
Theory and Applications of Categories, Vol. 31, No. 21, 2016, pp. 542–570.

REPRESENTATION AND CHARACTER THEORY OF FINITE
CATEGORICAL GROUPS

NORA GANTER AND ROBERT USHER

Abstract. We study the gerbal representations of a finite group G or, equivalently,
module categories over Ostrik’s category VecαG for a 3-cocycle α. We adapt Bartlett’s
string diagram formalism to this situation to prove that the categorical character of a
gerbal representation is a representation of the inertia groupoid of a categorical group.
We interpret such a representation as a module over the twisted Drinfeld double Dα(G).

1. Introduction

Let k be a field. In classical representation theory, there are several equivalent definitions
of the notion of a projective representation of a finite group G on a k-vector space V :

(i) a group homomorphism % : G −→ PGL(V ),

(ii) a map % : G −→ GL(V ) with 2-cocycle θ : G×G −→ k× such that

%(g) · %(h) = θ(g, h) · %(gh)

(iii) a group homomorphism % : G̃ −→ GL(V ), for G̃ a central extension of G by k×,

(iv) a module over the twisted group algebra kθ[G] for some 2-cocycle θ : G×G −→ k×.

In this work we consider the situation where V is replaced by a k-linear category V or,
more generally, by an object of a k-linear strict 2-category. In [FZ12], Frenkel and Zhu
categorified points (i) to (iii) as follows1

(i) a homomorphism of groups G −→ π0(GL(V)), see [FZ12, Definition 2.8],

(ii) a projective 2-representation of G on V for some 3-cocycle α : G × G × G −→ k×,
see [FZ12, Remark 2.9],
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1We have slightly modified the context of their definitions to suit our purposes, demanding k-linearity,
while allowing ourselves to work in the 2-categorical setup.
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(iii) a homomorphism of categorical groups G −→ GL(V) where G is a 2-group extension
of G by [pt/k×], see [FZ12, Definition 2.6].

They prove that these three notions specify the same data and coin the term gerbal
representation of G to describe any of these categorifications (we will also use the term
projective 2-representation). To be more precise, the objects described in (ii) and (iii) are
in an obvious manner organised into bicategories, and the argument in [FZ12, Theorem
2.10] sketches an equivalence of bicategories. The objects in (i) classify the objects of
either of these bicategories up to equivalence. We review the work of Frenkel and Zhu in
Section 4. A special case of [Ost03b] yields a categorification of the last point:

(iv) a module category over the categorified twisted group algebra Vectαk[G] or, in Ostrik’s
notation, VecαG.

There is an equivalence of bicategories between this formulation and those of (i)–(iii), see
Section 5.1.

An important class of examples of projective 2-representations are braid group actions,
which can be read about in a paper of Khovanov and Thomas [KT07] building on work
of Deligne [Del97]. Projective 2-representations also expected to play a role in TQFT
applications; in [FHLT10] the authors argue that the categorified twisted group algebra
determines a 3-dimensional extended TQFT whose value at the point is Vectαk[G].

The goal of the present work is to describe the characters of projective 2-representations.
The special case where α = 0 was treated in [GK08] and [Bar08], where the character is
defined using the categorical trace

X%(g) = Tr(%(g)) = 2-Hom(1V , %(g)).

The categorical character of % then consists of the X%(g) together with a family of iso-
morphisms

βg,h : X(g) −→ X(hgh−1)

(compare Definition 4.14). We generalise these definitions to the projective case and arrive
at the following theorem.

1.1. Main Theorem. Let G be a finite categorical group, let V be an object of a k-linear
strict 2-category and let

%: G −→ GL(V )

be a linear representation of G on V . Then the categorical character of % is a representation
of the inertia groupoid Π1ΛG of G. (see Theorem 4.17)

Using the work of Willerton [Wil08], we further show Corollary 4.18: The category of
representations of Π1ΛG is equivalent to that of modules over the twisted Drinfeld double
Dω(G).
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2. Background

2.1. Categorical groups. By a categorical group or 2-group we mean a monoidal
groupoid (G, •,1) where each object is weakly invertible. For a detailed introduction to
the subject, we refer the reader to [BL04], where the term weak 2-group is used.

