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SIMPLICIAL APPROXIMATION

J.F. JARDINE

ABSTRACT. This paper displays an approach to the construction of the homotopy
theory of simplicial sets and the corresponding equivalence with the homotopy theory of
topological spaces which is based on simplicial approximation techniques. The required
simplicial approximation results for simplicial sets and their proofs are given in full.
Subdivision behaves like a covering in the context of the techniques displayed here.

Introduction

The purpose of this paper is to display a different approach to the construction of the
homotopy theory of simplicial sets and the corresponding equivalence with the homo-
topy theory of topological spaces. This approach is an alternative to existing published
proofs [4],[10], but is of a more classical flavour in that it depends heavily on simplicial
approximation techniques.

The verification of the closed model axioms for simplicial sets has a reputation for
being one of the most difficult proofs in abstract homotopy theory. In essence, that
difficulty is a consequence of the traditional approach of deriving the model structure
and the equivalence of the homotopy theories of simplicial sets and topological spaces
simultaneously. The method displayed here starts with using an idea from localization
theory (specifically, a bounded cofibration condition) to show that the cofibrations and
weak equivalences of simplicial sets, as we’ve always known them, together generate a
model structure for simplicial sets which is quite easy to derive (Theorem 1.6).

The fibrations for the theory are those maps which have the right lifting property
with respect to all maps which are simultaneously cofibrations and weak equivalences.
This is the correct model structure, but it is produced at the cost of initially forgetting
about Kan fibrations. Putting the Kan fibrations back into the theory in the usual way,
and deriving the equivalence of homotopy categories is the subject of the rest of the
paper. The equivalence of the combinatorial and topological approaches to constructing
homotopy theory is really the central issue of interest, and is the true source of the
observed difficulty.

Recovering the Kan fibrations and their basic properties as part of the theory is done
in a way which avoids the usual theory of minimal fibrations. Historically, the theory
of minimal fibrations has been one of the two known general techniques for recovering
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information about the homotopy types of realizations of simplicial sets. The other is
simplicial approximation.

Simplicial approximation theory is a part of the classical literature [1],[2], but it was
never developed in a way that was systematic enough to lead to results about model
structures. That gap is addressed here: the theory of the subdivision and dual subdivision
is developed, both for simplicial complexes and simplicial sets, in Sections 2 and 3, and
the fundamental result that the double subdivision of a simplicial set factors through a
polyhedral complex in the same homotopy type (Lemma 4.4 and Proposition 4.5) appears
in Section 4. The simplicial approximation theory for simplicial sets is most succinctly
expressed here in Theorem 4.7 and Corollary 4.8.

The double subdivision result is the basis for everything that follows, including excision
(Theorem 5.2), which leads directly to the equivalence of the homotopy categories of
simplicial sets and topological spaces in Theorem 5.4 and Corollary 5.5. The Milnor
Theorem which asserts that the combinatorial homotopy groups of a fibrant simplicial set
coincide with the ordinary homotopy groups of its topological realization (Theorem 6.7)
is proved in Section 6, in the presence of a combinatorial proof of the assertion that the
subdivision functors preserve anodyne extensions (Lemma 6.4).

One of the more interesting outcomes of the present development is that, with appro-
priately sharp simplicial approximation tools in hand, the subdivisions of a finite simplicial
set behave like coverings. In particular, from this point of view, every simplicial set is
locally a Kan complex (Lemma 7.1), and the methods for manipulating homotopy types
then follow almost by exact analogy with the theory of locally fibrant simplicial sheaves
or presheaves [5], [6]. In that same language, we can show that every fibration which is
a weak equivalence has the “local right lifting property” with respect to all inclusions of
finite simplicial sets (Lemma 7.3), and then this becomes the main idea leading to the
coincidence of fibrations as defined here and Kan fibrations (Corollary 7.6). The same
collection of techniques almost immediately implies the Quillen result (Theorem 7.7) that
the realization of a Kan fibration is a Serre fibration. The development of Kan’s Ex∞

functor (Lemma 7.9, Theorem 7.10) is also accomplished from this point of view in a
simple and conceptual way.

This paper is not a complete exposition, even of the basic homotopy theory of sim-
plicial sets. I have chosen to rely on existing published references for the development
of the simplicial (or combinatorial) homotopy groups of Kan complexes [4], [8], and of
other basic constructions such as long exact sequences in simplicial homotopy groups for
fibre sequences of Kan complexes, as well as the standard theory of anodyne extensions.
Other required combinatorial tools which are not easily recovered from the literature are
developed here.

This paper was written while I was a member of the Isaac Newton Institute for Math-
ematical Sciences during the Fall of 2002. I would like to thank that institution for its
hospitality and support.
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1. Closed model structure

Say that a map f : X → Y of simplicial sets is a weak equivalence if the induced map
f∗ : |X| → |Y | of topological realizations is a weak equivalence. A cofibration of simplicial
sets is a monomorphism, and a fibration is a map which has the right lifting property with
respect to all trivial cofibrations. All fibrations are Kan fibrations in the usual sense; it
comes out later (Corollary 7.6) that all Kan fibrations are fibrations. As usual, we say
that a fibration (respectively cofibration) is trivial if it is also a weak equivalence.

1.1. Lemma. Suppose that X is a simplicial set with at most countably many non-
degenerate simplices. Then the set of path components π0|X| and all homotopy groups
πi(|X|, x) of the realization of X are countable.

Proof. The statement about path components is trivial. We can assume that X is
connected to prove the statement about the homotopy groups, with respect to a fixed
base point x ∈ X0.

The fundamental group π1(|X|, x) is countable, by the Van Kampen theorem. The
space |X| plainly has countable homology groups

H∗(|X|,Z) ∼= H∗(X,Z)

in all degrees.
Suppose that the continuous map p : Y → Z is a Serre fibration with connected base

Z such that Z and the fibre F have countable integral homology groups in all degrees,
and such that π1Z is countable. Then a Serre spectral sequence argument (with twisted
coefficients) shows that the homology groups H∗(Y,Z) are countable in all degrees.

This last statement applies in particular to the universal cover p : Y1 → |X| of the
realization |X|. Then the Hurewicz theorem (in its classical form — see [14], for example)
implies that

π2|X| ∼= π2Y1
∼= H2(Y1,Z)

is countable.
Inductively, one shows that the n-connected covers Yn → |X| have countable homology,

and in particular the groups

πn+1|X| ∼= πn+1Yn ∼= Hn+1(Yn,Z)
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are countable.

The class of trivial cofibrations of simplicial sets satisfies a bounded cofibration con-
dition:

1.2. Lemma. Suppose that A is a countable simplicial set, and that there is a diagram

X

i
��

A �� Y

of simplicial set maps in which i is a trivial cofibration. Then there is a countable sub-
complex D ⊂ Y such that A→ Y factors through D, and such that the map D ∩ Y → D
is a trivial cofibration.

Proof. We can assume that A is a connected subcomplex of Y . The homotopy groups
πi(|A|) are countable by Lemma 1.1.

Suppose that x is a vertex of A = B0. Then there is a finite connected subcomplex
Lx ⊂ Y which contains a homotopy x → i(y) where y is a vertex of X. Write C1 =
A ∪ (

⋃
x Lx). Suppose that w, z are vertices of C1 ∩X which are homotopic in C1. Then

there is a finite connected subcomplex Kw,z ⊂ X such that w � z in Kw,z. Let B1 =
C1 ∪ (

⋃
w,zKw,z). Then every vertex of A is homotopic to a vertex of C1 ∩X inside C1,

and any two vertices z, w ∈ C1 ∩ X which are homotopic in C1 are also homotopic in
B1 ∩X. Observe also that the maps B0 ⊂ C1 ⊂ B1 are π0 isomorphisms.

Repeat this process countably many times to find a sequence

A = B0 ⊂ C1 ⊂ B1 ⊂ C2 ⊂ B2 ⊂ . . .

of countable subcomplexes of Y . Set B =
⋃
Bi. Then B is a countable subcomplex of Y

such that π0(B ∩X) ∼= π0(B) ∼= π0(A) = ∗.
Pick x ∈ B ∩ X. The same argument (which does not disturb the connectivity) can

now be repeated for the countable list of elements in all higher homotopy groups πq(B, x),
to produce the desired countable subcomplex D ⊂ Y .

1.3. Lemma. Suppose that p : X → Y is a map of simplicial sets which has the right
lifting property with respect to all inclusions ∂∆n ⊂ ∆n. Then p is a weak equivalence.

Proof. The map p is a homotopy equivalence, by a standard argument. In effect, there
is a commutative diagram

∅ ��

��

X

p

��
Y

1Y

��
i

��

Y
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and then a commutative diagram

X �X (1X ,ip)��

��

X

p

��
X × ∆1

pσ
��

H

��

Y

so that pi = 1Y and then H is a homotopy 1X � ip. Here, σ : X × ∆1 → X is the
projection onto X.

