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HOMOTOPY UNITAL A∞-MORPHISMS WITH SEVERAL ENTRIES

VOLODYMYR LYUBASHENKO

Abstract. We show that morphisms from n homotopy unital A∞-algebras to a single
one are maps over an operad module with n + 1 commuting actions of the operad Ahu

∞,
whose algebras are homotopy unital A∞-algebras. The operad A∞ and modules over
it have two useful gradings related by isomorphisms which change the degree. The
composition of Ahu

∞-morphisms with several entries is presented as a convolution of a
coalgebra-like and an algebra-like structures.

The present work is a sequel to [Lyu15]. We use freely notations and notions from the
previous article. There polymodule cooperads were defined and an example of A∞-poly-
module cooperad F was given. Here we describe three more examples of polymodule co-
operads: an A∞-polymodule cooperad F, an Ahu

∞-polymodule cooperad F hu and Ahu
∞-poly-

module cooperad Fhu. Here A∞ (resp. Ahu
∞) is an operad of conventional (resp. homotopy

unital) A∞-algebras, and A∞, Ahu
∞ are their signless versions. Also F (resp. F hu) is

a signless version of F (resp. Fhu). We develop the idea of “isomorphism” of operads
and polymodule cooperads changing degrees. Operads A∞ and A∞, Ahu

∞ and Ahu
∞, and

polymodule cooperads F and F, F hu and Fhu are “isomorphic” in this sense.
Both categories of dg-operads and of polymodule dg-cooperads have a model struc-

ture. It is known that the dg-operad A∞ (resp. Ahu
∞) is a cofibrant resolution of the

dg-operad As (resp. As1 ) of non-unital (resp. unital) associative dg-algebras. We show
that the polymodule cooperad F (resp. Fhu) is a cofibrant resolution of the polymodule
cooperad responsible for morphisms and composition in the multicategory of non-unital
(resp. unital) associative dg-algebras. Polymodule cooperads F , F (resp. F hu, Fhu) are
means to represent morphisms and their composition in multicategories of conventional
(resp. homotopy unital) A∞-algebras or A∞-algebras. The composition is recovered via
convolution of polymodule cooperad and a lax Cat-multifunctor Hom built from dg-mod-
ules.

Verification that changing degrees does not lead out of polymodule cooperads is
straightforward but lengthy.
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We assume that all modules are graded modules over a commutative ring. A lot
of signs disappear due to chiral system of notations, see Section 1.1: we use right op-
erators, homogeneous elements of the right homomorphism object in closed symmetric
monoidal category of graded modules. We discuss model structures on categories related
to complexes (Hinich‘s theorem) in Section 1.2. The notion of morphism of dg-operads of
certain (non-zero) degree is recalled in Section 1.6. (Homotopy unital) A∞-algebras and
the related operads A∞, A∞, Ahu

∞ and Ahu
∞ are recalled in Examples 1.5, 1.10, 1.11.

The categorical basement to constructions in this article is the notion of Cat-multi-
categories and (co)lax Cat-multifunctors, considered in detail in [Lyu15]. We study the
category nOp1 of n ∧ 1-operad modules. We prove that the category nOp1 with quasi-
isomorphisms as weak equivalences and degreewise surjections as fibrations is a model
category (Proposition 2.2). Starting with a symmetric dg-multicategory C we construct
in Section 3.1 a lax Cat-multifunctor hom, which to a sequence (Ai)i∈I , B of objects of
C and a vector (ni)i∈I ∈ NI assigns a complex hom((Ai)i∈I ;B)((ni)i∈I) = C

(
(n
i
Ai)i∈I ;B

)
equipped with compositions coming from C. We compute some signs for hom arising from
shifts [1] in Lemma 3.2 and Corollary 3.3.

The n∧1-operad module hom is revisited in Section 3.4. Polymodule homomorphisms
of certain (non-zero) degree are introduced in Definition 3.6. They are motivated by rela-
tionship between hom for shifted and non-shifted complexes (Example 3.7). We describe
the polymodules FAs1 n responsible for homomorphisms f : A1 ⊗ · · · ⊗An → B of unital
associative dg-algebras in Section 3.8 after dealing with non-unital case and polymodules
FAsn in Example 3.5. We gradually begin to construct cofibrant dg-resolution of FAs1 n.
The first step is made in [Lyu15, Proposition 3.4], where we construct differential graded
A∞-polymodules Fn, signless shifted version of A∞-polymodules Fn from Proposition 3.9.
We prove that the n∧1-operad module (A∞,Fn) is a cofibrant replacement of (As ,FAsn)
and even homotopy isomorphic to it in dgNtNn (Theorem 3.13). At last, in Theorem 3.19
it is shown that the n ∧ 1-operad dg-module (Ahu

∞,F
hu
n ) is a cofibrant replacement of

(As1 ,FAs1 n) and even homotopy isomorphic to it in dgNtNn .
In Section 4 we equip some collections of n ∧ 1-operad modules, n > 0, with co-

multiplication turning them into polymodule cooperads. This comultiplication encodes
composition in a certain multicategory. In Section 4.1 we equip (A∞,F•) with comultipli-
cation ∆G targeted at ~G. The formulas for (A∞,F•,∆

G) resemble those for (A∞, F•, ∆
G),

but contain numerous signs. Theorem B.1 allows to conclude that unitality and associa-
tivity of the latter implies unitality and associativity of the former. Thus, (A∞,F•,∆

G)
is a graded polymodule cooperad (Proposition 4.3). It is shown in Proposition 4.2 that
∆G(t) depends rather on planar tree t, than on the ordering of the set of internal ver-
tices of t. When comultiplication ∆M is targeted at ~M instead of ~G, it makes (A∞,F•)
into a dg-polymodule cooperad (Theorem 4.4). We extend comultiplications ∆M, ∆M
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to (Ahu
∞, F

hu, ∆M), (Ahu
∞,F

hu,∆M) in Proposition 4.6 making them into dg-polymodule
cooperads.

Appendix B is devoted to proof of Theorem B.1 which allows to transfer graded poly-
module cooperad structures along polymodule isomorphisms of non-zero degree. The
supplied proof is straightforward although lengthy and consists in checking that several
signs coincide. Besides, I would not call this verification a simple exercise.

Acknowledgement. The author is grateful to the referee whose valuable suggestions
reshaped the article. During work on the project the author was supported by project
01-01-14 of NASU.

1. Preliminaries

Here we describe notations, recall some notions and results needed in the following parts
of the article.

1.1. Notations and conventions. We denote by N the set of non-negative integers
Z>0. By norm on Nn we mean the function | · | : Nn → N, j 7→ |j| =

∑n
i=1 j

i.
Let V = (V,⊗,1) be a complete and cocomplete closed symmetric monoidal category

with the right inner hom V(X, Y ). Mostly we shall be interested in the category of
(differential) graded k-modules V = gr (resp. V = dg). When a k-linear map f is
applied to an element x, the result is typically written as x.f = xf . Thus we work with
right homomorphism objects which we denote gr(X, Y ) (resp. dg(X, Y )) for (differential)
graded k-modules X, Y . The tensor product of two maps of graded k-modules f , g of
certain degree is defined so that for elements x, y of arbitrary degree

(x⊗ y).(f ⊗ g) = (−1)deg y·deg fx.f ⊗ y.g.

In other words, we follow the Koszul rule imposed by the symmetry. Composition of

homogeneous k-linear maps X
f−→ Y

g−→ Z is usually denoted f · g = fg : X → Z. For
other types of maps composition is often written as g ◦ f = gf .

We consider the category of totally ordered finite sets and their non-decreasing maps.
An arbitrary totally ordered finite set is isomorphic to a unique set n = {1 < 2 < · · · < n}
via a unique isomorphism, n > 0. Functions of totally ordered finite set that we use in
this article are assumed to depend only on the isomorphism class of the set. Thus, it
suffices to define them only for skeletal totally ordered finite sets n. The full subcategory
of such sets and their non-decreasing maps is denoted Osk.

Whenever I ∈ ObOsk, there is another totally ordered set [I] = {0} t I containing I,
where element 0 is the smallest one. Thus, [n] = [n] = {0 < 1 < 2 < · · · < n}.

Let (I,6), (Xi,6), i ∈ I, be partially ordered sets. When
⊔
i∈I Xi is equipped with

the lexicographic order it is denoted
⊔
< i∈I Xi. Thus (i, x) < (j, y) iff i < j or (i = j and

x < y ∈ Xi).
The list A, . . . , A consisting of n copies of the same object A is denoted nA.
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For any graded k-module M denote by sM = M [1] the same module with the grading
shifted by 1: M [1]k = Mk+1. Denote by σ : M → M [1], Mk 3 x 7→ x ∈ M [1]k−1 the
“identity map” of degree deg σ = −1.

1.2. Model category structures. The following theorem is proved by Hinich in
[Hin97, Section 2.2], except that he relates a category with the category of complexes dg,
not with its power dgS. A generalization is given in [Lyu12, Theorem 1.2]. It has the
same formulation as below, however, dg means there the category of differential graded
modules over a graded commutative ring.

1.3. Theorem. [Hin97, Lyu12] Suppose that S is a set, a category C is complete and
cocomplete and F : dgS � C : U is an adjunction. Assume that U preserves filtering
colimits. For any x ∈ S, p ∈ Z consider the object K[−p]x of dgS, K[−p]x(x) =

(
0 →

k 1→ k → 0
)

(concentrated in degrees p and p + 1), K[−p]x(y) = 0 for y 6= x. Assume
that the chain map U(in2) : UA → U(F (K[−p]x) t A) is a quasi-isomorphism for all
objects A of C and all x ∈ S, p ∈ Z. Equip C with the classes of weak equivalences (resp.
fibrations) consisting of morphisms f of C such that Uf is a quasi-isomorphism (resp. an
epimorphism). Then the category C is a model category.

We shall recall also several constructions used in the proof of this theorem. They
describe cofibrations and trivial cofibrations in C. Assume that M ∈ ObdgS, A ∈ ObC,
α : M → UA ∈ dgS. Denote by C = Coneα = (M [1] ⊕ UA, dCone) ∈ ObdgS the
cone taken pointwise, that is, for any x ∈ S the complex C(x) = Cone

(
α(x) : M(x) →

(UA)(x)
)

is the usual cone. Denote by ı̄ : UA → C the obvious embedding. Let ε :
FU(A) → A be the adjunction counit. Following Hinich [Hin97, Section 2.2.2] define an
object A〈M,α〉 ∈ ObC as the pushout

FU(A)
ε → A

FC

F ı̄
↓

g → A〈M,α〉

̄↓ (1.1)

If α = 0, then A〈M, 0〉 ' F (M [1]) t A and ̄ = in2 is the canonical embedding. We say
that M consists of free k-modules if for any x ∈ S, p ∈ Z the k-module M(x)p is free.

The proof contains the following important statements. If M consists of free k-modules
and dM = 0, then ̄ : A → A〈M,α〉 is a cofibration. It might be called an elementary
standard cofibration. If

A→ A1 → A2 → · · ·

is a sequence of elementary standard cofibrations, B is a colimit of this diagram, then the
“infinite composition” map A → B is a cofibration called a standard cofibration [Hin97,
Section 2.2.3].

Assume that N ∈ ObdgS consists of free k-modules, dN = 0 and M = Cone
(
1N [−1]

)
=

(N ⊕ N [−1], dCone). Then for any morphism α : M → UA ∈ dgS the morphism ̄ :
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A→ A〈M,α〉 is a trivial cofibration in C and a standard cofibration, composition of two
elementary standard cofibrations. It is called a standard trivial cofibration. Any (trivial)
cofibration is a retract of a standard (trivial) cofibration [Hin97, Remark 2.2.5].

When F : dgS → C is the functor of constructing a free dg-algebra of some kind, the
maps ̄ are interpreted as “adding variables to kill cycles”.

The category Op of operads admits an adjunction F : dgN � Op : U . Applying
Theorem 1.3 to this category one gets [Lyu11, Proposition 1.8]

1.4. Proposition. Define weak equivalences (resp. fibrations) in Op as morphisms f of
Op such that Uf is a quasi-isomorphism (resp. an epimorphism). These classes make
Op into a model category.

This statement was proven previously in [Hin97], [Spi01, Remark 2] and follows from
[Mur11, Theorem 1.1].

1.5. Example. Using Stasheff’s associahedra one proves that there is a cofibrant replace-
ment A∞ → As where the graded operad A∞ is freely generated by n-ary operations mn

of degree 2− n for n > 2. The differential is found as

mn∂ = −
1<p<n∑
j+p+q=n

(−)jp+q(1⊗j ⊗mp ⊗ 1⊗q) ·mj+1+q. (1.2)

Basis (m(t)) of A∞ = T
(
k{mn | n > 2}

)
over k is indexed by isomorphism classes of

planar rooted trees t without unary vertices (those with one incoming edge). The tree |
without internal vertices (the root and the leaf) corresponds to the unit from A∞(1).

Algebras over the dg-operad A∞ are precisely A∞-algebras, that is, complexes A ∈ dg
with the differential m1 and operations mn : A⊗n → A, degmn = 2 − n, for n > 2 such
that ∑

j+p+q=n

(−1)jp+q(1⊗j ⊗mp ⊗ 1⊗q) ·mj+1+q = 0.

Furthermore, the chain map A∞(n) → As(n) is homotopy invertible for each n > 1.
One way to prove it is implied by a remark of Markl [Mar96, Example 4.8]. Another
proof uses the operad of Stasheff associahedra [Sta63] and the configuration space of
(n + 1)-tuples of points on a circle considered by Seidel in his book [Sei08]. Details can
be found in [BLM08, Proposition 1.19].

1.6. Morphisms of operads. Besides usual homomorphisms of dg-operads, which are
chain maps of degree 0, we consider also maps that change the degree.

1.7. Definition. A dg-operad homomorphism t : O → P of degree t̄ = r ∈ Z is a
collection of homogeneous k-linear maps t(n) : O(n) → P(n), n > 0, of degree g(n) =
(1− n)r such that

• 1O.t(1) = 1P;
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• for all k, n1, . . . , nk ∈ N the following square commutes up to a certain sign:

O(n1)⊗ · · · ⊗ O(nk)⊗ O(k)
µ→ O(n1 + · · ·+ nk)

(−1)c

P(n1)⊗ · · · ⊗ P(nk)⊗ P(k)

t(n1)⊗···⊗t(nk)⊗t(k)↓
µ→ P(n1 + · · ·+ nk)

t(n1+···+nk)↓ (1.3)

where the tensor product of homogeneous right maps t( ) is that of the dg-category
dg and the sign is determined by

c = r
k∑
i=1

(i−1)(1−ni)+
r(r − 1)

2

∑
16i<j6k

(1−ni)(1−nj)+
r(r − 1)

2
(1−k)

k∑
i=1

(1−ni); (1.4)

• for all n ∈ Z
d · t(n) = (−1)g(n)t(n) · d : O(n)→ P(n).

Notice that the only functions g : N→ Z that satisfy the equations

g(1) = 0, g(n1) + · · ·+ g(nk) + g(k) = g(n1 + · · ·+ nk)

are functions g(n) = (1− n)r for some r ∈ Z.

1.8. Example. Let X, Y be objects of dg (complexes of k-modules). Define a collection
Hom(X, Y ) as Hom(X, Y )(n) = dg(X⊗n, Y ). Substitution composition Hom(X, Y ) �
Hom(Y, Z)→ Hom(X,Z) and obvious units 1→ Hom(X,X) make the category of com-
plexes enriched in the monoidal category (dgN,�). In particular, End X = Hom(X,X)
are algebras in dgN (dg-operads).

Let (X, dX) be a complex of k-modules and let (X[1], dX[1] = −σ−1 · dX · σ) be its
suspension. There is a dg-operad morphism

Σ = Hom(σ;σ−1) = Hom(σ; 1) ·Hom(1;σ−1) : End(X[1])→ End X

of degree 1. That is, the mapping f 7→ (−1)nfσ⊗n · f · σ−1,

Σ(n) = dg(σ⊗n; 1) · dg(1;σ−1) : dg(X[1]⊗n, X[1])→ dg(X⊗n, X),

has degree 1 − n. The sign (−1)c, c =
∑k

i=1(i − 1)(1 − ni), pops out in the following
procedure. Write down the tensor product corresponding to the left vertical arrow of
(1.3) for t = Σ:

(σ⊗n1 ⊗ σ−1)⊗ (σ⊗n2 ⊗ σ−1)⊗ · · · ⊗ (σ⊗nk ⊗ σ−1)⊗ (σ⊗k ⊗ σ−1);

move factors σ−1 using the Koszul rule to their respective opponents, factors σ of σ⊗k, in
order to cancel them and to obtain finally σ⊗(n1+···+nk) ⊗ σ−1.

Maps Σ(n) commute with the differential in the graded sense because their factors
σ±1 do.
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1.9. Remark. Summands r(r−1)/2
∑

16i<j6k(1−ni)(1−nj)+(1−k)r(r−1)/2
∑k

i=1(1−
ni) of c make sure that the composition of two morphisms of operads t : O → P and u :
P→ Q of degree t̄ and ū respectively be an operad morphism of degree t̄+ū. Furthermore,
if all homogeneous maps t(n) : O(n)→ P(n) for t : O→ P are invertible, than there is an
inverse morphism of operads t−1 : P→ O of degree −t̄ with t−1(n) = t(n)−1.

Let O be a dg-operad, P be a graded operad and t : O → P be an invertible graded
operad homomorphism of degree r (1O.t(1) = 1P and (1.3) holds). Then P has a unique
differential d which turns it into a dg-operad and t : O→ P into a dg-operad homomor-
phism of degree r.

1.10. Example. The dg-operad A∞ has a version denoted A∞ in [Lyu15]. This is a
dg-operad freely generated as a graded operad by n-ary operations bn of degree 1 for
n > 2. The differential is defined as

bn∂ = −
1<p<n∑
j+p+q=n

(1⊗j ⊗ bp ⊗ 1⊗q) · bj+1+q.

Comparing the differentials we find that these two operads are isomorphic via an isomor-
phism of degree 1

Σ : A∞ → A∞, bi 7→ mi.

In fact, due to (1.3)

[(1⊗j ⊗ bp ⊗ 1⊗q)bj+1+q].Σ(j + p+ q)

= (−1)j(1−p)+1−p[(1⊗j ⊗ bp ⊗ 1⊗q).(Σ(1)⊗j ⊗Σ(p)⊗Σ(1)⊗q)] · [bj+1+q.Σ(j + 1 + q)]

= (−1)(j+1)(1−p)[(1⊗j ⊗mp ⊗ 1⊗q)mj+1+q].

Therefore,

mn∂ = (bn.Σ(n))∂ = (−1)1−n(bn∂).Σ(n)

= (−1)n
1<p<n∑
j+p+q=n

[(1⊗j ⊗ bp ⊗ 1⊗q)bj+1+q].Σ(n)

= (−1)n
1<p<n∑
j+p+q=n

(−1)(j+1)(1−p)(1⊗j ⊗mp ⊗ 1⊗q)mj+1+q

= −
1<p<n∑
j+p+q=n

(−1)jp+q(1⊗j ⊗mp ⊗ 1⊗q) ·mj+1+q

which coincides with (1.2). This fixes the differential on A∞ since mn generate the graded
operad. An easy lemma shows that it suffices to verify graded commutation of the dif-
ferential and any operad homomorphism on generators. In particular, Σ : A∞ → A∞
commutes with ∂ in the graded sense.
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Knowing that A∞ is homotopy isomorphic to its cohomology As , we conclude that A∞
is homotopy isomorphic to its cohomology as well. There is an isomorphism of degree 1
between graded operads Σ : H•(A∞)→ As . Hence, H•(A∞(n)) = k[1− n] for n > 1.

For any algebra A ∈ dg over the dg-operad A∞ the dg-module A[1] becomes an
algebra over the dg-operad A∞ so that the square of operad homomorphisms commutes:

A∞ → End A[1]

, (−1)nσ⊗n · bn · σ−1 = mn : A⊗n → A, n > 1.

A∞

Σ
↓

→ End A

Hom(σ;σ−1)
↓

(1.5)

Verification is straightforward.

1.11. Example. Approaching homotopy unital A∞-algebras we start with strictly unital
ones. They are governed by the operad Asu

∞ generated over A∞ by a nullary degree 0 cycle
1su subject to the following relations:

(1⊗ 1su)m2 = 1, (1su ⊗ 1)m2 = 1, (1⊗a ⊗ 1su ⊗ 1⊗c)ma+1+c = 0 if a+ c > 1.

There is a standard trivial cofibration and a homotopy isomorphism Asu
∞ �∼→ Asu

∞〈1su −
i, j〉 = Asu

∞〈i, j〉, where i, j are two nullary operations, deg i = 0, deg j = −1, with i∂ = 0,
j∂ = 1su − i.

A cofibrant replacement Ahu
∞ → As1 is constructed as a dg-suboperad of Asu

∞〈i, j〉
generated as a graded operad by i and n-ary operations of degree 4− n− 2k

mn1;n2;...;nk = (1⊗n1 ⊗ j⊗ 1⊗n2 ⊗ j⊗ · · · ⊗ 1⊗nk−1 ⊗ j⊗ 1⊗nk)mn+k−1,

where n =
∑k

q=1 nq, k > 1, nq > 0, n+ k > 3. Notice that the graded operad Ahu
∞ is free.

See [Lyu11, Section 1.11] for the proofs.
One can perform all the above steps also for the operad A∞:
1) Adding to A∞ a nullary degree −1 cycle 1su subject to the relations:

(1⊗ 1su)b2 = 1, (1su ⊗ 1)b2 = −1, (1⊗a ⊗ 1su ⊗ 1⊗c)ba+1+c = 0 if a+ c > 1. (1.6)

The resulting operad is denoted Asu
∞.

2) Adding to Asu
∞ two nullary operations i, j, deg i = −1, deg j = −2, with i∂ = 0,

j∂ = i−1su. The standard trivial cofibrationAsu
∞ �∼→ Asu

∞〈i, j〉 is a homotopy isomorphism.
3) Ahu

∞ is a dg-suboperad of Asu
∞〈i, j〉 generated as a graded operad by i and n-ary

operations of degree 3− 2k

bn1;n2;...;nk = (1⊗n1 ⊗ j⊗ 1⊗n2 ⊗ j⊗ · · · ⊗ 1⊗nk−1 ⊗ j⊗ 1⊗nk)bn+k−1,

where n =
∑k

q=1 nq, k > 1, nq > 0, n+ k > 3.
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The obtained operads are related to the previous ones by invertible homomorphisms
of degree 1, extending Σ : bn 7→ mn,

Σ : Asu
∞ → Asu

∞, 1
su 7→ 1su; Σ : Asu

∞〈i, j〉 → Asu
∞〈i, j〉, i 7→ i, j 7→ j; Σ : Ahu

∞ → Ahu
∞.

The latter is a restriction of the previous map. For algebras A over operads Asu
∞, Asu

∞〈i, j〉,
Ahu
∞ the complex A[1] obtains a structure of an algebra over the operad Asu

∞, Asu
∞〈i, j〉 or

Ahu
∞ due to a property similar to (1.5), in particular,

1suσ−1 = 1su, iσ−1 = i, jσ−1 = j : k→ A.

2. Model structure of the category of operad polymodules

2.1. The operad TNtO. As explained in [Lyu11, Proposition 1.8] the operad TNtO
is a direct sum over ordered rooted trees t with inputs whose vertices are coloured with
N and O that are terminal the following sense. Two conditions hold:

 ) t contains no edge whose both ends are coloured with O;

  ) insertion of a unary vertex coloured with O into an arbitrary edge of t breaks con-
dition  ).

By the way, these conditions imply that t contains no edge whose both ends are coloured
with N. The second condition is related to inserting a unit η : k → TN t O identified
with the unit η : k → O in an arbitrary summand of TN t O represented by a coloured
tree. The first condition means that one can not apply binary composition in O inside an
element of

C(N,O; t) ' ⊗v∈(v(t),6)c(v)(|v|) ⊂ C(N ⊕ O; t) ⊂ T (N ⊕ O)

represented by t. Here 6 is an admissible order on v(t), the set of internal vertices of
an ordered rooted trees t with inputs Inp t, see Section 1.5 of [Lyu11]. The set v(t) is
coloured by the function c : v(t) → {N,O}, which singles out an individual summand of
(N ⊕ O)⊗ v(t).

Any sequence of contractions of edges whose ends are coloured with O and insertions
of unary vertices coloured with O applied to given tree t′ may lead to no more than one
terminal tree t. The mapping t′ 7→ t is well defined. The summand C(N,O; t′) of T (N⊕O)
corresponding to t′ is mapped by binary compositions in B and insertions of the unit of
B to the summand C(N,O; t). Associativity and unitality of O implies that this map is
unique.

The requirement of O → C = TN t O being a morphism of operads (see [Lyu15,
Corollary A.4]) reduces to agreeing with binary compositions and units. Therefore, in the
case of operads equation (A.10) of [Lyu15] is equivalent to a family of similar diagrams
with α : TO → O replaced with the unit 1O : k → O and with the binary compositions
O�O ⊃ k⊗· · ·⊗k⊗O⊗k⊗· · ·⊗k⊗O

µ−→ O. That is, the kernel I of T (N⊕O)→ TNtO
is generated as an ideal by relations coming from binary composition in O (corresponding
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to contraction of an O-coloured edge) and from inserting a unit of O (corresponding to
insertion of O-coloured unary vertex into an edge). Together with the above this implies
that an element of C(N,O; t′) is equivalent to a unique element of C(N,O; t) modulo I. In
fact, for elements x′ ∈ C(N,O; t′) and x′′ ∈ C(N,O; t′′) related by an elementary relation
as above this holds true since there is either a path (t′, t′′, . . . , t) or a path (t′′, t′, . . . , t)
consisting of contractions or unary insertions. We conclude that [Lyu11, eq. (1.2)]

TN t O =
∐
t∈L

C(N,O; t),

where L is the list of terminal trees.

2.2. Proposition. Let V = dg. Then the category nOp1 of n ∧ 1-operad modules with
quasi-isomorphisms as weak equivalences and degreewise surjections as fibrations is a
model category.

Proof. Let us apply Theorem 1.3 to the adjunction F : dgS � nOp1 : U , where S =
nN t Nn t N. By [Lyu15, Corollary 2.20] the category nOp1 is complete and cocomplete.

Let N ∈ ObdgN or N ∈ ObdgNn be a complex. For instance, N = Kx[−p] for
p ∈ Z, x ∈ N or x ∈ Nn. Let (A1, . . . ,An;P;B) be an n ∧ 1-operad module. Denote
by Ñ the object (0, . . . , 0; 0;N) or (0, . . . , 0;N; 0) or (0, . . . , 0,N, 0, . . . , 0; 0; 0) (N on ith

place) of dgS. We shall prove case by case that if N is contractible then so is U(F Ñ t
(A1, . . . ,An;P;B)).

