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OBVIOUS NATURAL MORPHISMS OF SHEAVES ARE UNIQUE

RYAN COHEN REICH

Abstract. We prove that a large class of natural transformations (consisting roughly of
those constructed via composition from the “functorial” or “base change” transformations)
between two functors of the form · · · f∗g∗ · · · actually has only one element, and thus
that any diagram of such maps necessarily commutes. We identify the precise axioms
defining what we call a “geofibered category” that ensure that such a coherence theorem
exists. Our results apply to all the usual sheaf-theoretic contexts of algebraic geometry.
The analogous result that would include any other of the six functors remains unknown.

Commutative diagrams express one of the most typical subtle beauties of mathematics,
namely that a single object (in this case an arrow in some category) can be realized
by several independent constructions. The more interesting the constructions, the more
insight is gained by carefully verifying commutativity, and it is tempting to take the
inverse claim to mean that comparable arrows, constructed mundanely, should be expected
to be equal and are therefore barely worth proving to be so. As half the purpose of a
human-produced publication is to provide insight, there is some validity in thinking that
any opportunity to reduce both length and tedium is worth taking, but this is at odds
with the other half, which is to supply rigor. The goal of this paper is, therefore, to serve
both ends by proving that a large class of diagrams commonly encountered in algebraic
geometry, obtained from the fibered category nature of sheaves, are both interesting and
necessarily commutative.

The goal of proving “all diagrams commute” began with the first “coherence theorem” of
this kind, proved by Mac Lane [ML63]; further research, apparently, has not yet developed
this particular application, as we are not aware of any coherence theorems that apply
to fibered categories. Indeed, our main result Theorem 2.4 is itself not entirely free of
conditions, and our best unconditional result such as in Theorem 2.3 is somewhat restricted
in scope. A similar statement to the latter was obtained by Jacob Lurie [Lur05] concerning
arbitrary tensor isomorphisms of functors on coherent sheaves over a stack; ours applies to
less general morphisms but more general situations. The problem of proving a general
coherence theorem for pullbacks and pushforwards in the context of monoidal functors
was mentioned in Fausk–Hu–May [FHM03] and said to be both unsolved and desirable; we
do not claim to have solved it, though certainly, we have done something. Those authors
do not consider multiple maps f in combination, however, as we do.
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The goal of rigorously verifying the diagrams of algebraic geometry has been pursued
by several people, notably recently Brian Conrad in [Con00], who proved the compatibility
of the trace map of Grothendieck duality with base change. Our theorems do not seem
to apply to this problem, most significantly because almost every construction in that
book intimately refers to details of abelian and derived categories and to methods of
homological algebra, none of which are addressed here. Such a quality is possessed by
many constructions of algebraic geometry and place many of its interesting compatibilities
potentially out of reach of the results stated here.

Maps constructed in such a way, as concerns Conrad constantly in that book, can
certainly differ by a natural sign, if not worse, and so the only hope for automatically
proving commutativity of that kind of diagram is to separate the cohomological part
from the categorical part and apply our results only to the latter. This is to say nothing
of the explicit avoidance of “good” hypotheses (for example, flatness, such as we will
consider) on the schemes and morphisms considered there, all of which place this particular
compatibility on the other side of the line separating “interesting” from “mundane”.

In Section 1, we give (many) definitions in preparation for stating the main theo-
rems; comments on the hypotheses considered there are given in Section 7, as are the
acknowledgements. These theorems are given, without proof, in Section 2, and their proofs
are delayed until Section 6. The style of these first two sections of this paper is quite
formal; for a more relaxed overview, see Section A. Section 3 quickly presents our use of
“string diagrams”, a computational tool we will use to give structure to some of our more
arbitrary calculations; further details and comparison with others’ use of this tool is given
in Section B. Afterwards, Sections 4 and 5 contain the core arguments upon which the
eventual high-level proofs rely.

1. Definitions and notation
In this section we define the natural transformations we consider and will eventually prove
are unique. Since they apply to a variety of similar but slightly different common situations
in algebraic geometry, we have abstracted the essential properties into a formal object of
category theory; the particular applications are indicated in Section 2.

Abstract push and pull functors. Our results apply in a variety of similar situations
with slightly different features and technical hypotheses, all unified by the formalism of
pushforward and pullback. The following definition encapsulates the axiomatic properties
we will require.

1.1. Definition. We define a geofibered category to be a functor F : Sh→ Sp between
two categories called, respectively, “shapes” and “spaces”, such that:
• The category Sp has all finite fibered products.

• For every morphism f : X → Y of Sp, there are functors
f ∗ : ShY ←→ ShX : f∗
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between the fibers over Y and X, which are an adjoint pair (f ∗, f∗).

• The assignment X 7→ ShX and f 7→ f ∗ constitutes a pseudofunctor Sp→ Cat; i.e. a
cleaved fibered category, as described below.

• Dually, the assignment X 7→ ShX and f 7→ f∗ constitutes a pseudofunctor Sp →
Catop.

• The above pseudofunctor data obey the compatibilities described in the remainder of
this subsection.

The terminology was chosen in part because “bifibered category” has a different
meaning, and also to indicate that this concept models the fibered category of sheaves in
various geometries. For a description of pseudofunctors in the context of fibered categories,
see Vistoli’s exposition [Vis05, §3.1.2].

The requirement that Sp has fibered products is only strictly speaking necessary for
some of the following definitions, but since that of the “roof” is among them, given the
central nature of this concept in our main theorems, a geofibered category would be quite
useless otherwise.

The rest of this subsection is devoted to introducing notation and terminology and,
along side it, describing the compatibilities of the data of a geofibered category.

1.2. Definition. As per Definition 1.1, in any geofibered category, for any morphism
f : X → Y of spaces we have adjoint functors (f ∗, f∗) of shapes which we call basic standard
geometric functors (the terminology intentionally references “geometric morphisms” of
topoi)

We define a standard geometric functor (SGF) to be any composition of basic standard
geometric functors. Formally, an SGF is equivalent to a diagram of spaces and morphisms
forming a directed graph that is topologically linear, together with an ordering of its vertices
from one end of the segment to the other (i.e. we “remember” the terms of the composition
as well as the resulting functor). For an SGF F from shapes on X to shapes on Y , we
write X = S(F ) and Y = T(F ).

The pseudofunctor data consists of a number of natural transformations, which are the
basis for the main objects of our study.

1.3. Definition. Between pairs of SGFs there are canonical natural transformations of
the following three types that we call the basic standard geometric natural transformations:
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unit(f) : id→ f∗f
∗

counit(f) : f ∗f∗ → id

}
Adjunctions (1.1a)

comp∗(f, g) : f ∗g∗ ∼−→ (gf)∗

comp∗(f, g) : g∗f∗ ∼−→ (gf)∗

Compositions (1.1b)

triv∗(f) : id∗ ∼−→ id
triv∗(f) : id∗ ∼−→ id

Trivializations. (1.1c)

For the latter two types, we will use −1 to denote their inverses (which will not arise as
often in our arguments).

The origins, nature, and compatibilities of these transformations are described in the
following subpoints.
Adjunctions. The maps unit(f) and counit(f) are equivalent to the (f ∗, f∗) adjunction
in the usual way and satisfy the familiar compatibility required of an adjunction, which
we state at risk of being pedantic so as to provide a complete reference for the data of a
geofibered category. (

f ∗
f∗ unit(f)−−−−−→f ∗f∗f ∗

counit(f)f∗

−−−−−−→ f ∗
)

= id (1.2a)(
f∗

unit(f)f∗−−−−−→f∗f ∗f∗
f∗ counit(f)−−−−−−→ f∗

)
= id (1.2b)

In the context of natural transformations of functors rather than morphisms of individ-
ual objects, we have a “reverse natural adjunction” also defined by the unit and counit;
we use it on occasion to aid definitions. The construction and proof of bijectivity are left
as an exercise for readers who desire it.

RNAf : Hom(Ff∗, G)←→ Hom(F,Gf ∗). (1.3)
Compositions. The data of a pseudofunctor implies the existence of isomorphisms
comp∗(f, g) : (fg)∗ ∼= f∗g∗ for every composable pair of morphisms f, g of spaces. Likewise,
we have isomorphisms comp∗(f, g) : (fg)∗ ∼= g∗f ∗. The compatibilities required of these
data by a pseudofunctor express their associativity in triple compositions:(

(fgh)∗ ∼= (fg)∗h∗ ∼= f∗g∗h∗
)

=
(
(fgh)∗ ∼= f∗(gh)∗ ∼= f∗g∗h∗

)
(1.4)

and similarly for pullbacks. It must be noted that this data for pushforwards or pullbacks
alone determines such data for the other; for example, given pseudofunctoriality of f∗, for
the adjoint f ∗, we define comp∗(f, g) via category-theoretic formalism: (fg)∗ has the left
adjoint (fg)∗ and the composition f∗g∗ has as left adjoint the composition g∗f ∗; since we
have (fg)∗ ∼= f∗g∗ we also get (fg)∗ ∼= g∗f ∗ by uniqueness of left adjoints. In more explicit
terms, this means that for any shapes F and G, we have an isomorphism

Hom((fg)∗F ,G) ∼= Hom(F , (fg)∗G) ∼= Hom(F , f∗g∗G) ∼= Hom(f ∗F , g∗G)
∼= Hom(g∗f ∗F ,G). (1.5)



52 RYAN COHEN REICH

We require as a compatibility relation that this is Hom(comp∗(f, g)F ,G).
Trivializations. The trivialization isomorphism triv∗ : id∗ ∼= id is another part of the
pseudofunctor data (and likewise for pullbacks), as well as its compatibility with composi-
tion: (

comp∗(id, f) : id∗f∗ ∼= (idf)∗ = f∗
)

=
(
triv∗ f∗ : id∗f∗ ∼= idf∗ = f∗

)
(1.6)

(and, again, the same for pullbacks). Given this data just for pullbacks or pushforwards, for
example the latter, we could define an isomorphism id∗ → id and its inverse by adjunction,
similar to (1.5):

Hom(id∗F ,G) ∼= Hom(F , id∗G) ∼= Hom(F ,G). (1.7)

We require that this isomorphism be equal to Hom(triv∗F ,G).

Classes of transformations. Typically we do not consider transformations in the
pure form above, but rather in horizontal composition with some identity maps.
Basic classes. The following are the classes of natural transformations consisting of just
one of the basic ones in horizontal composition.

1.4. Definition. In this definition, F and G represent any SGFs; f and g represent any
maps of spaces. We define:

unit = {F unit(f)G} counit = {F counit(f)G} (1.8a)
comp0 = {F comp∗(f, g)G} ∪ {F comp∗(f, g)G} comp = comp0 ∪ comp−1

0 (1.8b)
triv0 = {F triv∗G} ∪ {F triv∗G} triv = triv0 ∪ triv−1

0 . (1.8c)

And now we may introduce the main objects of our study.

1.5. Definition. A standard geometric natural transformation (SGNT) is an element
of the class (in which we use the notation 〈S〉 to denote the class generated by S via
composition)

SGNT = 〈unit∪ counit∪ comp∪ triv〉. (1.9)

For any SGNT φ : F → G between two SGFs, we write F = domφ and G = codφ.
Another way of understanding this class is the following characterization: SGNT is the

smallest category of natural transformations of SGFs containing all identity maps, comp
maps, triv maps, and their inverses, and that is closed under horizontal and vertical
composition and adjunction of ∗ and ∗.

The following type of SGNT is of fundamental importance throughout the paper;
it arises seemingly of its own accord in a variety of situations and is also essential in
simplifying SGFs to the point that our main theorem is provable.
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1.6. Definition. Consider a commutative diagram

BX

YP

f

g

f̃

g̃
(1.10)

We define the associated commutation morphism

cd(f, g; f̃ , g̃) : g∗f∗ → f̃∗g̃
∗ (1.11)

to be the map corresponding by g-adjunction and g̃- reverse natural adjunction to the
corner-swapping map

f∗g̃∗
comp∗(g̃,f)−−−−−−→ (fg̃)∗ = (gf̃∗)

comp∗(f̃ ,g)−1

−−−−−−−→ g∗f̃∗ (1.12)

See (4.6) for a visualization of this definition.
The commutation morphisms are too general to be entirely useful, though it is helpful to

retain the concept for manipulations when no further hypotheses are needed. Nonetheless,
for our theorems such hypotheses are needed.

1.7. Definition. When (1.10) is cartesian, we write bc(f, g) = cd(f, g; f̃ , g̃) and use the
aggregate notation, as before:

bc = {F bc(f, g)G}. (1.13)

Invertible base changes. In this subsection and the next, we introduce some further
conditions on geofibered categories that support a larger class of natural transformations
to which to apply our theorems. We include the proofs of a few of their simplest properties,
some of which are necessary for the definitions to make sense and others are simply most
appropriate when placed here.

We begin with an abstract structure on geofibered categories inspired by Definition 1.7.

1.8. Definition. Let Sh → Sp be a geofibered category. We will call a class P of
morphisms in Sp push-geolocalizing if:

• It contains every isomorphism and is closed under composition.

• For each f ∈ P and g ∈ Sp, the base change bc(f, g) is an isomorphism and f̃ ∈ P .

Similarly, we define P to be pull-geolocalizing by swapping the roles of f and g. We say
that a geofibered category is given a geolocalizing structure if it is equipped with a pair of
push- and pull-geolocalizing classes in Sp.

We chose the word “localizing” in deference to the convention that to invert morphisms
of a category is to localize it; the full term “geolocalizing” is in part to complement
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“geofibered”, and in part to indicate that it is not the geolocalizing morphisms themselves
that are inverted.

We note that, by definition, every geofibered category has a “trivial” geolocalizing
structure consisting of just the isomorphisms of Sp.

This concept matched by that of a “good” SGF or SGNT, based on the following
concept. Its uniqueness claim will be proven later, to keep this section efficient.

1.9. Definition. We say that an SGF F is alternating if it is of the form (f∗)g∗h∗ · · ·
(f optional), where none of f , g, h, . . . is the identity map. The alternating reduc-
tion of F is the unique (by Proposition 4.11) alternating SGF F ′ admitting an SGNT
in 〈comp0 ∪ triv0〉 (thus, an isomorphism in SGNT) F → F ′.

