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FINITE SETS AND SYMMETRIC SIMPLICIAL SETS

MARCO GRANDIS

ABSTRACT. The category of finite cardinals (or, equivalently, of finite sets) is the
symmetric analogue of the category of finite ordinals, and the ground category of a
relevant category of presheaves, the augmented symmetric simplicial sets. We prove
here that this ground category has characterisations similar to the classical ones for
the category of finite ordinals, by the existence of a universal symmetric monoid, or by
generators and relations. The latter provides a definition of symmetric simplicial sets
by faces, degeneracies and transpositions, under suitable relations.

Introduction

The category ∆̃ of finite ordinals (and monotone mappings) is the basis of the presheaf
category Smp̃ of augmented simplicial sets. It has well known characterisations, as:

(a) the free strict monoidal category with an assigned internal monoid;

(b) the subcategory of Set generated by finite ordinals, their faces and degeneracies;

(c) the category generated by faces and degeneracies, under the cosimplicial relations.

The last characterisation is currently used in the usual description of an augmented
simplicial set as a sequence of sets with faces and degeneracies, subject to the (dual)
simplicial relations. The restriction of this characterisation (c) to the category ∆ of
positive finite ordinals plays the same role for ordinary (non augmented) simplicial sets
(while (a) cannot be so restricted).

Here, in Theorems 4.1 and 4.2, we give similar characterisations for the ”symmetric
analogue”, the category !∆̃ of finite cardinals, with the same objects n ≥ 0 and all
mappings, equivalent to the (large) category of finite sets. !∆̃ is thus:

(a′) the free strict monoidal category with an assigned symmetric monoid;
(b′) the subcategory of Set generated by faces, degeneracies and main transpositions;

(c′) the category generated by faces, degeneracies and main transpositions, under the sym-
metric cosimplicial relations (Section 3).

Again, the last characterisation gives a presentation of the non-augmented symmetric
simplicial site !∆, and provides a definition of symmetric simplicial sets by faces, degen-
eracies and transpositions, under the dual relations.

To motivate the interest of such characterisations, let us recall that symmetric simpli-
cial sets, i.e. the presheaves X: !∆op → Set on finite positive cardinals, have been studied
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in [4, 5], where a combinatorial homotopy theory has been introduced for their category
!Smp = Set!∆op

, extending a previous theory for simplicial complexes [3].
As a crucial advantage of the extension, we have a fundamental n-groupoid functor

Πn: !Smp → n-Gpd (n ≤ ω) left adjoint to a symmetric nerve Mn, which yields a
strong, simple version of the Seifert-van Kampen theorem: Πn preserves all colimits.
Analogously, a notion of (non-reversible) directed homotopy has been developed in the
ordinary simplicial topos Smp, with applications to image analysis as in [3]; we have now
a fundamental n-category functor ↑Πn, left adjoint to a nerve Nn.

A classical reference on simplicial sets is May’s book [11]. The characterisations of
the category ∆̃ of finite ordinals can be found in Mac Lane’s text [10]. For monoidal
categories, see [10] and Kelly’s book [8]. The case n = 1 of the adjunction Πn � Mn was
already noted by Lawvere [9], and was at the origin of this research.

Notation. As usual, finite ordinals and finite cardinals coincide, and are constructed as
0 = ∅, n = (n − 1) ∪ {n − 1} = {0, 1, . . . n − 1}. The term ”graph” stands for oriented
graph.

1. Reviewing the simplicial site

The category ∆̃ of finite ordinals has a rich structure (cf. [10], VII.5, where ∆̃ , ∆ are
written as ∆, ∆+, respectively); it is reviewed here as a leading frame for our symmetric
analogue.