2.2. Example. [Symmetry 2-groups] Let V be a category. Then the autoequivalences of
V and the natural isomorphisms between them form a categorical group. More generally,
let V be an object in a bicategory. Then the weakly invertible 1-morphisms of V and
the 2-isomorphisms between them form the categorical group 1Aut(V). If V is a k-linear
category, we may restrict ourselves to linear functors and natural transformations and
write GL(V ). We will also use this notation in general k-linear 2-categories.

2.3. Example. [Skeletal categorical groups] Let G be a skeletal 2-group, i.e., assume that
each isomorphism class in G contains exactly one object. Then the objects of G form a
group G := ob(G), and the automorphisms of 1 form an abelian group A := autG(1). The
group G acts on A by conjugation

a 7−→ g • a • g−1

(unambiguous, because G is skeletal). We will denote this action by

ag := g • a • g−1.

We make the assumption that G is special, i.e. that the unit isomorphisms are identities,
i.e.,

1 • g = g = g • 1.

Then G is completely determined by the data above together with the 3-cocycle

α : G×G×G −→ A,

encoding the associators
α(g, h, k) • ghk ∈ autG(ghk).

Every finite categorical group is equivalent to one of this form, and there is the fol-
lowing result of Sinh.
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2.4. Theorem. [see [Sin75] and [BL04, §8.3]] Let G be a finite categorical group. Then
G is determined up to equivalence by the data of

(i) a group G,

(ii) a G-module A, and

(iii) an element [α] of the group cohomology H3(G,A).

Without loss of generality, we may assume the cocyle α to be normalised. We will be
particularly interested in the case where A = k×. Cocycles of this form are key to our
understanding of a variety of different topics, ranging from Chern-Simons theory ([DW90],
[FQ93]) to generalised and Mathieu moonshine ([Gan09], [GPRV12]) to line bundles on
Moduli spaces and twisted sectors of vertex operator algebras. In the physics literature,
evidence of such cocycles typically turns up in the form of so called phase factors.

2.5. Definition. Let G and H be categorical groups. By a homomorphism from G to H
we mean a (strong) monoidal functor

G −→ H.

A linear representation of a categorical group G with centre EndG(1) = k× is a homomor-
phism

% : G −→ GL(V )

where V is an object of a strict (k-linear) 2-category, and k× is required to act by multi-
plication with scalars.

We will study such linear representations for skeletal G. Note that the condition on
the action of k× implies that the action of G = ob(G) on k× is trivial, restricting us to
those skeletal 2-groups that are classified by [α] ∈ H3(G;k×) where G acts trivially on
k×.

2.6. String diagrams for strict 2-categories. We recall the string diagram for-
malism from [CW10, §1.1] and [Bar08, Chapter 4] (our diagrams are upside down in
comparison to those in [Bar08]). This already turns up in [Pen71] and in the work of
Joyal and Street [JS91], with a reference to [KL80].

Let C be a strict 2-category, i.e. a category enriched over the category of small cate-
gories. Let x, y be objects in C, and let A be a 1-morphism from x to y. In string diagram
notation, A is drawn

y x

A
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Given A,B ∈ 1-HomC(x, y), let φ : A⇒ B be a 2-morphism. In string diagram notation,
φ is drawn

y x

A

B

φ

So, our string diagrams are read from right to left and from bottom to top. Horizontal and
vertical composition are represented by the respective concatenations of string diagrams.
For example, if A ∈ 1-HomC(x, y), and Φ : B ⇒ B′ is a 2-morphism between B,B′ ∈
1-HomC(y, z), then the horizontal composition of A with Φ is represented by either of the
diagrams

z x

BA

B′A

φAz x

B

B′

φ y

A

=

The equals sign in this figure indicates that both string diagrams refer to the same 2-
morphism. Given C,D ∈ 1-HomC(y, z), let ψ : C ⇒ D be a 2-morphism, then the
horizontal composition of φ with ψ is represented by

y x

A

B

z

C

D

y

x

A

B

z

C

D y

=ψ φ ψφ x

CA

DB

z= ψφ

If φ : A⇒ B and φ′ : B ⇒ C are composable 2-morphisms, their vertical composition is
represented by
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y x