1.10. Definition. Let Sh→ Sp be a geolocalizing geofibered category, and let F be an
alternating SGF; we say that it is good if, either: every basic SGF in F of the form f ∗

is pull-geolocalizing; or, every basic SGF in F of the form f∗ is push-geolocalizing. For
any SGF, we say that it is good if it has a good alternating reduction. We say that an SGNT
φ : F → G is good if both F and G are good.

1.11. Lemma. If F is good, then for any SGNT φ : F → G with φ ∈ comp∪ triv, we
have G good as well. If F is alternating, the same is true for φ ∈ bc.
Proof. Let α : F → F ′ and β : G → G′ be the alternating reductions of F and G. If
φ ∈ comp0 ∪ triv0, then βφ is also an alternating reduction of F , and thus by Definition 1.9
we have F ′ = G′; since F (and thus F ′) is good by hypothesis, G′ (and thus G) is good.
Likewise, if φ ∈ comp−1

0 ∪ triv−1
0 , then αφ−1 is an alternating reduction of G and so we

have G′ = F ′ and thus, again, that G is good.
Finally, for φ ∈ bc, it is clear first of all that for a map bc(f, g) : g∗f∗ → f̃∗g̃

∗ itself, the
right-hand side is good if the left is, because the hypotheses imposed by goodness on the
maps of spaces are stable under base change. For a more general element A bc(f, g)B of bc,
if F = Ag∗f∗B is good and alternating then G = Af̃∗g̃

∗B satisfies the conditions given in
Definition 1.10 (but is not alternating); since the (push-, pull-) geolocalizing morphisms
are closed under composition and contain the identity, these conditions are preserved by
passage through any element of 〈comp0 ∪ triv0〉, so the same conditions are satisfied by the
alternating reduction G′; i.e. G′, hence G, is good.

This definition is complemented and completed by the following concept, upon which
all significant results of this paper are ultimately based.

1.12. Definition. Let Sh→ Sp be a geofibered category and let F be any SGF, viewed as
a diagram of morphisms in Sp. We define the roof of F , denoted roof(F ), by constructing
the final object in the category of spaces with maps to this diagram, which exists and is
unique by the universal property of the fibered product.

Then the roof is the space thus defined, also denoted roof(F ), together with its “projec-
tion” morphisms

aF : roof(F )→ T(F ) bF : roof(F )→ S(F ). (1.14)
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We also define roof(F ) as an SGF to be the functor aF∗b∗F (resp. aF∗ if bF = id, resp. b∗F
if aF = id, resp. id), and in Proposition 1.13 we will construct a canonical SGNT
F → roof(F ) that we will also call roof(F ). We will make an effort to eliminate ambiguity.

Just as for goodness, the concept of a roof comes associated with a natural morphism.
We state this proposition here and prove it as Propositions 4.17 and 4.18.

1.13. Proposition. For any SGF F , its roof is the unique SGF of the form a∗b
∗ admitting

a map roof(F ) : F → roof(F ) in SGNT+
0 . This map exists and is uniquely determined by

the properties that it factors through the alternating reduction of F and, if F is alternating,
through an element of bc.

1.14. Corollary. Let Sh → Sp be a geolocalizing geofibered category. If F is any
good SGF, then roof(F ) is also good, and roof(F ) : F → roof(F ) is a natural isomorphism.

Proof. In the construction of Proposition 1.13, the roof morphism is constructed in such
a way that its factors in bc are applied only to an alternating source, with the other factors
in comp0 or triv0 by Definition 1.9. Therefore Lemma 1.11 applies and each composand
of roof(F ) is good. Then each base-change factor is, by definition of good, an isomorphism,
while all the other factors are automatically so.

This motivates notation for classes of SGNTs including the inverses of invertible base
changes.

1.15. Definition. We use the following class notation for the “balanced” elements
of SGNT in which the units and counits only occur in pairs within a base change morphism,
along with a “forward” variant:

SGNT+
0 = 〈bc∪ comp0 ∪ triv0〉 SGNT0 = 〈SGNT+

0 ∪(SGNT+
0 )−1〉. (1.15)

Here we use the inverse notation to refer to the class of inverses of only the actually
invertible (as abstract natural transformations) elements of SGNT+

0 .

Invertible unit morphisms. We will also be allowing the inverses of certain units
and counits, whose definition is more technical. The goodness hypothesis in this next
definition is, strictly speaking, unnecessary for its formulation, but as it is required in our
only nontrivial example of this concept, Lemma 2.7, it seems likely that without it the
definition would be invalid.

1.16. Definition. Let Sh → Sp be a geolocalizing geofibered category. We define an
acyclicity structure on it to be a class C of pairs (a, b) of morphisms of Sp having the
properties:

• Every pair (a, i) or (i, b), with a being push-geolocalizing and b being pull-geolocalizing,
and where i is any invertible morphism in Sp (and having the appropriate sources and
targets, as below), is in C.
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• For any (a, b) ∈ C, we have S(a∗) = T(b∗), and for every f ∈ Sp such that a∗ unit(f)b∗
is good and a natural isomorphism, either ( left invertibility) a∗ unit(f), or ( right
invertibility) unit(f)b∗ is a natural isomorphism.

• C is closed under base change in the following sense: for any pair of maps X → T(a∗)
and Y → S(b∗), the base change

(ã, b̃) = X ×T(a∗) (a, b)×S(b∗) Y (1.16)

of the pair map (a, b) into T(a∗)× S(b∗) is in C.

This entails the derived concept of admissibility: an SGF F is admissible if roof(F ) =
(aF , bF ) is in C. We will say, correspondingly, that any (a, b) ∈ C is itself admissible.

We chose “acyclicity structure” in reference to a morphism f : X → Y being acyclic in
geometry or topology when unit(f) is an isomorphism on certain sheaves (e.g. possibly
only those of the form b∗F), potentially after taking cohomology (i.e. applying derived a∗).

We note that, by definition, every geolocalizing geofibered category has a “trivial”
acyclicity structure consisting of just the pairs (a, i) and (i, b) of the first point.

1.17. Definition. Let Sh → Sp be a geolocalizing geofibered category with acyclicity
structure. We define the class Unit to be the class of all good SGNTs of the form FφG,
where φ = A unit(f)B is a natural isomorphism and dom(φ) (which is AB) is admissible.

Until now we have ignored the counits, but for the most part, this is justifiable. We
give the proof of the following lemma in Section 6.

1.18. Lemma. We have counit ⊂ 〈SGNT+
0 ∪ unit〉 and, with Counit as in Definition 1.17

but with good counit(f) replacing arbitrary unit(f), we have Counit ⊂ 〈SGNT+
0 ∪Unit〉.

2. Main theorems
In this section we suppose the existence of an ambient geolocalizing geofibered category
with an acyclicity structure, Sh→ Sp; as we have noted, any geofibered category can play
this role with trivial structures; among our results is a description of some nontrivial ones.
Our main results are of two types: the first contains a “quantitative” and comparatively
technical result on SGNTs; the second contains a “qualitative” corollary. Proofs, if not
indicated otherwise, are given in Section 6.

The quantitative result is a classification of SGNTs:

2.1. Theorem. Let φ : F → G be in 〈SGNT∪ bc−1 ∪Unit−1〉, and denote roof(G) =
aG∗b

∗
G. Then there exist maps of spaces f and g, such that aG∗ unit(g)b∗G is a natural
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isomorphism, forming a commutative diagram:

F

G

(aF f)∗(bF f)∗ = (aGg)∗(bGg)∗

roof(F ) = aF∗b∗
F

roof(G) = aG∗b∗
G

φ

roof(F )

roof(G)

(comp∗(f,aF ) comp∗(f,bF ))◦aF ∗ unit(f)b∗
F

(comp∗(g,aG) comp∗(g,bG))◦aG∗ unit(g)b∗
G

(2.1)

The upward arrow can be omitted for φ ∈ 〈SGNT∪ bc−1〉.
The last sentence is Proposition 5.2, and the rest is Proposition 5.5. The use

of 〈SGNT∪ bc−1〉 rather than 〈SGNT0 ∪ unit〉 is justified by Lemma 1.18.
Now we give criteria under which “all diagrams commute”; i.e. there exists only

one SGNT between two given SGFs. First, we have the basic Corollaries 4.12 and 4.19:

2.2. Theorem.

1. For any SGFs F and G, there exists at most one φ : F → G in 〈comp∪ triv〉.

2. Let G = a∗b
∗; then for any SGF F , there exists at most one φ : F → G in SGNT0.

We have also found a curious conclusion that is not quite a corollary of the latter nor
of the main theorem:

2.3. Theorem. Let φ : F → G be in SGNT, where both F and G have at most one
basic SGF. Then either both are trivial and φ ∈ triv−1

0 triv0, or neither is, so F = G and
φ = id.

More importantly, we have the following general theorem:

2.4. Theorem. Let φ : F → G be a natural transformation of SGFs.
Write S(F ) = S(G) = X and T(F ) = T(G) = Y ; denote Z = X × Y and let

b : roof(F ) ×Z roof(G) → roof(G) be the projection map, where roof(F ) → Z and
roof(G) → Z are the pair maps (bF , aF ) and (bG, aG); suppose that aG∗ unit(b)b∗G is an
isomorphism.

Suppose as well that the map roof(G) : G → roof(G) is an isomorphism. If φ ∈
〈SGNT∪ bc−1 ∪Unit−1〉, then it is the unique map ψ : F → G in that class.

We also have an auxiliary lemma giving sufficient conditions for the hypotheses of the
theorem to hold. To state it, we use the term weakly admissible of an SGF F to mean
that the pair morphism (aF , bF ) of its roof is a universal monomorphism.
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2.5. Lemma. We have roof(G) is an isomorphism if G is good. The other condition of
Theorem 2.4 holds if either:

• F is weakly admissible, and either there exists some φ ∈ 〈SGNT0 ∪ unit〉, or its conse-
quence: (bG, aG) factors through (bF , aF );

• G is weakly admissible and there exists some φ ∈ 〈SGNT0 ∪Unit−1〉.

Finally, we address the question of exhibiting geolocalizing and acyclicity structures on
the geofibered categories that occur in practice. The intended application of this concept
is to “sheaves” on “schemes” in various more or less geometric contexts:

Presheaves We may define Sp = Catop, the opposite category of all small categories,
and for any category X, set ShX to be the category of presheaves on X (with values in
any fixed complete category; if it is abelian, then so is ShX for any X). For any morphism
f : X → Y of spaces (i.e. a functor F : Y → X) and for any shapes (presheaves) F ∈ ShX
and G ∈ ShY , we take the usual pushforward and pullbacks:

f∗(F)(y) = F(F (y)) f ∗(G)(x) = lim
x→F (y)

F(y) (2.2)

This is far more general than actual sheaves on schemes, but because of the flexibility in
the concept of geolocalizing and acyclicity structures, our results apply uniformly to it (if
with potentially less power should these structures be too trivial).

Quasicoherent sheaves Each ShX is the category of quasicoherent sheaves in the
Zariski topology on X ∈ Sp being a scheme of finite type over a fixed locally noetherian
base scheme; pushforwards and pullbacks are those of quasicoherent sheaves.

Constructible étale sheaves Each ShX is the category of `-torsion or `-adic “sheaves”
in the étale topology on X being a scheme of finite type over a fixed locally noetherian
base scheme; pushforwards and pullbacks are those of such “sheaves” (ultimately, inherited
from actual sheaf operations) We will not recall the definition here, nor the definitions of
any of the functors on it, but work purely with the associated formalism.

Constructible complex sheaves Each ShX is the category of constructible sheaves
of complex vector spaces in the classical topology on X being a complex-analytic variety
of finite type over a fixed base variety. Pushforwards and pullbacks are those of sheaves
of complex vector spaces.

Derived categories With Sp being any of the above categories of spaces, we may take
ShX to be the derived category of the corresponding abelian category of shapes on a
space X. Pushforwards and pullbacks are, respectively, the right-derived pushforward
and left-derived pullback.
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The noetherian hypotheses were suggested by Brian Conrad to ensure the good behavior
of the sheaf theory, as we have attempted to encapsulate in Definition 1.1 and subsequent
definitions. Presumably this list, as varied as it is, is incomplete; for instance, most likely
sheaves on the crystalline site, D-modules, and other such categories belong on it as well.

We regret that we have been unsuccessful in locating references that explicitly prove,
in all of these contexts, that the functors described (which are defined very carefully)
actually have the properties that we have called a geofibered category. In all cases,
the pseudofunctor structure of pushforwards is either totally obvious (as for presheaves
and sheaves, given (2.2)) or formal (as for `-adic and derived sheaves), and in lieu of
existing literature on the category-theoretic minutiae, we feel free to simply declare that the
structure for pullbacks should be determined by adjunction and the required compatibilities;
see the discussion following Definition 1.1.

In order to exhibit geolocalizing structures on these categories, we simply recall the
base change theorems of algebraic geometry, together with standard properties of the
types of morphism.

2.6. Lemma. (Proper, smooth, and flat base change.) In the étale or complex (possibly
derived) contexts, the class of proper morphisms of schemes is push-geolocalizing and the
class of smooth morphisms is pull-geolocalizing. In the quasicoherent (possibly derived)
context, the class of flat morphisms is pull-geolocalizing.

A stunningly general flat base change theorem for derived quasicoherent sheaves on
any algebraic spaces over any scheme can be found at [Stacks, Tag 08IR]. The proper
and smooth base change theorems in étale cohomology were proven for torsion sheaves by
Artin [SGA IV3, Exp. xii, xiii, xvi]; the `-adic and derived versions follow formally. The
recent preprint [LZ12] of Liu and Zhang presents an extension of these theorems to the
derived categories on Artin stacks in the lisse-étale topology, as well.

As for acyclicity structures, in general we can only offer the trivial one, but in the étale
context or its derived analogue (and presumably by the same token, the complex one) we
can do better using a theorem from SGA4.

2.7. Lemma. In the étale or derived étale contexts, the class

C = {(a, b) : X → Y × Z | (a, b) is an immersion} (2.3)

is an acyclicity structure for the geolocalizing structure defined in Lemma 2.6.

3. String diagrams
In the course of executing the general strategy of Section 5 we will need to do a few specific
computations with SGNTs. As these have little intrinsic meaning, the work would be
unintelligible using traditional notation, so we have chosen to express it visually using
“string diagrams”.

For the convenience of readers familiar with such depictions of categorical algebra, in
the present section we will give only the essential definitions and results that will be cited
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in our later proofs. A more conversational introduction to this topic of string diagrams,
together with the proofs of the mostly routine facts shown here, are left to the appendix.

