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MODELING STABLE ONE-TYPES

NILES JOHNSON, ANGÉLICA M. OSORNO

Abstract. Classification of homotopy n-types has focused on developing algebraic
categories which are equivalent to categories of n-types. We expand this theory by
providing algebraic models of homotopy-theoretic constructions for stable one-types.
These include a model for the Postnikov one-truncation of the sphere spectrum, and
for its action on the model of a stable one-type. We show that a bicategorical cokernel
introduced by Vitale models the cofiber of a map between stable one-types, and apply
this to develop an algebraic model for the Postnikov data of a stable one-type.

Introduction

The homotopy category of groupoids is equivalent to the homotopy category of unstable
one-types, via the classifying space and fundamental groupoid functors. This is one of the
well-known results from a large body of work around the “algebraic homotopy” outlined by
J.H.C. Whitehead in his 1950 address to the International Congress of Mathematicians.
Crossed modules classify unstable two-types, and Conduché gives a generalization to
unstable three-types [Con84].

A related body of work focuses on stable homotopy type. Stable one-types are classified
by Picard groupoids, i.e., group-like symmetric monoidal groupoids. This is a well-known
result for which we give a new proof in Section 1. Picard groupoids were first introduced
in the thesis of Śınh Hoang Xuan [Śın75], where the author gives a thorough algebraic
classification theorem. Since then, various results have further established the link be-
tween Picard groupoids and stable one types. Garzón and Miranda [GM97] develop a
model structure for the categories of Picard groupoids, identifying the path and cylinder
constructions therein. They use this setting to model homotopy classes of maps between
spaces with nontrivial homotopy groups in degrees n and n + 1 for n ≥ 1. Garzón-
Miranda-del Rı́o [GMdR02] give categorical models for the nth homotopy groupoid of a
space for n ≥ 2, showing that the resulting monoidal categories are braided for n = 2 and
symmetric for n ≥ 3. As a generalization of Eilenberg-Mac Lane cohomology, Bullejos-
Carrasco-Cegarra [BCC93] define a cohomology of simplicial sets with coefficients in a
Picard groupoid. Their work uses this to give alternate categorical models for spaces with
homotopy groups in degrees n and n+ 1 for n ≥ 3—the stable range.

Our proof that Picard groupoids classify stable one-types is given in Theorem 1.5
using the perspective of E∞ action on the categorical and topological objects. Our main
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results go beyond the basic classification to describe the homotopical structure of stable
one-types through corresponding structure of Picard groupoids.

Specifically, we study the decomposition of stable one-types by their Postnikov data.
This consists of abelian groups π0 and π1, and a single k-invariant, which is a map of
Eilenberg-Mac Lane spectra Hπ0 → Σ2Hπ1. Using the isomorphism [Hπ0,Σ

2Hπ1] ∼=
Hom(π0/2π0, π1) [EM54, (2.7)], this k-invariant can be identified with the quadratic map
η∗ : π0 → π1, induced by precomposition with the Hopf map η : S3 → S2 [BM08,
§8]. Our main results model the Postnikov data and sphere action on a stable one-type
directly in terms of Picard groupoid data. Note, in particular, that the target of the
Postnikov invariant is a stable two-type (of a special kind). Hence our algebraic models
lead naturally toward models for stable two-types.

Our main results are as follows. For Picard groupoids C and D and a symmetric
monoidal functor F : C → D , we describe a symmetric monoidal bicategory Coker(F )
first introduced by Vitale [Vit02]. In Section 4 we apply a long exact sequence argument
to prove the following result as Theorem 4.3 and Corollaries 4.5 and 4.8.

Theorem A. Let F : C → D be a functor of Picard groupoids. Then there is a bigroupoid
Coker(F ) and a natural pseudofunctor

CF : D → Coker(F )

which models the stable cofiber in the following sense:

i. Coker(F ) is symmetric monoidal and CF is a symmetric monoidal pseudofunctor.

ii. Taking classifying spaces yields a cofibration sequence of grouplike E∞ spaces:

BC → BD → B Coker(F ).

iii. When D = C0 is the discrete category of isomorphism classes of objects in C and
F = α0 is the induced monoidal functor, we have an equivalence with the Postnikov
tower of BC :

BC // K(π0, 0) //

'
��

K(π1, 2)

'
��

BC
Bα0 // BC0

BCα0 // B Coker(α0)

Our work uses a strictification result which is somewhat stronger than one could expect
for general symmetric monoidal categories, and it may be of independent interest. This
is Theorem 2.2:

Theorem B. Every Picard groupoid is equivalent as a symmetric monoidal category to
one which is both skeletal and permutative.
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Our approach also reveals that the action of the truncated sphere spectrum on a
stable one-type is present in the algebraic model. This is hinted at in the unstable
literature [BCC93, GMdR02] but not described explicitly. We prove the following as
Propositions 3.1, 3.3 and 3.4.