1.4. Lemma. Every map f : X → Y of simplicial sets has factorizations

Z
p

���
��

��
��

�

X

i

���������� f ��

j ���
��

��
��

� Y

W

q

����������

where i is a trivial cofibration and p is a fibration, and j is a cofibration and q is a trivial
fibration.

Proof. A standard transfinite small object argument based on Lemma 1.2 produces
the factorization f = p · i. Also, f has a factorization f = q · j, where j is a cofibration
and q has the right lifting property with respect to all inclusions ∂∆n ⊂ ∆n. But then q
is a trivial fibration on account of Lemma 1.3.

1.5. Lemma. Every trivial fibration p : X → Y has the right lifting property with respect
to all inclusions ∂∆n ⊂ ∆n.

Proof. Find a factorization

X
j ��

p
���

��
��

��
� W

q
��
Y

where j is a cofibration and the fibration q has the right lifting property with respect to
all ∂∆n ⊂ ∆n. Then q is a trivial fibration by Lemma 1.3, so that j is a trivial cofibration.
The lifting r exists in the diagram

X
1X ��

j
��

X

p
��

Z q
��

r

����������
Y

It follows that p is a retract of q, and so p has the desired lifting property.
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1.6. Theorem. With these definitions, the category S of simplicial sets satisfies the
axioms for a closed simplicial model category.

Proof. The axioms CM1, CM2 and CM3 have trivial verifications. The factorization
axiom CM5 is a consequence of Lemma 1.4, while the axiom CM4 is a consequence of
Lemma 1.5.

The function spaces hom(X,Y ) are exactly as we know them: an n-simplex of this
simplicial set is a map X × ∆n → Y .

If i : A→ B and j : C → D are cofibrations, then the induced map

(B × C) ∪A×C (A×D) → B ×D

is a cofibration, which is trivial if either i or j is trivial. The first part of the statement is
obvious set theory, while the second part follows from the fact that the realization functor
preserves products.

1.7. Lemma. Suppose given a pushout diagram

A
g ��

i
��

C

��
B g∗

�� D

where i is a cofibration and g is a weak equivalence. Then g∗ is a weak equivalence.

Proof. All simplicial sets are cofibrant, and this result follows from the standard
formalism for categories of cofibrant objects [4, II.8.5].

The other axiom for properness, which says that weak equivalences are stable under
pullback along fibrations, is proved in Corollary 7.8.

2. Subdivision operators

Write NX for the poset of non-degenerate simplices of a simplicial set X, ordered by the
face relationship. Here “x is a face of y” means that the subcomplex 〈x〉 of X which is
generated by x is a subcomplex of 〈y〉. Let BX = BNX denote its classifying space. Any
simplex x ∈ X can be written uniquely as x = s(y) where s is an iterated degeneracy
and y is non-degenerate. It follows that any simplicial set map f : X → Y determines a
functor f∗ : NX → NY where f∗(x) is uniquely determined by f(x) = t · f∗(x) with t an
iterated degeneracy and f∗(x) non-degenerate.

Say that a simplicial set K is a polyhedral complex if K is a subcomplex of BP for
some poset P . The simplices of a polyhedral complex K are completely determined by
their vertices; in this case the non-degenerate simplices of K are precisely those simplices
x for which the list (vix) of vertices of x consists of distinct elements.

If P is a poset there is a map γ : BBP → BP which is best described categorically
as the functor γ : NBP → P which sends a non-degenerate simplex x : n → P to
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the element x(n) ∈ P . This is the so-called “last vertex map”, and is natural in poset
morphisms P → Q. In particular all ordinal number maps θ : m → n induce commutative
diagrams of simplicial set maps

B∆m θ∗ ��

γ
��

B∆n

γ
��

∆m
θ

�� ∆n

Similarly, if K ⊂ BP is a polyhedral complex then γ|K takes values in K by the commu-
tativity of all diagrams

B∆n x∗ ��

γ
��

BBP

γ
��

∆n
x

�� BP

arising from simplices x of K.
For a general simplicial set X, we write

sdX = lim−→
∆n→X

B∆n,

where the colimit is indexed over the simplex category of X. The object sdX is called
the subdivision of X. The maps γ : B∆n → ∆n together determine a natural map
γ : sdX → X. Note that there is an isomorphism sd ∆n ∼= B∆n.

Suppose that x is a non-degenerate simplex of X. Then the inclusion 〈x〉 ⊂ X induces
an isomorphism N〈x〉 = 〈x〉∩NX. Every simplicial set X is a colimit of the subcomplexes
〈x〉 generated by non-degenerate simplices x. Also the canonical maps sd ∆n ∼= B∆n →
BX which are induced by all simplices of X together induce a natural map

π : sdX → BX.

The map π is surjective, since every non-degenerate simplex x (and any string of its faces)
is in the image of some simplex σ : ∆n → X.

It follows that there is a commutative diagram

lim−→
x∈NX

sd〈x〉 ∼= ��

π∗

��

sdX

π

��
lim−→
x∈NX

B〈x〉 �� BX

(1)

The bottom horizontal map lim−→x
B〈x〉 → BX is surjective, because any string x0 ≤ · · · ≤

xn of non-degenerate simplices of X is in the image of the corresponding string of non-
degenerate simplices of the subcomplex 〈xn〉. If α ∈ B〈xn〉 and β ∈ B〈yn〉 map to the
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same element of BXn they are both images of a string γ ∈ B(〈x〉 ∩ 〈y〉)n. This element
γ is in the image of some map B〈z〉n → B(〈x〉 ∩ 〈y〉)n. Thus there is a ζ ∈ B〈z〉n which
maps to both α and β. It follows that α and β represent the same element in lim−→x

B〈x〉,
and so the map lim−→x

B〈x〉 → BX is an isomorphism.

2.1. Lemma. The map π : sdX → BX is surjective in all degrees, and is a bijection
on vertices. Consequently, two simplices u, v ∈ sdXn have the same image in BX if and
only if they have the same vertices.

Proof. We have already seen that π is surjective.
For every vertex v ∈ sdX there is a unique non-degenerate n-simplex x ∈ X of

minimal dimension (the carrier of v) such that v lifts to a vertex of sd ∆n under the map
x∗ : sd ∆n → sdX. Observe that

v = x∗([0, 1, . . . , n])

by the minimality of dimension of x. We see from the diagram

sd ∆n

x∗
��

x∗

���
��������

sdX π
�� BX

that π(v) = 〈x〉. It follows that the function v �→ π(v) = 〈x〉 is injective.

LetK be a polyhedral complex with imbeddingK ⊂ BP for some poset P . Every non-
degenerate simplex x of K can be represented by a monomorphism of posets x : n → P
and hence determines a simplicial set monomorphism x : ∆n → K. In particular, the map
x induces an isomorphism ∆n ∼= 〈x〉 ⊂ K. It follows from the comparison in the diagram
(1) that the map π : sdK → BK is an isomorphism for all polyhedral complexes K.

Suppose that L is obtained from K by attaching a non-degenerate n-simplex. The
induced diagram

sd ∂∆n ��

i
��

sdK

i∗
��

sd ∆n �� sdL

is a pushout, in which the maps i and i∗ are monomorphisms of simplicial sets. It follows
in particular that the subdivision functor sd preserves monomorphisms as well as pushouts
(sd has a right adjoint).

Let C and D be subcomplexes of a simplicial set X such that X = C ∪D. Then the
diagram of monomorphisms

N(C ∩D) ��

��

ND

��
NC �� NX
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is a pullback and a pushout of partially ordered sets, and the diagram

B(C ∩D) ��

��

BD

��
BC �� BX

(2)

is a pullback and a pushout of simplicial sets.

There is a homeomorphism h : | sd ∆n| → |∆n|, which is the affine map that takes
a vertex σ = {v0, . . . , vk} to the barycentre bσ = 1

k+1

∑
vi. There is a convex homotopy

H : h � |γ| which is defined by H(α, t) = th(α)+(1−t)|γ|(α). The homeomorphism h and
the homotopy H respect inclusions of simplices. Instances of the map h and homotopy
H can therefore be patched together to give a homeomorphism

h : | sdK| ∼=−→ |K|

and a homotopy

H : h � |γ|
for each polyhedral complex K. The homeomorphism h and the homotopy H both com-
mute with inclusions of polyhedral complexes.

3. Classical simplicial approximation

In this section, “simplicial complex” has the classical meaning: a simplicial complex K
is a set of non-empty subsets of some vertex set V which is closed under taking subsets.
In the presence of a total order (V,≤) on V , a simplicial complex K determines a unique
polyhedral subcomplex K ⊂ BV in which an n-simplex σ ∈ BV is in K if and only if its
set of vertices forms a simplex of the simplicial complex K.

Any map of simplicial complexes f : K → L in the traditional sense determines a
simplicial set map f : K → L by first imposing an orientation on the vertices of L, and
then by choosing a compatible orientation on the vertices of K. It is usually, however,
better to observe that a simplicial complex map f induces a map f∗ : NK → NL on the
corresponding posets of simplices, and hence induces a map f∗ : BNK → BNL of the
associated subdivisions.