In summary, in our diagrams, vertical edges represent basic geometric functors, and
are marked with upward or downward arrows to distinguish, respectively, f∗ from f ∗.
The shapes shown in Figure 1 generate all our string diagrams by horizontal (natural
transformation) and vertical (functor) composition, which correspond to horizontal (left-
to-right) and vertical (bottom-to-top) concatenation of diagrams. We use a doubled-line
convention for our edges, which has no mathematical meaning but does improve aesthetics
and (with some imagination) topologically justifies most of our string diagram identities
as being mere topological deformations in the plane.

An example of the correspondence between string diagrams and SGNTs is given in
Figure 2, but we will never be so thorough in labeling them in actual use.

We emphasize that it is important for the correspondence between string diagrams
and natural transformations that the string diagram be labeled; i.e. for the edges and
components to have the meanings assigned to them by Figure 1. For if not, then the
operation of reflecting the string diagram vertically produces another planar graph that is
valid combinatorially, but does not necessarily correspond to any SGNT (the corresponding
operation on functors f ∗g∗h∗ · · · is to swap upper ∗ and lower ∗, but the resulting basic SGFs
are no longer composable). We thank Mitya Boyarchenko for this last observation, however
much it forced the restructuring of this paper.

Although the diagram acquires its unique identity as an SGNT only after labeling
all the edges, we will almost always omit these labels. We will never assert the identity
of an SGNT corresponding to an unlabeled diagram without indicating how we would
label it, which can (in our applications) always be deduced from the ends by propagating
through the various transformations.

String diagram identities. In this subsection we record all the identities satisfied by
string diagrams with two shapes. These can basically be considered the relations in the
category whose objects are SGFs and whose morphisms are the string diagrams between
two given SGFs. The proofs, which are either direct translation of the corresponding
symbolic equations or simple manipulation, are left to the appendix for the convenience of
readers who would prefer to get to the point.

3.1. Lemma. (Adjunction identities.)

= =
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f∗

f∗

f∗ = f∗

f∗

f∗

f∗ = f∗

id → f∗f∗

f∗ f∗

f∗f∗ → id

f∗ f∗

id∗

id

id

id∗

id∗ ∼= id

id

id∗ id

id∗

id∗ ∼= id

(fg)∗

g∗ f∗ (fg)∗

g∗ f∗

(fg)∗ ∼= f∗g∗

(fg)∗

f∗ g∗ (fg)∗

f∗ g∗

(fg)∗ ∼= g∗f∗

Figure 1: The basic SGNTs as string diagrams

(hg)∗

g∗

h∗ h∗

h−1∗

counit(h)

comp∗(h, g) comp∗(h, h−1)
triv∗

h−1∗ counit(h)g∗ ◦ h−1∗h∗ comp∗(h, g) ◦ comp∗(h−1, h)(hg)∗ ◦ triv∗(hg)∗

(hg)∗ triv∗−−→ id∗(hg)∗ = (hh−1)∗(hg)∗
comp∗(h,h−1)−−−−−−−−→ h−1∗h∗(hg)∗

comp∗(h,g)−−−−−−→ h−1∗h∗h∗g∗
counit(h)−−−−−→ h−1∗g∗

Figure 2: Example of a string diagram with corresponding SGNT expressed several ways
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3.2. Lemma. (Composition identities (associativity).)

= =

= =

3.3. Lemma. (Composition identities (inverses).)

= =

g∗ f∗

g∗ f∗

g∗ f∗

g∗ f∗

=

g∗ f∗

g∗ f∗

g∗ f∗

g∗ f∗

=

3.4. Lemma. (Trivialization identities (trivializations).)

= = = =

3.5. Lemma. (Trivialization identities (adjunctions).)

= = = =

3.6. Lemma. (Trivialization identities (compositions).)

= = = =

= = = =
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3.7. Lemma. (Adjunction-composition identities (part 1).)

= =

= =

3.8. Lemma. (Adjunction-composition identities (part 2).)

= =

= =

3.9. Lemma. Suppose we have maps of spaces f , g, h, and k and another one l such that
g = lk and h = fl (resp. f = hl and k = lg). Then we have the first equality (resp. the
second equality) below, and similarly for the ∗ version:

f∗g∗

h∗k∗

l∗

f∗g∗

h∗k∗

=

f∗g∗

h∗k∗

l∗= (3.1)

We note that [McC12, Definition 4] establishes a Frobenius algebra as an object in a
monoidal category satisfying precisely the above diagrammatic constraints, except that
here, the ends of that diagram are not all the same object. This lemma therefore shows
that the basic SGFs of a geofibered category form a generalization of a Frobenius algebra,
presumably a “Frobenius algebroid” in the same sense as a groupoid, though we have not
been able to find this term in use.

3.10. Lemma. We have the equivalence (for either direction of edges and all possible
assignments of maps of spaces compatible with the depicted compositions):

= (3.2)
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4. Uniqueness of reduced forms
We have defined (Definitions 1.9 and 1.12) two reduced forms for an SGF and claimed
that they are unique. In this section we prove these claims; the first one is relatively
straightforward and does not require string diagrams, but the manipulations of the second
one are simplified by their use, so we have placed both of them at this point. Only one
general relation needs to be noted here, expressing the “commutation” of unrelated natural
transformations.

4.1. Lemma. Let F = AF1BF2C be a composition of functors; let φ : F1 → G1 and
ψ : F2 → H2 be natural transformations. Then the following diagram commutes:

F = AF1BF2C

G = AG1BF2C

H = AF1BH2C

K = AG1BH2C

AφBF2C

AF1BψC

AG1BψC

AφBH2C
(4.1)

Uniqueness of the alternating reduction. Showing that the alternating reduction
is unique is a matter of enforcing an inductive structure on its construction, as encapsulated
by the following lengthy definition.

4.2. Definition. Let φ : F → G be an SGNT; we define a staging structure on it to be
the following data:

• A sequence of SGNTs

F = F0
γ1−→ F1

α2−→ F2 · · · α2n−−→ F2n = G (4.2)

together with representations of γi ∈ 〈comp0〉 and αi ∈ 〈triv0〉 as products of factors
that are basic SGNTs.

• This data must satisfy some conditions. We make reference to the terms of an SGF,
its basic SGF composands; a term is trivial if it is of the form id∗ or id∗; a composable
pair is a sequence of two consecutive terms of the form f∗g∗ or f ∗g∗. We define the
stage of any trivial term or composable pair in any of the intermediate SGFs of the
staging structure, together with conditions:

– The stage of any composable pair of F0 is 0, and of any trivial term is 1.
– Let α be any factor of αi, acting locally as t1tt2 → t1t2, where t is trivial; we

require that t have stage i − 1 and that both pairs t1t and tt2 (when composable)
have stage i. If t1t2 is a composable pair, we define its stage to be i. We say that t,
t1t2, and t1t and tt2 are affected by α.

– Let γ be any factor of γi, acting locally as t0t1t2t3 → t0tt3, where t1t2 is composable.
We require that t1t2 have stage i − 1, and that if either of these terms is trivial,
then that term has stage i. We define the stages of t0t or tt1 (when composable), to
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be those of t0t1 and t1t2 each; the stage of t (if it is trivial) is i, unless t1 and t2
are both trivial, in which case the stage of t is the larger of their stages. We say
that t and t1t2 are affected by γ.

We say that the staging structure is complete at stage s when s is odd if Fs has no
composable pairs, and when s is even if Fs has no trivial terms.

The following fact is trivial:

4.3. Lemma. In a staged SGNT φ : F → G, any trivial term or composable pair in Fs
has stage at most s, if s > 0. A term of stage s in G is not affected by any factor of any
αi or γi with i > s.

In the next few lemmas we establish the strong properties of a complete staging.

4.4. Lemma. If an SGNT with staging φ : F → G is complete at any stage s ≥ 3, then it
is also complete at stage s− 2.
Proof. Suppose s is odd, and consider a composable pair t1t2 in Fs−2; it has stage ≤ s−2
by Lemma 4.3. It is thus not possible for either term to be affected by a factor of αs−1, so
this pair persists into Fs−1. There, since t1t2 still has stage ≤ s− 2, it cannot be acted on
by a factor of γs so this space in Fs−1 will remain in a composable pair in Fs.

Suppose s is even, and consider a trivial term t in Fs−2. By Lemma 4.3 it has
stage ≤ s− 2, so it is not affected by any factor of γs−1, so it persists into Fs−1. There, it
has the same stage and so cannot be affected by any factor of αs, so it persists into Fs,
forming a trivial term there.

4.5. Corollary. If φ : F → G has a staging such that G has neither composable pairs
nor trivial terms, then it is complete at every stage s ≥ 1.
Proof. It is vacuously compatible with the definition of a staging to define F2n+2 =
F2n+1 = F2n = G with α2n+2 = γ2n+1 = id, with which convention φ is complete at stages
2n+ 1 and 2n, so by induction on Lemma 4.4, at every stage s ≥ 1.

4.6. Lemma. If φ : F → G has a staging that is complete at every stage s ≥ 1, then all
the intermediate SGFs Fi and SGNTs αi and βi are uniquely determined by F .

Proof. It is clear that if φ is complete at F1, then F1 must be obtained by composing
all composable pairs of F0; this is well-defined regardless of order by (1.4) and gives γ1
uniquely. Then it is also clear that if φ is complete at F2, it must be obtained by deleting
all trivial terms of F1, which is well-defined regardless of order by Lemma 4.1 and gives α2
uniquely. By induction, the lemma follows.
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Now we turn to the construction of a staging on a given SGNT.

4.7. Lemma. Let φ : F → G have a staging; then any reordering of the factors of any γi
by associativity, as in (1.4), is a valid staging.

Proof. Given two overlapping compositions:

t0((t1t2)t3)t4 t0(t1(t2t3))t4 (4.3)

suppose that the first grouping satisfies the conditions of a staging. Thus, t1t2 has
stage ≥ i−1 and each trivial tj has stage i. Let t be their composition, so in particular, tt3
has the same stage as t2t3 and, as it is acted on by another factor of γi, thus has stage ≥ i−1.
It follows that t2t3 has stage ≥ i− 1, and likewise that if t3 is trivial, then it has stage i.
Therefore the second grouping also satisfies the conditions of a staging. Furthermore, the
product of the first group has stage i unless all three of t1, t2, and t3 are trivial, which is
the same exception as for the second group, in which case its stage is the maximum of
their stages. So the results of each grouping are identical.

4.8. Lemma. Let φ : F → G have a staging and let t0t1t2t3t4t5 be a sequence of composable
terms in G. Suppose that the staging can be extended by composing t2t3 or by composing
both t1t2 and t3t4. Then it can be extended by the sequence of compositions

t0(t1((t2t3)t4))t5. (4.4)

Proof. We suppose that we are constructing stage 2n+1 of φ. By the first assumption, the
stage of t2t3 is 2n. By construction, t = (t2t3), if trivial, has stage 2n+1 and both pairs t1t
and tt4 have the same stages as, respectively, t1t2 and t3t4. By the second assumption, the
latter stages are 2n and each t1,4 (when trivial) has stage 2n+ 1. Therefore, the pair tt4
may be composed in a staging, with value u (if trivial) of stage 2n+ 1 and the pair t1u
having stage that of t1t, which is the same as that of t1t2, which is 2n. So the pair t1u
may be composed as well.

4.9. Corollary. Let φ : F → G have a staging ending at stage 2n+1, and let ψ ∈ comp0
have domain G affecting a pair t1t2 of stage ≤ 2n − 2. Define a factorization of γ2n+1,
using Lemma 4.3 and associativity (1.4), as γ1γ0, where γ0 does not affect t1t2 and γ1

is a pair of two comp0 factors having values t1 and t2 respectively. Let φ′ be the portion
of φ up to stage 2n and let ψ′ be ψ applied to the codomain of γ0. Then, if ψ′γ0φ′ has a
staging, so does ψφ.

Proof. By Lemma 4.7, the SGNT γ1γ0φ′ has a staging, so by definition, so does γ0φ′,
and then Lemma 4.8 applies.

4.10. Lemma. Let φ : F → G have a staging, and let ψ be a basic SGNT either in
comp0 or triv0 composable with φ. Then ψφ has a staging.
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Proof. The proof is by descending induction, with the two terminal cases:

1. ψ ∈ triv0 acts as t1tt2 → t1t2, where the triple satisfies the conditions of a staging at
stage 2n;

2. ψ ∈ comp0 acts as t1t2 → t, where the composable pair satisfies the conditions of a
staging at stage 2n+ 1;

In the first, we can append ψ to α2n, satisfying the definition of a staging. In the second,
we can begin γ2n+1 with ψ, satisfying the definition of a staging. Note that these each
apply, respectively, at stages 2 and 1, so the induction is well-founded.

Suppose that ψ ∈ triv0 acts on a trivial term t; if (1) does not apply, then either t
has stage < 2n− 1 or one of the pairs including t is composable; if the conditions for a
composition in a staging do not apply to it, then either the pair has stage < 2n or the
other term is trivial of stage < 2n− 1.

Suppose that ψ ∈ comp0 acts on a composable pair t1t2; if (2) does not apply, then
either its stage is < 2n, or one of the terms ti is trivial of stage < s.

In either case, we have identified a pair t1t2 such that either at least one term is trivial
and has stage < 2n− 1, or t1t2 itself has stage < 2n; when ψ ∈ triv0 it acts on one of the ti,
and when ψ ∈ comp0 it acts on t1t2. Then by (1.6), we can replace ψ with either the
composition of t1t2 or a trivialization of either trivial ti. In the latter case, by Lemma 4.1,
we may “commute” ψ with all βi and γi down to Fs. In the former case, we do this
with ψ ∈ comp0 using Corollary 4.9 and Lemma 4.1. Either way, the proof follows by
induction.

4.11. Proposition. For any SGF F , there exists a unique map F → G in 〈comp0 ∪ triv0〉
with G alternating.

Proof. Any such SGNT has a staging by induction on Lemma 4.10, and G has neither
trivial terms nor composable pairs by definition of an alternating SGF. Therefore, by
Corollary 4.5, it is complete at every stage, so by Lemma 4.6 it is uniquely determined
by F . Given F alone, such a map exists by the construction in the proof of that lemma.

4.12. Corollary. If φ : F → G is in 〈comp∪ triv〉, then it is unique there, and F and G
have the same alternating reduction.