Theorem C. There is a Picard groupoid S which models the one-type of the sphere spec-
trum in the following sense:

i. The Picard groupoid S is the free Picard groupoid on one object.

ii. The classifying space BS is the Postnikov 1-truncation of QS0.

iii. Let C be a Picard groupoid. There is a natural action of S on C such that the
induced action of BS on BC is equivalent to the action of the truncated sphere
spectrum on BC .

This work is a proving ground for a larger project joint with J.P. May which models
stable two-types via symmetric monoidal bicategories. The top Postnikov invariant in
that case lands in a stable 3-type, which should be modeled by a symmetric monoidal
tricategory; one purpose of our program is to use this approach as leverage to understand
symmetric monoidal structure on higher weak n-categories.

Acknowledgements. The authors wish to thank Peter May for helpful conversations
and Nick Gurski for suggesting the proof of Proposition 3.1. They are also grateful for
the suggestions of an anonymous referee.

1. Stable one-types

Let S denote any symmetric monoidal model category of spectra. We denote by S 1
0 the

full subcategory of S whose objects are spectra with all homotopy groups equal to zero
except at levels 0 and 1. The objects of this category are called stable one-types. A map
between stable one-types is a stable equivalence if it induces isomorphisms of homotopy
groups.

1.1. Definition. Let (C ,⊕, I) be a symmetric monoidal category. An object x is in-
vertible if there exists an object y and an isomorphism

ε : y ⊕ x→ I.

If such a y exists it is unique up to isomorphism. When one exists, we will sometimes use
x∗ to denote a specified inverse of x.

1.2. Definition. A Picard groupoid C is a symmetric monoidal groupoid such that every
object is invertible. The isomorphism classes of objects form an abelian group denoted
π0C , and the endomorphisms of the identity object I form an abelian group denoted π1C .
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1.3. Definition. The category Pic has as objects the Picard groupoids and as morphisms
strong symmetric monoidal functors. For symmetric monoidal functors into groupoids,
the notions of lax and strong monoidal coincide. Throughout the paper our monoidal
functors are assumed to be strong monoidal. A symmetric monoidal functor is a weak
equivalence if it is an equivalence of the underlying categories.

1.4. Remark. The term Picard category is used in some literature for what we call a
Picard groupoid. Although some will interpret our terminology as redundant, we hope
others will find it maximally comprehensible.

The classification of stable one-types by Picard groupoids appears explicitly and im-
plicitly in various parts of the literature. For example, Patel [Pat12, §5] shows that there
is an equivalence between the homotopy categories of stable one-types and Picard group-
oids, making precise a “vauge idea” of Drinfeld [Dri06, §5.5]. This is also sketched by
Hopkins-Singer in [HS05, §B] and Ganter-Kapranov in [GK11, §3]. An equivalent result
of Bullejos-Carrasco-Cegarra appears in [BCC93, §5], where the authors prove that the
homotopy category of spaces with nontrivial homotopy groups πn and πn+1, n ≥ 3, is
equivalent to the homotopy category of Picard groupoids. We give another proof of this
result based on compatibility of the fundamental groupoid and classifying space functors
with E∞ actions.

1.5. Theorem. There is an equivalence between the categories Ho(S 1
0 ) and Ho(Pic)

induced by the fundamental groupoid and classifying space functors.

Proof. We first recall that the homotopy category of connective spectra is equivalent
to the homotopy category of group-like E∞ spaces, and this equivalence descends to the
category of stable one-types and the subcategory of group-like E∞ spaces with no higher
homotopy groups. Thus we can work in the context of E∞ spaces.

It is a classical result that the classifying space and fundamental groupoid functors
give an equivalence

Π1 : Ho(Top1

0
)
' // Ho(Gpd ) : Boo

where Top1

0
is the category of one-type spaces. Thus it suffices to show that Π1 and B

induce an equivalence between the homotopy categories of group-like E∞ one-types and
Picard groupoids.

Let O be the categorical Barrat-Eccles operad—its jth category O(j) is the translation
groupoid of the action of Σj on itself and its algebras are permutative categories [May72].
Then BO is an E∞ operad in Top: If C is a symmetric monoidal category, then BC is
an E∞ space and if C is a Picard groupoid, then BC is a group-like E∞ one-type. If
F : C → D is a functor between Picard groupoids, then BF : BC → BD is an E∞ map.