To begin with, ∆̃ is a strict monoidal category, with respect to the ordinal sum m+n
(non-symmetric). The object 1 is an internal monoid

∂ : 0 → 1 ← 2 : e
e(∂ + 1) = id = e(1 + ∂), e(e + 1) = e(1 + e)

(1)

with unit (or face) ∂ and multiplication (or degeneracy) e. Then, the terminal mapping
e(k): k → 1 appears to be an iterated multiplication, with

e(0) = ∂, e(1) = id, e(2) = e, e(3) = e(e + 1) = e(1 + e)), ...

and each monotone mapping f : m → n can be uniquely decomposed as a sum f = e(m0) +
... + e(mn−1) of iterated multiplications, where mi = #(f−1{i}), and m = m0 + ... + mn−1.

The usual (co)faces and (co)degeneracies can be constructed with the structural maps
∂, e and the monoidal structure (for 0 ≤ i ≤ n)

∂n
i = i + ∂ + (n − i): n → n + 1, en

i = i + e + (n − i): n + 2 → n + 1 (2)

(the injective monotone map which omits i and the surjective monotone map which repeats
i, respectively); the cosimplicial relations follow easily from the previous formulae:

∂i∂j = ∂j+1∂i (i ≤ j), ejei = eiej+1 (i ≤ j),
ej∂i = ∂iej−1, or 1, or ∂i−1ej (i < j or i = j, j + 1 or i > j + 1).

(3)
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A monotone mapping f : m → n has a canonical factorisation

f = ∂j1 · ∂j2 · ... · ei2 · ei1 (m − 1 > i1 > i2 > ... ≥ 0; n > j1 > j2 > ... ≥ 0) (4)

by faces and degeneracies; every composite of faces and degeneracies can be put in canon-
ical form, using the cosimplicial relations as rewriting rules (from the left).

Taking advantage of all this, the category ∆̃ of finite ordinals is characterised as:

(a) the free strict monoidal category with an assigned internal monoid, 1;

(b) the subcategory of Set generated by finite ordinals, their faces and degeneracies;

(c) the category generated by the graph (2), subject to the cosimplicial relations (3).

2. Symmetric monoids

The category !∆̃ of finite cardinals (equivalent to the category of finite sets) has a strict
monoidal structure m + n, the (categorical) sum of cardinals, with a canonical symmetry
(provided by the sum)

s: m + n → n + m,
s(i) = n + i (0 ≤ i < m), s(m + j) = j (0 ≤ j < n)

(5)

which is not strict (note that the identity m + n = n + m is not natural). Now, (1; ∂, e)
is a commutative monoid within this enriched structure, satisfying the obvious axioms

e(∂ + 1) = id = e(1 + ∂), e(e + 1) = e(1 + e), es = e. (6)

However, we want to be able to deal with ”commutative” (or symmetric) monoids,
within a mere monoidal category without symmetry (which is necessary for symmetric
monads, cf. Section 6); this can be done by transferring the symmetry to the monoid
itself. The object 1 is now viewed as an internal symmetric monoid, with a unit (or face)
∂, multiplication (or degeneracy) e and symmetry s,

∂ : 0 → 1 ← 2 : e s: 2 → 2 (s(t) = 1 − t), (7)

satisfying the axioms below (containing a Yang-Baxter condition on s, see [7] and refer-
ences therein)

e(∂ + 1) = id = e(1 + ∂), e(e + 1) = e(1 + e),
ss = 1, (s + 1)(1 + s)(s + 1) = (1 + s)(s + 1)(1 + s),
s(∂ + 1) = 1 + ∂, es = e, s(1 + e) = (e + 1)(1 + s)(s + 1).

(8)

(In the previous case the four new identities hold automatically, by the coherence theorem
of symmetric monoidal categories and by naturality of s.)
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3. The symmetric site

After higher faces and degeneracies, we can also construct in !∆̃ the main transpositions
si (the permutation which exchanges i, i + 1, for 0 ≤ i ≤ n)

si = sn
i = i + s + (n − i): n + 2 → n + 2 (9)

subject to the Moore relations:

si · si = 1, si · sj · si = sj · si · sj (i = j − 1), si · sj = sj · si (i < j − 1). (10)

This is precisely the usual Moore presentation of the symmetric group Sn+2, the group
of automorphisms of the set n + 2: generators si = (i, i + 1), subject to the relations (10);
see Coxeter-Moser [2], 6.2; or Johnson [6], Section 5, Thm. 3. (Sn+2 also admits systems
of two generators, e.g. the cyclic permutation (0, 1, ... n + 1) and s0 = (0, 1); but then,
the relations are complicated, cf. [2].)