By [Lyu15, Corollary A.4] the operad module in question F Ñt(A1, . . . ,An;P;B) is the
quotient of F (Ñ⊕ (A1, . . . ,An;P;B)) by the smallest ideal I generated by relations which
tell that (A1, . . . ,An;P;B)→ F (Ñ⊕ (A1, . . . ,An;P;B))/I is a morphism of n∧ 1-operad
modules. Notice by the way that

F (0, . . . , 0; 0;N) t (A1, . . . ,An;P;B) = (A1, . . . ,An;Q;TN tB),

Q = P�0
B (TN tB),

F (0, . . . , 0;N; 0) t (A1, . . . ,An;P;B) = (A1, . . . ,An;R;B),

R = P⊕�>0(A1, . . . ,An;N;B),

F (0, . . . , 0,N, 0, . . . , 0; 0; 0) t (A1, . . . ,An;P;B) = (A1, . . . , TN tAi, . . . ,An; S;B),

S = (TN tAi)�iAi P.

More important is the presentation of operad polymodules as direct sums over some kind
of trees. This presentation we use for the proof. Similarly to the operad case considered
in Section 2.1 we find that

Q =
∐

τ∈LQ
Q(P,N,B; τ), where Q(P,N,B; τ) = colim

6∈GQ(τ)
Q(P,N,B; τ)(6).

Here objects of the groupoid GQ(τ) are admissible (compatible with the natural partial
order 4 with the root vertex as the biggest element) total orderings 6 of the set of vertices



1562 VOLODYMYR LYUBASHENKO

v(τ). By definition between any two objects of G(τ) there is precisely one morphism.
Thus G(τ) is contractible (equivalent to the terminal category with one object and one
morphism). Therefore the colimit is isomorphic to any of

Q(P,N,B; τ)(6) = ⊗v∈(v(τ),6)c(v)(|v|).

Here τ = (τ, c, | · |) is a planar rooted tree τ with inputs Inp τ , a colouring c : v(τ) →
{P,N,B} such that c(Inp τ) ⊂ {P}, c(v(τ)) ⊂ {N,B} and an arbitrary function | · | :
Inp(τ) → Nn, which complements the valency | · | : v(τ) → N. The set LQ of terminal
trees consists of τ such that

∗) τ contains no edge whose both ends are coloured with B;

∗∗) τ contains no vertex coloured with B whose all entering edges have other ends
coloured with P;

∗∗∗) insertion of a unary vertex coloured with B into an arbitrary edge of τ breaks
condition ∗) or ∗∗).

Respectively,

S =
∐

τ∈LS
S(N,Ai,P; τ), where S(N,Ai,P; τ) = colim

6∈GS(τ)
S(N,Ai,P; τ)(6).

The colimit over the contractible groupoid GS(τ) is isomorphic to expression under colimit
in any vertex 6. Assuming that ` ∈ Nn, `i = | Inp τ |, we have

S(N,Ai,P; τ)(6)(`) =
[
⊗v∈(v(τ)−{rv},6)c(v)(|v|)

]
⊗ P(`, `i 7→ q).

Here τ = (τ, c) is an ordered rooted tree τ with inputs Inp τ and a colouring c : v(τ) −
{rv} → {N,Ai}. The set LS of terminal trees consists of τ such that

∗) τ contains no edge whose both ends are coloured with B;

∗∗) τ contains no edge adjacent to the root vertex whose one end is coloured with B;

∗∗∗) insertion of a unary vertex coloured with B into an arbitrary edge of τ breaks
condition ∗) or ∗∗).

Let us prove existence of contracting homotopy similarly to the case of operads [Lyu11,
Proposition 1.8]. Let N ∈ ObdgN or N ∈ ObdgNn be contractible and let h : N → N

be a contracting homotopy, deg h = −1, dh + hd = 1N. Let us show that the operad
module morphism α = in2 : M = (A1, . . . ,An;P;B)→ F Ñ t (A1, . . . ,An;P;B) is homo-
topy invertible. Consider the operad module morphism β : F Ñ t (A1, . . . ,An;P;B) →
(A1, . . . ,An;P;B) which restricts to β

∣∣
(A1,...,An;P;B)

= id and β
∣∣
F Ñ

, adjunct to 0 : Ñ →
U(A1, . . . ,An;P;B). Then α · β = id and g = β · α is homotopic to f = idF Ñt(A1,...,An;P;B)

in the dg-category dgS, as we show next. The homotopy h is extended by 0 to the
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map h′ = h ⊕ 0 : Ñ ⊕ U(A1, . . . ,An;P;B) → Ñ ⊕ U(A1, . . . ,An;P;B), which satis-
fies dh′ + h′d = f | − g| : Ñ ⊕ U(A1, . . . ,An;P;B) → Ñ ⊕ U(A1, . . . ,An;P;B). In all
three cases the endomorphisms f , g of F Ñ t (A1, . . . ,An;P;B) lift to endomorphisms of
F (Ñ ⊕ (A1, . . . ,An;P;B)) obtained by applying f

∣∣
Ñ

= 1 : Ñ → Ñ, f
∣∣
M

= 1 : M → M,

g
∣∣
Ñ

= 0 : Ñ → Ñ, g
∣∣
M

= 1 : M → M to each ⊗-factor corresponding to a vertex of
the tree. For an arbitrary pair of trees (t, τ) choose admissible orderings (6,6). Then
the summands of F Ñ t (A1, . . . ,An;P;B) are preserved by f and g and the restriction
to the summand is f ⊗ · · · ⊗ f and g ⊗ · · · ⊗ g respectively. Define a k-endomorphism
ĥ =

∑
v∈(v(t),6) f ⊗ · · · ⊗ f ⊗ h′ ⊗ g ⊗ · · · ⊗ g of degree −1, where h′ is applied on place

indexed by v. Then

dĥ+ ĥd =
∑

v∈(v(t),6)

f ⊗ · · · ⊗ f ⊗ (f − g)⊗ g⊗ · · · ⊗ g = f ⊗ · · · ⊗ f − g⊗ · · · ⊗ g = f − g.

Therefore, f and g are homotopic to each other and α is homotopy invertible.

Proposition A.6 of [Lyu15] gives a recipe of computing colimits in the category nOp1 of
n∧1-operad modules in two steps. First of all compute colimits Bi on each of n+1 operadic
places i ∈ [n]. Take induced module over (B1, . . . ,Bn;B0) on each node of the diagram
and consider the obtained diagram in the category (B1, . . . ,Bn)-mod-B0. Secondly find
the colimit of the latter diagram, by finding its colimit in VNn , then generating by it a free
(B1, . . . ,Bn;B0)-module F , dividing it precisely by such relations that canonical mapping
from any module to the quotient of F were a morphism of (B1, . . . ,Bn;B0)-modules.

3. Morphisms with several entries

Here we give support to the observation that morphisms with n entries of algebras over
operads form an n∧1-operad module. In particular, we find this module for A∞-algebras.

3.1. Features of the lax Cat-multifunctor hom. An example of symmetric dg-mul-
ticategory C comes from Ck – the closed symmetric multicategory of complexes of k-mod-
ules and their chain maps [BLM08, Example 3.18]. It is representable by the symmetric
Monoidal category dg of complexes and chain maps [BLM08, Example 3.27]. We take
for C the associated enriched symmetric multicategory Ck, which is a Ck-multicategory, or
equivalently, a dg-multicategory. The composition in Ck has a natural meaning: this is a
composition (of tensor products) of homogeneous maps, taking into account the Koszul
rule. We use Ck to define the lax Cat-multifunctor hom.

Let us discuss the relationship between the suspension and the composition µTCk
for a

functor T : [l]→ Ssk, where Ssk is the full subcategory of Set formed by n, n > 0.
Let g : U → W , fi : Xi → Yi, 1 6 i 6 k be homogeneous maps of certain degrees. For

any 1 6 j 6 k the maps

Ck
(
(1)i<j, fj, (1)i>j; 1

)
: Ck

(
(Xi)i<j, (Yi)i>j;U

)
→ Ck

(
(Xi)i6j, (Yi)i>j;U

)
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are defined as the precomposition with fj, h 7→ (−1)h·fj(1j−1 × fj × 1k−j) · h. The map

Ck
(
(1)ki=1; g

)
: Ck

(
(Xi)

k
i=1;U

)
→ Ck

(
(Xi)

k
i=1;W

)
is defined as the postcomposition with g, h 7→ h · g. By convention, the map

Ck
(
f1, f2, . . . , fk; g

)
: Ck

(
(Yi)

k
i=1;U

)
→ Ck

(
(Xi)

k
i=1;W

)
is the composition (in this order)

Ck
(
f1, 1, . . . , 1; 1

)
· Ck
(
1, f2, . . . , 1; 1

)
· . . . · Ck

(
1, . . . , 1, fk; 1

)
· Ck
(
1, . . . , 1, 1; g

)
.

Factors of this product commute up to the sign depending on parity of the product of
degrees of factors.

3.2. Lemma. For arbitrary complexes Ae ∈ ObCk, e ∈ E(T ), and strongly ordered tree
(T,6) the following square commutes up to the sign (−1)c(T )

v∈v(T )⊗
Ck
(
(sAe)e∈in(v); sAou(v)

) µTCk→ Ck
(
(sAa)a∈InpT ; sAroot edge(T )

)
(−1)c(T )⊗

v∈v(T )

Ck
(
(Ae)e∈in(v);Aou(v)

)⊗v∈v(T )Ck(in(v)σ;σ−1)↓

µTCk

→ Ck
(
(Aa)a∈InpT ;Aroot edge(T )

)Ck(InpT σ;σ−1)↓

where

c(T,6) =
∑

v∈(v(T ),6)

(
1−#(v)−

x∈v(T )∑
v<x<Pv

|x|
)

+ |{(v, x) ∈ v(T )2 | v < x, Px < Pv}|

+ |{(v, x) ∈ v(T )2 | v < x < Pv = Px, xl v}|
+ |{(v, x) ∈ Inpv(T )2 | v < x, Px < Pv}|,

the function # : v(T )→ N, v 7→ #(v) is determined by its restrictions # : inV(Pv)
∼=−→ z,

z = |Pv|, the unique order-preserving maps.

Proof. The sign coincides with the sign of permutation of the expression ⊗v∈v(T )(σ⊗|v|⊗
σ−1), followed by cancellation of matching σ−1 and σ, resulting in (−1)c(T )σ⊗ InpT ⊗ σ−1.
The summands #(v)−1 come from cancelling σ−1 corresponding to v against the #(v)-th
factor of σ⊗|v|. The summand |x| comes from moving this σ−1 past factor indexed by x.
The last summand is of similar nature.
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Let g : U → W , fi : Xi → Yi, 1 6 i 6 k be homogeneous maps of certain degrees.
Then

hom
(
(fi)i∈I ; g

)
: hom

(
(Yi)i∈I ;U

)
→ hom

(
(Xi)i∈I ;W

)
denotes the collection of homogeneous maps

hom
(
(fi)i∈I ; g

)
= Ck

(
(n
i

fi)i∈I ; g
)

: Ck
(
(n
i

Yi)i∈I ;U
)
→ Ck

(
(n
i

Xi)i∈I ;W
)
.

3.3. Corollary. For each t-tree τ the following square commutes up to the sign (−1)c(τ̃)

v∈v(t)⊗ p∈τ(v)⊗
hom

(
sAin(v); sAou(v)

)(
(|τ(e)−1(p)|)e∈in(v)

)

hom
(
sAInp t; sAroot edge(t)

)(
(|τ(a)|)a∈Inpv t

)
compτ

→

(−1)c(τ̃)

v∈v(t)⊗ p∈τ(v)⊗
hom

(
Ain(v);Aou(v)

)(
(|τ(e)−1(p)|)e∈in(v)

)
⊗v∈v(t)⊗p∈τ(v)hom(in(v)σ;σ−1)((|τ(e)−1(p)|)e∈in(v))

↓

hom
(
AInp t;Aroot edge(t)

)(
(|τ(a)|)a∈Inpv t

)

hom(Inp tσ;σ−1)((|τ(a)|)a∈Inpv t)

↓compτ →

where τ̃ ∈ tr corresponds to τ : t→ Osk,

c(τ̃) =
∑
v∈v(t)

∑
p∈τ(v)

(
1−#(v, p)−

(x,y)∈v(τ̃)∑
(v,p)<(x,y)<(Pv,τ(ou(v)).p)

|(x, y)|
)

+ |{(v, p, x, y) ∈ v(τ̃)2 | (v, p) < (x, y), (Px, τ(ou(x)).y) < (Pv, τ(ou(v)).p)}|
+ |{(v, p, x, y) ∈ v(τ̃)2 | (v, p) < (x, y) < P (v, p) = P (x, y), (x, y) l (v, p)}|

+ |{(v, p, x, y) ∈ Inpv(τ̃)2 | (v, p) < (x, y), (Px, τ(ou(x)).y) < (Pv, τ(ou(v)).p)}|.

Recall that the orders <, l in v(τ̃) and < in Inpv(τ̃) are lexicographical. Thus
(v, p) < (x, y) in Inpv(τ̃) iff either v / x or v = x and p < y in τ(v).

3.4. Main source of n ∧ 1-operad modules. From now on we assume tacitly that
V = dg. When the differential is not concerned we may use V = gr.

3.5. Example. Let As denote V-operad with As(0) = ∅, the initial object, and As(n) =
1, the unit object of V, for n > 0. Let us describe an n∧ 1-operad As-module FAsn with
FAsn(j1, . . . , jn) = 1 for all non–vanishing (j1, . . . , jn) ∈ Nn, while FAsn(0, . . . , 0) = ∅. In
particular, FAs0 = ∅. The actions for FAsn are given by multiplication for 1. Associate
hom with the symmetric V-multicategory V, represented by the symmetric monoidal
V-category V. A morphism of n ∧ 1-operad modules

(As , . . . ,As ; FAsn; As)→ (End A1, . . . ,End An; hom(A1, . . . , An;B);End B)



1566 VOLODYMYR LYUBASHENKO

amounts to a family of morphisms fi : Ai → B of associative algebras without units,
i ∈ n, such that the following diagrams commute for all 1 6 i < j 6 n:

Ai ⊗ Aj
c

∼=
→ Aj ⊗ Ai

fj⊗fi→ B ⊗B

B ⊗B

fi⊗fj↓
mB → B

mB↓
(3.1)

In fact, morphisms fi = f(ei) are particular cases of the action map

f(ei) : 1 = FAsn(ei)→ V(Ai;B),

where ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Nn has 1 on i-th place. The equations hold for all
1 6 i < j 6 n:

FAsn(ei)⊗ FAsn(ej)⊗ As(2)
mult→ FAsn(ei + ej)

=

H(ei)⊗H(ej)⊗ (End B)(2)

↓
µid→H(ei + ej)

↓

FAsn(ej)⊗ FAsn(ei)⊗ As(2)
mult→ FAsn(ei + ej)

=

H(ej)⊗H(ei)⊗ (End B)(2)

↓
µ(12)→H(ei + ej)

↓

Here the compositions µid and µ(12) in V correspond to the two maps

id : 0 t · · · t 0 t 1 t 0 t · · · t 0 t 1 t 0 t · · · t 0 = 2→ 2,

(12) : 0 t · · · t 0 t 1 t 0 t · · · t 0 t 1 t 0 t · · · t 0 = 2→ 2.

The equations are more explicit in the form

1⊗ 1⊗ 1
mult → 1

=

V(Ai;B)⊗ V(Aj;B)⊗ V(B,B;B)

f(ei)⊗f(ej)⊗mB↓
µid→ V(Ai, Aj;B)

f(ei+ej)↓

1⊗ 1⊗ 1
mult → 1

=

V(Aj;B)⊗ V(Ai;B)⊗ V(B,B;B)

f(ej)⊗f(ei)⊗mB↓
µ(12)→ V(Ai, Aj;B)

f(ei+ej)↓

Abusing the notation the same equations can be written as

(f(ei) ⊗ f(ej))mB = f(ei+ej) = c(f(ej) ⊗ f(ei))mB : Ai ⊗ Aj → B,
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which coincides with condition (3.1).
For non-vanishing j = (j1, . . . , jn) ∈ Nn the map FAs1 n(j) = 1 → V((j

i
Ai)

n
i=1;B) is

given by the morphism (⊗ni=1f
⊗ji
i ) · m‖j‖B : ⊗ni=1A

⊗ji
i → B ∈ V. For V = (Set,×) it is∏n

i=1

∏ji

ki=1 a
ki

i 7→ f1(a1
1, . . . , a

j1

1 ) · · · · · fn(a1
n, . . . , a

jn

n ).
Notice that if Ai, i ∈ n, B are unital algebras, a collection of unital morphisms

fi : Ai → B that satisfy equation (3.1) is the same as a single unital morphism f :
A1 ⊗ · · · ⊗ An → B. In fact, such f determines fi(x) = f(1 ⊗ · · · ⊗ 1 ⊗ x ⊗ 1 ⊗ · · · ⊗ 1)
and can be recovered from the whole collection of fi’s.

3.6. Definition. Let V = dg. An n ∧ 1-operad module homomorphism

(f1, . . . , fn;h; g) : (A1, . . . ,An;P;B)→ (C1, . . . ,Cn;Q;D),

of degree r ∈ Z is a family of dg-operad homomorphisms g : B → D, fi : Ai → Ci,
0 6 i 6 n, of degree r and a collection of homogeneous k-linear maps h(j) : P(j)→ Q(j),
j ∈ Nn, of degree r(1− ‖j‖) such that

• for all l ∈ N, (kq ∈ Nn | 1 6 q 6 l), the following square commutes up to the sign( l⊗
q=1

P(kq)
)
⊗B(l)

ρ→ P

( l∑
q=1

kq

)
(−1)cρ( l⊗

q=1

Q(kq)
)
⊗D(l)

(⊗lq=1h(kq))⊗g(l)↓

ρ→ Q

( l∑
q=1

kq

)h(
∑l
q=1 kq)↓ (3.2)

cρ = r
l∑

q=1

(q − 1)(1− ‖kq‖) + r

16c<d6n∑
16b<a6l

kcak
d
b

+
r(r − 1)

2

{
(1− l)

l∑
q=1

(1− ‖kq‖) +
∑

16q<s6l

(1− ‖kq‖)(1− ‖ks‖)
}

; (3.3)

• for all k ∈ Nn, (jip ∈ N | 1 6 i 6 n, 0 6 p 6 ki), the following square commutes up
to the sign[ n⊗

i=1

ki⊗
p=1

Ai(j
i
p)

]
⊗ P

(
(ki)ni=1

) λ→ P

(( ki∑
p=1

jip

)n
i=1

)
(−1)cλ[ n⊗

i=1

ki⊗
p=1

Ci(j
i
p)

]
⊗ Q

(
(ki)ni=1

)
[⊗ni=1⊗k

i

p=1fi(j
i
p)]⊗h(k)↓

λ→ Q

(( ki∑
p=1

jip

)n
i=1

)h((
∑ki

p=1 j
i
p)ni=1)↓ (3.4)
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cλ = r
n∑
i=1

ki∑
p=1

(1− jip)
(
p− 1 +

i−1∑
q=1

kq
)

+
r(r − 1)

2

{
(1− ‖k‖)

n∑
i=1

ki∑
p=1

(1− jip)

+
∑

16i<l6n

[ ki∑
p=1

(1− jip)
][ kl∑

q=1

(1− jlq)
]

+
n∑
i=1

∑
16p<q6ki

(1− jip)(1− jiq)
}

;

• for all j ∈ Nn

d · h(j) = (−1)r(1−‖j‖)h(j) · d : P(j)→ Q(j).

The second (shuffle) part of cρ, cλ proportional to r(r − 1)/2 makes sure that the
composition of morphisms of degrees r and r′ be a morphism of degree r + r′. The first
part coincides with rc(τ̃ρ), rc(τ̃λ), see (2.8) and (2.9) of [Lyu15].

The last condition using λ can be replaced with n conditions using λi, 1 6 i 6 n:[ ki⊗
p=1

Ai(jp)

]
⊗ P(k)

λi→ P

(
k, ki 7→

ki∑
p=1

jp

)
(−1)

c
λi[ ki⊗

p=1

Ci(jp)

]
⊗ Q(k)

[⊗kip=1fi(jp)]⊗h(k)↓

λi→ Q

(
k, ki 7→

ki∑
p=1

jp

)h(k,ki 7→
∑ki

p=1 jp)↓

cλi = r

ki∑
p=1

(1−jp)
(
p−1+

i−1∑
q=1

kq
)

+
r(r − 1)

2

{
(1−‖k‖)

ki∑
p=1

(1−jp)+
∑

16p<q6ki

(1−jp)(1−jq)
}
.

(3.5)

3.7. Example. For all complexes A1, . . . , An, B the collection

Σ = (n hom(σ;σ−1); hom(nσ;σ−1); hom(σ;σ−1)) :

Hom(sA1, . . . , sAn; sB)→ Hom(A1, . . . , An;B)

is an n ∧ 1-operad morphism of degree 1. In fact, equations for Σ involving λ and ρ are
particular cases of Corollary 3.3.

3.8. A∞-morphisms with several entries. Let us describe an n∧1-operad As1 -mod-
ule FAs1 n with FAs1 n(j1, . . . , jn) = k for all (j1, . . . , jn) ∈ Nn. In particular, FAs1 0 = k.
The actions for FAs1 n are given by multiplication in k. Associate hom with the symmetric
dg-multicategory Ck. A morphism of n ∧ 1-operad modules

(As1 , . . . ,As1 ; FAs1 n; As1 )→ (End A1, . . . ,End An; hom(A1, . . . , An;B);End B)
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amounts to a family of unital morphisms fi : Ai → B of associative unital differential
graded k-algebras, i ∈ n, such that diagrams (3.1) commute for all 1 6 i < j 6 n. These
data are in bijection with unital homomorphisms f : A1 ⊗ · · · ⊗ An → B, where A1, . . . ,
An, B are unital associative dg-algebras.

In fact, each complex A1, . . . , An, B acquires a unital associative dg-algebra structure
through morphisms As1 → End Ai, As1 → End B. Particular cases of actions

λei : Ai(0)⊗ P(ei)→ P(0),

ρ∅ : B(0) = k⊗B(0)→ P(0),

for the module (As1 , . . . ,As1 ; FAs1 n; As1 ) take unity to unity:

λei : As1 (0)⊗ FAs1 n(ei) 3 1⊗ 1 7→ 1 ∈ FAs1 n(0),

ρ∅ : As1 (0) 3 1 7→ 1 ∈ FAs1 n(0).

Commutative diagram (2.2) of [Lyu11] with Hom(A1, . . . , An;B)(0) in place of Hom(A;B)(0)
shows that 1 ∈ FAs1 n(0) is represented by 1B. Since the representation agrees with λei
the equation 1Ai .fi = 1B holds, thus, fi is unital.

3.9. Proposition. There is an n∧ 1-operad module (A∞,Fn) freely generated as graded
module by elements fj1,...,jn ∈ Fn(j1, . . . , jn), (j1, . . . , jn) ∈ Nn− 0, of degree 1− j1−· · ·−
jn = 1− ‖j‖. The differential for it is given by

f`∂ =
n∑
q=1

x>1∑
r+x+t=`q

(−1)(1−x)(`1+···+`q−1+r)+1−‖`‖λq(r1,x,t1)(
r1,mx,

t1; f`−(x−1)eq)

+
k>1∑

j1,...,jk∈Nn−0
j1+···+jk=`

(−1)k+
∑16c<d6n

16b<a6k j
c
aj
d
b+

∑k
p=1(p−1)(‖jp‖−1)ρ(jip)((fjp)

k
p=1;mk). (3.6)

There is an invertible morphism of degree 1 between these n ∧ 1-operad modules

(Σ,Σ) : (A∞, Fn)→ (A∞,Fn), bi 7→ mi, fj 7→ fj. (3.7)

Fn-maps are A∞-algebra morphisms A1, . . . , An → B (for algebras written with operations
mn). The two notions of A∞-morphisms agree in the sense that the square of n∧1-operad
module maps

(nA∞;Fn;A∞) → ((End Ai[1])ni=1; hom((Ai[1])ni=1;B[1]);End B[1])

(nA∞; Fn; A∞)

(nΣ;Σ;Σ)↓
→ ((End Ai)

n
i=1; hom((Ai)

n
i=1;B);End B)

(n hom(σ;σ−1);hom(nσ;σ−1);hom(σ;σ−1))↓
(3.8)

commutes.
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Proof. The existence of Fn is proven in [Lyu15]. This implies the existence of Fn as the
following lemma shows.

3.10. Lemma. Let (A1, . . . ,An;P;B) be a dg-n ∧ 1-operad module, (C1, . . . ,Cn;Q;D) be
a graded n ∧ 1-operad module and

(f1, . . . , fn;h; g) : (A1, . . . ,An;P;B)→ (C1, . . . ,Cn;Q;D),

be an invertible graded n ∧ 1-operad module homomorphism of degree r (equations (3.2)
and (3.4) hold). Then C1, . . . , Cn, D are dg-operads (see Remark 1.9) and P has a
unique differential d which turns it into a dg-n ∧ 1-operad module and (f1, . . . , fn;h; g)
into a dg-n ∧ 1-operad module isomorphism of degree r.

Proof. The differential is given by a unique expression

d =
(
Q(j)

h(j)−1

→ P(j)
(−1)r(1−‖j‖)d→ P(j)

h(j)→ Q(j)
)
.

Clearly, deg d = 1 and d2 = 0. Verification that ρ and λ for Q are chain maps is straight-
forward.

Let us compute the value of the differential on generators f`:

f`∂ = (f`.Σ(`))∂ = (−1)1−‖`‖(f`.∂)Σ(`)

= (−1)1−‖`‖
n∑
q=1

x>1∑
r+x+t=`q

λq(r1,x,t1)(
r1, bx,

t1; f`−(x−1)eq).Σ(`)

+ (−1)‖`‖
k>1∑

j1,...,jk∈Nn−0
j1+···+jk=`

ρ(jip)((fjp)
k
p=1; bk).Σ(`)

=
n∑
q=1

x>1∑
r+x+t=`q

(−1)c(τ̃λq )+1−‖`‖λq(r1,x,t1)(
r1,mx,

t1; f`−(x−1)eq)

+
k>1∑

j1,...,jk∈Nn−0
j1+···+jk=`

(−1)k+c(τ̃ρ)ρ(jip)((fjp)
k
p=1;mk),

which coincides with (3.6), if one plugs in expressions c(τ̃λq) = cλq from (3.5) and c(τ̃ρ) = cρ
from (3.3) for r = 1.
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The image of f`∂ in hom((Ai)i;B) is

n∑
q=1

x>1∑
r+x+t=`q

(−1)(1−x)(`1+···+`q−1+r)+1−‖`‖[⊗i∈nT `iAi 1⊗(q−1)⊗(1⊗r⊗mx⊗1⊗t)⊗1⊗(n−q)

→

T `
1

A1 ⊗ · · · ⊗ T `
q−1

Aq−1 ⊗ T r+1+tAq ⊗ T `
q+1

Aq+1 ⊗ · · · ⊗ T `
n

An
f`−(x−1)eq→ B

]
+

k>1∑
j1,...,jk∈Nn−0
j1+···+jk=`

(−1)k+
∑16c<d6n

16b<a6k j
c
aj
d
b+

∑k
p=1(p−1)(‖jp‖−1)

[
⊗i∈nT `iAi

⊗i∈nλγi→ ⊗i∈n ⊗p∈kT jipAi

κ−1

→ ⊗p∈k ⊗i∈nT jipAi
⊗p∈kfjp→ ⊗p∈k B mk→ B

]
.

