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WEAK DISTRIBUTIVE LAWS

ROSS STREET

Abstract. Distributive laws between monads (triples) were de�ned by Jon Beck in
the 1960s; see [1]. They were generalized to monads in 2-categories and noticed to
be monads in a 2-category of monads; see [2]. Mixed distributive laws are comonads
in the 2-category of monads [3]; if the comonad has a right adjoint monad, the mate
of a mixed distributive law is an ordinary distributive law. Particular cases are the
entwining operators between algebras and coalgebras; for example, see [4]. Motivated
by work on weak entwining operators (see [5] and [6]), we de�ne and study a weak notion
of distributive law for monads. In particular, each weak distributive law determines a
wreath product monad (in the terminology of [7]); this gives an advantage over the
mixed case.

1. Introduction

Distributive laws between monads (triples) were de�ned by Jon Beck [1] in the 1960s.
In [2] they were generalized to monads in 2-categories and were noticed to be monads in
a 2-category of monads. The 2-categories can easily be replaced by bicategories. Mixed
distributive laws are comonads in the bicategory of monads. Entwining structures between
a coalgebra and an algebra were introduced in [8] and [9]. At the level of entwining
structures ψ : C ⊗ A → A ⊗ C between a comonoid C and a monoid A in a monoidal
category C (as in [4] for example), the concept is the same as a mixed distributive law.
On the one hand, the monoidal category C can be regarded as the endohom category of
a one-object bicategory so that C is a comonad and A is a monad in that bicategory,
while ψ is a mixed distributive law. On the other hand, we obtain an ordinary comonad
G = C⊗− and a monad T = A⊗− on the category C, and ψ⊗− is a mixed distributive
law GT → TG.

Any mixed distributive law ψ : GT → TG for which the comonad G has a right
adjoint monad S (which it always does qua profunctor) is the mate [10] of a distributive
law λ : TS → ST between two monads. The advantage of this is that we obtain a
composite monad ST .

With the introduction of weak entwining operators (see [5] and [6]), the subject of the
present paper is naturally to look at the counterpart in terms of comonads and monads.
The weakening here has to do with the compatibility of ψ with the comonad's counit and
monad's unit. The main result is to obtain a new monad S ◦λ T from a weak distributive
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law λ : TS → ST by splitting a certain idempotent κ on the composite ST .
In my talk on weak distributive laws in the Australian Category Seminar on 21 January

2009, I mentioned that there seemed to be two popular uses for the adjective �weak�.
One comes from the literature on higher categories where a �weak 2-category� means a
�bicategory�. I must take some blame for this use because, in [11], it was linked to the use
by Freyd of the term �weak limit� (existence without uniqueness). The other use, which
is the sense intended in this paper, comes from the quantum groups literature: see [12],
[13]. The weakening here is to do with units (identity cells). In the talk, I speculated as
to whether there was a connection between the two uses. Before the end of January, I
had the basic form of this paper typed. A month later Steve Lack, expecting there to be
some connection to my work, drew my attention to the posting [14] by Gabriella Böhm
in which a �weak� version of the EM construction in [7] was developed. Gabriella, Steve
and the author followed this with a sequence of interesting emails. The weak distributive
laws here are a special kind of weak wreath in the sense of [14]; and Theorem 4.1 can
be extracted from Proposition 3.7 of [14]. Finally, however, also in our communications,
the sense in which the two uses of �weak� are related is emerging; publication of this will
undoubtedly follow soon.

2. Weak distributive laws

For any monad T on a category A, we write µ : TT → T and η : 1 → T for the
multiplication and unit.

Let S and T be monads on a category A (however, we could take them to be monads
on an object A of any bicategory).

2.1. Definition. A weak distributive law of T over S is a natural transformation (2-
cell) λ : TS → ST satisfying the following three conditions.