Now, faces, degeneracies and main transpositions form a system of generators for ∆̃ :
an arbitrary mapping f : m → n can be factorised as

f = h · ρ, h = f0 + ... + fn−1,
(fj = e(mj): mj → 1, mj = #(f−1{j}))

(11)

where ρ: m → m is a permutation and h is monotone; the latter is uniquely determined
by f , as above, while ρ is not unique, generally: hρ = hσ iff hρσ−1 = h, iff ρσ−1

can be decomposed in a sum of permutations σ0 + ... + σn−1, coherently with the set-
decomposition m = m0 + ... + mn−1. (However, ρ is uniquely determined if we ask that
ρ−1 be strictly monotone on each interval of the preceding decomposition of m; then,
depending on conventions, ρ and ρ−1 are respectively called an (m0, ...mn−1)-shuffle and
an (m0, ...mn−1)-deal, or vice versa.)

Our generators satisfy the symmetric cosimplicial relations, consisting:

- of the usual cosimplicial relations for faces and degeneracies (3),
- of the Moore relations for transpositions (10),
- of the following mixed relations

si∂j = ∂jsi, siej = ejsi (i < j − 1),
si∂i = ∂i+1, siei = ei+1sisi+1,
si∂j = ∂jsi−1, siej = ejsi+1 (i > j),

(12)

eisi = ei, (13)

which again follow easily from the structural properties (8).
It follows easily that si∂i+1 = ∂i and siei+1 = eisi+1si, so that the previous relations

(12) can be viewed as rewriting rules for si∂j: n + 1 → n + 2 and siej : n + 3 → n + 2
(i ≤ n; j ≤ n + 1), which allow one to transfer permutations to the right of monotone
maps.
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In general, given a strict monoidal category (A, +, 0) and an internal symmetric
monoid (a; ∂, e, s), the ”multiples” a+...+a are linked by a system of maps (for 0 ≤ i ≤ n)

∂n
i = ia + ∂ + (n − i)a: na → (n + 1)a,

en
i = ia + e + (n − i)a: (n + 2)a → (n + 1)a,

sn
i = ia + s + (n − i)a: (n + 2)a → (n + 2)a,

(14)

which satisfies the symmetric cosimplicial relations. As in Section 1, we write e(n) : na → a
the n-ary multiplication, inductively defined as

e(0) = ∂, e(1) = id, e(n+1) = e(e(n) + 1) = e(1 + e(n)); (15)

one can easily deduce from (13), by induction, that e(n) · sn−2
i = e(n).

4. Main results

4.1. Theorem. (The internal symmetric monoid) !∆̃ can be characterised as:

(a′) the free strict monoidal category with an assigned symmetric monoid, 1.

Proof. Let a strict monoidal category (A, +, 0) be given, together with an internal
symmetric monoid (a; ∂, e, s); we have to show that there is a unique strictly monoidal
functor F : !∆̃ → A sending 1 to a and preserving the structure. We already know that
the ”multiples” a + ... + a form a symmetric cosimplicial object (14). From Section 1,
there is a unique strictly monoidal functor F : ∆̃ → A sending 1 to a and preserving unit
and multiplication; it operates in the obvious way on generators

F (n) = na, F (∂n
i ) = ∂n

i , F (en
i ) = en

i . (16)

Consider now the group Sn+2 of automorphisms of n + 2 in !∆̃ ; on the main transpo-
sitions sn

i = i + s + (n − i): n + 2 → n + 2 we must have

F (sn
i ) = ia + s + (n − i)a = sn

i : (n + 2)a → (n + 2)a; (17)

on the other hand, since this setting is consistent with the Moore relations (10), we have
defined a sequence of group-homomorphisms F : Sn+2 → Aut((n + 2)a), and extended the
functor F to all bijections of !∆̃ .