Suppose given maps of simplicial complexes

K α ��

i
��

X

L

where i is a cofibration (or monomorphism) and L is finite. Suppose further that there is
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a continuous map f : |L| → |X| such that the diagram

|K| α∗ ��

i∗
��

|X|

|L|
f

����������

commutes. There is a subdivision sdn L of L such that in the composite

| sdn L| hn−→ |L| f−→ |X|,

every simplex |σ| ⊂ | sdn L| maps into the star st(v) of some vertex v ∈ X.
Recall that st(v) for a vertex v can be characterized as an open subset of |X| by

st(v) = |X| − |Xv|,

where Xv is the subcomplex of X consisting of those simplices which do not have v as a
vertex. One can also characterize st(v) as the set of those linear combinations

∑
αvv ∈ |X|

such that αv �= 0. Note that the star st(v) of a vertex v is convex.
The homeomorphism h : | sdK| → |K| is defined on vertices by sending σ to the

barycentre bσ ∈ |σ|. Observe that if σ0 ≤ · · · ≤ σn is a simplex of sdK and v is a
vertex of some σi then the image of any affine linear combination

∑
αiσi is the affine

sum
∑
αibσi

of the barycentres. Then since v appears non-trivially in bσi
it must appear

non-trivially in the sum of the barycentres. This means that h(st(σ)) ⊂ st(γ(σ)), where
γ : sdK → K is the last vertex map. In other words γ is a simplicial approximation of
the homeomorphism h, as defined by Spanier [13].

It follows that γn is a simplicial approximation of hn; in effect,

hn(st(v)) ⊂ hn−1(st(γ(v)) ⊂ hn−2(st(γ2(v)) ⊂ . . .

There is a corresponding convex homotopy H : |γn| → hn defined by

H(x, t) = (1 − t)γn(x) + thn(x)

which exists precisely because γn is a simplicial approximation of hn.
The point is now that the composite

| sdn L| hn−→ |L| f−→ |X|,

admits a simplicial approximation for n sufficiently large since fhn(st(v)) ⊂ st(φ(w)) for
some vertex φ(w) of X, and the assignment w �→ φ(w) defines a simplicial complex map
φ : sdn L → sdX → X whose realization φ∗ is homotopic to fhn by a convex homotopy
no matter how the individual vertices φ(w) are chosen subject to the condition on stars
above. In particular, the function w �→ φ(w) can be chosen to extend the vertex map
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underlying the simplicial complex map αγn. It follows that there is a simplicial complex
map φ : sdn L→ X such that the diagram of simplicial complex maps

sdnK
γn

��

i∗
��

K
α �� X

sdn L
φ

		���������������

commutes, and such that |φ| � fhn via a homotopy H ′ that extends the homotopy
|α|H : |α||γn| → |α|hn.

The homotopy fH : f |γn| → fhn also extends the homotopy αH. It follows that
there is a commutative diagram

(| sdnK| × ∆2) ∪ (| sdn L| × Λ2
2)

(s0αH,(fH,H′ )) ��

��

|X|

| sdn L| × ∆2

K



����������������������������

Then the composite

| sdn L| × ∆1 1×d2−−−→ | sdn L| × ∆2 K−→ |X|
is a homotopy from |φ| to the composite f |γn| rel | sdnK|, and we have proved

3.1. Theorem. Suppose given simplicial complex maps

K α ��

i
��

X

L

where i is an inclusion and L is finite. Suppose that f : |L| → |X| is a continuous map
such that f |i| = |α|. Then there is a commutative diagram of simplicial complex maps

sdnK
γn

��

i
��

K α �� X

sdn L
φ

		���������������

such that |φ| � f |γn| rel | sdnK|.
One final wrinkle: the maps in the statement of Theorem 3.1 are simplicial complex

maps which may not reflect the orientations of the underlying simplicial set maps. One
gets around this by subdividing one more time: the corresponding diagram

N sdnK
Nγn

��

Ni
��

NK Nα �� NX

N sdn L
Nφ

��																	
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of poset morphisms of non-degenerate simplices certainly commutes, and hence induces a
commutative diagram of simplicial set maps

BN sdnK
BNγn

��

BNi
��

BNK BNα �� BNX

BN sdn L
BNφ

��



















It follows that there is a commutative diagram of simplicial set maps

sdn+1K
γn+1

��

i
��

K α �� X

sdn+1 L
φγ

		���������������

provided that the original maps α and i are themselves morphisms of simplicial sets.
Finally, there is a homotopy |φ| � f |γn| rel | sdnK|, so that |φγ| � f |γn+1| rel | sdn+1K|.
We have proved the following:

3.2. Corollary. Suppose given simplicial set maps

K α ��

i
��

X

L

between polyhedral complexes, where i is a cofibration and L is finite. Suppose that f :
|L| → |X| is a continuous map such that f |i| = |α|. Then there is a commutative diagram
of simplicial set maps

sdnK
γn

��

i
��

K α �� X

sdn L
φ

		���������������

such that |φ| � f |γn| rel | sdnK|.

4. Approximation results for simplicial sets

Note that sd(∆n) = C sd(∂∆n), where in general CK denotes the cone on a simplicial set
K. This is a consequence of the following

4.1. Lemma. Suppose that P is a poset, and that CP is the poset cone, which is
constructed from P by formally adjoining a terminal object. Then there is an isomorphism
BCP ∼= CBP .
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Proof. Any functor γ : n → CP determines a pullback diagram

k ��

��

P

��
n �� CP

where k is the maximum vertex in n which maps into P . It follows that

BCPn = BPn �BPn−1 � · · · �BP0 � {∗},

where the indicated vertex ∗ corresponds to functors n → CP which take all vertices
into the cone point. The simplicial structure maps do the obvious thing under this set of
identification, and so BCP is isomorphic to CBP (see [4], p.193).

Following [2], say that a simplicial set X is regular if for every non-degenerate simplex
α of X the diagram

∆n−1 d0α ��

d0

��

〈d0α〉

��
∆n

α
�� 〈α〉

(3)

is a pushout.
It is an immediate consequence of the definition (and the fact that trivial cofibrations

are closed under pushout) that all subcomplexes 〈α〉 of a regular simplicial set X are
weakly equivalent to a point. We also have the following:

4.2. Lemma. Suppose that X is a simplicial set such that all subcomplexes 〈α〉 which
are generated by non-degenerate simplices α are contractible. Then the canonical map
π : sdX → BX is a weak equivalence.

Proof. We argue along the sequence of pushout diagrams

⊔
α∈NnX ∂〈α〉 ��

��

skn−1X

��⊔
α∈NnX〈α〉 �� sknX

The property that all non-degenerate simplices of X generate contractible subcomplexes
is shared by all subcomplexes of X, so inductively we can assume that the natural maps
π : sd ∂〈α〉 → B∂〈α〉 and π : sd skn−1X → B skn−1X are weak equivalences.

But the comparison map γ : sd〈α〉 → 〈α〉 is a weak equivalence, and 〈α〉 is contractible
by assumption. At the same time B〈α〉 is a cone on B∂〈α〉 by Lemma 4.1, so the
comparison π : sd〈α〉 → B〈α〉 is a weak equivalence for all non-degenerate simplices α.
The gluing lemma (see also (2)) therefore implies that the map π : sd sknX → B sknX
is a weak equivalence.
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4.3. Corollary. The canonical map π : sdX → BX is a weak equivalence for all
regular simplicial sets X.

Write N∗K for the poset of non-degenerate simplices of K, with the opposite order,
and write B∗K = BN∗K for the corresponding polyhedral complex. The cosimplicial
space n �→ B∗∆n determines a functorial simplicial set

sd∗X = lim−→
∆n→X

B∗∆n,

and the “first vertex maps” γ∗ : B∗∆n → ∆n together determine a functorial map γ∗ :
sd∗X → X. Similarly, the maps B∗∆n → B∗X induced by the simplices ∆n → K of K
together determine a natural simplicial set map π∗ : sd∗X → B∗X. Observe that the map
π∗ : sd∗ ∆n → B∗∆n is an isomorphism. We shall say that sd∗X is the dual subdivision
of the simplicial set X.

4.4. Lemma. The simplicial set sd∗X is regular, for all simplicial sets X.

Proof. Suppose that α is a non-degenerate n-simplex of sd∗X. Then there is a unique
non-degenerate r-simplex y of X of minimal dimension (the carrier of α) and a unique
non-degenerate n-simplex σ ∈ sd∗ ∆r such that the classifying map α : ∆n → sd∗X
factors as the composite

∆n σ−→ sd∗ ∆r y∗−→ sd∗X.

This follows from the fact that the functor sd∗ preserves pushouts and monomorphisms.
Observe that σ(0) = [0, 1, . . . r], for otherwise σ ∈ sd ∂∆r and r is not minimal.