The operad Π1BO is an E∞ operad in categories, and Π1 preserves products. If X is
an E∞ one-type, then Π1X is a symmetric monoidal groupoid. Moreover, π0X ∼= π0Π1X,
so Π1X is a Picard category if X is group-like. If f : X → Y is a map of E∞ spaces, then
Π1f is a symmetric monoidal functor.
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Now consider the equivalence C → Π1BC . Since this functor is part of a natural
transformation of functors from Gpd to itself, we have functors O(j)×C j → Π1BO(j)×
(Π1BC )j that commute with the structure maps of the algebras C and Π1BC , thus
showing that the equivalence C → Π1BC is a symmetric monoidal functor. A similar
argument shows that for a stable one-type X, the weak equivalence X → BΠ1X is an
E∞ map.

1.6. Remark. One can actually show that the fundamental groupoid of an E3 algebra
is symmetric monoidal. Indeed, if O is an E3 operad in Top, then Π1O is an E∞ operad
in Cat . This is because the fundamental groupoid depends only on the homotopy one-
type of a space, and thus the obstructions to lifting an E3 structure to an E∞ structure
on a groupoid vanish. Alternatively, one can provide an explicit argument using specific
points of the little 3-cubes operad C3 to prove that if X is an algebra over C3 then Π1X
is a symmetric monoidal category. An example of this strategy can be found in [Gur11,
Theorem 15], where the author proves that the fundamental 2-groupoid of an algebra over
the little 2-cubes operad is braided monoidal.

2. Strictification

In this section we prove a strictification result for skeletal Picard groupoids. The result
is an algebraic reflection of the fact that the first k-invariant of a connected double loop
space is trivial [BC97, Theorem 5.8].

2.1. Definition. A Picard groupoid is permutative if it is strictly associative and strictly
unital.

2.2. Theorem. Every Picard groupoid is equivalent to one which is both skeletal and
permutative.

The proof appears after Proposition 2.5, which classifies Picard groupoids by symmetric
3-cocycles. Analogous results for stable crossed modules appear in [BC97].

2.3. Definition. [Symmetric 3-cocycle] Let G be an abelian group and M a trivial G-
module. A symmetric 3-cocycle for G with coefficients in M is a pair (h, c) where h is a
normalized 3-cocycle: for x, y, z ∈ G

h(x, 0, z) = 0,

h(x, y, z) + h(u, x+ y, z) + h(u, x, y) = h(u, x, y + z) + h(u+ x, y, z),

and c : G2 →M is a function satisfying

h(y, z, x) + c(x, y + z) + h(x, y, z) = c(x, z) + h(y, x, z) + c(x, y),

c(x, y) = −c(y, x).
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We say two symmetric 3-cocycles (h, c) and (h′, c′) are cohomologous if there exists a
function k : G2 →M satisfying

k(x, 0) = k(0, y) = 0,

h(x, y, z)− h′(x, y, z) = k(y, z)− k(x+ y, z) + k(x, y + z)− k(x, y),

c(x, y)− c′(x, y) = k(x, y)− k(y, x).

We denote the group of cohomology classes of symmetric 3-cocycles by H3
sym(G;M).

2.4. Definition. [Śın75, Chapter 2, §2],[JS93, §3] Let G be an abelian group, M a trivial
G module, and (h, c) a symmetric 3-cocycle for G with coefficients in M . We define a
skeletal Picard groupoid T = T (G,M, (h, c)) whose objects are the elements of G and
whose morphisms are given by

T (x, y) =

{
M if x = y

∅ if x 6= y.

Composition is defined by the addition in M and the monoidal structure is addition in
G. The associativity is determined by

h(x, y, z) : (x+ y) + z → x+ (y + z)

and the symmetry isomorphism is determined by

c(x, y) : x+ y → y + x.

The axioms of a symmetric 3-cocycle are precisely the axioms for compatibility of the
symmetry and associativity in a skeletal symmetric monoidal groupoid.

2.5. Proposition. [Śın75, Chapter II, §2.1],[JS93, §3] Every Picard groupoid C is equiv-
alent to a skeletal one of the form T (G,M, (h, c)) where G = π0C , M = π1C , and
(h, c) ∈ H3

sym(G;M) is a symmetric 3-cocycle that represents the associativity and the
symmetry.

Two skeletal Picard groupoids T (G,M, (h, c)) and T (G,M, (h′, c′)) are equivalent if
and only if (h, c) and (h′, c′) are cohomologous.