Take now an arbitrary mapping f = hρ: m → n, factorised as above (11): h is
monotone and ρ is a permutation; we must set Ff = Fh ·Fρ; to show that the definition
is correct, it is sufficient to verify that Fh = Fh · Fsi, for each main transposition si

”acting within a summand” of m0 + ... + mn−1; taking for instance 0 ≤ i < m0 − 1, we
have (also by the identity e(n) · sn−2

i = e(n), at the end of Section 3)

Fh · Fsi = (Ff0 + ... + Ffn−1) · Fsi = (Ff0 · Fsi) + ... + Ffn−1 = Fh. (18)
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Last, we must prove that the extended mapping F preserves composition; let us begin
showing that, for each monotone mapping h: m → n and each permutation σ: n → n

m τ �����

h
��

m

k
���
�
�

n σ �� n

(19)

one can find a permutation τ : m → m and a monotone k: m → n such that the square
above commutes, as well as its F -image in A. One can assume that σ = si; let h = hu·...·h1

be the canonical factorisation of a monotone map (4); applying the rewriting rules deriving
from the mixed relations (12), we obtain a factorisation σh = kτ , with a monotone map
k = kv · ... · k1 (canonical factorisation (4)) and a permutation τ = τw · ... · τ1 (product
of main transpositions). The same relations hold in A (for its ∂n

i , en
i , s

n
i ) and F preserves

the composition within monotone maps and within bijections, whence

Fσ · Fh = Fσ · Fhu · ... · Fh1 = Fkv · ... · Fk1 · Fτw · ... · Fτ1 = Fk · Fτ. (20)

Now, the functorial property for F follows easily: if the mappings f = hρ: m → n and
f ′ = h′σ: n → p are factorised as above, in (11), we rewrite σh = k · τ as in diagram (19),
and

Ff ′ · Ff = Fh′ · Fσ · Fh · Fρ = Fh′ · Fk · Fτ · Fρ = F (h′k) · F (τρ) = F (f ′f). (21)

(For the last equality, note that (h′k) · (τρ) = h′σ ·hρ = f ′f is an admissible factorisation
of f ′f , i.e. a permutation followed by a monotone map.)

4.2. Theorem. (Presentation). The category !∆̃ can also be characterised as:

(b′) The subcategory of Set generated by faces (∂i: n → n + 1), degeneracies (ei : n + 2 →
n + 1) and main transpositions (si: n + 2 → n + 2), where 0 ≤ i ≤ n.

(c′) The category generated by faces, degeneracies and main transpositions, under the
symmetric cosimplicial relations (Section 3).

Proof. (b′) is already known and (c′) follows easily from the previous characterisation
(Theorem 4.1). Let !∆̃ be defined by the presentation above. It is strictly monoidal:
define the sum-functor in the obvious way (∂i + q = ∂i, p + ∂i = ∂p+i, etc.) and check
the consistency with relations. Then take a strict monoidal category (A, +, 0) with an
internal symmetric monoid (a; ∂, e, s); a strict monoidal functor F : !∆̃ → A sending 1
to a and preserving the structure is uniquely determined on generators, as in (16), (17):
F (n) = na, F (∂n

i ) = ia+∂ +(n− i)a, etc. Conversely, defining F in this way is obviously
consistent with relations, since all of them can be deduced from the axioms (8) and the
monoidal structure.
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5. Symmetric simplicial sets

Of course, the (non-augmented) symmetric simplicial site !∆ can be presented as the cate-
gory generated by faces, degeneracies and main transpositions between positive cardinals,
under the restricted relations.