The composite diagram

∆n−1 ��

d0

��

sd∗ ∂∆r ��

��

sd∗ ∂〈y〉

��
∆n

σ
�� sd∗ ∆r �� sd∗〈y〉

(4)

is a pullback (note that all vertical maps are monomorphisms), and the diagram (3) factors
through (4) via the diagram of monomorphisms

〈d0α〉 ��

��

sd∗ ∂〈y〉

��
〈α〉 �� sd∗〈y〉

It follows that the diagram (3) is a pullback.
If two simplices v, w of ∆n map to the same simplex in 〈α〉, then σ(v) and σ(w) map

to the same simplex of sd∗〈y〉. But then σ(v) = σ(w) or both simplices lift to sd∗ ∂∆r,
since sd∗ preserves pushouts and monomorphisms. If σ(v) = σ(w) then v = w since σ is
a non-degenerate simplex of the polyhedral complex sd∗ ∆r. Otherwise, σ(v) and σ(w)
both lift to sd∗ ∂∆r, and so v and w are in the image of d0. Thus all identifications arising
from the epimorphism ∆n → 〈α〉 take place inside the image of d0 : ∆n−1 → ∆n, and the
square (4) is a pushout.
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4.5. Proposition. Suppose that X is a regular simplicial set. Then the dotted arrow
exists in the diagram

sdX
π ��

γ
��

BX

��
X

making it commute.

Proof. All subcomplexes of a regular simplicial set are regular, so it’s enough to show
(see the comparison (1)) that the dotted arrow exists in the diagram

sd〈α〉 π ��

γ

��

B〈α〉

��
〈α〉

for a non-degenerate simplex α, subject to the obvious inductive assumption on the di-
mension of α: we assume that there is a commutative diagram

sd〈d0α〉 π ��

γ

��

B〈d0α〉
γ∗����������

〈d0α〉
Consider the pushout diagram

∆n−1 d0α ��

d0

��

〈d0α〉

��
∆n

α
�� 〈α〉

Then given non-degenerate simplices u, v of ∆n−1
r , 〈α(u)〉 = 〈α(v)〉 in 〈α〉 if and only if

either u = v or u, v ∈ d0∆n−1 and 〈d0α(u)〉 = 〈d0α(v)〉 in 〈d0α〉.
Suppose given two strings u1 ≤ · · · ≤ uk and v1 ≤ · · · ≤ vk of non-degenerate simplices

of ∆n such that 〈α(ui)〉 = 〈α(vi)〉 in 〈α〉 for 1 ≤ i ≤ k. We want to show that these
elements of (sd ∆n)k map to the same element of 〈α〉 under the composite map

sd ∆n γ−→ ∆n α−→ 〈α〉.
If this is true for all such pairs of strings, then there is an induced commutative diagram
of simplicial set maps

sd ∆n α∗ ��

γ

��

B〈α〉
γ∗
��

∆n
α

�� 〈α〉
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and the Proposition is proved.
We assume inductively that the corresponding diagram

sd ∆n−1 d0α∗ ��

γ

��

B〈d0α〉
γ∗
��

∆n−1
d0α

�� 〈α〉

exists for d0α.
Set i = k + 1 if all ui and vi are in d0∆n−1. Otherwise, let i be the minimum index

such that ui and vi are not in d0∆n−1. Observe that a non-degenerate simplex w of ∆n is
outside d0∆n−1 if and only if 0 is a vertex of w.

If i = k + 1 the strings u1 ≤ · · · ≤ uk and v1 ≤ · · · ≤ vk are both in the image of the
map d0

∗ : sd ∆n−1 → sd ∆n, and can therefore be interpreted as elements of sd ∆n−1 which
map to the same element of B〈d0α〉. These strings therefore map to the same element in
〈d0α〉, and hence to the same element of 〈α〉.

If i = 0 the strings are equal, and hence map to the same element of 〈α〉.
Suppose that 0 < i < k + 1. Then the simplices uj = vj have more than one vertex

(including 0), and so the last vertices of uj and d0uj coincide for j ≥ i. It follows that
the strings

u1 ≤ · · · ≤ ui−1 ≤ d0ui ≤ · · · ≤ d0uk

and
v1 ≤ · · · ≤ vi−1 ≤ d0vi ≤ · · · ≤ d0vk

determine elements of sd ∆n−1 having the same images under the map γ : sd ∆n → ∆n

as the respective original strings. These strings also map to the same element of B〈d0α〉
since d0uj = d0vj for j ≥ i. The strings u1 ≤ · · · ≤ uk and v1 ≤ · · · ≤ vk therefore map to
the same element of 〈α〉.
4.6. Lemma. Suppose given a diagram

A α ��

i
��

X

f
��

B
β

�� Y

in which i is a cofibration and f is a weak equivalence between objects which are fibrant
and cofibrant. Then there is a map θ : B → X such that θ · i = α and f · θ is homotopic
to β rel A.

Proof. The weak equivalence f has a factorization

X
j ��

f ���
��

��
��

� Z

q
��
Y
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where q is a trivial fibration and j is a trivial cofibration. The object Z is both cofibrant
and fibrant, so there is a map π : Z → X such that π · j = 1X and j · π � 1Z rel X. Form
the diagram

A
jα ��

i
��

Z

q
��

B
β

��

ω

��
Y

Then the required lift B → X is π · ω.

4.7. Theorem. Suppose given maps of simplicial sets

A α ��

i
��

X

B

where i is a cofibration of polyhedral complexes and B is finite, and suppose that there is
a commutative diagram of continuous maps

|A| |α| ��

|i|
��

|X|

|B|
f

����������

Then there is a diagram of simplicial set maps

sdm sd∗A
γ∗γm

��

i∗
��

A
α �� X

sdm sd∗B
φ

		���������������

such that

|φ| � f |γ∗γm| : | sdm sd∗B| → |X|
rel | sdm sd∗A|

Proof. The simplicial set sd∗X is regular (Lemma 4.4), and there is a (natural)
commutative diagram

sd sd∗X
c ��

γ

��

B sd∗X

γ̃������������

sd∗X
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by Proposition 4.5. On account of Lemma 4.6, there is a continuous map f̃ : | sd sd∗B| →
| sd sd∗X| such that the diagram

| sd sd∗A| |α| ��

|i|
��

| sd sd∗X|

| sd sd∗B|
f̃

�������������

commutes and such that |γ∗γ|f̃ � f |γ∗γ| rel | sd sd∗A|. Now consider the diagram

| sd sd∗A| |cα∗| ��

|i∗|
��

|B sd∗X|

| sd sd∗B|
|c|f̃

�������������

Then by applying Corollary 3.2 to the continuous map |c|f̃ the polyhedral complex map
cα∗ and the cofibration of polyhedral complexes i∗, we see that there is a diagram of
simplicial set maps

sdn sd sd∗A
γn

��

i∗
��

sd sd∗A
cα∗ �� B sd∗X

sdn sd sd∗B
ψ

























such that |ψ| � |c|f̃ |γn| rel | sdn sd sd∗A|. It follows that

|γ∗γ̃ψ| � |γ∗γ̃c|f̃ |γn| = |γ∗γ|f̃ |γn| � f |γ∗γ||γn|.

Thus φ = γ∗γ̃ψ is the required map of simplicial sets, where m = n+ 1.

4.8. Corollary. Suppose given maps of simplicial sets

A
α ��

i
��

X

B

where i is a cofibration and B is finite, and suppose that there is a commutative diagram
of continuous maps

|A| |α| ��

|i|
��

|X|

|B|
f

����������
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Then there is a diagram of simplicial set maps

sdm sd∗ sd sd∗A
γ∗γγ∗γm

��

i∗
��

A
α �� X

sdm sd∗ sd sd∗B
φ



























such that
|φ| � f |γ∗γγ∗γm| : | sdm sd∗ sd sd∗B| → |X|

rel | sdm sd∗ sd sd∗A|
Proof. The cofibration i induces a cofibration of polyhedral complexes

i∗ : B sd∗A→ B sd∗B.

The simplicial set maps

B sd∗A
γ̃ ��

i∗
��

sd∗A
γ∗ �� A α �� X

B sd∗B

and the composite continuous map

|B sd∗B| |γ̃|−→ | sd∗B| |γ∗|−−→ |B| f−→ |X|
satisfy the conditions of Theorem 4.7.

Suppose that K is a polyhedral complex, and recall that NK denotes the poset of non-
degenerate simplices of K with face relations, with nerve BK = BNK ∼= sdK. Recall
also that N∗K = (NK)op is the dual poset; it has the same objects as NK, namely the
non-degenerate simplices of K, but with the reverse ordering. The nerve BN∗K coincides
with the dual subdivision sd∗K of K.

