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Editors’ Preface

It is with great pleasure that the editors of Theory and Applications of Categories make
this dissertation generally available. Although the date on the thesis is 1967, there was a
nearly complete draft circulated in 1964. This thesis was a revelation to those of us who
were interested in homological algebra at the time.

Although the world’s very first triple (now more often called “monad”) in the sense of
this thesis was non-additive and used to construct flabby resolutions of sheaves ([Gode-
ment (1958)]), the then-prevailing belief was that the theory of triples had a use in ho-
mological algebra only via additive triples on abelian categories, typically something like
Λ⊗Λ⊗Λ −, on the category of Λ-Λ bimodules. In fact, [Eilenberg & Moore (1965b)] went
so far as to base their relative homological algebra on triples that were additive and pre-
served kernels. Thus there was considerable astonishment when Jon Beck, in the present
work, was able not only to define cohomology by a triple on the category of objects of
interest (rather than the abelian category of coefficient modules) but even prove in wide
generality that the first cohomology group classifies singular extensions by a module. Not
the least of Beck’s accomplishments in this work are his telling, and general, axiomatic
descriptions of module, singular extension, and derivation into a module. The simplicity
and persuasiveness of these descriptions remains one of the more astonishing features of
this thesis.
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We hope that this publication will provide an informative and useful resource for
workers in our field. We have left the thesis unchanged except for (surprisingly few)
typographical corrections. In addition, the editors have made a few notes in places where
we have updated references, corrected the original manuscript, or, in one place, clarified
things somewhat. But what you have before you is basically the thesis presented in 1967.

Acknowledgments. One of the gratifying aspects of this reprint effort was that within
24 hours of asking for volunteers for the retyping project, there were more volunteers
than we could use. Eventually, we chose 11, more or less at random, and asked each one
to type 10 pages of the 109 pages (plus bibliography). There were logistical problems
getting the pages to the volunteers, but not one of them took more than a few days to
do his or her bit once they had it. The typists we thank are Robert Dawson, Robert
L. Knighten, Francisco Marmolejo, Shane O’Conchuir, Valeria de Paiva, Dorette Pronk,
Robert Rosebrugh, Robert Seely, Andrew Tonks, Charles Wells, and Noson Yanofsky. In
addition we would like to thank Jack Duskin, Jeff Egger, and Maria Manual Clementino
who were equally prepared to volunteer their labor. Joan Wick-Pelletier gave us a copy
of the original thesis, without which we could not have proceeded. Finally, we thank
Donovan Van Osdol for a masterly proof-reading job that went beyond the finding of
variations from the original, but also found errors in the original.

While working on this we were reminded how we used to type mathematics in those
days. Putting in symbols by hand, sometimes fabricating them by overtyping two char-
acters and so on. Mathematics was called “penalty copy” and linotypists would charge
double or more to do it. So we also owe a big debt of gratitude to Donald Knuth, to
Leslie Lamport, the LATEX2ε team, Kris Rose, and Ross Moore (the creator and current
developer, resp., of XY-pic).

The editors of Theory and Applications of Categories
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0. Introduction

This thesis is intended to complete the exposition in [Eilenberg & Moore (1965a)] with
regard to certain points. In §1 we recall the definitions of triple, algebra over a triple, and
give our main (original) definition, that of tripleable adjoint pair of functors. In §2 we
show how to obtain a cohomology theory from an adjoint pair of functors. In §3, when
the adjoint pair is tripleable, we prove that the cohomology group H1 classifies principal
homogeneous objects. When coefficients are in a module, principal objects are interpreted
as algebra extensions. §4 is devoted to examples. Many categories occurring in algebra are
shown to be tripleable. The corresponding cohomology and extension theories, ranging
from groups and algebras to the classical Ext(A,C), are discussed. Many new theories
arise.

A method for proving coincidence of triple cohomology with certain standard theories
has been given by [Barr & Beck (1966)]. That paper contains a summary of the present
work.

I should like to express my most profound gratitude to Professor S. Eilenberg, with
the help of whose energetic criticism and encouragement these results were obtained.

1. Triples and Algebras.

DEFINITION 1. T = (T, η, µ) is a triple in a category A if T is a functor A→ A, η and
µ are natural transformations A→ T and TT → T respectively, and the diagrams

T TT
Tη ��T

T

T

���
��

��
��

��
��

��
TT

T

µ

��

T TT
ηT ��T

T

T

���
��

��
��

��
��

��
TT

T

µ

��

TT Tµ
��

TTT

TT

µT

��

TTT TT
Tµ �� TT

T

µ

��

commute. Thus η is a right and left unit for the multiplication µ, and µ is associative.
Dually, G = (G, ε, δ) is a cotriple in B if G:B → B is a functor, ε:G→ B and δ:G→ GG
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are natural transformations, and

G GG
δ ��G

G

G

���
��

��
��

��
��

��
GG

G

Gε

��

G GG
δ ��G

G

G

���
��

��
��

��
��

��
GG

G

εG

��

GG GGG
Gδ

��

G

GG

δ

��

G GG
δ �� GG

GGG

δG

��

commute.

Triples and cotriples usually arise from adjoint functors. We recall that an adjoint pair of
functors consists of functors F :A �� B, U :B �� A together with a natural isomor-
phism

(A,BU)
α� �� (AF,B)

where A ∈ |A|, B ∈ |B|. The functor U is the right adjoint (or adjoint), and F is the left
adjoint (or coadjoint). The relation between F and U is often symbolized by α:F U .
Taking A = BU , (BU)α:BUF �� B defines a natural transformation ε:UF �� B.
Taking B = AF , (AF )α−1:A �� AFU defines a natural transformation η:A �� FU .
η and ε are called the unit and counit of the adjointness, and satisfy the relations [Kan
(1958)]

F FUF
ηF ��F

F

F

���
��

��
��

��
��

��
FUF

F

Fε

��

U UFU
Uη ��U

U

U

���
��

��
��

��
��

��
UFU

U

εU

��

The adjoint pair α induces a triple T = (T, η, µ) in the category A, defined by

T




T = FU : A �� A
η : A �� T

µ = FεU : TT �� T

and a cotriple in the category B, defined by

G




G = UF : B �� B
ε : G �� B

δ = UηF : G �� GG
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Indeed, Tη·µ = FUη·FεU = F (Uη·εU) = FU = T and ηT ·µ = ηFU ·FεU = (ηF ·Fε)U =
FU = T dispose of the unitary axiom. For associativity, Tµ · µ = FUFεU · FεU =
F (UFε · ε)U and µT · µ = FεUFU ·FεU = F (εUF · ε)U . These coincide by naturality of
ε. The proof for G is dual.

The triple T, with its unit and multiplication, is something like a monoid. The next
definition formalizes the intuitive idea of such a monoid’s operating on an object of the
category A [Eilenberg & Moore (1965a)].

DEFINITION 2. (X, ξ) is a T-algebra if ξ:XT → X is a map in A and the diagrams

X XT
Xη ��X

X

X

���
��

��
��

��
��

��
XT

X

ξ

��
XT X

ξ
��

XTT

XT

ξT

��

XTT XT
Xµ �� XT

X

ξ

��

commute. ξ is called the T-structure of the algebra and the above diagrams state that ξ
is unitary and associative. f : (X, ξ) → (Y, θ) is a map of T-algebras if f :X → Y in A and
is compatible with T-structures:

X Y
f

��

XT

X

ξ

��

XT Y T
fT �� Y T

Y

θ

��

T-algebras form a category which we denote by AT.
We have a canonical adjoint pair of functors

A
FT

�� AT UT
�� A

UT is the underlying A-object functor, which maps (X, ξ) ⇒ X and f ⇒ f . FT is the
free T-algebra functor, which maps A ⇒ (AT,Aµ) and a:A �� A′ ⇒ aT : (AT,Aµ)

�� (A′T,A′µ). It follows from the axioms for η and µ that (AT,Aµ) actually is a
T-algebra. The formula for the adjointness isomorphism

(A, (Y, θ)UT) αT

� �� (AFT, (Y, θ))

is yαT = yT · θ, f(αT)−1 = Aη · f .
To justify the definition we only need to verify the adjointness, all the other assertions

being obvious. First, let y:A �� Y be a map in A, and let us check that yαT is a
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T-algebra map. We have the diagram

AT Y T
yT

��

ATT

AT

Aµ

��

ATT Y TT
yTT �� Y TT

Y T

Y µ

��
Y T Y

θ
��

Y TT

Y T
��

Y TT Y T
θT �� Y T

Y

θ

��

The top and bottom compositions are (yα)T and yα (if α stands for αT, as it will for the
rest of this proof). The second square commutes by the associative law for θ. Now we have
yαα−1 = Aη ·yT ·θ = y ·Y η ·θ = y, by the unitary property of θ, and if f :AFT = (AT,Aµ)

�� (Y, θ) in AT, then fα−1α = (Aη · f)T · θ = AηT · fT · θ = AηT · Aµ · f = f .

AT Y T
yT

��

A

AT

Aη

��

A Y
y �� Y

Y T
��

Y T Y
θ

��

Y

Y T

Y η

��

Y

Y

Y

���
��

��
��

��
��

��
AT ATT

AηT ��AT

AT

AT

���
��

��
��

��
��

��
ATT

AT

Aµ

��
AT Y

f
��

ATT

AT
��

ATT Y T
fT �� Y T

Y

θ

��

We will skip the proof that αT is natural, which is easy.
Now let α:F U be any adjoint pair, where F :A �� B and U :B �� A. α

generates a triple T = (T, η, µ) in A, where T = FU , . . . , hence a category of T-algebras
AT with the above free and underlying object functors. The relation between the old
adjoint pair A �� B �� A and the new one, A �� AT �� A, is expressed in
terms of a canonical functor Φ:B �� AT which we will be interested in throughout. Φ
exists because any object in B naturally induces a T-algebra structure on the object in
A underlying it, and fits into the following commutative diagram of functors:

AT

A

UT

���
��

��
��

��
��

�AT B�� Φ
B

A

U

����
��

��
��

��
��

�
AT

A

��

FT

��
��

��
��

��
��

AT BB

A

��

F

��
��

��
��

��
��

�

(ΦUT = U, FΦ = FT)

Φ is defined by the formulas Y Φ = (Y U, Y εU), yΦ = yU : (Y U, Y εU) �� (Y ′U, Y ′εU)
if y:Y �� Y ′. Intuitively, the counit Y ε:Y UF �� Y is the natural map of the free
object generated by Y onto Y (it need not be an epimorphism in this general context)
and the T-structure on Y Φ is the A-map underlying this. It is clear, of course, from the
adjointness identities that (Y U, Y εU) is really a T-algebra.

The construction of AT does not in general give back the original adjoint pair, that is,
Φ:B �� AT is not always an equivalence. We want to isolate as particularly tractable
the situation in which it is:
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DEFINITION 3. The adjoint pair α:F U is tripleable if Φ:B �� AT is an equivalence
of categories.

If U is held fixed and F, F ′ U are two left adjoints, then the canonical isomorphism

F ′ � �� F [Kan (1958)] can be used to show that F U is tripleable ⇔ F ′ U is.

Indeed, F ′ � �� F induces an isomorphism of triples T′ � �� T, hence an isomorphism of

the algebra categories AT � �� AT′
which one finds commutes with the canonical functors

Φ:B �� AT, Φ′:B �� AT′
. Thus Φ is an equivalence ⇔ Φ′ is. The details of the

reasoning can be left to the reader, but as a consequence of it we can state:

DEFINITION 3′. A functor U :B �� A is tripleable if U has a left adjoint F and the
adjoint pair F U is tripleable.

In practice this language is convenient because often the underlying object functor is the
main item of interest. Its coadjoint free functor has to be present, but needn’t be brought
explicitly into the discussion. Of course, such expressions as “B is tripleable over A” can be
used if a definite underlying object functor B �� A is understood. As a rule the category
B will be fixed and various underlying object functors B �� Ai will be considered. If
one of them, U :B �� A, is tripleable, this means that B is exactly recoverable as the
category of objects in A which have the structure of algebras over the triple in A induced
by the left adjoint of U . To say that a functor B �� A is tripleable is therefore to
say it is “forgetful” in a rather precise sense: there is a uniquely determined triple in A
whose algebras are B and U is exactly the functor which forgets these algebra structures
(up to categorical equivalences). Incidentally, the term “tripleable” cannot be replaced
by “forgetful” because there remain many functors that are intuitively “forgetful”, that
is, drop structure, but which are not tripleable. Speaking in general and vague terms,
tripleableness implies algebraicity of some kind. In Example 1, §4, we will return to the
question of just what sort of structure tripleableness entails. In [J. Beck (to appear)] we
shall give a (rather complicated) necessary and sufficient condition for a functor to be
tripleable. It is a refinement of the following (rather weak) theorem which we will apply
to some examples later.

THEOREM 1. Let α:F U be an adjoint pair.

AT

A

UT

���
��

��
��

��
��

�AT B��
Φ

B

A

U

����
��

��
��

��
��

�
AT

A

��

FT

��
��

��
��

��
��

AT B
Φ̌ ������������

B

A

��

F

��
��

��
��

��
��

�

(ΦUT = U, FΦ = FT)

(1) If B has coequalizers, then there exists a left adjoint Φ̌ Φ.
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Assuming the existence of Φ̌:

(2) If U preserves coequalizers, then the unit of Φ̌ Φ is an isomorphism AT � �� Φ̌Φ.

(3) If U reflects coequalizers, then the counit is an isomorphism ΦΦ̌
� �� B.

Finally, in the presence of (2), (3) can be replaced by:

(3 ′) If U reflects isomorphisms, then the counit is an isomorphism ΦΦ̌ � �� B.

Proof. Φ̌ exists if and only if the following coequalizer diagram (which is used as the
definition of (X, ξ)Φ̌) exists in B:

XFUF
ξF ��
XFε

�� XF π �� (X, ξ)Φ̌

(In effect (X, ξ)Φ̌ is (X, ξ) ⊗T F , and Φ can be thought of as Hom(F, ) with right T-
operators.) Assuming the coequalizer exists, the adjointness Φ̌ Φ is demonstrated by
verifying the following sequence of 1-1 correspondences:

maps (X, ξ)
f �� Y Φ in AT

�� maps X
f �� Y U such that ξf = fFU · Y εU

α �� maps XF
g �� Y such that ξF · g = XFε · g

�� maps (X, ξ)Φ̌
g1 �� Y in B.

The adjointness isomorphism α can be retrieved for ε by the well-known formula [Kan
(1958)] fα = fF · Y ε. Thus, given the condition on f , we can write

ξF · g = ξF · fF · Y ε = (ξf)F · Y ε = (fFU · Y εU)F · Y ε
= fFUF · Y εUF · Y ε = XFε · fF · Y ε = XFε · g,

using mainly naturality of ε. Since also f = gα−1 = Xη · gU , one is able similarly to
reverse the correspondence.

Note that (1) has been proved. To complete the remark at the beginning of the proof,
if Φ̌ Φ exists, the unit AT �� Φ̌Φ composed with −UT gives a map UT �� Φ̌U
(since ΦUT = U). The adjoint of this last transformation is a map π:UTF �� Φ̌. One
can now prove directly (but we will omit this) that

XFUF
ξF ��
XFε

�� XF π �� (X, ξ)Φ̌

is a coequalizer diagram in B. From now on, we assume Φ̌ Φ exists, and make use of
this diagram to prove (2), (3) and (3′).

Let ϕ: (X, ξ) �� (X, ξ)Φ̌Φ be the unit. ϕ:X �� (X, ξ)Φ̌U in A and is compatible
with T-structures. Explicitly, ϕ is obtained by working the above 1-1 correspondences
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backwards starting from the identity map of (X, ξ)Φ̌. This yields ϕ = Xη · πU . Consider
the following diagram.