Fn-algebra maps consist of A∞-algebras A1, . . . , An, B, and a collection (fj)j∈Nn−0 that
satisfies the following equation for all ` ∈ Nn − 0:

f`m1 + (−1)‖`‖
[ n∑
q=1

∑
r+1+t=`q

1⊗(q−1) ⊗ (1⊗r ⊗m1 ⊗ 1⊗t)⊗ 1⊗(n−q)
]
f` = f`∂.

In expanded form the equation says:

n∑
q=1

x>0∑
r+x+t=`q

(−1)(1−x)(`1+···+`q−1+r)−‖`‖[⊗i∈nT `iAi 1⊗(q−1)⊗(1⊗r⊗mx⊗1⊗t)⊗1⊗(n−q)

→

T `
1

A1 ⊗ · · · ⊗ T `
q−1

Aq−1 ⊗ T r+1+tAq ⊗ T `
q+1

Aq+1 ⊗ · · · ⊗ T `
n

An
f`−(x−1)eq→ B

]
=

k>0∑
j1,...,jk∈Nn−0
j1+···+jk=`

(−1)k+
∑16c<d6n

16b<a6k j
c
aj
d
b+

∑k
p=1(p−1)(‖jp‖−1)

[
⊗i∈nT `iAi

⊗i∈nλγi→ ⊗i∈n ⊗p∈kT jipAi

κ−1

→ ⊗p∈k ⊗i∈nT jipAi
⊗p∈kfjp→ ⊗p∈k B mk→ B

]
. (3.9)

This is actually the definition of an A∞-algebra morphism A1, . . . , An → B for algebras
written with operations mn, adopted in the current article.

Relationship between fj and fj in hom((Ai)
n
i=1;B)(j),

T j
1

A1 ⊗ · · · ⊗ T j
n

An
fj → B

T j
1

sA1 ⊗ · · · ⊗ T j
n

sAn

σ⊗j
1⊗···⊗σ⊗jn↓

fj → sB

σ
↓

shows that diagram (3.8) commutes on generators. Therefore, it is commutative.
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Reducing the data used in [Lyu15, Definition 2.12 ] we call an n-dimensional right
operad module the pair (P;B) consisting of a dg-operad B and an object P ∈ dgNn ,
equipped with a unital associative action

ρ :
( l⊗
q=1

P(kq)
)
⊗B(l) → P

( l∑
q=1

kq

)
∈ dg .

3.11. Definition. An n-dimensional right operad module homomorphism (h; g) : (P;B)
→ (Q;D) of degree (p; 0), p ∈ Zn, is a dg-operad homomorphism g : B → D of degree
0 and a collection of homogeneous k-linear maps h(j) : P(j) → Q(j), j ∈ Nn, of degree
(p|j) =

∑n
i=1 p

iji such that

• for all l ∈ N, (kq ∈ Nn | 1 6 q 6 l), the following square commutes up to the sign

( l⊗
q=1

P(kq)
)
⊗B(l)

ρ → P

( l∑
q=1

kq

)
(−1)c(k1,...,kl)( l⊗

q=1

Q(kq)
)
⊗D(l)

(⊗lq=1h(kq))⊗g(l)↓

ρ → Q

( l∑
q=1

kq

)h(
∑l
q=1 kq)↓ (3.10)

c(k1, . . . , kl) =
∑

16t<q6l

χ(kt, kq), (3.11)

where χ : Nn × Nn → Z/2 is an arbitrary bilinear form (it is specified by a matrix
χ ∈ Mat(n,Z/2));

• for all j ∈ Nn

d · h(j) = (−1)(p|j)h(j) · d : P(j)→ Q(j). (3.12)

3.12. Lemma. Let (P;B) be an n-dimensional right dg-operad module, let g : B→ D be
a dg-operad isomorphism of degree 0. Let h(j) : P(j) → Q(j), j ∈ Nn, be a collection of
invertible homogeneous k-linear maps of degree (p|j) for some p ∈ Zn. Let χ : Nn×Nn →
Z/2 be a bilinear form. Then Q admits a unique structure of an n-dimensional right
D-module such that (h; g) : (P;B) → (Q;D) is a homomorphism of degree (p; 0) with
respect to χ.

Proof. The value of the differential in Q is fixed by (3.12). The unique candidate ρ for
action of D on Q is found from diagram (3.10). This ρ is a chain map, as follows from
a cubical diagram consisting of two faces (3.10) joined by differentials. Opposite faces of
the cube commute up to the same sign, since (p|

∑l
q=1 kq) =

∑l
q=1(p|kq). Therefore, the

both squares expressing commutation of ρ with the differential commute simultaneously.
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Associativity of the action of D on Q is expressed by the pentagon

l⊗
q=1

( nq⊗
t=1

Q(tkq)⊗D(nq)
)
⊗D(l)

⊗lq=1ρ⊗1
→
( l⊗
q=1

Q
( nq∑
t=1

tkq

))
⊗D(l)

ρ→ Q
( l∑
q=1

nq∑
t=1

tkq

)

( l⊗
q=1

nq⊗
t=1

Q(tkq)
)
⊗
( l⊗
q=1

D(nq)
)
⊗D(l)

o↓
1⊗µD→

( l⊗
q=1

nq⊗
t=1

Q(tkq)
)
⊗D

( l∑
q=1

nq

)
ρ →

lying at the bottom of a rectangular prism, whose top face is the pentagon, expressing
associativity of the action of B on P. Vertical maps are tensor products of h and g. The
walls commute up to sign. The product of these signs is +1, since

c
((

(tkq)
nq
t=1

)l
q=1

)
= c

(( nq∑
t=1

tkq

)l
q=1

)
+

l∑
q=1

c
(
(tkq)

nq
t=1

)
due to definition (3.11) of c and bilinearity of χ.

Unitality of the action of D on Q follows from that for B and P, since c(k) = 0,
k ∈ Nn.

Cofibrant replacement of an n∧ 1-operad module (O,P)
def
= (O, . . . ,O;P;O) is a trivial

fibration (A,F) → (O,P) such that the only map from the initial n ∧ 1-operad module
(1, 0)→ (A,F) is a cofibration in nOp1.

3.13. Theorem. The n∧1-operad module (A∞,Fn) is a cofibrant replacement of (As ,FAsn).
Moreover, (A∞,Fn)→ (As ,FAsn) is a homotopy isomorphism in dgNtNn.

Proof. Generate a free n∧ 1-operad As-module Fn by elements fj1,...,jn ∈ Fn(j1, . . . , jn),
(j1, . . . , jn) ∈ Nn − 0, of degree 1− j1 − · · · − jn. Actually, (As ,Fn) is the coequalizer in

nOp1 of the pair of morphisms of collections

0, in : (k{(m2 ⊗ 1)m2 − (1⊗m2)m2,mn | n > 3}, 0)⇒ (A∞,Fn),

the second arrow is just the embedding. Therefore, the differential in Fn reduces to

f`∂ =
n∑
q=1

∑
r+2+t=`q

(−1)1+t+`q+1+···+`nλq(r1,m, t1; f`−eq)−
q,r∈Nn−0∑
q+r=`

(−1)‖r‖+
∑
c>d q

crdρ(fq, fr;m),

m = m2, and the equation ∂2 = 0 follows. Notice that the quadratic part of the differential

f`∂̄ =

q,r∈Nn−0∑
q+r=`

(−1)1−‖r‖+
∑
c>d q

crdρ(fq, fr;m) (3.13)

is a differential itself, ∂̄2 = 0.
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The n ∧ 1-operad module morphism in question decomposes as

(A∞,Fn)
htis
� (As ,Fn)

(1,p)
� (As ,FAsn).

The first epimorphism is a homotopy isomorphism, since A∞ → As is. Let us describe
the second epimorphism and prove for it the same property, that is, the n ∧ 1-operad
As-module epimorphism p : Fn → FAsn is a homotopy isomorphism. We prove more: the
zero degree cycle p : Fn → FAsn is homotopy invertible in the dg-category n-As -mod.

Any left n-operad As-module P decomposes into a direct sum of submodules. Any
subset S ⊂ n with the induced total ordering is viewed as the isomorphic ordinal with |S|
elements. For any k ∈ Nn denote by supp k = {i ∈ n | ki 6= 0} its support. Consider the
n-operad As-submodule

PS(k) =

{
P(k) if supp k = S,

0 otherwise.

Then P = ⊕S⊂nPS. Since As(0) = 0, the Zn-graded collection PS is a left n-operad
As-module. This structure boils down to a ZS-graded collection PS, which is a left
S-operad As-module (that is, a |S|-operad As-module). A left n-operad As-module P is
freely generated iff left S-operad As-modules PS are freely generated for all S ⊂ n.

Let eS ∈ Nn have the coordinates eiS = χ(i ∈ S) ∈ {0, 1}, ei
def
= e{i}. For j ∈ Nn, j 6= 0,

consider the basic element uj = 1 ∈ k = FAsn(j). For S 6= ∅ the element ueS = 1 ∈ k =
FAsn(eS) freely generates the left S-operad As-module FAsSn, while FAs∅

n = 0. Namely,
for any j ∈ Nn, j 6= 0, with support S = supp j we have uj = λ((m(ji))i∈S;ueS).

The left n-operad As-module Fn is also freely generated. Its basis is given by elements
ρ(fj1 , . . . , fjk ;m

(k)), where k > 0 and jt ∈ Nn − 0 for all t.
The n ∧ 1-operad As-module map p is specified on the generators as follows:

fj.p =

{
uj, if ‖j‖ = 1,

0, otherwise.

On the basis of the left n-operad As-module Fn the map p is computed as

ρ(fj1 , . . . , fjk ;m
(k)).p =

{
uj, if ‖j1‖ = · · · = ‖jk‖ = 1, j =

∑
r jr,

0, otherwise.

In order to prove that p is a chain map it suffices to prove that f2ea .∂p = 0, 1 6 a 6 n,
and fea+eb .∂p = 0 for all 1 6 a < b 6 n. These equations are verified straightforwardly:

f2ea .∂ = −λ(m; fea) + ρ(fea , fea ;m)
p→ − λ(m;uea) + u2ea = 0,

fea+eb .∂ = ρ(fea , feb ;m)− ρ(feb , fea ;m)
p→ uea+eb − ueb+ea = 0.
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A zero degree cycle β : FAsn → Fn in n-As -mod is given on generators uj of free
k-modules FAsn(j) by the formula

uj.β = ρ
(
(λ(m(ji); fei))i∈supp j;m

(| supp j|)).
The composition

FAsn
β → Fn

p → FAsn

ueS → ρ((fei)i∈S;m(|S|)) = (⊗i∈Sfei)m(S) → (⊗i∈Suei)m(S) = ueS

is the identity map. Let us prove that pβ is homotopy invertible. These two statements
would imply that p is homotopy invertible in n-As -mod and β is its homotopy inverse.

Let F
(q)

n be a n-As-submodule generated by ρ(fj1 , . . . , fjk ;m
(k)), k 6 q, F

(0)

n = 0.

This filtration induces the graded n-As-module with the components F
{k}
n = F

(k)

n /F
(k−1)

n .

Since the differential in As vanishes, the differential ∂ : F
(q)

n → F
(q+1)

n is a left n-operad
As-module map. We look for a left n-operad As-module map h : Fn → Fn of degree −1

such that F
(q)

n .h ⊂ F
(q−1)

n . Consider the zero degree cycle

N = 1− pβ + h∂ + ∂hFn → Fn.

It satisfies F
(q)

n .N ⊂ F
(q)

n . We are going to choose h in such a way that N be locally
nilpotent. Thus, 1−N is invertible with the (well–defined) inverse

∑∞
a=0N

a. Therefore,

pβ = 1−N + h∂ + ∂h : Fn → Fn

is homotopy invertible.

Since ρ
(
F

(q1)

n (j1)⊗· · ·⊗F
(qk)

n (jk)⊗As(k)
)
⊂ F

(q1+···+qk)

n (j1+· · ·+jk) there is an induced
map between quotients:

ρ : F
{q1}
n (j1)⊗ · · · ⊗ F

{qk}
n (jk)⊗ As(k)→ F

{q1+···+qk}
n (j1 + · · ·+ jk)

The actions ρ assemble to an action of As on the sum F
{}
n =

∐∞
q=0 F

{q}
n . The quadratic

differential ∂̄ : F
{q}
n (j) → F

{q+1}
n (j) from (3.13) induces a differential ∂̄ in F

{}
n , thereby

making it into a differential graded n∧1-As-module. As a left n-As-module it is generated

by its n-dimensional right As-dg-submodule f
{}
n :

f
{}
n =

∐∞
k=0f

{k}
n , f

{k}
n (j) = k

{
ρ(fj1 , . . . , fjk ;m

(k)) | j1+· · ·+jk = j, ∀ q 6 k jq ∈ Nn−0
}
.

The matrix coefficients of ∂̄ : f
{k}
n (j) → f

{k+1}
n (j) are integers and we shall find h :

f
{k}
n (j)→ f

{k−1}
n (j) with the same property. Thus, instead of working over a general ring

k we can assume that k = Z, and we do it till the end of the proof. Any such map h
extends to a morphism of left n-As-modules in a unique way.
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The operator induced by N in the graded n-As-module F
{}
n is denoted N̄ : F

{}
n → F

{}
n .

It can be described via a simplified formula

N̄ = 1− pβ + h∂̄ + ∂̄h : F
{k}
n → F

{k}
n , (3.14)

where ∂̄ is given by (3.13), h : F
{p}
n → F

{p−1}
n , and ρ(fj1 , . . . , fjk ;m

(k)).pβ vanishes unless
‖j1‖ = · · · = ‖jk‖ = 1 and supp jq are all distinct for 1 6 q 6 k. When (j1, . . . , jk) is a
permutation of (ea1 , . . . , eak) with 1 6 a1 < · · · < ak 6 n, then

ρ(fj1 , . . . , fjk ;m
(k)).pβ = ρ(fea1 , . . . , feak ;m(k)).

Otherwise, ρ(fj1 , . . . , fjk ;m
(k)).pβ vanishes. The operator N is locally nilpotent iff N̄ is.

We shall achieve N̄ = 0.
Let us define a family of graded abelian groups f̃n(j), j ∈ Nn,

f̃n(j)k = Z
{
x(j1, . . . , jk) | jq ∈ Nn − 0, j1 + · · ·+ jk = j

}
.

The family f̃n has an obvious structure of a graded n-dimensional right As-module,
namely,

ρ̃
(
x
(
(tj1)n1

t=1

)
, . . . , x

(
(tjk)

nk
t=1

)
;m(k)

)
= x

(
(tj1)n1

t=1

)
, . . . , (tjk)

nk
t=1

)
.

This structure is completely fixed by the requirement

ρ̃
(
x(j1), . . . , x(jk);m

(k)
)

= x(j1, . . . , jk) (3.15)

Consider the bilinear form χ : Nn × Nn → Z, χ(t, p) =
∑

c6d t
cpd, and define the cor-

responding c by (3.11). There are invertible mappings ψ(j) : f
{}
n (j) → f̃n(j) of degree

‖j‖ = ((1, 1, . . . , 1)|j) such that

• (fj).ψ(j) = x(j);

• the right As-module structure obtained from (ψ, idAs) and the bilinear form χ as in
Lemma 3.12 satisfies condition (3.15).

Existence and uniqueness of ψ is shown in the following computation in square (3.10):

fj1 ⊗ · · · ⊗ fjk ⊗m(k) ρ→ ρ(fj1 , . . . , fjk ;m
(k))

ψ(j1+···+jk)→ ρ(fj1 , . . . , fjk ;m
(k)).ψ

(−1)
∑
q<r ‖jq‖(1−‖jr‖)x(j1)⊗ · · · ⊗ x(jk)⊗m(k)

ψ(j1)⊗···⊗ψ(jk)⊗1
↓

ρ̃7−→ (−1)
∑k
q=1(k−q)‖jq‖−

∑
q<r ‖jq‖·‖jr‖x(j1, . . . , jk)

(−1)
∑c6d
q<r j

c
qj
d
r

↓

wherefore

ρ(fj1 , . . . , fjk ;m
(k)).ψ = (−1)

∑k
q=1(k−q)‖jq‖−

∑c>d
q<r j

c
qj
d
rx(j1, . . . , jk)
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and degψ(j) = ‖j‖ as claimed. We conclude that for this ψ and χ the induced (by
Lemma 3.12) right action of As on f̃n is the natural one.

Let us compute the differential ∂̃ in f̃n. For ` = j1 + · · ·+ jk the expression

(−1)‖`‖ρ(fj1 , . . . , fjk ;m
(k)).∂̄ψ

=
k∑
q=1

t,p 6=0∑
t+p=jq

(−1)
∑k
r=q+1(1−‖jr‖)+

∑
c>d t

cpd+‖p‖+1+‖`‖ρ(fj1 , . . . , fjq−1 , ft, fp, fjq+1 , . . . , fjk ;m
(k+1)).ψ

=
k∑
q=1

t,p 6=0∑
t+p=jq

(−1)
∑k
r=q+1(1−‖jr‖)+

∑
c>d t

cpd+‖p‖+1+‖`‖+
∑q−1
r=1(k+1−r)‖jr‖+(k+1−q)‖t‖+(k−q)‖p‖

× (−1)
∑k
r=q+1(k−r)‖jr‖−

∑c>d
u<r j

c
uj
d
r+

∑
c>d t

cpdx(j1, . . . , jq−1, t, p, jq+1, . . . , jk)

has to coincide with

ρ(fj1 , . . . , fjk ;m
(k)).ψ∂̃ = (−1)

∑k
q=1(k−q)‖jq‖−

∑c>d
q<r j

c
qj
d
rx(j1, . . . , jk).∂̃.

This gives the differential ∂̃:

x(j1, . . . , jk).∂̃ =
k∑
q=1

(−1)k+1−q
t,p 6=0∑
t+p=jq

x(j1, . . . , jq−1, t, p, jq+1, . . . , jk). (3.16)

Note that the differential ∂̄ : f
{k}
n (`)→ f

{k+1}
n (`) makes

0 → f
{1}
n (`)

∂̄→ . . .
∂̄→ f

{k}
n (`)

∂̄→ . . .
∂̄→ f

{‖`‖}
n (`) → 0 (3.17)

into a bounded complex of abelian groups. The term f
{k}
n (`) is placed in degree k − ‖`‖.

Consider the operad morphism As → Z, m(k) 7→ 0 for k > 2, where Z is the unit

operad, Z(1) = Z, Z(n) = 0 for n 6= 1. We may view
∐

`∈Nn−0 f
{k}
n (`) as a left n-operad

Z-module, quotient of f
{k}
n by the submodule spanned by images of all left actions of

elements m(k) for k > 2. Applying the same quotient procedure to FAsn we get

FAsn(`) =

{
Z = Zu(`) = Zu(esupp `), if ‖`‖ = | supp `|,
0, if ‖`‖ > | supp `|.

We are going to prove that complex (3.17) is homotopy isomorphic via p̄ and β̄ to its
cohomology FAsn(`). If ` = eS for some S ⊂ n, then the cohomology is concentrated
in degree 0 and equals FAsn(eS) = Z = Zu(eS). If ‖`‖ > | supp `|, then the cohomology
vanishes.

We construct mappings of abelian groups h : f
{p}
n (`) → f

{p−1}
n (`) such that N̄ :

f
{k}
n (`) → f

{k}
n (`) given by (3.14) vanishes. These h induce the left n-As-module mor-

phism h : Fn → Fn compatibly with the generator–to–generator mapping f
{k}
n → F

(k)

n .
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Thus, vanishing of N̄ : f
{k}
n (`) → f

{k}
n (`) implies vanishing of N̄ : F

{}
n → F

{}
n and local

nilpotency of N : Fn → Fn.
We have reduced the proposition to proving that the chain maps p̄, β̄ in

0 → f
{1}
n (`)

∂̄→ . . .
∂̄→ f

{k}
n (`)

∂̄→ . . .
∂̄→ f

{‖`‖−1}
n (`)

∂̄→ f
{‖`‖}
n (`) → 0

0 → FAsn(`)

β̄
↑

p̄↓
→ 0

(3.18)

are homotopy inverse to each other for any ` ∈ Nn − 0. We add formally the case of

` = 0 by defining the top and the bottom rows as complexes f
{0}
n (0) = Z and FAsn(0) = Z

concentrated in degree 0. Here p̄, β̄ are defined as the identity maps.
Chain maps p̄, β̄ give rise to other chain maps p̃, β̃ in the commutative diagram

0→f
{1}
n (`)

∂̄→ . . .
∂̄→ f

{k}
n (`)

∂̄→ . . .
∂̄→ f

{‖`‖}
n (`)→ 0

0→FAsn(`)

p̄

β̄

≺====�

→ 0

0→f̃n(`)1

ψ

↓
∂̃→ . . .

∂̃→ f̃n(`)k

ψ

↓
∂̃→ . . .

∂̃→ f̃n(`)‖`‖

ψ

↓
→ 0

0→FAsn(`)

wwwwwp̃

β̃

≺====�

→ 0

In fact, the maps p̃, β̃ have to be defined if li ∈ {0, 1} for all 1 6 i 6 n. For k = ‖`‖ we
find

x(ea1 , . . . , eak).p̃ = sign(a1, . . . , ak)u(`)
def
= (−1)

∑
q<r χ(aq>ar)u(`), (3.19)

where χ(b > c) is 1 or 0 depending on the case whether the inequality holds or not. The
exponent is the number of inversions in the sequence (a1, . . . , ak). If ` = en = (1, 1, . . . , 1),
then k = n and the sign is just the sign of the permutation (a1, . . . , ak). The map
β̃ = β̄ψ : FAsn(`)→ f̃n(`)‖`‖ satisfies

u(`).β̃ = x(ec1 , . . . , eck), (3.20)

where {c1 < c2 < · · · < ck} = supp `. In particular, if ` = en, then k = n and u(en)β̃ =
x(e1, . . . , en).

Consider the augmented coalgebra Cn = Z{Nn} with the comultiplication j.∆ =∑
q+r=j q ⊗ r where j, q, r ∈ Nn. Generators j ∈ Nn of the free abelian group Cn are

denoted also x(j). The augmentation is η : Z→ Cn, 1 7→ x(0). The counit is ε : Cn → Z,
x(j) 7→ δj0. The reduced comultiplication is defined as

∆̄ = ∆− η ⊗ id− id⊗η + εη ⊗ η, ~0.∆̄ = 0, j.∆̄ =

q,r 6=0∑
q+r=j

q ⊗ r for j 6= 0.

The abelian subgroup C̄n = Ker ε = Z{Nn − 0} ⊂ Cn equipped with the comultiplication
∆̄ is a coassociative coalgebra, which is not counital. The complex f̃n is nothing else but
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the cohomology complex K ′(C̄n) of the coassociative coalgebra C̄n, which is the upper
row of the diagram

0→ Z 0 → C̄n
∆̄→ C̄⊗2

n

∂̃→ . . .
∂̃→ C̄⊗kn

∂̃→ . . .
∂̃→ C̄⊗nn

∂̃→ . . .

0→ Z

wwwww
0→∧1

Z(Zn)

β̃
↑

p̃↓
0→∧2

Z(Zn)

β̃
↑

p̃↓
0→ . . .

0→∧kZ(Zn)

β̃
↑

p̃↓
0→ . . .

0→∧nZ(Zn)

β̃
↑

p̃↓
0→ 0

(3.21)

We identify x(j1, . . . , jk) ∈ f̃n with j1 ⊗ · · · ⊗ jk ∈ C̄⊗kn . The exterior algebra ∧Z(Zn) =
TZ(Zn)/(x ⊗ x | x ∈ Zn) has the basis (e{c1<c2<···<ck} = ec1 ∧ ec2 ∧ · · · ∧ eck), where
1 6 c1 < c2 < · · · < ck 6 n. The mappings in this diagram are

(j1 ⊗ · · · ⊗ jk).∂̃ =
k∑
q=1

(−1)k−q+1j1 ⊗ · · · ⊗ jq−1 ⊗ jq.∆̄⊗ jq+1 ⊗ · · · ⊗ jk,

x(j1, . . . , jk).p̃ = 0 unless
∥∥∥ k∑
q=1

jq

∥∥∥ = k =
∣∣∣ supp

k∑
q=1

jq

∣∣∣, jq ∈ Nn − 0,

x(ea1 , . . . , eak).p̃ = (−1)
∑
q<r χ(aq>ar)e{a1,...,ak}, a1, . . . , ak – distinct,

e{c1<c2<···<ck}.β̃ = x(ec1 , . . . , eck),

which coincides with (3.16), (3.19) and (3.20).
It remains to prove that the maps p̃, β̃ are homotopy inverse to each other. Clearly,

β̃p̃ = 1.

3.14. Lemma. For n = 1 the maps p̃, β̃ are homotopy inverse to each other.

Proof. For n = 1 the chain maps in question become

0→ Z 0→ C̄1
∆̄→ C̄⊗2

1

∂̃→ . . .
∂̃→ C̄⊗k1

∂̃→ . . .

0→ Z

wwwww
0→ Z

β̃
↑

p̃
↓

→ 0

↑
↓
→ . . . → 0

↑
↓
→ . . .

x(j).p̃ = δj1, 1.β̃ = x(1).

Define a map of graded abelian groups h : K ′(C̄1) → K ′(C̄1) of degree −1 by the
formula

x(j1, . . . , jk−1, jk).h =

{
x(j1, . . . , jk−2, jk−1 + 1), if k > 1, jk = 1,

0, otherwise.

We claim that the chain map E = p̃β̃ − h∂̃ − ∂̃h : K ′(C̄1)→ K ′(C̄1) is the identity map.
In fact, x(1).E = x(1), and for j > 2 we have

x(j).E =

q,r>0∑
q+r=j

x(q, r).h = x(j − 1 + 1) = x(j).
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For k > 1 and jk > 2 we find

x(j1, . . . , jk).E =
∑

q+r=jk

x(j1, . . . , jk−1, q, r).h = x(j1, . . . , jk−1, jk).