A

C

y x

A

C

B =

φ

φ′

φ′
◦ φ

We will often work with k-linear 2-categories. There each 2-HomC(A,B) is a k-vector
space and vertical composition is k-bilinear. If φ, φ ∈ 2-HomC(A,B) are 2-morphisms
related by a scalar s ∈ k (i.e. sφ = φ′), then we draw

s

φ

A

B

φ′

A

B

xy xy

We will occasionally omit borders and labels of diagrams where the context is clear.

2.7. Remark. Given a categorical group G, one could use a strictification result, as
suggested in [Bar08], to make use of string diagram notation. Rather than doing this,
we note that string diagrams for skeletal categorical groups are also unambiguous. The
string diagrams appearing in the next section are similar to the ones above, but differ in
that we now need to keep track of associators.

3. Categorified conjugacy classes

The goal of this section is to describe the inertia groupoid of a skeletal categorical group
and interpret modules over Dα(G) as representations of that inertia groupoid.

3.1. Homomorphisms of skeletal categorical groups. A categorical group G
may be viewed as one-object bicategory. We will denote this bicategory •//G, i.e., the
object is • and 1-Hom(•, •) = G. In this section we study the bicategory of bifunctors

Bicat(•//H, •//G),

where H and G are skeletal categorical groups, classified by cocycles

α: G×G×G −→ A,

and

β : H ×H ×H −→ B,
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as in Example 2.3. One may think of this as the bicategory of representations of H in G,
but this time the target is not a strict 2-category.

3.1.1. The Objects. Objects of Bicat(•//H, •//G) are homomorphisms of categorical
groups, a.k.a. strong monoidal functors, from H to G. Such a homomorphism is deter-
mined by the following data: a group homomorphism % : H −→ G, an H-equivariant
homomorphism f : B −→ A, and a 2-cochain γ : H ×H −→ A. For h1, h2 ∈ H, we draw
γ(h1, h2) • %(h1h2) as

γ

%(h1h2)

%(h1) %(h2)

If we let H act on A via % then γ has to satisfy

dγ =
%∗α

f∗β
,

i.e.,

γ(h1h2, h3) · γ(h1, h2)

γ(h1, h2h3) · γ(h2, h3)%(h1)
=

α(%(h1), %(h2), %(h3))

f(β(h1, h2, h3))
. (1)

for all h1, h2, h3 ∈ H. The hexagon equation (1) is drawn in string diagram notation as

γ

f(β)

γ

%(h1h2h3)

%(h1h2h3)

%(h1) %(h2)

%(h3)

= γ

γ

α

%(h1h2h3)

%(h3)%(h2)

%(h1)

%(h1) %(h2) %(h3)

A priori, one expects one more piece of data, namely an arrow

a: %(1) −→ 1,
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i.e, an element a ∈ A, satisfying2

γ(1, h) = a

γ(h, 1) = a%(h)

for all h ∈ H. Since α and β are normalised, this is automatic from (1). Indeed, set
a = γ(1, 1) and apply (1) to the triples (1, 1, h) and (h, 1, 1).

3.1.2. The 1-morphisms. Let (%, f1, γ1) and (σ, f2, γ2) be homomorphisms from H to
G. Then the 1-morphisms between them are transformations from (%, f1, γ1) to (σ, f2, γ2).
We will follow the conventions in [GPS95]. A transformation then amounts to the data
of an element s ∈ G, together with a 1-cochain η : H −→ A satisfying

dση(h1, h2) :=
η(h2)σ(h1) · η(h1)

η(h1h2)
=

γ1(h1, h2)s

γ2(h1, h2)
· α(σ(h1), σ(h2), s) · α(s, %(h1), %(h2))

α(σ(h1), s, %(h2))
.