The poset NBK of non-degenerate simplices of BK has as objects all strings

σ : σ0 < σ1 < · · · < σq (5)

of strings of non-degenerate simplices of K with no repeats. The face relation in NBK
corresponds to inclusion of strings. The poset NB∗K has as objects all strings

τ0 > τ1 > · · · > τp

of non-degenerate simplices of K with no repeats, with the face relation again given by
inclusion of substrings. Reversing the order of strings defines a poset isomorphism

φK : NBK
∼=−→ NB∗K
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which is natural in polyhedral complexes K. The poset isomorphism φK induces a natural
isomorphism

ΦK : sd sdK
∼=−→ sd sd∗K

of associated nerves.
The composite

sd sd ∆n γ−→ sd ∆n γ−→ ∆n

is induced by the poset morphisms

NBN∆n γ−→ N∆n γ−→ n

which are defined by successive application of the last vertex map. Thus, this composite
sends the object σ (as in (5) to σq(m) ∈ n, where the poset inclusion σq : m → n defines
the m-simplex σq ∈ ∆n. The composite of poset morphisms

NBN∆n φ−→ NBN∗∆n γ−→ N∗∆n γ∗−→ n

(where γ∗ is the first vertex map) sends the object σ to the element σ0(0) ∈ n. There is
a relation σ0(0) ≤ σq(m) in the poset n which is associated to all such objects σ. These
relations define a homotopy NBN∆n × 1 → n from γ∗γφ to γγ. The maps and the
homotopy respect all ordinal number morphisms θ : m → n.

It follows, by applying the nerve construction that there is an explicit simplicial ho-
motopy H : sd sd ∆n×∆1 → ∆n from γ∗γΦ∗ to γγ, and that this homotopy is natural in
ordinal number maps. Glueing together instances of the isomorphisms Φ∗ : sd sd(∆n) →
sd sd∗(∆n) along the simplex for a simplicial set X therefore determines an isomorphism

ΦX : sd sdX
∼=−→ sd sd∗X (6)

and a natural homotopy
H : sd sdX × ∆1 → X (7)

from the composite

sd sdX
ΦX−−→∼= sd sd∗X

γ−→ sd∗X
γ∗−→ X

to the composite
sd sdX

γ−→ sdX
γ−→ X.

5. Excision

5.1. Lemma. Suppose that U1 and U2 are open subsets of a topological space Y such
that Y = U1 ∪ U2. Suppose given a commutative diagram of pointed simplicial set maps

K α ��

i

��

S(U1) ∪ S(U2)

��
L

β
�� S(Y )
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where i is an inclusion of finite polyhedral complexes. Then for some n the composite
diagram

sdnK
γn

��

i∗
��

K α �� S(U1) ∪ S(U2)

��
sdn L

γn
�� L

β
�� S(Y )

is pointed homotopic to a diagram

sdnK ��

i∗
��

S(U1) ∪ S(U2)

��
sdn L ��

��

S(Y )

admitting the indicated lifting.

Proof. There is an n such that the composite

sdn L
η−→ S| sdn L| Shn−−→ S|L| Sβ∗−−→ SY

factors uniquely through a map β̃ : sdn L → S(U1) ∪ S(U2), where β∗ : |L| → Y is the
adjoint of β.

Suppose that ∆r ⊂ K is a non-degenerate simplex of K. The diagram

| sdn ∆r| hn
��

i∗
��

|∆r|
i∗
��

| sdn L|
hn

�� |L|

is homotopic to the diagram

| sdn ∆r| |γn| ��

i∗
��

|∆r|
i∗
��

| sdn L| |γn|
�� |L|

and the homotopies of such diagrams respect inclusions between non-degenerate simplices
of K. Thus, each composite diagram

sdn ∆r γn
��

i∗
��

∆r α �� S(U1) ∪ S(U2)

��
sdn L

γn
�� L

β
�� S(Y )
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is homotopic to a diagram

sdn ∆r η ��

i∗
��

S| sdn ∆r| Shn
�� S|∆r| Sα∗ �� S(U1) ∪ S(U2)

��
sdn L η

��
β̃

������������������������������������
S| sdn L|

Shn
�� S|L|

Sβ∗
�� S(Y )

and the homotopies respect inclusions between non-degenerate simplices of K. Note that
the map α : ∆r → S(U1) ∪ S(U2) factors through some S(Ui) so that the “adjoint” α∗ is
induced by a map |∆r| → Ui. Observe also that the maps h and |γn| coincide, and the
homotopy between them is constant on the vertices of K.

It follows that the composite diagram

sdnK
γn

��

i∗
��

K α �� S(U1) ∪ S(U2)

��
sdn L

γn
�� L

β
�� S(Y )

is pointed homotopic to a diagram

sdnK

i∗
��

˜(βi) �� S(U1) ∪ S(U2)

��
sdn L η

��
β̃

���������������������������������
S| sdn L|

Shn
�� S|L|

Sβ∗
�� S(Y )

5.2. Theorem. Suppose that U1 and U2 are open subsets of topological space Y , and
suppose that Y = U1 ∪U2. Then the induced inclusion of simplicial sets S(U1)∪ S(U2) ⊂
S(Y ) is a weak equivalence.

Proof. First of all observe that the induced function

π0|S(U1 ∪ U2)| → π0|S(Y )|
is a bijection, by subdivision of paths.

Pick a base point x ∈ Y , and let FxY denote the category of all finite pointed sub-
complexes of S(Y ) containing x, ordered by inclusion. This category is plainly filtered,
and there is an isomorphism

πn|S(Y )| ∼= lim−→
K∈FxY

πn|K|.

The natural weak equivalences γ′ = γ∗γ̃ : B(sd∗K) → K resulting from Lemma 4.4 and
Proposition 4.5 may be used to replace a finite simplicial set K by a finite polyhedral
complex B(sd∗K).
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Suppose that [α] ∈ πq(|S(Y )|, x) is carried on a finite subcomplex ω : K ⊂ S(Y ) in
the sense that [α] = ω∗[α′] for some [α′] ∈ πq|K|. Then it follows from Lemma 5.1 that
there is an r ≥ 0 such that the diagram

sdr B(sd∗ ∆0)
γ′γr

∼=
��

��

∆0 x ��

x

��

S(U1) ∪ S(U2)

i
��

sdr B(sd∗K)
γ′γr

�� K ω
�� S(Y )

is pointed homotopic to a diagram

sdr B(sd∗ ∆0) x ��

��

S(U1) ∪ S(U2)

i
��

sdr B(sd∗K) ��

σ

		

S(Y )

in which the indicated lift σ exists. The composite γ′γr is a weak equivalence, so [α′] =
(γ′γr)∗[α′′] for some α′′. But then [α] = ω∗(γ′γr)∗[α′′] = i∗σ∗[α′′] so that i∗ is surjective
on homotopy groups.

Suppose that [β] ∈ πq|S(U1)∪S(U2)| is carried on the subcomplex K ⊂ S(U1)∪S(U2)
and suppose that i∗[β] = 0. Then there is a commutative diagram of simplicial set
inclusions

K
i1 ��

j

��

S(U1) ∪ S(U2)

��
L

i2
�� S(Y )

such that [β] �→ 0 in πq|L|. There is an s ≥ 0 such that the composite diagram

sdsB(sd∗K)
γ′γs

��

j∗
��

K
i1 �� S(U1) ∪ S(U2)

i
��

sdsB(sd∗ L)
γ′γs

�� L
i2

�� S(Y )

is pointed homotopic to a diagram

sdsB(sd∗K)
i′1 ��

j∗
��

S(U1) ∪ S(U2)

i
��

sdsB(sd∗ L)
i′2

��

τ

		

S(Y )

in which the indicated lifting exists. Again, the maps γ′γs are weak equivalences, so that
[β] = (γ′γs)∗[β′] for some [β′] ∈ πq| sdsB(sd∗K)| and

i1∗[β] = i1∗(γ′γs)∗[β′] = i′1∗[β
′] = τ∗j∗[β′].
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Finally, (γ′γs)∗j∗[β′] = j∗[β] = 0 so that j∗[β′] = 0 in πq| sdsB(sd∗ L)| and so i1∗[β] = 0
in πq|S(U1) ∪ S(U2)|.

The category S of simplicial sets is a category of cofibrant objects for a homotopy
theory, for which the cofibrations are inclusions of simplicial sets and the weak equivalences
are those maps f : X → Y which induce weak equivalences f∗ : |X| → |Y | of CW -
complexes. As such, it has most of the usual formal calculus of homotopy cocartesian
diagrams (specifically II.8.5 and II.8.8 of [4]).

5.3. Lemma. Suppose that the diagram

⊔
i S

n−1 ��

��

X

��⊔
i e

n �� Y

is a pushout in the category of CW -complexes. Then the diagram

⊔
i S(Sn−1) ��

��

S(X)

��⊔
i S(en) �� S(Y )

is a homotopy cocartesian diagram of simplicial sets.

