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GENERALIZED BROWN REPRESENTABILITY IN HOMOTOPY
CATEGORIES

JIŘÍ ROSICKÝ

Abstract. Brown representability approximates the homotopy category of spectra by
means of cohomology functors defined on finite spectra. We will show that if a model
category K is suitably determined by λ-small objects then its homotopy category Ho(K)
is approximated by cohomology functors defined on those λ-small objects. In the case
of simplicial sets, we have λ = ω1, i.e., λ-small means countable.

1. Introduction

There are two versions of Brown representability for a triangulated category T : the first
one says that every cohomological functor T op → Ab is representable and the second one
deals with the representability of cohomological functors T op

0 → Ab defined on the full
subcategory T0 of small objects. The first version is often called Brown representability
for cohomology while the second one is called Brown representability for homology (see
[10]). We will consider a whole hierarchy of Brown representabilities by asking whether
every cohomological functor defined on λ-small objects (where λ is a regular cardinal)
is representable. We will show that, for every combinatorial stable model category K,
the triangulated category Ho(K) satisfies one of these λ-Brown representabilities. The
consequence is that Ho(K) satisfies Brown representability for cohomology. It fits in
similar results proved in [16], [35] and [29]. In fact, A. Neeman uses his new concept of well
generated triangulated categories in his proof and we will show that every combinatorial
model category K has Ho(K) well generated (cf. 6.10).

Moreover, we can extend our framework from triangulated categories to a general
homotopy category Ho(K) of a model category K. Brown representabilities then deal with
weakly continuous functors Ho(Kλ)

op → Set and ask whether they are representable. Let
us stress that this was (for λ = ω) the original setting considered by E. M. Brown [7].
Since the category of weakly continuous functors Ho(Kλ)

op → Set coincides with the free
completion Indλ(Ho(Kλ)) of Ho(Kλ) under λ-filtered colimits, the question is whether the
natural functor Eλ : Ho(K) → Indλ(Ho(Kλ)) is (essentially) surjective on objects. Our
main result is that if K is combinatorial (in the sense of J. H. Smith) then there is always
a regular cardinal λ such that Eλ is not only surjective on objects but also full, which
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means that we obtain Brown representability not only for objects but also for morphisms.
In the rest of this introduction we will explain our approach in more detail.

A model category K is combinatorial if it is accessible and cofibrantly generated. In
very general terms, the theory of accessible categories studies those categories K which
are determined by a full subcategory A consisting of “small” objects (see [33] and [1]). A
typical example is the free completion Ind(A) of the category A under filtered colimits
introduced by Grothendieck [3]. Categories Ind(A) where A is a small category are
precisely finitely accessible categories. The most of Quillen model categories are finitely
accessible and we may ask in what extent is Ho(Ind(A)) determined by Ho(A). Here,
since A is not necessarily a model category, we understand Ho(A) as the full subcategory
of Ho(Ind(A)). The best but very rare case is that

Ho(Ind(A)) ∼= Ind(Ho(A)) ,

which means that Ho(K) is finitely accessible as well. We will show that this hap-
pens for truncated simplicial sets SSetn = Set∆n where ∆n is the category of ordinals
{1, 2, . . . , n}. But the homotopy category Ho(SSet) of simplicial sets is not concrete (see
[17]) and thus it cannot be accessible.

However, very often, one has the comparison functor

E : Ho(Ind(A)) → Ind(Ho(A))

and one can ask whether this functor is at least full and (essentially) surjective on objects.
Non-faithfulness of this functor corresponds to the presence of phantoms in Ho(Ind(A)),
i.e., of morphisms in Ho(Ind(A)) which are not determined by their restrictions on objects
from Ho(A).

A sufficient condition for having E : Ho(Ind(A)) → Ind(Ho(A)) is that Ho(A) has
weak finite colimits. In this case, Ind(Ho(A)) is the full subcategory of the functor
category SetHo(A)op consisting of functors Ho(A)op → Set which are weakly left exact;
they correspond to cohomological functors. Hence the essential surjectivity of E on objects
precisely corresponds to the fact that every cohomological functor Ho(A)op → Set is
representable, i.e., to Brown representability of Ho(Ind(A)). The classical case is when
Ind(A) is the category of spectra and A the category of finite spectra. Following Adams
[2], the functor E : Ho(Ind(A)) → Ind(Ho(A)) is full and essentially surjective on objects.

Categories Ind(A) are important for large A as well, for instance in the dual setting
of Pro(A) = (Ind(Aop))op, i.e., Pro(A) is the free completion of A under filtered limits.
Here, the functor

E : Ho(Pro(A)) → Pro(Ho(A))

is considered in [15]. Their rigidification question asks which objects belong to the image
of E. In the special case of A being the category Top of topological spaces, the functor
E is the comparison between the strong shape category and the shape category (see [37]).

For every regular cardinal λ, there is the free completion Indλ(A) of A under λ-filtered
colimits. While K = Ind(A) consists of filtered colimits of objects from A, Indλ(A) is
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the full subcategory of K consisting of λ-filtered colimits of objects from A. For any A,
Ind(A) = Indλ(Kλ) where Kλ consists of filtered colimits of objects from A of size < λ
(see [33], 2.3.11). In the same way as above, we get the functor

Eλ : Ho(Indλ(Kλ)) → Indλ(Ho(Kλ))

(then E = Eω). As we have mentioned, our main result says that, for any combinatorial
model category K, there is a regular cardinal λ such that Eλ is full and essentially surjec-
tive on objects. This means that the homotopy category Ho(K) is approximated by the
category Indλ(Ho(Kλ)) of cohomological functors Ho(Kλ)

op → Set defined on λ-small ob-
jects. This approximation does not distinguish morphisms f, h : K → L in Ho(K) which
are λ-phantom equivalent, i.e., which have the same composition with each morphism
A → K where A is λ-small.

For instance, if Ind(A) is the category of simplicial sets then λ = ω1. It seems to
be unknown whether Eω is essentially surjective in this case, i.e., whether every weakly
left exact functor H : Ho(A)op → Set is representable. E. M. Brown proved this in the
special case when H takes countable values (see [7]) and F. Adams [2] in the case that H
takes values in the category of groups.

In the case when Ind(A) is the category Sp of spectra, our result again yields that
Eλ is full and essentially surjective on objects for λ = ω1. A consequence is that Ho(Sp)
has minimal λ-filtered colimits of objects from Ho(Spλ) for λ = ω1 and, more generally,
for each ω1 � λ. This has been known for λ = ω (see [34]). We thus contribute to the still
open problem whether Ho(Sp) has all minimal filtered colimits (see [34]).

There is well known that, for each model category K, the homotopy category Ho(K)
has weak (co)limits (see, e.g., [34], [24] or [9]). They are constructed from coproducts
and homotopy pushouts in the same way as colimits are constructed from coproducts and
pushouts. The trivial observation about colimits is that a category D with a terminal
object d∗ has each colimit colim D, D : D → K isomorphic to Dd∗. We will show, which
is non-trivial and seems to be new, that the same holds for our weak colimits in homotopy
categories. This implies that, for any combinatorial model category K, there is a regular
cardinal λ such that homotopy λ-filtered colimits are weak colimits, which leads to our
generalized Brown representability. The proved property of weak λ-filtered colimits was
called Ho(Kλ)-priviliged in [21].