Proof of Theorem 2.2. By Proposition 2.5, it suffices to consider a skeletal Picard
groupoid C = T (G,M, (h, c)). Moreover, any abelian group G is a filtered colimit of
finitely generated abelian groups, and any finitely generated abelian group is a direct sum
of cyclic groups. Thus, by making use of the Künneth theorem and colimits over finitely
generated abelian groups, it suffices to consider the case where G is cyclic. This strategy
for studying Picard groupoids appears in [EM54, 26.4] and [JS93, 3.2].

Let G be a cyclic group. We now prove that there is some c′ such that [(h, c)] = [(0, c′)]
in H3

sym(G;M). This is immediate in the infinite cyclic case since H3(Z;M) = 0. Now
suppose G = Z/n. The third cohomology group is

H3(Z/n;M) ∼= {µ ∈M |nµ = 0}.
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Following Joyal and Street [JS93, §3] we have an explicit formula for cocycle representa-
tives corresponding to µ:

hµ(x, y, z) =

{
0 for y + z < n

xµ for y + z ≥ n

where x, y, z are taken to be integers in {0, . . . , n− 1} and addition is performed over the
integers to determine the values of hµ.

A calculation shows

(h, c) ∼ (hnc(1,1), ρc(1,1)), (2.1)

where ρc(1,1) denotes the symmetry given by

(x, y) 7→ xy · c(1, 1).

This equivalence of cocycles determines a symmetric monoidal equivalence of the corre-
sponding symmetric monoidal categories. Since the braiding on C is a symmetry, we have
c(x, y) = −c(y, x).

Now note that if (h, c) is a symmetric 3-cocycle, then nc(1, 1) = 0 by Lemma 2.6, so
hnc(1,1) = h0 = 0. Therefore Eq. (2.1) shows that C is equivalent (as a Picard groupoid) to
one whose representing cocycle is (0, ρc(1, 1)) and thus is both skeletal and permutative.

2.6. Lemma. If (h, c) is a symmetric 3-cocycle of Z/n with coefficients in M , then
nc(1, 1) = 0.

Proof. Since c is symmetric, c(1, 1) = −c(1, 1), and thus 2c(1, 1) = 0. If n is even,
then the result follows; if n is odd, we make use of the identity c(x, x) = x2c(1, 1) for all
x ∈ Z/n:

c(1, 1) = (−1)2c(1, 1) = c(−1,−1) = c(n− 1, n− 1) = (n− 1)2c(1, 1).

For n odd, n− 1 is even and thus the last term is zero.

The calculation of Eq. (2.1) shows that the symmetry c completely determines the
cohomology class of the symmetric 3-cocycle (h, c) of a skeletal Picard groupoid. But
[JS93, §3] shows that the symmetry determines and is determined by the quadratic map

q = c ◦∆: G→M.

2.7. Definition. [Quadratic map] A map q : G→M is quadratic if

q(x) = q(−x),

q(x+ y + z) + q(x) + q(y) + q(z) = q(y + z) + q(z + x) + q(x+ y).

Eilenberg and Mac Lane [EM54], and Loday [Lod82] show that the set of quadratic
maps q : G→M is isomorphic to the set of homotopy classes of maps [K(G, n), K(M,n+
2)] for n ≥ 3, which is the set of stable homotopy classes of maps [K(G, 0), K(M, 2)]stable.
This is the set of possible Postnikov invariants of a stable one-type with π0 = G and
π1 = M . Thus we have the following refinement of Theorem 1.5:
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2.8. Corollary. The stable one-types with π0 = G and π1 = M are classified by the
symmetric structures on a skeletal and permutative monoidal groupoid with objects G and
each endomorphism group isomorphic to M .

2.9. Remark. The contrast between triviality of unstable k-invariants and non-triviality
of stable k-invariants may be worth clarifying: When modeling connected spaces with
nontrivial π1 and π2, it is the associativity of a monoidal groupoid (with invertible objects)
which gives the first k-invariant of the corresponding space. However when modeling
spectra with nontrivial π0 and π1 it is the symmetry of a Picard groupoid which gives
the first (stable) k-invariant. A consequence of Theorem 1.5, Corollary 2.8, and [BC97,
Theorem 5.8] is that the first k-invariant of a stable one-type is unstably trivial.

3. The truncated sphere spectrum

We now define a skeletal and permutative Picard groupoid S and explain how it is an
algebraic model of the truncated sphere spectrum. The objects of S are the integers
under addition, and the morphisms are given by

S(m,n) =

{
∅ if m 6= n

Z/2 if m = n.