Proof. The usual classical arguments say that one can find an open subset U ⊂ Y such
that X ⊂ U and this inclusion is a homotopy equivalence. The set U is constructed by
fattening up each sphere Sn−1 to an open subset Ui of the n-cell en (by radial projection)
such that Sn−1 ⊂ Ui is a homotopy equivalence. We can therefore assume that the
inclusion ⊔

i

Sn−1 ⊂ (
⊔

i

en) ∩ U

is a homotopy equivalence. We can also assume that there is an open subset Vi ⊂ en

such that the inclusion is a homotopy equivalence, such that Vi ∩ Ui ⊂ Ui is a homotopy
equivalence, and such that en = Vi ∪ Ui. The net result is a commutative diagram

⊔
i S(Sn−1)

III

��

�
��

S(X)

�
��

S(V ∩ U) � ��

��
I

S(U ∩ (
⊔
i e
n)) ��

��
II

S(U)

��
S(V ) � �� ⊔

i S(en) �� S(Y )

of simplicial set homomorphisms in which all vertical maps are cofibrations and the la-
belled maps are weak equivalences. The the composite diagram I + II is homotopy co-
cartesian by excision (Lemma 5.2), so that the diagram II is homotopy cocartesian by the
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usual argument. It follows that the composite diagram III + II is homotopy cocartesian,
again by a standard argument.

5.4. Theorem. The adjunction map ε : |S(T )| → T is a weak equivalence for all spaces
T .

Proof. The functor T �→ S(T ) preserves fibrations and trivial fibrations, and thus
preserves weak equivalences since all spaces are fibrant. In particular, the functor T �→
|S(T )| preserves weak equivalences. We can therefore presume that T is a CW -complex.

All cells en are contractible spaces, so that the natural maps ε : |S(en| → en are weak
equivalences. If the diagram

⊔
i S

n−1 ��

��

X

��⊔
i e

n �� Y

(8)

is a pushout in the category of CW -complexes, then it follows from Lemma 5.3 that the
induced diagram

⊔
i |S(Sn−1)| ��

��

|S(X)|

��⊔
i |S(en)| �� |S(Y )|

(9)

is homotopy cocartesian. The maps ε : |S(Sn−1)| → Sn−1 are therefore weak equivalences,
by induction on dimension. The general case follows by comparison of the homotopy
cartesian diagrams (8) and (9), and the usual sort of transfinite induction.

The following is now a consequence of Theorem 5.4 and a standard adjointness trick:

5.5. Corollary. The canonical map η : X → S|X| is a weak equivalence for all
simplicial sets X.

6. The Milnor Theorem

Write Sf for the full subcategory of the simplicial set category whose objects are the
fibrant simplicial sets. All fibrant simplicial sets X are Kan complexes, and therefore
have combinatorially defined homotopy groups πn(X, x), n ≥ 1, x ∈ X0, as well as sets of
path components π0X. Say that a map f : X → Y of fibrant objects is a combinatorial
weak equivalence if it induces isomorphisms π0X ∼= π0Y and πn(X, x) ∼= πn(Y, f(x)) for
all n and x. Recall that any fibre sequence

Fy
i ��

��

X

p

��
∆0

y
�� Y
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(ie. pullback, with p a fibration) induces a long exact sequence in homotopy groups

· · · → π2(Y, y)
∂−→ π1(Fy, x)

i∗−→ π1(X, x)
p∗−→ π1(Y, y)

∂−→ π0Fy
i∗−→ π0X

p∗−→ π0Y

for any choice of vertex x ∈ Fy.

6.1. Lemma. A map p : X → Y between fibrant simplicial sets is a fibration and a
combinatorial weak equivalence if and only if it has the right lifting property with respect
to all inclusions ∂∆n ⊂ ∆n.

Proof. If p has the right lifting property with respect to all ∂∆n ⊂ ∆n then it has the
right lifting property with respect to all cofibrations, and therefore has the right lifting
property with respect to all trivial cofibrations. It follows that p is a fibration. The map
p is also a homotopy equivalence since X and Y are fibrant, so it is a combinatorial weak
equivalence.

The reverse implication is the standard argument: see [4, I.7.10], and also the proof
of Lemma 7.3 below.

6.2. Lemma. The category Sf of all fibrant simplicial sets, together with the classes of
all fibrations and combinatorial weak equivalences in the category, satisfies the axioms for
a category of fibrant objects for a homotopy theory.

Proof. With Lemma 6.1 and the closed simplicial model structure of Theorem 1.6 in
place, the only axiom that requires proof is the weak equivalence axiom. In other words
we have only to prove that, given a commutative triangle

X
f ��

h ���
��

��
��

� Y

g
��
Z

of morphisms between fibrant simplicial sets, if any two of the maps are combinatorial
weak equivalences then so is the third. This is again a standard argument [4, I.8.2], which
uses a combinatorial construction of the fundamental groupoid.

A finite anodyne extension is an inclusion K ⊂ L of simplicial sets, such that there
are subcomplexes

K = K0 ⊂ K1 ⊂ · · · ⊂ KN = L

with pushout diagrams
Λm
s

��

��

Ki

��
∆m �� Ki+1

The notation means that Ki+1 is constructed from Ki by explicitly attaching a simplex
to a horn in Ki.
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Recall [4] that a cofibration is said to be an anodyne extension if it is a member of
the saturation of the set of all inclusions Λn

k ⊂ ∆n. In other words, the class of anodyne
extensions is generated by all inclusions of horns in simplices under processes involving
disjoint union, pushout and filtered colimit, and is closed under retraction. All anodyne
extensions are weak equivalences.

We want to show that the subdivision functors sd and sd∗ preserve finite anodyne
extensions. This will be accomplished in two stages.

6.3. Lemma. Suppose that v : ∆0 → K is a finite anodyne extension for some choice of
vertex v in a finite complex K. Then the canonical inclusion K → CK is a finite anodyne
extension.

Proof. Suppose given a pushout diagram

Λn
k

α ��

��

K

i
��

∆n �� L

where there is some vertex v ∈ K such that the corresponding map v : ∆0 → K is finite
anodyne. Assume inductively that the map N → CN is anodyne for all finite complexes
constructed in fewer stages than L, and for all N constructed by adjoining simplices of
dimension smaller than n. Then the inclusions K → CK and Λn

k → CΛn
k are both

anodyne, and there are pushout diagrams

K ��

��

L

��
CK �� CK ∪K L

and
CΛn

k ∪Λn
k

∆n ��

��

CK ∪K L

��
C∆n �� CL

The cofibration
CΛn

k ∪Λn
k

∆n → C∆n

is isomorphic to the anodyne extension Λn+1
k ⊂ ∆n+1.

6.4. Lemma. The functors sd and sd∗ preserve finite anodyne extensions.

Proof. We will prove that the subdivision functor sd preserves finite anodyne extensions.
The corresponding statement for sd∗ has a similar proof.

It suffices to show that all induced maps sd Λn
k → sd ∆n are finite anodyne extensions.

This will be done by induction on n; the case n = 1 is obvious.
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It is a consequence of Lemma 4.1 that sd ∆n coincides up to isomorphism with the cone
C sd ∂∆n on sd ∆n. The cone functor C takes the inclusion ∂∆r → ∆r to the anodyne
extension Λr+1

r+1 ⊂ ∆r+1, and hence takes all inclusions K ⊂ L of finite simplicial sets to
finite anodyne extensions CK → CL. There is a commutative diagram

sd Λn
k

��

��

��

sd ∆n

C sd Λn
k

�� C sd ∂∆n

∼=

��

It therefore suffices to show that the canonical map sd Λn
k → C sd Λn

k is a finite anodyne
extension.

Note that Λn
k has a filtration by subcomplexes Fr, where Fr is generated by the non-

degenerate r-simplices which have k as a vertex. Then F0 = {k}, Fn−1 = Λn
k , and there

are pushout diagrams ⊔
x∈F (r)

r
Λr
j

��

��

Fr−1

��⊔
x∈F (r)

r
∆r �� Fr

where F (r)
r denotes the set of non-degenerate r-simplices in Fr. In particular, the map

∆0 ⊂ Λn
k arising from the inclusion of the vertex k is a finite anodyne extension. It also

follows, by induction, that the map

∆0 = sd ∆0 → sd Λn
k

which is induced by applying sd to the inclusion {k} ⊂ Λn
k is a finite anodyne extension.

The proof may therefore be completed by applying Lemma 6.3.

For a simplicial setX, the simplicial set ExX has n-simplices ExXn = hom(sd ∆n, X).
The functor X �→ ExX is right adjoint to the subdivision functor A �→ sdA. It follows
from Lemma 6.4 that ExX is a Kan complex if X is a Kan complex; it is easier to see
that ExX is fibrant if X is fibrant. Write γ : X → ExX for the natural simplicial set
map which is adjoint to the map γ : sdX → X.

6.5. Lemma. Suppose that X is a Kan complex. Then the map γ : X → ExX is a
combinatorial weak equivalence.

Proof. The functor Ex preserves Kan fibrations on account of Lemma 6.4, and the
map γ plainly induces a bijection

π0X ∼= π0 ExX.