(2)
for all h1, h2 ∈ H. For h ∈ H, we draw η(h) • σ(h) • s as

s

s

σ(h)

%(h)

η

and so the eight-term equation (2) is drawn in string diagram notation as

α

γ1

s %(h1) %(h2)

sσ(h1h2)

η =

α

α−1

γ2

s

s

%(h2)%(h1)

σ(h1)

σ(h1h2)

η

η

2Note that the axioms in [Lei98] are formulated in terms of a−1.
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The second condition spells out to

η(1) =
γ1(1, 1)s

γ2(1, 1)

which we do not postulate, since in our situation it is automatic from (2). Indeed, it is
obtained from the formula for dη(1, 1), because α is normalised.

3.1.3. The 2-morphisms. A modification from (s, η) to (t, ζ) requires s = t and amounts
to a 0-cochain ω (i.e. an element ω ∈ A) satisfying

ωσ(h)

ω
=

ζ(h)

η(h)
(3)

for all h ∈ H. We draw ω • s as

s

s

ω

and so condition (3) is drawn in string diagram notation as

s

s

σ(h)

%(h)

η

ω

=

s

s

σ(h)

%(h)

ζ

ω

3.2. Example. [Group extensions] Let G be a group, and let A be an abelian group.
Then the bicategory of bifunctors from •//G to •// • //A has as objects 2-cocycles on G
with values in A, viewed as a trivial G-module. A 1-morphism from γ1 to γ2 is a 1-cochain
η with dη = γ2/γ1. All the 2-morphisms are 2-automorphisms, and each 2-automorphism
group is isomorphic to A. If we truncate at the level of 2-automorphisms, then this is the
category of central extensions of G by A and their isomorphisms over G.
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3.3. Inertia (2)groupoids.

3.4. Definition. We define the inertia 2-groupoid of a categorical group G as the 2-
groupoid

ΛG = Bicat(•//Z, •//G),

where the integers are viewed as a discrete 2-group (only identity morphisms).

3.5. Example. If G = G is a finite group, viewed as a categorical group with only
identity morphisms, then ΛG is the usual inertia groupoid with objects g ∈ G and arrows
g → sgs−1.

In general, let G be a special skeletal 2-group with objects ob(G) = G. Then the
canonical 2-group homomorphism

p: G −→ G

induces a morphism of 2-groupoids

Λp: ΛG −→ ΛG

3.6. Lemma. The map Λ(p) is surjective on objects and full.

Proof. The proof relies on the knowledge of the group cohomology of the integers, see
for instance [Bro10, Exa. 3.1]. The objects of ΛG are identified with pairs (g, γ), where g
is an element of G (namely g = %(1)) and

γ : Z× Z −→ A

is a 2-cochain with boundary

dgγ(l,m, n) :=
γ(l +m,n) · γ(l,m)

γ(l,m+ n) · γ(m,n)gl
= α(gl, gm, gn).

The map Λp sends (g, γ) to g. Since

H3(Z, A) = 0

for any Z-action on A, we may conclude that Λp is surjective on objects. Let now (g, γ)
and (f, φ) be two objects of ΛG, and assume that we are given an arrow from g to f in
ΛG. Such an arrow amounts to an element s of G with

sgs−1 = f.
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Applying the cocycle condition for α four times, namely

dα(s, gl, gm, gn) = 0,

dα(f l, s, gm, gn) = 0,

dα(f l, fm, s, gn) = 0,

dα(f l, fm, fn, s) = 0,

we obtain that the 2-cochain

(m,n) 7−→ φ(m,n)

γ(m,n)s
· α(fm, s, gn)

α(fm, fn, s) · α(s, gm, gn)

is a 2-cocycle for the Z-action on A induced by f . Since

H2(Z, A) = 0,

we may conclude that Λp is surjective on 1-morphisms.

Let G be a groupoid, and let A be an abelian group. We recall from [Wil08, p.17]

how an A-valued 2-cocycle θ on G defines a central extension G̃ of G. The objects of G̃
are the same as those of G. The arrows are

HomG̃(g, h) = A× HomG(g, h)

with composition

(a1, g1)(a2, g2) := (θ(g1, g2)a1a2, g1g2).