We let ηn denote the nontrivial element of S(n, n) for each n. The monoidal structure is
symmetric, with the symmetry isomorphism given by

cm,n =

{
0 if mn is even

ηm+n if mn is odd.

Note that this symmetry isomorphism gives rise to the stable quadratic map q : Z→ Z/2
given by the mod 2 map.

The Picard groupoid S is closely related to the category of finite sets, as we now
describe. Let E be the skeletal category whose objects are the finite sets 0 = ∅, n =
{1, 2, . . . , n} and whose morphism sets are given by the symmetric groups. This is a
permutative category, with sum given by sum in N and with symmetry isomorphism
c⊕m,n given by the permutation that sends (1, 2, . . . ,m + n) to (m + 1,m + 2, . . . ,m +
n, 1, 2, . . . ,m). Note that E is skeletal and is equivalent to the category of finite sets.

There is a symmetric monoidal functor

ξ : E → S
given on objects by the inclusion of N into Z and on morphisms by the sign homomorphism
Σn → Z/2. This is the functor that first abelianizes the group of endomorphisms of each
object n, and then includes into S.

The next three results justify our notation for S by showing that it is the free Picard
groupoid on one object, its classifying space is the Postnikov 1-truncation of QS0, and its
natural action on a Picard groupoid C is a model for the action of the truncated sphere
spectrum on BC .
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3.1. Proposition. The Picard groupoid S is symmetric monoidally equivalent to the free
Picard groupoid on one object, FPic(∗).

Proof. The free Picard groupoid functor FPic is equal to the composite of the free sym-
metric monoidal groupoid functor, FsymMon, with the functor that freely adjoins inverses
for objects, Finv. The free symmetric monoidal category on one object, FsymMon(∗), is
symmetric monoidally equivalent to the category E defined above.

We now show that S satisfies the universal property for Finv(E ): Let C be a Picard
category and G : E → C a symmetric monoidal functor. We construct a symmetric
monoidal functor H making the diagram commute:

E G //

ξ
��

C .

S
H

>>

For every object x ∈ C fix an inverse x∗. We define H on objects as

H(n) =

{
G(n) if n ≥ 0

G(|n|)∗ if n < 0.

To define H on morphisms, note that C (x, x) is an abelian group for all x ∈ C and
therefore G factors through the abelianization of E (n, n) and hence through ξ. This
factorization determines H on the endomorphism group of n for n ≥ 0, and the values of
H on endomorphisms of negative n are determined by translation. It is easy to see that
H is a symmetric monoidal functor.

Now let H ′ be another symmetric monoidal functor making the diagram commute.
Note that for n ≥ 0, we must have H(n) = G(n) = H ′(n). On the other hand we have
natural isomorphisms

H(n)⊕H(−n)
∼=−→ IC

∼=←− H ′(n)⊕H ′(−n)

and hence natural isomorphisms

H(−n)
∼=−→ H(n)∗ = H ′(n)∗

∼=←− H ′(−n).

These assemble to form a monoidal natural isomorphism between H and H ′.

3.2. Remark. Although a model for one-types of ring spectra is beyond the scope of
this paper, we do note that S has a second symmetric monoidal structure, so that it is a
bipermutative groupoid. This second monoidal structure is given by:

(m,n) 7→ mn ∈ Z
(f : m→ m, g : n→ n) 7→ nf +mg ∈ Z/2,
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The symmetry isomorphism is given by

c⊗m,n =

{
0 if

(
m
2

)(
n
2

)
is even

ηnm if
(
m
2

)(
n
2

)
is odd.

By [May09], BS is an E∞ ring space.
Furthermore, the category E described above is a bipermutative category, with second

product given by multiplication in N. This models the cartesian product of finite sets.
The map ξ : E → S is a bipermutative functor, and Bξ : BE → BS is therefore an E∞
ring map.

3.3. Proposition. Let QS0 be the zeroth space of the sphere spectrum. Then there is a
map of E∞ ring spaces

Bξ : QS0 −→ BS

which is the Postnikov 1-truncation of QS0.

Proof. By Remark 3.2, we have a map of E∞ ring spaces Bξ : BE → BS. Since BS is
group-like, this map factors through the group completion of BE , which is equivalent to
QS0:

BE
Bξ
//

��

BS.

QS0
Bξ

<<

The map Bξ is an isomorphism on π0 = Z, π1 = Z/2, and thus it is the Postnikov 1-
truncation.