Proof. Write φ as an alternating composition of 〈comp0 ∪ triv0〉 and its inverses. By
Proposition 4.11, either one preserves both the alternating reduction and the map to it,
so this is true of φ as a whole by induction. If there is another such map φ′, then φ−1φ′

is a self-map of F preserving the map to its alternating reduction. Since that map is an
isomorphism, we have φ−1φ′ = id.
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Relations. To deal with the roof and its additional complications arising from the
base change morphisms, we prove a number of “commutation relations” among comp0,
triv0, and bc, beginning with rewriting some especially trivial transformations in terms of
simpler ones. In this subsection, we use cd instead of bc to emphasize the fundamentally
diagrammatic nature of the arguments; following that, we will be forced for practical
reasons to specialize.

4.13. Lemma. We have identities

cd(f, id; f, id) = triv−1
∗ f ∗ ◦ f ∗ triv∗ : f ∗id∗→ id∗f ∗ (4.5a)

cd(id, f ; id, f) = f∗ triv∗−1 ◦ triv∗ f∗ : id∗f∗→ f∗id∗. (4.5b)

Proof. First, we note that according to the definition (1.12), we have as a string diagram

cd(f, g; f̃ , g̃) =

f∗ g∗g

g̃∗g̃ f̃∗̃f

(4.6)

Now, for the claimed identities, moving the right-hand side terms to the left, they are
equivalent to the two string diagram identities

= = (4.7)

the first of which follows from Lemma 3.5 and then Lemma 3.6 (twice each), and the
second of which follows from Lemma 3.6 (twice) and then Lemma 3.1.

For those nontrivial SGNTs that do “interact”, we have the following relations:

4.14. Lemma. The following “commutation relations” hold in SGNT0:

a. We have, for any composable maps f and g of spaces:(
f∗id∗g∗ triv∗−−→ f∗g∗

comp∗(g,f)−−−−−−→ (fg)∗
)

=
(
f∗id∗g∗

comp∗(g,id)−−−−−−→ f∗g∗
comp∗(g,f)−−−−−−→ (fg)∗

)
(4.8a)(

f∗id∗g∗ triv∗−−→ f∗g∗
comp∗(g,f)−−−−−−→ (fg)∗

)
=
(
f∗id∗g∗

cd(g,id;g,id)−−−−−−→ f∗g∗id∗
comp∗(g,f)−−−−−−→ (fg)∗id∗ triv∗−−→ (fg)∗

)
(4.8b)(

f ∗id∗g∗ triv∗−−→ f ∗g∗
comp∗(f,g)−−−−−−→ (gf)∗

)
=
(
f ∗id∗g∗ comp∗(id,g)−−−−−−→ f ∗g∗

comp∗(f,g)−−−−−−→ (gf)∗
)

(4.8c)
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f ∗id∗g∗ triv∗−−→ f ∗g∗

comp∗(f,g)−−−−−−→ (gf)∗
)

=
(
f ∗id∗g∗

cd(id,f ;id,f)−−−−−−−→ id∗f ∗g∗
comp∗(f,g)−−−−−−→ id∗(gf)∗ triv∗−−→ (gf)∗

)
(4.8d)

b. We have, referring to (1.10):(
g∗id∗f∗ triv∗−−→ g∗f∗

cd(f,g;f̃ ,g̃)−−−−−−→ f̃∗g̃
∗
)

=
(
g∗id∗f∗

comp∗(f,id)−−−−−−→ g∗f∗
cd(f,g;f̃ ,g̃)−−−−−−→ f̃∗g̃

∗
)

(4.9a)(
g∗id∗f∗ triv∗−−→ g∗f∗

cd(f,g;f̃ ,g̃)−−−−−−→ f̃∗g̃
∗
)

=
(
g∗id∗f∗

comp∗(g,id)−−−−−−→ g∗f∗
cd(f,g,f̃ ,g̃)−−−−−−→ f̃∗g̃

∗
)

(4.9b)

c. Consider the large commutative diagram

BX

YP

Z

Q

g

f

g̃

f̃

h

k

h̃

(4.10)

We have:(
g∗f∗h∗

comp∗(h,f)−−−−−−→ g∗(fh)∗
cd(fh,g;f̃ h̃,k)−−−−−−−→ (f̃ h̃)∗k∗

)
=
(
g∗f∗h∗

cd(f,g;f̃ ,g̃)−−−−−−→ f̃∗g̃
∗h∗

cd(h,g̃;h̃,k)−−−−−−→ f̃∗h̃∗k
∗ comp∗(h̃,f̃)−−−−−−→ (f̃ h̃)∗k∗

)
(4.11a)(

h∗f ∗g∗
comp∗(h,f)−−−−−−→ (fh)∗g∗

cd(g,fh;k,f̃ h̃)−−−−−−−→ k∗(f̃ h̃)∗
)

=
(
h∗f ∗g∗

cd(g,f ;g̃,f̃)−−−−−−→ h∗g̃∗f̃
∗ cd(g̃,h;k,h̃)−−−−−−→ k∗h̃

∗f̃ ∗
comp∗(h̃,f̃)−−−−−−→ k∗(f̃ h̃)∗

)
(4.11b)

Proof. For (4.8a) and (4.8c), we can directly apply (1.6) for the former (and its analogue
Lemma 3.6 for the latter), ignoring the second composand. The same goes for both
equations (4.9). The remainder we prove using string diagrams.

For (4.8b), the string diagrams of the left and right transformations are, respectively:

g∗ f∗id∗

(fg)∗

g∗ id∗ f∗

(fg)∗

(4.12)

Clearly it is the latter diagram that needs to be simplified; to understand it, the blue
sub-diagram is cd(g, id; g, id), the red one is comp∗(g, f), and the black one is triv∗. We
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recall our convention on omitting labels from diagrams; there should be no ambiguity
provided that one recalls the labels of the ends.

We begin by applying Lemma 3.6 to the one triv, simplifying it to the first diagram
below, which then transforms using Lemma 3.8 on the blue subdiagram:

= (4.13)

Finally, we break the identity (middle lower) string according to Lemma 3.4 and remove
the associated unit-triv combination using Lemma 3.5 and then Lemma 3.6 again, leaving
the first figure of (4.12), as desired. The same computation applies to (4.8d) (or, to avoid
repeating the same work: take the above computation, reverse all the arrows, and reflect
it horizontally).

For (4.11a), we again render the two transformations as diagrams, which are somewhat
more complex:

h∗ f∗ g∗

k∗ f̃∗h̃∗

h∗ f∗ g∗

k∗ (f̃ h̃)∗

g̃∗
h̃∗

f̃∗

(4.14)

To parse the first diagram, the blue sub-diagram is comp∗(h, f) and the red one is cd(fh, g;
f̃ h̃, k). To parse the second diagram, the blue sub-diagram is cd(f, g; f̃ , g̃), the red one
is cd(h, g̃; h̃, k), and the black one is comp∗(h̃, f̃). Simplifying this requires a number of
steps but as a first major goal we eliminate the loop. We use matching colors to indicate
changes in the diagrams, where violet denotes a subdiagram that is both blue and red (i.e.
is changed both from and to the adjacent diagrams).

= = (4.15)

In the first equality we use Lemma 3.7, and in the second, we use Lemma 3.10. Now we
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paste this into the rest of (4.14):

= = (4.16)

where the first equality is Lemma 3.2 again and the second is Lemma 3.7. The last diagram
is the left diagram of (4.14), as desired. The proof of (4.11b) is the same (that is, with
arrows reversed and the diagrams reflected horizontally).

Uniqueness of the roof. Now we pursue a “normal form” for the roof similar to the
“staging” defined for the alternating reduction. It is much less complicated, however.

4.15. Lemma. We have 〈comp0 ∪ triv0 ∪ bc〉 = 〈triv0〉〈comp0〉〈bc〉.
Proof. Before proceeding, note that using Lemma 4.14(b) from “left to right” requires
making a choice of the individual morphisms f̃ , g̃, and h̃ given only the composition h̃f̃ ;
this may not, in general, be possible, but is in fact canonical if we assume the outer
rectangle is cartesian (then we may take g̃ to be the base change of g). This is why we
specialize to bc in this corollary, aside from the applications.

Now, it follows from Lemma 4.1 and the cases (a) and (b) of Lemma 4.14 that
〈comp0 ∪ triv0 ∪ cd〉 = 〈triv0〉〈comp0 ∪ cd〉, and it follows from case (c) that we have
〈comp0 ∪ cd〉 = 〈comp0〉〈cd〉.

Although this proves that any φ ∈ 〈comp0 ∪ triv0 ∪ bc〉 can be written as αβγ with
α ∈ 〈triv0〉, β ∈ 〈comp0〉, and γ ∈ 〈bc〉, the intermediate functors domα = cod β and
dom β = cod γ are not canonical. In the general case this is unfixable, though the next
lemma remains valid. In the case of the roof, this is fortunately all that is required.

4.16. Lemma. Let F be any SGF and let φ : G→ F be in 〈bc∪ comp0 ∪ triv0〉. Then there
exists an SGF Ftriv = FlFFr and an SGNT φtriv = φlFφr : Ftriv → F , having the properties
that:

• Fl = id if and only if φl = id; otherwise, Fl = id∗ and φl = triv∗, and unless F = f ∗F1
starts with a ∗, we have Fl = id,

• Fr = id if and only if φr = id; otherwise, Fr = id∗ and φr = triv∗, and unless F = F1f∗
ends with a ∗, we have Fr = id,

and a ψ : G→ Ftriv in 〈bc∪ comp0〉 such that φ = φtrivψ.
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Proof. By Lemma 4.15, it suffices to assume φ ∈ 〈triv0〉. By (4.5a), any triv∗ in the
configuration f ∗ triv∗ : f ∗id∗ → f ∗ can be replaced by bc(f, id) followed by triv∗ f ∗ : id∗f ∗ →
f ∗. Inductively, then, any configuration f ∗1 · · · f ∗n triv∗ is equal to triv∗ f ∗1 · · · f ∗n following a
sequence of base change morphisms. Similarly, by (4.5b) we may convert triv∗ f1∗ · · · fn∗ to
f1∗ · · · fn∗ triv∗ following a sequence of base changes.

Analogously, by (1.6), any triv∗ in the configuration triv∗ f∗ or f∗ triv∗ can be replaced
wholesale with simply comp∗(f, id) or comp∗(id, f) respectively. Likewise for triv∗.

Now, by Lemma 4.1, all triv∗ and triv∗ morphisms “commute”, so we may assume that
those covered in the first paragraph occur first on the composition of φ, followed by those
covered in the second paragraph. It follows that the only trivializations that cannot be
eliminated by this combination are those appearing in the configuration triv∗ f ∗ at the left
end, or f∗ triv∗ at the right end of the composition, giving Ftriv and φtriv, and the above
construction furnishes ψ.

Now we can prove Proposition 1.13.

4.17. Proposition. For any SGF F , its roof roof(F ) is the unique SGF of the form a∗b
∗

admitting a map roof(F ) : F → a∗b
∗ in SGNT+

0 , and this map is unique.

Proof. Let φ : F → roof(F ) be in SGNT+
0 ; that is, in 〈bc∪ comp0 ∪ triv0〉. Lemma 4.15

then places it in the form αγβ with α ∈ 〈triv0〉, γ ∈ 〈comp0〉, and β ∈ 〈bc〉, and furthermore
by Lemma 4.16, α = id, since roof(F ) = aF∗b

∗
F .

Write β : F → G; since γ : G → aG∗b
∗
G is in comp0, we must have G of the form

(a1∗ · · · ai∗)(b∗j · · · b∗1) and β ∈ 〈bc〉; thus, the maps ak and bk furnish the projections of the
final object mapping to the diagram of F described in Definition 1.12, and in particular, G
is unique. We will write G = Fbc.

The proof then reduces to two claims: that the map γ : Fbc → roof(F ) is unique
in 〈comp0〉, and that the map β : F → Fbc is unique in 〈bc〉. The former is simple:
since roof(F ) = aF∗b

∗
F , the map γ must be of the form (comp∗(?, ?) · · · )(comp∗(?, ?) · · · );

i.e. the ∗ and ∗ compositions do not interact. Then by (1.4), both factors are fully
associative, so γ is unique.

For the latter, the proof follows directly from Lemma 4.1 but only with the right words.
By definition, β ∈ 〈bc〉 is a composition of base change morphisms, which we may view as
rewriting the string of basic SGFs F : each bc(f, g) replaces g∗f∗ with f̃∗g̃∗; we will call the
two-letter space it affects its support. We will say that given any particular representation
of β as a composition, the basic SGFs of F itself have level 1 and that each replacement
increases the level of each basic SGF by 1. We will say that the level of a specific bc(f, g)
factor is n if that is the larger of the levels of f and g.

By definition of level, if a factor of level 1 follows any other factor, then their supports
must be disjoint, and therefore, they are subject to Lemma 4.1. Therefore, β may be
written with all the factors of level 1 coming first; i.e. β = ββ0, where β0 is a composition
of level-1 factors and β, a composition of higher-level factors.

The set of possible level-1 factors is the set of possible base change morphisms out
of F , each of which correspond to a configuration g∗f∗ in F . Since in roof(F ), no such
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configurations remain, each one must be the support of some factor of β, and therefore
necessarily some level-1 factor. Furthermore, since their supports are disjoint their order
is irrelevant by Lemma 4.1. Therefore, β0 is uniquely determined by F .

Now, letting F ′ = cod β0, this functor is uniquely determined by F and we may apply
induction to β : F ′ → roof(F ′) = roof(F ) to conclude that β is equal to a uniquely defined
ordered product of its factors of each level, and is therefore unique, as claimed.

The following proposition gives a less laborious construction of the roof morphism.

4.18. Proposition. The roof morphism of F factors through the alternating reduction
of F and admits a factorization (φnβn) · · · (φ1β1), where each βi ∈ bc and each φi is an
alternating reduction.

Proof. To define the roof morphism of F , it suffices to define it for the alternating
reduction F ′, since then by Proposition 4.17, they will have the same roof. We thus
define β1 = id. Let β2 be any element of bc defined on F ′, and let φ2 be the alternating
reduction of its codomain. We claim that we may complete the proof by induction applied
to the codomain of φ2. Indeed, we have decreased the number of terms of F ′ if that number
was at least three, and if it has exactly two terms, then the construction is completed by a
single additional base change.