XFUFU XFU
ξFU ��

XFUFU XFU
XFεU

�� XFU X��

X

XFU

Xη

��

X

X

X

���
��

��
��

��
��

��

XFU X
ξ ��XFU

(X, ξ)Φ̌U

πU

���
��

��
��

��
��

� X

(X, ξ)Φ̌U

ϕ

��

ξ is a coequalizer of ξFU and XFεU . For if z:XFU �� Z in A and ξFU ·z = XFεU ·z,
then Xη · z:X �� Z is uniquely determined by the fact that it satisfies the equation
ξ ·Xη ·z = z. Uniqueness is evident from the retraction property of ξ, Xη ·ξ = X, and from
the equation itself: ξ ·Xη ·z = XFUη ·ξFU ·z = XFUη ·XFεU ·z = XF (Uη ·εU) ·z = z.

XFU XFUFU�� XFεU

XFU

XFU

XFU

������������������
XFU

XFUFU

XFUη

��
XFUFU XFU

ξFU ��

XFU

XFUFU
��

XFU X
ξ �� X

XFU

Xη

��
XFU

Z

z

		�����������������XFU XFUXFU

Z

z

�������������������

πU is also a coequalizer of ξFU and XFεU , if U preserves coequalizers. Moreover ϕ:X
�� (X, ξ)Φ̌U is compatible with ξ and πU , because ξϕ = ξ·Xη·πU = XFUη·ξFU ·πU =

XFUη·XFεU ·πU = πU . Thus ϕ is an isomorphism in A. Trivially, if a map of T-algebras
is an isomorphism in the underlying category, then it is an isomorphism of T-algebras (its
inverse also respects T-structures). In other words, the functor UT:AT �� A reflects
isomorphisms. This proves (2).

The counit ψ:Y ΦΦ̌ �� Y is obtained from the identity map of Y Φ via the above 1-1
correspondences, and is uniquely determined by its appearance in the following diagram,
the top line of which is a coequalizer.

Y UFUF Y UF
Y εUF ��

Y UFUF Y UF
Y UFε

�� Y UF Y ΦΦ̌
π ��Y UF

Y

Y ε

��

Y ΦΦ̌

Y

ψ

������������������
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We proved above that the T-structure of an algebra is a coequalizer in A. (Recall that
Y εU is the T-structure of Y Φ.) If U reflects coequalizers, then Y ε is a coequalizer of
Y εUF and Y UFε, and ψ is an isomorphism.

If U preserves coequalizers, both πU and Y εU are coequalizers, hence ψU is an iso-
morphism. If U reflects isomorphisms, so is ψ. This proves the remark pertaining to (3′),
and completes the proof of the theorem.

Remarks on the functor Φ. It would be interesting to know an example of a functor
Φ:B �� AT with B having arbitrary limits (limit = projective limit, in our terminol-
ogy) wherein no left adjoint Φ̌ exists. Counterexamples apparently exist when B is not
complete.

Whether an adjoint or not, Φ preserves all an adjoint should preserve, for example,
limits and algebraic objects. Indeed, in the commutative diagram

AT

A
UT ���

��
��

�
AT B

Φ �� B

A
U����

��
��

U , being an adjoint, preserves the property involved, and one finds that UT reflects the
property. We saw above that UT reflects isomorphisms. Similarly, one can show that UT

reflects all other limits. In §2 we will need the fact, and will then prove in detail, that Φ
preserves several kinds of algebraic objects.

Φ can also be given an interpretation in terms of “structure” and “semantics”. Let
Ad(A) be the category of adjoint pairs over A, that is, pairs F U where U has A as
range, with functors which commute with the right adjoints (like Φ itself) as maps. Let
Trip(A) denote the category of triples inA, a map S �� T being a natural transformation
of the functors commuting with the units and multiplications, and let Trip(A)∗ denote
the dual category. Then functors

Ad(A)
σ̌ ����
σ

Trip(A)∗

exist, because adjoint pairs give rise to triples and triples give rise to categories AT with

adjoint free and underlying object functors. In fact, σ̌ σ, σσ̌
� �� Trip(A)∗, and the

unit of this adjointness is precisely Φ: Ad(A) �� σ̌σ. All of this is proved in [Eilenberg
& Moore (1965a)], and is reminiscent of the structure-semantics situation studied by
[Lawvere (1963)] in the case of algebraic categories and by [Linton (1966)] in the case of
equational categories. We should remark that by means of a more elaborate construction
the domain of σ̌ can be extended to the category whose objects are functors B �� A (B
variable) which are “small” in an appropriate sense but do not need to have left adjoints.

It is useful to think of the triple T induced by an adjoint pair of functors as a structural
invariant of the adjoint pair. Various properties of the adjoint pair only depend on T and
the functor Φ plays a role in setting up the relevant isomorphisms. We shall see this
illustrated in the next section in the case of cohomology.
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2. Cohomology

Adjoint functors, it is now well known, lead to cohomology ([Eilenberg & Moore (1965a),
Godement (1958), Mac Lane (1963)]—or to homotopy [Huber (1961)]). If

A F �� B U �� A (F U)

is an adjoint pair, objects of the form AF ∈ |B| are regarded as “free” relative to the
underlying object functor U . The counit

XUF
Xε �� X

is intuitively the first step of a functorial free resolution of any object X ∈ |B|. By
iterating UF one extends Xε to a free simplicial resolution of X, and defines derived
functors as usual in homological algebra. Here we only consider the simplest case, that
of defining cohomology groups

Hn(X,Y ), n ≥ 0,

of an object X ∈ |B| with coefficients in an abelian group object Y ∈ |B|, relative to
the given underlying object functor U :B �� A (having a left adjoint). Tripleableness
of F U will not play any appreciable role until we discuss special properties of the
cohomology in §3. We now recall the details of the construction of the cohomology groups.
Some of the terms used are clarified in the proof of Theorem 2, which summarizes the
main properties the cohomology possesses.

Let (G, ε, δ) be the cotriple in B induced by F U ; thus G = UF and ε:G �� B.
The following simplicial object in B is called the standard (free simplicial) resolution of
the object X:

X �� ε0 XG �� ε0
��
ε1

XG2 ������ · · · �� XGn �� εi XGn+1 �� · · ·

We abbreviate this by XG∗ if necessary. Here XGn+1 is the term of degree n, and the
face operator εi:XG

n+1 �� XGn is GiεGn−i, 0 ≤ i ≤ n. X itself is in dimension −1 and
the last ε0 augmenting the simplicial object into X is just ε. The simplicial identities

εiεj = εj+1εi, i ≤ j,

can easily be verified. (δ:G �� G2 induces degeneracy operators but these will play no
role in our theory.)

An n-cochain of X with coefficients in Y is a map XGn+1 �� Y . If Y is an abelian
group object in the category B, the n-cochains (XGn+1, Y ) form an abelian group, and
the face operators εi induce abelian group maps (Xεi, Y ): (XGn, Y ) �� (XGn+1, Y ).
Thus

0 �� (XG, Y )
d1 �� (XG2, Y )

d2 �� · · · �� (XGn+1, Y )
dn+1

�� (XGn+2, Y ) �� · · ·



TRIPLES, ALGEBRAS AND COHOMOLOGY 13

is a cochain complex of abelian groups, where dn+1 =
∑

(−1)i(Xεi, Y ), 0 ≤ i ≤ n + 1,
dd = 0 because of the simplicial identities, and the augmentation term has been dropped.
To distinguish it from another complex that will be introduced later, this complex is called
the homogeneous complex. We define

Hn(X,Y ), n ≥ 0,

as the n-th cohomology group of this complex. Obviously maps X ′ �� X in B and Y
�� Y ′ in the category of abelian group objects in B induce maps

Hn(X,Y ) �� Hn(X ′, Y ), Hn(X,Y ) �� Hn(X,Y ′)

and the cohomology is functorial in the usual way.
I do not know how to characterize the cohomology theory H(X,Y ) = (Hn(X,Y )),

n ≥ 0, axiomatically. However, acyclicity of free objects and the exact cohomology
sequence are properties that can easily be established:

THEOREM 2.

Hn(AF, Y ) =

{
(AF, Y ), n = 0,

0, n > 0·
If 0 �� Y ′ �� Y �� Y ′′ �� 0 is a U-exact sequence of abelian group objects in

B, then there is an exact cohomology sequence

Hn(X,Y ′) Hn(X,Y )�� Hn(X,Y ) Hn(X,Y ′′)��

0 H0(X,Y ′)�� H0(X,Y ′) · · ·�� · · · Hn−1(X,Y ′′)�� Hn−1(X,Y ′′)

Hn(X,Y ′)
d



���������������������

Hn(X,Y ′′)

· · ·
d



��������������������������

Proof. For the first part, we notice that the standard resolution of a free object AF has
a simplicial contracting homotopy

AF
s−1 �� AFG

s0 �� AFG2 �� · · · �� AFGn+1 sn �� AFGn+2 �� · · ·
given by sn = AηFGn+1 (see [Huber (1961), p. 248], for example; this homotopy satisfies
the relations snε0 = identity, snεi = εi−1sn−1, 1 ≤ i ≤ n+ 1). If we let tn = (sn, Y ), then

0 �� (AF, Y ) �� t−1

(AFG, Y ) �� t0 (AFG2, Y ) �� · · · �� tn (AFGn+2, Y ) �� · · ·
is a contracting homotopy of the augmented cochain complex, that is, we have dt+ td =
identity. Hence H0(AF, Y ) is the term of degree −1 and all higher cohomology vanishes.

For the second part we must explain the concept of U -exactness; this requires recalling
some facts about abelian group objects in categories (see [Eckmann & Hilton (1962)] for
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a fuller treatment). Y is an abelian group object in B if the hom set (B, Y ) has an abelian
group structure for every object B in the category B, and naturality holds in that every
induced map (B, Y ) �� (B′, Y ) is an abelian group map, where B′ �� B in B. Y

�� Y ′ is a map of abelian group objects in B if it is a map in B and every induced (B, Y )
�� (B, Y ′) is an abelian group map. The abelian group objects form a category AbB,

with an obvious forgetful functor AbB �� B. Of course, one can define in the same way
other types of algebraic objects in categories, such as objects with base points, nonabelian
groups, rings, in fact models for any algebraic theory [Lawvere (1963)], and we will need
some of these categories later. However, what general theory we will use is adequately
illustrated by the case of abelian groups. The following lemma can be paraphrased by
saying that adjoints preserve abelian group objects:

LEMMA 1. Let A �� U B be a functor which has a left adjoint, and let Y ∈ |AbB|. Then
there exists a unique abelian group structure on Y U ∈ |A| such that

(BU, Y U) �� U (B, Y )

is an abelian group map for all B ∈ |B|. In fact, the abelian group structure on Y U is
such that if α:F U is any adjointness then

(A, Y U) α �� (AF, Y )

is an abelian group map.

Proof. Picking any α, the last displayed map, which is an isomorphism, defines an
abelian group structure on Y U . Since

(BU, Y U)

(BUF, Y )

��

α−1

��
��

��
��

��
��

(BU, Y U) (B, Y )�� U
(B, Y )

(BUF, Y )

(Bε,Y )

����
��

��
��

��
��

commutes, U is an abelian group map. If another left adjoint1 α′:F ′ U is given, there

is an isomorphism F ′ � �� F such that

(A, Y U)

(AF ′, Y )
α′ ������������

(AF, Y )

(A, Y U)

��α
���������� (AF, Y )

(AF ′, Y )

�
��

1Editors’ note: The original starts with (α′: ), but there is no discernible reason for the parentheses
and we have chosen to omit it.
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commutes [Kan (1958)]. Since the vertical map is an abelian group isomorphism, the
addition defined in (A, Y U) is independent of the selection of the left adjoint. Finally,
taking any α:F U , since

(A, Y U)

(AFU, Y U)

��

(Aη,Y U)
��

��
��

��
��

��
(A, Y U) (AF, Y )�� α−1

(AF, Y )

(AFU, Y U)

U

����
��

��
��

��
��

commutes and Aη induces an abelian group map, any group law on Y U such that U is
an abelian group map must inevitably be definable in terms of α in the above manner.
This proves uniqueness.

This lemma allows us to define U -exactness. The idea is that like the cohomology
itself, the notion of exactness in B should be “relativized” by means of the underlying
object functor U . That is, 0 �� Y ′ �� Y �� Y ′′ �� 0 is a U-exact sequence in AbB
if 0 �� Y ′U �� Y U �� Y ′′U �� 0 is an exact sequence of abelian group objects in
A, and this we in turn define to mean that 0 �� (A, Y ′U) �� (A, Y U) �� (A, Y ′′U)

�� 0 is an exact sequence of ordinary abelian groups, for every A ∈ |A|.
To see how this exactness concept works in practice, the reader is referred to the

Examples. However, the proof of Theorem 2 can now be completed. Applying adjointness
to the last sequence above, 0 �� (AF, Y ′) �� (AF, Y ) �� (AF, Y ′′) �� 0 is an
exact sequence of abelian groups for any free object AF . Since the simplicial resolution
XG∗ consists of free objects, the sequence of cochain complexes 0 �� (XG∗, Y ′) ��

(XG∗, Y ) �� (XG∗, Y ′′) �� 0 is exact. The long exact sequence in cohomology is now
standard. Theorem 2 is proved.

Remark. It is in the sense of U -exactness that XG∗ is a resolution of X. In the under-
lying category A, the augmented simplicial object XG∗U is contractible, with

XU
h−1 �� XGU

h0 �� XG2U
h1 �� · · · �� XGn+1U

hn �� XGn+2U �� · · ·

as contracting homotopy where hn = XGn+1Uη. (In this case hnεn+1 = identity, hnεi =
εihn−1, 0 ≤ i ≤ n, are the identities satisfied.)

The above properties of the cohomology are purely formal, depending only on adjoint-
ness. To interpret the cohomology groups, at least in the lowest dimensions, one must
invoke, as far as I know, the assumption that the adjoint pair is tripleable. Indeed, it is
interesting to note, as mentioned in §1, that the cohomology itself is only a function of
the triple T induced on A by the adjoint pair, in the following sense. Let F U and
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recall the standard diagram

AT

A

UT

���
��

��
��

��
��

�
AT B�� Φ

B

A

U

����
��

��
��

��
��

�

THEOREM 3. Φ induces a cohomology isomorphism

H(XΦ, Y Φ) �� H(Φ)

� H(X,Y )

Here X ∈ |B|, Y ∈ |AbB|, H(X,Y ) is the graded group (Hn(X,Y )), n ≥ 0, and the
cohomologies are taken with respect to UT and U .

To give meaning to this theorem we have to describe how Y Φ is treated as an abelian
group object in AT, and then how the cohomology map H(Φ) is induced by Φ. We
actually establish more than is asserted in the theorem, namely, we show that Φ induces

an isomorphism of cochain complexes
(
X

(
GT

)∗
, Y

)
�� � (XG∗, Y ). The abelian group

structure on Y Φ results from the following two lemmas. The first, Lemma 2, strengthens
Lemma 1 in the tripleable case. It asserts that abelian group objects are not only preserved
but also reflected by the underlying object functor AT �� A:

LEMMA 2. Let (Y, θ) be an abelian group object in AT. There is a unique abelian group
structure on Y ∈ |A| such that the forgetful

(1) (X,Y ) �� UT

((X, ξ), (Y, θ))

is an abelian group map for every (X, ξ) in
∣∣AT

∣∣. This abelian group structure satisfies

(2) (y0 + y1)T · θ = y0T · θ + y1T · θ
for all y0, y1:A �� Y in A. Conversely, given an abelian group law on Y in A satisfying
(2), there exists a unique abelian group law on (Y, θ) in AT such that (1) is an abelian
group map.