Let G be the 2-group defined by α as above, and assume that the G-action on A is trivial.
Then all the 2-morphisms in ΛG are 2-automorphisms. In this case, we may view ΛG as
a groupoid, forgetting the 2-morphisms. Let us denote by Π1ΛG the groupoid obtained
by truncating ΛG to forget 2-arrows.

3.7. Proposition. The groupoid Π1ΛG is equivalent to the central extension of G defined
by the transgression of α,

τ(α)
(
g

s−→ h
t−→ k

)
=

α(t, s, g) · α(k, t, s)

α(t, h, s)
.

Proof. For each g ∈ G, fix an object (g, γ) of Π1ΛG mapping to g under Λp. Since Λp is
surjective on arrows, the full subgroupoid Π1ΛG ′ of Π1ΛG with the objects we just fixed is
equivalent to Π1ΛG. Since G (and hence Z) acts trivially on A, the A-valued one-cocycles
on Z are just group homomorphisms from Z to A. Hence, for any 2-cocycle ξ ∈ Z2(Z, A),



REPRESENTATION AND CHARACTER THEORY 553

we have a bijection

{η | dη = ξ} −→ A

η 7−→ η(1).

Let now s be an element of G, and let

h = sgs−1.

Inserting the right-hand side of (2) for ξ, allows us identify the set of arrows in Π1ΛG ′
mapping to s with A. Let now t be another element of G and let k = tht−1. The following
string diagram illustrates the composition of arrows (s, η) and (t, ζ) in Π1ΛG ′.

α

α−1

α

s gt

tk s

η

ζ

4. Projective 2-representations

The following is a k-linear version of [FZ12, Definition 2.8].

4.1. Definition. Let G be a finite group, and C a strict k-linear 2-category. A projective
2-representation of G on C consists of the following data

(a) an object V of C

(b) for each g ∈ G, a 1-automorphism %(g) : V −→ V , drawn as

g
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(c) for every pair g, h ∈ G, a 2-isomorphism ψg,h : %(g)%(h)
∼=⇒ %(gh), drawn as

gh

bc

g h

(d) a 2-isomorphism ψ1 : %(1)
∼=⇒ idV , drawn as

bc

such that the following conditions hold

(i) for any g, h, k ∈ G, we have

ψg,hk(%(g)ψh,k) = α(g, h, k)ψgh,k(ψg,h%(k)),

where α(g, h, k) ∈ k×. In string diagram notation, we draw this as

bc

bc
g

h k

hk

ghk

bc

bc

g h

k

gh

ghk

α(g, h, k)

(ii) for any g ∈ G, we have

ψ1,g = ψ1%(g) and ψg,1 = %(g)ψ1.

In string diagram notation, we draw these as

bc

g

g

=

bc

g and bc

g

g

=

bc

g
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4.2. The 3-cocycle condition.

4.3. Proposition. [Compare [FZ12, Theorem 2.10]] Let % be a projective 2-representation
of a group G. Then the map α : G × G × G −→ k× appearing in condition (i) is a nor-
malised 3-cocycle for the trivial G-action on k×.

Proof. We use Definition 4.1 (i) for all steps of our proof. Consider

g2
g1

bc

bc

bc
g3

g4

g1g2g3g4

α(g1g2, g3, g4)

g2g1

bc

bc
g1g2g3g4

g4

g3
bc

α(g1, g2, g3g4)

g2

g1 bc

bc
g1g2g3g4

g4

g3
bc

On the other hand, we have

α(g2, g3, g4)

g2
g1

bc

bc

bc
g3

g4

g1g2g3g4

g2

g1

bc

bc

bc

g3

g4

g1g2g3g4

g2

g1

bc

bc
bc

g3

g1g2g3g4

g4

α(g1, g2g3, g4)

g2

g1

bc

bc
bc

g3

g1g2g3g4

g4

α(g1, g2, g3)

Comparing these diagrams, we find

α(g1g2, g3, g4) · α(g1, g2, g3g4) = α(g2, g3, g4) · α(g1, g2g3, g4) · α(g1, g2, g3),

so α is indeed a 3-cocycle.
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4.4. Corollary. A projective 2-representation of G with cocycle α is precisely a linear
representation of the 2-group G classified by α (see Definition 2.5).