It remains to consider for k > 1 the value

x(j1, . . . , jk−1, 1).E = −x(j1, . . . , jk−2, jk−1 + 1).∂̃ − x(j1, . . . , jk−1, 1).∂̃h

=
∑

q+r=jk−1+1

x(j1, . . . , jk−1, q, r)−
∑

q+t=jk−1

x(j1, . . . , jk−2, q, t, 1).h = x(j1, . . . , jk−2, jk−1, 1).

Hence, E = id, and p̃β̃ is homotopic to the identity map.

3.14.1. Homology of augmented algebras. Let C be a symmetric monoidal cate-
gory with the tensor product ⊗ and the unit object 1. Assume that A = (A, µ : A⊗A→
A, η : 1 → A, ε : A → 1) is an augmented unital associative algebra in C. There is an
associated simplicial object S(A):

· · ·A⊗ A⊗ A

d3=1⊗1⊗ε→← s2=1⊗1⊗η
d2=1⊗µ →

← s1=1⊗η⊗1
d1=µ⊗1 →

← s0=η⊗1⊗1

d0=ε⊗1⊗1
→

A⊗ A

d2=1⊗ε→←s1=1⊗η
d1=µ →

←s0=η⊗1

d0=ε⊗1
→
A

d1=ε→←s0=η

d0=ε
→ 1,

where di and si are face maps and degeneracy maps respectively. When B is another
augmented algebra in C, the Cartesian product S(A)×S(B) of simplicial objects [Mac63,
Section VIII.8] is naturally isomorphic to the simplicial object S(A⊗B).

Assume also that C is abelian and the tensor product ⊗ is bilinear. A complex

K(A)
def
= K(S(A)) is associated with the simplicial object S(A). It has the differen-

tial ∂ =
∑q

i=0(−1)idi : A⊗q → A⊗q−1. Homology of K(A) gives the torsion objects
TorA• (1,1), where the left and the right A-module 1 obtains its structure via ε : A→ 1.
Given two augmented algebras A and B in C we can form a bisimplicial object in C, whose
terms are A⊗p⊗B⊗q. By Eilenberg–Zilber theorem [Wei94, Theorem 8.5.1] the complexes
K(A⊗B) = K(S(A⊗B)) ' K(S(A)× S(B)) and K(A)⊗K(B) are quasi-isomorphic.

Consider associative algebras Ā = (Ā, µ : Ā⊗ Ā→ Ā) in C, which are not required to
have a unit. Such an algebra gives rise to a unital one A = 1⊕Ā for which η = in1 : 1→ A
is the unit and ε = pr1 : A→ 1 is an augmentation. Introduce another monoidal product
in C (not bilinear) via the formula

Ā~ B̄ = Ā⊕ B̄ ⊕ (Ā⊗ B̄).

There is an obvious isomorphism

1⊕ (Ā~ B̄) = (1⊕ Ā)⊗ (1⊕ B̄).
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If Ā, B̄ are associative algebras in (C,⊗), then Ā ~ B̄ obtains an associative algebra
structure in (C,⊗) via this isomorphism, namely, 1⊕ (Ā~ B̄) = A⊗B.

There is a normalised chain complex KN(Ā) = KN(S(A)) of the simplicial complex
S(A):

. . . → Ā⊗3 −µ⊗1+1⊗µ→ Ā⊗2 −µ→ Ā
0→ 1→ 0,

with the differential ∂ =
∑q−2

i=0 (−1)i+11⊗i ⊗ µ ⊗ 1⊗q−i−2 : Ā⊗q → Ā⊗q−1, where 1 is
placed in degree 0. By a generalization of normalization theorem of Eilenberg and Mac
Lane [Mac63, Theorem VIII.6.1] the natural projection K(A) → KN(Ā) is a homotopy
isomorphism. As a corollary, we get the following

3.15. Proposition. For associative algebras Ā, B̄ in (C,⊗) there is a natural quasi-
isomorphism

KN(Ā~ B̄)� KN(Ā)⊗KN(B̄).

3.15.1. Conclusion of the proof of Theorem 3.13. Let us take for (C,⊗) the
category (Abop,⊗op

Z ) opposite to the category of abelian groups with the opposite tensor
product. Clearly, the category Abop is abelian. An associative algebra in this monoidal
category is a coassociative coalgebra over Z in the ordinary sense. In particular, such is
C̄n = Z{Nn−0}. Adding a unit to it in Abop gives Cn = Z{Nn}. Since Cn⊗ZCm ' Cn+m,
we conclude that C̄n~C̄m ' C̄n+m. The homological complex KN(C̄n) in Abop and the top
line of (3.21), the cohomological complex K ′(C̄n) in Ab are identified: the n-th abelian
groups and the differentials between them coincide. Thus, the results of the previous
section apply to K ′(C̄n).

We claim that the cohomology of K ′(C̄n) is isomorphic to ∧Z(Zn). In fact, using
induction we deduce from Lemma 3.14 and Proposition 3.15 the quasi-isomorphism

K ′(C̄n+1)
qis
→ K ′(C̄n)⊗K ′(C̄1)

q⊗p̃→ ∧Z (Zn)⊗ ∧Z(Z) ' ∧Z(Zn+1).

Here q, p̃ are quasi-isomorphisms. So is their tensor product q⊗p̃, since complexes K ′(C̄n),
∧Z(Zn) consist of free abelian groups, ∧Z(Zn) are bounded and K ′(C̄n) are direct sums of
bounded complexes.

Both rows of diagram (3.21) have the same homology, which coincides with the bottom
row and consists of finitely generated free abelian groups. Since H(β̃)H(p̃) = 1, the ma-
trices of H(β̃) and H(p̃) are invertible. Thus, β̃ and p̃ induce isomorphisms in homology.
They are quasi-isomorphisms of complexes consisting of free abelian groups. Therefore,
their cones are acyclic complexes consisting of free abelian groups. They split into short
exact sequences whose terms are also free abelian groups (as subgroups of such). Hence,
these short exact sequences split and the cones are contractible. Thus, p̃ and β̃ are homo-
topy isomorphisms. Clearly, they are homotopy inverse to each other. This implies the
same conclusion for p̄ and β̄ and for p and β.



1582 VOLODYMYR LYUBASHENKO

3.16. Corollary. [to Proposition 3.9, Theorem 3.13] The polymodule Fn is homotopy
isomorphic to its cohomology and H•(Fn(j)) = k[1− ‖j‖] for j ∈ Nn − 0.

This is due to existence of a degree 1 isomorphism Σ : H•(Fn)→ FAsn.

3.17. Homotopy unital A∞-morphisms. Consider the free n ∧ 1-Asu
∞-module

F̃n =©n
i=1Asu

∞ �iA∞ Fn �0
A∞ Asu

∞ = �>0(nAsu
∞;k{fj | j ∈ Nn − 0}; Asu

∞).

In particular, F̃0 = Asu
∞(0) = k1su by [Lyu15, Lemma A.9]. The graded ideal generated

by the following system of relations in it

ρ∅(1su) = λiei(1
su; fei), ∀ i, λi`(

a1, 1su, b1; f`) = 0 if a+ 1 + b = `i, ‖`‖ > 1,

is stable under the differential, as one easily verifies. Therefore the quotient Fsu
n of F̃n

by these relations is an n ∧ 1-Asu
∞-module. We still have Fsu

0 = Asu
∞(0) = k1su. Note

that Fsu
n -algebra maps coincide with strictly unital A∞-algebra morphisms, which are by

[BLM08, Definition 9.2] A∞-morphisms f : (A1, . . . , An) → B between strictly unital
A∞-algebras such that all components of f vanish if any of its entries is 1suAi , except
1suAifei = 1suB .

The rows of the following diagram in dgNtNn

0 → (A∞,Fn) → (Asu
∞,F

su
n ) → (k1su,k1suρ∅) → 0

0 → (As ,FAsn)

htis↓↓
→ (As1 ,FAs1 n)

htis p′↓↓
→ (k1su,k1suρ∅)

wwwww
→ 0

(3.22)

are exact sequences, split in the obvious way. Therefore, the middle vertical arrow p′ is a
homotopy isomorphism.

Consider the embedding of free graded operads Asu
∞ → Asu

∞〈i, j〉, where i, j are two
nullary operations, deg i = 0, deg j = −1. Assuming i∂ = 0, j∂ = 1su − i, we make the
second operad differential graded and the embedding becomes a chain map. It is proven in
[Lyu11] (end of proof of Proposition 1.8) that this embedding is a homotopy isomorphism.
Or, the reader can simplify the lines of the proof given below and adopt it to the case of
Asu
∞ → Asu

∞〈i, j〉.

3.18. Proposition. The embedding ι : (Asu
∞,F

su
n ) → (Asu

∞,F
su
n )〈i, j〉 is a homotopy iso-

morphism.

Proof. An arbitrary chain n ∧ 1-module map φ : (Asu
∞,F

su
n )〈i, j〉 → (A,P) is fixed by

specifying a chain n∧ 1-module map (Asu
∞,F

su
n )→ (A,P) and the image φ(j) ∈ A(0)−1. In

particular, there is a unique chain n ∧ 1-module map

π : (Asu
∞,F

su
n )〈i, j〉 → (Asu

∞,F
su
n ), i 7→ 1su, j 7→ 0,

whose restriction to (Asu
∞,F

su
n ) is identity. Let us prove that π is homotopy inverse to ι.
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The restrictions of the above chain maps ι′ : k1su ↪→ k{1su, i, j} and π′ : k{1su, i, j} →
k1su, 1su 7→ 1su, i 7→ 1su, j 7→ 0, are homotopy isomorphisms: the homotopy h :
k{1su, i, j} → k{1su, i, j}, 1su.h = 0, i.h = j, j.h = 0, satisfies ∂h + h∂ = π′ι′ − 1. We know
from Proposition A.1 that the n ∧ 1-module (Asu

∞,F
su
n )〈i, j〉 coincides with (Asu

∞〈i, j〉,P =
©n

k=0Asu
∞〈i, j〉 �kAsu

∞
Fsu
n ). The component P(l) is obtained from components Fsu

n (r) with
rq > lq for all q ∈ n by plugging the unused rq− lq entries with i and j in all possible ways
determined by injections ψq : lq ↪→ rq:

P(l) =
∐

(ψq :lq ↪→rq)nq=1

(⊗
q∈n

⊗
rq−Imψq

k{i, j}
)
⊗ Fsu

n (r).

There is a split surjection

λ : Q(l) =
∐

(ψq :lq ↪→rq)nq=1

(⊗
q∈n

⊗
rq−Imψq

(k{i, j} ⊕ k1su)
)
⊗ Fsu

n (r) → P(l),

obtained by acting with all 1su on Fsu
n on the left via λ. This reduces the quantities rq by

the number of factors 1su.
Denote f = π′ι′, g = id : k{1su, i, j} → k{1su, i, j}. Equip the set S = tq∈n(rq − Imψq)

with the lexicographic order, q < y ∈ n implies (q, c) < (y, z). The maps ∂ and πι satisfy

Q(l)
⊕(ψq)q (1⊗∂+

∑
(y,z)∈S(⊗(q,c)<(y,z)1)⊗∂⊗(⊗(q,c)>(y,z)1)⊗1)

∂̂
→ Q(l)

=

P(l)

λ
`

∂ → P(l)

λ
`

Q(l)
⊕(ψq)q (⊗(q,c)∈Sf)⊗1

π̂ι
→ Q(l)

=

P(l)

λ
`

πι → P(l)

λ
`

Since 1su.f = 1su.g = 1su, 1su.h = 0, there is a unique map H : P(l) → P(l) of degree −1
such that

Q(l)
⊕(ψq)q

∑
(y,z)∈S(⊗(q,c)<(y,z)f)⊗h⊗(⊗(q,c)>(y,z)g)⊗1

Ĥ
→ Q(l)

=

P(l)

λ
`

H → P(l)

λ
`

In order to find the commutator ∂H +H∂ we can compute

∂̂Ĥ + Ĥ∂̂ =
∐

(ψq :lq ↪→rq)nq=1

∑
(y,z)∈S

( ⊗
(q,c)<(y,z)

f
)
⊗ (f − g)⊗

( ⊗
(q,c)>(y,z)

g
)
⊗ 1

=
∐

(ψq :lq ↪→rq)nq=1

( ⊗
(q,c)∈S

f −
⊗

(q,c)∈S

g
)
⊗ 1 = π̂ι− 1.

Therefore, ∂H +H∂ = πι− 1.
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The projection p′ decomposes into a standard trivial cofibration and an epimorphism
p′′

p′ =
(
(Asu
∞,F

su
n ) �

htis

∼→ (Asu
∞,F

su
n )〈i, j〉 p′′→ (As1 ,FAs1 n)

)
,

where p′′(1su) = 1su, p′′(i) = 1su, p′′(m2) = m2, p′′(fei) = 1 ∈ FAs1 n(ei), and other
generators go to 0. As a corollary p′′(1suρ∅) = 1suρ∅. Hence, the projection p′′ is a
homotopy isomorphism as well.

Generators f` of the n∧1-operad module Fn are interpreted as maps f` : ⊗k∈nT `kAk →
B of degree deg f` = 1 − ‖`‖. A cofibrant replacement (Ahu

∞,F
hu
n ) → (As1 ,FAs1 n) is

constructed as a gr-submodule of (Asu
∞,F

su
n )〈i, j〉 generated in operadic part by i and g-ary

operations of degree 4− g − 2k

mg1;g2;...;gk = (1⊗g1 ⊗ j⊗ 1⊗g2 ⊗ j⊗ · · · ⊗ 1⊗gk−1 ⊗ j⊗ 1⊗gk)mg+k−1,

where g =
∑k

q=1 gq, k > 1, gq > 0, g + k > 3 and in module part by the nullary elements

vk = λkek(j; fek)− jρ∅ = jfek − jρ∅, k ∈ n, deg vk = −1, and by elements

f(`k1 ;`k2 ;...;`k
tk

)k∈n
= λˆ̀

(
(`
k
11, j, `

k
21, j, . . . ,

`k
tk−11, j, `

k
tk1)k∈n; fˆ̀

)
=
[
⊗k∈nT `kAk

⊗k∈n(1⊗`
k
1⊗j⊗1⊗`

k
2⊗j⊗···⊗1

⊗`k
tk−1⊗j⊗1

⊗`k
tk )→ ⊗k∈n T ˆ̀k

Ak
fˆ̀→ B

]
(3.23)

of arity ` =
(∑tk

p=1 `
k
p

)
k∈n, where the intermediate arity is ˆ̀ =

(
tk − 1 +

∑tk

p=1 `
k
p

)
k∈n =(

−1+
∑tk

p=1(`kp +1)
)
k∈n, and of degree deg f(`k1 ;...;`k

tk
)k∈n

= 1+2n−
∑n

k=1

∑tk

p=1(`kp +2). We

assume that tk > 1 for all k ∈ n and either ‖ˆ̀‖ =
∑n

k=1(tk−1)+
∑n

k=1

∑tk

p=1 `
k
p > 2, or all

tk = 1 and there is m ∈ n such that `k1 = δkm. The last condition eliminates from the list
the summands f0,...,0,(0;0),0,...,0 = jfek of vk. Setting i∂ = 0, j∂ = 1su−i, we turn (Asu

∞,F
su
n )〈i, j〉

into a dg-module and (Ahu
∞,F

hu
n ) into its dg-submodule. Note that vk∂ = iρ∅ − ifek .

Let us prove that the graded n ∧ 1-module (Ahu
∞,F

hu
n ) is free over (k, 0). The graded

n ∧ 1-module (A∞,Fn)〈j〉 can be presented as(
A∞,�>0([n]A∞;k{f` | ` ∈ Nn − 0})

)
〈j〉

'
(
A∞〈j〉,�>0(nk〈mn1;...;nk | k +

∑k
q=1nq > 3〉;k{f(`k1 ;...;`k

tk
)k∈n
| ‖ˆ̀‖ > 1}; A∞〈j〉)

)
.

(3.24)

The free graded n∧ 1-operad module generated by mn1;...;nk and f(`k1 ;...;`k
tk

)k∈n
has the form

K = F
(
k{mn1;...;nk | k +

∑k
q=1nq > 3},k{f(`k1 ;...;`k

tk
)k∈n
| ‖ˆ̀‖ > 1}

)
=
(
k〈mn1;...;nk | k +

∑k
q=1nq > 3〉,

�>0 ([n]k〈mn1;...;nk | k +
∑k

q=1nq > 3〉; k{f(`k1 ;...;`k
tk

)k∈n
| ‖ˆ̀‖ > 1})

)
.
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It is a direct summand of (3.24), so we have a split exact sequence in grNtN
n

0 → K
α→←
π

(A∞,Fn)〈j〉
κ→←
ω

(kj, kjρ∅) → 0,

where ω takes jρ∅ to the nullary generator jρ∅. Consider also the graded n ∧ 1-module

L = F
(
k{mn1;...;nk | k +

∑k
q=1nq > 3},k{vk, fek , f(`k1 ;...;`k

tk
)k∈n
| ‖ˆ̀‖ > 2}

)
.

Notice that the map L→ K, vk 7→ jfek , which maps other generators identically, identifies
the n ∧ 1-modules L and K.

Consider the graded module morphism

β : L =
(
k〈mn1;...;nk | k +

∑k
q=1nq > 3〉, L

)
→ (A∞,Fn)〈j〉 =

(
A∞〈j〉, (A∞,Fn)〈j〉

)
,

vk 7→ jfek − jρ∅,

which maps other generators identically. The morphism β extends to basic elements so
that each factor jρ∅ arising from a vertex of type vk gives its j to subsequent m;;; adding
another semicolon to its indexing sequence. This follows by associativity of ρ. The basic
elements vk are mapped by βκ to −jρ∅. For any other basic element b(t) ∈ L we have
b(t).βκ = 0.

The map β − βκω ∈ grNtN
n

factors through α as the following diagram shows:

0 → K
α→←
π

(A∞,Fn)〈j〉
κ→←
ω

(kj,kjρ∅) → 0

L

∃!γ
↑

β−βκω

→

The unique map γ = (β−βκω)π = βπ : L→ K ∈ grNtN
n
, such that β−βκω = γα, has a

triangular matrix. In fact, L and K have an N-grading, Lq = ⊕kb(t), Kq = ⊕kb(t), where
the summation is over forests t with q vertices labelled by one of vk (resp. one of jfek). The
map γ takes the filtration Lq = L0 ⊕ · · · ⊕ Lq to the filtration Kq = K0 ⊕ · · · ⊕Kq. The
diagonal entries γqq : Lq → Kq are identity maps. Thus, the matrix of γ equals 1 − N ,
where N is locally nilpotent, and γ is invertible. We obtained a split exact sequence

0 → L
β−βκω→ (A∞, F1)〈j〉

κ→←
ω

(kj,kjρ∅) → 0. (3.25)

Let us decompose the first two terms into direct sums

L = k{vs | s ∈ n} ⊕
(
L	 k{vs | s ∈ n}

)
,

(A∞,Fn)〈j〉 = k{jρ∅, jfes | s ∈ n} ⊕
(
(A∞,Fn)〈j〉 	 k{jρ∅, jfes | s ∈ n}

)
,

where the complements are spanned by all basic elements except those listed in the first
summands. The maps β and β − βκω preserve this decomposition. Their restriction to
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the second summand coincide and this is an isomorphism due to exactness of (3.25). If
we drop out complements, this split exact sequence takes the form

0 → k{vs | s ∈ n} β−βκω→ k{jρ∅, jfes | s ∈ n}
κ→←
ω

kjρ∅ → 0,

where vs.(β − βκω) = jfes . Let us replace it with another split exact sequence

0 → k{vs | s ∈ n}
β→←
τ

k{jρ∅, jfes | s ∈ n}
θ→←
ω

kjρ∅ → 0,

where jfes .θ = jρ∅.θ = jρ∅ and jρ∅.τ = 0, jfes .τ = vs. Restoring back the dropped
isomorphism of second summands we obtain from the above the split exact sequence

0 → L
β→ (A∞, F1)〈j〉

θ→←
ω

(kj,kjρ∅) → 0,

such that θ vanishes on the complement.
Adding freely i we deduce the split exact sequence in grNtN

n

0→ L〈i〉 → (A∞,Fn)〈j, i〉 → (kj,kjρ∅)→ 0. (3.26)

The image of the embedding is precisely (Ahu
∞,F

hu
n ), thus the latter graded n ∧ 1-module

is free. In the particular case of n = 0 the module part is generated by the empty set of
generators. Therefore, Fhu

0 = Ahu
∞(0) by [Lyu15, Lemma A.9].

Furthermore, from the top row of diagram (3.22) we deduce a splittable exact sequence
in grNtN

n

0→ (A∞,Fn)〈i〉 → (Asu
∞,F

su
n )〈i〉 → (k1su,k1suρ∅)→ 0.

We may choose the splitting of this exact sequence as indicated below:

0→ (A∞,Fn)〈i〉 → (Asu
∞,F

su
n )〈i〉 → (k{1su − i},k{1suρ∅ − iρ∅})→ 0.

Adding freely j we get the split exact sequence

0→ (A∞,Fn)〈i, j〉 → (Asu
∞,F

su
n )〈i, j〉 → (k{1su − i},k{(1su − i)ρ∅})→ 0. (3.27)

Combining (3.26) with (3.27) we get a split exact sequence

0→ (Ahu
∞,F

hu
n )

i′−→ (Asu
∞,F

su
n )〈i, j〉 → (k{1su − i, j}, k{(1su − i)ρ∅, jρ∅})→ 0. (3.28)

The differential in (Ahu
∞,F

hu
n ) is computed through that of (Asu

∞,F
su
n )〈i, j〉. Actually,

(3.28) is a split exact sequence in dgNtNn , where the third term obtains the differential
j.∂ = 1su − i, jρ∅.∂ = 1suρ∅ − iρ∅. The third term is contractible, which shows that the
inclusion i′ is a homotopy isomorphism in dgNtNn . Hence, the epimorphism p = i′ · p′′ :
(Ahu
∞,F

hu
n )→ (As1 ,FAs1 n) is a homotopy isomorphism as well.
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In order to prove that (1, 0)→ (Ahu
∞,F

hu
n ) is a standard cofibration we present it as a

colimit of sequence of elementary cofibrations

(1, 0)→ D0 = F (k{i,m2},k{fes | s ∈ n})→ D1 → D2 → . . . ,

where for r > 0

Dr = F
(
k{i,mn1;...;nk | degmn1;...;nk > −r},k{vs, f(`k1 ;...;`k

tk
)k∈n
| s ∈ n, deg f(`k1 ;...;`k

tk
) > −r}

)
.

Summing up, we have

3.19. Theorem. The n ∧ 1-operad dg-module (Ahu
∞,F

hu
n ) is a cofibrant replacement of

(As1 ,FAs1 n). Moreover, (Ahu
∞,F

hu
n ) → (As1 ,FAs1 n) is a homotopy isomorphism in

dgNtNn.

Algebra maps over (Ahu
∞,F

hu
n ) are identified with homotopy unital A∞-morphisms,

which we define in the spirit of Fukaya’s approach:

3.20. Definition. A homotopy unital structure of an A∞-morphism f : A1, . . . , An → B
is an A∞-morphism f+ : (A+

k )k∈n = (Ak⊕k1suAk⊕kjAk)k∈n → B⊕k1suB ⊕kjB = B+ between
given homotopy unital A∞-algebra structures such that:

(1) f+ is a strictly unital: for all 1 6 k 6 n

1suAk f
+
ek

= 1suB ,
[
1⊗(k−1)⊗ (1⊗a⊗1suAk ⊗1⊗b)⊗1⊗(n−k)

]
f+` = 0 if a+ 1 + b = `k, ‖`‖ > 1.

(2) the element vBk = jAk f+ek − jB is contained in B;

(3) the restriction of f+ to A1, . . . , An gives f;

(4)
[
⊗k∈n(Ak ⊕ kjAk)⊗`k

]
f+` ⊂ B, for each ` ∈ Nn, ‖`‖ > 1.

Homotopy unital structure of an A∞-morphism f means a choice of such f+. There
is another notion of unitality which is a property of an A∞-morphism:

3.21. Definition. [See [BLM08, Proposition 9.13]] An A∞-morphism f : A1, . . . , An →
B between unital A∞-algebras is unital if the cycles iAk fek and iB differ by a boundary for
all 1 6 k 6 n.

For a homotopy unital A∞-morphism f : A1, . . . , An → B the equation holds vBkm1 =
vk∂ = iρ∅ − ifek = iB − iAk fek . Thus an A∞-morphism with a homotopy unital structure
is unital.

3.22. Conjecture. Unitality of an A∞-morphism is equivalent to homotopy unitality:
any unital A∞-morphism admits a homotopy unital structure.

All reasoning of this section can be applied to Fn in place of Fn. A nullary degree −1
cycle 1su subject to relations (1.6) is added to A∞. The resulting operad is denoted Asu

∞.
We consider the Asu

∞-module

F̃n =©n
i=1A

su
∞ �iA∞ Fn �

0
A∞ A

su
∞ = �>0(nAsu

∞;k{fj | j ∈ Nn − 0};Asu
∞).
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It is divided by the graded ideal generated by the following system of relations

ρ∅(1su) = λiei(1
su; fei), ∀ i, λi`(

a1,1su, b1; f`) = 0 if a+ 1 + b = `i, ‖`‖ > 1.

The quotient is denoted F su
n . Similarly to the above we add two nullary operations i,

j to Asu
∞ with deg i = −1, deg j = −2, i∂ = 0, j∂ = i − 1su. The obtained Asu

∞〈i, j〉-
module F su

n 〈i, j〉 contains an Ahu
∞-submodule F hu

n spanned by the nullary elements vk =
λkek(j; fek)− jρ∅ = jfek − jρ∅, k ∈ n, deg vk = −2, and by elements f(`k1 ;`k2 ;...;`k

tk
)k∈n

similar

to (3.23). There are invertible operad module homomorphisms Σ of degree 1 sending
fj 7→ fj, 1

su 7→ 1su, i 7→ i, j 7→ j, vk 7→ vk:

Σ : (Asu
∞, F

su
n )→ (Asu

∞,F
su
n ), Σ : (Asu

∞, F
su
n )〈i, j〉 → (Asu

∞,F
su
n )〈i, j〉,

Σ : (Ahu
∞, F

hu
n )→ (Ahu

∞,F
hu
n ).

4. Composition of morphisms with several arguments

4.1. Non-shifted A∞-morphisms. Below we shall prove that the convolution H of
A∞-polymodule cooperad F and the lax Cat-multifunctor Hom built from Ck gives a
multicategory of A∞-algebras and A∞-morphisms. Its objects are A∞-algebras and mor-
phisms (Ai)i∈I → B ∈ H are morphisms of n ∧ 1-operad modules

(IA∞; Fn; A∞)→ ((End Ai)i∈I ; hom((Ai)i∈I ;B);End B),

which are precisely A∞-morphisms with several arguments. Their composition is the
composition in H.

