Simplicial and categorical diagrams, and their equivariant applications
Rudolf Fritsch and Marek Golasinski
We show that the homotopy category of simplicial diagrams $I-SS$ indexed
by a small category $I$ is equivalent to a homotopy category of
$SS\downarrow NI$ simplicial sets over the nerve $NI$. Then their
equivalences, by means of the nerve functor N : Cat --> SS$ from the
category $Cat$ of small categories, with respective homotopy categories
associated to $Cat$ are established. Consequently, an equivariant
simplicial version of the Whitehead Theorem is derived.
Theory and Applications of Categories, Vol. 4, 1998, No. 4, 73-81
http://www.tac.mta.ca/tac/volumes/1998/n4/n4.dvi
http://www.tac.mta.ca/tac/volumes/1998/n4/n4.ps
ftp://ftp.tac.mta.ca/pub/tac/html/volumes/1998/n4/n4.dvi
ftp://ftp.tac.mta.ca/pub/tac/html/volumes/1998/n4/n4.ps