TTS
µS−→ TS

λ−→ ST = TTS
Tλ−→ TST

λT−→ STT
Sµ−→ ST (1)

TSS
Sµ−→ TS

λ−→ ST = TSS
λS−→ STS

Sλ−→ SST
µT−→ ST (2)

ST
ηST−→ TST

λT−→ STT
Sµ−→ ST = ST

STη−→ STS
Sλ−→ SST

µT−→ ST (3)

2.2. Proposition. Equation 3 is equivalent to the following two conditions:

S
ηS−→ TS

λ−→ ST = S
Sηη−→ STS

Sλ−→ SST
µT−→ ST (4)

T
Tη−→ TS

λ−→ ST = T
ηηT−→ TST

λT−→ STT
Sµ−→ ST. (5)

Proof. Given equation 3, we have

µT.Sλ.Sηη = Sµ.λT.ηST.ηS = Sµ.λT.TSη.ηS = Sµ.STη.λ.ηS = λ.ηS.
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This proves equation 4, while equation 5 is dual. Conversely, given the equations of the
Proposition,

Sµ.λT.ηST = Sµ. µTT.SλT.SηηT = µT.SSµ.SλT.SηηT = µT.Sλ.STη.

Recall from [1] that a distributive law of T over S is a 2-cell λ : TS → ST satisfying
equations 1 and 2 and the following two unit conditions:

S
ηS−→ TS

λ−→ ST = S
Sη−→ ST (6)

T
Tη−→ TS

λ−→ ST = T
ηT−→ ST. (7)

These clearly imply equations 4 and 5
We de�ne the endomorphism κ : ST → ST to be either side of equation 3. This is an

identity in the non-weak case.

2.3. Proposition. The endomorphism κ is idempotent and satis�es the following two
conditions:

κ.λ = λ (8)

µµ.SλT.κκ = κ.µµ.SλT. (9)

Proof. While string diagrams are a better way to prove this, here are some equations
(using only monad properties and equations 1 and 2):

κ.κ = Sµ.λT.ηST.Sµ.λT.ηST = Sµ.STµ.λTT.ηSTT.λT.ηST =

Sµ.SµT.λTT.TλT.ηTST.ηST = Sµ.λT. ηST = κ ,

κ.λ = Sµ.λT.ηST.λ = Sµ.λT.Tλ.ηTS = λ.µS.ηTS = λ, and

µµ.SλT.κκ = Sµ.µµT.SλTT.SµSTT.λTλT.ηSTηST =

= Sµ.µµT.SSµTT.SλTTT.STλTT.λTλT.ηSTηST =

Sµ.SµT.λTT.TµTµ.TSλTT.TSTλT.ηSTηST =

Sµ.λT.ηST.µµ.SλT.SµST. STηST = κ.µµ.SλT.

De�ne a multiplication on ST to be the composite

µ =
(
STST

SλT−→ SSTT
µµ−→ ST

)
.

The usual calculation as with a distributive law using equations 1 and 2 shows that this
multiplication is associative. However, in the weak case we do not have a monad ST since
1

ηη−→ ST is not generally a unit.
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Assume the idempotent κ splits in A (or in the category of endomorphisms of A when
we are in a bicategory). We have

κ =
(
ST

υ−→ K
ι−→ ST

)
and

(
K

ι−→ ST
υ−→ K

)
= 1K .

Now we obtain candidates for a multiplication and unit on K : A → A de�ned as follows:

µ =
(
KK

ιι−→ STST
µ−→ ST

υ−→ K
)

and η =
(
1

ηη−→ ST
υ−→ K

)
.

2.4. Theorem. With this multiplication and unit, K is a monad.

Proof. By equation 9, the idempotent κ preserves the associative multiplication on ST
so the splitting K has an induced associative multiplication as de�ned above. It remains
to show that η is the unit.

µ.Kη = υ.µµ.SλT.ιι.Kι.Kηη = υ.µµ.SλT.ι ST.KSµ.KλT.Kηηη =

υ.µµ.SλT.ι ST.KλT.Kηη = υ.µT.Sλ .SµT.ι ST.Kηη =

υ.µT.Sλ .STη.ι = υ.κ.ι = 1K .