Proof. Indeed, Condition (i) of Definition 4.1 amounts to the hexagon diagram for a
strong monoidal functor, and Condition (ii) translates to the unit diagrams.

4.5. Example. [Compare [GK08, §5.1]] Let G be a finite group, and let θ be a normalised
2-cochain. Let α = dθ be the coboundary of θ, i.e.,

α(g, h, k) =
θ(gh, k) · θ(g, h)

θ(g, hk) · θ(h, k)
.

Let Vectk be the category of finite dimensional k-vector spaces. Then we define a projec-
tive 2-representation of G on Vectk with corresponding 3-cocycle α as follows : for g ∈ G,
we let

%(g) = id : Vectk −→ Vectk

be the identity functor on Vectk. For g, h ∈ G we let

ψg,h : id ◦ id
∼=

=⇒ id

be given by multiplication by θ(g, h). Further,

ψ1 : %(1)
∼=

=⇒ id

is the identity natural transformation.

We recall some further notation from [Bar08].

bc

g

gh

ψ
−1
g,h

: ̺(gh)
∼=
⇒ ̺(g)̺(h)

h

bc

ψ
−1
1

: idC

∼=
⇒ ̺(1)

g g−1
bc

bc

g g−1

:= :=
g g−1 bc

bc

g g−1

4.6. Remark. For future reference, we present the following tautological string diagram
equations, as in [Bar08, §7.1.1]. By inverting condition (i) of Definition 4.1, we get
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α(g, h, k)

bc

bc k

hg

gh

ghk

bc

bc

kh

g

hk

ghk

that is,
(ψ−1

g,h%(k))ψ−1
gh,k = α(g, h, k)(%(g)ψ−1

h,k)ψ
−1
g,hk (4)

We have ψ1 ◦ ψ−1
1 = idC and ψ−1

1 ◦ ψ1 = %(1), drawn as

(a)

bc

bc

=

(b)

bc

=

bc

Similarly, ψ−1
g,h ◦ ψg,h = %(g)%(h) and ψg,h ◦ ψ−1

g,h = %(gh) for all g, h ∈ G, drawn as

(c) =

bc

bc

g

g

h

h

gh g h (d) =

gh

gh

gh

bc

bc

g h

Finally, ψ1,g(ψ
−1
1 %(g)) = %(g) = ψg,1(%(g)ψ−1

1 ) for all g ∈ G, drawn as

(e) =

bc

g

gbc

bc

gg

bc

=

g

Some less tautological graphical equations for projective 2-representations are given
by the following results.
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4.7. Lemma. [Bar08, Lemma 7.3 (ii)] The following graphical equation holds

bc

=

bc

Proof.

bc bc
bc bc

bc

bc

bc

bc
= = =

The first equality follows from 4.6 (c), the second from 4.6 (e), with the final following by
definition.

4.8. Lemma. [Compare [Bar08, Lemma 7.3 (iii)]] The following graphical equations hold

(i)
bc

hg

gh

α(gh, h−1, h)−1 bc

gh

g h

(ii)
bc

hg

gh

α(g, g−1, gh) bc

gh

g h

Proof. We will prove (ii); the proof of (i) is almost identical. By combining 4.6 (c) and
(e), we obtain

bc

hg

gh

=

bc

hg

gh

bc
bc

Next, by 4.1 (i), we obtain
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α(g, g−1, gh)bc

hg

gh

bc
bc

bc

gh

g

h

bc
bc

A final application of 4.6 (d) gives us the desired result.

4.9. Corollary. [Compare [Bar08, Lemma 7.3 (i)]] The following graphical equations
hold

(i)
α(g, g−1

, g)−1
g

g

g

(ii) α(g, g−1
, g) g

g

g

Proof. We will prove (i); the proof of (ii) is almost identical. By applying 4.8 and then
4.6 (e), we have

=

g

g
g

bc

bc
α(g, g−1

, g)−1

bc

g

bc
g

g

= g

as required.