Let us denote by a∞ the multiquiver of A∞-algebras and their morphisms, that is,
a∞ = H for A = A∞. Due to reasoning after equation (8.20.2) in [BLM08] the map

Ts : a∞((Ai)i∈n;B)→ dgac(⊗i∈nTsAi, T sB), f 7→ f,

is a bijection.
Diagram (3.8) implies commutativity of

F|v|
gv→ hom((sAe)e∈in(v); sAou(v))

F|v|

Σ
↓

gv→ hom((Ae)e∈in(v);Aou(v))

hom((σ)e∈in(v);σ
−1)↓

Here hom((σ)e∈in(v);σ
−1) = hom((σ)e∈in(v); 1) · hom((1)e∈in(v);σ

−1) is the product of right
operators.

Put differently, for each k ∈ Nin(v) − 0 there is a bijection

gr
(e∈in(v)⊗

T k
e

sAe, sAou(v)

) ∼=−→ gr
(e∈in(v)⊗

T k
e

Ae, Aou(v)

)1−‖k‖
, gvk 7→ gvk =

(e∈in(v)⊗
σ⊗k

e)·gvk·σ−1.
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Using it we write equation (4.15) of [Lyu15] composed with projection prj as∏
v∈v(t)

∏
k∈Nin(v)−0

gr
( ⊗
e∈in(v)

T k
e

Ae, Aou(v)

)1−‖k‖ → gr
( ⊗
a∈Inp t

T j
a

Aa, Aroot edge

)1−‖j‖
,

(
gvk
)v∈v(t)

k∈Nin(v)−0
7→ comp

(a∈Inp t⊗
σ⊗j

a)〈 surjective t-tree τ∑
∀a∈Inpv t |τ(a)|=ja

v∈v(t)⊗ p∈τ(v)⊗ [(e∈in(v)⊗
σ⊗|τ(e)−1(p)|)−1

gv|τ(e)−1(p)|e∈in(v)σ
]〉
σ−1.

(4.1)

Let us compute this expression. Assume that t 6= | and take the smallest vertex 1
of (v(t),6). Consider subtree t′ of t with V (t′) = V (t) − inV(1), E(t′) = E(t) − in(1),
v(t′) = v(t)− {1}. Thus, Inpv(t′) = {1} t Inpv(t)− inV(1). Define t′-tree τ ′ = τ |t′ for a
t-tree τ . Decompose correspondingly the set of inputs of t into three subsets,

(Inp t, /) = Inp− t
⊔
< Inp0 t

⊔
< Inp+ t, where

Inp0 t = in(1),

Inp− t = {a ∈ Inp t | a / 1, a /∈ in(1)},
Inp+ t = {a ∈ Inp t | a . 1}.

Respectively the set of inputs of τ̃ is decomposed as (Inp τ̃ , <) = Inp− τ̃
⊔
< Inp0 τ̃

⊔
< Inp+ τ̃ ,

where Inp♦ τ̃ = {(a, x) | a ∈ Inp♦ t, x ∈ τ(tail(a))} for ♦ ∈ {−, 0,+}.
A summand of the considered expression is written as

compσ⊗ Inp τ̃
(
⊗p∈τ(1)g|τ(e)−1(p)|e∈in(1)

)(
⊗v∈v(t′) ⊗p∈τ(v) g|τ(e)−1(p)|e∈in(v)

)
σ−1

= (−1)sign(φ0) comp
〈
σ⊗ Inp− τ̃ ⊗

[
⊗p∈τ(1)

(
⊗e∈in(1)σ⊗τ(e)−1(p)g|τ(e)−1(p)|e∈in(1)

)]
⊗ σ⊗ Inp+ τ̃

〉(
⊗v∈v(t′) ⊗p∈τ(v) g|τ(e)−1(p)|e∈in(v)

)
σ−1.

Here the identity map

φ0 : (Inp0 τ̃ , <) =
⊔
<

e∈in(1)

τ(tail(e)) =
⊔
<

e∈in(1)

⊔
<

p∈τ(1)

τ(e)−1(p)
∼=−→
⊔
<

p∈τ(1)

⊔
<

e∈in(1)

τ(e)−1(p)

is viewed as an order changing permutation. The sign of this permutation is

sign(φ0) =
∑

q<p∈τ(1)

∑
e<g∈in(1)

|τ(e)−1(p)| · |τ(g)−1(q)|.

Thus the above expression is

(−1)sign(φ0)+
∑
q<p∈τ(1)(−1+

∑
e∈in(1) |τ(e)−1(p)|)+| Inp− τ̃ |

∑
p∈τ(1)(−1+

∑
e∈in(1) |τ(e)−1(p)|)

comp
(
⊗p∈τ(1)g|τ(e)−1(p)|e∈in(1)

)
σ⊗ Inp τ̃ ′

(
⊗v∈v(t′) ⊗p∈τ(v) g|τ(e)−1(p)|e∈in(v)

)
σ−1.
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Let us denote the obtained sign function by

sg′(τ) = sign(φ0) +
∑
p∈τ(1)

(p− 1)
( ∑
e∈in(1)

|τ(e)−1(p)| − 1
)

+ | Inp− τ̃ |
( ∑
a∈inV(1)

ja − |τ(1)|
)
.

The right part of the obtained expression is similar to the initial expression with t′, τ ′,

j′a =

{
ja, for a /∈ Inpv0 t,

|τ(1)|, for a = 1,

in place of t, τ , j. This allows to conclude by induction.
Let us draw an ordered tree t as a tree with height: all internal vertices are placed

at points of the plane with different height (=ordinate) so that the order 6 of vertices
agrees with reversed order of heights, see example.

l1q1
l2q2
l3

3 q
l4q4
l5

5 q
Naturally, the planar tree has to become a plane tree, which means that the order / and
the orientation of the plane agree. Furthermore, all input vertices have to be placed on
one horizontal line l1, whose height exceeds all heights of internal vertices. For technical
purposes we draw also a horizontal line li between vertices i−1 and i. The subset of E(t)
consisting of edges that intersect li is denoted Inpi t. This subset is naturally /-ordered
by intersection points of edges with li, e.g. (Inp1 t, /) = (Inp t, /). The set of tails of edges
from Inpi t is denoted Inpvi t. The bijection (Inpvi t, /)

∼= (Inpi t, /) preserves the order.
Decompose correspondingly the set of inputs of t into three subsets,

(Inpvi t, /) = Inpv−i t
⊔
< Inpv0

i t
⊔
< Inpv+

i t, where

Inpv0
i t = inV(i),

Inpv−i t = {u ∈ Inpvi t | u / i, u /∈ inV(i)},
Inpv+

i t = {u ∈ Inpvi t | u . i}.

We conclude that map (4.1) takes
(
gvk
)v∈v(t)

k∈Nin(v)−0
to

comp

surjective t-tree τ∑
∀a∈Inpv t |τ(a)|=ja

(−1)sg(τ) ⊗v∈v(t) ⊗p∈τ(v)g|τ(e)−1(p)|e∈in(v) ,
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where

sg(τ) =
∑
v∈v(t)

∑
q<p∈τ(v)

∑
elg∈in(v)

|τ(e)−1(p)| · |τ(g)−1(q)|

+
∑
v∈v(t)

∑
p∈τ(v)

(p−1)
( ∑
e∈in(v)

|τ(e)−1(p)|−1
)
+
∑
v∈v(t)

( ∑
u∈Inpv−v t

|τ(u)|
)
·
( ∑
a∈inV(v)

|τ(a)|−|τ(v)|
)
.

Correspondingly, we define a degree 0 map ∆G(t)(j) : FInp t(j)→ ~G(t)(F|v|)v∈v(t)(j),

∆G(t)(fj) =

surjective t-tree τ∑
∀a∈Inpv t |τ(a)|=ja

(−1)sg(τ) ⊗v∈v(t) ⊗p∈τ(v)f|τ(e)−1(p)|e∈in(v) . (4.2)

or, equivalently,

∆G(t)(j) · prτ = (−1)sg(τ)
〈

FInp t(j)
Σ(j)−1

→ FInp t(j)
∆G(t)(j)·prτ→ (4.3)

v∈v(t)⊗ p∈τ(v)⊗
F|v|

((
|τ(e)−1(p)|

)
e∈in(v)

)
⊗v∈v(t)⊗p∈τ(v)Σ→

v∈v(t)⊗ p∈τ(v)⊗
F|v|

((
|τ(e)−1(p)|

)
e∈in(v)

)〉
.

According to Theorem B.1 the map ∆ is a morphism of Inp(t)∧ 1-A∞-modules. We may
compute it recursively:

∆G(t)(fj) =
∑

(τ(e):je→τ(1))e∈in(1)

(−1)sg′(τ)
(
⊗p∈τ(1)f|τ(e)−1(p)|e∈in(1)

)
⊗∆G(t′)(fj′), (4.4)

the summation is taken over all families of isotonic maps τ(e), e ∈ in(1), with varying
target τ(1) such that ∪e Im τ(e) = τ(1).

By the way we get a recursive formula for comultiplication in Fn:

∆G(t)(fj) =
∑

(τ(e):je→τ(1))e∈in(1)

(
⊗p∈τ(1)f|τ(e)−1(p)|e∈in(1)

)
⊗∆G(t′)(fj′).

The following statement elucidates in what sense ∆G(t) depends on a planar tree t
rather than on ordered tree.

4.2. Proposition. Let (v(t),6) and (v(t),6′) be two orders admissible for the same
planar tree t. Let σ : (v(t),6) → (v(t),6′) be the isotonic bijection. Denoting the
corresponding symmetry map also by σ we have

σ.∆G(t,6) = ∆G(t,6′).
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Proof. It suffices to consider elementary transposition σ = (i − 1 i) and two orders 6,
6′, which differ only by interchanging two vertices i − 1 6 i, not related by 4. Denote
by t′ the planar tree t with the ordering 6′ of internal vertices, i− 1 >′ i.

Decompose Inpvi−1 t = Inpvi−1 t
′ as

Inpv−i−1 t
⊔
< inV(i− 1)

⊔
< A

⊔
< inV(i)

⊔
< Inpv+

i t.

Notice that Inpv−i−1 t
′ = Inpv−i−1 t and Inpv−i t = {i − 1}

⊔
< A, Inpv−i t

′ = inV(i − 1)
⊔
< A.

We claim that(
|τ(i− 1)| −

∑
a∈inV(i−1)

|τ(a)|
)
·
(
|τ(i)| −

∑
b∈inV(i)

|τ(b)|
)

+
( ∑
u∈Inpv−i t

|τ(u)|
)
·
( ∑
b∈inV(i)

|τ(b)| − |τ(i)|
)

=
( ∑
u∈Inpv−i t

′

|τ(u)|
)
·
( ∑
b∈inV(i)

|τ(b)| − |τ(i)|
)
.

In fact, ∑
u∈Inpv−i t

′

|τ(u)| −
∑

u∈Inpv−i t

|τ(u)| =
∑

u∈inV(i−1)

|τ(u)| − |τ(i− 1)|.

This implies the required equation between signs.

Applying Theorem B.1 to degree 1 homomorphism (Σ,Σ) : (A∞, Fn)→ (A∞,Fn), see
(3.7), we deduce via (B.2)

4.3. Proposition. (A∞,Fn) is a graded polymodule cooperad with the comultiplication
given by (4.3).

4.4. Theorem. Define comultiplication ∆M(t) for the A∞-polymodule F• by

∆M(t)(j) =
[
FInp t(j)

∆G(t)→ ~G (t)(F|v|)v∈v(t)(j)
π→ ~M (t)(F|v|)v∈v(t)(j)

]
.

On generators it is given by (4.2). For the tree t = | define ∆M(|)(j) : F1(j) → A∞(j),
fj 7→ δj1, j > 1. Then all ∆M(t)(j) are chain maps, thus, (A∞,F•,∆

M) is a dg-polymodule
cooperad.

Proof. It suffices to prove that fj.∆
M(t)∂ = fj.∂∆M(t), j ∈ NInp t − 0, for the tree

t = | and all trees t with two internal vertices. The proof follows the lines of [Lyu15,
Proposition 4.13] with extra care for signs. For the tree t = | and a positive integer j we
have

fj.∂∆M(|) =
n>1∑

r+n+t=j

(−1)(1−n)r+1−j(1⊗r ⊗mn ⊗ 1⊗t)fr+1+t.∆
M(|)

+
l>1∑

i1+···+il=j

(−1)l+
∑l
p=1(p−1)(ip−1)(fi1 ⊗ fi2 ⊗ · · · ⊗ fil)ml.∆

M(|)

= (−1)1−jmjχ(j > 1) + (−1)jmjχ(j > 1) = 0 = δj1.∂ = fj.∆
M(|)∂.



HOMOTOPY UNITAL A∞-MORPHISMS WITH SEVERAL ENTRIES 1593

Let us consider the tree t and the t-tree τ from [Lyu15, (4.17)] with adjacent notation.
In particular,

j = (j1, . . . , jn+q−1) = (u1, . . . , uc−1, i1, . . . , iq, uc+1, . . . , un) = (u−, i, u+).

We have

fj.∆
M(t) =

∞∑
uc=0

r1,...,ruc∈Nq−0∑
∑uc

p=1 rp=i

(−1)sg(τ)

( uc⊗
p=1

frp

)
⊗ fu,

sg(τ) =
∑

16z<p6uc

∑
16e<g6q

repr
g
z +

uc∑
p=1

(p− 1)
( q∑
e=1

rep − 1
)

+
( q∑
g=1

ig − uc
) c−1∑
v=1

uv. (4.5)

We find

fj.∆
M(t)∂ =

∞∑
uc=0

r1,...,ruc∈Nq−0∑
∑uc

p=1 rp=i

n∑
h=1

w>1∑
a+w+z=uh

(−1)sg(τ)+(1−w)(u1+···+uh−1+a)+1−‖u‖

(
⊗ucp=1frp

)
⊗ λh(a1,mw,

z1; fu−(w−1)eh)

(4.6)

+
∞∑

uc=0

r1,...,ruc∈Nq−0∑
∑uc

p=1 rp=i

∞∑
w=2

u1,...,uw∈Nn−0∑
u1+···+uw=u

(−1)sg(τ)+w+
∑16e<d6n

16b<a6w u
e
au
d
b+

∑w
q=1(q−1)(‖uq‖−1)

(
⊗ucp=1frp

)
⊗ ρ((fuv)

w
v=1;mw).

(4.7)

+
∞∑

uc=0

r1,...,ruc∈Nq−0∑
∑uc

p=1 rp=i

uc∑
h=1

q∑
g=1

x>1∑
a+x+z=rgh

(−1)sg(τ)+1−‖u‖+uc−h−
∑uc

v=h+1 ‖rv‖+(1−x)(a+
∑g−1
y=1 r

y
h)

(−1)1−‖rh‖
(
⊗h−1
p=1 frp

)
⊗ λg(a1,mx,

z1; frh−(x−1)eg)⊗
(
⊗ucp=h+1frp

)
⊗ fu

(4.8)

+
∞∑
kc=0

s1,...,skc∈Nq−0∑
∑kc

p=1 sp=i

kc−1∑
a=0

∞∑
w=2

l1,...,lw∈Nq−0∑
l1+···+lw=sa+1

(−1)sg(τ̃)−‖k‖+kc−a−
∑kc

v=a+2 ‖sv‖+w+
∑16e<d6q

16b<g6w l
e
gl
d
b

(−1)
∑w
ν=1(ν−1)(‖lν‖−1)

(
⊗ap=1fsp

)
⊗ ρ((flν )

w
ν=1;mw)⊗

(
⊗kcp=a+2fsp

)
⊗ fk,

(4.9)

where τ̃ means t-tree τ determined by (k, s) in place of (u, r). Also by (3.6)

fj.∂∆M(t) =
c−1∑
h=1

w>1∑
a+w+z=uh

(−1)(1−w)(a+
∑h−1
v=1 u

v)+1−‖j‖λh(a1,mw,
z1; fj−((w−1)eh,0,0).∆

M(t))

+

q∑
g=1

x>1∑
a+x+z=ig

(−1)(1−x)(a+
∑c−1
v=1 u

v+
∑g−1
y=1 i

y)+1−‖j‖λg(a1,mx,
z1; fj−(0,(x−1)eg ,0).∆

M(t))

+
n∑

h=c+1

w>1∑
a+w+z=uh

(−1)(1−w)(a+
∑h−1,v 6=c
v=1 uv+

∑q
g=1 i

g)+1−‖j‖λh(a1,mw,
z1; fj−(0,0,(w−1)eh).∆

M(t))
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+
∞∑
w=2

j1,...,jw∈NInp t−0∑
j1+···+jw=j

(−1)w+
∑16e<d6n+q−1

16b<a6w jeaj
d
b+

∑w
p=1(p−1)(‖jp‖−1)ρ((fjv .∆

M(t))wv=1;mw)

=
c−1∑
h=1

w>1∑
a+w+z=uh

∞∑
uc=0

r1,...,ruc∈Nq−0∑
∑uc

p=1 rp=i

(−1)(1−w)(a+
∑h−1
v=1 u

v)+1−‖j‖+sg(τ |uh 7→uh−w+1)

(−1)−w(uc−
∑uc

p=1 ‖rp‖)
(
⊗ucp=1frp

)
⊗ λh(a1,mw,

z1; fu−(w−1)eh)

(4.10)

+

q∑
g=1

x>1∑
b+x+l=ig

∞∑
uc=0

s1,...,suc∈Nq−0∑
∑uc

p=1 sp=i−(x−1)eg

(−1)(1−x)(b+
∑c−1
v=1 u

v+
∑g−1
y=1 i

y)+1−‖j‖+sg(τ |r 7→s)

λg
(
b1,mx,

l1; (⊗ucp=1fsp)⊗ fu
) (4.11)

+
n∑

h=c+1

w>1∑
a+w+z=uh

∞∑
uc=0

r1,...,ruc∈Nq−0∑
∑uc

p=1 rp=i

(−1)(1−w)(a+
∑h−1,v 6=c
v=1 uv+

∑q
g=1 i

g)+1−‖j‖

(−1)sg(τ |uh 7→uh−w+1)−w(uc−
∑uc

p=1 ‖rp‖)
(
⊗ucp=1frp

)
⊗ λh

(
a1,mw,

z1; fu−(w−1)eh

) (4.12)

+
∞∑
w=2

j1,...,jw∈NInp t−0∑
j1+···+jw=j

(−1)w+
∑16e<d6n+q−1

16b<a6w jeaj
d
b+

∑w
p=1(p−1)(‖jp‖−1)+

∑w
v=1 sg(τv)

ρ

((∑
ucv∈N

∀p rp∈Nq−0∑
∑uc1+···+u

c
v−1+u

c
v

p=uc1+···+u
c
v−1+1

rp=iv

( ∑v
α=1 u

c
α⊗

p=1+
∑v−1
α=1 u

c
α

frp

)
⊗ fuv

)w
v=1

;mw

)
.

(4.13)

In the last sum we denote
∑w

v=1 u
c
v by uc, thus,

∑w
v=1 uv = u.

Due to [Lyu15, (2.13)] expression (4.13) can be transformed using

ρ

((∑
ucv∈N

∀p rp∈Nq−0∑
∑uc1+···+u

c
v−1+u

c
v

p=uc1+···+u
c
v−1+1

rp=iv

( ∑v
α=1 u

c
α⊗

p=1+
∑v−1
α=1 u

c
α

frp

)
⊗ fuv

)w
v=1

;mw

)

= (−1)

∑
16v<y6w(1−‖uv‖)(ucy−

∑∑v
α=1 u

c
α

p=1+
∑v−1
α=1 u

c
α
‖rp‖)(

⊗ucp=1frp
)
⊗ ρ((fuv)

w
v=1;mw).

Let us verify that (4.7) equals (4.13). In fact, due to [Lyu15, (2.13)] all summands of two
sums are pairwise equal. It remains to check that signs are equal as well:

sg(τ) +

16e<d6n∑
16b<a6w

ueau
d
b +

w∑
q=1

(q − 1)(‖uq‖ − 1) ≡
16e<d6n+q−1∑

16b<a6w

jeaj
d
b +

w∑
p=1

(p− 1)(‖jp‖ − 1)

+
w∑
v=1

sg(τv) +
∑

16v<y6w

(1− ‖uv‖)(ucy −

∑v
α=1 u

c
α∑

p=1+
∑v−1
α=1 u

c
α

‖rp‖) (mod 2).
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Here τv, 1 6 v 6 w, is the t-tree

τv =

unv∑v
α=1 u

c
α⊔

p=1+
∑v−1
α=1 u

c
α

rqp · · ·

· · · → ucv →→
1 →

→→
1∑v

α=1 u
c
α⊔

p=1+
∑v−1
α=1 u

c
α

r1
p

→

· · ·

→

u1
v

→

However this identity is precisely the claim of Lemma B.2 for our tree t with two internal
vertices. It can be checked also directly as an exercise.

Let us show that sum (4.8) equals sum (4.11). In fact, due to [Lyu15, (2.14)] expres-
sion (4.11) can be transformed using

λg
(
b1,mx,

l1; (⊗ucp=1fsp)⊗ fu
)

= (−1)−x(h−1−
∑h−1
p=1 ‖sp‖)(⊗h−1

p=1 fsp)⊗ λg
(
a1,mx,

z1; fsh
)
⊗ (⊗ucp=h+1fsp)⊗ fu,

where h ∈ N is found from the inequalities

1 6 h 6 uc, a
def
= b−

h−1∑
p=1

sgp > 0, z
def
=

h∑
p=1

sgp − b− 1 > 0.

We identify sp = rp for p 6= h and sh = rh − (x − 1)eg. Thus terms of the two sums are
pairwise equal and it remains to check that their signs are pairwise equal as well:

sg(τ) + 1− ‖u‖+ uc − h−
uc∑

v=h+1

‖rv‖+ (1− x)(a+

g−1∑
y=1

ryh)− ‖rh‖

≡ (1−x)(b+
c−1∑
v=1

uv+

g−1∑
y=1

iy)−‖j‖+sg(τ | rgh 7→ rgh−x+1)−x(h−1−
h−1∑
p=1

‖sp‖) (mod 2).

This equation can be transformed into equivalent one:

sg(τ) ≡ sg(τ | rgh 7→ rgh − x+ 1)

+ (1− x)(−
g−1∑
y=1

ryh +
h−1∑
p=1

rgp +
c−1∑
v=1

uv +

g−1∑
y=1

iy + h− 1−
h−1∑
p=1

‖rp‖) (mod 2). (4.14)

In order to prove it we assign the following values to variables jq, 1 6 q 6 uc:

jq =

{
0, if 1 +

∑h−1
p=1 r

g
p 6 q 6 x− 1 +

∑h−1
p=1 r

g
p,

1, otherwise.
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Apply Lemma B.3 to our t-tree τ and notice that τ ′ is obtained from τ replacing rgh with
rgh − x+ 1. The identity proven in Lemma B.3 is precisely identity (4.14) that we had to
establish.

The subsum of (4.6) containing terms with h < c is equal to sum (4.10). In fact, terms
of these sums are pairwise identified. It remains to show that the signs are equal:

sg(τ) + (1− w)(a+
h−1∑
l=1

ul)− ‖u‖

≡ (1− w)(a+
h−1∑
v=1

uv)− ‖j‖+ sg(τ | uh 7→ uh − w + 1)− w(uc −
uc∑
p=1

‖rp‖) (mod 2).

Setting

jq =

{
0, if 1 6 q 6 w − 1,

1, if w 6 q 6 uh,
(4.15)

we see that the above identity is precisely the statement of Lemma B.3 applied to our
t-tree τ and described (jq)q.

Similarly, the subsum of (4.6) containing terms with h > c is equal to sum (4.12).
Again we have to show that signs coincide:

sg(τ) + (1− w)(u1 + · · ·+ uh−1 + a)− ‖u‖

≡ (1−w)(a+

h−1,v 6=c∑
v=1

uv+

q∑
g=1

ig)−‖j‖+sg(τ | uh 7→ uh−w+1)−w(uc−
uc∑
p=1

‖rp‖) (mod 2),

which actually simplifies to

sg(τ) ≡ sg(τ | uh 7→ uh − w + 1) (mod 2).

Using jq from (4.15) we deduce the required identity from Lemma B.3.
It remains to prove that subsum of (4.6) containing terms with h = c plus sum (4.9)

gives 0. Consider the element

x = (⊗ucp=1frp)⊗ (1⊗a ⊗mw ⊗ 1⊗z)⊗ fu−(w−1)ec ∈(
⊗ucp=1Fq(rq)

)
⊗(A∞(1)⊗a⊗A∞(w)⊗A∞(1)⊗z)⊗Fn(u−(w−1)ec) ⊂ ~G(t∗)(A∞,F|v|)v∈v(t),

where a+w+z = uc and t∗ is obtained from t by adding one unary vertex on the internal
edge. By definition, elements

x.(1⊗ λc) = (⊗ucp=1frp)⊗ λc(a1,mw,
z1; fu−(w−1)eh) and

x.(ρ⊗ 1) = (−1)w
∑uc

p=a+w+1(‖rp‖−1)
( a⊗
p=1

frp
)
⊗ ρ((frp)

a+w
p=a+1;mw)⊗

( uc⊗
p=a+w+1

frp
)
⊗ fu−(w−1)eh



HOMOTOPY UNITAL A∞-MORPHISMS WITH SEVERAL ENTRIES 1597

of ~G(t)(F|v|)v∈v(t) are identified in ~M(t)(F|v|)v∈v(t). Consequently, terms of (4.6) with
h = c and terms of sum (4.9) are pairwise equal in ~M(t)(F|v|)v∈v(t) provided we identify:
uv = kv for v ∈ n− {c}, uc = kc + w − 1, sp = rp for 1 6 p 6 a, lν = rν+a for 1 6 ν 6 w,
sp = rp+w−1 for a+ 2 6 p 6 kc, and sa+1 =

∑w
ν=1 lw =

∑w
ν=1 ra+ν . We have to check that

the terms occur with opposite signs:

sg(τ) + (1− w)(a+
c−1∑
v=1

uv) + 1− ‖u‖+ w

uc∑
p=a+w+1

(‖rp‖ − 1) + 1

≡ sg(τ̃) + 1−‖k‖+
kc∑

v=a+2

(1−‖sv‖) +w+

16e<d6q∑
16b<g6w

legl
d
b +

w∑
ν=1

(ν− 1)(‖lν‖− 1) (mod 2).

Plug in explicit value of sg(τ) from (4.5):

16e<g6q∑
16z<p6uc

repr
g
z +

uc∑
p=1

(p− 1)(‖rp‖ − 1) + (‖i‖ − uc)
c−1∑
v=1

uv + (1− w)(a+
c−1∑
v=1

uv)

+ (w − 1)
uc∑

p=a+w+1

(‖rp‖ − 1) ≡
16e<g6q∑

16z<p6uc

seps
g
z +

kc∑
p=1

(p− 1)(‖sp‖ − 1)

+ (‖i‖ − kc)
c−1∑
v=1

kv +

16e<d6q∑
16b<g6w

legl
d
b +

w∑
ν=1

(ν − 1)(‖lν‖ − 1) (mod 2).