Proof. By lemma 1, αT: (A, Y ) � ��
(
AFT, (Y, θ)

)
must be an abelian group map. Since

yαT = yT · θ, (2) follows. For the converse, let y0, y1: (X, ξ) �� (Y, θ) be maps in AT

and let y0 + y1:X �� Y be their sum in A. We have to show that this is a T-algebra
map. But (y0 + y1)T · θ = y0T · θ + y1T · θ = ξy0 + ξy1 = ξ(y0 + y1) by naturality of
the group law and condition (2). The other group operations lift similarly. Uniqueness of
course is a result of the fact that UT is faithful.

The next lemma states that the functor Φ shares with adjoints the property of preserv-
ing group objects. Its proof is based on the U -preserves—UT reflects principle enunciated
in §1.
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LEMMA 3. If Y ∈ |AbB|, then there is a unique abelian group law on Y Φ ∈ ∣∣AT
∣∣ such

that

(XΦ, Y Φ) �� Φ (X,Y )

is an abelian group map for all X ∈ |B|.

Proof. Let us write α:F U for the adjointness isomorphism. An abelian group law
exists on Y Φ because Y ΦUT = Y U is an abelian group in A and the T-structure of Y Φ,
Y εU :Y UT �� Y U , satisfies the linearity condition of Lemma 2: (y0 + y1)T · Y εU =
((y0 + y1)α)U = (y0α+y1α)U = (y0α)U+(y1α)U = y0T ·Y εU+y1T ·Y εU . Lemma 1 has
been used to achieve linearity of α and U , and of course (yα)U = (yF · Y ε)U = yT · TεU
for any map y:A �� Y U . Now,

(XΦ, Y Φ)

(XU, Y U)

UT

���
��

��
��

��
��

�
(XΦ, Y Φ) (X,Y )�� Φ

(X,Y )

(XU, Y U)

U

����
��

��
��

��
��

commutes, UT and U are abelian group maps, and UT is faithful, so it follows that the
Φ indicated is an abelian group map. For uniqueness, let (A, ξ) be any T-algebra, and
consider the following diagram:

((A, ξ), Y Φ)
(AεT,Y Φ) ��

(
AFT, Y Φ

)
�� Φ (AF, Y )

(labeling everything pertaining to A �� AT �� A with superscript T and recalling that
Φ preserves “free” functors, FΦ = FT). We are supposing that Y Φ has an abelian group
structure in AT, hence

(
AεT, Y Φ

)
has to be an abelian group map. It is injective, because

εT is an epimorphism (even a coequalizer; or use faithfulness of UT). Thus if the addition
in

(
AFT, Y Φ

)
is uniquely determined by the condition that Φ should be an abelian group

map, then uniqueness will be proved. But the Φ indicated is an isomorphism because of
the following commutative diagram:

(3)

(A, Y ΦUT) (A, Y U)=

(AFT, Y Φ)

(A, Y ΦUT)





αT

(AFT, Y Φ) (AFΦ, Y Φ)= (AFΦ, Y Φ)

(A, Y U)

(AFΦ, Y Φ) (AF, Y )�� Φ
(AFΦ, Y Φ)

(A, Y U)

(AF, Y )

(A, Y U)

��

α

																

Indeed, if y:A �� Y U , then (yα)Φ = (yα)U = (yF · Y ε)U = yT · Y εU = yαT.
Now we can finish the proof of Theorem 3. Since Φ preserves both free and underlying

object functors, we have ΦGT = GΦ, where GT is the standard cotriple in AT, (X, ξ)GT =
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(XT,Xµ), with counit given by the T-algebra structures. Moreover, both counits are
compatible with the above equality:

ΦGT

Φ

ΦεT

��
















ΦGT GΦ= GΦ

Φ

εΦ

����
��
��
��
��

Thus we have commutative diagrams

(XΦ(GT)n+1, Y Φ) (XGn+1, Y )��
Φ

(XΦ(GT)n+2, Y Φ)

(XΦ(GT)n+1, Y Φ)





(XΦεTi ,Y Φ)

(XΦ(GT)n+2, Y Φ) (XGn+2, Y )�� Φ
(XGn+2, Y )

(XGn+1, Y )





(Xεi,Y )

for all n ≥ 0 and all 0 ≤ i ≤ n+1. By Lemma 3 and diagram (3) above, the horizontal Φ’s
are abelian group isomorphisms. Thus Φ defines an isomorphism of cochain complexes,
which on the cohomology level we denote byH(Φ). This completes the proof of Theorem 3.

As complements to the material covered in this section, we present that stump of the
cohomology which can be defined when the coefficients are in a non-abelian group object,
as well as a non-homogeneous complex used in making calculations of cohomology. These
topics will be needed in §3.

Non-abelian cohomology. We will define H0(X,Y ) and H1(X,Y ) when Y is a group
object in B, more or less as is usually done ([Serre (1965), p. I-56 and ff.], for example).
We are in the situation U :B �� A with left adjoint F , and Y a group object in |B| means
that every hom set (X,Y ) where X ∈ |B| has a group structure which is (contravariantly)
natural in X. The group operations in the hom set will be written

X
y0,y1,y �� Y ��




y0 ◦ y1 : X �� Y (product)
y−1 : X �� Y (inverse)

1 = 1X : X �� Y (neutral element)

We will construe the 1-cocycles and the 1-coboundaries as objects and maps in a category
Z1(X,Y ). A (non-abelian) 1-cocycle is a map a:XG2 �� Y such that ε2a ◦ ε0a = ε1a
as maps XG3 �� Y (regarding εi:XG

3 �� XG2, i = 0, 1, 2). b: a �� a′ is a 1-
coboundary or a map of 1-cocycles if b is a map XG �� Y such that a ◦ ε0b = ε1b ◦ a′.
The identity map a �� a is given by the neutral map 1XG:XG �� Y , and

a
b �� a′ b′ �� a′′ �� a

b ◦ b′ �� a′′

that is, composition in Z1(X,Y ) is induced by multiplication in the group of maps
XG �� Y . Z1(X,Y ) is therefore a category. In fact, it is a groupoid, a category in



TRIPLES, ALGEBRAS AND COHOMOLOGY 19

which every map is an isomorphism. The objects of Z1(X,Y ), i. e., the 1-cocycles, there-
fore fall into equivalence classes, and one can speak of the automorphisms of any one
1-cocycle in this category. We define

H1(X,Y ) = the set of isomorphism classes of 1-cocycles,
H0(X,Y ) = the automorphism group of the trivial 1-cocycle 1XG2 ∈ |Z1(X,Y )|.

H1(X,Y ) is a set with distinguished element [1XG2 ], the isomorphism class of the
neutral 1-cocycle, and H0(X,Y ) is a group. Clearly if Y is an abelian group object, both
H1 and H0 are abelian groups and coincide with the cohomology groups defined earlier.
The non-abelian cohomology shares the properties of the abelian theory to the degree
that it is defined. H1(AF, Y ) = 1, and there is a six-term “exact” sequence. Theorem 3
also continues to hold.

Nonhomogeneous complex. This cochain complex C(X,Y ) = (Cn(X,Y )), n ≥ 0, is
derived by adjointness from the standard (homogeneous) complex (XG∗, Y ). The cochains
in the nonhomogeneous complex will be maps in the underlying category A. The word
“nonhomogeneous” refers to the varied forms of the terms occurring in the cobound-
ary formula. It will be evident that the nonhomogeneous complex exists whenever one
has adjoint functors A �� B �� A. However in stating the formulas we shall con-
fine ourselves to the tripleable case (B = AT) which is the only one we will need. We
will then prove that the adjointness isomorphism αT gives an isomorphism of complexes

C(X,Y ) � �� (X(GT)∗, Y ).

Let X = (X, ξ) be a T-algebra and (Y, θ) an abelian group object in the category of
T-algebras. (From now on we often suppress the algebra structures from the notation for
brevity). We define

Cn(X,Y ) = (XT n, Y ), n ≥ 0,

and the coboundary d:Cn(X,Y ) �� Cn+1(X,Y ) is given by d =
∑

(−1)idi, 0 ≤ i ≤ n+ 1,
where

adi =

{
ξT n · a, i = 0
XT i−1µT n−i · a, 1 ≤ i ≤ n
aT · θ, i = n+ 1

for any n-cochain a:XT n �� Y (a map in A). This defines C(X,Y ). We now have that

Cn(X,Y ) α �� ((X, ξ)Gn+1, (Y, θ)), n ≥ 0,

is an isomorphism of cochain complexes of abelian groups.

(Superscript T will be omitted for the time being, α = αT, · · ·. The above form of
words is not accurate since C(X,Y ) is not yet known to be a cochain complex. But if the
α’s are additive isomorphisms and commute with the coboundary operators, as we shall
show, then C(X,Y ) is a complex and as such isomorphic to the homogeneous complex).
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Indeed,
Cn(X,Y ) = (XT n, Y )

= (XF (UF )n−1U, (Y, θ)U)
α �� (X(FU)nF, (Y, θ))
= ((XT n+1, XT nµ), (Y, θ))
= ((X, ξ)Gn+1, (Y, θ))

for n ≥ 0. Moreover each diagram

Cn(X,Y ) ((X, ξ)Gn+1, (Y, θ))
�
α

��

Cn+1(X,Y )

Cn(X,Y )





di

Cn+1(X,Y ) ((X, ξ)Gn+2, (Y, θ))
�
α

�� ((X, ξ)Gn+2, (Y, θ))

((X, ξ)Gn+1, (Y, θ))





(εi,(Y,θ))

commutes, 0 ≤ i ≤ n+ 1. Recalling that εi = GiεGn−i, we note

(X, ξ)εi =

{
ξT n+1, i = 0
XT i−1µT n−i+1, 1 ≤ i ≤ n+ 1

If a:XT n �� Y is a nonhomogeneous n-cochain, then2

aα · ((X, ξ)ε0, (Y, θ)) = ξT n+1 · aT · θ
= (ξT n · a)T · θ
= (ad0)α

which checks the square for i = 0; we omit the verification for 1 ≤ i ≤ n+ 1.
As a sample, here are the coboundaries of a ∈ C1(X,Y ), b ∈ C0(X,Y ):

(4)
(a)d = ξT · a−Xµ · a+ aT · θ,
(b)d = ξb− bT · θ

Finally, we need the nonhomogeneous category of (non-abelian) 1-cocycles, Z1(X,Y )
(same notation as in the homogeneous case). Confining ourselves to the tripleable case, a
1-cocycle a: (X, ξ)G2 �� (Y, θ) can be replaced using adjointness by a nonhomogeneous
1-cocycle a:XT �� Y . Similarly, a 1-coboundary b: a �� a′ in the category of 1-
cocycles, formerly a map b: (X, ξ)G �� (Y, θ), can now be thought of as a map b:X

�� Y in A. The homogeneous cocycle and coboundary conditions now have to be
translated into nonhomogeneous terms using the formulas from the foregoing discussion
of C(X,Y ). We find that a:XT �� Y is a 1-cocycle, and b: a �� a′ is a map of
1-cocycles (where b:X �� Y in A) if the following formulas hold:

(5)
(aT · θ) ◦(ξT · a) = Xµ · a,
a ◦ ξb = (bT · θ) ◦ a′

2Editors’ note: In the original thesis, the third line in the display was (ad0)α but the subscripted 0
seemed inconsistent with previous notation
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Abelianized, these formulas read: (a)d = 0, (b)d = 0 (cf. (4) above). Of course, in the last
two formulas we have used multiplication in the group of maps XT 2 �� Y , XT �� Y
in A. We assumed to start with that (Y, θ) ∈ |GpAT| (the category of group objects in
AT); since adjoints preserve groups as well as abelian groups, the image of (Y, θ) under
AT �� A, namely Y, is a group object in A.

3. Interpretation of Cohomology in Dimensions 0 and 1

For a general adjoint pair A �� B �� A there is a map of the interpretation into
the cohomology (at least in the dimensions we will consider, 0 and 1). The main result
in this section is that this map is an isomorphism if the adjoint pair is tripleable. Here
“interpretation” means the hom set in dimension 0 and a concept of principal object for
the coefficient group in dimension 1. The latter can be made to specialize to extensions of
algebras of the type usually classified by Ext1 or H2. In this sense the triple cohomology
generalizes Ext (it always classifies extensions in dimension 1).

From now on we assume F :A �� B, U :B �� A, α:F U a fixed adjointness.
G = UF is the functor part of the standard cotriple in B used to define cohomology with
respect to the underlying object functor U .

In dimension 0 a natural map

(X,Y ) �� H0(X,Y )

where ( , ) denotes the hom set in B, is defined as follows. If y:X �� Y , consider the
diagram

XG2
ε0 ��
ε1

�� XG ε �� X
y �� Y

Then εy is in Z0(X,Y ) since ε0ε = ε1ε. The desired map sends y =⇒ [εy], the correspond-
ing 0-dimensional cohomology class.

THEOREM 4.

(X,Y ) �� H0(X,Y )

is an isomorphism if the adjoint pair F U is tripleable.

Proof. In this case we write X = (X, ξ), Y = (Y, θ) in AT (replacing B by AT to which

it is equivalent via Φ:B � �� AT). The above diagram becomes, in this case,

(XT 2, XTµ)
ξT ��
Xµ

�� (XT,Xµ)
ξ �� (X, ξ)

y �� (Y, θ)

The first three terms constitute a coequalizer diagram, so the result follows. (Given any
z: (XT,Xµ) �� (Z, ζ) such that ξT ·z = Xµ ·z then Xη ·z: (X, ξ) �� (Z, ζ) is uniquely
determined by its satisfying the equation z = ξ(Xη · z). The same calculation, showing
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that a T-structure is a coequalizer in the underlying category, appeared in the proof of
Theorem 1.)

Of course if Y is a pointed object, group or abelian group object, (X,Y ) �� H0(X,Y )
preserves the structures that arise.

In dimension 1 the cohomology classifies objects which resemble principle bundles
trivialized by passage to the underlying category.

DEFINITION 4. E
p �� X is a Y -principal object over X, in B, (with given trivialization)

relative to the underlying object functor U , if

(1) The group object Y operates on E, that is, there is a natural transformation

( , Y ) × ( , E)
◦ �� ( , E)

satisfying (y0 ◦ y1) ◦ e = y0 ◦(y1 ◦ e), (1 ◦ e) = e. Here y0, y1 are any maps B �� Y , e
is any map B �� E in B, and 1 is the neutral element in the group of maps (B, Y ).

(2) The operation of Y is compatible with the projection p. That is, if maps y:B �� Y ,
e:B �� E are given, then (y ◦ e)p = ep.

(3) Y operates in the following simply-transitive fashion: given two maps e0, e1:B �� E
such that e0p = e1p, then there exists one and only one map y:B �� Y such that
y ◦ e0 = e1.

(4) There is given as part of the structure a section s:XU �� EU in the underlying
category A, splitting the projection, s · pU = XU . By adjointness s can also be taken
as a map s:XUF = XG �� E. The condition that it should split the projection is
then sp = Xε :XG �� X. In the following we shall use whichever version of s is
convenient.