Similarly, µ.ηK = 1K .

2.5. Definition. Following [7], we call K the wreath product of T over S with respect
to λ; the notation is K = S ◦λ T .

2.6. Lemma. The following three equations hold:

STST
υυ−→ KK

µ−→ K = STST
SλT−→ SSTT

µµ−→ ST
υ−→ K; (10)

KK
ιι−→ STST

SλT−→ SSTT
µµ−→ ST

κ−→ ST = KK
ιι−→ STST

SλT−→ SSTT
µµ−→ ST ;

(11)

K
ι−→ ST

SηηT−→ SSTT
µµ−→ ST

υ−→ K = K
1K−→ K. (12)

Proof. This is fairly easy in light of Proposition 2.3.

3. Weak mixed distributive laws

For any comonad G on A, we write δ : G → GG and ε : G → 1 for the comultiplication
and counit. Let T be a monad on A.

3.1. Definition. A weak (mixed) distributive law of a monad T over a comonad G is
a 2-cell ψ : GT → TG satisfying the following four conditions in which
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ξ = (G
Gη−→ GT

ψ−→ TG
Tε−→ T ).

GTT
Gµ−→ GT

ψ−→ TG = GTT
ψT−→ TGT

Tψ−→ TTG
µG−→ TG (13)

GT
ψ−→ TG

Tδ−→ TGG = GT
δT−→ GGT

Gψ−→ GTG
ψG−→ TGG (14)

G
Gη−→ GT

ψ−→ TG = G
δ−→ GG

ξG−→ TG (15)

GT
ψ−→ TG

Tε−→ T = GT
ξT−→ TT

µ−→ T (16)

3.2. Proposition. For a weak mixed distributive law ψ : GT → TG, the following two
composites are idempotents.

ρ =
(
TG

TGη−→ TGT
Tψ−→ TTG

µG−→ TG
)

(17)

σ =
(
GT

δT−→ GGT
Gψ−→ GTG

GTε−→ GT
)

(18)

Moreover, ψ is a morphism of idempotents; that is,

ψσ = ψ = ρψ. (19)

Proof. Apart from monad properties, proving the composite 17 idempotent only requires
equation 13. Similarly, apart from comonad properties, proving the composite 18 idem-
potent only requires equation 14.

Recall [15] that if we have a right adjoint G a S to G with counit α : GS → 1 and unit
β : 1→ SG then S becomes a monad, the right adjoint monad of G, with multiplication
and unit

µ =
(
SS

βSS−→ SGSS
SδSS−→ SGGSS

SGαS−→ SGS
Sα−→ S

)
and η =

(
1

β−→ SG
Sε−→ S

)
.

Moreover, each 2-cell ψ : GT → TG has a mate λ : TS → ST (in the sense of [10])
de�ned as the composite

TS
βTS−→ SGTS

SψS−→ STGS
STα−→ ST.

3.3. Proposition. Suppose G is a comonad with a right adjoint monad S and suppose
T is any monad. A 2-cell ψ : GT → TG is a weak mixed distributive law if and only if
its mate λ : TS → ST is a weak distributive law.

Proof. This is an exercise in the calculus of mates. One sees (easily using string dia-
grams!) that equation 1 is equivalent to equation 13, equation 2 is equivalent to equation
14, equation 4 is equivalent to equation 15, and equation 5 is equivalent to equation 16.
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4. Modules

For a weak distributive law λ : TS → ST of monad T over monad S, a (T, S, λ)- module
is a triple (A, aT , aS) where aT : TA→ A is a T -algebra and aS : SA→ A is an S-algebra
in the sense of Eilenberg-Moore [15] such that

TSA
TaS−→ TA

aT−→ A = TSA
λA−→ STA

SaT−→ SA
aS−→ A. (20)

A module morphism f : (A, aT , aS) → (B, bT , bS) is a morphism f : A → B in A which
is both a morphism of T -algebras and S-algebras. We write A(T,S,λ) for the category of
(T, S, λ)-modules.