Terms quadratic in r, s and l cancel each other. More cancellations occur leading to the
obvious identity:

a+w∑
p=a+1

(p− 1)(‖rp‖− 1) + (1−w)a ≡ a
( w∑
ν=1

‖ra+ν‖− 1
)

+
w∑
ν=1

(ν− 1)(‖ra+ν‖− 1) (mod 2).

Thus, fj.∆
M(t)∂ = fj.∂∆M(t).

4.5. Comultiplication for homotopy unital case. Let multiquiver ahu∞ = H be
convolution of Fhu : F → M and Hom : B → M coming from Ck. Objects of ahu∞ are
homotopy unital A∞-algebras and morphisms are homotopy unital A∞-morphisms.

There is a multiquiver map -+ : ahu∞ → a∞, (A, i,m1,mn1;n2;...;nk | k +
∑k

q=1 nq > 3)→
(A+,m+

n | n > 1), where A+ = A ⊕ k1su ⊕ kj is strictly unital with the strict unit 1su,
m+
n

∣∣
A⊗n

= mn, jm+
1 = 1su − i and

(1⊗n1 ⊗ j⊗ 1⊗n2 ⊗ j⊗ · · · ⊗ 1⊗nk−1 ⊗ j⊗ 1⊗nk)m+
n+k−1 = mn1;n2;...;nk : A⊗n+k−1 → A

for k > 1, nq > 0, n =
∑k

q=1 nq, n+ k > 3. On morphisms with n arguments we have

f = (vk, f(`k1 ;`k2 ;...;`k
tk

)k∈n
) 7→ f+ = (f+j | j ∈ Nn − 0),
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where jf+ek = vk + jρ∅ and for ‖ˆ̀‖ > 2

[
⊗k∈nT `kAk

⊗k∈n(1⊗`
k
1⊗j⊗1⊗`

k
2⊗j⊗···⊗1

⊗`k
tk−1⊗j⊗1

⊗`k
tk )→ ⊗k∈n T ˆ̀k

A+
k

f+ˆ̀→ B
]

= λˆ̀

(
(`
k
11, j, `

k
21, j, . . . ,

`k
tk−11, j, `

k
tk1)k∈n; f+ˆ̀

)
= f(`k1 ;`k2 ;...;`k

tk
)k∈n

.

This multiquiver map is injective on morphisms and the conditions of Definition 3.20
describe its image. The image is closed under composition in a∞, hence, it is a sub-
multicategory. In this way ahu∞ becomes a multicategory and -+ : ahu∞ → a∞ becomes a
multifunctor. Composing it with the multifunctor Ts : a∞ → dgac we get again a full
and faithful embedding Ts(-)+ : ahu∞ → dgac. Its image is described by conditions parallel
to that of Definition 3.20:

(1) f+ is a strictly unital;

(2) f̂+(1⊗ · · · ⊗ 1⊗ (Ak + jAk)⊗ 1⊗ · · · ⊗ 1) ⊂ B + jB;

(3) f̂+(⊗k∈nTAk) ⊂ TB;

(4) f̂+(⊗k∈nT `k(Ak ⊕ kjAk)) ⊂ B ⊕ T>1(B ⊕ kjB) for each ` ∈ Nn, ‖`‖ > 1.

One checks directly that the set of such coalgebra morphisms is closed under composition.

4.5.1. Comultiplication for unital case. Comultiplication (4.2) extends in a unique
way to (Asu

∞,F
su
n ), which differs from (A∞,Fn) by a direct summand (k1su,k1suρ∅), see

(3.22). In fact, for a tree t the equation

ρ∅ =
[
Asu
∞(0)

ρ∅
∼=
→ Fsu

Inp t(0)
∆(t)→ ~M (t)(Fsu

|v|)v∈v(t)(0)
]

(4.16)

is one of those saying that ∆(t) agree with ρ (see (3.2) with l = 0). So we set ∆(t)
(
ρ∅(1su)

)
= ρ∅(1su). For non-empty v(t) the image of (4.16) is contained in the image of the
summand Fsu

| rv |(0) of ~G(t)(Fsu
|v|)v∈v(t)(0) indexed by the t-tree τ0 with τ0(v) = ∅ for all v

except the root vertex, while τ0(rv) = 1. For the tree t = | (4.16) is the right action in
the regular bimodule Asu

∞:

id = ρ∅ =
[
Asu
∞(0)

ρ∅

∼
→ Fsu

1 (0)
∆(|)→ Asu

∞(0)
]
.

We can be more precise in this case: ∆(|)
(
ρ∅(1su)

)
= ρ∅(1su) = 1su.

So extended comultiplication obviously agrees with the left action λ (see (3.4) with
k = 0). It agrees also with the right action ρ, see (3.2) for l > 0 with J = {q ∈ l | kq = 0}.
We may take elements 1suρ∅ in each place P(0) = Fsu

n (0) for q ∈ J . Then 1suρ∅ will
appear also in Q(0) = ~M(t)(Fsu

|v|)v∈v(t)(0) for the same q. Using associativity of ρ we can
absorb those 1su into an element of Asu

∞ and get rid of 1su’s completely. The equation is
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reduced to the case of (A∞,Fn), which is already verified. Coassociativity of extended
comultiplication is obvious.

Let us extend comultiplication further to

(Asu
∞,F

su
n )〈i, j〉 '

(
Asu
∞〈i, j〉,©n

k=0Asu
∞〈i, j〉 �kAsu

∞
Fsu
n

)
using Proposition A.1. Let n = | Inp t|. The comultiplication is the lower diagonal in

~M(t)(Asu
∞,F

su
|v|)v∈v(t)

⊂ → ~M(t)(Asu
∞,F

su
|v|)v∈v(t)〈i, j〉

(Asu
∞,F

su
n )

∆M(t)
↑ (

Asu
∞〈i, j〉,©n

k=0Asu
∞〈i, j〉 �kAsu

∞
~M(t)(Asu

∞,F
su
|v|)v∈v(t)

)o↓

(Asu
∞,F

su
n )〈i, j〉
↓

∩

∆
M (t)〈i,j〉

→

~M(t)(Asu
∞〈i, j〉,©k∈in(v)∪ou(v)A

su
∞〈i, j〉 �kAsu

∞
Fsu
|v|)v∈v(t)

↓
∩

~M(t)(Asu
∞,F

su
|v|)〈i, j〉v∈v(t)

o↓∆M(t) →

Proof of coassociativity is contained in diagram (4.17). The operad module (Asu
∞,F

su
n )

is short-handed to Fsu
n . Similarly Fsu

n 〈i, j〉 stands for (Asu
∞,F

su
n )〈i, j〉. Being diagram (4.2) of

[Lyu15] the top square commutes. The middle square parallel to the top face is obtained
by adding freely operations i and j. Hence it also commutes. The vertical faces commute
as well, therefore, the bottom quadrangle is commutative.

Thus, a dg-polymodule cooperad (Asu
∞,F

su)〈i, j〉 is constructed. Quite similarly, there
is a dg-polymodule cooperad (Asu

∞, F
su)〈i, j〉 isomorphic to it via a degree 1 isomorphism.

4.6. Proposition. The collections of operad submodules (Ahu
∞, F

hu) ⊂ (Asu
∞, F

su)〈i, j〉,
(Ahu
∞,F

hu) ⊂ (Asu
∞,F

su)〈i, j〉 are dg-polymodule subcooperads.

Proof. Assume that k ∈ Inp t for a tree t. Let us compute ∆M(t)(fek). Notice that there
exists the only t-tree τ such that τ̃ is surjective and |τ(a)| = δak for all a ∈ Inpv t. In fact,

let tail(k) = v0
k→ v1 → v2 → · · · → vm = rv(t) be the oriented path from the tail v0 of

chosen k ∈ Inp t to the root vertex. The tree τ is given by the formula

τ(v) =

{
1, if v = vj for some j, 0 6 j 6 m,

∅, otherwise.

Denoting eSp ∈ NS a basis vector for p ∈ S we find

∆M(t)(feInp tk
) = f

e
inV(v1)
v0

⊗ f
e
inV(v2)
v1

⊗ f
e
inV(v3)
v2

⊗ · · · ⊗ f
e
inV(vm−1)
vm−2

⊗ f
e
inV(vm)
vm−1
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~qM(θ)Fsu
|q|

λf → ~vM(t)
(
~pM(tv)F

su
|p|
)

Fsu
Inp t

∆(t)→

∆(θ) → ∩

~vM(t)Fsu
|v|

~vM(t)(∆(tv))

→

[~qM(θ)Fsu
|q|]〈i, j〉
↓

λf 〈i,j〉 →
[
~vM(t)

(
~pM(tv)F

su
|p|
)]
〈i, j〉
↓

∩

Fsu
Inp t〈i, j〉
↓

∩

∆(t)〈i,j〉→

∆(θ
)〈i,

j〉 → ∩

[~vM(t)Fsu
|v|]〈i, j〉

↓

∩

[~vM(t)(∆(tv))]〈i,j〉

→

~vM(t)
[(
~pM(tv)F

su
|p|
)
〈i, j〉

]↓

∩

~vM(t)[Fsu
|v|〈i, j〉]

↓

∩

∆(t)

→ ~vM(t)[(∆(tv))〈i,j〉]

→

~qM(θ)[Fsu
|q|〈i, j〉]
↓

λf →

∆(θ)

→

~vM(t)
(
~pM(tv)

[
Fsu
|p|〈i, j〉

])↓

∩

~vM(t)(∆(tv))

→

(4.17)

(factors 1 assigned to vertices outside the path are omitted). Now we compute

∆M(t)(vInp t
k ) = ∆M(t)(λkek(j; feInp tk

)− jρ∅) = λkek(j;∆
M(t)(feInp tk

))− jρ∅

= jf
e
inV(v1)
v0

⊗ f
e
inV(v2)
v1

⊗ f
e
inV(v3)
v2

⊗ · · · ⊗ f
e
inV(vm−1)
vm−2

⊗ f
e
inV(vm)
vm−1

−jρ∅ ⊗ feinV(v2)
v1

⊗ f
e
inV(v3)
v2

⊗ · · · ⊗ f
e
inV(vm−1)
vm−2

⊗ f
e
inV(vm)
vm−1

+jf
e
inV(v2)
v1

⊗ f
e
inV(v3)
v2

⊗ · · · ⊗ f
e
inV(vm−1)
vm−2

⊗ f
e
inV(vm)
vm−1

−jρ∅ ⊗ feinV(v3)
v2

⊗ · · · ⊗ f
e
inV(vm−1)
vm−2

⊗ f
e
inV(vm)
vm−1

+jf
e
inV(v3)
v2

⊗ · · · ⊗ f
e
inV(vm−1)
vm−2

⊗ f
e
inV(vm)
vm−1

· · ·
−jρ∅ ⊗ feinV(vm)

vm−1

+jf
e
inV(vm)
vm−1

−jρ∅
= vinV(v1)

v0
⊗ f

e
inV(v2)
v1

⊗ f
e
inV(v3)
v2

⊗ · · · ⊗ f
e
inV(vm−1)
vm−2

⊗ f
e
inV(vm)
vm−1

+vinV(v2)
v1

⊗ f
e
inV(v3)
v2

⊗ · · · ⊗ f
e
inV(vm−1)
vm−2

⊗ f
e
inV(vm)
vm−1
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+vinV(v3)
v2

⊗ · · · ⊗ f
e
inV(vm−1)
vm−2

⊗ f
e
inV(vm)
vm−1

· · ·
+vinV(vm−1)

vm−2
⊗ f

e
inV(vm)
vm−1

+vinV(vm)
vm−1

.

On other generators we transform

∆M(t)(f(`k1 ;`k2 ;...;`k
tk

)k∈n
) = λˆ̀

(
(`
k
11, j, `

k
21, j, . . . ,

`k
tk−11, j, `

k
tk1)k∈n;∆M(t)(f+

ˆ̀ )
)

as follows. First factors fiq are replaced with generators fa1;a2;...;ap accordingly with the
set of j’s appearing among the arguments of fiq . The only exception is the case of jfek
which is replaced with vk + jρ∅. In obtained summands all instances of jρ∅ are moved
to the right as arguments j of fp indexed by a τ -parent vertex to the considered one due
to defining the tensor product as a colimit, and this procedure goes on until no jρ∅ are
left. Notice that the separate term jρ∅ can not appear elsewhere but in the expression
∆M(t)(jfeInp tk

), which is not considered by itself, but only as a summand of vInp t
k .

The case of (Ahu
∞,F

hu,∆M) is completely analogous, although with additional signs.

A. Induced operad modules

A.1. Proposition. Let V = dg and A = (A1, . . . ,An;P;A0) be an n∧ 1-operad module.
Let βi : Mi → Ai ∈ dgN be chain maps for i ∈ [n]. Denote M = (M1, . . . ,Mn; 0;M0)
and β = (β1, . . . , βn; 0; β0) : (M1, . . . ,Mn; 0;M0) → (A1, . . . ,An;P;A0). Then A〈M,β〉
defined in diagram (1.1) is isomorphic to ((Ai〈Mi, βi〉)i∈[n];©n

i=0Ai〈Mi, βi〉 �iAi P).

Proof. Denote R =©n
i=0Ai〈Mi, βi〉�iAi P and Ci = T (Mi[1]). As we know from [Lyu11,

Section 1.10] in G = nOpgr
1 the graded module underlying A〈M,β〉 is isomorphic to

((Ci)i∈[n];C0(0)) t ((Ai)i∈[n];P). Clearly, this coproduct is also a colimit of the following
diagram (a pushout)

((Ai)i∈[n];A0(0))
((1);!)→ ((Ai)i∈[n];P)

((Ci tAi)i∈[n]; (C0 tA0)(0)) = ((Ci)i∈[n];C0(0)) t ((Ai)i∈[n];A0(0))

in2↓
1t((1);!)→ A〈M,β〉

in2↓

Here the equation is due to [Lyu15, Corollary A.10]. Denote Bi = Ci t Ai ' Ai〈Mi, βi〉
in Opgr. Applying [Lyu15, Corollary A.7] to the canonical embeddings in2 : Ai → Bi

we deduce an isomorphism ψ3 : A〈M,β〉 → ((Ai〈Mi, βi〉)i∈[n];©n
i=0Ai〈Mi, βi〉 �iAi P) in

nOpgr
1 .
In order to show that the isomorphism is actually in nOpdg

1 we consider diagram on the
following page, where φk = ψ−1

k , 1 6 k 6 3. Notice that the isomorphism ψ2 is nothing
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((
T
A
i)
i∈

[n
];
�
>

0
((
T
A
i)
i∈

[n
];
P

))
((
α
i
);
�

>
0
((
α
i
);

1
))
→

((
A
i)
i∈

[n
];
�
>

0
((
A
i)
i∈

[n
];
P

))
((

1
) i
∈
[n

];
α

)
→

((
A
i)
i∈

[n
];
P

)

� �� �
1

� �� �
2

((
T
C
i)
i∈

[n
];
�
>

0
((
T
C
i)
i∈

[n
];
P

))

((
T
ı̄ i

);
�

>
0
((
T
ı̄ i

);
1
))

↓
((
g
i
);
�

>
0
((
g
i
);

1
)) →

((
A
i〈M

i,
β
i〉)

;�
>

0
((
A
i〈M

i,
β
i〉)

;P
))

((
̄ i

) i
∈
[n

];
�

>
0
((
̄ i

) i
∈
[n

];
1
))

↓
((

1
) i
∈
[n

];
z
) →

((
A
i〈M

i,
β
i〉)

;R
)

((
̄ i

) i
∈
[n

];
η
)

↓

� �� �
3

� �� �
4

((
C
i)
i∈

[n
];
C

0
(0

))
t

((
T
A
i)
i∈

[n
];
�
>

0
((
T
A
i)
i∈

[n
];
P

))

φ
1
o ↓
ψ
1

↑

1
t

((
α
i
);
�

>
0
((
α
i
);

1
))
→

((
C
i)
i∈

[n
];
C

0
(0

))
t

((
A
i)
i∈

[n
];
�
>

0
((
A
i)
i∈

[n
];
P

))

φ
2
o ↓
ψ
2

↑

1
t

((
1
);
α

) →
((
C
i)
i∈

[n
];
C

0
(0

))

t(
(A

i)
i∈

[n
];
P

)

φ
3
o ↓
ψ
3

↑
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else but the isomorphism ψ3, written for the operad module ((Ai)i∈[n];P) instead of P,
taking into account that

©n
i=0Ai〈Mi, βi〉 �iAi �>0((Ai)i∈[n];P)) ' �>0((Ai〈Mi, βi〉)i∈[n];P).

The isomorphism ψ1 follows from the fact that F̄ : nOpgr
1 → grnNtN

ntN preserves colimits.
The map z : �>0((Ai〈Mi, βi〉)i∈[n];P)→©n

i=0Ai〈Mi, βi〉�iAiP is the canonical projection.

We claim that the diagram commutes. Its two top squares are in nOpdg
1 , while the

bottom vertical isomorphisms are constructed only in G = nOpgr
1 . Thus, squares

�� ��3 and�� ��4 make sense in G . First of all, square
�� ��1 commutes due to definition (1.1) of Ai〈Mi, βi〉.

Commutativity of square
�� ��2 follows from the equation

�>0((Ai)i∈[n];P)
α → P

=

�>0((Ai〈Mi, βi〉)i∈[n];P)

�>0((̄i)i∈[n];1)↓
z→©n

i=0Ai〈Mi, βi〉 �iAi P

η↓ (A.1)

proven directly from the definition of the induced operad module. Namely paths in the
following diagram

�>0((Bi)i∈[n];�>0((Ai)i∈[n];P))←�>0((η);1) �>0((Ai)i∈[n];P)
α → P

�>0((Bi)i∈[n];�>0((Bi)i∈[n];P))

�>0((1);�>0((̄i);1))↓

µ
→�>0((Bi)i∈[n];P)

�>0((̄i);1)↓

z
→← �>0
((η

);1
)�>0((1);α) →
©n

i=0Bi �iAi P

η↓

satisfy the relations

α · η = α · �>0((η); 1) · z = �>0((η); 1) · �>0((1);α) · z
= �>0((η); 1) · �>0((1);�>0((̄i); 1)) · µ · z = �>0((̄i); 1) · z.

Commutativity of squares
�� ��3 and

�� ��4 with the vertical arrows ψk is proven separately
on each of summands of the source of the square. On ((Ci)i∈[n];C0(0)) commutativity
holds due to [Lyu15, Lemma A.9]. On ((Ai)i∈[n];�>0((Ai)i∈[n];P)) verification reduces to
diagram (A.1).

One easily finds out that all three columns of diagram on the preceding page compose
to in2:

((T ı̄i);�>0((T ı̄i); 1)) ·φ1 = in2, ((̄i)i∈[n];�>0((̄i)i∈[n]; 1)) ·φ2 = in2, ((̄i)i∈[n]; η) ·φ3 = in2 .

Therefore, the exterior of this diagram drawn with isomorphisms φk is a pushout square.
Hence, the pasting

�� ��1 ∪ 2 of squares
�� ��1 and

�� ��2 (a diagram in nOpdg
1 ) is a pushout square

in nOpgr
1 . However, a cone for a diagram D → nOpdg

1 is a colimiting cone iff its image
under the forgetful functor nOpdg

1 → nOpgr
1 is a colimiting cone for the composition

D → nOpdg
1 → nOpgr

1 . Thus, the pasting
�� ��1 ∪ 2 is a pushout square in nOpdg

1 , and the

colimit A〈M,β〉 is isomorphic to ((Ai〈Mi, βi〉)i∈[n];©n
i=0Ai〈Mi, βi〉 �iAi P) in nOpdg

1 .
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B. Isomorphisms of degree 1 of polymodule cooperads

Introduce a k-linear involution

Ξ =
t−tree τ∑

∀a∈Inpv t |τ(a)|=ja
(−1)sg(τ) prτ · inτ : ~G(t)(H|v|)v∈v(t)(j)→ ~G(t)(H|v|)v∈v(t)(j).

B.1. Theorem. Let (ng;hn; g) : (nA;Gn;A) → (nB;Hn;B), n > 0, be a family of
invertible n ∧ 1-operad module homomorphisms of degree 1. If the family (A, G•,∆

G)
defines a graded polymodule cooperad F → (M,~G), then (B, H•,∆

G) defines a graded
polymodule cooperad such that the following diagram commutes

GInp t
∆G(t)→ ~G(t)(G|v|)v∈v(t)

Ξ→ ~G(t)(G|v|)v∈v(t)

HInp t

h
↓

∆G(t) → ~G(t)(H|v|)v∈v(t)

~G(t)(h)↓

In particular, ∆G is multiplicative, see equation (4.2) of [Lyu15].

Proof. Given a colax Cat-multifunctor (A, G•,∆
G) : F → (M,~G) let us construct co-

multiplication ∆G for H•. The map

∆G(t) : HInp t(j)→
t−tree τ∐

∀a∈Inpv t |τ(a)|=ja

v∈v(t)⊗ p∈τ(v)⊗
H|v|

((
|τ(e)−1(p)|

)
e∈in(v)

)
(B.1)

is determined by

∆G(t)(j) · prτ = (−1)sg(τ)
〈
HInp t(j)

h−1

→ GInp t(j)
∆G(t)(j)·prτ→ (B.2)

v∈v(t)⊗ p∈τ(v)⊗
G|v|

((
|τ(e)−1(p)|

)
e∈in(v)

)
⊗v∈v(t)⊗p∈τ(v)h→

v∈v(t)⊗ p∈τ(v)⊗
H|v|

((
|τ(e)−1(p)|

)
e∈in(v)

)〉
.

These are maps of degree 0 since

deg⊗v∈v(t) ⊗p∈τ(v) h =
∑
v∈v(t)

∑
p∈τ(v)

(
1−

∑
e∈in(v)

|τ(e)−1(p)|
)

=
∑
v∈v(t)

|τ(v)| −
∑
v∈v(t)

∑
u∈inV(v)

|τ(u)| = 1−
∑

u∈Inpv(t)

|τ(u)| = 1− ‖j‖ = − deg h−1. (B.3)

First claim: (B.1) is a homomorphism of right B-modules. In detail, for all trees
t ∈ tr(n), all partitions j = j1 + · · ·+ jm ∈ Nn we have to prove that the square(

⊗mr=1Hn(jr)
)
⊗B(m)

ρ → Hn(j)

(
⊗mr=1 ~G (t)(H|v|)v∈v(t)(jr)

)
⊗B(m)

(⊗mr=1∆G(t)(jr))⊗1↓
ρ→ ~G(t)(H|v|)v∈v(t)(j)

∆G(t)(j)↓ (B.4)
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commutes departing from a similar strictly commutative square for G. Passing to sum-
mands of the product we perform the following computations.

First, we prove the above square for t = |, n = 1, j = j1 + · · · + jm ∈ N. Since
~G(|)(j) = δj1k, it suffices to consider j = 1. By definition

∆G(|)(1) =
〈
G1(1)

h1−→ H1(1)
∆G(|)(1)→ k

〉
.

If m > 1, we have 〈(
⊗mr=1H1(jr)

)
⊗B(m)

ρ−→ H1(1)
∆G(|)(1)→ k

〉
= 0

due to similar equation for G.
For m = 1 the required equation is given by the exterior of commutative diagram

H1(1)⊗B(1)
ρ → H1(1)

=

= G1(1)⊗B(1)
ρ→

h1⊗1
←

G1(1)

h1 →

=

=

k⊗B(1)

∆G(|)(1)⊗1

↓
1⊗ε →

∆G(|)(1)⊗1← k

∆G(|)(1)

↓∆G(|)(1) →

Now we provide a statement useful for the case of t 6= |.

B.2. Lemma. Assume that t 6= |. For all m ∈ N, all sequences (τr)
m
r=1 of t-trees

m∑
r=1

sg(τr) +

v>w, v,w∈v(t)∑
16r<s6m

(
|τr(v)| −

∑
u∈inV(v)

|τr(u)|
)(
|τs(w)| −

∑
x∈inV(w)

|τs(x)|
)

+ crootρ

≡ sg(τ) + cρ (mod 2),

where τ = τ1 + · · · + τm is the t-tree such that τ(v) =
⊔
<
m
r=1 τr(v) for all v ∈ v(t)− {rv}.

Maps τ(u→ v) are
⊔
<
m
r=1 τr(u→ v) if v is not the root vertex. In detail, we claim that

m∑
r=1

∑
v∈v(t)

∑
q<p∈τr(v)

∑
elg∈in(v)

|τr(e)−1(p)| · |τr(g)−1(q)|

+
m∑
r=1

∑
v∈v(t)

∑
p∈τr(v)

(p− 1)
(
−1 +

∑
e∈in(v)

|τr(e)−1(p)|
)

+
m∑
r=1

∑
v∈v(t)

( ∑
u∈Inpv−v t

|τr(u)|
)
·
(
−|τr(v)|+

∑
a∈inV(v)

|τr(a)|
)
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+

v>w, v,w∈v(t)∑
16r<s6m

(
|τr(v)| −

∑
u∈inV(v)

|τr(u)|
)(
|τs(w)| −

∑
x∈inV(w)

|τs(x)|
)

+
m∑
r=1

(r − 1)
(
1−

∑
x∈inV(rv)

|τr(x)|
)

+

xly, x,y∈inV(rv)∑
16r<s6m

|τr(y)| · |τs(x)|

≡
∑
v∈v(t)

∑
q<p∈τ(v)

∑
elg∈in(v)

|τ(e)−1(p)| · |τ(g)−1(q)|

+
∑
v∈v(t)

∑
p∈τ(v)

(p−1)
( ∑
e∈in(v)

|τ(e)−1(p)|−1
)

+
∑
v∈v(t)

( ∑
u∈Inpv−v t

|τ(u)|
)
·
( ∑
a∈inV(v)

|τ(a)|− |τ(v)|
)

+
m∑
r=1

(r − 1)
(
1−

∑
a∈Inpv t

|τr(a)|
)

+

c/d, c,d∈Inpv t∑
16r<s6m

|τr(d)| · |τs(c)| (mod 2).