4.10. Corollary. [Compare [Bar08, Lemma 7.3 (iv)]] The following graphical equation
holds

(gh)−1g h

bc
α(h,h−1,g−1)

α(g,h,(gh)−1)
hg (gh)−1

bc

Proof. Applying 4. we get

α(g, h, (gh)−1)−1

hg (gh)−1

bc
hg

bc
(gh)−1

Inverting the equation derived in part (ii) of 4.8 gives the desired result.
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4.11. The character of a projective 2-representation. Recall that the char-
acter of a classical representation % is the map χ : G −→ k defined by χ(g) = tr(%(g)).
This motivates the following definition of [GK08] and [Bar08].

4.12. Definition. [GK08, Definition 3.1] and [Bar08, Definition 7.8] Let C be a 2-
category, x ∈ ob(C) and A ∈ 1-HomC(x, x) a 1-endomorphism of x. The categorical
trace of A is defined to be

Tr(A) = 2-HomC(1x, A)

where 1x is the identity 1-morphism of x.

4.13. Remark. If C is a k-linear 2-category, then the categorical trace of a 1-endomorphism
A : x −→ x is a k-vector space.

4.14. Definition. [Compare [GK08, Definition 4.8] and, in particular, [Bar08, Definition
7.9]] Let % be a projective 2-representation of a finite group G. The character of % is the
assignment

g 7−→ Tr(%(g)) =: X%(g)

for each g ∈ G, and the collection of isomorphisms

βg,h : X%(g) −→ X%(hgh
−1)

defined in terms of string diagrams

g

bcη

hgh−1

h

h−1bc

bc

g

bcη
βg,h

for each g, h ∈ G. That the βg,h are isomorphisms is a consequence of Theorem 4.17.

We note that the definitions in [GK08] and [Bar08] are the special case α = 1, although
they look a bit different at first sight. There are several thinkable generalisations of those
definitions. This definition was chosen based on the discussion in Section 3.

4.15. Definition. [GK08, Definition 4.12] Let % be a projective 2-representation of a
finite group G on a k-linear 2-category. If g, h ∈ G is a pair of commuting elements, then
βg,h is an automorphism of X%(g). Assuming βg,h to be of trace class, we have the joint
trace of g and h,

χ%(g, h) := tr(βg,h).

If the joint trace is defined for all commuting g, h ∈ G, we refer to χ% as the 2-character
of %.
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4.16. Example. As in [GK08, §5.1], let us consider the categorical character and 2-
character of the projective 2-representation defined in Example 4.5. For g ∈ G, we have

X%(g) = Tr(idVeck) = k

Let g, h ∈ G be commuting elements. Then it follows from Definition 4.14 that the joint
trace χ%(g, h) is given by multiplication by the transgression of θ

θ(h, g)

θ(hgh−1, h)
=
θ(h, g)

θ(g, h)
.

We now present our main result.

4.17. Theorem. Let G be a finite categorical group, let V be an object of a k-linear strict
2-category and let

%: G −→ GL(V )

be a linear representation of G on V . Then the categorical character of % is a representation
of the inertia groupoid Π1ΛG of G.

Proof. Recall that G is determined by a finite group G together with a 3-cocycle α on
G with values in k×. By Proposition 3.7, we must show that the diagram

X%(r) X%(hgrg
−1h−1)

X%(grg
−1)

βr,hg

βr,g βgrg−1,h

commutes up to a scalar, i.e.

α(h, grg−1, g)

α(hgrg−1h−1, h, g) · α(h, g, r)
· βgrg−1,h ◦ βr,g = βr,hg (5)

for all r, g, h ∈ G. Fix elements r, g, h ∈ G and η ∈ X(r). By applying 4.6 (d) twice, we
find

r

bcηg

bc

bc

bc

h

hgrg−1h−1

bc

r

bcηg

bc

bc

h

hgrg−1h−1

bc

bc
bc

bc bc

bc=
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Applying 4.10 twice, we have

r bcηg

bc

bc

h

hgrg−1h−1

bc

bc
bc

bc
bc

bc

α(h,g,(hg)−1)

