ∂u(x,t)
∂t defined in the plane Re t > γ such that∥∥∥ ∂u(x,t)

∂t

∥∥∥2

α
= supσ>γ

∫ ∣∣∣∣∣ ∂u(x,t)
∂t |t=σ+iτ

∣∣∣∣∣2|σ+iτ|2αdτ < ∞ is mapped to functions of the form
∂U(x,p)

∂p defined on the real line and e-

qual to zero for Re p < 0, with e−γp ∂U(x,p)

∂p ∈ H1
α(R) for Re γ > ρ and

∥∥∥∥ ∂U(x,p)

∂p

∥∥∥∥2

α
=

(∫
R

(
1 + |ξ|2α

) ∣∣∣∣∣ 1
2π

∫ ∞
−∞ e−iξp ∂U(x,p)

∂p

∣∣∣∣∣2dξ
)2

<

∞ (Agronovich & Vishik, 1964).

�

The region of support in the p plane can be rotated by π
2

to the upper half-plane. It follows that the method may be used

to invert the differential operator on R
2/Γ1 and H

2/Γ2. The mapping between the solutions with the specified asymptotic

data follows from the relation between the integral transformations.

Consequently, it is necessary to consider the eigenvalue spectrum of the heat equation on R
2/Γ and the Kadomtsev-

Petviashvilli equation. The mapping between the calculus of symbols for the this equation and the heat curve is given in

the following theorem.

Theorem 2. There exists a transformation Φ from the class symbols of the heat equation operator on a curve of infinite

genus and the Kadomtsev-Petviashvili equation on R
2 with periodic boundary conditions.

Proof. The Kadomtsev-Petviashvili equation with periodic boundary conditions and the differential equation defining the

heat curve may be formulated on R
2/Γ1 and H

2/Γ2 respectively for discrete group Γ1 and Γ2. The group Γ1 is the infinite

tensor product of Γper. generated by two lattice vectors (0, 2π) and (ω1, ω2) for each admissible value of (ξ1, ξ2). It is not

possible to formulate the solution on R
2/Γper. because iterations of the boundary condition for ξ1 � 1 and ξ2 � 1 yield a

different values of ψ(x1, x2) at each lattice point. Instead, the quotient will be a surface consisting of an infinite sequence

of genus-one components with the same monodromy factor for each solution. The Fuchsian group Γ2 defined by the set

of periodicity factors (ξ1, ξ2) ∈ C
∗ × C

∗ corresponding to nontrivial ψ(x1, x2) ∈ L2(R2/Γ1) in the heat equation, requires

dual group Γ# =
(

2π
ω1
, 0

)
Z ⊕

(
−ω2

ω1
, 1

)
Z, the operator Hk = e−i〈k,x〉

(
∂
∂x1

− ∂2

∂x2
2

)
ei〈k,x〉 = ∂

∂x1
− 2ik1

∂
∂x2

− ∂2

∂x2
2

+ ik1 + k2
2 and the

union of the parabolas H(0) = ∪b∈Γ#Pb, Pb = {(k1, k2) ∈ C
2|Pb(k1, k2) = i(k1 + b1) + (k2 + b2)2 = 0} (Feldman, Knorrer

Trubowitz, 2003). Therefore, condition on the periodicity factors is translated to a condition on eigenvalues of a related

differential operator.

Following the integral representation of operator symbols and products on R
2 and H

2, the mapping Φ will be defined by

Φ :

(
A K
T Q

)
R2/Γ1

→
(

A K
T Q

)
H2/Γ2

(31)

such that the transformation of the boundary symbol

ΦB :

(
opx(a) + g k

t s

)
R2/Γ1

→
(

opx(a) + g k
t s

)
H2/Γ2

(32)

is a continuous limit of Φ at the boundary R
2/Γ1 ∩R. For a parabolic symbol, the boundary symbol is defined on a set of

null harmonic measure. The inverse of the mapping

Φ−1 :

(
A K
T Q

)−1

H2/Γ2

≡
(

P̂ K̂
T̂ Q̂

)
H2/Γ2

→
(

A K
T Q

)−1

R2/Γ1

≡
(

P̂ K̂
T̂ Q̂

)
R2/Γ1

(33)
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with P̂ yielding the inverse P of the differential operator A. It follows that solutions to the heat equation on the infinite-

genus curve H
2/Γ2, including the theta function, would be mapped to a solution of the Kadomtsev-Petviashvili equation

on R
2 with periodic boundary conditions. The independence of the eigenvalue spectrum and the heat curve with respect

to the time parameter allows an interpretation of the Green function of the differential operator in terms of the eigenvalues

through G(x1, x2) =
∑ ψ∗n(x1)ψn(x2)

λm−λ . Consequently, the differential operator also can be represented by the eigenvalue

spectrum and the infinite-genus curve. The coordinates on the Riemann surface may be derived from local complex

coordinates with an expansion of the holomorphic one-forms in terms of the differentials of these coordinates together

with vectors representing multiplicative coefficients (Feldman, Knorrer Trubowitz, 2003). It follows that the map Φ from

the theta function on the Riemann surface to the solution to the Kadomtsev-Petviashvili equation only requires that the

surface satisfies standard geometric hypotheses and bounds on the coefficients vectors in the theta function.

�

The introduction of a map from one differential system to another defined on a different domain may yield a method for

solving a similar class of equations.

4. Conclusion

There exist infinite-genus surfaces with ideal boundaries that are represented as images under an infinite group of a

single component. Then the Dirichlet problem may be solved through the method of images. The Green function can be

expressed as an infinite sum of functions on the upper half plane with an infinite number of sources. The solution to the

boundary value problem is an integral of the product of the field on a single component and the normal derivative of the

Green function.

The formulation of the class of symbols directly on the hyperbolic plane facilitates the study of differential equations on

Riemann surfaces of genus g ≥ 2. The class symbols has been given on a manifold of the form X × [t0,∞), where X is

R
n. The dimension has been set equal to 2 and the integrals representing the symbols have been generalized to H

2. Norm

conditions have been demonstrated to be valid in hyperbolic space, which is necessary for the definition of equivalence

and symbols with order −∞. Consequently, it is possible to transform symbols and operators from R
2 to H

2.

Together with the quotient by the discrete uniformizing group, it has been found that there exists a transformation between

a theta function on a Riemann surface of infinite genus and the solution to the Kadomtsev-Petviashvili equation satisfying

periodic conditions. It is the operator between the two domains. The form of the solution requires the mapping to represent

the definition of the holomorphic one-forms and the theta functions in terms of coordinates on the complex plane. This

technique may have some degree of generality because an infinite symmetry with respect to one component of the surface

is not necessary and mappings to domains with tractable boundary value problems would provide a method for deriving

the solution.
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