Let (C ,⊕, I) be any Picard groupoid. By Theorem 2.2, we can assume without loss of
generality that C is both skeletal and permutative. Then each object x in C has a strict
inverse, x∗, so that x⊕ x∗ = I = x∗ ⊕ x. There is a natural action of S on C

S× C
·−→ C

defined on objects as follows:

0× x 7→ I

1× x 7→ x

n× x 7→ ((n− 1) · x)⊕ x for n > 1

n× x 7→ |n| · x∗ for n < 0.

Let c denote the symmetry of C . The action · on morphisms is defined by:

η2 × 1x 7→ c(x, x),

ηn × 1x 7→ c(x, x)⊕ 1(n−2)·x for n 6= 2.
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3.4. Proposition. Let X be a stable one-type modeled by a Picard groupoid C , so BC '
X. Then the action of the truncated sphere spectrum on X is modeled by the action of S
on C .

Proof. The action of S on C passes to an action of BS on BC which is homotopic to that
of the group completion QS0: The top triangle in the diagram below commutes because
BC is group complete; the bottom commutes because the group completion abelianizes
π1 and hence the action of even permutations (the alternating group) is trivial.

BE ×BC //

��

BC

QS0 ×BC

44

��

BS ×BC

99

3.5. Remark. An alternate argument for Proposition 3.4 notes that the action of the
truncated sphere spectrum on BC determines and is determined by the unique nontrivial
Postnikov invariant

K(π0BC , 0)
k0−→ K(π1BC , 2)

which is given by precomposition with η. The discussion preceding Corollary 2.8 shows
that this Postnikov invariant is modeled by the stable quadratic map q : π0C → π1C given
by q(x) = c(x, x). This, in turn, determines and is determined by the action of S on C
since η2 acts by the symmetry c. In Section 4.6 we define the Postnikov invariant of a
Picard groupoid and show that it models the Postnikov invariant of BC (Corollary 4.8).

4. Cokernels of Picard groupoid maps

Here we describe the cokernel of a map of Picard groupoids and the resulting exact
sequence in homotopy groups.

4.1. Definition. [Bigroupoid] A bigroupoid is a bicategory G in which the 1-cells are
invertible up to 2-isomorphism and the 2-cells are isomorphisms. The set π0G is given
by the equivalence classes of objects. For an object x ∈ G , the group π1(G , x) is given
by the isomorphism classes of 1-endomorphisms of x. The group π2(G , x) is given by the
2-endomorphisms of 1x, the identity 1-cell of x.

4.2. Definition. [Cokernel [Vit02]] Let F : C → D be a map of Picard groupoids. The
cokernel of F is a bigroupoid Coker(F ) defined as follows: The objects of Coker(F ) are
the objects of D . The 1-cells between objects x and y are pairs (f, n), where

x
f−→ y ⊕ F (n)
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is a morphism of D . The 2-cells between (f, n) and (f ′, n′) are given by morphisms
α : n→ n′ of C such that the following diagram commutes:

x
f

zz

f ′

$$

y ⊕ F (n)
1⊕F (α)

// y ⊕ F (n′)

The composite of two 1-cells

(f, n) : x→ y and (g,m) : y → z

is given by the following composite morphism in D :

x
f−→ y ⊕ F (n)

g⊕1−−→ (z ⊕ F (m))⊕ F (n)→ z ⊕ F (m⊕ n).

Further details of the definition can be found in [Vit02, §2]; note that the cokernel is
denoted Cok (F ) there.

There is a natural pseudofunctor CF : D → Coker(F ) which is the identity on objects

and which takes a morphism f : x → y to the 1-cell f̂ = (f, IC ) determined by the
morphism

x
f−→ y → y ⊕ ID → y ⊕ F (IC ).

4.3. Theorem. The symmetric monoidal structure on D induces a symmetric monoidal
structure on the bicategory Coker(F ). The pseudofunctor CF is symmetric monoidal.

We prove Theorem 4.3 in Section 5. In the remainder of this section we apply this
cokernel to model stable cofibers and Postnikov invariants.

4.4. Theorem. A map of Picard groupoids F : C → D gives rise to a long exact sequence
of homotopy groups between C , D , and Coker(F )

0→ π2 Coker(F )→ π1C → π1D → π1 Coker(F )→ π0C → π0D → π0 Coker(F )→ 0.