Therefore, a symmetric simplicial set X: !∆op → Set can be assigned by the corre-
sponding data (Xn, ∂

n
i , en

i , sn
i ), where we write Xn = X[n] = X(n + 1), as usual; faces,

degeneracies and main transpositions (for 0 ≤ i ≤ n)

∂n
i : Xn → Xn−1, en

i : Xn → Xn+1, sn
i : Xn+1 → Xn+1 (22)

are to satisfy the symmetric simplicial relations (dual to the ones considered in Section 3).
Equivalently, one can assign a simplicial set (Xn, ∂

n
i , en

i ) and a right action of each symmet-
ric group Sn+1 on the component Xn (xρ = ρ∗(x)), coherently with faces and degeneracies
(i.e., the latter have to satisfy the dual mixed relations with the main transpositions, cf.
(12), (13)).

The usual embedding of ∆ in Top extends easily to !∆, forming a symmetric cosim-
plicial object with the same components, the standard topological simplices !∆n = ∆n,
and extended actions λ∗ (for all mappings λ: m → n )

(!∆n, λ∗): !∆ → Top, λ∗((ti)i=0,... n) = (
∑

λi=j

ti)j=0,... m. (23)

This model of !∆ in Top gives rise to the functor !S∗ of symmetric singular simplices

!S∗:Top → !Smp, !Sn(X) = Top(!∆n, X) (24)

where the transposition sn
i : !Sn+1(X) → !Sn+1(X) amounts to a reflection of simplices,

with respect to the symmetry hyperplane of the i-th, (i + 1)-th vertices of ∆n.
Its left adjoint is the (symmetric) geometric realisation functor !Smp → Top : the

realisation of the symmetric simplicial set X is the coend
∫ [n] Xn·!∆n (of the inner functor

!∆op×!∆ → Top). By Yoneda, the realisation of !∆[n] is !∆n = ∆n.

6. Symmetric comonads

A comonad (K, ∂, e) in the category A is a comonoid in the category End(A) of endo-
morphisms of A, with the strict monoidal structure of composition

∂: K → 1, e: K → K2,
∂K · e = idK = K∂ · e eK · e = Ke · e; (25)

it generates an augmented simplicial object in End(A), and - by evaluation - a functor
K∗:A → Smp̃ (A) with values in the category of augmented simplicial objects on A (cf.
[1])

K∗(X) = ((Kn+1(X)), (∂n
i ), (en

i )) (n ≥ −1; 0 ≤ i ≤ n),
∂n

i = Kn−i∂Ki: Kn+1 → Kn, en
i = Kn−ieKi: Kn+1 → Kn+2.

(26)
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For a category C, the category of augmented simplicial objects Smp̃ (C) has a well
known comonad, given by the shift (or decalage) K

K: Smp̃ (C) → Smp̃ (C), KX = ((Xn+1), (∂
n+1
i+1 ), (en+1

i+1 ))n≥−1,
∂:KX → X, ∂ = ∂n+1

0 : Xn+1 → Xn,
e:KX → K2X, e = en+1

0 : Xn+1 → Xn+2

(27)

with counit ∂ and comultiplication e consisting of the discarded faces and degeneracies.
In fact, Smp̃ (C) is the cofree category-with-comonad on C, with respect to the for-

getful functor | − | from categories with a comonad to categories. The counit-component
|Smp̃ (C)| → C sends the augmented simplicial object X to X−1, while the unit-component
A → Smp̃ (|A|) is the functor K∗ considered above.

Similarly, a symmetric comonad (K, ∂, e, s) will be a symmetric comonoid in End(A):
with respect to the previous structure, in (25), we have to add a symmetry s: K2 → K2,
satisfying

ss = 1, sK · Ks · sK = Ks · sK · Ks,
∂K.s = K∂, se = e, eK · s = Ks · sK · Ke.

(28)

By the characterisation theorems of Section 4, it generates an augmented symmetric
simplicial object in End(A) and a functor K∗:A → !Smp̃ (A). Again, !Smp̃ (C) is the
cofree category with symmetric comonad over C.
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