2. Basic concepts

A model structure on a category K will be understood in the sense of Hovey [22], i.e., as
consisting of three classes of morphisms called weak equivalences, cofibrations and fibra-
tions which satisfy the usual properties of Quillen [38] and, moreover, both (cofibration,
trivial fibrations) and (trivial cofibrations, fibration) factorizations are functorial. Re-
call that trivial (co)fibrations are those (co)fibrations which are in the same time weak
equivalences. The (cofibration, trivial fibration) factorization is functorial if there is a
functor F : K→ → K and natural transformations α : dom → F and β : F → cod such
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that f = βfαf is the (cofibration, trivial fibration) factorization of f . Here K→ denotes
the category of morphisms in K and dom : K→ → K (cod : K→ → K) assign to each
morphism its (co)domain. The same for (trivial cofibration, fibration) factorization (see
[39]) .

A model category is a complete and cocomplete category together with a model struc-
ture. In a model category K, the classes of weak equivalences, cofibrations and fibrations
will be denoted by W , C and F , resp. Then C0 = C ∩W and F0 = F ∩W denote trivial
cofibrations and trivial fibrations, resp. We have

F0 = C� , F = C�
0 , C = �F0 and C0 = �F

where C� denotes the class of all morphisms having the right lifting property w.r.t. each
morphism from C and �F denotes the class of all morphisms having the left lifting property
w.r.t. each morphism of F . K is called cofibrantly generated if there are sets of morphisms
I and J such that F0 = I� and F = J �. If K is locally presentable then C is the closure
of I under pushouts, transfinite compositions and retracts in comma-categories K ↓ K
and, analogously, C0 is this closure of J .

An object K of a model category K is called cofibrant if the unique morphism 0 → K
from an initial object is a cofibration and K is called fibrant if the unique morphism
K → 1 to a terminal object is a fibration. Let Kc, Kf or Kcf denote the full subcategories
of K consisting of objects which are cofibrant, fibrant or both cofibrant and fibrant resp.
We get the cofibrant replacement functor Rc : K → K and the fibrant replacement functor
Rf : K → K. We will denote by R = RfRc their composition and call it the replacement
functor. The codomain restriction of the replacement functors are Rc : K → Kc, Rf :
K → Kf and R : K → Kcf .

Let K be a model category and K an object of K. Recall that a cylinder object C(K)
for K is given by a (cofibration, weak equivalence) factorization

∇ : K � K
γK−−−→ C(K)

σK−−−→ K

of the codiagonal ∇. Morphisms f, g : K → L are left homotopic if there is a morphism
h : C(K) → L with

f = hγ1K and g = hγ2K

where γ1K = γKi1 and γ2K = γKi2 with i1, i2 : K → K�K being the coproduct injections.
In fact, cylinder objects form a part of the cylinder functor C : K → K and γ1, γ2 : Id → C
are natural transformations.

On Kcf , left homotopy ∼ is an equivalence relation compatible with compositions, it
does not depend on a choice of a cylinder object and we get the quotient

Q : Kcf → Kcf/∼ .

The composition

P : K R−−→ Kcf
Q−−→ Kcf/∼
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is, up to equivalence, the projection of K to the homotopy category Ho(K) = K[W−1]
(see [22]). In what follows, we will often identify Kcf/∼ with Ho(K).

A category K is called λ-accessible, where λ is a regular cardinal, provided that

(1) K has λ-filtered colimits,

(2) K has a set A of λ-presentable objects such that every object
of K is a λ-filtered colimit of objects from A.

Here, an object K of a category K is called λ-presentable if its hom-functor hom(K,−) :
K → Set preserves λ-filtered colimits; Set is the category of sets. A category is called ac-
cessible if it is λ-accessible for some regular cardinal λ. The theory of accessible categories
was created in [33] and for its presentation one can consult [1]. We will need to know
that λ-accessible categories are precisely categories Indλ(A) where A is a small category.
If idempotents split in A then A precisely consists of λ-presentable objects in Ind(A). In
what follows, we will denote by Kλ the full subcategory of K consisting of λ-presentable
objects.

A locally λ-presentable category is defined as a cocomplete λ-accessible category and
it is always complete. Locally λ-presentable categories are precisely categories Indλ(A)
where the category A has λ-small colimits, i.e., colimits of diagrams D : D → A where
D has less then λ morphisms. In general, the category Indλ(A) can be shown to be
the full subcategory of the functor category SetA

op

consisting of λ-filtered colimits H of
hom-functors hom(A,−) with A in A. In the case that A has λ-small colimits this is
equivalent to the fact that H : Aop → Set preserves λ-small limits. More generally, if A
has weak λ-small colimits then Indλ(A) precisely consists of left λ-covering functors (see
[26] 3.2). Let us recall that a weak colimit of a diagram D : D → A is a cocone from D
such that any other cocone from D factorizes through it but not necessarily uniquely. If
X is a category with weak λ-small limits then a functor H : X → Set is left λ-covering
if, for each λ-small diagram D : D → X and its weak limit X, the canonical mapping
H(X) → lim HD is surjective (see [8] for λ = ω). A left λ-covering functor preserves all
λ-small limits which exist in X . Moreover, a functor H : X → Set is left λ-covering iff it
is weakly λ-continuous, i.e., iff it preserves weak λ-small limits. This immediately follows
from [8], Proposition 20 and the fact that surjective mappings in Set split. A functor H
is called weakly continuous if it preserves weak limits. Hence a weakly continuous functor
H : X → Set preserves all existing limits.

A functor F : K → L is called λ-accessible if K and L are λ-accessible categories
and F preserves λ-filtered colimits. An important subclass of λ-accessible functors are
those functors which also preserve λ-presentable objects. In the case that idempotents
split in B, those functors are precisely functors Indλ(G) where G : A → B is a functor.
The uniformization theorem of Makkai and Paré says that for each λ-accessible functor
F there are arbitrarily large regular cardinals µ such that F is µ-accessible and preserves
µ-presentable objects (see [1] 2.19). In fact, one can take λ � µ where � is the set theoret-
ical relation between regular cardinals corresponding to the fact that every λ-accessible
category is µ-accessible (in contrast to [1] and [33], we accept λ�λ). For every λ there are
arbitrarily large regular cardinals µ such that λ � µ. For instance, ω � µ for every regular
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cardinal µ.

3. Combinatorial model categories

We will follow J. H. Smith and call a model category K λ-combinatorial if K is locally
λ-presentable and both cofibrations and trivial cofibrations are cofibrantly generated by
sets I and J resp. of morphisms having λ-presentable domains and codomains. Then
both trivial fibrations and fibrations are closed in K→ under λ-filtered colimits. K will be
called combinatorial if it is λ-combinatorial for some regular cardinal λ.

The following result is due to J. H. Smith and is presented in [12], 7.1 and 7.2. We
just add a little bit more detail to the proof.

3.1. Proposition. [Smith] Let K be a combinatorial model category. Then the functors
K→ → K giving (cofibration, trivial fibration) and (trivial cofibration, fibration) factor-
izations are accessible.