Proof. The detailed form of the equation is obtained using the formula deg⊗p∈τr(v)h =
|τr(v)|−

∑
u∈inV(v) |τr(u)|, which is a part of (B.3). The equation is obvious for m = 0 and

m = 1. Let us prove it by induction on m. Assume that it holds for m = k − 1. Let us
deduce it for m = k. The difference of two expressions, one with τ = τ1 + · · ·+ τk−1 + τk
and another with τ ′ = τ1 + · · ·+ τk−1 is the following:∑

v∈v(t)

∑
q<p∈τk(v)

∑
elg∈in(v)

|τk(e)−1(p)|·|τk(g)−1(q)|+
∑
v∈v(t)

∑
p∈τk(v)

(p−1)
( ∑
e∈in(v)

|τk(e)−1(p)|−1
)

+
∑
v∈v(t)

( ∑
u∈Inpv−v t

|τk(u)|
)
·
( ∑
a∈inV(v)

|τk(a)| − |τk(v)|
)

+

v>w, v,w∈v(t)∑
16r<k

(
|τr(v)| −

∑
u∈inV(v)

|τr(u)|
)(
|τk(w)| −

∑
x∈inV(w)

|τk(x)|
)

+ (k − 1)
(
1−

∑
x∈inV(rv)

|τk(x)|
)

+

xly, x,y∈inV(rv)∑
16r<k

|τr(y)| · |τk(x)|

≡
∑

v∈v(t)−{rv}

∑
elg∈in(v)

∑
16r<k

∑
q∈τr(v)

∑
p∈τk(v)

|τk(e)−1(p)| · |τr(g)−1(q)|

+
∑

v∈v(t)−{rv}

∑
elg∈in(v)

∑
q<p∈τk(v)

|τk(e)−1(p)| · |τk(g)−1(q)|

+
∑

v∈v(t)−{rv}

∑
p∈τk(v)

(
p− 1 +

∑
16r<k

|τr(v)|
)( ∑
e∈in(v)

|τ(e)−1(p)| − 1
)

+
∑
v∈v(t)

( ∑
u∈Inpv−v t

|τk(u)|
)
·
( ∑
a∈inV(v)

|τk(a)| − |τk(v)|
)

+
∑
v∈v(t)

( ∑
u∈Inpv−v t

∑
16r<k

|τr(u)|
)
·
( ∑
a∈inV(v)

|τk(a)| − |τk(v)|
)
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+
∑
v∈v(t)

( ∑
u∈Inpv−v t

|τk(u)|
)
·
∑

16r<k

( ∑
a∈inV(v)

|τr(a)| − |τr(v)|
)

+ (k − 1)
(
1−

∑
a∈Inpv t

|τk(a)|
)

+

c/d, c,d∈Inpv t∑
16r<k

|τr(d)| · |τk(c)| (mod 2).

So it remains to prove the above induction step. Denote for v ∈ v(t)

n(v) = |τk(v)|, z(v) =
∑

16r<k

|τr(v)|.

After certain cancellations the above can be written as

v,w∈v(t)∑
w<v 6=rv

z(v)
(
n(w)−

∑
x∈inV(w)

n(x)
)

+ (k − 1)

w∈v(t)∑
w 6=rv

(
n(w)−

∑
x∈inV(w)

n(x)
)

−
v,w∈v(t)∑
v>w

( ∑
u∈inV(v)

z(u)
)(
n(w)−

∑
x∈inV(w)

n(x)
)

+(k−1)
(
1−

∑
x∈inV(rv)

n(x)
)
+

x,y∈inV(rv)∑
xly

z(y)n(x)

≡
∑

v∈v(t)−{rv}

∑
xly∈inV(v)

z(y)n(x)−
∑

v∈v(t)−{rv}

z(v)
(
n(v)−

∑
x∈inV(v)

n(x)
)

+
∑
v∈v(t)

( ∑
u∈Inpv−v t

z(u)
)( ∑
a∈inV(v)

n(a)− n(v)
)

+
∑
v∈v(t)

( ∑
a∈inV(v)

z(a)− z(v)
) ∑
u∈Inpv−v t

n(u)

+ (k − 1)
(
1−

∑
a∈Inpv t

n(a)
)

+

c,d∈Inpv t∑
c/d

z(d) · n(c) (mod 2). (B.5)

Summands proportional to (k − 1) cancel each other since∑
w∈v(t)−{rv}

(
n(w)−

∑
x∈inV(w)

n(x)
)

=
∑

x∈inV(rv)

n(x)−
∑

a∈Inpv t

n(a).

Equivalently, for all p, q ∈ v(t) the coefficient at z(p)n(q) has to vanish:

χ(rv > p > q ∈ v(t))− χ(Pq < p < rv) + χ(Pq < Pp 6 rv)− χ(rv > Pp > q ∈ v(t))

≡ χ(Pp = Pq)χ(q l p) + χ(p = Pq < rv)− χ(rv > p = q ∈ v(t)) + χ(p ∈ Inpv−Pq t)

− χ(p ∈ Inpv−q t) + χ(q ∈ Inpv−Pp t)− χ(q ∈ Inpv−p t) + χ(q / p ∈ Inpv t) (mod 2).

By convention Inpv−x t = ∅ for x ∈ V (t)− v(t).
First of all we prove this identity in several particular cases, when at least one of p, q

is an input vertex. The equation holds true for t = |, let us proceed for t 6= |.
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1. Assume that p, q ∈ Inpv t. The equation simplifies to

− χ(Pq < Pp) + χ(Pp = Pq)χ(q l p) + χ(p ∈ Inpv−Pq t) + χ(q ∈ Inpv−Pp t)

+ χ(q / p) ≡ 0 (mod 2).

In all 9 cases, p / q, p = q, p . q and Pp < Pq, Pp = Pq, Pp > Pq, the equation
holds.

2. Assume that p ∈ Inpv t, q ∈ v(t). The equation simplifies to

− χ(Pq < Pp) + χ(Pp > q) + χ(Pp = Pq)χ(q l p) + χ(p ∈ Inpv−Pq t)

+ χ(p ∈ Inpv−q t) + χ(q ∈ Inpv−Pp t) ≡ 0 (mod 2).

If q > Pp the equation holds, assume that q < Pp. The equation holds in all 6
cases, Pp < Pq, Pp = Pq, Pp > Pq, and p / q, p . q.

3. Assume that p ∈ v(t), q ∈ Inpv t. The equation reduces to

− χ(Pq < p < rv) + χ(Pq < Pp 6 rv)− χ(Pp = Pq)χ(q l p)− χ(p = Pq < rv)

− χ(p ∈ Inpv−Pq t)− χ(q ∈ Inpv−Pp t) + χ(q ∈ Inpv−p t) ≡ 0 (mod 2).

The equation holds if p > Pq or p = Pq, assume that p < Pq. The equation holds
in all 6 cases, Pp < Pq, Pp = Pq, Pp > Pq, and p / q, p . q.

We conclude that validity of the identity for t is equivalent to its validity for the subtree
t̄ ⊂ t, v(t̄) = v(t), Inp t̄ = ∅. Considering the subtree t̄ we single out the smallest vertex
1 ∈ v(t̄) and convert it to an input vertex. The expressions computed for the obtained
tree t′ and the previous tree t̄ are equal. However, the number of internal vertices of t′ is
smaller than that of t̄. This allows to conclude the proof by induction.

Using the above lemma we verify equation (B.4)

〈( m⊗
r=1

Hn(jr)
)
⊗B(m)

(⊗mr=1∆G(t)(jr))⊗1→
( m⊗
r=1

~G(t)(H|v|)v∈v(t)(jr)
)
⊗B(m)

ρ→ ~G (t)(H|v|)v∈v(t)(j)
〉

=

t−trees (τr)mr=1∑
∀a∈Inpv t |τr(a)|=jar

〈( m⊗
r=1

Hn(jr)
)
⊗B(m)

(⊗mr=1(∆G(t)(jr) prτr ))⊗1
→

( m⊗
r=1

v∈v(t)⊗ p∈τr(v)⊗
H|v|

(
|τr(e)−1(p)|e∈in(v)

))
⊗B(m)

κ⊗1→

(v∈v(t)⊗ m⊗
r=1

p∈τr(v)⊗
H|v|

(
|τr(e)−1(p)|e∈in(v)

))
⊗B(m)

∼=−→
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(v∈v(t)−{rv}⊗ m⊗
r=1

p∈τr(v)⊗
H|v|

(
|τr(e)−1(p)|e∈in(v)

))
⊗

⊗
( m⊗
r=1

H| rv |
(
|τr(x)|x∈inV(rv)

))
⊗B(m)

1⊗ρ→

(v∈v(t)−{rv}⊗ p∈τ(v)⊗
H|v|

(
|τ(e)−1(p)|e∈in(v)

))
⊗H| rv |

(
|τ(x)|x∈inV(rv)

) ∼=−→
v∈v(t)⊗ p∈τ(v)⊗

H|v|
(
|τ(e)−1(p)|e∈in(v)

) inτ→ ~G (t)(H|v|)v∈v(t)(j)
〉

=

t−trees (τr)mr=1∑
∀a∈Inpv t |τr(a)|=jar

(−1)
∑m
r=1 sg(τr)−

∑
16r<s6m(1−‖jr‖)(1−‖js‖)

〈( m⊗
r=1

Hn(jr)
)
⊗B(m)

(⊗mr=1(h−1∆G(t) prτr ))⊗1
→
( m⊗
r=1

v∈v(t)⊗ p∈τr(v)⊗
G|v|
(
|τr(e)−1(p)|e∈in(v)

))
⊗B(m)

(⊗mr=1⊗v∈v(t)⊗p∈τr(v)h)⊗(g−1g)→
( m⊗
r=1

v∈v(t)⊗ p∈τr(v)⊗
H|v|

(
|τr(e)−1(p)|e∈in(v)

))
⊗B(m)

κ⊗1→ as above
〉

=

t−trees (τr)mr=1∑
∀a∈Inpv t |τr(a)|=jar

(−1)
∑m
r=1 sg(τr)+

∑v>w, v,w∈v(t)
16r<s6m (|τr(v)|−

∑
u∈inV(v) |τr(u)|)(|τs(w)|−

∑
x∈inV(w) |τs(x)|)

(−1)
∑

16r<s6m(1−‖jr‖)(1−‖js‖)
〈( m⊗

r=1

Hn(jr)
)
⊗B(m)

1⊗g−1

→
( m⊗
r=1

Hn(jr)
)
⊗A(m)

(⊗mr=1(h−1))⊗1→

( m⊗
r=1

Gn(jr)
)
⊗A(m)

(⊗mr=1(∆G(t) prτr ))⊗1
→
( m⊗
r=1

v∈v(t)⊗ p∈τr(v)⊗
G|v|
(
|τr(e)−1(p)|e∈in(v)

))
⊗A(m)

κ⊗1→
(v∈v(t)⊗ m⊗

r=1

p∈τr(v)⊗
G|v|
(
|τr(e)−1(p)|e∈in(v)

))
⊗A(m)

∼=−→

( v∈v(t)−{rv}⊗ m⊗
r=1

p∈τr(v)⊗
G|v|
(
|τr(e)−1(p)|e∈in(v)

))
⊗

⊗
( m⊗
r=1

G| rv |
(
|τr(x)|x∈inV(rv)

))
⊗A(m)

(⊗v⊗mr=1⊗p∈τr(v)h)⊗(⊗mr=1h)⊗g→

(v∈v(t)−{rv}⊗ m⊗
r=1

p∈τr(v)⊗
H|v|

(
|τr(e)−1(p)|e∈in(v)

))
⊗

⊗
( m⊗
r=1

H| rv |
(
|τr(x)|x∈inV(rv)

))
⊗B(m)

1⊗ρ→
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(v∈v(t)−{rv}⊗ p∈τ(v)⊗
H|v|

(
|τ(e)−1(p)|e∈in(v)

))
⊗H| rv |

(
|τ(x)|x∈inV(rv)

) ∼=−→
v∈v(t)⊗ p∈τ(v)⊗

H|v|
(
|τ(e)−1(p)|e∈in(v)

) inτ→ ~G (t)(H|v|)v∈v(t)(j)
〉

=

t−trees (τr)mr=1∑
∀a∈Inpv t |τr(a)|=jar

(−1)
∑m
r=1 sg(τr)+

∑v>w, v,w∈v(t)
16r<s6m (|τr(v)|−

∑
u∈inV(v) |τr(u)|)(|τs(w)|−

∑
x∈inV(w) |τs(x)|)+crootρ

〈( m⊗
r=1

Hn(jr)
)
⊗B(m)

(1⊗g−1)·[(⊗mr=1h)−1⊗1]→
( m⊗
r=1

Gn(jr)
)
⊗A(m)

(⊗mr=1(∆G(t) prτr ))⊗1
→

( m⊗
r=1

v∈v(t)⊗ p∈τr(v)⊗
G|v|
(
|τr(e)−1(p)|e∈in(v)

))
⊗A(m)

κ⊗1→

(v∈v(t)⊗ m⊗
r=1

p∈τr(v)⊗
G|v|
(
|τr(e)−1(p)|e∈in(v)

))
⊗A(m)

∼=−→

(v∈v(t)−{rv}⊗ m⊗
r=1

p∈τr(v)⊗
G|v|
(
|τr(e)−1(p)|e∈in(v)

))
⊗

⊗
( m⊗
r=1

G| rv |
(
|τr(x)|x∈inV(rv)

))
⊗A(m)

1⊗ρ→

(v∈v(t)−{rv}⊗ p∈τ(v)⊗
G|v|
(
|τ(e)−1(p)|e∈in(v)

))
⊗G| rv |

(
|τ(x)|x∈inV(rv)

) ∼=−→
v∈v(t)⊗ p∈τ(v)⊗

G|v|
(
|τ(e)−1(p)|e∈in(v)

) inτ→ ~G(t)(G|v|)v∈v(t)(j)
~G(t)(h)→ ~G(t)(H|v|)v∈v(t)(j)

〉
.

Using Lemma B.2 and [Lyu15, (2.13)] we shorten the previous composition to

(−1)cρ
〈( m⊗

r=1

Hn(jr)
)
⊗B(m)

(1⊗g−1)·[(⊗mr=1h)−1⊗1]→
( m⊗
r=1

Gn(jr)
)
⊗A(m)

(⊗mr=1∆G(t))⊗1→
( m⊗
r=1

~G(t)(G|v|)v∈v(t)(jr)
)
⊗A(m)

ρ−→

~G (t)(G|v|)v∈v(t)(j)
Ξ−→ ~G(t)(G|v|)v∈v(t)(j)

~G(t)(h)→ ~G (t)(H|v|)v∈v(t)(j)
〉

= (−1)cρ
〈( m⊗

r=1

Hn(jr)
)
⊗B(m)

(1⊗g−1)·[(⊗mr=1h)−1⊗1]→
( m⊗
r=1

Gn(jr)
)
⊗A(m)

ρ−→ Gn(j)

∆G(t)(j)→ ~G (t)(G|v|)v∈v(t)(j)
Ξ−→ ~G(t)(G|v|)v∈v(t)(j)

~G(t)(h)→ ~G (t)(H|v|)v∈v(t)(j)
〉

= (−1)cρ
〈( m⊗

r=1

Hn(jr)
)
⊗B(m)

(1⊗g−1)·[(⊗mr=1h)−1⊗1]→
( m⊗
r=1

Gn(jr)
)
⊗A(m)
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ρ−→ Gn(j)
h−→ Hn(j)

∆G(t)(j)→ ~G (t)(H|v|)v∈v(t)(j)
〉

=
〈( m⊗

r=1

Hn(jr)
)
⊗B(m)

(1⊗g−1)·[(⊗mr=1h)−1⊗1]→
( m⊗
r=1

Gn(jr)
)
⊗A(m)

(⊗mr=1h)⊗g→
( m⊗
r=1

Hn(jr)
)
⊗B(m)

ρ−→ Hn(j)
∆G(t)(j)→ ~G (t)(H|v|)v∈v(t)(j)

〉
=
〈( m⊗

r=1

Hn(jr)
)
⊗B(m)

ρ−→ Hn(j)
∆G(t)(j)→ ~G (t)(H|v|)v∈v(t)(j)

〉
.

The first claim is proven.
Second claim: (B.2) is a homomorphism of left B-modules with respect to i-th action.

In detail, for all trees t ∈ tr(n), all elements k ∈ Nn, all partitions j = j1 + · · ·+ jki ∈ N,
1 6 i 6 n, we have to prove that the square(

⊗kiq=1B(jq)
)
⊗Hn(k)

λi → Hn(k; ki 7→ j)

(
⊗kiq=1B(jq)

)
⊗~G(t)(H|v|)v∈v(t)(k)

1⊗∆G(t)↓
λi→ ~G(t)(H|v|)v∈v(t)(k; ki 7→ j)

∆G(t)↓

commutes departing from a similar commutative square for G.
First we obtain a useful identity.

B.3. Lemma. Let t-tree τ satisfy |τ(tail(l))| = kl for l ∈ Inp(t) ∼= n. Let i ∈ Inp t. For
any vector (jq)

ki

q=1 ∈ Nki define the t-tree τ ′ by

τ ′(v) =

{
τ(v), for v 6= tail(i),⊔
< p∈τ(head(i))

⊔
< q∈τ(i)−1(p) jq, for v = tail(i).

The map τ ′(i) : τ ′(tail(i))→ τ ′(head(i)) = τ(head(i)) is the projection to the first index.
Then the equation holds

sg(τ) +
ki∑
q=1

(1− jq) ·
v∈v(t)∑

v<head(i)

(
|τ(v)| −

∑
u∈inV(v)

|τ(u)|
)

+

p,r∈τ(head(i))∑
p<r

(
|τ(i)−1(r)| −

∑
q∈τ(i)−1(r)

jq

)(
1−

∑
e∈in(head(i))

|τ(e)−1(p)|
)

+
∑

p∈τ(head(i))

cλi

≡ sg(τ ′) + cλi (mod 2).



1612 VOLODYMYR LYUBASHENKO

In detail this equation is∑
v∈v(t)

∑
q<p∈τ(v)

∑
elg∈in(v)

|τ(e)−1(p)| · |τ(g)−1(q)|

+
∑
v∈v(t)

∑
p∈τ(v)

(p− 1)
( ∑
e∈in(v)

|τ(e)−1(p)| − 1
)

+
∑
v∈v(t)

( ∑
u∈Inpv−v t

|τ(u)|
)( ∑
a∈inV(v)

|τ(a)| − |τ(v)|
)

+
ki∑
q=1

(1− jq) ·
v∈v(t)∑

v<head(i)

(
|τ(v)| −

∑
u∈inV(v)

|τ(u)|
)

+
∑

p<r∈τ(head(i))

(
|τ(i)−1(r)| −

∑
q∈τ(i)−1(r)

jq
)(

1−
∑

e∈in(head(i))

|τ(e)−1(p)|
)

+
∑

p∈τ(head(i))

∑
q∈τ(i)−1(p)

(1− jq)
(
q −min(τ(i)−1(p)) +

eli∑
e∈in(head(i))

|τ(e)−1(p)|
)

≡
∑
v∈v(t)

∑
q<p∈τ ′(v)

∑
elg∈in(v)

|τ ′(e)−1(p)| · |τ ′(g)−1(q)|

+
∑
v∈v(t)

∑
p∈τ ′(v)

(p− 1)
(
−1 +

∑
e∈in(v)

|τ ′(e)−1(p)|
)

+
∑
v∈v(t)

( ∑
u∈Inpv−v t

|τ ′(u)|
)
·
( ∑
a∈inV(v)

|τ ′(a)|−|τ ′(v)|
)

+
ki∑
q=1

(1−jq)
(
q−1+

i−1∑
l=1

kl
)

(mod 2).

Proof. The case of t = | being easy, assume that t 6= |. For the input edge i ∈ Inp(t) ∼= n
there are vertices head(i) ∈ v(t) and tail(i) ∈ Inpv t.

Substituting the definition of τ ′ into the equation to prove we get after cancellation

q,p∈τ(head(i))∑
q<p

g∈in(head(i))∑
gmi

|τ(i)−1(p)|·|τ(g)−1(q)|+
q,p∈τ(head(i))∑

q<p

e∈in(head(i))∑
eli

|τ(e)−1(p)|·|τ(i)−1(q)|

+
∑

p∈τ(head(i))

(p− 1)|τ(i)−1(p)|+ |τ(tail(i))|
Inp−v t3i∑
v∈v(t)

(
−|τ(v)|+

∑
a∈inV(v)

|τ(a)|
)

+
( ∑
u∈Inpv−

head(i)
t

|τ(u)|
)
|τ(tail(i))|+

ki∑
r=1

(1− jr) ·
v∈v(t)∑

v<head(i)

(
|τ(v)| −

∑
u∈inV(v)

|τ(u)|
)

+
∑

p<q∈τ(head(i))

(
|τ(i)−1(q)| −

∑
r∈τ(i)−1(q)

jr
)(

1−
∑

e∈in(head(i))

|τ(e)−1(p)|
)

+
∑

p∈τ(head(i))

∑
r∈τ(i)−1(p)

(1− jr)
(
r −min(τ(i)−1(p)) +

e∈in(head(i))∑
eli

|τ(e)−1(p)|
)



HOMOTOPY UNITAL A∞-MORPHISMS WITH SEVERAL ENTRIES 1613

≡
q,p∈τ(head(i))∑

q<p

g∈in(head(i))∑
gmi

∑
r∈τ(i)−1(p)

jr · |τ(g)−1(q)|

+

q,p∈τ(head(i))∑
q<p

e∈in(head(i))∑
eli

|τ(e)−1(p)| ·
∑

r∈τ(i)−1(q)

jr +
∑

p∈τ(head(i))

(p− 1)
∑

r∈τ(i)−1(p)

jr

+
( ∑
r∈τ(tail(i))

jr

) Inp−v t3i∑
v∈v(t)

(
−|τ(v)|+

∑
a∈inV(v)

|τ(a)|
)

+
( ∑
u∈Inpv−

head(i)
t

|τ(u)|
) ∑
r∈τ(tail(i))

jr +
ki∑
r=1

(1− jr)
(
r − 1 +

i−1∑
l=1

kl
)

(mod 2). (B.6)

Notice that jr’s enter this equation linearly. Let us prove that coefficients at jr in both
parts are equal:

v∈v(t)∑
v<head(i)

(
−|τ(v)|+

∑
u∈inV(v)

|τ(u)|
)

+

p∈τ(head(i))∑
p<τ(i)(r)

(
−1 +

∑
e∈in(head(i))

|τ(e)−1(p)|
)

− r + min(τ(i)−1(τ(i)(r)))−
e∈in(head(i))∑

eli

|τ(e)−1(τ(i)(r))|

≡
q∈τ(head(i))∑
q<τ(i)(r)

g∈in(head(i))∑
gmi

|τ(g)−1(q)|+
p∈τ(head(i))∑
p>τ(i)(r)

e∈in(head(i))∑
eli

|τ(e)−1(p)|+ τ(i)(r)− 1

+

Inp−v t3i∑
v∈v(t)

(
−|τ(v)|+

∑
a∈inV(v)

|τ(a)|
)

+
∑

u∈Inpv−
head(i)

t

|τ(u)| − r + 1−
i−1∑
l=1

kl (mod 2).

Using the presentation min(τ(i)−1(τ(i)(r))) = 1 +
∑p∈τ(head(i))

p<τ(i)(r) |τ(i)−1(p)| we reduce the
equation to

v∈v(t)∑
v<head(i)

(
−|τ(v)|+

∑
u∈inV(v)

|τ(u)|
)

+

e∈in(head(i))∑
eli

|τ(tail(e))|

≡
Inp−v t3i∑
v∈v(t)

(
−|τ(v)|+

∑
a∈inV(v)

|τ(a)|
)

+
∑

u∈Inpv−
head(i)

t

|τ(u)| −
i−1∑
l=1

kl (mod 2). (B.7)

Notice that the difference of left and right hand sides is a linear form of variables |τ(u)|,
u ∈ v(t). For a condition P denote by χ(P ) the indicator function, χ(P ) = 1 if P holds,
χ(P ) = 0 if it does not. Assume that t 6= |. The coefficient at |τ(u)|, u ∈ v(t), in
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difference (B.7) is

cit(u) = −χ(u ∈ v(t), u < head(i)) + χ(Pu < head(i)) + χ(Pu = head(i), ou(u) l i)

+ χ(u ∈ v(t), Inp−u t 3 i)− χ(Inp−Pu t 3 i)− χ(Inpv−head(i) t) + χ(u ∈ Inpv t, u / tail(i))

= −χ(u ∈ v(t), u < head(i)) + χ(Pu < head(i)) + χ(Pu = head(i), ou(u) l i)

+ χ(u ∈ v(t), u < head(i), u . head(i))− χ(Pu < head(i), Pu . head(i))

−χ(u/head(i) < Pu, (u ∈ v(t), u < head(i)) or u ∈ Inpv t) +χ(u ∈ Inpv t, u / tail(i)).

Our goal is to prove that cit(u) ≡ 0 (mod 2). We shall do it by induction on the
number of internal vertices. The claim is obvious for corollas t. An ordered tree t has the
smallest internal vertex 1 with respect to <. If 1 = head(i), then

cit(u) = χ(Pu = 1, ou(u) l i)− χ(u / 1 6= Pu, u ∈ Inpv t) + χ(u ∈ Inpv t, u / tail(i)).

Clearly, cit(u) vanishes unless u ∈ Inpv t. It vanishes modulo 2 in all three cases: Pu / 1,
Pu = 1 and Pu . 1.

Assume that 1 6= head(i). As earlier, consider subtree t′ of t with V (t′) = V (t)−inV(1),
E(t′) = E(t) − in(1), v(t′) = v(t) − {1}, Inpv(t′) = {1} t Inpv(t) − inV(1). We have
i ∈ Inp t′ so the expression cit′(u) makes sense for u ∈ v(t′). By induction hypothesis we
may assume that cit′(u) ≡ 0 (mod 2). Let us deduce that cit(u) ≡ 0 (mod 2) case by case.

1. For u ∈ v(t) − {1} = v(t′) or for u ∈ Inpv(t) − inV(1) we have cit(u) = cit′(u) ≡ 0
(mod 2).

2. For u ∈ Inpv(t), Pu = 1 we have

cit(u) = 1− χ(1 . head(i)) + χ(u / tail(i)) ≡ 1− χ(1 . head(i))− χ(1 / head(i)) = 0.

3. For u = 1 6= head(i) we have

cit(1) = −1 + χ(P1 < head(i)) + χ(P1 = head(i), ou(1) l i) + χ(1 . head(i))

− χ(P1 < head(i), P1 . head(i))− χ(1 / head(i) < P1),

cit′(1) = χ(P1 < head(i)) + χ(P1 = head(i), ou(1) l i)

− χ(P1 < head(i), P1 . head(i))− χ(1 / head(i) < P1) + χ(1 / tail(i)).

Hence,

cit(1) ≡ cit(1)− cit′(1) = −1 + χ(1 . head(i))− χ(1 / tail(i)) ≡ 0 (mod 2).

Identity (B.7) is proven.
Therefore equation (B.6) is equivalent to any of its particular cases with fixed jr‘s.

When we put jr = 1 for all 1 6 r 6 ki, equation (B.6) becomes obvious. Therefore its
validity is proven for arbitrary jr as well.
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Let us prove that ∆G(t)(k) for H is a homomorphism of left B-modules with respect
to i-th action. Note that, in particular, |τ(tail(i))| = ki.