We finish with a few other results extending the uniqueness of the roof to a larger class
of SGNTs.

4.19. Corollary. If φ : F → G is in SGNT0, then roof(F ) = roof(G) as SGFs and
roof(G)φ = roof(F ) as SGNTs.

Proof. For the former, write φ as an alternating composition of SGNT+
0 and its inverses.

By Proposition 4.17 both preserve the roof (as in the proof of Lemma 1.11).
For the latter, again write φ = φ0α with α ∈ SGNT+

0 ∪(SGNT+
0 )−1 and H = dom(φ0) =

cod(α), we have roof(G)φ0 = roof(H) by induction. If α ∈ SGNT+
0 then we get roof(G)φ =

roof(H)α = roof(F ) by Proposition 4.17. If α ∈ (SGNT+
0 )−1, then we get roof(F )α−1 =

roof(H) = roof(G)φ0.

5. Simplification via the roof
Finally we can employ the device of the roof to simplify an arbitrary SGNT that may
contain unit morphisms.

5.1. Proposition. Let φ : FG→ Ff∗f
∗G be the SGNT F unit(f)G. Then there exists a

map of spaces f̃ and a commutative diagram:

FG roof(FG) = a∗b∗

Ff∗f∗G a∗f̃∗f̃∗b∗

roof(FG)

φ a∗ unit(f̃)b∗ (5.1)
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where the lower edge is in SGNT0 and is independent of φ.
Proof. For notation, write roof(F ) = aF∗b

∗
F , roof(G) = aG∗b

∗
G, and roof(FG) = a∗b

∗ as
in the statement (we used aFG∗b∗FG in Definition 1.12). Consider the following diagram:

X

roof(F )

Y

roof(G)

Z

A

roof(FG)

aF

bF
aG

bG f

pG pF

(5.2)

where X = T(F ), Y = S(F ) = T(G), and Z = S(G), the middle square is cartesian, and
a = aFpF , b = bFpG. We observe the following formal identity:

roof(FG)×Y A ∼= (roof(G)×Y A)×A (A×Y roof(F )) (5.3)
since roof(FG) ∼= roof(G) ×Y roof(F ) by (5.2). This is represented by the following
diagram (rotated from the above for compactness):

roof(FG) ×Y A

A ×Y roof(F )

roof(G) ×Y A

A

roof(F )

roof(G)

Y

πF

πG

b̃F

ãG

f̃F

f̃G

bF

aG

f (5.4)

We define f̃ to be the projection roof(FG) ×Y A → roof(FG); then, since roof(FG) ∼=
roof(F ) ×Y roof(G), we have the following compositions, using the projections from
diagram (5.2):

f̃FπF = pF f̃ f̃GπG = pGf̃ . (5.5)
Using all this notation, we can define the multipart composition for the bottom arrow
of (5.1):

Ff∗f
∗G

roof(F ),roof(G)−−−−−−−−−→ aF∗b
∗
Ff∗f

∗aG∗b
∗
G (5.6a)

bc(f,bF ),bc(aG,f)−−−−−−−−−−→ aF∗f̃F∗b̃
∗
F ãG∗f̃

∗
Gb
∗
G

bc(ãG,b̃F )−−−−−→ aF∗f̃F∗πF∗π
∗
Gf̃
∗
Gb
∗
G

comp∗(πF ,f̃F ),comp∗(πG,f̃G)−−−−−−−−−−−−−−−−→ aF∗(f̃FπF )∗(f̃GπG)∗b∗G
= aF∗(pF f̃)∗(pGf̃)∗b∗G
comp∗(f̃ ,pF )−1,comp∗(f̃ ,pG)−1

−−−−−−−−−−−−−−−−−→ aF∗pF∗f̃∗f̃
∗p∗Gb

∗
G


(5.6b)

comp∗(pF ,aF ),comp∗(pG,bG)−−−−−−−−−−−−−−−−→ a∗f̃∗f̃
∗b∗. (5.6c)
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We have braced the middle lines for comparison with roof(FG), which by Corollary 4.19
may be written as:

FG
roof(F ),roof(G)−−−−−−−−−→ aF∗b

∗
FaG∗b

∗
G (5.7a)

bc(aG,bF )−−−−−→ aF∗pF∗p
∗
Gb
∗
G (5.7b)

comp∗(pF ,aF ),comp∗(pG,bG)−−−−−−−−−−−−−−−−→ a∗b
∗. (5.7c)

To show that (5.1) commutes with (5.6) as the lower edge, we have to show that (using
the numbers as names) (5.6) ◦ F unit(f)G = a∗ unit(f̃)b∗ ◦ (5.7). According to Lemma 4.1,
we have both of:

(5.6a) ◦ F unit(f)G = aF∗b
∗
F unit(f)aG∗b∗G ◦ (5.7a) (5.8)

(5.6c) ◦ aF∗pF∗ unit(f̃)p∗Gb∗G = a∗ unit(f̃)b∗ ◦ (5.7c) (5.9)

so since (5.6) = (5.6c)(5.6b)(5.6a) and (5.7) = (5.7c)(5.7b)(5.7a) it suffices to show that:

(5.6b) ◦ aF∗b∗F unit(f)aG∗b∗G = aF∗pF∗ unit(f̃)p∗Gb∗G ◦ (5.7b) (5.10)

We can omit the aF∗ and b∗G on the ends and move the comp∗ and comp∗ inverses in (5.6b)
to the other side, rendering both sides as maps of SGFs

b∗FaG∗ → (pF f̃)∗(pGf̃)∗. (5.11)

We show these are equal using string diagrams. First, the two sides of (5.10) are:

aG∗ b∗
F

(f̃GπG)∗ (f̃FπF )∗

aG∗ b∗
F

(pGf̃G)∗ (pF f̃F )∗

(5.12)

Note that f̃FπF = pF f̃ and the same for G, by (5.5). In the left diagram, the blue portion
is unit(f); the red portion is bc(f, bF ) bc(aG, f); the brown portion is bc(ãG, b̃F ); and the
yellow portion is comp∗(πF , f̃F ) comp∗(πG, f̃G). In the right diagram, the blue is unit(f̃);
the red is bc(aG, bF ); and the brown is comp∗(f̃ , pF ) comp∗(f̃ , pG).

Despite the complexity of these diagrams we claim that both are equivalent to that of
cd(aG, bF ; pGf̃ , pF f̃). First, the second one, where we match blue and red in consecutive
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pictures to track regions that are altered; violet means a shape that is both blue and red.

= = (5.13)

by Lemma 3.10, and this is exactly the desired cd diagram. For the larger diagram we
have to do only scarcely more:

= (5.14)

We have used Lemma 3.1 on the blue diagram (with the cyan diagram unchanged for
comparison), and Lemma 3.7 on the red diagram. This rather extended result is now
amenable to Lemma 3.10 applied twice:

= = (5.15)

where, finally, we have used Lemma 3.3 on the second diagram. The third is once again
a cd diagram, necessarily cd(aG, bF ; pGf̃ , pF f̃) because the ends are correct. This completes
the proof.

5.2. Proposition. Let φ : F → G be in 〈SGNT0 ∪ unit〉; then there exists a map of
spaces g making the following diagram commute:

F

G

roof(F ) = a∗b∗

roof(G) = (ag)∗(bg)∗

φ

roof(F )

(comp∗(g,a) comp∗(g,b))◦a∗ unit(g)b∗

roof(G)

(5.16)
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Proof. We apply induction on φ: thus, suppose that φ = αφ0, where diagram (5.16)
exists for φ0 : F → F ′ and α ∈ SGNT0 ∪ unit. If α ∈ SGNT0, then we can augment the
φ0 diagram simply:

F

F ′

roof(F ) = a∗b∗

roof(F ′) = (ag)∗(bg)∗ = roof(G)

G

φ0

roof(F )

comp∗(g,a) comp∗(b,g)◦a∗ unit(g)b∗

roof(F ′)

α

roof(G)

(5.17)

where roof(F ′) = roof(G) by Corollary 4.19; the triangle commutes by Corollary 4.19. If,
alternatively, α ∈ unit, then we write F ′ = AB and augment the φ0 diagram with (5.1):

F

ABF ′ =

roof(F ) = a∗b∗

roof(AB) = (ag)∗(bg)∗

Af∗f∗BG = (ag)∗f∗f∗(bg)∗ (agf)∗(bgf)∗ = roof(G)

φ0

roof(F )

(comp∗(g,a) comp∗(g,b))◦a∗ unit(g)b∗

roof(G)

α (ag)∗ unit(f)(bg)∗

comp∗(f,ag) comp∗(f,bg)

(5.18)

The lower edge is, by Corollary 4.19, equal to roof(G); since both squares commute and
the triangle commutes by construction, the large diagram commutes. We claim that the
right edge is equal to (comp∗(gf, a) comp∗(gf, b))◦a∗ unit(gf)b∗. We prove this using string
diagrams:

b∗ a∗g

(bg)∗ (ag)∗
f

(bgf)∗ (agf)∗

fg

=

fg

= (5.19)

where we have used first Lemma 3.2 and then (B.2) from the proof of Lemma 3.7.
This is the ultimate theorem for unit morphisms alone; now we extend it to include

inverse units.

5.3. Lemma. In Proposition 5.1, if φ is in Unit, then so is the unit in the right edge.
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Proof. For concurrency of notation, replace F andG in (5.1) with FA andBG respectively,
where we assume as in Definitions 1.16 and 1.17 that A unit(f)B is a natural isomorphism
with AB admissible and φ itself good. Let ψ = a∗ unit(f̃)b∗ for brevity.

As usual, we write roof(F ) = aF∗b
∗
F and roof(G) = aG∗b

∗
G, and similarly roof(AB) =

aAB∗b
∗
AB; by hypothesis, we have (aAB, bAB) admissible. Finally, we write roof(b∗FaAB∗

b∗ABaG∗) = a0∗b
∗
0, so by Corollary 4.19 (together with Proposition 1.13) we have the

alternating reduction roof(aF∗a0∗b
∗
0b
∗
G) = roof(FABG) = a∗b

∗. We claim that a∗ unit(f̃)b∗
is in Unit.

First, we verify that a∗ unit(f̃)b∗ is good. Indeed, we have already shown that a∗b∗ =
roof(FABG), which is good by hypothesis on φ and Corollary 1.14; likewise, the alternating
reduction of a∗f̃∗f̃ ∗b∗ is equal to roof(FAf∗f ∗BG) by the same token and the lower edge
of Proposition 5.1, so is also good.

Next, we verify that a0∗ unit(f̃)b∗0 is an isomorphism. Indeed, if we write the diagram
corresponding to Proposition 5.1 with F ↔ b∗FA and G↔ BaG∗:

(b∗
F A)(BaG∗) a0∗b∗

0

(b∗
F A)f∗f∗(BaG∗) a0∗f̃∗f̃∗b∗

0

(5.20)

then it appears as the right edge. Both horizontal edges are good, as the alternating
reduction of b∗FABaG∗ is that of FABG with aF∗ and b∗G removed, so by Corollary 1.14
they are isomorphisms. Since the left edge contains A unit(f)B, which is an isomorphism
by hypothesis, the right edge is an isomorphism, as claimed.

Finally, we verify that the pair map (a0, b0) is admissible. Indeed, if we write the
diagram

X Y Z

U V
aG

bAB aAB

bF

(5.21)

then the map from its roof to the product of its two projections X and Z is

(b0, a0) =
(
X ×U Y ×V Z → X × Z

)
= X ×U

(
Y → U × V

)
×V Z (5.22)

and is therefore the base change of an admissible map, so admissible.

5.4. Lemma. Let F = a∗b
∗ and let φ = a∗ unit(f)b∗ be a left or right isomorphism.

Then for any ψ = a∗ unit(g)b∗, it is possible to write ψφ−1 = α−1β for some α, β with
α invertible.

Proof. The proof is drawn from the “calculus of fractions”; ψφ−1 is represented by the
upper-left corner of the following two diagrams, and we take α and β to be the other two
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edges in one of them:

(a∗)b∗ (a∗)g∗g∗b∗

(a∗f∗f∗)b∗ (a∗f∗f∗)g∗g∗b∗

ψ

φ α

β

a∗(b∗) a∗g∗g∗(b∗)

a∗(f∗f∗b∗) a∗g∗g∗(f∗f∗b∗)

ψ

φ α

β

(5.23)

We choose depending on whether it is a∗ unit(f) or unit(f)b∗ that is an isomorphism; this
ensures that the same portion of α is also an isomorphism.

Now we can give the proof of our main technical theorem, which we restate for clarity.

5.5. Proposition. Let φ : F → G be in 〈SGNT0 ∪ unit∪Unit−1〉, and denote roof(G) =
aG∗b

∗
G. Then there exist maps of spaces f and g, such that aG∗ unit(g)b∗G is a natural

isomorphism, forming a commutative diagram:

F

G

(aF f)∗(bF f)∗ = (aGg)∗(bGg)∗

roof(F ) = aF∗b∗
F

roof(G) = aG∗b∗
G

φ

roof(F )

roof(G)

(comp∗(f,aF ) comp∗(f,bF ))◦aF ∗ unit(f)b∗
F

(comp∗(g,aG) comp∗(g,bG))◦aG∗ unit(g)b∗
G

(5.24)

Proof. As in the statement of the theorem, our convention in this proof will be to draw
the inverses of invertible units as arrows pointing the wrong way (there, down; here, left).