Proof. This means that there is a regular cardinal λ such that K (and hence K→ are
locally λ-presentable and the (cofibration, trivial fibration) factorization A → C → B
of a morphism A → B preserves λ-filtered colimits; the same for the (trivial cofibration,
fibration) factorization. There is a regular cardinal λ such that K is locally λ-presentable
and domains and codomains of morphisms from the generating set I of cofibrations are
λ-presentable. For every morphism f : A → B form a colimit F0f of the diagram

A

X

u

��

h
�� Y

consisting of all spans (u, h) with h : X → Y in I such that there is v : Y → B with
vh = fu. Let α0f : A → F0f denote the component of the colimit cocone (the other
components are Y → F0f and they make all squares

A
α0f �� F0f

X

u

��

h
�� Y

��

to commute). Let β0f : F0f → B be the morphism induced by f and v’s. Then F0 :
K→ → K is clearly λ-accessible. Let Fif, αif and βif , i ≤ λ, be given by the following
transfinite induction: Fi+1f = F0βif , αi+1,f = α0,βif

αif , βi+1,f = β0,βif
and the limit step

is given by taking colimits. Then all functors Fi : K→ → K, i ≤ λ are λ-accessible and
Fλ yields the desired (cofibration, trivial fibration) factorization.
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3.2. Remark. Following the uniformization theorem ([1] Remark 2.19), there is a regular
cardinal µ such that the functors from 3.1 are µ-accessible and preserve µ-presentable
objects. This means that the factorizations A → C → B of a morphism A → B have C
µ-presentable whenever A and B are µ-presentable. This point is also well explained in
[12].

3.3. Notation. Let K be a locally presentable model category. Consider the following
conditions

(G1
λ) the functor F : K→ → K giving the (cofibration, trivial fibration) factorization is

λ-accessible and preserves λ-presentable objects,

(G2
λ) the replacement functor R : K → K (being the composition R = RfRc of the

cofibrant and the fibrant replacement functors) is λ-accessible and preserves λ-
presentable objects, and

(G3
λ) weak equivalences are closed under λ-filtered colimits in K→.

3.4. Remark. (1) (G1
λ) implies that the functor Rc is λ-accessible and preserves

λ-presentable objects. Thus (G2
λ) only adds that Rf is λ-accessible and preserves

λ-presentable objects. (G1
λ) also implies

(G4
λ) the cylinder functor C : K → K is λ-accessible and preserves λ-presentable objects.

(2) Following [1] 2.11 and 2.20, if K satisfies (Gi
λ) and λ � µ then K satisfies (Gi

µ) for
i = 1, 2, 3, 4. In particular, if K satisfies (Gi

ω) then it satisfies (Gi
λ) for any regular cardinal

λ (see [1] 2.13 (1)).

3.5. Proposition. Let K be a combinatorial model category. Then there is a regular
cardinal λ such that K satisfies the conditions (Gi

λ) for i = 1, 2, 3.

Proof. Let K be a combinatorial model category. It immediately follows from 3.4 that
there are arbitrarily large regular cardinals λ such that the conditions (G1

λ) and (G2
λ) are

satisfied. Following [12] 7.3, there is λ such that (G3
λ) holds. This proves the theorem.

Combinatorial model categories form a very broad class. We will discuss the conditions
(Gi

λ) in a couple of examples.

3.6. Examples. (i) The model category SSet of simplicial sets is ω-combinatorial and
satisfies (G1

ω), (G2
ω1

) and (G3
ω). The first and the third statements are clear and the second

one follows from the fact that finitely presentable simplicial sets have ω1-presentable
fibrant replacements. This observation can be found in [27], Section 5, as well.

The same is true for the model category SSet∗ of pointed simplicial sets.
(ii) The category Sp of spectra with the strict model category structure (in the sense

of [5]) is ω-combinatorial (see [40] A.3). We will show that it satisfies the conditions
(G1

ω1
), (G2

ω1
) and (G3

ω).
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Let us recall that a spectrum X is a sequence (Xn)∞n=0 of pointed simplicial sets
equipped with morphisms σX

n : ΣXn → Xn+1 where Σ is the suspension functor. This
means that ΣXn = S1 ∧Xn where S1 ∧− is the smash product functor, i.e., a left adjoint
to

−S1

= hom(S1,−) : SSet∗ → SSet∗.

A spectrum X is ω1-presentable iff all Xn, n ≥ 0, are ω1-presentable in SSet∗. The strict
model structure on Sp has level equivalences as weak equivalences and level fibrations
as fibrations. This means that f : X → Y is a weak equivalence (fibration) iff all
fn : Xn → Yn are weak equivalences (fibrations) in SSet∗. A morphism f : X → Y is a
(trivial) cofibration iff f0 : X0 → Y0 is a (trivial) cofibration and all induced morphisms
tn : Zn → Yn, n ≥ 1, from pushouts are (trivial) cofibrations

ΣXn−1

σX
n−1 ��

Σfn−1

��

Xn

��
fn

���
��

��
��

��
��

��
��

�

ΣYn−1
��

σY
n−1 ���������������������� Zn

tn

����
��

��
��

��

Yn

(see [5], [25] or [23]). Then a (cofibration, trivial fibration) factorization X
g−−→ Z

h−−→ Y
of a morphism f : X → Y is made as follows.

One starts with a (cofibration, trivial fibration) factorization

f0 : X0
g0−−→ Z0

h0−−→ Y0

in SSet∗. Then one takes a (cofibration, trivial fibration) factorization

t : Z ′
1

u−−→ Z1
h1−−→ Y1

of the induced morphism from a pushout

ΣX0

σX
0 ��

Σg0

��

X1

q

��
f1

���
��

��
��

��
��

��
��

�

ΣZ0
p ��

σY
0 ·Σh0

���������������������� Z ′
1

t

����
��

��
��

��

Y1

and puts σZ
1 = up and g1 = uq. This yields

f1 : X1
g1−−→ Z1

h1−−→ Y1
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and one continues the procedure. Analogously, one constructs a (trivial cofibration, fibra-
tion) factorization. It is now easy to see that the strict model structure on Sp satisfies
(G1

ω1
) and (G2

ω1
). (G3

ω) is follows from (i).
(iii) The model category Sp of spectra with the stable Bousfield-Friedlander model

category structure (see [5]) is ω-combinatorial (see [40] A.3). We will show that it satisfies
the conditions (G1

ω1
), (G2

ω1
) and (G3

ω) too.
The stable model structure is defined as a Bousfield localization of the strict model

structure, i.e., by adding a set of new weak equivalences. Cofibrations and trivial fibra-
tions remain unchanged, which means that the condition (G1

ω1
) is satisfied following (ii).

Weak equivalences are closed under filtered colimits in Sp→, which follows from their
characterization (see, e.g., [25] 4.2.2). Stably fibrant spectra are those strictly fibrant
spectra X for which the adjoint transposes σ̃X

h : Xn → XS1

n+1 of structure morphisms are
weak equivalences. For checking the condition (G2

ω1
), it suffices to show that the stable

fibrant replacement functor Rf preserves ω1-presentable objects. But this follows from [5]
or [23]: consider the functor

Θ : Sp → Sp

such that
(ΘX)n = XS1

n+1

and
σΘX

n = (σ̃X
n )S1

.

Let Θ∞X be a colimit of the chain

X
ιX−−→ ΘX

ΘιX−−−→ Θ2X → . . .

where ιXn = σ̃X
n : Xn → XS1

n+1. Then Θ∞ is stably fibrant (see [23] 4.6). Then a stable
fibrant replacement of X is defined by a (cofibrant, trivial fibrant) factorization of ι∞X

X −→ RfX −→ Θ∞X .

It is easy to see that RfX is ω1-presentable whenever X is ω1-presentable.

4. Weak colimits

There is well known that the homotopy category of any model category K has products,
coproducts, weak limits and weak colimits. We will recall their constructions.