E
f �� E ′ is defined to be a map of Y-principal objects over X if f preserves the

projections

E

X

p ���
��

��
�E E ′f �� E ′

X
p′����

��
��

and commutes with the operations of Y , (y ◦ e)f = y ◦ ef .
Y -principal objects over X trivialized with respect to U form a category which we

shall denote by
PO(X,Y ) (relative to U)

A remark about the sections: one should think of s:XU �� EU in A as the ana-
logue of a local trivialization of a principal bundle. Intuitively, passage to the underlying
category restricts the principal object to a covering of X which it is required to become
trivial with respect to. For principal bundles triviality means a global product structure.
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Here similarly, if p:E �� X has a section s:XU �� EU , then EU is isomorphic to
the product XU × Y U in the underlying category A, with the following maps as inverse
isomorphisms:

EU
(pU,σ) �� XU × Y U τ �� EU

σ and τ being defined as follows. It is easy to show à la Lemma 1 that U :B �� A takes
Y -principal objects E �� X into Y U -principal objects EU �� XU . Using the given
section s, the two maps

EU
pU ·s ��
EU

�� EU

are equal when followed by pU . σ arises as the unique map EU �� Y U such that σ ◦ pU ·
s = EU . τ is defined by the composition (x, y)τ = y ◦ xs, for any maps x:A �� XU ,
y:A �� Y U . Taking the identities we can also write τ = πY U ◦ πXUs, where the π’s are
the projections of the product. To prove that (pU, σ) and τ are inverses of each other, one
may as well assume, which will simplify the writing, that E �� X splits in B itself, and
ignore the underlying category. Then (p, σ)τ = σ ◦ ps = E. Also τ(p, σ) = X × Y , since
τ(p, σ)πX = πX is easy to see by compatibility of the group operation with the projection,
and τ(p, σ)πY = πY since both of these maps operate in the same way on τps:X × Y

�� E (using the simply-transitive character of the operation on Y ):

τ(p, σ)πY ◦ τps = τσ ◦ τps

= τ(σ ◦ ps)

= τ,

πY ◦ τps = πY ◦(πY ◦ πXs)ps

= πY ◦ πXs

= τ.

Of course, no assumption about the existence of products in the underlying category is
involved here. The lemma could be rephrased to assert that pU and σ have the universal
mapping property of projections.

A further remark: the reason for including the section in the structure of a principal
object and not merely assuming its existence, as is customary, is that this affords us a
well-defined map PO’s �� 1-cocycles. Note that the postulated sections do not have
to be preserved by maps of principal objects. Two principal objects identical except for
their sections will be isomorphic in the category PO(X,Y )·
Cohomology Classification of Principal Objects. We define a functor

PO(X,Y )
Θ �� Z1(X,Y ) (relative to U)

where Z1(X,Y ) is the category of non-abelian 1-cocycles (homogeneous, for the moment)
described in our discussion of cohomology.
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The functor Θ is defined in the following way. If p:E �� X is a given principal
object, consider the diagram

XG2 XG
ε0 ��

XG2 XG
ε1

�� XG E
s ��XG

X
ε ������������ E

X

p
��

s being the assumed section. Then (ε0s)p = ε0(sp) = ε0ε = ε1ε = (ε1s)p, so we know
that there is a unique map a:XG2 �� Y such that a ◦ ε0s = ε1s. A calculation which is
given below shows that a is a non-abelian 1-cocycle. We define Θ on objects by (E)Θ = a.
If f :E �� E ′ is a map in PO(X,Y ), form the diagram

XG E ′
sf ��

XG

X

ε

���
��

��
��

��
��

��
E ′

X

p′

��

XG E ′
s′

��

Since s′p′ = ε = sp = sfp′, there is a unique b:XG �� Y such that b ◦ s′ = sf . By
calculation b is a map of 1-cocycles a �� a′. We define (f)Θ = b. One easily sees that
Θ is a functor, the main verification needed being that (ff ′)Θ = b ◦ b′, the product in the
group of maps XG �� Y and the composition in the category Z1(X,Y ).

Clearly Θ induces a map

PO(X,Y )
Θ �� H1(X,Y ) (relative to U)

where PO(X,Y ) is the set of connected components of the category PO(X,Y ). (Two
objects can be connected if there is a string of morphisms pointing in either direction
leading from one to the other. These morphisms become composable isomorphisms when
mapped into the groupoid Z1(X,Y ).)

Now suppose that the cartesian product X ×Y exists in B. Because of the projection
πX :X×Y �� X and the left operation of Y on the second factor, X×Y is a Y -principal
object over X. Its section of course is the map (X, 1):X �� X×Y where 1:X �� Y is
the neutral map. This principal object is trivial, or split. Any Y -principal object which is
split in B is isomorphic to X×Y . We refer to the component of PO(X,Y ) that X×Y lies
in as the trivial element of PO(X,Y ). (Not all principal objects in the trivial component
will be split, since PO(X,Y ) is not necessarily a groupoid.) Clearly

PO(X,Y )
Θ �� Z1(X,Y ) (relative to U)

preserves the trivial object, which in Z1 is the neutral 1-cocycle XG2 �� Y . Thus the
induced map

PO(X,Y )
Θ �� H1(X,Y )
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also preserves the trivial element, and another map is induced, denoted by

Aut(X × Y )
Aut(Θ) �� H0(X,Y ).

The automorphism group is that of X × Y in the category of Y -principal objects.

Before proving that these maps Θ are equivalences in the tripleable case, we give the
calculations necessary in order to know that the functor Θ takes its values in the category
of 1-cocycles.

To prove that a = (E)Θ is a 1-cocycle, we let the maps ε2a ◦ ε0a and ε1a operate on
the map ε0ε0s:XG

3 �� E, and note that they give the same result.

ε2a ◦ ε0a ◦ ε0ε0s = ε2a ◦ ε0(a ◦ ε0s)

= ε2a ◦ ε0ε1s

= ε2a ◦ ε2ε0s

= ε2(a ◦ ε0s)

= ε2ε1s,

ε1a ◦ ε0ε0s = ε1a ◦ ε1ε0s

= ε1(a ◦ ε0s)

= ε1ε1s.

b = (f)Θ a 1-coboundary a �� a′ is proved similarly. We let a ◦ ε0b and ε1b ◦ a′ operate
on ε0s

′:XG2 �� E ′.

a ◦ ε0b ◦ ε0s
′ = a ◦ ε0(b ◦ s′)

= a ◦ ε0sf

= (a ◦ ε0s)f

= ε1sf,

ε1b ◦ a′ ◦ ε0s
′ = ε1b ◦ ε1s

′

= ε1(b ◦ s′)

= ε1sf.

The tripleable case. When the adjoint pair is A �� AT �� A, then Θ: PO
�� Z1 is an equivalence, implying the desired cohomology classification. The principal

objects considered are those trivialized by AT �� A and the cohomology is also taken
with respect to this underlying object functor. In general, if A �� B �� A is an
arbitrary adjoint pair, one should still observe that Θ: PO �� Z1 is compatible with the
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process of “tripleization,” in the sense of commutativity of the following diagram

PO(XΦ, Y Φ) Z1(XΦ, Y Φ)
�
ΘT

��

PO(X,Y )

PO(XΦ, Y Φ)

PO(Φ)

��

PO(X,Y ) Z1(X,Y )
Θ �� Z1(X,Y )

Z1(XΦ, Y Φ)

� Z1(Φ)

��

(relative to U)

(relative to UT)

Here ΘT is the functor which will be proved to be an equivalence, and Φ is the “unit
of structure” (§1). (Φ is easily shown to map principal objects, after the manner of
Lemma 3.) This diagram shows that an arbitrary adjoint pair A �� B �� A can be
canonically “closed up” via Φ, to a tripleable adjoint pair A �� AT �� A, wherein
the interpretation of H1 as isomorphism classes of principal objects always succeeds (as
well as the interpretation of H0 as the hom functor). Of course if A �� B �� A is
tripleable to start with (Φ an equivalence) then H1 already classifies principal objects in
B.

Let us assume we are in the situation A �� AT �� A, X = (X, ξ) is a T-algebra,
Y = (Y, θ) is a group object in the category of T-algebras, and let us write Θ = ΘT.

THEOREM 5. If the cartesian product X × Y exists in A, then

PO(X,Y )
Θ �� Z1(X,Y ) (relative to UT)

is an equivalence of categories, inducing isomorphisms

PO(X,Y ) Θ
� �� H1(X,Y )

(relative to UT)

Aut(X × Y )
Aut(Θ)

� �� H0(X,Y )

For algebra extensions the special case X = 1 (terminal object) is important (see
Theorem 6 below). In that case the product assumption can be dropped since 1×Y 	 Y .
The statement about Aut(X×Y ) above is related to Theorem 4. In general, Aut(X×Y ) 	
(X,Y ) as groups since any principal object endomorphism of X × Y satisfies (x, y)f =
(y ◦(x, 1))f = y ◦(x, 1)f and is therefore determined by (x, 1)f which is a map X ��

Y . Any endomorphism is thus an automorphism, although PO(X,Y ) as a whole is not
necessarily a groupoid.

Proof. We consider (Y, θ)-principal T-algebras p: (E,ψ) �� (X, ξ), with sections s:X
�� E in A. What tripleableness does for us is allow us to express the structures of

principal algebras wholly in terms of the underlying category. We have the following
lemma, which is proved like Lemma 2.

LEMMA 4. (E,ψ)
p �� (X, ξ) is a (Y, θ)-principal T-algebra ⇐⇒ p:E �� X is a Y -

principal object in A and the T-structure ψ:ET �� E satisfies

(y ◦ e)T · ψ = (yT · θ) ◦(eT · ψ)
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in the set of maps AT �� E, where y:A �� Y , e:A �� E are any maps in A.
f : (E,ψ) �� (E ′, ψ′) is a map of (Y, θ)-principal algebras over (X, ξ) ⇐⇒ f is

a T-algebra map, preserves the projections into X, and satisfies

(y ◦ e)f = y ◦ ef

for any y:A �� Y , e:A �� E in A.

For the next step in the proof let us write, momentarily, a:XG2 �� Y in AT for
the homogeneous 1-cocycle a = (E,ψ)Θ, and s:XG �� E in AT for the section. Then
a is determined by the relation a ◦ ε0s = ε1s. Let a:XT �� Y correspond to a under
adjointness. Then a is a nonhomogeneous 1-cocycle. The given section s:X �� E
corresponds to s under adjointness also. What relation between a and s corresponds to
the relation between a and s? Now, in proving Lemma 4, one uses adjointness to push
the Y -operation on E down to the underlying category. One employs the following type
of commutative diagram where we have fixed XG2 = (XT 2, XTµ) in the first variable —

(XT, Y ) × (XT,E) (XT,E)◦
��

(XG2, Y ) × (XG2, E)

(XT, Y ) × (XT,E)





α×α

(XG2, Y ) × (XG2, E) (XG2, E)
◦ �� (XG2, E)

(XT,E)





α

in AT

in A

The following elements match up under the vertical isomorphisms:

(a, ξs) sT · ψ��

(a, ε0s)

(a, ξs)





α×α

(a, ε0s) ε1s�� ε1s

sT · ψ





α

ξs and sT · ψ correspond to the compositions of s with ε0 and ε1 under adjointness (cf.
description of the nonhomogeneous coboundary operator in §2). Thus, nonhomogeneously,
if a:XT �� Y in A is (E,ψ)Θ, then a is determined by the relation

(5) a ◦ ξs = sT · ψ in the set of maps XT �� E.

Of course, (5) could be used to define a directly, since the two maps

XT E

X

XT

��ξ










 X

E

s

������������

XT

ET
sT ����������XT EE

ET

��

ψ
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are equal after composition with p:E �� X. The argument we sketched shows that
this definition of a is consistent with the earlier, homogeneous, definition, in the not
necessarily tripleable case. Since a is a 1-cocycle, we have the coboundary zero relation
(aT · θ) ◦(ξT · a) = Xµ · a in the group of maps XT 2 �� Y .

The effect of Θ: PO(X,Y ) �� Z1(X,Y ) on maps is as follows (with Z1 treated
nonhomogeneously). If f : (E,ψ) �� (E ′, ψ′), then the corresponding coboundary b =
(f)Θ: a �� a′ is given by the formula

(6) b ◦ s′ = sf as maps X �� E in A,

where s and s′ are the sections of E and E ′.
Now we shall define the inverse functor

PO(X,Y ) ��
Θ−1

Z1(X,Y ) (relative to UT).

If a:XT �� Y is any 1-cocycle, let aΘ−1 be the principal T-algebra given by X × Y
as an object in A, with left Y -operation (in A) on the second factor, πX :X × Y �� X
as projection, (X, 1):X �� X × Y as section, and the composition

(X × Y )T π �� XT × Y T
ξ×θa �� X × Y

as T-structure. Here π is induced by the projections, π = (πXT, πY T ), and ξ × θa is an
abbreviation which we shall use consistently for the map (t0, t1)(ξ×θa) = (t0ξ, t1θ ◦ t0a) for
any maps t0:A �� XT , t1:A �� Y T in A. Diagrammatically, ξ×θa is the composition

XT × Y T
(ξ,a)×θ �� X × Y × Y

X×(π2,π1) �� X × Y × Y
X×mult. �� X × Y

One can verify easily that the projection πX : (X × Y, π(ξ × θa)) �� (X, ξ) is indeed
a T-algebra map, although the section (X, 1) is only a map in A (unless a = 1, or a
coboundary, of course, as follows from the theorem; if a = 1, then π(ξ × θa) is the T-
structure on the product algebra (X, ξ) × (Y, θ) ). The rest of the verification that aΘ−1

is a (Y, θ)-principal T-algebra will be left till the end.
If b: a �� a′ is a map of 1-cocycles, we set bΘ−1 = X × Y ◦ b

aΘ−1 = (X × Y, π(ξ × θa))
X×Y ◦ b �� (X × Y, π(ξ × θa′)) = a′Θ−1

where X × Y ◦ b is given by the formula (t0, t1)(X × Y ◦ b) = (t0, t1 ◦ t0b) for t0:A �� X,
t1:A �� Y in A. We will sketch later a proof that this is a map of principal algebras.

We can now show that

PO(X,Y )
� �� ΘΘ−1 ,Θ−1Θ = Z1(X,Y ) .

Let (E,ψ)
p �� (X, ξ) be a (Y, θ)-principal algebra with section s:X �� E. Then we

know that E � �� X × Y in A,

E
(p,σ) �� X × Y

τ �� E
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where σ ◦ ps = E, (x, y)τ = y ◦xs. To prove that PO 	 ΘΘ−1, all we have to do is show
that the A-isomorphism

(E,ψ)
(p,σ) �� (X × Y, π(ξ × θa))

is a T-algebra map. Consider the diagram

E X × Y
(p,σ)

��

ET

E

ψ

��

ET XT × Y TXT × Y T

X × Y

ξ×θa
��

ET XT × Y T
(pT,σT ) ��

ET

ET

ET

��

ET (X × Y )T
(p,σ)T �� (X × Y )T

XT × Y T

π

��

Since ψp = pT · ξ ( p is a T-algebra map) and

(pT, σT )(ξ × θa) = (pT · ξ, (σT · θ) ◦(pT · a))
we have to prove that ψσ = (σT · θ) ◦(pT · a) as maps ET �� Y . We let them both
operate on ψps:ET �� E :

(σT · θ) ◦(pT · a) ◦ψps = (σT · θ) ◦(pT · a) ◦(pT · ξs)
= (σT · θ) ◦ pT · (a ◦ ξs)

= (σT · θ) ◦(pT · sT · ψ)

= (σT · θ) ◦((ps)T · ψ)

= (σ ◦ ps)T · ψ
= ψ ,

using Lemma 4, and
ψσ ◦ψps = ψ(σ ◦ ps)

= ψ

Verification of fΘΘ−1 = f :E �� E ′ will be left out; it also uses Lemma 4.
To prove Θ−1Θ = Z1(X,Y ), let a be a 1-cocycle. Then aΘ−1Θ is determined by the

equation
(X, 1)T · π(ξ × θa) = aΘ−1Θ ◦ ξ(X, 1) ,

(X, 1) being the section in aΘ−1. Computing, we have

(X, 1)T · π(ξ × θa) = (XT, 1T )(ξ × θa)

= (ξ, (1T · θ) ◦ a)

= (ξ, a)
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because 1T · θ is the neutral map X �� Y , the operation ( )T · θ preserving the group
law (adaptation of Lemma 2 to the non-abelian case), whereas

ξ(X, 1) = (ξ, 1XT ),

by naturality of neutral maps. Manifestly, aΘ−1Θ = a.