The proof is by induction on the length of φ as an alternating composition of
〈unit∪ SGNT0〉 and Unit−1. If it has only one factor, then the theorem follows from Propo-
sition 5.2 in the former case, and from Proposition 5.1 (upside-down) and Lemma 5.3 in
the latter. Thus, suppose φ has at least two factors, and write φ = φ0φ1, with φ0 having
fewer factors and φ1 being a single factor. By induction we can form diagram (5.24) for φ0
and (5.16) for φ1, giving the following diagram, which we draw rotated to save space:

F H G

roof(H) ∗roof(F ) roof(G)

φ0
roof(F ) roof(G)

φ1
roof(H)

ψ β0 α−1
0

φ

(5.25)

Here, H is some intermediate SGF. If φ1 ∈ 〈unit∪ SGNT0〉, then so is ψ and therefore β0ψ,
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and therefore we can apply diagram (5.16) to both halves, giving a larger diagram:

F H G

roof(H) ∗roof(F ) roof(G)

aF∗b∗
F ∗ aG∗b∗

G

φ1 φ0
roof(H)

ψ

roof(F ) roof(G)

β0 α−1
0

comp2 ◦ unit comp2 ◦ unit

φ

(5.26)

which is what we want. Now, suppose that φ1 ∈ Unit−1; then we rewrite the top line
of (5.25) as

aF∗b
∗
F

comp∗(f,aF ) comp∗(f,bF )◦aF ∗ unit(f)b∗
F←−−−−−−−−−−−−−−−−−−−−−−

φ−1
1

(aFf)∗(bFf)∗ = aH∗b
∗
H =

= (aKg)∗(bKg)∗
comp∗(g,aK) comp∗(g,bK)◦aK∗ unit(g)b∗

K−−−−−−−−−−−−−−−−−−−−−−−→
β0

aK∗b
∗
K

α0−→ roof(G); (5.27)

Leaving the comps on the outside, the two units form the combination considered
in Lemma 5.4, where by Lemma 5.3, we have aF∗ unit(f)b∗F ∈ Unit and so, by defini-
tion of acyclicity structure, is either a left- or right-isomorphism. Therefore we can replace
them with two different elements of unit (with a common target different from H). Since
the comps are invertible, that means that we can rewrite (5.25) as

F G

roof(H) roof(K)roof(F ) roof(G)

∗

φ

roof(F ) roof(G)
φ−1

1
β0 α−1

0
(5.28)

The second diagonal arrow is, as indicated, invertible by Lemma 5.4. Then, as before, we
may apply Proposition 5.2 to the left and to the composition of the two right arrows on
the top of this diagram to complete the proof.

6. Proofs of the main theorems
Here are the proofs of the remaining main results and supporting lemmas.

Proof of Lemma 1.18. Let counit(f) : f ∗f∗ → id be a counit morphism, and consider
the following diagram:

Y

X

X

X ×Y XX

f

f

f̃1

f̃2

∆ (6.1)
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Then, in short, we have the following sequence of maps whose composition is an SGNT
f ∗f∗ → id in 〈SGNT+

0 ∪ unit〉.

f ∗f∗
bc(f,f)−−−−→ f̃1∗f̃

∗
2

(f̃1)∗ unit(∆)f̃∗
2−−−−−−−−→ f̃1∗∆∗∆∗f̃ ∗2

comp∗(∆,f̃1) comp∗(∆,f̃2)−−−−−−−−−−−−−−→ (f̃1∆)∗(f̃2∆)∗

= id∗id∗ triv∗ triv∗
−−−−−→ id id = id. (6.2)

To see that this coincides with counit(f), we do a string diagram computation. Below is
the diagram of the map constructed in (6.2):

f∗ f∗

(6.3)

where the red portion is bc(f, f), the blue portion is unit(∆), the brown portion is
comp∗(∆, f̃1) comp∗(∆, f̃2), and the black portion is triv∗ triv∗. This is precisely the second
diagram considered in (5.12), with aG and bF replaced by f and the upper ends replaced
by id∗ and id∗ and two trivs applied. Accounting for the change in notation, diagram (6.3)
is equivalent to triv∗ triv∗ ◦ cd(f, f ; id, id):

f∗ f∗

(6.4)

By Lemma 3.5 and Lemma 3.6, this becomes merely counit(f), as desired.
Suppose now that ψ = FφG is good, where φ = A counit(f)B an isomorphism, counit(f)

is good, and dom(φ) = Af ∗f∗B admissible as in Definition 1.17. Since f ∗f∗ is good, the
factor bc(f, f) is an isomorphism by Definition 1.8. Thus, the composition (6.2) contains
only one potentially non-isomorphism, namely the term Af̃1∗ unit(∆)f̃ ∗2B, which it follows
is an isomorphism as well. It is good, even after composing with FA and BG: for
its domain FAf1∗f

∗
2BG, this follows from Corollary 1.14 and Proposition 4.17, since

bc(f, f) ∈ SGNT+
0 ; for its codomain, the entire trailing part of the diagram is its partial

alternating reduction to FABG, which is assumed to be good. Finally, by uniqueness of
the roof from Proposition 1.13:

roof(Af̃1∗f̃
∗
2B) = roof(Af ∗f∗B) = roof(domφ), (6.5)

so Af1∗f
∗
2B is admissible. Thus, Af1∗ unit(∆)f ∗2B ∈ Unit, so ψ ∈ 〈SGNT+

0 ∪Unit〉, as
claimed.
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Proof of Theorem 2.3. This follows from examining Proposition 5.2. Clearly both the
upper and lower edges are either the identity or a single trivialization each, while the right
edge must be the identity since any unit(f) would incur both a ∗ and a ∗ in G, not both of
which are present.

Proof of Theorem 2.4. By Lemma 1.18 we may use 〈SGNT0 ∪ unit〉 in place of 〈SGNT∪
bc−1〉. We show uniqueness by applying Proposition 5.5; if the bottom edge is a natural
isomorphism then it suffices to show that the right edge is independent of φ. We assume
that both arrows in this edge occur; the case in which only one does is treated in Lemma 2.5.
We denote the right edge by α−1β.

WriteX = S(F ) = S(G) and Y = T(F ) = T(G), and let A = roof(F ) and B = roof(G),
with projections aF : A → X, bF : A → Y , and similarly for G. Both maps f and g
necessarily have the same source C; we have f : C → A and g : C → B. In order for
aFf = aGg and bFf = bGg, it is equivalent that the composites (bF , aF )f = (bG, aG)g
into X × Y be equal. Such a pair of maps C → A,B is equivalent once again to a single
map h : C → A×X×Y B. Let a and b be the two projections of this fibered product.

We have f = ah and g = bh, so by diagram (B.2) in the proof of Lemma 3.7, we have

unit(f) =
(
id unit(a)−−−→ a∗a

∗ a∗ unit(h)a∗

−−−−−−→ a∗h∗h
∗a∗

comp∗(h,a) comp∗(h,a)−−−−−−−−−−−−→ f∗f
∗
)

(6.6)

and similarly for g. After composing with aF∗ and b∗F (resp. aG∗ and b∗G), applying
comp∗(f, aF ) comp∗(f, bF ) to the end is the same as the following, by Lemma 4.1:

aF∗b
∗
F → aF∗a∗a

∗b∗F → (aFa)∗(bFa)∗ → (aFa)∗h∗h∗(bFa)∗ → (aFah)∗(bFah)∗, (6.7)

and similarly for g, with G replacing F and b replacing a. In the latter situation, assuming
that aG∗ unit(b)b∗G is an isomorphism, so is (aGb)∗ unit(h)(bGb)∗ as the only potentially
non-isomorphism in (6.7), and since aFa = aGb and bFa = bGb, the last two steps of both
are identical and so cancel out in α−1β. Thus, we may assume f = a and g = b, which are
uniquely determined by F and G, making φ canonical.

Proof of Lemma 2.5. It follows from Corollary 1.14 that roof(G) is an isomorphism
if G is good.

For the second condition, first note that if φ ∈ 〈SGNT0 ∪ unit〉, then by (5.16), (bG, aG)
factors through (bF , aF ). Assuming that factorization, we have a graph morphism
roof(G) → roof(F ) ×Z roof(G) forming a section of b. Since (bF , aF ) is a universal
monomorphism, so b is a monomorphism, and therefore that section is an isomorphism;
thus, aG∗ unit(b)b∗G (in fact, unit(b) itself) is an isomorphism.

Observe that we can, in this case, fill in an α−1 to go with β = φ, in the notation of
the proof of Theorem 2.4. Namely, we take α = id = comp∗(id, aF ) comp∗(id, bF ) ◦ unit(id),
so the formal setup of the previous proof applies.

If we have a φ ∈ 〈SGNT0 ∪Unit−1〉, then by diagram (5.16) taken upside down, we find
that (bF , aF ) factors through (bG, aG) by some map g; when G is weakly admissible, the
same argument applies and shows that roof(F )×Z roof(G) ∼= roof(F ), with the projection
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onto roof(G) being g. Thus the right edge of the diagram is aG∗ unit(b)b∗G, and is also
invertible. As before, we can assume that φ = α−1 is complemented by a trivial β for
notational purposes.

Proof of Lemma 2.7. The SGA4 result that we require is the following criterion for an
invertible unit morphism; we assume the same hypotheses on schemes as in the description
of the étale context.

6.1. Lemma. ([SGA IV3, Exp. xv, Th. 1.15]) Let f : X → Y be separated and of finite
type, as well as locally acyclic (for example, smooth). Let F be an `-torsion (or, therefore,
`-adic) sheaf on Y . Then the unit morphism of sheaves

unit(f)F : F → f∗f
∗F (6.8)

is an isomorphism if and only if, for every algebraic geometric point g : y → Y with fiber
fy : Xy → y, the unit morphism

unit(fy)g∗F : g∗F → fy∗f
∗
y g
∗F (6.9)

is an isomorphism.
Now we proceed to the proof. There are three statements to verify, of which two are

trivial:

• If i is an isomorphism, then for any morphisms a or b, the pair map (a, i) or (i, b) is
isomorphic to the graph of a or b, which is an immersion.

• The base change of any immersion is again an immersion.

For the third statement, we must verify that if φ = a∗ unit(f)b∗ is good and a natural
isomorphism with (a, b) an immersion, then φ is a left or right isomorphism. The goodness
hypothesis entails that either both af and a are proper, or bf and b are smooth. Let us
write a : Y → A and b : Y → B, so f : X → Y as in the statement of Lemma 6.1.

Consider the proper case, and let p be any (geometric) point of A. We will show that
the stalk of a∗ unit(f) at p is an isomorphism, and therefore that a∗ unit(f) is itself an
isomorphism since p is arbitrary. Let p̃ denote the fiber of a over p and let p̃f denote that
of af over p. Using Proposition 5.1 on p∗a∗ and p∗(af)∗, the stalk of a∗ unit(f)b∗ at p is
the unit map from p∗a∗b

∗ ∼−→ a|p∗(bp̃)∗ to

p∗a∗f∗f
∗b∗ ∼= p∗(af)∗f ∗b∗ ∼−→ (a|pf |p̃)∗p̃∗ff ∗b∗

∼= a|p∗f |p̃∗(fp̃f )∗b∗ ∼= a|p∗f |p̃∗(p̃f |p̃)∗b∗
∼= a|p∗f |p̃∗f |∗p̃p̃∗b∗ ∼= a|p∗f |p̃∗f |∗p̃(bp̃)∗, (6.10)

where by Lemma 2.6 the arrows are isomorphisms since a and af are proper. Since (a, b)
is an immersion, bp̃ is also an immersion (the base change of (a, b) along p) and therefore
(bp̃)∗(bp̃)∗ ∼−→ id. Applying (bp̃)∗ to the right above, we find that a|p∗ unit(f |p̃) is an
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isomorphism. The same computation shows that this is the stalk of a∗ unit(f) at p, as
desired.

Consider the smooth case. Then for any point q of B we again have isomorphisms

a∗b
∗q∗

∼−→ (aq̃)∗b|∗q a∗f∗f
∗b∗q∗

∼−→ (aq̃)∗f |q̃∗f |∗q̃b|∗q (6.11)

in which aq̃ is an immersion and thus (aq̃)∗(aq̃)∗ ∼−→ id. Applying that pullback, we find
that unit(f |q̃)b|∗q is an isomorphism. Since f is smooth, it is locally acyclic, so by Lemma 6.1
all its fibers unit(f |p)p∗b|∗q = unit(f |p)b|∗p are isomorphisms, over all points p of X. Applying
it again, this means that unit(f)b∗ is an isomorphism.

7. Comments and acknowledgements
Owing to the high level of abstraction in our presentation and the precise formulation of
our definitions and theorems, some analysis of the limitations of this line of investigation
is in order.

Comments and counterexamples. The conditions of Theorem 2.4 may require some
explanation. Invertibility of the roof morphism is of course technically necessary in the
proof, and the “good” property of Lemma 2.5 gives convenient access to it, but some such
condition is actually necessary, as the following example due to Paul Balmer shows:

7.1. Example. Let X be the scheme (A1\{0})t{0}; that is, the affine line with the origin
detached, and let f : X → A1 be the natural map that is the identity on each connected
component of X. There are two SGNTs from f ∗f∗f

∗ to itself: the identity map, and the
composition φ = f ∗ unit(f) ◦ counit(f)f ∗. They are not equal, as can be seen by computing
them on the constant sheaf C of rank 1 on A1 (this works for any kind of sheaf):

• f ∗C is again the constant sheaf; f∗f ∗C has rank 2 on every neighborhood of {0};
therefore f ∗f∗f ∗C has rank 2 on {0}.

• The map counit(f)f ∗ already has to map something of rank 2 to something of rank 1,
so is not injective; therefore φ cannot be an isomorphism, much less the identity.

Since f is neither proper nor even flat, of course Lemma 2.5 does not apply; this example
illustrates the necessity of gaining control of the pathologies of the maps along which the
functors are taken. In fact, the map roof(F ) is not an isomorphism either: we have
roof(F ) = f̃2∗(ff̃1)∗, where f̃i are the projections of X ×A1 X onto X, and one can see
that, applied to C on A1, it yields a sheaf on X with rank 4 at {0} and rank 2 elsewhere,
which is nowhere isomorphic to FC as computed above.

Our second comment concerns the specific and careful definition of the class Unit. The
ultimate goal was to be able to prove Lemma 5.4, which requires only the property of
being a “left or right isomorphism” (see Definition 1.16) but whose partner Lemma 5.3
was easily proven only for SGNTs of the simple form allowed by the “trivial” acyclicity
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structure (this is actually a simplified version of the very involved history of this research).
We felt that more general invertible “units” were likely to occur in reality, and eventually
arrived at the statement of Lemma 2.7, which is the key ingredient in the expanded class,
by pondering the following example:

7.2. Example. Let X = A1 and let f : {0} → X and g : {1} → X be the closed immersions
of two points, and consider (5.23). Denote by p the map from X to a point, and let
a = b = p. Then although both squares commute and their common left vertical arrow is
an isomorphism, their right vertical arrows are both zero.

Of course, in this example, the map (p, p) : X → pt× pt is far from an immersion. But
it illustrates how the failure of this condition can cause problems, morally speaking by
subtracting information from the unit morphism embedded between a∗ and b∗ to the point
that it becomes an isomorphism when it should not; note that in Example 7.2, the map
p∗ → f∗f

∗p∗ alone is very much not an isomorphism. This map corresponds to the actual
immersion (id, p) : X → X × pt, in which the key Lemma 5.4 actually does hold.