4.1. Remark. (i) Let Ki, i ∈ I be a set of objects of K. Without any loss of generality,
we may assume that they are in Kcf . Then their product in K

pi : K → Ki

is fibrant and let
qK : RcK → K
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be its cofibrant replacement. Then RcK ∈ Kcf and

Q(piqK) : QRcK → QKi

is a product in Ho(K). Recall that Q : Kcf → Ho(K) = Kcf/∼ is the quotient functor.
In fact, consider morphisms

Qfi : QL → QKi , i ∈ I

in Kcf/∼. Let f : L → K be the induced morphism and g : L → RcK be given by the
lifting property:

0 ��

��

RcK

qK

��
L

g

���
�

�
�

�
�

f
�� K

We have Q(piqKg) = Qfi for each i ∈ I. The unicity of g follows from the facts that
QqK is an isomorphism and that left homotopies hi from pif to pif

′, i ∈ I, lift to the left
homotopy from f to f ′.

Since Kop is a model category and

Ho(Kop) = (Ho(K))op ,

Ho(K) has coproducts.

(ii) In order to show that Ho(K) has weak colimits, it suffices to prove that it has weak
pushouts. In fact, a weak coequalizer

A
f ��
g

�� B
h �� D

is given by a weak pushout

B
h �� D

A � B

(f,idB)

��

(g,idB)
�� B

h

��

and weak colimits are constructed using coproducts and weak coequalizers in the same
way as colimits are constructed by coproducts and coequalizers.

Let

B

A

f

��

g
�� D
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be a diagram in K. Consider a pushout

B1
g �� E

A

f1

��

g1

�� D1

f

��

in K where f = f2f1 and g = g2g1 are (cofibration, trivial fibration) factorizations. Then

PB1
Pg �� PE

PA

Pf1

��

Pg1

�� PD

Pf

��

is a weak pushout in Ho(K) which is called the homotopy pushout of the starting diagram.
Recall that P : K → Ho(K) is the canonical functor.

Following [9], we will call the resulting weak colimits in Ho(K) standard. By duality,
Ho(K) has weak limits.

(iii) Consider a diagram D : D → K, its colimit (δ̄d : Dd → K) and (δd : Dd → K)
such that (Pδd : PDd → PK) is a standard weak colimit of PD. There is the comparison
morphism p : K → K such that P (k)δd = P (δd) for each d ∈ D. It suffices to find this
morphism for a pushout diagram

B
g′ �� E

A

f

��

g
�� D

f ′

��

But it is given by pg = g′f2 and pf = f ′g2; we use the notation from (ii).

(iv) There is another construction of weak pushouts in Ho(K). Consider

B

A

f

��

g
�� D
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in Kcf . Form the double mapping cylinder of f, g, i.e., the colimit

B
g �� E

A

f

��

γ1A �� C(A)

t

		��������

A

γ2A

��

g
�� D

f

��

of the diagram

B

A

f

��

γ1A �� C(A)

A

γ2A

��

g
�� D

where C(A) is the cylinder object. Then

QB
Pg �� PE

QA

Qf

��

Qg
�� QD

Pf

��

is a weak pushout in Ho(K) (cf. [28]).

We will show that homotopy pushouts and double mapping cylinders are naturally
weakly equivalent in SSet. The double mapping cylinder is given by the pushouts

B
jf �� E1

g2 �� E

A

f

��

γ1A

�� C(A)

f ′
��

A

γ2A

��

g
�� D

f

��

The left (square) pushout is called the mapping cylinder of f . Since γ1A is a trivial
cofibration, jf is a trivial cofibration too. Since fσAγ1A = f , there is a unique morphism



GENERALIZED BROWN REPRESENTABILITY IN HOMOTOPY CATEGORIES 463

qf : E1 → B with qfjf = idB and qff
′ = fσA. Thus qf is a weak equivalence. Since, in

SSet, f ′γ2A is a cofibration,

qf (f
′γ2A) = fσAγ2A = f

is a (cofibration, weak equivalence) factorization of f . Hence, following [20] 13.3.4 and
13.3.8, the right (rectangle) pushout is naturally weakly equivalent to the homotopy
pushout of f and g.

(v) Another, and very important, colimit construction in model categories are homo-
topy colimits (see, e.g., [6], [13], [20]). Both coproducts and homotopy pushouts described
above are instances of this concept. While weak colimits correspond to homotopy commu-
tative diagrams, homotopy colimits corrspond to homotopy coherent ones. So, one cannot
expect that homotopy colimits are weak colimits. There is a construction of homotopy
colimits using coproducts and homotopy pushouts which is presented in [32] 5.1.1 in the
context of Segal categories. It extends the usual construction to higher homotopies and
witnesses the fact that homotopy colimits are weak colimits. There is always a morphism
wcolim D → hocolim D from the standard weak colimit to the homotopy colimit for each
diagram D : D → K.

Homotopy colimits tend to have homotopy cofinality properties. For example, if D has
a terminal object d∗ then the natural morphism Dd∗ → hocolim D is a weak equivalence
(see [20] 19.6.8(1) or [6] 3.1(iii)). We will show that standard weak colimits have this
property in each model category K. As the author knows, this is a new result which will
be used to prove the Brown representability property for morphisms (see Theorem 5.7).
It also has an impact to a relation between homotopy filtered colimits and homotopy
colimits (see Remark 4.4).

4.2. Proposition. Let K be a model category, P : K → Ho(K) the canonical functor, D a
small category having a terminal object d∗, D : D → Kc a functor and (Pδd : PDd → PK)
the standard weak colimit of PD. Then δd∗ is a weak equivalence.

Proof. Consider the construction of K using coproducts and weak coequalizers

Dd

ue

��

vd



�������������

∐
e:d→d′

Dd
f ��

g
��
∐
d

Dd h �� K

Dd

ue

��

De
�� Dd′

vd′

��

where ue : Dd → C, e : d → d′ in D and vd : Dd →
∐
d

Dd, d in D are coproduct injections

and h is a standard weak coequalizer of f and g.



464 JIŘÍ ROSICKÝ

I. Assume at first that K = SSet. This means that h is given by the double mapping
cylinder (see 4.1 (iv))

B
h �� K

A � B

(f,idB)

��

γ1,A�B �� C(A � B)

t

���������������

A � B

γ2,A�B

��

(g,idB)
�� B

h′

��

where A =
∐
e

Dd and B =
∐
d

Dd. We have δd = hvd for d in D. Since the cylinder functor

C(−) = ∆1×− preserves colimits, we have C(A�B) = C(A)�C(B) and γi,A�B = γiA�γiB

for i = 1, 2. It is easy to see that tC(j2) : C(B) → K is a monomorphism and thus a
cofibration; here

A
j1

��A � B B
j2
��

are coproduct injections. Since σB is a weak equivalence, the morphism w in the pushout
below is a weak equivalence (see [20] 18.1.2):

B
t �� L

C(B)

σB

��

tC(j2)
�� K

w

��

Clearly, L appears as a colimit

B
wh �� L

A � B

(f,idB)

��

γ1,A�idB�� C(A) � B

(wt1,wh)

��������������

A � B

γ2,A�idB

��

(g,idB)
�� B

wh

��

where t = (t1, t2) : C(A)�C(B) → K. Let ed : d → d∗ denote the unique morphism from
d to the terminal object d∗ in D. Since

(Ded)eσAγ1A = (Ded)e = (Ded)df
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and
(Ded)eσAγ2A = (Ded)e =

(
D(ed′e)

)
e
= (Ded)dg ,

we get a unique morphisms p : L → Dd∗ such that pwh = (Ded)d and pwt1 = (Ded)e:d→d′ ·
σA. For the morphism whvd∗ : Dd∗ → L we have p(whvd∗) = idDd∗ . It suffices to find
a left homotopy q : C(L) → L such that qγ1L = idL and qγ2L = (whvd∗)p. In this case,
P (whvd∗p) is an isomorphism and thus wδd∗ = whvd∗ is a weak equivalence. Therefore
δd∗ is a weak equivalence.