The functor Ex also preserves those fibrations which have the right lifting property with
respect to all ∂∆n → ∆n, since the subdivision functor sd preserves inclusions of polyhe-
dral complexes.
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Pick a base point x ∈ X, and construct the corresponding comparison of fibre se-
quences

ΩX ��

γ
��

PX ��

γ
��

X

γ
��

Ex ΩX �� ExPX �� ExX

Then ExPX is simplicially contractible, and so there is an induced diagram

π1X
∼= ��

��

π0ΩX

∼=
��

π1 ExX ∼=
�� π0 Ex ΩX

It follows that the induced map π1X → π1 ExX is an isomorphism for all choices of base
points in all Kan complexes X.

This construction may be iterated to show that the induced map πnX → πn ExX is
an isomorphism for all choices of base points in all Kan complexes X, and for all n ≥ 0.

There is a similar description of a functorially constructed simplicial set Ex∗X has
n-simplices Ex∗Xn = hom(sd∗ ∆n, X). The functor X �→ Ex∗X is right adjoint to the
(dual) subdivision functor A �→ sd∗A. The dual subdivision functor also preserves weak
equivalences, cofibrations and finite anodyne extensions, and the natural map γ∗ : sd∗A→
A is a weak equivalence. It follows that Ex∗X is a Kan complex if X is a Kan complex,
and that Ex∗X is fibrant if X is fibrant. Write γ∗ : Y → Ex∗ Y for the adjoint of the
natural map γ∗ : sd∗ Y → Y . The proof of the following result is formally the same as
that for Lemma 6.5:

6.6. Lemma. Suppose that X is a Kan complex. Then the map γ∗ : X → Ex∗X is a
combinatorial weak equivalence.

6.7. Theorem. [Milnor Theorem] Suppose that X is a Kan complex. Then the canonical
map η : X → S(|X|) induces an isomorphism

πi(X, x) ∼= πi(|X|, x)
for all vertices x ∈ X and for all i ≥ 0.

In other words, Theorem 6.7 asserts the existence of an isomorphism between the
combinatorial homotopy groups of a Kan complex X and the ordinary homotopy groups
of its topological realization |X|.
Proof of Theorem 6.7. The vertical arrows in the comparison diagram

πi(X, x) ��

��

πi(S|X|, x)

��
πi(Exm Ex∗X, x) �� πi(Exm Ex∗ S|X|, x)



SIMPLICIAL APPROXIMATION 63

are isomorphisms for all m by Lemma 6.5 and 6.6. The simplicial approximation result
Theorem 4.7 says that any element πi(S|X|, x) lifts to some element of πi(Exr Ex∗X, x)
for sufficiently large r, and that any element of πi(X, x) which maps to 0 ∈ πi(S|X|, x)
must also map to 0 in πi(Exs Ex∗X, x) for some s.

7. Kan fibrations

Write SD(X) for either the subdivision sdX of a simplicial set X or for the dual subdivi-
sion sd∗X, and let Γ : SD(X) → X denote the corresponding canonical map. Similarly,
write EX(X) for either ExX or Ex∗X, and also let Γ : X → EX(X) denote the adjoint
map.

Here is one of the more striking consequences of simplicial approximation (Theorem
4.7 or Corollary 4.8): every simplicial set X is a Kan complex up to subdivision. More
explicitly, we have the following:

7.1. Lemma. Suppose that α : Λn
k → X is a map of simplicial sets. Then there is an

r ≥ 0 such that α extends to ∆n up to subdivision in the sense that there is a commutative
diagram

SDr(Λn
k)

Γr
��

��

Λn
k

α �� X

SDr(∆n)

		����������������

of simplicial set maps.

Proof. All spaces are fibrant, so there is a diagram of continuous maps

|Λn
k |

|α| ��

��

|X|

|∆n|
f

����������

Now apply Theorem 4.7.

7.2. Remark. In fact, although it’s convenient to do so for the moment we do not have
to mix instances of sd and sd∗ in the proof of Lemma 7.1 — see the proof of Lemma 7.9
below.

7.3. Lemma. Suppose that p : X → Y is a Kan fibration and a weak equivalence.
Suppose that there is a commutative diagram

∂∆n α ��

��

X

p
��

∆n
β

�� Y

(10)
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Then there is an r ≥ 0 and a commutative diagram

SDr(∂∆n) Γr
��

��

∂∆n α �� X

p

��
SDr(∆n)

Γr
��

��������������������
∆n

β
�� Y

In other words all maps which are both Kan fibrations and weak equivalences have
the right lifting property with respect to all inclusions ∂∆n ⊂ ∆n, up to subdivision. We
will do better than that, in Theorem 7.4.

Proof of Lemma 7.3. Suppose that i : K ⊂ L is an inclusion of finite polyhedral
complexes. If the diagram

K α ��

��

X

p
��

L
β

�� Y

(11)

is homotopic up to subdivision to a diagram for which the lifting exists, then the lifting
exists for the original diagram up to subdivision.

In effect, a homotopy up to subdivision is a diagram

SDk(K × ∆1)
h1 ��

��

X

p

��
SDk(L× ∆1)

h2

�� Y

The homotopy starts (up to subdivision) at the original diagram

SDk(K) Γk
��

��

K α �� X

p

��
SDk(L)

Γk
�� L

β
�� Y

(12)

If the lifting exists at the other end of the homotopy in the sense that there is a commu-
tative diagram

SDk(K)
d0∗ ��

��

SDk(K × ∆1)
h1 �� X

p

��
SDk(L)

d0∗
��

σ































SDk(L× ∆1)

h2

�� Y
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then there is a commutative diagram

SDk(K)
d1∗ ��

��

SDk(K × ∆1) ∪ SDk(L)
(h1,σ) ��

j
��

X

p

��
SDk(L)

d1∗
�� SDk(L× ∆1)

h2

��

σ′
		���������������

Y

The map labelled j is a finite anodyne extension by Lemma 6.4, so the lifting σ′ exists.
The outer square diagram is the diagram (12) and the composite σ′d1

∗ is the required lift.
Lemma 7.1 implies that the contracting homotopy h1 : Λn

0×∆1 → Λn
0 onto the vertex 0

extends to a homotopy of diagrams up to subdivision from the diagram (10) to a diagram

SDk(∂∆n)

��

α1 �� X

p

��
SDk(∆n)

β1

�� Y

(13)

where the composite

SDk(∆n−1)
di∗−→ SDk(∂∆n)

α1−→ X

factors through a fixed base point ∗ = α(0) for i �= 0.
The composite

SDk(∆n−1)
d0∗−→ SDk(∂∆n)

α1−→ X

represents an element [|α1d
0
∗|] ∈ πn−1|X|, and this element maps to 0 ∈ πn−1|X| since the

diagram (13) commutes. The homotopy | SDk ∆n−1 × ∆1| → |X| from |α1d
0
∗| to the base

point is homotopic rel boundary and after subdivision to the realization of a simplicial
map SDr(SDk(∆n−1) × ∆1) → X, which extends after subdivision to a homotopy of
diagrams

SDs(SDk(∂∆n) × ∆1) ��

��

X

��
SDs(SDk(∆n) × ∆1) �� Y

from a subdivision of the diagram (13) to a diagram

SDs+k ∂∆n α2 ��

��

X

p

��
SDs+k ∆n

β2

�� Y

such that α2 maps all of SDs+k ∂∆n to the base point of X.
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The element [|β2|] ∈ πn|Y | lifts to an element [γ] ∈ πn|X| since p∗ : πn|X| → πn|Y |
is an isomorphism. The map γ : | SDs+k ∆n| → |X| is homotopic rel boundary and after
subdivision to the realization of a simplicial set map f : SDs+k+l ∆n → X which maps
SDs+k+l ∂∆n into the base point. It follows that, after subdivision, |β2| is homotopic rel
boundary to the map |pf |. The homotopy | SDs+k+l ∆n × ∆1| → |Y | rel boundary is
itself homotopic to the realization of a simplicial homotopy SDm(SDs+k+l ∆n × ∆1) → Y
rel boundary after further subdivision. It follows that β2 lifts to X rel boundary after
subdivision.

7.4. Theorem. Suppose that p : X → Y is a Kan fibration and a weak equivalence.
Then p has the right lifting property with respect to all inclusions ∂∆n → ∆n.

Proof. Suppose given a diagram

∂∆n ��

��

X

p
��

∆n
σ

�� Y

and let x = σ(0) ∈ Y . The fibre Fσ(0) over σ(0) is defined by the pullback diagram

Fσ(0)
��

��

X

p

��
∆0

σ(0)
�� Y

and the Kan complex Fσ(0) has the property that all maps ∂∆n → Fσ(0) can be extended
to a map SDr ∆n → Fσ(0) after a suitable subdivision, by Lemma 7.3.