As for the other condition of Theorem 2.4, we have no particular insight into its general
meaning, but we do note that even for maps a∗b∗ → c∗d

∗, the theorem can fail if we have
(c, d) = (a, b)g for multiple maps g, giving not necessarily equal SGNTs a∗ unit(g)b∗. This
is forbidden by the weak admissibility hypothesis of Lemma 2.5.

Finally, we comment on our choice of terminology for “standard geometric functors”.
It is easy to imagine trying to prove theorems similar to the above involving not only
f∗ and f ∗ but also f! and f ! (the “exceptional” pushforward and pullback), and indeed,
this was the original intention of this paper. Unfortunately, we were unable to identify
the correct context for such results; it seems likely that they will need to include, as well,
the bifunctors Hom and ⊗, filling out the full complement of the six functors, in order to
adequately express the relationship between f ! and f ∗. Furthermore, the techniques of
this paper appear inadequate, as a functor such as f∗g! is not alternating but apparently
has no alternating reduction (hence no roof), and is seemingly incomparable with f!g∗.

Acknowledgements. This paper would probably not have been finished were it not for
Mitya Boyarchenko’s encouragement and his astute, if disruptive, reading of the first draft
and its several implicit errors. I am also grateful to Brian Conrad for commenting on that
draft and for advocating the next section, whose title was another of Mitya’s suggestions.
During the sophomoric stages of this research, Paul Balmer was very generous in giving
me much seminar time for it, as well as disproving the original theorem and, therefore,
motivating my formulation of everything that is now in the paper. Finally, I want to thank
the anonymous referee for requesting additional organizational clarity and precision of
language that led to my formulation of Definition 1.1.

A. User guide
This section is an informal description of the intuition and use of the main theorem
Theorem 2.4 aimed at readers hoping to find a connection with familiar appearances
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of the so-called geometric functors. We begin with a non-rigorous reformulation of our
definitions:

Definition. (Imprecise.) Let F and G be two functors of the form · · · f∗g∗ · · · of sheaves;
we consider natural transformations φ : F → G contained in the smallest class closed
under the inclusion of those of the following three types:

Functorial

• The identity transformations;
• Functoriality isomorphisms f∗g∗ ∼= (fg)∗ and g∗f ∗ ∼= (fg)∗;
• Functoriality isomorphisms id∗ ∼= id and id∗ ∼= id;
• Compositions of transformations;
• Applications of f∗ or f ∗ to either side of a transformation;

Adjunction

• Transformations corresponding under adjunction of ∗ and ∗, or equivalently, the
units id→ f∗f

∗ and counits f ∗f∗ → id of such adjunctions;

Inverse

• The inverses of all invertible base change transformations g∗f∗ ∼−→ f̃∗g̃
∗, as in dia-

gram (1.10).
• The inverses of all invertible transformations f∗ → f∗g∗g

∗ or f ∗ → g∗g
∗f ∗ derived

from adjunction units.

To illustrate the functors in question, one such is by definition equivalent to the data
of a zigzag diagram of spaces

· · ·

X Y

fn

f1

gm

g1
(A.1)

corresponding to the functor (g1∗ · · · gm∗) · · · (f ∗n · · · f ∗1 ), where the central ellipsis (“· · · ”)
corresponds to further zigzags in the peak ellipsis of the picture. This notation is intended
to encompass the many variants such as f ∗g∗ or f ∗n · · · f ∗1 by omitting some of the terms
from either side of the composition (respectively, maps from the diagram).

Each of these functors has an associated “roof” (Definition 1.12), depicted diagramati-
cally as follows:

F =
A

X

B

Y
. . .

Z

C

h f g k (A.2a)
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roof(F ) =

X ×B Y × · · · × Z

X

A

Z

C

prX

h

prZ

k

aFbF = aF∗b
∗
F (A.2b)

Given the above context, our main theorems mostly claim the following:

Theorem. A transformation φ : F → G as above is unique if either:

1. F = G is of the form f∗ or g∗ and φ draws from the functorial and adjunction
transformations and inverse base changes; or, if only G is of the form f∗g

∗ and φ
draws only from the functorial transformations, base changes, and inverse base changes.

2. φ is arbitrary, if G is isomorphic to its roof aG∗b∗G, if the pair of roof maps (bG, aG)
of (A.2b) factors through the pair (bF , aF ), and if the latter is an immersion into A×C
(in the notation of the diagram).

The potential isomorphism mentioned in (2) is canonically defined in Definition 1.12;
it is effectively the sequence of base changes corresponding to (A.2b). We have strength-
ened the hypotheses unnecessarily to make it more straightforward. See the example of
“cohomological pullback” for a discussion.

Functors and transformations of this nature are found throughout geometry. Part (1)
is the more common application, and signifies that a diagram can be shown to commute
by simple manipulation. Part (2) indicates at least a slightly domain-specific computation
that (as its proof ultimately shows) is not entirely symbolic manipulation.

Coherence of tensor products. Recall that the tensor product of sheaves F and G
on a scheme X satisfies the relations

F ⊗ G = ∆∗(F � G), F � G = pr∗1F ⊗ pr∗2 G,

where pr1,2 are the projections X×X → X and ∆: X → X×X is the diagonal morphism.
Taking the latter, “outer” tensor product as the fundamental object allows the convenient
formulation of tensor product identities entirely in terms of the functors described by
the theorem. We obtain the commutativity and associativity constraints,

F ⊗ G ∼= G ⊗ F (F ⊗ G)⊗H ∼= F ⊗ (G ⊗H),

using the functoriality of ∗ on the analogous identities:

∆ = sw ∆ (∆× id)∆ = (id×∆)∆,

where sw: X ×X → X ×X is the coordinate swap.
As an easy consequence, we obtain the conclusion of Mac Lane’s coherence theorem for

the tensor category of sheaves: any natural transformations of two parenthesized multiple
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tensor products constructed only from commutativity and associativity constraints are
equal. Indeed, all such parenthesized products are repeated pullbacks g∗ for various maps g,
so such a transformation is a map

g∗ ∼= g∗1 · · · g∗n → h∗1 · · ·h∗n ∼= h∗,

where the outside isomorphisms are by functoriality of pullback. Therefore part (1) of
the theorem applies.

Projection formula and compatibility diagrams. As a more interesting example,
we consider the projection formula morphism for a map f : X → Y and sheaves F and G
on X and Y respectively:

f∗F ⊗ G → f∗(F ⊗ f ∗G).

It can be expediently defined by first forming the cartesian diagram

Y × YY

X × YX X × X

f

∆Y

Γf =(id,f)

∆X (id ×f)

(f×id)

and then rewriting the projection formula as

∆∗Y (f × id)∗(F � G)→ f∗Γ∗f (F � G)

and realizing it as a base change morphism. Here we have used the fact that f∗F � G ∼=
(f × id)∗(F � G).

Examples of diagrams of the projection formula are diagrams (2.1.11) and (2.1.12)
of [Con00], which are correctly said to be trivial but are nonetheless rather tedious, and in
fact automatically commute. For verification we reproduce them here, using our notation.
The first one is:

f∗F ⊗ (G ⊗H)

f∗(F ⊗ f∗(G ⊗H))

f∗(F ⊗ (f∗G ⊗ f∗H))

(f∗F ⊗ G)⊗H

f∗(F ⊗ f∗G)⊗H

f∗((F ⊗ f∗G)⊗ f∗H)

(2.1.11)

where the horizontal maps are associativity, the lower-left vertical map is the isomor-
phism f ∗(G ⊗ H) ∼= f ∗G ⊗ f ∗H that is easily deduced from the outer product formula-
tion, and the others are projection formula maps. Here, we have f : Y → X for schemes
X and Y , where F is a sheaf on X and G and H are on Y . If we write ∆X and ∆Y
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for the respective diagonal morphisms, then the two directions around the diagram are
transformations

∆∗X(f × id)∗(id×∆Y )∗ → f∗∆∗Y (id× f)∗(∆Y × id)∗((id× f)× id)∗,

and the latter is of the form f∗g
∗ after applying functoriality isomorphisms to the chain of

pullbacks, so part (1) of the theorem applies.
The second diagram is:

(gf)∗F ⊗ G

g∗(f∗F)⊗ G

g∗(f∗F ⊗ g∗G)

(gf)∗(F ⊗ (gf)∗G)

g∗f∗(F ⊗ (gf)∗G)

g∗f∗(F ⊗ f∗g∗G)

(2.1.12)

where the upper and lower horizontal and lower-left vertical maps are projection formulas,
the other vertical maps are functoriality, and the middle map is defined by inverting either
the upper-left or lower-right vertical maps and composing; to check the small squares it
suffices to check the big one. Here, we have f : Z → Y and g : Y → X, with sheaves F
on Z and G on X, and the two ways around the diagram are transformations

∆∗X(gf × id)∗ → g∗f∗∆∗Z(id× f)∗(id× g)∗,

which again can be brought into the form treated by part (1) of the theorem by condensing
the pullbacks and pushforwards.

Cohomological pullback. An obvious way of involving units of adjunction is to intro-
duce the change of space or cohomological pullback maps, defined as follows. Let ∗ denote
the base (final) scheme and for any X with its canonical map p : X → ∗, let H∗(X, ?) = p∗
denote global cohomology. Cohomological pullback is defined for any map f : Y → X as
the natural transformation (written with reference to a sheaf F on X)

H∗(X,F) = p∗F → p∗f∗f
∗F ∼= (pf)∗f ∗F = H∗(Y, f ∗F)

since pf is the structure map for X. It follows easily from part (1) of the theorem that
any composition of cohomological pullbacks from X to Z connected by some number of
composable maps is independent of which intermediate maps are used; i.e. that pullback
is functorial in the same sense as ∗ itself. Indeed, pullback is a transformation of the
form pX∗ → pZ∗f

∗, and by applying “reverse natural adjunction” (see (1.3) for this not-
widely-mentioned operation) is equivalent to a transformation pX∗f∗ → pZ∗, which by a
functoriality isomorphism is equivalent to a transformation (pXf)∗ → pZ∗, which is unique.

More interestingly, let us say that f is a cohomological isomorphism if its associated
pullback is an isomorphism. Then we can compose pullbacks and the inverses of pullbacks
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that are isomorphisms to get maps between the global cohomology of spaces that are not
connected by composable maps, but merely zigzags (similar to (A.2a)) where the zigs are
invertible. Nonetheless, these are transformations to which part (2) of the theorem applies.
For example, if we use the exact diagram shown there, we get transformations pX∗ → pZ∗.

The criterion given by the theorem as stated above for these transformations to be
unique is somewhat restrictive: we would require that there be an actual map f : Z → X
commuting with the structure maps p, in which case the zigzag pullback coincides with
the actual pullback along f . A slightly less restrictive hypothesis is given in Theorem 2.4:
that the projection map X × Z → Z be a cohomological isomorphism; then the universal
representative of zigzag pullbacks from X to Z passes through X × Z.
Cup products and cohomology algebras. A final application of the theorem is
again to tensor products: the cup product on cohomology, defined in the following two-step
manner. For any sheaf F on X, writing just H∗(F) rather than H∗(X,F), we have a map

H∗(F)⊗H∗(F)→ H∗(F ⊗ F)

defined as the cohomological pullback along ∆: X → X ×X

(p× p)∗(F � F)→ (p× p)∗∆∗∆∗(F � F) ∼= p∗(F ⊗ F)

We have used the fact that (p × p)∗(F � F) ∼= p∗F � p∗F = p∗F ⊗ p∗F . Then, if F
is a ring sheaf with multiplication m : F ⊗ F → F , we compose with the induced
map H∗(m) : H∗(F ⊗ F)→ H∗(F) to obtain the cup product

^ : H∗(F)⊗H∗(F)→ H∗(F).

It is easy to show, from the functoriality of cohomological pullback, that whenever we
have a map f : X → Y and thus we have a commutative diagram of spaces, we get one of
natural transformations:

X

Y

X × X

Y × Y

f f×f

∆X

∆Y H∗(F)

H∗(f∗F) H∗(f∗F)⊗H∗(f∗F)

H∗(F)⊗H∗(F)

^X

^Y

Indeed, we need only adjust the second diagram to bring the ring multiplication map of F
out. But this follows from naturality, i.e. the left square in the diagram below commutes:

H∗(f∗F)

H∗(F)

H∗(f∗F)⊗H∗(f∗F)

H∗(F)⊗H∗(F)H∗(F ⊗ F)

H∗(f∗F ⊗ f∗F)

^X

^Y

H∗(f∗m)

H∗(m)

f∗ f∗
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The rest of the proof is just that the two paths in the right half of the diagram are a pair
of alternative cohomological pullbacks from X ×X to Y , hence equal.

By a similar token, we can show that the cup product is an algebra structure on H∗(F).
We will gloss over the details that the ring multiplication map can be factored out of
the diagrams expressing commutativity, unitarity, and associativity, after which they all
express aspects of the functorial nature of cohomological pullback again.

We can go further in the case that X = G is a group scheme, whose multiplication map
induces a coalgebra structure on H∗(G,F) for any sheaf F , with comultiplication defined
by cohomological pullback along G × G → G and counit being pullback along ∗ → G.
Once again, functoriality of the pullback proves that this is indeed a coalgebra. Taken
together with the cup product we easily combine the structures into a Hopf algebra, since
(modulo writing the naturality diagrams that pull H∗(m) out) all the compatibilities
express equality of various iterated cohomological pullbacks.

This is standard algebraic topology material and nothing in this example has actually
cited the main theorem directly; we include it only to note that it rests on a fact,
functoriality of cohomological pullbacks, that is a corollary of our main theorem, as well
as to indicate the relevance of this setup to well-known constructions.

B. Fundamentals of string diagrams
Here is an overview of the use of pictorial notation for category-theoretic computations,
with an emphasis on applications to this paper, together with proofs of the diagram
equivalences presented in Section 3.

String diagrams are used to depict the algebra of category theory visually, and there
appears to be a variety of styles in which they are drawn. These topological representa-
tions of natural transformations (introduced by Penrose [Pen71,PR87] and whose first
introduction into the pure mathematics literature seems to have been in [JS91]; an in-
structive introduction is given by the video series [Cat]) seem to have the same mysterious
effectiveness in category theory that the Leibniz notation does in calculus, often indicating
algebraic truths through visual intuition. It does not appear that the topological data
is intrinsically important, though some experience with string diagrams suggests that
removing loops is an essential first step in reducing them.