We have a colimit

C(B)
C(wh) �� C(L)

C(A) � C(B)

(C(f),idCB)

��

C(γ1,A�id)
�� CC(A) � C(B)

(C(wt1),C(wh))

��																			

C(A) � C(B)

C(γ2,A�id)

��

(C(g),idB)
�� C(B)

C(wh)

��

The desired morphism q : C(L) → L will be uniquely determined by the composition
q = qC(wt1) : CC(A) → L, i.e., by the morphisms

qe = qCC(ue) : CC(Dd) → L

where e : d → d′ is in D. The simplicial set CC(Dd) = ∆1 × ∆1 × Dd has points
(ik, x) where i, k = 0, 1 and x is a point of Dd. Then qe(0k, x) = wh(x) and qe(1k, x) =
whvd∗D(ed)(x). Edges (= 1-simplices) of ∆1 ×∆1 ×Dd are (s1, s) where s1 is an edge of
∆1 × ∆1 and s is an edge of Dd. Now,

qe(s1, s) =




wh(s) for s1 = (00, 01)

whvd∗D(ed)(s) for s1 = (10, 11)

wt1C(ued
)(s) otherwise.

Recall that ∆1 × ∆1 has the following edges

10 �� 11

00

��

��

��











01

��

Analogously, we define qe on n-simplices for n > 1.
II. Assume now that K is the functor category SSetX (where X is a small category) with
the Bousfield-Kan model category structure. This means that (trivial) cofibrations in K
are generated by FX(C)

(
FX(C0)

)
where

FX : SSet → K
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is left adjoint to the evaluation evX : K → SSet at X ∈ X (i.e., evX(A) = A(X)). Hence
any generating cofibration FX(f), f : K → L is a pointwise cofibration because

(
FX(f)

)
Y

=
∐

X (X,Y )

f :
∐

X (X,Y )

K →
∐

X (X,Y )

L .

Since the evaluation functors evX preserves colimits, every cofibration ϕ in K is a pointwise
cofibration (i.e., ϕX , X ∈ X are cofibrations). Since homotopy pushouts are homotopy
invariant in SSet (see [20] 13.3.4), they do not depend on a choice of a (cofibration, trivial
fibration) factorization. Consequently, the homotopy pushouts, and thus the standard
weak colimits, in K are pointwise in the sense that

(
δX : (Dd)(X) → K(X)

)
is a standard

weak colimit for each X ∈ X provided that (δ : Dd → K) is a standard weak colimit
in K. Since weak equivalences in K are precisely pointwise weak equivalences, the claim
follows from I.

III. Let K be an arbitrary model category. Following [11], there is a left Quillen functor
H : SSetD

op → K such that HY = D where Y : D → SSetD
op

is given by taking
the discrete simplicial presheaves. Since H is left Quillen, it preserves colimits, (trivial)
cofibrations and weak equivalences between cofibrant objects (see [22]). Since discrete
simplicial presheaves are cofibrant, H preserves the standard weak colimit (δd : Y Dd →
K)d of Y D : D → SSetD

op

. Since cofibrant objects are closed under coproducts and
homotopy pushouts, K is cofibrant. Hence H(δd∗) is a weak equivalence, which proves
the claim.

4.3. Proposition. Let K be a locally λ-presentable model category satisfying the condi-
tions (G1

λ) and (G3
λ). Let D : D → Kc a λ-filtered diagram where cardD ≥ λ. Then the

comparison morphism from 4.1(iii) is a weak equivalence.

Proof. Since D is λ-filtered and cardD ≥ λ, D is a λ-directed union of subcategories E
such that card E < λ and E has a terminal object dE . Let DE : E → Kc be the domain
restriction of D. Following 4.2 the comparison morphism pE : KE → KE for DE is a weak
equivalence for each E (because pE = δdE in this case). Following (G1

λ), the formation of
homotopy pushouts preserves λ-filtered colimits. Therefore K = colim

E
KE and, of course,

K = colim
E

KE . Consequently, p = colim
E

pE and, following (G3
λ), p is a weak equivalence.

4.4. Remark. (1) We have not needed the full strength of (G1
λ) – it suffices to assume

that F is λ-accessible.

(2) Under (G3
λ), homotopy λ-filtered colimits are the same as λ-filtered colimits (in the

sense that the comparison morphism from 4.1 (v) is a weak equivalence), see, e.g., [12], the
proof of 4.7. The consequence is that, in locally λ-presentable model categories satisfying
(G1

λ) and (G3
λ), standard weak λ-filtered colimits and homotopy λ-filtered colimits of

diagrams D : D → K with cardD ≥ λ coincide.
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5. Brown model categories

Given a small, full subcategory A of a category K, the canonical functor

EA : K → SetA
op

assigns to each object K the restriction

EAK = hom(−, K)
/
Aop

of its hom-functor hom(−, K) : Kop → Set to Aop (see [1] 1.25). This functor is (a) A-full
and (b) A-faithful in the sense that

(a) for every f : EAA → EAK with A in A there is f ′ : A → K
such that EAf ′ = f and

(b) EAf = EAg for f, g : A → K with A in A implies f = g.
Let K be a locally λ-presentable model category and denote by Ho(Kλ) the full subcate-
gory P (Kλ) of Ho(K) consisting of P -images of λ-presentable objects in K in the canonical
functor P : K → Ho(K). Let Eλ denote the canonical functor EHo(Kλ).

5.1. Proposition. Let K be a locally λ-presentable model category satisfying the condi-
tions (G2

λ) and (G4
λ). Then the composition

EλP : K → SetHo(Kλ)op

preserves λ-filtered colimits.

Proof. Consider a λ-filtered diagram D : D → K and its colimit (kd : Dd → K) in
K. Since R preserves λ-filtered colimits, (Rkd : RDd → RK) is a λ-filtered colimit. Let
X ∈ Kλ and f : PX → PK be a morphism in Ho(K). Then f = Qf for f : RX → RK
and, since R preserves λ-presentable objects, RX is λ-presentable in K. Thus f = R(kd)g
for some g : RX → RDd, d ∈ D.

Assume that Q
(
R(kd)g1

)
= Q

(
R(kd)g2

)
for g1, g2 : RX → RDd. Then R(kd)g1 and

R(kd)g2 are homotopy equivalent and thus R(kd)gi = hγiR(X) for i = 1, 2. Since CRX

is λ-presentable as well, there is e : d → d′ in D and h : CRX → RDd′ such that
R(kd′)h = h and hγiR(X) = RD(e)gi. Therefore Q

(
RD(e)g1

)
= Q

(
RD(e)g2

)
. We have

proved that

(
hom(PX,P (kd)) : hom(PX,PDd) → hom(PX,PK)

)
d∈D

is a λ-filtered colimit in Set. Consequently,

(
EλP (kd) : EλPDd → EλPK

)

is a λ-filtered colimit in SetHo(Kλ)op .
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Let Pλ : Kλ → Ho(Kλ) denote the domain and codomain restriction of the canonical
functor P : K → Ho(K). We get the induced functor

Indλ Pλ : K = Indλ Kλ → Indλ Ho(Kλ) .

5.2. Corollary. Let K be a locally λ-presentable model category satisfying the conditions
(G2

λ) and (G4
λ). Then EλP ∼= Indλ Pλ.