It remains, finally, to prove that the values of Θ−1 are principal T-algebras and maps
thereof. We begin by showing that the proposed T-structure π(ξ × θa) on aΘ−1 is asso-
ciative. This is done by computing both sides of the diagram

(X × Y )T X × Y
π(ξ×θa)

��

(XT × Y T )T

(X × Y )T

(ξ×θa)T
��

(XT × Y T )T XT × Y TXT × Y T

X × Y

ξ×θa
��

(XT × Y T )T XT × Y T

(X × Y )TT

(XT × Y T )T

πT

��

(X × Y )TT (X × Y )T
µ �� (X × Y )T

XT × Y T

π

��

We present the result for the left side in the table which follows. Each entry on the
right is the accumulated composition of the maps down to that stage.

(X × Y )TT

(XT × Y T )T

πT

��
(XT × Y T )T

(X × Y )T

(ξ×θa)T
��

(X × Y )T

XT × Y T

π

��
XT × Y T

X × Y

ξ×θa
��

(πXT, πY T )T

(πXT · ξ, (πY T · θ) ◦(πXT · a))T

(πXTT · ξT, ((πY T · θ) ◦(πXT · a))T )

(πXTT · ξT · ξ, ((πY T · θ) ◦(πXT · a))T · θ ◦(πXTT · ξT · a))
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which is (πXTT ·ξT ·ξ, (πY TT ·θT ·θ) ◦(πXTT ·aT ·θ) ◦(πXTT ·ξT ·a)) by the multiplicative
property of ( )T · θ. The right side of the diagram is, similarly3,

(X × Y )TT

(X × Y )T

µ

��
(X × Y )T

XT × Y T

π

��
XT × Y T

X × Y

ξ×θa
��

(πXTT ·Xµ, πY TT · Y µ)

(πXTT ·Xµ · ξ, (πY TT · Y µ · θ) ◦(πXTT ·Xµ · a))

Since ξ and θ are associative, and a satisfies the 1-cocycle identity, both sides of the
diagram give the same map. Thus the structure π(ξ × θa) is associative.

To prove the structure is unitary, consider the diagram

X × Y (X × Y )T
(X×Y )η ��X × Y

XT × Y T

Xη×Y η
������������������� (X × Y )T

XT × Y T

π

��
XT × Y T

X × Y

ξ×θa

��

The composition ηπ(ξ × θa) = (Xη · ξ, (Y η · θ) ◦(Xη · a)). Since ξ and θ are unitary,
it suffices to prove that Xη · a:X �� Y is the trivial map 1. (In a sense, the cocycle
a is already “normalized”.) This follows from the following peculiar computation. Let
Xηη:X �� XTT denote either of Xη ·XTη, Xη ·XηT . Then

Xηη ·Xµ = Xη ,
Xηη · aT · θ = Xη ·XTη · aT · θ

= Xη · a · Y η · θ
= Xη · a ,

Xηη · ξT = Xη ·XηT · ξT
= Xη.

3Editors’ note: The editors believe that the “a” at the right end of the last line is correct, although
the original shows a ξ.
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Hence
Xη · a = Xηη ·Xµ · a

= Xηη((aT · θ) ◦(ξT · a))
= (Xηη · aT · θ) ◦(Xηη · ξT · a)
= (Xη · a) ◦(Xη · a)

In a group, this implies Xη · a = 1.
It must also be proved that if b: a �� a′ is a map of 1-cocycles, then bΘ−1 = X ×

Y ◦ b: aΘ−1 �� a′Θ−1 in PO(X,Y ). One must dissect the diagram

X × Y X × Y
X×Y ◦ b

��

XT × Y T

X × Y

ξ×θa
��

XT × Y T XT × Y TXT × Y T

X × Y

ξ×θa′
��

XT × Y T XT × Y T

(X × Y )T

XT × Y T

π

��

(X × Y )T (X × Y )T
(X×Y ◦ b)T �� (X × Y )T

XT × Y T

π

��

as in the proof of associativity, and at the end invoke the coboundary relation a ◦ ξb =
(bT · θ) ◦ a′. Also one has to use the fact that X × Y ◦ b can be written as X × (πY ◦ πXb).
(b is a map X �� Y in A to start with.)

From all the foregoing we know that Θ−1 is correctly defined with regard to T-
structures, both on objects and on maps. However, we do not quite know yet that
the values of Θ−1 are actually (Y, θ)-principal algebras. We have to verify that the T-
structure and the Y -operation on X × Y in aΘ−1 are connected by the multiplicativity
relation stated in Lemma 4. We take e:A �� X × Y in A, that is, e = (e0, e1) where
e0:A �� X and e1:A �� Y , and recalling that Y operates on the left of the second
factor of X × Y , we have

(y ◦(e0, e1))T · π(ξ × θa) = (e0T, (y ◦ e1)T )(ξ × θa)

= (e0T · ξ, ((y ◦ e1)T · θ) ◦(e0T · a))
= (e0T · ξ, (yT · θ) ◦(e1T · θ) ◦(e0T · a)),

(yT · θ) ◦(e0, e1)T · π(ξ × θa) = (yT · θ) ◦(e0T · ξ, (e1T · θ) ◦(e0T · a))
= (e0T · ξ, (yT · θ) ◦(e1T · θ) ◦(e0T · a)).

The multiplicativity condition to be satisfied by bΘ−1 = X × Y ◦ b (Lemma 4) can be
similarly verified. This completes the proof of Theorem 5.

If there were an exact sequence in the first variable of the cohomology, all of this might
be avoided. (See [Barr & Rinehart (1966)], for such a possibility.)
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Modules and Extensions. We shall now consider a special case of the foregoing the-
ory, in which principal objects are interpreted as algebra extensions of a given algebra
by one of its modules. This specialization is the version of triple cohomology outlined in
[Barr & Beck (1966)]. In this part we limit ourselves to discussing tripleable adjoint pairs,
for brevity.

Recall that the “comma category” (AT, X), where X is a T-algebra, has maps Z
�� X in AT as its objects, and commutative triangles

Z

X
���

��
��

�Z Z ′�� Z ′

X
����

��
��

in AT

as its maps. This is also called the category of objects over X. (See [Lawvere (1966)] for
the general definition of this useful notation. Nothing depends on our having T-algebras
in this definition. X could be an object in any category. The same is true of the following
definition.)

DEFINITION 5. An X-module is an abelian group object in the category (AT, X).

If AT has pullbacks (fibered products) the addition in an X-module will be represented
by a binary operation

Y ×X Y

X
���

��
��

�Y ×X Y Y�� Y

X
����

��
��

(The fibered product is the ordinary cartesian product in (AT, X). It exists if fibered
products exist in A.) The identity map X is always terminal in (AT, X), since an object
p:Z �� X admits the unique map

Z

X

p ���
��

��
�Z X

p �� X

X
X����

��
��

Since a terminal object is a 0-fold product, the nullary operation consisting of the zero
element in an X-module p:Y �� X will be represented by a map of the terminal object:

X

X
X ���

��
��

�X Y
s �� Y

X

p����
��

��

Thus an X-module always has a zero section, which splits the projection, sp = X, in the
category AT. In effect, our procedure is to identify X-modules with split extensions.
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Now let A F �� AT U �� A be a tripleable adjoint pair. Then we get adjoint functors
on comma categories

(A,X)
(F,X) �� (AT, X)

(U,X) �� (A,X)

where X = (X, ξ) is a given T-algebra. (U,X) is the obvious forgetful functor. (F,X) is
the functor which on objects:

Z

X

p

��

��

(ZT,Zµ)

(XT,Xµ)

pT

��
(XT,Xµ)

(X, ξ)

ξ

��

This is the usual free algebra functor lifted up to the comma categories. The composition
(F,X)(U,X) induces a triple (T, X) in (A,X) given by

Z

X

p ���
��

��
�Z ZT

(η,X) �� ZT

X
pT ·ξ����

��
��

ZTT

X
pTT ·ξT ·ξ ���

��
��

�ZTT ZT
(µ,X) �� ZT

X
pT ·ξ����

��
��

on a typical object Z
p �� X. The adjoint pair (F,X) (U,X) is tripleable, that is, the

canonical functor

(A,X)(T,X)

(A,X)

U(T,X)

���
��

��
��

��
��

�
(A,X)(T,X) (AT, X)�� Φ

(AT, X)

(A,X)

(U,X)

����
��

��
��

��
��

is an isomorphism. For it is a triviality to verify that a (T, X)-structure on p:Z �� X ∈
|(A,X)|

ZT

X
pT ·ξ ���

��
��

�ZT Z
θ �� Z

X

p����
��

��

is precisely equivalent to a T-algebra map (Z, θ)
p �� (X, ξ), i.e., an object of (AT, X).

We have a cohomology theory

Hn(Z, Y )X , n ≥ 0 ,
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defined for Z a given T-algebra over X (suppressing the algebra structures and the projec-
tion Z �� X from the notation) and Y a given X-module. The cohomology is relative
to the underlying object functor (U,X): (AT, X) �� (A,X). The subscript X is put
in as a reminder that all algebras, . . . are being considered with given projections into
X. The complexes used to define these groups resemble the usual ones (homogeneous or
nonhomogeneous), but all cochains have to be maps over X.

By tripleableness, H0(Z, Y )X is the abelian group of maps

Z

X
���

��
��

�Z Y�� Y

X
����

��
��

in (AT, X) ·

H1(Z, Y )X classifies Y -principal T-algebras E �� Z over X. We will return to this
in a moment, giving a separate interpretation to the case Z = X. First we point out that
there is a sort of co-Shapiro lemma by which one can in effect always assume that Z = X,
that is, there is a cohomology isomorphism

H(Z, Y p−1)Z
� �� H(Z, Y )X ·

This results from the adjoint pair

(AT, Z) (AT, X)
(AT,p) ��

(AT, Z) (AT, X)��
p−1

where if Y is an algebra over X, Y p−1 is the pullback (existing, as remarked above, if
A has pullbacks). The coadjoint is just composition with p, the fixed structural map Z

�� X. Since p−1 is an adjoint, it preserves abelian group objects:

Z-module


 Z Xp

��

Y p−1

Z
��

Y p−1 Y������ Y

X
��



X-module

This explains the appearance of Y p−1 as coefficients above. Once everything is defined,
the proof of the co-Shapiro lemma is trivial (the two complexes involved are isomorphic
under the above adjointness). In this sense it is sufficient to consider H1(X,Y )X , which
evidently provides a cohomology classification for the objects described in the following
definition:

DEFINITION 6. An extension of X by the X-module Y �� X (in the category (AT, X))
is a (Y �� X)-principal T-algebra over the terminal object X �� X, which is trivial-
ized relative to the underlying object functor (U,X): (AT, X) �� (A,X).
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Explicitly, such an extension consists of the following data:

(1) A T-algebra map E
p �� X.

The definition insists on our giving a T-algebra in (AT, X) together with a projection
map p into the terminal object:

E

X
���

��
��

�E X
p �� X

X
X����

��
��

in AT ·

Therefore the unlabelled structural map of E as an object in (AT, X) also has to be
p.

(2) An operation of the X-module Y �� X on the object p:E �� X in the
category (AT, X). This means that there is a pairing

(Z, Y )X × (Z,E)X
◦ �� (Z,E)X

which is (contravariantly) natural in the variable Z �� X, ( , )X being the hom
functor in (AT, X). This operation is compatible with the projection p ((y ◦ e)p = ep),
and is simply transitive: given any two maps

Z

X
���

��
��

�Z E
e0 ��

E

X
����

��
��

Z E
e1

��

there exists a unique

Z

X
���

��
��

�Z Y
y �� Y

X
����

��
��

such that y ◦ e0 = e1.

(3) There is a section X s �� E in A. Thus the extension E
p �� X is split in the

underlying category.

One further easily checks that maps of extensions are T-algebra maps over X

E

X

p ���
��

��
�E E ′f �� E ′

X
p′����

��
��

which commute with the (Y �� X)-operations (and do not need to respect the sections,
which, as with principal algebras, are considered as given parts of the structure).
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Extensions E �� X as defined clearly form a category, which we denote by Ex(X,Y ).
Let Ex(X,Y ) be the set of isomorphism classes in this category (which is in fact a
groupoid). Let Aut(Y ) be the automorphisms of the trivial extension, which is just
the X-module Y �� X itself. Then Theorem 5 in this context becomes:

THEOREM 6.

Ex(X,Y )
Θ �� Z1(X,Y )X

is an equivalence of categories, inducing isomorphisms

Ex(X,Y ) � �� H1(X,Y )X

Aut(Y ) � �� H0(X,Y )X

Both the extensions and the cohomology are taken relative to the underlying object functor
(U,X): (AT, X) �� (A,X).

It is of some interest to make Θ explicit in this context. An extension p:E �� X
gives rise to a nonhomogeneous 1-cocycle

XT

X
ξ ���

��
��

�XT Y
a �� Y

X
����

��
��

which is determined by the formula a ◦ ξs = sT ·ψ, where ψ:ET �� E is the T-structure
of the extension. Note that the two maps

XT E

X

XT

��
ξ

��
��

��
��
X

E

s

����������

XT

ET
sT �����

���
��

XT EE

ET

��

ψ��
��

��
��

in (A,X)

agree when followed by p, so one can be carried into the other by a map into Y (Y �� X
is also an X-module in the underlying category). Conversely, identifying E with Y (as
an object in A) for simplicity, the T-structure on E must be of the form

ψ = θ + pT · a:ET �� E .

The sum of these maps exists because they are both compatible with the ever-present
projections into X.

Incidentally, nothing requires the module Y �� X to be an abelian group object.
We have assumed it above only because abelianness is usually present in examples, and
there is no convenient terminology for the other notion.
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A final comment concerning the application of these ideas: in practice one starts not
with A and T, but with category B for which one seeks tripleable underlying object
functors U :B �� A. Given one such, the cohomology H1(X,Y )X relative to U classifies
extensions which are split in the underlying category in which U takes values. For instance,
associative K-algebras are tripleable over K-modules, the extensions come out K-linearly
split, and the cohomology which classifies them turns out to be Hochschild’s. If sets are
taken as the underlying objects of K-algebras, the extensions only have to be split in the
category of sets, i.e., they are not really split at all, and the cohomology which emerges
to classify them is a theory, it turns out, developed by Shukla. But these are subjects
that we will discuss in much more detail in the Examples.

4. Examples

We begin with an archetype of a large number of algebraic examples.