Overview of string diagrams. String diagrams are a notational paradigm for repre-
senting natural transformations and, in particular, for making the following concepts from
category theory more amenable to intuitive manipulation.

Notation. Functors and natural transformations can be combined in composition in
several ways, reflecting the bicategorical structure of the category of small categories. Two
functors may of course be composed, which we denote by pure juxtaposition without the
symbol ◦. If φ : A→ B is a natural transformation of two functors A and B, and if F is
a functor such that FA and FB are defined, then we write Fφ to mean the associated
natural transformation FA → FB such that Fφx = F (φx) for any object x. Likewise,
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if AF and BF are defined, then we write φF to mean the functor AF → BF such
that φFx = φF (x).

We use the common term “horizontal composition” of natural transformations φ : A→
B and ψ : C → D to mean the following natural transformation AC → BD, which we will
write as simply φψ without ambiguity:

A A B

C D D

φ

ψ

=
=

A B

C D

φ

ψ

A B B

C C D

φ

ψ

=
== = (B.1)

Introduction to string diagrams. Every string diagram depicts a single natural
transformation of functors, where all compositions (of both functors and transformations)
are made explicit. Its main feature is a web of continuous paths recording the history of
each functor as it is transformed; these transformations occur at the intersections. The
connected components of the complement of this web represent the categories related
by these functors, with the direction of composition being the same as in any diagram
X → Y → Z. Thus, each functor is like a river flowing between two banks, and to apply
the functor is to cross the river. The intersections of paths are natural transformations,
with the direction of composition being upwards. In this paper, the allowable intersections
are those given in Figure 1 representing as marked the basic SGNTs of Definition 1.3. We
give a precise definition of the string diagrams we use:

B.1. Definition. A string diagram is a planar graph that is the union of shapes of the
general form shown in Figure 1, where the various segments may have any lengths. These
shapes may only intersect at their ends, and conversely, any end of a shape in the diagram
must either join another shape, or be continued upward or downward to an infinite vertical
ray. The vertices of the graph are either the univalent caps of the triv∗ or triv∗ shapes,
the trivalent intersections of the comp∗ or comp∗ shapes, or the right-angle turns of the
various shapes; the edges are the connected line segments in the complement of the vertices.
A string diagram may also have bi-infinite, directed vertical lines disjoint from the other
portions.

We write our diagrams with their edges doubled. This has no practical meaning, but
aside from making the diagrams more aesthetic, it provides some topological intuition that
will be explained later. There is a correspondence between SGNTs and string diagrams
labeled as in Figure 1.

B.2. Definition. Let D be a string diagram with its edges labeled; then any horizontal
slice not containing a vertex of D determines an SGF by composing the labels left-to-right
(rather than right-to-left, as is traditional in algebraic notation). In particular, its eventual
slices in the two vertical directions determine two SGFs F and G. We describe how to
obtain an SGNT φD : F → G; it satisfies the following properties:

• Each of the diagrams of Figure 1 has the interpretation as an SGNT given there.
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• If D is split by any simple path extending to horizontal infinity in both directions and
not containing any vertices or crossing any horizontal edge (the latter, a restriction
born of our choice of visual style), then both the lower and upper parts D1 and D2 are
string diagrams (after extending their cut edges to infinity). We have φD = φD2φD1.
That is, vertical composition of SGNTs is vertical concatenation of diagrams.

• If the complement of D contains a simple path extending to vertical infinity in both
directions, then its left and right parts D1 and D2 are string diagrams and φD is the
horizontal composition of φD2 after φD1. That is, horizontal composition of SGNTs is
horizontal concatenation of diagrams.

Under this interpretation, we have the following correspondence:

• The complement of D in R2 consists of finitely many connected open sets, each of
which represents a category.

• Each vertical edge is a functor from the category on its left to the one on its right; an
upward edge is an f∗, and a downward edge is an f ∗ (thus, the direction of f is always
left-to-right when facing along the edge).

• A natural transformation occurs at any horizontal edge (including those of zero length
at the valence-1 vertices). Its direction is from the functor below it to the functor above.

We will say that two diagrams are equivalent if they define equal transformations.

Proofs of string diagram identities. In this subsection we collect the proofs from
Section 3, which are by and large trivial translations of symbolic category-theory notation
into string diagrams.
Proof of Lemma 3.1. These diagrams correspond to the fundamental identities (1.2) of
the unit and counit that ensure that they define an adjunction.
Proof of Lemma 3.2. The left side is the string diagram equivalent of (1.4). The right
side follows by Yoneda’s lemma from (1.5) and the left side.
Proof of Lemma 3.3. The left two diagrams express in string diagram language that
comp∗ comes in inverse pairs, which we have assumed by definition. The right two also
express this, for comp∗, which is not a definition, but follows immediately from (1.5) and
Yoneda’s lemma.
Proof of Lemma 3.4. The first and third follow from the definition, since triv∗ comes
by hypothesis in an inverse pair. The second and fourth express the same for triv∗ and
follow from (1.7) by Yoneda’s lemma.
Proof of Lemma 3.5. The third and fourth express the correspondence (1.7) of triv∗
and triv∗ via Yoneda’s lemma. The first and second express the same correspondence of
their inverses.
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Proof of Lemma 3.6. The entire first row of equalities is the string diagram version
of (1.6), which we assume to hold. The second row follows from this equation and from (1.5)
and (1.7) by Yoneda’s lemma.
Proof of Lemma 3.7. These correspond to the assumed compatibility of comp∗ with
comp∗ via adjunction expressed in (1.5). This compatibility entails the equality of the two
units, respectively the two counits, of the adjunctions for the two sides of (fg)∗ = g∗f ∗

(resp. of (fg)∗ = f∗g∗):

= = (B.2)

If we apply the second row of Lemma 3.3 to each of the four composition shapes in these
two diagrams, we get the four diagrams of Lemma 3.7.
Proof of Lemma 3.8. We illustrate the upper-left one; the others are formally identical.

= = (B.3)

using first Lemma 3.1 and then Lemma 3.7.
Proof of Lemma 3.9. This interesting diagram is easy to prove from the previous ones.
We will omit the labels, since they can be inferred by comparison with the figure. In
the equalities below, matching blue and red indicate which portions of the diagram are
changed; violet indicates a shape that is both blue and red.

= = = (B.4)

using the second row of Lemma 3.3, then Lemma 3.2, then the first row of Lemma 3.3.
The proof of the ∗ version is identical with the appropriate change of notation (or follows
by Yoneda’s lemma from (1.5)).
Proof of Lemma 3.10. Again using colors to indicate the affected regions, we have

= = (B.5)

by Lemma 3.9 (twice) and then Lemma 3.3.
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Topological intuition and application to objects. It is a tautology of string
diagrams that they are useful because they are visual; our chosen notation, through a
combination of design and good fortune, happens to display a remarkable compatibility
with topological intuition that has been commented on several times earlier in this paper.

The general principle of our string diagrams is that topologically identical diagrams
are equivalent. We don’t know how to prove this in that kind of generality, though a close
examination of our many figures will show that they are all topological trivialities (i.e.
diagrams equivalent through ambient isotopy are equal as natural transformations), with
the exception of Lemmas 3.3 and 3.4, if one takes the double-line notation seriously (this
is the reason for its invention). In fact, if in the first line of the latter figure one removes
the inner loop formed by one of the sets of doubled lines, the identity is again topologically
accurate. However, it is easy to give a simple version that is almost too subtle to remark
upon. Indeed, we have never invoked it directly, but it is used constantly to rearrange
diagrams to our liking.

B.3. Lemma. Let D ⊂ R2 be a string diagram and let f : R2 → R2 be any continuous
map whose restriction to each edge of D is an affine map with positive scale factor in the
direction (horizontal or vertical) of that edge. Then f(D) is an equivalent string diagram
to D.

Proof. We see, first, that f(D) is a string diagram, since each basic shape is transformed
by f into a basic shape of the same type, and any edge abuts the same basic shapes
or is infinite in both diagrams by continuity and positive affinity of f . Furthermore, f
induces a bijection between components of R2 \D, and any two adjacent components are
separated by an edge of the same direction; thus, the interpretation of each edge as a
map of schemes remains valid. To see that the diagrams are equivalent, first consider two
distinct connected components of D, if they exist. By a simple induction, each of them
is equivalent, as a string diagram, to its image under f , and these images are translated
with respect to each other as compared to the originals. But translational motion is an
equivalence by naturality.

Ours is not the only notation for string diagrams; in fact, it appears to differ in some
particulars from others commonly used. McCurdy and Melliès [McC12,Mel06], following
Cockett and Seely [CS99], use “functorial boxes” rather than line segments to denote
functors, but this reflects their different application of the string diagram visualization:
their diagrams denote objects of a monoidal category and their morphisms, rather than
functors and their natural transformations. In fact, our notation is more general and can
easily be extended to display the specific instances of functors and natural transformations
obtained by evaluating them at individual objects of the underlying categories. However,
we believe that string diagram notation is inherently domain-specific, depending on the
natural properties and relationships of the functors and transformations it describes, so it
is unlikely that there is one single, universally effective style. That said, the box notation
is entirely free of features that display the nature of the functors that appear in it.

As an example of the two diagram styles, we present the definition of a monoidal
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functor and a monoidal natural transformation between two monoidal functors. In the
notation of Melliès (which is particularly attractive), the monoidality of a functor f ∗
is expressed in Figure 3. The meaning of the box is that, inside, the f ∗ is “stripped”

id

f∗F f∗G

f∗(F⊗G)

f∗ m[F ,G] : f ∗F ⊗ f ∗G → f ∗(F ⊗ G).

Figure 3: Monoidal functor à la Melliès

from the objects; the name of the map m[F ,G] is not mentioned, as it is implicit to the
diagram, which is specialized to the needs of monoidal categories. By comparison, the
monoidality of f ∗ may be expressed in our notation as in Figure 4. In each of its diagrams,

F f∗F

G f∗G

m f∗F⊗f∗Gf∗

F

G

m f∗(F⊗G)
f∗→

Figure 4: Monoidal functor in our notation

the background layer is a horizontal string diagram with the strings being objects of the
category corresponding to the planar region containing them (according to Definition B.2)
and their intersections being transformations from left to right (here, marked, as we have
no specialized notation for monoidal categories as we do for geofibered ones). Vertical
stacking of objects’ strings corresponds to their monoidal product.

Unlike in the purely functorial diagrams, each individual diagram does not depict a
morphism m; rather, it denotes the endpoints of such a morphism (the rightmost labeled
object in each) and the “location” of m. The morphism itself is obtained by “sweeping”
the functorial diagram over the objects from left to right, as shown above. Whenever
it crosses a marked morphism, the motion corresponds to the introduction of that map
between the “endpoint” on the left and the one on the right. (Obviously, we must forbid
endpoint diagrams that would allow degenerate or ambiguous configurations.)

Thus, the diagrams display the history of an object and the potential natural morphisms,
but it is the topological relationships between them that give the actual maps.

As a further example of this, consider the monoidality of the natural transformation θ =
comp∗(g, f). In Melliès’ notation, it is the equation of diagrams in Figure 5. The
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id

θ

(fg)∗F (fg)∗G

g∗f∗(F⊗G)

(fg)∗

θ θ

id

(fg)∗F (fg)∗G

g∗f∗(F⊗G)

g∗f∗=

g∗f∗F ⊗ g∗f∗G g∗f∗(F ⊗ G)

(fg)∗F ⊗ (fg)∗G (fg)∗(F ⊗ G)

θ⊗θ

m◦m

m

θ

Figure 5: Monoidal transformation à la Melliès

interpretation is straightforward; vertical juxtaposition of morphisms is composition and
horizontal is monoidal product. In our notation, we express it in Figure 6 as a closed
loop of translations. Moving the functorial “foreground” from left to right, as before,

F

G
m g∗f∗F⊗g∗f∗G

θ

(fg)∗

f∗ g∗

F

G
m g∗f∗(F⊗G)

θ

(fg)∗

f∗ g∗

F

G
m (fg)∗F⊗(fg)∗G

θ

(fg)∗

f∗ g∗

F

G
m (fg)∗(F⊗G)

θ

(fg)∗

f∗ g∗

m◦m

θ⊗θ θ

m

Figure 6: Monoidal transformation in our notation

produces one or two iterations of m, depending on how many of its strings cross that
vertex. Moving the objects’ “background” from bottom to top produces an instance of
the natural transformation comp∗(f, g) (the one on the object F ⊗ G for the θ edge; for
each factor of θ ⊗ θ, we get the instances on F or G individually). Since the translational
motions commute, so does the diagram of maps. We cannot help but feel that this is
an instance of the Eckmann–Hilton argument for the commutativity of higher homotopy
groups (as depicted in Hatcher’s book [Hat02, p. 340]).

The fact that we have expressed a single natural morphism, as in Figure 4, in terms
of an equivalence of several diagrams, would seem to be at odds with our intention of
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using individual diagrams to express natural transformations. In fact, this morphism
could be expressed in a purely functorial notation with some additional convention as to
the appearance of the “monoidal product string”, which would involve the complication
of expressing its bivariant nature. However, it is actually this approach that is at odds
with the philosophy of our diagrams, since the morphism of Figure 4 is not a “structural”
morphism but rather a “compatibility” between two independent structures. Moreover,
the structures are not of an equivalent nature: the monoidal product is “internal” and the
pullback functor (or any monoidal functor) is “external”. So it is entirely appropriate that
their compatibility should be expressed through superimposed string diagrams of which
one represents objects in the categories cut out by the other.

In summary: in this paper we have used “string diagrams” representing functors and
their natural transformations, but we can “specialize” them to the corresponding values and
their natural maps when applied to specific objects by superimposing such a diagram on a
horizontal diagram of objects and morphisms in the categories cut out by the functorial
diagram. Then any continuous motion (avoiding some degeneracies) “instantiates” the
morphisms when the strings of one diagram cross the vertices of the other, and any closed
loop should represent a commutative diagram of these maps.

We feel that this topological intuition is a valuable asset in a graphical algebraic
notation, since it elevates the picture from simply a two-dimensional symbolic calculus to
a genuinely graphical reasoning tool.
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