Remark.This means that Eλ factorizes through the inclusion

Indλ Ho(Kλ) ⊆ SetHo(Kλ)op

and that the codomain restriction of Eλ, which we denote Eλ as well, makes the compo-
sition EλP isomorphic to Indλ Pλ.

Proof. Since both EλP and Indλ Pλ have the same domain restriction on Kλ, the result
follows from 5.1.

For λ < µ we get a unique functor

Fλµ : Indµ(Ho(Kµ)) → Indλ(Ho(Kλ))

which preserves µ-filtered colimits and whose domain restriction on Ho(Kµ) coincides with
that of Eλ.

5.3. Corollary. Let K be a locally λ-presentable model category satisfying the conditions
(G2

µ) and (G4
µ) for a regular cardinal λ < µ. Then FλµEµ

∼= Eλ.

Proof. Following 5.2, we have Eµ
∼= Indµ(Pµ) and thus the functors FλµEµP ∼=

Fλµ Indµ(Pµ) and EλP have the isomorphic domain restrictions on Kµ. We will show that
the functor EλP preserves µ-filtered colimits. Since Fλµ Indµ(Pµ) has the same property,
we will obtain that FλµEµP ∼= EλP and thus FλµEµ

∼= Eλ.

The functor EλP preserves µ-filtered colimits iff for every object A in Kλ the functor

hom(PA,P−) : K → Set

preserves µ-filtered colimits. Since Kλ ⊆ Kµ, this follows from 5.1.

5.4. Theorem. Let K be a locally λ-presentable model category satisfying the conditions
(G1

λ), (G2
λ) and (G4

λ). Then the functor

Eλ : Ho(K) → Indλ Ho(Kλ)

is essentially surjective on objects.
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Proof. Consider X in Indλ Ho(Kλ) and express it as a canonical λ-filtered colimit (δd :
Dd → X) of objects from Ho(Kλ). This means that D = Ho(Kλ) ↓ X and D : Ho(Kλ) ↓
X → Ho(Kλ) is the projection. Since Eλ is Ho(Kλ)-full and faithful, D lifts along Eλ,
i.e., D = EλD for D : D → Ho(K). Let (δd : Dd → K) be a standard weak colimit of
D. Moreover, D is the canonical diagram of K w.r.t. Ho(Kλ). There is K in Kcf such

that PK = K. Let D : D = Kλ ↓ K → Kλ be the canonical diagrams of K w.r.t. Kλ

and P : D → D the functor induced by P : K → Ho(K), i.e., P (f) = P (f) for each
f : A → K, A ∈ Kλ. Since R preserves λ-presentable objects, P is surjective on objects.

We will show that P is essentially full in the sense that for every h : f → g in D there
is h : f → g in D such that there is a commutative triangle

f = P f
h ��

P h
��������������

g

P g

v

��

for some isomorphism v in D. Indeed, we have a homotopy commutative triangle

A

∼

f ��

h′

��

K

B

g′

��������������

where f = P (f), g = P (g′), h = P (h′) and A,B ∈ Kλ ∩ Kcf . Let

A
h−−→ Z

v−−→ B

be the (cofibration, trivial fibration) factorization of h′. Following (G1
λ), we have Z ∈

Kλ ∩ Kcf . Since g′vh∼f and A,B,K ∈ Kcf , there is g : Z → K such that g∼g′v and
gh = f . Here, we use the homotopy extension property of cofibrations ([23] 7.3.12 (1))
and the fact that right and left homotopy coincide on Kcf ([22]). Thus h : f → g is in D,
v = P (v) is an isomorphism and

vP (h) = P (v h) = P (h′) = h .

Since P is essentially full and surjective on objects, it is essentially cofinal in the sense
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that, given h1 : f → Pg1 and h2 : f → Pg2, there is a commutative diagram

f = P f
h1 ��

P (h1)

��������������������

P (h2)

���
��

��
��

��
��

��
��

��

h2

��

Pg1

v−1
1

��

P (g1)

P (u1)
��

P (g2)
v−1
2

�� P (g2) P (u2)

�� P (g)

The existence of morphisms u1 and u2 follows from D being λ-filtered. Consequently,
following 5.2,

EλPK ∼= (Indλ Pλ)(K) = colim Y PD = colim Y D P

∼= colim Y D = colim EλD = colim D = X .

5.5. Definition. A locally λ-presentable model category K will be called λ-Brown on ob-
jects, where λ is a regular cardinal, provided that the codomain restriction Eλ : Ho(K) →
Indλ(Ho(Kλ)) of Eλ is essentially surjective on objects.

K will be called λ-Brown on morphisms provided that Eλ : Ho(K) → Indλ(Ho(Kλ))
is full.

K will be called λ-Brown when it is both λ-Brown on objects and on morphisms. It
will be called Brown if it is λ-Brown for some regular cardinal λ.

5.6. Remark. (i) Theorem 5.4 says that, under (G1
λ), (G2

λ) and (G4
λ), a locally λ-

presentable model category K is λ-Brown on objects. To get an analogous result for
K being λ-Brown on morphisms, we will use the Proposition 4.3. Probably, there is an
alternative way of using [12] to get that each object of Ho(K) is a canonical homotopy
λ-filtered colimit of objects from Ho(Kλ). Moreover, since λ is large enough to make
the canonical diagram to contain all information about higher homotopies, the canonical
λ-filtered colimits are weak colimits (cf. [12]).

(ii) Whenever a compactly generated triangulated category is ω-Brown on morphisms
then it is ω-Brown on objects (see [4], 11.8). In our setting, we have such a result provided
that K is a locally finitely presentable model category satisfying the conditions (G2

ω) and
(G4

ω). Then, by 5.2, we have EωP ∼= Indω Pω. Now, if K is ω-Brown on morphisms then
the functor Indω Pω is full. Since each object of Indω(Kω) can be obtained by iterative
taking of colimits of smooth chains (see [1]) and Pω is essentially surjective on objects,
Indω Pω is essentially surjective on objects as well. Hence K is ω-Brown on objects. This
argument does not work for λ > ω because, in the proof, we need colimits of chains of
cofinality ω. Thus, due to the condition (G2

ω), this result is of a limited importance.
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5.7. Theorem. Let K be a locally λ-presentable model category satisfying the conditions
(G1

λ), (G2
λ) and (G3

λ). Then the functor

Eλ : Ho(K) → Indλ(Ho(Kλ))

is full, i.e., K is λ-Brown on morphisms.

Proof. Consider a morphism f : EλPK → EλPL and express K as a λ-filtered colimit
(δd : Dd → K), D : D → Kλ of λ-presentable objects. Since Eλ is Ho(Kλ)-full, we may
assume that K is not λ-presentable, i.e., that cardD ≥ λ. Let (δd : PDd → PK) be a
standard weak colimit of PD. Following 4.3, we may assume that PK = PK and P (δd) =
δd for each d in D. Following 5.1, (Eλδd : EλPDd → EλPK) is a λ-filtered colimit. Since
Eλ is Ho(Kλ)-full and faithful, there is a compatible cocone (fd : PDd → PL)d∈D such
that Eλ(fd) = fEλ(δd) for each d ∈ D. Since (δd : PDd → PK) is a weak colimit, there
is g : PK → PL with gδd = fd for each d ∈ D. Hence

Eλ(g)Eλ(δd) = Eλ(fd) = fEλ(δd)

for each d ∈ D and thus Eλ(g) = f .

5.8. Corollary. Let K be a locally λ-presentable model category satisfying the conditions
(G1

λ), (G2
λ) and (G3

λ). Then K is λ-Brown.