EXAMPLE 1. Groups tripleable over sets. We let G be the category of groups, A the
category of sets, and U : G �� A the usual underlying set functor. We have adjointness
F U , where F is the free group functor. If X is a set, we write the elements of XF
as words spelled by means of formal group operations in generators (x), where x ∈ X.
The empty word is denoted by ( ). By adjointness we get a triple T = (T, η, µ) in A
where XT = XFU is the underlying set of the free group generated by X. One further
verifies (since these maps are determined by the adjointness) that Xη:X �� XT is the
map x⇒ (x), while Xµ:XTT �� XT is the map described as follows. The elements of
XTT are words spelled with generators (w), where w ∈ XT . Then Xµ maps (w) ⇒ w
and is extended to other elements by multiplicativity. For example, if w1 = (x1)(x2),
w2 = (x2)

−1, then W = (w1)(w2) ∈ XTT (it can also be written ((x1)(x2))((x2)
−1)), and

W · Xµ = w1w2 = (x1) ∈ XT . Intuitively, this is the only map µ could be; in fact,
this map is correct, because by construction of T, Xµ underlies the counit XFε:XFUF

�� XF , which is defined by multiplication in the free group.
We will now show that the underlying set functor is tripleable, by demonstrating that

the category of T-algebras AT is equivalent to the category of groups, G . We do this by
exhibiting a 1–1 correspondence between T-algebra structures on a set X and group laws
on X. Indeed, one could think of XT merely as a list of all the group operations which
could conceivably be performed on elements of X. The T-structure ξ:XT �� T is then
a function which can be thought of as telling us what the values of these operations are.
For example, given any two elements x0, x1 ∈ X, and given a function ξ:XT �� X, the
formal, juxtaposition, product (x0)(x1) exists in XT , and the value of ξ on this element,
[(x0)(x1)]ξ, naturally suggests itself as the definition of a binary operation x0 ·x1. In fact,
just using any function ξ:XT �� X, we can define a candidate for a group law on X:

x0 · x1 = [(x0)(x1)]ξ (multiplication)

x−1 = [(x)−1]ξ (inversion)
1 = [( )]ξ (neutral element)
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The assumption that ξ is unitary and associative implies that these operations satisfy the
group axioms. For example, here is the proof that the multiplication x0 ·x1 is associative.
Let W1, W2 ∈ XTT be the following words:

W1 = ((x0)(x1))((x2)), W2 = ((x0))((x1)(x2))·
Pursuing them around the associativity diagram

XT X
ξ

��

XTT

XT

ξT

��

XTT XT
Xµ �� XT

X

ξ

��

we get
W1 · ξT · ξ = [(x0 · x1)(x2)]ξ = (x0 · x1) · x2

W2 · ξT · ξ = [(x0)(x1 · x2)]ξ = x0 · (x1 · x2)

whereas W1 ·Xµ · ξ = W2 ·Xµ · ξ = [(x0)(x1)(x2)], q.e.d. Note that [(x)]ξ = x because of
the unitary axiom

X XT
Xη ��X

X

X
���

��
��

��
��

� XT

X

ξ

��

The other group axioms can be verified in a similar manner.
Conversely, it is quite clear that a given group law on X defines a map ξ:XT �� X

by just performing the indicated group operations using the group law, and this map will
be unitary and associative. More precisely, the canonical functor

AT

A
UT ���

��
��

�
AT G�� Φ

G

A
U����

��
��

maps a group π into its underlying set πU with the T -structure πεU :πUT �� πU which
employs the given operations in π to evaluate in πU all the proposed group operations
formally present in πUT . The foregoing procedure of constructing a group out of a T-
algebra defines a functor Φ−1:AT �� G with the properties ΦΦ−1 = G , Φ−1Φ = AT.
(One gets an actual isomorphism of categories.) The functor Φ, leaving underlying sets
unchanged, simply interchanges two equivalent formulations of the notion of a group
structure on a set.)

The example of groups is typical. It is known that all algebraic categories in the
sense of [Lawvere (1963)] are tripleable over sets, with respect to their usual underlying
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set functors. [Linton (1966)] has shown that over sets this is almost the whole story:
admitting infinitary operations one gets equational categories of algebras, and over the
base category of sets tripleableness is equivalent to equationality.

Over other base categories, tripleableness does not seem to have any such standard
interpretations. It is the proposal of this paper that tripleableness be regarded as a new
type of mathematical structure, parallel to but not necessarily definable in terms of other
known types of structure, such as algebraic, equational, topological, ordered, . . . .

Inasmuch as it has been insinuated all along that tripleableness is a restriction—

EXAMPLE 2. A non-tripleable adjoint pair. Let Top be the category of spaces, A the
category of sets, and U : Top �� A the usual forgetful or underlying set functor. Left
adjoint to U is the discrete space functor, XF = the topological space of underlying
set X with the discrete topology. The composition FU is just A. Indeed, the triple
T in A induced by the adjoint pair F U is just the identity triple consisting of the
identity functor with its identity natural transformation as unit and multiplication. The
corresponding category of algebras is nothing but A. (An algebra structure ξ:X �� X
has to be the identity by the unitary axiom.) In the canonical diagram

A

A
A ���

��
��

�A Top�� Φ
Top

A
U����

��
�

we have Φ = U , not an equivalence.
As we have mentioned, tripleableness implies some sort of algebraicity, and tends to ex-

clude topological structures. However, replacing Top by the category of compact4 spaces,

with the usual underlying set functor (the left adjoint is the Stone-Čech compactification
of the discrete space), the resulting adjoint pair is tripleable [Linton (1966)].

We shall now give some examples involving groups and monoids, and corresponding
cohomology theories which come from our general theory.

EXAMPLE 3. The category of π-sets. Let π be a monoid (group, in the original
Eilenberg-Mac Lane presentation [Eilenberg & Mac Lane (1947)]). Using π we get a triple
in the category of sets, A, by

A
(a,1) �� A× π, A× π × π

(a,x1x2) �� A× π.

This triple is also denoted by π. The category of π-algebras, Aπ, consists of sets equipped
with unitary, associative π-structures A× π �� A, that is, right π-sets. A group object
in Aπ consists of a group object in A, i.e., an ordinary group, G, with a π-structure G×π

�� G which is compatible with the multiplication in G: (g1g2)x = (g1x)(g2x). Such an
object is called a right π-group. An abelian group object in Aπ is then just a right-π-module

4Editors’ note: At the time the thesis was written, compact meant compact Hausdorff, under the
influence of Bourbaki. Both earlier and later, this was not the standard usage.
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[Cartan & Eilenberg (1956), Mac Lane (1963), . . . ]. The cohomology groups Hn(A, Y )
are defined for a right π-set A and a right π-module Y . They can be calculated from
the nonhomogeneous complex (§2) which in this case becomes: Cn(A, Y ) = all functions
f :A× πn �� Y ,

(a, x1, . . . , xn+1)(fd) = (ax1, x2, . . . , xn+1)f

+
n∑
i=1

(−1)i(a, x1, . . . , xixi+1, . . . , xn+1)f

+ (−1)n+1(a, x1, . . . , xn)fxn+1

being the coboundary of an n-cochain f ∈ Cn(A, Y ). This is identical with the Eilenberg-
Mac Lane complex [Eilenberg & Mac Lane (1947)], except that usually one takes A = 1,
the trivial right π-set (in which case terms of the form ax drop out). The groups Hn(1, Y ),
relative to the triple π are usually written Hn(π, Y ) and called the (Eilenberg-MacLane)
cohomology groups of π.

As we know, H0(A, Y ) is isomorphic to the group of right π-maps A �� Y (i.e.,
equivariant maps). When A = 1, this reduces to the invariant elements of Y (those
y ∈ Y such that yx = y for all x ∈ π). The interpretation of H1(A, Y ) is well known
when A = 1. Then H1 classifies principal homogeneous π-sets for the π-module Y (see
[Serre (1965), I-56 ff.]). When A �= 1, a representative of an element of H1(A, Y ) can be
pictured as

p

��

s



�
�
�
�

��

Y





operates fiberwiseE

A

E, p, A, Y are all right π-maps, and the operation of Y is consistent with π-structures.
The fibers are all non-canonically isomorphic with Y (via the section s which is not
preserved by maps), and A is the quotient set of the Y -operation.

H1 can also be interpreted in terms of derivations. A 1-cocycle in the above complex
is a map f :A × π �� Y such that (a, x1x2)f = (ax1, x2)f + (a, x1)fx2. If A = 1, f
can be regarded as a function π �� Y and is a derivation in the usual sense. The
1-coboundaries are precisely the inner derivations.

EXAMPLE 4. Cohomology in the category of groups. We will consider the cohomology
groups Hn(π, Y ) where π is a group and Y is an abelian group object in the category
of groups, G . As is well known [Brinkman & Puppe (1965), Eckmann & Hilton (1962),
for example], this just means that Y is an abelian group. In this setting π does not
operate on Y (or operates trivially). For the cohomology of π with coefficients in a π-
module Y , we refer to Example 5; we want to study this example first, in order to filter
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the complications. Of course, “cohomology” in G is not defined except with reference to
an underlying object functor. For this we choose the usual underlying set functor U : G

�� A, which we know is tripleable, by Example 1.

A G
F ��

A G��
U

(A = sets)

The standard cotriple G has G = UF as its functor, and the natural epimorphism of the
free group πε:πG �� π as its counit (π ∈ G ). Hn(π, Y ) is the nth cohomology group of
either of the following two complexes. The homogeneous complex (§2) is

0 �� (πG, Y ) d �� (πG2, Y ) d �� · · · d �� (πGn+1, Y ) d �� · · ·

where d =
∑n

i=0(−1)i(πGiεGn−i, Y ) and the hom is in the category of groups. The
nonhomogeneous complex is

0 �� (π, Y ) �� (πT, Y ) �� · · · �� (πT n, Y ) �� · · ·

where we have written π, Y for the underlying sets, T :A �� A is the underlying triple
(Example 1), and the hom is in the category of sets. The coboundary formula can be
found in §2.

Since U is tripleable, H0(π, Y ) is the abelian group of homomorphisms π �� Y .
H1(π, Y ) classifies Y -principal groups over π, p:E �� π, as follows. The group

structures of π and Y will be written as ξ:πT �� π and θ:Y T �� Y . The group
structure of the trivial principal group π × Y will be componentwise (§3)5:

(π × Y )T
proj. �� πT × Y T

ξ×θ �� π × Y.

For example, if we take the word (x1, y1)(x2, y2) ∈ (π × Y )T , its image in π × Y will give
the binary operation of multiplication:

(x1, y1)(x2, y2) ⇒ ((x1)(x2), (y1)(y2)) ⇒ (x1x2, y1y2).

If E �� π is any Y -principal group over π, we will have E 	 π × Y as a set but its
group structure will be of the form ξ× (θ+ a), in the additive form of the notation in §3,
where a:πT �� Y is a 1-cocycle:

(π × Y )T �� πT × Y T
ξ×(θ+a) �� π × Y

(w0, w1) ⇒ (w0ξ, w1θ + w0a)

5Editors’ note: The second arrow label was simply θ in the original. We have changed it because it
seems correct to do so and also because the spacing in the original suggests that something was to have
been added by hand
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Thus ξ×(θ+a) instructs us to multiply in E (identifying E with π×Y as a set) according
to the rule

(x1, y1)(x2, y2) = (x1x2, y1 + y2 + [(x1)(x2)]a)

where (x1)(x2) is the formal product in πT . Evidently, Y -principal groups over π are just
group extensions of π by Y in the ordinary sense (with π operating trivially on Y ). We
have an isomorphism

H1(π, Y ) � �� EM2(π, Y )

because of this classification of extensions (EM is the Eilenberg-Mac Lane theory). Using
the method of [Barr & Beck (1966)], one proves

Hn(π, Y ) � �� EMn+1(π, Y )

for n ≥ 0 (n = 0 was covered above).
Some further remarks about principal groups: note that the cocycle a:πT �� Y

“twists” the whole group structure on π × Y , not just the multiplication. For example,
the new neutral element is (1, 0 + [( )]a). On the other hand, the cocycle a will always
satisfy [(x)]a = 0. (This is the relation Xη ·a = 1, which appeared in the proof of Theorem
5.) The identity operation never is twisted.

G is also tripleable over the category (1, A), the comma category, better known as
the category of pointed sets. The free functor (X, x0)F is the free group on the set X
modulo the single relation (x0) = 1. The whole example can be carried through similarly
in this setting. One finds that the cocycle satisfies [(x0)]a = 0. Thus the underlying
pointed structure of the principal group over π, say, is untwisted. (The pointed structure
is the neutral element.) In any principal object, in this theory, the underlying category
structure remains that of a product. Only the added, T-, structure is twisted.

EXAMPLE 5. Cohomology of a group with coefficients in a module. A π-module means
an abelian group object in the comma category (G , π). We first show that this general
categorical definition reduces to the ordinary notion of right π-module (or left, with a
different choice of product representation below). We shall prove:

π − Mod = Ab(G , π)
ker �� Right π − modules

is an equivalence of categories.
This functor maps a π-module Y �� π into M = ker(Y �� π) with right π-

operators defined by conjugation. We shall give the details. Since Y �� π is an abelian
group object it must have a zero section (§3)

π

Y

��
p

π

Y

s





(sp = π)

which is a map in the category of groups. Thus Y � �� π ×M as a set. Explicitly, yσ =
(yp, y(yps)−1) and (x,m)τ = m(xs) define inverse isomorphisms Y �� π ×M �� Y .
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Viewing σ as an identification for simplicity, we now express the group multiplication in
Y in terms of the product representation. Knowing that s, p, and the injection M �� Y
are group maps, we have

(x1, 1)(x2, 1) = (x1x2, 1)

(1,m1)(1,m2) = (1,m1m2)

(x1,m1)(x2,m2) = (x1x2, . . .)

and from the formula for τ ,
(1,m)(x, 1) = (x,m) .

Conjugation induces right π-operators in M , since the kernel is an invariant subgroup:

(x, 1)(1,m)(x, 1)−1 = (1,mx) .

Thus M is a right π-group (Example 3). The full multiplication table for Y now emerges:

(x1,m1)(x2,m2) = (1,m1)(x1, 1)(1,m2)(x2, 1)

= (1,m1)(1,m2x1)(x1, 1)(x2, 1)

= (1,m1(m2x1))(x1x2, 1)

(1) = (x1x2,m1(m2x1)) ·
Thus Y is isomorphic to the crossed product of π by M .

Up to this point we have only used the zero element of the module. Now we introduce
the addition which, being a binary operation, is represented by a map

Y ×π Y

π
���

��
��

��
Y ×π Y Y�� Y

π
����

��
��

�

Replacing Y by π×M , we have that (π×M)×π (π×M) is universal for pairs of morphisms
(x1,m1), (x2,m2) such that x1 = x2. Thus Y ×π Y is isomorphic to π ×M ×M as a set,
and the above diagram becomes

π ×M ×M

π
���

��
��

��
��

π ×M ×M π ×M�� π ×M

π
����

��
��

��
�

The induced map of kernels M ×M �� M is a group law on M as a right π-group.
Thus

M ∈ Gp(Right π − groups) = Gp Gp Aπ

= Ab Aπ

= Right π − modules ;
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moreover, the map of kernels M×M �� M must coincide with the group law in M (as a
subgroup of Y ) and be abelian. (These facts follow from [Brinkman & Puppe (1965)] and
[Eckmann & Hilton (1962)]. Notice that in this case there are no properly non-abelian
π-“modules”.) This proves that the kernel functor takes its values in the category of right
π -modules, as required.

The multiplication in Y can now be written as

(2) (x1,m1)(x2,m2) = (x1x2,m1 +m2x1) ,

the usual formula for multiplication in the split extension. Of course, for the inverse of
the kernel functor, take any right π-module and construct a π-module in our sense by
formula (2). Thus we have established the desired equivalence.

For the rest of this example we use the notation Y �� π for a π-module, M for the
kernel, and we identify Y with π ×M with multiplication (2) when convenient.

The cohomology theory which arises is written Hn(Z, Y )π (§3), and is defined for Z
�� π any group over π (object in the comma category (G , π) and Y �� π a π-module.

It is the n-th cohomology group of either of the complexes

0 �� (ZG, Y )π �� (ZG2, Y )π �� · · · �� (ZGn+1, Y )π �� · · ·

0 �� (Z, Y )π �� (ZT, Y )π �� · · · �� (ZT n, Y )π �� · · ·
The cochains are maps in (G , π) or (A, π) respectively (A = Sets), T is really an abbrevi-
ation for (T, π), the functor part of the triple induced on the comma category (§3), and
both of the displayed general terms are in dimension n.