Proof. Exactness at most positions is verified by [Vit02], noting that the Ker(F ) used
there has π0 Ker(F ) ∼= π1 Coker(F ) and π1 Ker(F ) ∼= π2 Coker(F ). Exactness at the
remaining positions, π1D and at π1 Coker(F ), is straightforward from the definitions: An
element in π1C is represented by a morphism f : IC → IC . The image of this element in
π1D is represented by the composite

ID
∼=−→ F (IC )

F (f)−−→ F (IC )
∼=−→ ID .

This composite morphism maps to the trivial element in π1 Coker(F ) because it factors
through a morphism in the image of F (namely, F (f)). Likewise, if g : F (X) → ID
represents an element of π1D whose image in π1 Coker(F ) is trivial (factors through a
morphism in the image of F ), then the trivialization provides an element of π1C whose
image in π1D is the element represented by g. Exactness at π1 Coker(F ) is similar, and
left to the reader.
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The two previous results, together with [Oso12, GO] show that the cokernel of Picard
groupoids models the cofiber of stable one-types:

4.5. Corollary. Let F : C → D be a map of Picard groupoids. Then the following is
a cofibration sequence of group-like E∞ spaces:

BC → BD → B Coker(F ).

Proof. Note that since Coker(F ) is a group-like symmetric monoidal bicategory, [Oso12,
Theorem 2.1] and the improved results of [GO] imply that B Coker(F ) is a group-like E∞
space. Let C be the cofiber of the map on classifying spaces. Then the dashed arrow to
B Coker(F ) exists by the universal property of C, and it is an equivalence by Theorem 4.4.

BC // BD //

&&

C

'
��

B Coker(F )

4.6. Modeling Postnikov invariants

4.7. Definition. Let C be a Picard groupoid, and let C0 be the category of isomorphism
classes of objects of C , with only identity morphisms. Let

α0 : C → C0

be the monoidal functor which takes each object to its isomorphism class and takes mor-
phisms to identity morphisms. Let k0 = Cα0 be the natural pseudofunctor from C0 to
Coker(α0). We call the sequence

C
α0−→ C0

k0−→ Coker(α0)

the Postnikov tower of C .

By Theorem 4.4, Coker(α0) has only one non-trivial homotopy group, which is π1C in
degree two. We refer to k0 as the Postnikov invariant of C . Our terminology is motivated
by the following result.

4.8. Corollary. The Postnikov tower of C models the Postnikov tower of BC .

Proof. This follows immediately from Corollary 4.5 and the fact that BC0 ' K(π0, 0).

BC // K(π0, 0) //

'
��

K(π1, 2)

'
��

BC
Bα0 // BC0

Bk0 // B Coker(α0)
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5. Proof of Theorem 4.3

5.1. Proposition. The bicategory Coker(F ) is symmetric monoidal.

To prove this proposition we will construct a double category Coker(F ) and use the
results of [Shu10], which are analogous to those of [GG09, §6]. The idea behind this
method is that it is usually easier to construct symmetric monoidal double categories
than symmetric monoidal bicategories, and for certain double categories the symmetric
monoidal structure lifts to a symmetric monoidal structure in a related bicategory.

The double category Coker(F ) is constructed as follows. The category of objects,
Coker(F )0, is D . The category of morphisms, Coker(F )1, has as objects the quadruples
(x, y, f, n), where x and y are objects of D , n is an object of C and f : x→ y ⊕ F (n) is
a morphism in D .

A morphism in Coker(F )1 from (x, y, f, n) to (z, v, g,m) is given by a triple (a, b, α),
where a : x→ z and b : y → v are morphisms in D , and α : n→ m is a morphism in C ,
such that the following diagram commutes

x
f
//

a

��

y ⊕ F (n)

b⊕F (α)
��

z g
// v ⊕ F (m)

Composition of morphisms in the category Coker(F )1 is given by composition componen-
twise. We follow the notation from [Shu10, Def. 2.1] to define the rest of the structure of
the double category.

The unit functor U is defined as

U : Coker(F )0 −→ Coker(F )1

x 7−→ (x, x, 1̂x, IC )

x
a−→ z 7−→ (a, a, 1IC ),

where 1̂x is given by the composition x→ x⊕ ID → x⊕ F (IC ). The functors for source
and target, S and T , are given by:

S, T : Coker(F )1 −→ Coker(F )0

(x, y, f, n) 7−→ x, y

(a, b, α) 7−→ a, b.

Finally, the composition functor is given by

� : Coker(F )1 ×Coker(F )0 Coker(F )1 −→ Coker(F )1

[(x, y, f, n), (y, z, g,m)] 7−→ (x, z, f • g,m⊕ n)

[(a, b, α), (b, c, β)] 7−→ (a, c, β ⊕ α),
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where f • g denotes the composition

x
f−→ y ⊕ F (z)

g⊕1−−→ (z ⊕ F (m))⊕ F (n)→ z ⊕ F (m⊕ n).