All maps Γr : Fσ(0) → EXr Fσ(0) are weak equivalences of Kan complexes, while the
extension up to subdivision property for Fσ(0) implies that all elements of the combina-
torial homotopy group πjFσ(0) vanish in πj EXr Fσ(0) for some r. The Kan complex Fσ(0)

therefore has trivial combinatorial homotopy groups, and is contractible.
A standard (combinatorial) result about Kan fibrations [4, I.10.6] asserts that there is

a fibrewise homotopy equivalence

Fσ
θ
� ��

���
��

��
��

� Fσ(0) × ∆n

pr
����������

∆n

where Fσ denotes the pullback of p over ∆n. It follows that the induced lifting problem

∂∆n ��

��

Fσ

p∗
��

∆n
1

��

��

∆n

can be solved up to homotopy of diagrams, and can therefore be solved.
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7.5. Corollary. Suppose that i : A → B is a cofibration and a weak equivalence.
Then i has the left lifting property with respect to all Kan fibrations.

Proof. The map i has a factorization

A
j ��

i ���
��

��
��

� X

p
��
B

where j is anodyne and p is a Kan fibration. Then p is a weak equivalence as well as a
Kan fibration, and therefore has the right lifting property with respect to all cofibrations
by Theorem 7.4. The lifting θ therefore exists in the diagram

A
j ��

i
��

X

p
��

B
1

��

θ

����������
B

It follows that i is a retract of j, and so i has the left lifting property with respect to all
Kan fibrations.

7.6. Corollary. Every Kan fibration is a fibration of simplicial sets, and conversely.

7.7. Theorem. [Quillen] Suppose that p : X → Y is a fibration. Then the realization
|p| : |X| → |Y | of p is a Serre fibration.

Proof. We want to show that all lifting problems in continuous maps

|Λn
k | α ��

��

|X|
|p|
��

|∆n|
β

��

��

|Y |

(14)

can be solved. The idea is to show that all such problems can be solved up to homotopy
of diagrams.

We can assume, first of all, that α(k) is a vertex of X. If it is not, there will be path in
|X| from α(k) to some vertex x ∈ X, and that path extends to a homotopy of diagrams
in the usual way.

There is a simplicial set map α′ : SDr Λn
k → X such that the realization α′

∗ :
| SDr Λn

k | → |X| is homotopic to α|Γr| relative to the image of the cone point k in |X|.
This homotopy extends to a homotopy from β|Γr| to a map β1 : | SDr ∆n| → |Y | which
restricts to |pα′| on | SDr Λn

k |.
There is a further subdivision SDs+r ∆n such that the composite map β1|Γs| is homo-

topic rel | SDs+r Λn
k | to the realization of a simplicial map

β′ : SDs+r ∆n → Y.
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It follows that there is a homotopy of diagrams from the diagram

| SDs+r Λn
k |

|Γs+r| ��

��

|Λn
k | α �� |X|

|p|
��

| SDs+r ∆n| |Γs+r|
�� |∆n|

β
�� |Y |

(15)

to the realization of the diagram of simplicial set morphisms

SDs+r Λn
k

α′Γs
��

��

X

p

��
SDs+r

β′
��

��

Y

The indicated lift exists in the diagram of simplicial set morphisms, since p is a fibration
and the induced map SDs+r Λn

k → SDs+r ∆n is anodyne, by Lemma 6.4.
The lifting problem can therefore be solved for the diagram (15). The map |Γs+r| is

homotopic to a homeomorphism, and the homotopy and the homeomorphism are natural
in simplicial complexes. It follows that there is a diagram homotopy from the diagram
(15) to a diagram which is isomorphic to the original diagram (14), so the lifting problem
can be solved for that diagram.

The following result is an easy consequence of Theorem 7.7 and the formalism of
categories of fibrant objects [4, II.8.6]. Its proof completes the proof of the assertion that
the model structure on the category of simplicial sets is proper.

7.8. Corollary. Suppose given a pullback diagram

A×Y X
f∗ ��

��

X

p

��
A

f
�� Y

where p is a fibration and f is a weak equivalence. Then the induced map f∗ : A×Y X → X
is a weak equivalence.

Write Ex∞X for the colimit of the system

X
γ−→ ExX

γ−→ Ex2X → . . .

Write γ̃ : X → Ex∞X for the natural map. This is Kan’s Ex∞ construction, applied to
the simplicial set X. The following result is well known [4], but has a remarkably easy
proof in the present context.

7.9. Lemma. The simplicial set Ex∞X is a Kan complex.
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Proof. The space |Λn
k | is a strong deformation retract of |∆n|. By Corollary 3.2, there

is a commutative diagram of simplicial set homomorphisms

sdr Λn
k

γr
��

��

Λn
k

sdr ∆n

�����������

This means that any map α : Λn
k → Y sits inside a commutative diagram

Λn
k

α ��

��

Y
γr

�� Exr Y

∆n

		���������������

for some r. This is true for all simplicial sets Y , and hence for all ExrX.

7.10. Theorem. The natural map γ̃ : X → Ex∞X is a weak equivalence, for all
simplicial sets X.

Proof. The Ex∞ functor preserves fibrations on account of Lemma 6.4, and the map
γ : X → ExX induces a bijection π0X ∼= π0(ExX) for all simplicial sets X.

Suppose that j : X → X̃ is a fibrant model for X, and let x ∈ X be a choice of
base point. The space of paths PX̃ starting at x ∈ X̃ and the fibration π : PX̃ → X̃
determines a pullback diagram

X ×X̃ PX̃
j∗ ��

π∗
��

PX̃

π
��

X
j

�� X̃

in which the map π∗ is a fibration and j∗ is a weak equivalence by Corollary 7.8. The
fibre ΩX̃ for both π and π∗ is a Kan complex, so that the map γ̃ : ΩX̃ → Ex∞ΩX̃ is a
weak equivalence by Lemma 6.5 and Theorem 6.7. It follows from Theorem 7.7 and the
method of proof of Lemma 6.5 that the map γ̃ : X → Ex∞X is a weak equivalence if we
can show that the simplicial set Ex∞(X ×X̃ PX̃) is weakly equivalent to a point.

It is therefore sufficient to show that Ex∞ Y is weakly equivalent to a point if the map
Y → ∗ is a weak equivalence. The object Ex∞ Y is a Kan complex by Lemma 7.9, so it
suffices to show that all lifting problems

∂∆n α ��

��

Ex∞ Y

∆n

��
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can be solved if Y is weakly equivalent to a point. By an adjointness argument, this
amounts to showing that the map α∗ : sdr ∂∆n → Y can be extended over ∆n after
subdivision in the sense that there is a commutative diagram

sds+r ∂∆n γs
��

��

sdr ∂∆n α∗ �� Y

sds+r ∆n

�����������������������

There is a commutative diagram

sd sd∗ sdr ∂∆n sd sd∗ α∗ ��

γ∗γ
��

sd sd∗ Y
π ��

γ∗γ
��

B sd∗ Y

���������������

sdr ∂∆n
α∗

�� Y

on account of Lemma 4.4 and Proposition 4.5. The map π is a weak equivalence by
Corollary 4.3 and Lemma 4.4. The map γ∗γ is a weak equivalence since its realization
is homotopic to a homeomorphism. It follows that the polyhedral complex B sd∗ Y is
weakly equivalent to a point.

Corollary 3.2 and the contractibility of the space |B sd∗ Y | together imply that there
is a commutative diagram

sdt sd2 sdr ∂∆n γt
��

��

sd2 sdr ∂∆n Φ∗ �� sd sd∗ sdr ∂∆n π sd sd∗ α∗ �� B sd∗ Y

sdt sd2 sdr ∆n

��������������������������������������������������������

The natural homotopy (7) at the end of Section 4 induces a homotopy

h : sd2 sdr(∂∆n) × ∆1 → Y

from the composite α∗γ∗γΦ∗ to α∗γ2. There is an obvious map

sd2 sdr(∂∆n × ∆1) → sd2 sdr(∂∆n) × ∆1

which, when composed with h, and by taking adjoints gives a homotopy from α : ∂∆n → Y
to a map (α∗γ∗γΦ∗)∗ : ∂∆n → Ex∞ Y which extends to a map ∆n → Ex∞ Y . The object
Ex∞ Y is a Kan complex, so the map α extends over ∆n as well, by a standard argument.

7.11. Corollary. The map γ : X → ExX is a weak equivalence for all simplicial sets
X.
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Proof. The map γ̃ : X → Ex∞X is a weak equivalence, as is the map γ̃ : ExX →
Ex∞X, and there is a commutative diagram

X
γ̃ ��

γ

��

Ex∞X

ExX
γ̃

������������
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Aurelio Carboni, Università dell Insubria: aurelio.carboni@uninsubria.it
Valeria de Paiva, Palo Alto Research Center: paiva@parc.xerox.com
Martin Hyland, University of Cambridge: M.Hyland@dpmms.cam.ac.uk
P. T. Johnstone, University of Cambridge: ptj@dpmms.cam.ac.uk
G. Max Kelly, University of Sydney: maxk@maths.usyd.edu.au
Anders Kock, University of Aarhus: kock@imf.au.dk
Stephen Lack, University of Western Sydney: s.lack@uws.edu.au
F. William Lawvere, State University of New York at Buffalo: wlawvere@buffalo.edu
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