4.1. Theorem. There is an isomorphism of categories

AS◦λT ∼= A(T,S,λ)

over A where the left-hand side is the category of Eilenberg-Moore algebras for the monad
of Theorem 2.4.

Proof. Put K = S ◦λ T . Each (T, S, λ)-module (A, aT , aS) de�nes a K-algebra (A, a)
where

a =
(
KA

ιA−→ STA
SaT−→ SA

aS−→ A
)
. (21)

On the other hand, each K-algebra (A, a) de�nes a (T, S, λ)-module (A, aT , aS) de�ned
by

aT =
(
TA

ηTA−→ STA
υA−→ KA

a−→ A
)
, (22)

aS =
(
SA

SηA−→ STA
υA−→ KA

a−→ A
)
. (23)

The details of the proof are fairly straightforward given Lemma 2.6; to be truthful, I wrote
them using string diagrams.

5. Entwining operators

Recall that a monoidal category C can be regarded as the endohom category of a single
object bicategory. Monads and comonads in the bicategory amount to monoids and
comonoids (sometimes called algebras and coalgebras) in C. Therefore De�nitions 2.1
and 3.1 become de�nitions of weak entwining operators between monoids and between a
comonoid and a monoid. However, a weak entwining operator λ : A ⊗ B −→ B ⊗ A
between monoids A and B or ψ : C ⊗A −→ A⊗C between a comonoid C and a monoid
A deliver weak distributive laws λ⊗− or ψ⊗− between the monads and comonads A⊗−,
B ⊗−, and C ⊗−.



WEAK DISTRIBUTIVE LAWS 319

6. Examples

Consider a braided right-closed monoidal category C. We write XA for the right internal
hom; so C(A ⊗ X, Y ) ∼= C(X, Y A). Let A be a monoid and let C be a comonoid in
C. Let T = A ⊗ − : C → C be the monad on C induced by the monoid structure on
A. Let S = (−)A : C → C be the monad on C induced by the comonoid structure on
A. By Proposition 3.3, a weak distributive law λ : TS → ST is equivalent to a weak
mixed distributive law ψ : GT → TG where G is the comonad G = C ⊗ − : C → C
induced by the comonoid structure on C. Put ψX : C ⊗ A ⊗X → A ⊗ C ⊗X equal to
cC,A ⊗X : C ⊗A⊗X → A⊗ C ⊗X where cX,Y : X ⊗ Y → Y ⊗X is the braiding on C.
It is easy to see that we obtain a distributive law.

Let A be a weak bimonoid (in the sense of [16]) in the braided right-closed monoidal
category C. Let T = A⊗− : C → C be the monad on C induced by the monoid structure
on A. Let S = (−)A : C → C be the monad on C induced by the comonoid structure on
A. Let G be the comonad G = A⊗− : C → C induced by the comonoid structure on A.

6.1. Proposition. For a weak bimonoid A, a weak mixed distributive law of the monad
T = A ⊗ − over the comonad G = A ⊗ − is de�ned by tensoring on the left with the
composite

A⊗ A 1⊗δ−→ A⊗ A⊗ A
cA,A⊗1
−→ A⊗ A⊗ A 1⊗µ−→ A⊗ A.

Proof. We freely use the de�ning and derived equations of [16]. Notice that Equations
13 and 14 for a weak mixed distributive law follow easily from property (b) of a weak
bimonoid as in De�nition 1.1 of [16]. Notice that the morphism ξ of De�nition 3.1 is
nothing other than the �target morphism� t of [16]. Then we can use the properties (4)
and (2) of t in Figure 2 of [16] to prove our Equations 15 and 16.

In light of Theorem 4.7 of [5] and Proposition 5.8 of [14], by also looking at tensoring
with A on the right, it is presumably possible to characterize weak bimonoids in terms of
weak distributive laws.
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