H0(Z, Y )π is the abelian group of maps Z �� Y in (G , π). By formula (2) such a
map is the same thing as a function f :Z �� M satisfying

(z1z2)f = z1f + (z2f)z1 .

Thus f is a derivation of Z �� M , where M is treated as a right Z-module via the fixed
map Z �� π. We have

H0(Z, Y )π 	 Der(Z,M) .

This isomorphism depends on the fact that the underlying set-over-π functor (G , π) ��

(A, π) is tripleable; this is a consequence of tripleableness of G �� A, as remarked in §3.
The cohomology groupH0(π, Y )π classifies extensions E �� π of π by the π-module

Y �� π. Using the given set section s:π �� E we get an isomorphism E 	 π ×M in
which s corresponds to the map x ���� (x, 0). The group structure of E will be determined
by a 1-cocycle a:πT �� Y in (A, π), and it is sufficient to know the M -component of
a. We regard the cocycle as a map a:πT �� M . The addition in the π-module being
carried out in the M -component, we find that the multiplication in E 	 π ×M is:

(x1,m1)(x2,m2) = (x1x2,m1 +m2x1 + [(x1)(x2)]a)
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(by the remarks after Theorem 6, ψ = θ + pT · a). These are the usual extensions of the
group π by the π-module M . In general, maps of extensions will not commute with the
product representations, which depend on the sections. A map of two extensions will be
of the form (x,m) ���� (x,m+xb). Then b:π �� M is the 0-cochain whose coboundary
puts the two extensions into the same 1-cohomology class. One conjectures as a result
(taking dimension 0 considered above into account):

Hn(π, Y )π
� ��

{
Der(π,M), n = 0
EMn+1(π,M), n > 0

(EM being the Eilenberg-Mac Lane theory). This is proved by an acyclic models method
in [Barr & Beck (1966)].

We shall now give a series of examples involving linear algebras.

EXAMPLE 6. Associative K-algebras with identity. K being a commutative ring, we
let A denote the category described. A has few group objects. Indeed, if Y ∈ AbA , then
the zero operation in Y must be represented by a map of the terminal object 0 �� Y .
Since this map must preserve identity elements, 1 = 0 in Y ; therefore Y = 0. To get
abelian group objects, we must consider categories of modules. Let Λ be a K-algebra.
Then

Λ-Mod = Ab(A ,Λ)
ker �� Λ-Λ-Bimodules

is an equivalence of categories.

Let Y �� Λ be a Λ-module. There is a zero section Λ �� Y in A , so we can write
Y 	 Λ ⊕M as a K-module, and its multiplication will be of the form

(λ1,m1)(λ2,m2) = [(λ1, 0) + (0,m1)][(λ2, 0) + (0,m2)]

= (λ1, 0)(λ2, 0) + (λ1, 0)(0,m2) + (0,m1)(λ2, 0) + (0,m1)(0,m2)

= (λ1λ2, λ1m2 +m1λ2 +m1m2) .

The first component must be λ1λ2 since the projection is an algebra map, λ1m2 is defined
as (λ1, 0)(0,m2) and is an element of the kernel, m1λ2 similarly, andm1m2 appears because
the kernel is multiplicatively closed. The addition map Y ×Λ Y �� Y in (A ,Λ) will be
given by addition in the kernel, i.e., it is equivalent to Λ ⊕M ⊕M �� Λ ⊕M . This
addition must be an algebra map. We leave to the reader the easy task of showing that
this imposes the condition m1m2 = 0. Thus, we obtain that Y is equivalent to the split
extension of Λ by the two-sided Λ-module M , with multiplication

(λ1,m1)(λ2,m2) = (λ1λ2, λ1m2 +m1λ2)
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Some cohomology theories in A come from the following underlying object functors:

A A5

U5 ��A

A4

U4

������������
A

A3

U3

����
��

��
��

��
��

��
��

�
A

A0

U0

��

A

A1

U1

���
��

��
��

��
��

��
��

��
A

A2

U2

		����������

A4

A3

��

A2

A1

��
A3 A0

�� A0 A1
��

all of which are tripleable. A2 is K-modules, and the coadjoint F2 U2 is the tensor
algebra functor AF2 = K +A+A⊗K A+ · · · with juxtaposition as multiplication. A T2

structure ξ:AT2
�� A is equivalent to an associative-algebra-with-1 structure on the K-

module A. A1 is the category of abelian groups. F1 U1 is given by AF1 = (A⊗ZK)F2,
coadjoint of a composition being the composition of the coadjoints. A0 is the category of
sets. AF0 is the polynomial K-algebra with the elements of the set A as noncommuting
variables. A4 is the category of rings. U4 forgets K-structure, F4 puts it back in; AF4 =
A ⊗Z K. A3 is the category of monoids. U3 remembers only the multiplication and the
multiplicative identity. AF3 is the K-monoid algebra (free K-module with basis A and the
obvious multiplication.) Note that a T3-structure is a monoid map AT3

�� A, so that
a T3-algebra keeps its original multiplicative structure and receives the new operations of
addition and K-scalar multiplication; similar comments apply for all the other cases.

These triples give cohomology theories, of which we shall only consider the groups
Hn
i (Λ, Y )Λ for i = 0, . . . , 5. These are the cohomology groups of, for instance, the homo-

geneous complexes

0 �� (ΛGi, Y )Λ) �� (Λ(Gi)
2, Y )Λ) �� · · ·

where the cotriples Gi = UiFi are being used to build up free resolutions of varying depths
of freeness, as it were.

The theories arising when i = 2 or 0 are known. Relative to U2 the extensions clas-
sified are K-linearly split, and their K-algebra structures are only twisted with regard
to multiplication. Thus an extension of Λ by Y �� Λ relative to U2 is isomorphic to
Λ ⊕M as a K-module and has a multiplication given by (3) plus a bilinear function of
two variables with values in M :

(λ1,m1)(λ2,m2) = (λ1λ2, λ1m2 +m1λ2 + (λ1, λ2)a) .

Thus the extensions and, one supposes, the whole cohomology theory agree with that
defined by [Hochschild (1945)]. In fact, an isomorphism

Hn
2 (Λ, Y )Λ

� ��

{
Der(Λ,M), n = 0
Hochn+1(Λ,M), n > 0

is obtained in [Barr & Beck (1966)], where M = ker(Y �� Λ). In the U0-cohomology
theory, the extensions are isomorphic to Λ×M only as sets. All three structures - addition,
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K-scalar multiplication, and multiplication - are twisted. These extensions have been
classified by a cohomology theory devised by Shukla [Shukla (1961)]. Barr has shown
[Barr (1967)] that the Hn

0 groups are isomorphic to the Shukla groups, with the same
degree 0 value and shift in dimension as above. Note that whatever underlying category
we descend to, if A is tripleable over it, H0 will always be the hom functor in (A ,Λ),
which is derivations, by formula (3).

The theories Hn
1 ,Hn

3 ,Hn
4 have not been studied. In dimension 1 they classify exten-

sions which are additively, multiplicatively, and both additively and multiplicatively split,
respectively.

We have refrained from speaking until now about the cohomology theory given by the
underlying object functor U5, which is a little bizarre. We take A5 to be the category of
K-Lie algebras. As a K- module ΛU5 is the same as Λ, and has the Lie algebra operation
[λ1, λ2] = λ1λ2 − λ2λ1 . In [Lawvere (1963)] it is proved that such “algebraic functors”
always have coadjoints. In the triple context one proves that they are in fact tripleable.
Thus we get a cohomology theory Hn

5 in A whose 1-dimensional part classifies algebra
extensions which are split with respect to their Lie algebra structures. This theory is
nonzero, because when applied to a commutative K-algebra, and a commutative module
(see below), it gives the ordinary K-split commutative theory.

We conclude Example 6 with a few remarks about exactness in the category of
Λ-modules and the choice of the underlying object functor U : A �� A, or better,
(U,Λ): (A ,Λ) �� (A,Λ). Recall that a sequence of Λ-modules

(3)

0 Y ′�� Y ′ Y��Y ′

Λ
���

��
��

��
Y Y ′′��Y

Λ
��

Y ′′ 0��Y ′′

Λ
����

��
��

�

is (U,Λ)-exact in Λ-Mod = Ab(A ,Λ) if

0 �� (A, Y ′)Λ
�� (A, Y )Λ

�� (A, Y ′′)Λ
�� 0

is an exact sequence of abelian groups for every object A �� Λ in the underlying
category (A,Λ). ( ( , )Λ denotes the hom functor in (A,Λ), and strictly speaking we
should introduce Y U ’s into the above sequence.) It is in this situation that a long exact
sequence arises in the U -cohomology (see §2, Theorem 2). For convenience identify Y
with Λ ⊕M where M is the kernel of Y �� Λ regarded as a Λ-Λ-bimodule, and the
same for Y ′, Y ′′ (see the computation of Λ-Mod at the beginning of this example). Then
(3) gives rise to the sequence of Λ-Λ-bimodules

(4) 0 �� M ′ �� M �� M ′′ �� 0

Let us now take U = Ui: A �� Ai as above, and interpret some of the resulting (Ui,Λ)-
exactness. We shall find that (3) is (Ui,Λ)-exact ⇐⇒ (4) is an ordinary exact sequence of
Λ-Λ-bimodules and has an additional splitting property relative to the underlying category
Ai.
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First consider U2: A �� A2, the category of K-modules. Letting A �� Λ be an
object of (A2,Λ) with zero projection, and choosing A variously, one sees that (4) must
be exact in the usual sense; taking A = Y ′′ �� Λ one finds a map Y �� Y ′′ that splits
Y �� Y ′′ in (A2,Λ). Thus (3) is (U2,Λ)-exact ⇐⇒ (4) is a K-split exact sequence of
Λ-Λ-bimodules. This is the type of coefficient sequence usually considered in Hochschild
cohomology, (cf. [Mac Lane (1963), p. 287]).

Similarly, (3) is (U1,Λ)-exact (A1 being the category of abelian groups) ⇐⇒ (4) is
a Z-split exact sequence of Λ-Λ-bimodules, and (3) is (U0,Λ)-exact (A0 = sets) ⇐⇒
(4) is exact in the ordinary sense; here no additional splitting condition enters, except
set-theoretically, in showing that M �� M ′′ is onto. (U4,Λ)-exactness (A4 = rings)
is equivalent to M 	= M ′ ⊕M ′′ as bimodules. We leave the formulation of the curious
(U3,Λ)- and (U5,Λ)-exactness to the reader.

The same study of exactness can be carried out in all the other examples, but we omit
it.

EXAMPLE 7. Lie Algebras. We include this divertissement as an elementary demon-
stration of the fact that our theory does not discriminate against non-associative systems.
Let L be the category of K-Lie algebras, A the category of K-modules, K a commutative
ring, and let U : L �� A be the usual underlying. The free Lie algebra functor F U
is described in [Cartan & Eilenberg (1956), p. 285]. This generates a triple T in A as
usual, with T = FU . If X ∈ A, we write the map X �� XT as x ⇒ (x), so that the
symbol (x) obeys (x0)+ (x1) = (x0 +x1), k(x) = (kx). Other elements of XT are written
in terms of Lie algebra operations applied to the generators (x). For example, [(x0), (x1)]
is in XT , while ([(x0), (x1)]) and

W0 = [([(x0), (x1)]), ((x2))],

W1 = [([(x0), (x2)]), ((x1))] + [((x0)), ([(x1), (x2)])]

are in XTT . Under the triple multiplication XTT �� XT ,

W0 ⇒ [[(x0), (x1)], (x2)],

W1 ⇒ [[(x0), (x2)], (x1)] + [(x0), [(x1), (x2)]],

and these are equal as elements of the free Lie algebra XT .
Now let (X, ξ) be a T-algebra. X is a K-module, and we introduce a possible Lie

bracket in X by defining
[x0, x1] = [(x0), (x1)]ξ

(cf. Example 1 on groups). Clearly, under ξT :XTT �� XT ,

W0 ⇒ [([x0, x1]), (x2)],

W1 ⇒ [([x0, x2]), (x1)] + [(x0), ([x1, x2])].

Thus we have

[[x0, x1], x2] = W0 · ξT · ξ
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= W0 ·Xµ · ξ
= W1 ·Xµ · ξ
= W1 · ξT · ξ
= [[x0, x2], x1] + [x0, [x1, x2]].

Since ξ is associative, [ , ] satisfies Jacobi’s identity (!).

Of course the canonical Φ: L � �� AT. Modules are (antisymmetric) as usual. H1

classifies K-split extensions [Mac Lane (1963)]. L is also tripleable over sets with exten-
sions as in [Dixmier (1957)].

Other types of linear algebras are also tripleable and have triple cohomology, for
example, the algebras in [Eilenberg (1948)], Jordan algebras [McCrimmon (1966)], Lie
triple systems [Harris (1961)] (obviously there is no restriction to binary systems), . . . .

I am indebted to Michael Barr for showing me the following pathological case.

EXAMPLE 8. Commutative Algebras. Let C be the category of commutative K-
algebras (associative, with identity), A the category of K-modules, U : C �� A the
usual underlying. The free commutative algebra functor F U is given by the symmet-
ric algebra construction (symmetrized tensor algebra)

XF = K ⊕X ⊕ X ⊗X

S(2)
⊕ X ⊗X ⊗X

S(3)
· · · .

We certainly have C � �� AT, where T = FU .
If Λ is a commutative algebra, then

Λ-Mod = Ab(C ,Λ) ker �� Right Λ-Modules

([Cartan & Eilenberg (1956), Mac Lane (1963)]) is an equivalence of categories. As in
Example 6, a Λ-module Y �� Λ must be of the form Λ⊕M �� Λ as aK-module, where
M is the kernel of Y �� Λ, and have multiplication (λ1,m1)(λ2,m2) = (λ1λ2, λ1m2 +
m1λ2). However since Y is commutative, the bimodule M must be symmetric. We view
M indifferently as a right module, left module, or symmetric bimodule, over Λ.

H1(Λ, Y )Λ classifies K-split commutative algebra extensions of Λ by Y . Such an
extension must have the form Λ ⊕M �� Λ as a K-module, with multiplication

(λ1,m1)(λ2,m2) = (λ1λ2, λ1m2 +m1λ2 + (λ1 ⊗ λ2)f)

where Λ ⊗ Λ
f �� M is a factor set satisfying, in general, whatever identities are needed

in order to make Λ⊕M into a commutative algebra (such as the symmetry (λ1⊗λ2)f) =
(λ2 ⊗ λ1)f).

Now take Λ = K[x]/(x2 = 0), M = Λ as a Λ-module, Y = Λ⊕M �� Λ via projection
as the module, and to heighten the drama let K be a field. Let f be the factor set

(1 ⊗ 1)f = (1 ⊗ x)f = (x⊗ 1)f = 0, (x⊗ x)f = 1.
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The extension E = Λ⊕M �� Λ constructed by means of f represents a nonzero element
in H1(Λ, Y )Λ. (Otherwise there would be an isomorphism

E

Λ
���

��
��

��
E Y

� �� Y

Λ
����

��
��

�
in (C ,Λ)

Since Y �� Λ is split by its zero section λ⇒ (λ, 0), which is an algebra map, E �� Λ
would also be split by an algebra map. Thanks to the choice of f this is impossible.
Always, in triple cohomology, an extension represents the zero cohomology class ⇐⇒ it
is inessential, i.e., split in the category of algebras.) Thus we know that H1(Λ, Y )Λ �= 0.