5.9. Corollary. Every combinatorial model category is Brown.

5.10. Corollary. The model categories SSet and Sp (with the stable model structure)
are ω1-Brown.

Proof. It follows from 5.8 and 3.6.

5.11. Remark. (1) In fact, both SSet and Sp are λ-Brown for every ω1 � λ. We do not
know whether SSet is ω-Brown (see the Introduction). Following [2], Sp is also ω-Brown.

(2) If K is a locally finitely presentable model category such that Ho(K) is a stable
homotopy category in the sense of [24] then K is ω-Brown in our sense iff Ho(K) is Brown
in the sense of [24].

(3) Let K be a λ-Brown model category and D : D → Ho(Kλ) be a λ-filtered diagram.
Let (kd : EλDd → K)d∈D be a colimit of EλD in Indλ Ho(Kλ)). Since K is λ-Brown, we
have K = EλK and kd = Eλkd for each d ∈ D. Since Eλ is Ho(Kλ)-faithful, (kd : Dd → K)
is a cone in Ho(K). Let ld : Dd → L be another cone. There is a unique t : K → EλL such
that tkd = Eλld for each d ∈ D. Since K is λ-Brown, we have t = Eλt where t : K → L.
Since Eλ is Ho(Kλ)-faithful, tkd = ld for each d ∈ D. Hence kd : Dd → K is a weak
colimit. We will call this weak colimit minimal.

Every object of Ho(K) is a minimal λ-filtered colimit of objects from Ho(Kλ).
(4) K being λ-Brown can be viewed as a weak λ-accessibility of Ho(K) because Ho(K)

is λ-accessible with Ho(K)λ = Ho(Kλ) iff Eλ : Ho(K) → Indλ(Ho(Kλ)) is an equivalence.
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5.12. Definition. Let K be a model category. Morphisms f, g : K → L in Ho(K) will
be called λ-phantom equivalent if Eλf = Eλg.

This means that f, g : K → L are λ-phantom equivalent iff fh = gh for each morphism
h : A → K with A ∈ Ho(Kλ).

5.13. Proposition. Let K be a λ-Brown model category. Then for each object K in
Ho(K) there exists a weakly initial λ-phantom equivalent pair f, g : K → L.

Proof. Express K as a minimal weak λ-filtered colimit (kd : Dd → K)d∈D of objects
from Ho(Kλ), take the induced morphism p :

∐
d∈D

Dd → K and its weak cokernel pair f, g

∐
Dd

p �� K
f ��
g

�� L .

Since the starting weak colimit is minimal, Eλp is an epimorphism in Indλ(Ho(Kλ)). Thus
f and g are λ-phantom equivalent.

Let f ′, g′ : K → L′ be a λ-phantom equivalent. Then f ′p = g′p and thus the pair f ′,
g′ factorizes through f , g. Thus f , g is a weakly initial λ-phantom equivalent pair.

5.14. Examples. We will show that the homotopy categories

Ho(SSetn)

are finitely accessible for each n = 1, 2, . . . , i.e., that Eω is an equivalence in this case.
Recall that SSetn = Set∆n where ∆n is the category of ordinals {1, 2, . . . , n}. The
model category structure is the truncation of that on simplicial sets, i.e., cofibrations are
monomorphisms and trivial cofibrations are generated by the horn inclusions

jm : ∆k
m → ∆m 0 < k ≤ m ≤ n.

Here, ∆m = Yn(m + 1) where Yn : ∆n → SSetn is the Yoneda embedding for m < n and
∆n is Yn(n + 1) without the (n + 1)-dimensional simplex {0, 1, . . . , n}.

For example SSet1 = Set and trivial cofibrations are generated by j1 : 1 → 2. Then
weak equivalences are precisely mappings between non-empty sets and Ho(SSet1) is the
category 2; all non-empty sets are weakly equivalent. SSet2 is the category of oriented
multigraphs with loops. Trivial cofibrations are generated by the embedding j1 of

•0

to

0• �� • 1
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(degenerated loops are not depicted), by the embedding j2 of

•1

0•

��

���
��

��
��

�

•2

to

•1

��

0•

��

���
��

��
��

�

•2
and their orientation variants. This makes all connected multigraphs weakly equivalent
and Ho(SSet2) is equivalent to Set; the cardinality of a set corresponds to the number
of connected components.

In the case of SSet3, 1-connected objects cease to be weakly equivalent and their
contribution to Ho(SSet3) are trees (with a single root) of height ≤ 2. For example,

•

•

•

• •

•

�������

�������

correspond to

• • ��
• ��• ��

(degenerated loops are not depicted). Therefore Ho(SSet3) is equivalent to the category
of forests of height ≤ 2. Analogously Ho(SSetn) is equivalent to the category of forests
of height ≤ n. Hence it is finitely accessible.

Let us add that SSet2 is a natural model category of oriented multigraphs with loops
(cf. [31]) and that the symmetric variants SetFop

n , where Fn is the category of cardinals
{1, . . . , n}, are Quillen equivalent to SSetn and left-determined by monomorphisms in
the sense of [39].
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6. Strongly Brown model categories

6.1. Proposition. Let K be a locally λ-presentable model category satisfying the condi-
tions (G2

µ) and (G4
µ) for a regular cardinal λ < µ. Then Eµ reflects isomorphisms provided

that Eλ reflects isomorphisms.

Proof. It follows from 5.3.

6.2. Definition. A λ-Brown model category K will be called strongly λ-Brown if, in
addition, Eλ also reflects isomorphisms.

K will be called strongly Brown if it is strongly λ-Brown for some regular cardinal λ.

6.3. Remark. (1) For strongly λ-Brown model categories, any minimal λ-filtered colimit
kd : Dd → K has the property that each endomorphism t : K → K satisfying tkd = kd

for each d ∈ D is an isomorphism. Thus kd : Dd → K is a minimal colimit in the sense of
[24]. Minimal colimits are determined uniquely up to an isomorphism. Another possible
terminology, going back to [19], is a stable weak colimit.

(2) Following [24], 5.8 and 6.1, Sp is strongly λ-Brown for each ω1 � λ. Therefore,
following (3), Ho(Sp) has minimal λ-filtered colimits of objects from Ho(Spλ) for each
ω1 � λ. This is known for λ = ω (see [34] and [24]) and there is still an open problem
whether Ho(Sp) has all minimal filtered colimits.

M. Hovey [22] introduced the concept of a pre-triangulated category (distinct from that
used in [35]) and showed that the homotopy category of every pointed model category
is pre-triangulated in his sense. He calls a pointed model category K stable if Ho(K) is
triangulated. In particular, K is stable provided that Ho(K) is a stable homotopy category
in the sense of [24].

6.4. Proposition. Every combinatorial stable model category is strongly Brown.

Proof. We know that K is Brown (see 5.9) Following [22] 7.3.1, every combinatorial
pointed model category K has a set G of weak generators. Let Σ∗ = {ΣnZ|Z ∈ G, n ∈ Z}.
Following [35] 6.2.9, there is a regular cardinal λ such that Eλ reflects isomorphisms.

6.5. Proposition. Let K be a strongly λ-Brown model category. Then the functor Eλ :
Ho(K) → Indλ(Ho(Kλ)) preserves (existing) λ-filtered colimits of objects from Ho(Kλ).