The associativity and unit constraints come from those in the monoidal structure of C .

5.2. Proposition. The double category Coker(F ) is symmetric monoidal.

Proof. The category Coker(F )0 = D is symmetric monoidal. We now give a symmetric
monoidal structure to Coker(F )1. On objects it is given by:

(x, y, f, n)⊕ (z, v, g,m) = (x⊕ z, y ⊕ v, f ? g, n⊕m),

where f ? g is the composition

x⊕ z f⊕g−−→ (y ⊕ F (n))⊕ (v ⊕ F (m))→ (y ⊕ v)⊕ (F (n)⊕ F (m))→ (y ⊕ v)⊕ F (n⊕m).

On morphisms it is defined by applying the sum componentwise. The associativity, unit,
and symmetry constraints are inherited from those in C and D .

The globular isomorphism

((x, y, f, n)⊕ (y, z, g,m))� ((x′, y′, f ′, n′)⊕ (y′, z′, g′,m′))

x

��

((x, y, f, n)� (x′, y′, f ′, n′))⊕ ((y, z, g,m)� (y′, z′, g′,m′))

is given by the structural isomorphism in C

(m⊕m′)⊕ (n⊕ n′)→ (m⊕ n)⊕ (m′ ⊕ n′).

The globular morphism u : Ux⊕y → Ux ⊕ Uy is given by the morphism I → I ⊕ I in C .
It is clear that all the necessary diagrams commute since they all involve compositions

of morphisms of the symmetric monoidal structures on C and D .

We recall that a double category is fibrant in the terminology of [Shu10] if every
vertical 1-morphism has a companion and a conjoint. These are horizontal 1-morphisms
that allow transport of vertical structure to horizontal structure [Shu10, §3]:

5.3. Definition. Let a : x → z be a morphism in D . A companion for a is given by
(x, z, â, IC ), where â is the composite

x
a−→ z → z ⊕ ID → z ⊕ F (IC ).

The following diagrams commute and therefore the equations of [Shu10, 3.1] are trivially
satisfied.

x â //

a

��

z ⊕ F (IC )

z
1̂z

// z ⊕ F (IC )

x
1̂x // x⊕ F (IC )

a
��

x â // z ⊕ F (IC )
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A conjoint for a is given by (z, x, ǎ, IC ), where ǎ is the composite

z
a−1

−−→ x→ x⊕ ID → x⊕ F (ID).

This is the companion of a in the double category obtained from Coker(F ) by taking the
same category of objects and the opposite category of morphisms.

Proof of Proposition 5.1. The horizontal bicategory H (Coker(F )) is precisely
Coker(F ). Since every morphism in D has a companion and a conjoint, Coker(F ) is a
fibrant double category. Therefore by [Shu10, Thm 5.1] Coker(F ) is symmetric monoidal.

5.4. Remark. Vitale [Vit02] points out that Coker(F ) is a bigroupoid. We note, more-
over, that the objects are weakly invertible since they are the objects of D with the same
monoidal structure. Thus Coker(F ) is what one might call a Picard bigroupoid.

5.5. Proposition. The pseudofunctor CF : D → Coker(F ) is symmetric monoidal.

Proof. We need to specify transformations

(χx,y, χf,g) : CF (x)⊕ CF (y)→ CF (x⊕ y)

and
ι : I → CF (I).

We let χx,y : x⊕ y → x⊕ y be the identity 1-cell in Coker(F ), that is, 1̂x⊕y. The 2-cell

χf,g : f̂ ⊕ g ◦ 1̂x⊕y ⇒ 1̂x′⊕y′ ◦ (f̂ ⊕ ĝ)

is given by the unique structural morphism in C , I ⊕ I → I ⊕ (I ⊕ I). It is an easy verifi-
cation that this is a valid 2-cell in Coker(F ), and that these data forms a transformation.

Similarly, we let ι : I → I be the identity 1-cell. The rest of the data for a symmetric
monoidal pseudofunctor consists of four modifications, which are collections of 2-cells. In
the four cases, the source and target of the modifications have products of copies of the
unit I ∈ C as their second component, and hence the modifications are given by the
unique structural morphism connecting these two products in C . The coherence of the
symmetric monoidal structure on C therefore implies that these modifications satisfy all
of the necessary equations.
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[Śın75] H. X. Śınh, Gr-catégories, Ph.D. thesis, Université Paris VII, 1975.
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