〈( ki⊗
q=1

B(jq)
)
⊗Hn(k)

1⊗∆G(t)→
( ki⊗
q=1

B(jq)
)
⊗~G(t)(H|v|)v∈v(t)(k)

λi−→ ~G(t)(H|v|)v∈v(t)(k; ki 7→ j)
〉

=
t−tree τ∑

∀a∈Inpv t |τ(a)|=ka

〈( ki⊗
q=1

B(jq)
)
⊗Hn(k)

1⊗∆G(t)→
( ki⊗
q=1

B(jq)
)
⊗~G(t)(H|v|)v∈v(t)(k)

1⊗prτ→
(p∈τ(head(i))⊗ q∈τ(i)−1(p)⊗

B(jq)
)
⊗

v∈v(t)⊗ p∈τ(v)⊗
H|v|

(
|τ(e)−1(p)|e∈in(v)

) ζ−→∼=
v∈v(t)⊗ p∈τ(v)⊗ [(

if v = head(i) then

q∈τ(i)−1(p)⊗
B(jq)⊗

)
H|v|

(
|τ(e)−1(p)|e∈in(v)

)] ⊗v⊗p[1 or λi]→
v∈v(t)⊗ p∈τ(v)⊗

H|v|
(
|τ(e)−1(p)|e∈in(v); if v = head(i) then |τ(i)−1(p)| 7→

∑
q∈τ(i)−1(p) jq

)
inτ ′→ ~G (t)(H|v|)v∈v(t)(k; ki 7→ j)

〉
=

t−tree τ∑
∀a∈Inpv t |τ(a)|=ka

〈( ki⊗
q=1

B(jq)
)
⊗Hn(k)

(1⊗h−1)(⊗kiq=1g⊗1)−1

→
( ki⊗
q=1

A(jq)
)
⊗Gn(k)

(−1)sg(τ)⊗∆G(t) prτ→
(p∈τ(head(i))⊗ q∈τ(i)−1(p)⊗

A(jq)
)
⊗

v∈v(t)⊗ p∈τ(v)⊗
G|v|
(
|τ(e)−1(p)|e∈in(v)

)
(⊗⊗g)⊗(⊗⊗h)→

(p∈τ(head(i))⊗ q∈τ(i)−1(p)⊗
B(jq)

)
⊗
v∈v(t)⊗ p∈τ(v)⊗

H|v|
(
|τ(e)−1(p)|e∈in(v)

) ζ−→∼= as above
〉

=
t−tree τ∑

∀a∈Inpv t |τ(a)|=ka
(−1)sg(τ)+

∑ki

q=1(1−jq)·
∑v∈v(t)
v<head(i)

(|τ(v)|−
∑
u∈inV(v) |τ(u)|)

(−1)
∑p,r∈τ(head(i))
p<r (|τ(i)−1(r)|−

∑
q∈τ(i)−1(r) jq)(1−

∑
e∈in(head(i)) |τ(e)−1(p)|)

〈( ki⊗
q=1

B(jq)
)
⊗Hn(k)

((⊗kiq=1g)⊗h)−1

→
( ki⊗
q=1

A(jq)
)
⊗Gn(k)

1⊗(∆G(t) prτ )→
(p∈τ(head(i))⊗ q∈τ(i)−1(p)⊗

A(jq)
)
⊗

v∈v(t)⊗ p∈τ(v)⊗
G|v|
(
|τ(e)−1(p)|e∈in(v)

)
ζ−→∼=

v∈v(t)⊗ p∈τ(v)⊗ [(
if v = head(i) then

q∈τ(i)−1(p)⊗
A(jq)⊗

)
G|v|
(
|τ(e)−1(p)|e∈in(v)

)]
⊗v⊗p[h or ((⊗q∈τ(i)−1(p)g)⊗h)λi]→
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v∈v(t)⊗ p∈τ(v)⊗
H|v|

(
|τ(e)−1(p)|e∈in(v); if v = head(i) then |τ(i)−1(p)| 7→

∑
q∈τ(i)−1(p) jq

)
inτ ′→ ~G (t)(H|v|)v∈v(t)(k; ki 7→ j)

〉
=

t−tree τ∑
∀a∈Inpv t |τ(a)|=ka

(−1)sg(τ)+
∑ki

q=1(1−jq)·
∑v∈v(t)
v<head(i)

(|τ(v)|−
∑
u∈inV(v) |τ(u)|)

(−1)
∑p,r∈τ(head(i))
p<r (|τ(i)−1(r)|−

∑
q∈τ(i)−1(r) jq)(1−

∑
e∈in(head(i)) |τ(e)−1(p)|)+

∑
p∈τ(head(i)) cλi〈( ki⊗

q=1

B(jq)
)
⊗Hn(k)

((⊗kiq=1g)⊗h)−1

→
( ki⊗
q=1

A(jq)
)
⊗Gn(k)

1⊗(∆G(t) prτ )→
(p∈τ(head(i))⊗ q∈τ(i)−1(p)⊗

A(jq)
)
⊗

v∈v(t)⊗ p∈τ(v)⊗
G|v|
(
|τ(e)−1(p)|e∈in(v)

)
ζ−→∼=

v∈v(t)⊗ p∈τ(v)⊗ [(
if v = head(i) then

q∈τ(i)−1(p)⊗
A(jq)⊗

)
G|v|
(
|τ(e)−1(p)|e∈in(v)

)] ⊗v⊗p[1 or λi]→
v∈v(t)⊗ p∈τ(v)⊗

G|v|
(
|τ(e)−1(p)|e∈in(v); if v = head(i) then |τ(i)−1(p)| 7→

∑
q∈τ(i)−1(p) jq

)
inτ ′→ ~G (t)(G|v|)v∈v(t)(k; ki 7→ j)

~G(t)(h)→ ~G (t)(H|v|)v∈v(t)(k; ki 7→ j)
〉

= (−1)cλi
〈( ki⊗

q=1

B(jq)
)
⊗Hn(k)

((⊗kiq=1g)⊗h)−1

→
( ki⊗
q=1

A(jq)
)
⊗Gn(k)

1⊗∆G(t)→

( ki⊗
q=1

A(jq)
)
⊗~G(t)(G|v|)v∈v(t)(k)

λi−→ ~G(t)(G|v|)v∈v(t)(k; ki 7→ j)

~G(t)(h)→ ~G (t)(H|v|)v∈v(t)(k; ki 7→ j)
Ξ−→ ~G(t)(H|v|)v∈v(t)(k; ki 7→ j)

〉
= (−1)cλi

〈( ki⊗
q=1

B(jq)
)
⊗Hn(k)

((⊗kiq=1g)⊗h)−1

→
( ki⊗
q=1

A(jq)
)
⊗Gn(k)

λi−→ Gn(k; ki 7→ j)
∆G(t)→ ~G (t)(G|v|)v∈v(t)(k; ki 7→ j)

~G(t)(h)→ ~G (t)(H|v|)v∈v(t)(k; ki 7→ j)
Ξ−→ ~G(t)(H|v|)v∈v(t)(k; ki 7→ j)

〉
= (−1)cλi

〈( ki⊗
q=1

B(jq)
)
⊗Hn(k)

((⊗kiq=1g)⊗h)−1

→
( ki⊗
q=1

A(jq)
)
⊗Gn(k)

λi−→ Gn(k; ki 7→ j)
h−→ Hn(k; ki 7→ j)

∆G(t)→ ~G (t)(H|v|)v∈v(t)(k; ki 7→ j)
〉

=
〈( ki⊗

q=1

B(jq)
)
⊗Hn(k)

λi−→ Hn(k; ki 7→ j)
∆G(t)→ ~G (t)(H|v|)v∈v(t)(k; ki 7→ j)

〉
.
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Here Lemma B.3 is applied.
Third claim: normalization equation (4.1) of [Lyu15] holds for (H,∆G), that is,(

Hn
∆G(τ [n])→ ~G (τ [n])(Hn)

∼=→ Hn

)
= 1.

In fact, for any τ [n]-tree τ we have sg(τ) = 0 and the above identity follows from the
commutative diagram

Gn
∆G(τ [n])→ ~G(τ [n])(Gn)

∼= → Gn

Hn

h
↓

∆G(τ [n])→ ~G(τ [n])(Hn)

~G(τ [n])(h)↓
∼= → Hn

h
↓

whose first row composes to the identity morphism.
Fourth claim: multiplicativity equation (4.2) of [Lyu15] holds for (H,∆G).

B.4. Lemma. For all t ∈ tr, all t-trees τ , any fixed vertex x ∈ v(t), all sequences (tv) ∈∏
v∈v(t) tr |v| such that tv is the corolla τ [|v|] for v 6= x, all collections of tv-trees τ pv ,

v ∈ v(t), p ∈ τ(v), such that for all u ∈ Inpv(tv) ∼= inV(v) the bijection τ pv (u) ∼= τ(u →
v)−1(p) holds, we have

sg(T )− sg(τ)−
∑
p∈τ(x)

sg(τ px)

≡
∑

i<j∈τ(x)

∑
q>p∈v(tx)

(
|τ ix(q)| −

∑
b∈inV(q)

|τ ix(b)|
)(
|τ jx(p)| −

∑
c∈inV(p)

|τ jx(c)|
)

(mod 2),

where It(tv | v ∈ v(t))-tree T is constructed below (4.13) of [Lyu15].

Proof. Denote r = tx and use the simplified notation for r-trees τ p = τ px , p ∈ τ(x).
Note that t, τ determine completely τ pv for v 6= x. In fact, τ pv (u) ∼= τ(u → v)−1(p) for
u ∈ Inpv(tv) ∼= inV(v), for v 6= x as well as for v = x. We have

v(It(tv | v ∈ v(t))) = (v(t)− {x}) t v(r).

Furthermore, for v ∈ v(t)− {x}

T (v) =
⊔
<

p∈τ(v)

τ pv (rv(tv)) =
⊔
<

p∈τ(v)

1 ∼= τ(v).

For the same reasons T (rv(r)) ∼= τ(x). For u ∈ v(r) we have T (u) =
⊔
< p∈τ(x) τ

p(u). For

an edge (e : u→ v) ∈ Ē(t) with v 6= x we have

T (e) =
(
T (u) = τ(u) =

⊔
<

p∈τ(v)

τ(e)−1(p) =
⊔
<

p∈τ(v)

τ pv (u)
tτpv (e)

‖
tτ(e)

→
⊔
<

p∈τ(v)

τ pv (v)

= τ(v) = T (v)
)

= τ(e).
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This holds also when u = x if we substitute T (rv(r)) instead of T (x). An edge (e : u →
v) ∈ Ē(r) leads to

T (e) =
(
T (u) =

⊔
<

p∈τ(x)

τ p(u)
tτp(e)→

⊔
<

p∈τ(x)

τ p(v) = T (v)
)
.

This completes the description of T .
The equation to prove is∑

v∈v(t)−{x}

∑
q<p∈τ(v)

∑
elg∈in(v)

|τ(e)−1(p)| · |τ(g)−1(q)|+
∑
v∈v(r)

∑
q<p∈τ(x)

∑
wly∈in(v)

|τ p(w)| · |τ q(y)|

+
∑
v∈v(r)

∑
j∈τ(x)

∑
q<p∈τ j(v)

∑
elg∈in(v)

|τ j(e)−1(p)| · |τ j(g)−1(q)|

+
∑

v∈v(t)−{x}

∑
p∈τ(v)

(p− 1)
( ∑
e∈in(v)

|τ(e)−1(p)| − 1
)

+
∑
v∈v(r)

∑
j∈τ(x)

∑
p∈τ j(v)

(
p− 1 +

i∈τ(x)∑
i<j

|τ i(v)|
)( ∑

e∈in(v)

|τ j(e)−1(p)| − 1
)

+
∑

v∈v(t)−{x}

( ∑
u∈Inpv−v t

|τ(u)|
)
·
( ∑
a∈inV(v)

|τ(a)| − |τ(v)|
)

+
∑
v∈v(r)

( ∑
u∈Inpv−x t

|τ(u)|+
∑

u∈Inpv−v r

∑
i∈τ(x)

|τ i(u)|
)
·
( ∑
a∈inV(v)

∑
j∈τ(x)

|τ j(a)| −
∑
j∈τ(x)

|τ j(v)|
)

−
∑
v∈v(t)

∑
q<p∈τ(v)

∑
elg∈in(v)

|τ(e)−1(p)| · |τ(g)−1(q)| −
∑
v∈v(t)

∑
p∈τ(v)

(p− 1)
( ∑
e∈in(v)

|τ(e)−1(p)| − 1
)

−
∑
v∈v(t)

( ∑
u∈Inpv−v t

|τ(u)|
)
·
( ∑
a∈inV(v)

|τ(a)| − |τ(v)|
)

−
∑
j∈τ(x)

∑
v∈v(r)

∑
q<p∈τ j(v)

∑
elg∈in(v)

|τ j(e)−1(p)| · |τ j(g)−1(q)|

−
∑
j∈τ(x)

∑
v∈v(r)

∑
p∈τ j(v)

(p− 1)
( ∑
e∈in(v)

|τ j(e)−1(p)| − 1
)

−
∑
j∈τ(x)

∑
v∈v(r)

( ∑
u∈Inpv−v r

|τ j(u)|
)
·
( ∑
a∈inV(v)

|τ j(a)| − |τ j(v)|
)

≡
∑

i<j∈τ(x)

∑
q>p∈v(r)

(
|τ i(q)| −

∑
b∈inV(q)

|τ i(b)|
)(
|τ j(p)| −

∑
c∈inV(p)

|τ j(c)|
)

(mod 2).

Notice that two subsums proportional to
∑

u∈Inpv−x t
|τ(u)| cancel each other. In fact,∑

v∈v(r)

( ∑
a∈inV(v)

∑
j∈τ(x)

|τ j(a)| −
∑
j∈τ(x)

|τ j(v)|
)

=
∑
j∈τ(x)

∑
v∈v(r)

( ∑
a∈inV(v)

|τ j(a)| − |τ j(v)|
)
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=
∑
j∈τ(x)

( ∑
a∈Inpv(r)

|τ j(a)| − 1
)

=
∑

a∈inV(x)

∑
j∈τ(x)

|τ(a→ x)−1(j)| − |τ(x)|

=
∑

a∈inV(x)

|τ(a)| − |τ(x)|.

Thus, after cancellations the considered equation becomes

∑
v∈v(r)

∑
q<p∈τ(x)

∑
wly∈in(v)

|τ p(w)|·|τ q(y)|+
∑
v∈v(r)

∑
j∈τ(x)

(i∈τ(x)∑
i<j

|τ i(v)|
)( ∑

a∈inV(v)

|τ j(a)|−|τ j(v)|
)

+
∑
v∈v(r)

( ∑
u∈Inpv−v r

∑
i∈τ(x)

|τ i(u)|
)
·
( ∑
a∈inV(v)

∑
j∈τ(x)

|τ j(a)| −
∑
j∈τ(x)

|τ j(v)|
)

−
∑

q<p∈τ(x)

∑
w/y∈Inpv r

|τ p(w)| · |τ q(y)| −
∑
p∈τ(x)

(p− 1)
( ∑
a∈Inpv r

|τ p(a)| − 1
)

−
∑
j∈τ(x)

∑
v∈v(r)

( ∑
u∈Inpv−v r

|τ j(u)|
)
·
( ∑
a∈inV(v)

|τ j(a)| − |τ j(v)|
)

≡
∑

i<j∈τ(x)

∑
q>p∈v(r)

(
|τ i(q)| −

∑
b∈inV(q)

|τ i(b)|
)(
|τ j(p)| −

∑
c∈inV(p)

|τ j(c)|
)

(mod 2).

Note that this expression does not depend on t. Explicit dependence on τ is only through
the totally ordered set τ(x). Thus the both sides depend on a finite family of r-trees τ j,
j ∈ τ(x). When τ(x) = ∅ the both sides vanish identically. Let us prove the equation by
induction on |τ(x)|. Assume that it holds true for |τ(x)| = k − 1. The difference of the
equation containing τ 1, . . . , τ k−1, τ k and that containing τ 1, . . . , τ k−1 depends on two
kinds of variables:

n(v) = |τ k(v)|, z(v) =
∑

16j<k

|τ j(v)|, v ∈ v(r).

The difference takes the form∑
v∈v(r)

∑
wly∈in(v)

n(w) · z(y) +
∑
v∈v(r)

z(v)
( ∑
a∈inV(v)

n(a)− n(v)
)

+
∑
v∈v(r)

( ∑
u∈Inpv−v r

z(u)
)
·
( ∑
a∈inV(v)

n(a)− n(v)
)

+
∑
v∈v(r)

( ∑
u∈Inpv−v r

n(u)
)
·
( ∑
a∈inV(v)

z(a)− z(v)
)

−
∑

w/y∈Inpv r

n(w) · z(y)− (k − 1)
( ∑
a∈Inpv r

n(a)− 1
)

≡
∑

q>p∈v(r)

(
z(q)−

∑
b∈inV(q)

z(b)
)(
n(p)−

∑
c∈inV(p)

n(c)
)

(mod 2).

Notice that the value at root vertex of r is fixed:

n(rv) = 1, z(rv) = k − 1.
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Using this we may rewrite the equation once more. However we have already seen the
result: up to change of notations this is nothing else, but equation (B.5), which is already
proven.

B.5. Corollary. For all t ∈ tr, all t-trees τ , all sequences (tv) ∈
∏

v∈v(t) tr |v|, all

collections of tv-trees τ pv , v ∈ v(t), p ∈ τ(v), such that for all u ∈ Inpv(tv) ∼= inV(v) the
bijection τ pv (u) ∼= τ(u→ v)−1(p) holds, we have

sg(T )− sg(τ)−
∑
v∈v(t)

∑
p∈τ(v)

sg(τ pv )

≡
∑
v∈v(t)

∑
p<r∈τ(v)

∑
q>s∈v(tv)

(
|τ pv (q)| −

∑
b∈inV(q)

|τ pv (b)|
)(
|τ rv (s)| −

∑
c∈inV(s)

|τ rv (c)|
)

(mod 2),

where It(tv | v ∈ v(t))-tree T is constructed below (4.13) of [Lyu15].

Proof. Enumerate internal vertices of t as {v1, . . . , vk} = v(t). Consider the sequence
of trees constructed in the proof of [Lyu15, Proposition 4.3]: t0 = t, t1 = I(t0; (t1v)v∈v(t0)) =
I(t; tv1 , corollas), t2 = I(t1; (t2v)v∈v(t1)) = I(t1; tv2 , corollas), . . . , tk = I(tk−1; (tkv)v∈v(tk−1)) =
I(tk−1; tvk , corollas) = I(t; (tvi)

k
i=1). Accompany them with t1v-trees

(1τ pv )
p∈τ(v)

v∈v(t0) =
(
(τ pv1)

p∈τ(v1), corollas
)

agreeing with τ , t2v-trees (2τ pv )
p∈1τ(v)

v∈v(t1) =
(
(τ pv2)

p∈τ(v2), corollas
)

agreeing with 1τ constructed

from (1τ pv ) as in Remark 4.11 of [Lyu15], . . . , tkv-trees (kτ pv )
p∈k−1τ(v)

v∈v(tk−1)
=
(
(τ pvk)

p∈τ(vk), corollas
)

agreeing with k−1τ constructed from (k−1τ pv ). We construct also kτ from (kτ pv ). Further-

more, 1τ̃ = I
(
τ̃ ; (1τ̃ pv )

p∈τ(v)
v∈v(t)

)
, 2τ̃ = I

(
1τ̃ ; (2τ̃ pv )

p∈1τ(v)

v∈v(t1)

)
, . . . , kτ̃ = I

(
k−1τ̃ ; (kτ̃ pv )

p∈k−1τ(v)

v∈v(tk−1)

)
=

I
(
τ̃ ; (τ̃ pv )

p∈τ(v)
v∈v(t)

)
= T̃ . The last but one equation follows from the observation that al-

most all iτ̃ pv are corollas, except the case of v = vi. The isomorphism kτ̃ ∼= T̃ is
over θ = I(t; (tv)). Notice that total orderings on fibres of maps kτ̃ → θ and T̃ → θ
agree. In fact, elements (u0, p0, u1, p1, . . . , uk, pk) < (u0, p

′
0, u1, p

′
1, . . . , uk, p

′
k) of v(kτ̃) over

(u0, u1, . . . , uk) ∈ v(tk) are related by this inequality iff p0 < p′0 or (p0 = p′0, p1 < p′1)
. . . or (p0 = p′0, p1 = p′1, . . . , pk < p′k). However, only two possibilities among them may
occur: p0 < p′0 ∈ τ(u0) and (p0 = p′0, p1 = p′1, . . . , pi < p′i), where u0 = vi. These coincide
with two possibilities for inequality between two points of a fibre of T̃ → θ. Hence, by
[Lyu15, Remark 4.11] kτ = T as a θ-tree.

The claimed identity is the sum of k identities proven in Lemma B.4 for 1τ , 2τ , . . . ,
kτ .

B.6. Remark. The scheme for deducing Corollary B.5 from Lemma B.4 is unveiled by
[Lyu15, Proposition 4.3].

Now using Corollary B.5 we prove the fourth claim. Fix t, (tv)v∈v(t) and denote It(tv |
v ∈ v(t)) by θ. Recall that θ-trees T are in bijection with admissible pairs

(
τ, (τ pv )

p∈τ(v)
v∈v(t)

)
.
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Choose one of them. For j ∈ NInp t we have

〈
HInp t(j)

∆G(t)→
t-tree τ∐

∀a∈Inpv t |τ(a)|=ja

v∈v(t)⊗ p∈τ(v)⊗
H|v|

(
|τ(e)−1(p)|e∈in(v)

) ∐
⊗⊗∆G(tv)→

t-tree τ∐
∀a∈Inpv t |τ(a)|=ja

v∈v(t)⊗ p∈τ(v)⊗ tv-trees τpv∐
∀c∈Inpv tv=inV(v)
τpv (c)=τ(c→v)−1(p)

u∈v(tv)⊗ q∈τpv (u)⊗
H|u|

(
|τ pv (y)−1(q)|y∈in(u)

)

∼=−→
θ-tree T∐

∀a∈Inpv θ |T (a)|=ja

v∈v(t)⊗ u∈v(tv)⊗ p∈τ(v)⊗ q∈τpv (u)⊗
H|u|

(
|τ pv (y)−1(q)|y∈in(u)

)
prT→

w∈v(θ)⊗ r∈T (w)⊗
H|w|

(
|T (x)−1(r)|x∈in(w)

)〉
= (−1)sg(τ)

〈
HInp t(j)

h−1

→ GInp t(j)
∆G(t) prτ→

v∈v(t)⊗ p∈τ(v)⊗
G|v|
(
|τ(e)−1(p)|e∈in(v)

) ⊗⊗h→
v∈v(t)⊗ p∈τ(v)⊗

H|v|
(
|τ(e)−1(p)|e∈in(v)

) ⊗⊗(∆G(tv) pr
τ
p
v

)

→
v∈v(t)⊗ p∈τ(v)⊗ u∈v(tv)⊗ q∈τpv (u)⊗

H|u|
(
|τ pv (y)−1(q)|y∈in(u)

) ∼=−→
v∈v(t)⊗ u∈v(tv)⊗ p∈τ(v)⊗ q∈τpv (u)⊗

H|u|
(
|τ pv (y)−1(q)|y∈in(u)

)
=

w∈v(θ)⊗ r∈T (w)⊗
H|w|

(
|T (x)−1(r)|x∈in(w)

)〉
= (−1)sg(τ)+

∑
v∈v(t)

∑
p∈τ(v) sg(τpv )

〈
HInp t(j)

h−1

→ GInp t(j)
∆G(t) prτ→

v∈v(t)⊗ p∈τ(v)⊗
G|v|
(
|τ(e)−1(p)|e∈in(v)

) ⊗⊗(∆G(tv) pr
τ
p
v

)

→
v∈v(t)⊗ p∈τ(v)⊗ u∈v(tv)⊗ q∈τpv (u)⊗

G|u|
(
|τ pv (y)−1(q)|y∈in(u)

) ⊗⊗⊗⊗h→
v∈v(t)⊗ p∈τ(v)⊗ u∈v(tv)⊗ q∈τpv (u)⊗

H|u|
(
|τ pv (y)−1(q)|y∈in(u)

) ∼=−→
v∈v(t)⊗ u∈v(tv)⊗ p∈τ(v)⊗ q∈τpv (u)⊗

H|u|
(
|τ pv (y)−1(q)|y∈in(u)

)
=

w∈v(θ)⊗ r∈T (w)⊗
H|w|

(
|T (x)−1(r)|x∈in(w)

)〉
= (−1)sg(τ)+

∑
v∈v(t)

∑
p∈τ(v) sg(τpv )

(−1)
∑
v∈v(t)

∑
p<r∈τ(v)

∑
q>s∈v(t)

(
|τpv (q)|−

∑
b∈inV(q) |τ

p
v (b)|
)(
|τrv (s)|−

∑
c∈inV(s) |τrv (c)|

)〈
HInp t(j)

h−1

→

GInp t(j)
∆G(t) prτ→

v∈v(t)⊗ p∈τ(v)⊗
G|v|
(
|τ(e)−1(p)|e∈in(v)

) ⊗⊗(∆G(tv) pr
τ
p
v

)

→
v∈v(t)⊗ p∈τ(v)⊗ u∈v(tv)⊗ q∈τpv (u)⊗

G|u|
(
|τ pv (y)−1(q)|y∈in(u)

) ∼=−→
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v∈v(t)⊗ u∈v(tv)⊗ p∈τ(v)⊗ q∈τpv (u)⊗
G|u|

(
|τ pv (y)−1(q)|y∈in(u)

) ⊗⊗⊗⊗h→
v∈v(t)⊗ u∈v(tv)⊗ p∈τ(v)⊗ q∈τpv (u)⊗

H|u|
(
|τ pv (y)−1(q)|y∈in(u)

)
=

w∈v(θ)⊗ r∈T (w)⊗
H|w|

(
|T (x)−1(r)|x∈in(w)

)〉
= (−1)sg(T )

〈
HInp t(j)

h−1

→ GInp t(j)
∆G(θ) prT→

w∈v(θ)⊗ r∈T (w)⊗
G|w|

(
|T (x)−1(r)|x∈in(w)

)
⊗⊗h→

w∈v(θ)⊗ r∈T (w)⊗
H|w|

(
|T (x)−1(r)|x∈in(w)

)〉
=
〈
HInp t(j)

∆G(θ)→
θ-tree T∐

∀a∈Inpv θ |T (a)|=ja

w∈v(θ)⊗ r∈T (w)⊗
H|w|

(
|T (x)−1(r)|x∈in(w)

)
prT→

w∈v(θ)⊗ r∈T (w)⊗
H|w|

(
|T (x)−1(r)|x∈in(w)

)〉
.

The theorem is proven.
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