Proof. Let D : D → Ho(Kλ) be a λ-filtered diagram, (kd : Dd → K) its colimit and
(kd : Dd → K) its minimal colimit. We get morphisms f : K → K and g : K → K such
that fkd = kd and gkd = kd for each d in D. We have gf = idK and Eλ(fg) = idEλK .
Therefore Eλf = (Eλg)−1 and thus f is an isomorphism. Therefore λ-filtered colimits
and minimal λ-filtered colimits of objects from Ho(Kλ) coincide and the latter are sent
by Eλ to λ-filtered colimits.
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6.6. Corollary. Let K be a locally λ-presentable model category. Then Ho(K) is λ-
accessible iff K is strongly λ-Brown and Ho(K) has λ-filtered colimits.

6.7. Remark. If K is a strongly λ-Brown category then the functor Eλ : Ho(K) →
Indλ(Ho(Kλ)) is essentially injective on objects in the sense that EλK ∼= EλL implies
that K ∼= L. This means that the isomorphism classification is the same in Ho(K) and in
Indλ(Ho(Kλ)).

6.8. Theorem. Let K be a locally λ-presentable model category such that Eλ is essentially
injective on objects and (G1

µ), (G2
µ) and (G4

µ) hold for some λ � µ. Then every weakly
continuous functor H : Ho(K)op → Set is representable.

Proof. Let H : Ho(K)op → Set be weakly continuous. Then each domain restriction
Hα : Ho(Kα)op → Set is left α-covering. Following 3.4 and 5.4, Eα is essentially surjective
on objects for each µ � α. Thus, for each µ � α, we have Aα in Ho(K) such that Hα

∼=
hom(−, Aα). Therefore, following 5.3, we have

Eµ(Aα) ∼= FµαEα(Aα) ∼= Fµα(Hα) ∼= Hµ
∼= Eµ(Aµ).

Since Eλ is essentially injective on objects, Eµ has the same property (following 5.3) and
thus Aα

∼= Aµ for each µ � α. This implies that H ∼= hom(−, Aµ).

6.9. Remark. The property that every weakly continuous functor H : Ho(K)op → Set
is representable is called the Brown representability for cohomology, while the property
that every left covering functor H : Ho(Kω)op → Set is representable is called the Brown
representability for homology, see [10]. The consequence of 6.8 is that, for every strongly
Brown model category K, Ho(K) satisfies the Brown representability for cohomology. This
also follows from [21] 1.3.

Brown representability theorems for cohomology for triangulated categories are con-
sidered in [16], [35] and [29]. A. Neeman [35] introduced the concept of a well generated
triangulated category. These categories naturally generalize compactly generated ones
and they still satisfy the Brown representability for cohomology (see [35] 8.4.2). In [36] he
shows that, for any Grothendieck abelian category K, the derived category D(K) is well
generated. Since D(K) is the homotopy category of the model category of (unbounded)
chain complexes Ch(K) on K and this model category is combinatorial, his result follows
from our 6.10. Neeman’s result was generalized by H. Krause [29] to perfectly generated
triangulated categories; in [30] he compares his perfect generation with the well generation
of Neeman.

6.10. Proposition. Let K be a combinatorial stable model category. Then Ho(K) is well
generated.

Proof. Following [22], Ho(K) has a set A of weak generators. This means that
hom(ΣnA,X) = 0 for all A ∈ A and all n ∈ Z implies that X ∼= 0. Following 3.5 and
3.4 (2), there is a regular cardinal λ such that K is locally λ-presentable and satisfies the
conditions (Gi

λ) for i = 1, 2, 3 and A ⊆ Ho(Kλ).
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We will find a regular cardinal λ � µ such that Ho(Kµ) generates Ho(K) in the sense
of [35] 8.1.1. Since Ho(Kµ) weakly generates Ho(K) it remains to show that Ho(Kµ) is
closed under suspension and desuspension. This is the same as ΣX, ΩX ∈ Kµ for each
X ∈ Kµ. But, since Σ is left adjoint to Ω, this follows from [1] 2.23 and 2.19.

It remains to show that Ho(Kµ) is µ-perfect in the sense of [35] 3.3.1. Recall that,
following 3.4 (2), K satisfies the conditions (Gi

µ) for i = 1, 2, 3, as well. Consider a
morphism f : A →

∐
i∈I

Ki where card I < µ. Without a loss of generality, we may

assume that f = Pf for f : A →
∐
i∈I

Ki; of course, A = PA, Ki = PKi for i ∈ I and

P : K → Ho(K) is the canonical functor. Since K is locally µ-presentable, each K i, i ∈ I,
is a µ-filtered colimit

(ki
j : Aij → Ki)j∈Ji

of µ-presentable objects Aij . Hence all µ-small subcoproducts X =
∐
i∈I

Aiji
are µ-

presentable and
∐
i∈I

Ki is their µ-filtered colimit. Thus f factorizes through some sub-

coproduct X and therefore f factorizes through PX =
∐
i∈I

PAiji
. This yields [35] 3.3.1.2.

If f = 0 then we can assume that f = 0 and, for a factorization

f : A
g−−→ X

h−−→
∐
i∈I

Ki,

there is a subcoproduct morphism u : X → X ′ such that ug = 0 and h′u = h where
h′ : X ′ →

∐
i∈I

Ki. But this is the condition [35] 3.3.1.3. Hence Ho(Kµ) is µ-perfect.

6.11. Proposition. Let K be a locally λ-presentable model category such that Eλ is
essentially injective on objects and (G1

µ), (G2
µ) and (G4

µ) hold for some λ � µ. Then
idempotents split in Ho(K).

Proof. Let f : K → K be an idempotent in Ho(K). Then hom(−, K) is an idempotent in
the category of all small functors (i.e., small colimits of representable functors) Ho(K)op →
Set. Let H : Ho(K)op → Set be its splitting. Then H is weakly continuous and thus it
is representable following 6.8. Its representing object splits f .

6.12. Remark. Since idempotents do not split in Ho(SSet) (see [18], [14]), no Eλ :
Ho(SSet) → Indλ(Kλ)) is essentially injective on objects.
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[15] D. A. Edwards and H. M. Hastings, Čech and Steenrod Homotopy Theories with
Applications to Geometric Topology, Lecture Notes in Math. 542, Springer-Verlag
1976.

[16] J. Franke, On the Brown representability theorem for triangulated categories, Topol-
ogy 40 (2001), 667–680.

[17] P. Freyd, Homotopy is not concrete, Lecture Notes in Math. 168 (1970), 25–34.

[18] P. Freyd and A. Heller, Splitting homotopy idempotents, J. Pure Appl. Alg. 89
(1993), 93–106.

[19] D. Harris, The Wallman compactification as a functor, Gen. Top. Appl. 1 (1971),
273–281.



478 JIŘÍ ROSICKÝ

[20] P. S. Hirschhorn, Model Categories and Their Localizations, Amer. Math. Soc. 2003.

[21] A. Heller, On the representability of homotopy functors, J. London Math. Soc. 23
(1981), 551–562.

[22] M. Hovey, Model Categories, AMS 1999.

[23] M. Hovey, Spectra and symmetric spectra in general model categories, J. Pure Appl.
Alg. 165 (2001), 63–127.

[24] M. Hovey, J. H. Palmieri and N. P. Strickland, Axiomatic Stable Homotopy Theory,
Mem. Amer. Math. Soc. 610 (1997).

[25] M. Hovey, B. Shipley and J. H. Smith, Symmetric spectra, J. Amer. Math. Soc. 13
(2000), 149–208.

[26] H. Hu, Flat functors and free exact completions, J. Austral. Math. Soc. Ser. A, 60
(1996), 143–156.

[27] D. C. Isaksen, Strict model structures for pro-categories, In: Progr. Math. 215,
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