However, Y �� Λ, or equivalently its kernel M , is injective in the category of Λ-
modules. Indeed, as a Λ-module, M 	 HomK(M,K) (use the obvious 1-1 correspondence
the K-base 1, x of M and the dual base), which proves injectivity, as K is a field, over
which everything is injective.6 We conclude that triple cohomology need not vanish on
injective coefficients.

This example shows that algebra cohomology cannot both classify extensions and be
a derived functor on the module category in the sense of [Cartan & Eilenberg (1956)] or
[Mac Lane (1963)].

Barr also knows an example of a commutative H2 which fails to vanish on injective
coefficients.7 There seems to be no reason why the same thing cannot happen in any
dimension.

If C is tripled over sets, and the ground ring K is not a field, such examples are even
easier to come by. Consider Z/4Z �� Z/2Z, here K = Z, and the kernel is actually
a vector space over Λ = Z/2Z. Even the relative homological algebra in the module
category does not seem to offer much hope (see [Eilenberg & Moore (1965b)], [Heller
(1958)], or [Mac Lane (1963), Chapter IX]).

There is a close relationship between the theories of triples and of sites, or Grothendieck
topologies, which it is beyond the scope of this paper to explore. Using this insight,
one observes that it is possible to write the triple cohomology Hn(X,Y ) as a derived
functor RnH0(X,Y ) in the category of functors (presheaves) (ImG)∗ �� Ab, where
G:AT �� AT is the free T-algebra cotriple. This result is analogous to Theorem (3.1)
of [Artin (1962)]. I am indebted to S. U. Chase for showing me this.

EXAMPLE 9. Additive Categories. In additive categories the notion of module simpli-
fies. Indeed, if B is additive, X ∈ B, we have

X-Mod = Ab(B,X) ker �� B

6Editors’ note: the proof of injectivity is a little terse. The point is that when R is a K-algebra, then
for any R-projective P and K-injective Q, the R-module Hom(P,Q) is R-injective.

7Editors’ note: Subsequently, this example was published: M. Barr, A note on commutative algebra
cohomology. Bull. Amer. Math. Soc. 74 (1968), 310–313.
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is an equivalence of categories. ker is the functor Y �� X ⇒ M = ker(Y �� X).
Because of the zero section of the module, we must have Y 	 X ⊕M , q.e.d. (We are
assuming that additive categories have a ⊕ and kernels, i.e., finite projective limits.)

Thus in an additive category every object “is” a module over every other object, in
a unique manner. A typical cohomology theory arising in the additive context is the
classical ExtnΛ(A,C) of (right) Λ-modules. The two variables in Ext give the illusion of
being on the same footing, in contrast with group cohomology, say, where one variable is
a group and the other is a module. But in view of the above proposition, C is equally an
A-module, so there is no real contrast between Ext and the group case.

Phrased differently, there is no need to pass to the comma category (B,X) in order to
obtain enough abelian group objects. Thus the only cohomology theory we are concerned
with is of the type Hn(X,Y ), where X,Y ∈ B, which is the same as AbB. This arises as
follows. Let

A
F �� B

U �� A (F U)

be an adjoint pair and let G:B �� B be UF , the functor part of the standard cotriple
in B arising from adjointness. (A is not assumed additive, hence G need not be additive,
nor need 0G = 0 ∈ B.) Form the standard resolution

0 �� X �� ∂0 XG �� ∂1 · · · �� XGn �� ∂n XGn+1 �� · · ·

where X is in dimension −1 and ∂n = Σ(−1)iXεi, 0 ≤ i ≤ n, εi = GiεGn−i, using
additivity of B to add up the face operators in advance. Applying the functor ( , Y ):B∗

�� Ab, one gets a cochain complex

0 �� (XG, Y ) d1 �� (XG2, Y ) �� · · · �� (XGn, Y ) dn
�� (XGn+1, Y ) �� · · ·

where dn = (∂n, Y ). Hn(X,Y ), relative to F U of course, is the n-th cohomology group
of this complex.

If F U is tripleable, H0(X,Y ) is the hom functor and H1(X,Y ) classifies U -exact
sequences 0 �� Y �� E �� X �� 0. U -exactness is defined in Theorem 2 above,
and these facts are contained in the interpretation of the cohomology given in §3, provided
one can identify short U -exact sequences with U -split principal homogeneous objects.
But if 0 �� Y �� E �� X �� 0 is U -exact, then Y operates on E by additivity,
moreover simply-transitively and compatibly with E �� X, and EU 	 XU × Y U .
Conversely, given such an E �� X operated on by Y , a U -exact sequence is defined by

0 Y�� Y E�� E X�� X 0��Y

Y ⊕ E
(Y,0) ���

��
��

�

Y ⊕ E

E

◦

��������

Now, doing the obvious, let En(X,Y ) be the set of Yoneda equivalence classes of U -
exact sequences (n-dimensional extensions relative to U) of the form 0 �� Y �� Yn−1
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�� · · ·Y0
�� X �� 0 [Mitchell (1965)]. The standard resolution XGn+1, ∂n (n ≥ 0)

is F -free (as well as U -exact). Thus, given an n-dimensional extension, we can construct
a map of complexes over X in the usual manner:

0 X��

0

0

0 X�� X

XX Y0
��

X

X

X XG�� ∂0 XG

Y0

��
Y0 Y1

��

XG

Y0

XG XG2�� ∂1 XG2

Y1

��
Y1 · · ·��

XG2

Y1

XG2 · · ·�� · · ·

· · ·· · · Yn−1
��

· · ·

· · ·

· · · XGn�� XGn

Yn−1

��
Yn−1 Y��

XGn

Yn−1

XGn XGn+1�� ∂n
XGn+1

Y

a

��
Y 0��

XGn+1

Y

XGn+1 XGn+2�� ∂n+1

XGn+2

0
��
0 · · ·��

XGn+2

0

XGn+2 · · ·�� · · ·

· · ·

The component a is an n-cocycle. This defines the map needed in the following additive
extension of Theorems 5, 6 of §3:

THEOREM 7. The natural map

En(X,Y ) �� Hn(X,Y )

is an isomorphism if F U is tripleable.

Several proofs of this result are possible, we will omit all of them. One proof involves
breaking up long U -exact sequences into composites of short ones (this requires kernels
in B), and then using the fact that short ones are classified by H1, or more precisely,
determined by 1-cocycles XT �� Y in A. In an additive category it is possible to
characterize Hn(X,Y ) by a fairly obvious set of axioms, as a functor of X. Another proof
of Theorem 7 then proceeds by verifying these axioms for En(X,Y ).

Note the following gap. In the general, nonadditive case, Barr’s examples referred
to above show that Hn(X,Y ), X ∈ B, Y ∈ AbB, does not classify mixed additive-
nonadditive “extensions” of the form{

0 �� Y �� Yn−1
�� · · · �� Y0

�� 0, U -exact

E
Y0 �� X, U -split principal homogeneous object.

(Such have been considered, from the point of view of cohomology classification, in [Barr
(1965), Barr & Rinehart (1966), Gerstenhaber (1964)].) OtherwiseHn(X,Y ) would vanish
when Y is injective. In general, does Hn(X,Y ) classify any concept of n-dimensional
extensions of X by Y ? Should these “extensions” perhaps be required to have a simplicial
structure?

As examples of the situation envisaged in Theorem 7, we cite the following:

(a) The category of right Λ-modules tripleable over the category of sets A. We have F :A
�� MΛ, U : MΛ

�� A, where AF = A·Λ (A-fold coproduct of Λ’s) and XU is the usual
underlying set of X; F U . U -exactness is the ordinary abelian-category exactness, the
standard complex XG∗ is a Λ-free resolution of X, hence (as Theorem 7 also shows)

Hn(X,Y )
� �� ExtnΛ(X,Y ), n ≥ 0 .
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(b) If Λ
ϕ �� Γ is a ring map, we get a tripleable adjoint pair − ⊗Λ Γ: MΛ

�� MΓ,
Mϕ: MΓ

�� MΛ ([Cartan & Eilenberg (1956)], p. 29). As cohomology we obtain
Hochschild’s relative Ext [Hochschild (1956)]:

Hn(X,Y ) � �� Extnϕ(X,Y ), n ≥ 0 .

We have been emphasizing cohomology. But one can take coefficients in functors other
than hom functors, for example, the tensor product with a fixed Λ-module. Thus TorΛ,
Torϕ can be introduced into our theory, as well as a general homology theory of algebras
(which we pass over in silence).

(c) If A is a graded abelian group and C is the category of chain complexes, adjoint
functors (tripleable)

A F �� C U �� A

are defined by: A = (An) =⇒ AF = (AFn) with AFn = An ⊕ An+1 and boundary
operator AFn �� AFn−1 by shifting (an, an+1) =⇒ (0, an); U forgets the boundary
operator. Then the cohomology theory Hn(X,Y ) classifies sequences of chain complexes
0 �� Y �� Yn−1

�� · · · �� Y0
�� X �� 0 which are split exact in A, i.e.,

ignoring the boundary operator.
If negative degrees are permitted (the reader can make the categories precise), this

example coalesces with the obvious graded variant of (b), as AF = A⊗D where D is the
graded ring generated by an element ∂ ∈ D−1 with ∂∂ = 0 in D−2.

(d) We refer to [Eilenberg & Moore (1965a)] for the examples of co- and contra-modules
over a coalgebra (as well as an account of the situation when both categories, base and
algebras, are additive).

(e) A = graded, connected, commutative K-coalgebras, C = graded, connected, bicom-
mutative Hopf algebras. Then C = AbA [Milnor & Moore (1965)]. The graded tensor al-
gebra is left adjoint to the underlying C �� A [Moore (1961)], and tripleably. Hn(X,Y )
classifies sequences of Hopf algebras which on the coalgebra level decompose into short
exact sequences of the form A �� A⊗B �� B (cartesian products in A).

Example (e) also goes through in the ungraded case.
There is a graded dual (e∗) in which one takes A = commutative algebras, C as above

is then abelian cogroups in A and the underlying C �� A is cotripleable. The sequences
classified by the cohomology are split as algebras, into tensor products.

I do not know whether the ungraded dual (e∗) works; the underlying C �� K-
algebras may lack a right adjoint.

Obviously (with notation as in (e)), Hopf algebras which are only cocommutative are
group objects in A. Examples 3, 4, 5 on groups and monoids can all be reworked in this
context, replacing the category of sets by that of commutative coalgebras; and dually.

In additive categories where a notion of exactness is defined, or in abelian categories,
Yoneda’s theory of long extensions supplies a cohomology theory Extn(X,Y ) without the
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intervention of projective or injective resolutions of any kind. The triple theory cannot
match this feat, for constructing free algebras usually requires infinite direct limits. How-
ever, for the restricted class of abelian categories to be discussed next, triple cohomology
does make a natural appearance and coincides with the Yoneda Ext. The reader will note
considerable contact between our treatment and [Huber (1962)].

Let B be an abelian category with direct (inductive) limits, P ∈ B any object. We
treat the representable functor (P, ):B �� Ab as an underlying object functor, and
recall that it has a left adjoint A =⇒ A ⊗ P (see [Freyd (1964)], [Mitchell (1965)], or
assume B is a category of modules). As usual, we have

AbT

Ab
���������AbT B�� Φ

B

Ab
(P, )�����

��
��

�

Here a T-structure on an abelian group A is a unitary, associative abelian group map
θ:AT = (P,A ⊗ P ) �� A. By adjointness every (P,B) has such a structure, which
defines the functor Φ.

Now let R = (P, P ), the endomorphism ring of P , and let R0 be the triple in Ab
defined by

A
a⊗1 �� A⊗R, A⊗R⊗R

a⊗r2r1 �� A⊗R·
r2r1 is the composition, in that order, of endomorphisms P �� P ; AbR0

is the category
of left R-modules.

A natural transformation Aϕ:A ⊗ R �� AT is defined if we let (a⊗ r)(Aϕ) be the
composition

P
� �� Z ⊗ P

a⊗r �� A⊗ P,

thinking of a ∈ A as a map Z �� A. One can verify that ϕ:R0 �� T is a map of
triples, that is, the natural transformation ϕ commutes with units and multiplications:

A⊗R AT
Aϕ

��

A

A⊗R

a⊗1

����
��
��
��
��
�
A

AT

Aη

���
��

��
��

��
��

A⊗R AT
Aϕ

��

A⊗R⊗R

A⊗R

a⊗r2r1

��

A⊗R⊗R ATT
Aϕϕ �� ATT

AT

Aµ

��

(µ results from adjointness, f · µ being the composition of an f with (A ⊗ P )ε:P ��

(P,A ⊗ P ) ⊗ P �� A ⊗ P .) A map of triples induces a functor between the corre-
sponding algebra categories. In this case, if θ:AT �� A is a T-structure on A, then the
composition

A⊗R
Aϕ �� AT

θ �� A
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is an R0-structure on A. Thus we have the following commutative diagram of functors.

AbR0

AbT�� Abϕ

AbR0

Ab
���

��
��

��
��

��
��

AbT B�� Φ
AbT

Ab
��

B

Ab

(P, )

����
��

��
��

��
��

�

We now have

Proposition. If P is a projective generator in B, then Φ is an equivalence.
If P is a small projective, then Abϕ is an isomorphism of categories.

Approximate definitions for the terms used in the proposition can be found in [Freyd
(1964)] and [Mitchell (1965)]. The two statements follow from the (Tripleableness) The-
orem 1, and the fact that if P is small, ϕ:R0 �� T is an isomorphism of triples. The
first statement can be paraphrased, B is tripleable over Ab. Were P also small, we would
be able to conclude the familiar corollary below. Thus a triple in Ab can be considered
as a sort of “large” generalization of a ring.

Corollary. If P is a small projective generator in B, then B is equivalent to the cate-
gory of left R = (P, P ) = End(P )-modules.

Similar proofs can be given for the characterization of cocomplete abelian categories
with generating sets of small projectives [Freyd (1964)], as well as for M. Bunge’s recent
characterization of functor categories S C [Bunge (1966)]. (This has been carried out by
F.E.J. Linton and the writer.)

This result yields subexample (b) above, which arises when P = Γ ∈ MΓ, (Λ = Z).
The following can be proved by an elaboration of the proof of Theorem 1 (hinting the

more delicate tripleableness theorem referred to):

Proposition. Consider a composition of adjoint pairs

A F �� B U �� A

A0

F0 �� A
U0 �� A0


 =⇒ A0

F0F �� B
UU0 �� A0

If F U satisfies all the hypotheses of Theorem 1 (hence in particular is tripleable), and
if F0 U0 is tripleable, then F0F UU0 is tripleable.

Let B be a cocomplete abelian category (i.e., direct limits) with a projective generator
P . Apply this proposition to (P, ):B �� Ab, U0: Ab �� Sets, which we denote by U :B

�� Sets. We find that every such abelian category is tripleable over sets. Notice that
U -exactness in B is the same as abelian-category exactness. Hence Extn(X,Y ) defined by
long abelian-exact sequences 0 �� Y �� · · · �� X �� 0 coincides with the triple
cohomology Hn(X,Y ), relative to U .
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Note that without the extra, coequalizer-preserving, property of the functor (P, ), we
would not be able to conclude that the composition B �� Sets is tripleable. The com-
position of tripleable underlying object functors is not tripleable in general, for example,
Torsion-free abelian groups �� Ab �� Sets; tripleableness is trivially true of coreflec-
tive subcategories ([Mitchell (1965)], but fullness should be added to the definition).

If X is a set, the explicit composite triple above is X �� (P,X · P ). In case P is
also small, let R0 = (P, P ) with backwards multiplication and identify the triple as X

�� X ·R0, the underlying set of the free right R0-module generated by the set X. Thus
we again find B 	 left R-modules.

This result yields subexample (a) above, which arises when the projective generator
P ∈ MΛ chosen is Λ itself.
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