α(g,g−1,h−1)

r

bcηg

bc

bc

h

hgrg−1h−1

bc

bc

bc

bc
bc

bc

α(g,g−1,h−1)

α(h,g,(hg)−1)

r

bcηg

bc

bc

h

hgrg−1h−1

bc

bc

bc

bc

bc

bc

These two factors cancel, so the first and last diagram in this figure are equal. We
redraw this diagram by removing the loop (as per 4.6 (d)), then apply 4.6 (c) to get

r

g
h

g

h

hgrg−1h−1

bc

bc

bc

bc

bc

bc bcη

hg

=

r

g
h

g

h

bc

bc

bc

bc
bc

bc bcη

hg

bc
bc

Next, we apply 4.1 (i) to obtain

g
h

g

h

hgrg−1h−1

bc

bc

bc

bc
bc

bc bcη

hg

bc
bc

r

g
h

gh

bc

bc

bc

bc
bc

bc bcη

hg

bc
bcgrg−1

α(h, grg−1, g)

By removing the loop and applying 4, we get
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hgrg−1h−1

r

g
h

g

h

bc

bc

bc

bc

bc bcη

hg

bc α(hgrg−1h−1, h, g)−1

hgrg−1h−1

rg

h

bc

bc

bc

bc

bc bcη

hg

bc

Finally, we remove this loop then apply 4.1 (i) to compute

α(h, g, r)−1

hgrg−1h−1

r

g

h

bc

bc

bc bcη

bc

hgrg−1h−1

bc

bc

bc

bcη

bc

hg

r

h
g

After removing the loop we recognise this final diagram as representing βr,hg(η). We
have therefore shown that

α(h, grg−1, g)

α(hgrg−1h−1, h, g) · α(h, g, r)
· βgrg−1,h ◦ βr,g(η) = βr,hg(η),

as required.

The main result of [Wil08] identifies the twisted Drinfeld module of G for α with the
twisted groupoid algebra

Dα(G) ∼= kτ(α)[ΛG].

and so we get the following corollary.

4.18. Corollary. [compare [KP09, Theorem 5.8]] Let G be a finite group, α a 3-cocycle
on G with values in k×, and G the corresponding categorical group. Then representations
of the inertia groupoid Π1ΛG are modules over the twisted Drinfeld double Dα(G).

5. Module categories and induction

5.1. Projective 2-representations as module categories. Let k be a field, and
let

θ : G×G −→ k×
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be a 2-cocycle. Then there is an equivalence of categories

Repθk(G) ' kθ[G]−mod (6)

from the projective G-representations with cocycle θ to modules over the twisted group
algebra kθ[G]. In the context of 2-representations, k is replaced by the one-dimensional
2-vector space Vectk. The categorified twisted group algebra Vectαk[G] is the monoidal
category of G-graded finite dimensional k-vector spaces, where the monoidal structure
consists of the graded tensor product, with associators twisted by α (see [Ost03b], where
Vectαk[G] is denoted VecαG).

5.2. Definition. Let C be a strict k-linear 2-category, and let G be the skeletal 2-group
classified by the (normalised) 3-cocycle α : G × G × G −→ k×, as in Example 2.3. We
write

2RepαC (G) := Bicat(•//G, C) (7)

for the 2-category of 2-representations as in [Bar08, Definition 7.1].3

In the case where C is the 2-category of finite dimensional Kapranov-Voevodsky 2-
vector spaces4, we will use the notation 2RepαVectk

(G). The 2-categorical analogue of
Equation 6 is then

2RepαVectk
(G) ' Vectαk[G]−mod

We will switch freely between the points of view of module categories and projective
2-representations.

5.3. Example. Let θ be a 2-cochain on G with boundary dθ = α. Then

kθ[G] =
⊕
g∈G

k

with multiplication twisted by θ is an algebra object in Vectαk[G]. Note that is it not an
algebra. The Vectαk[G]-module category

Vectαk[G]− kθ[G]

of right kθ[G]-modules in Vectαk[G] is the basic example of a module category in [Ost03a,
§3.1]. It translates into our Example 4.5 via the equivalence

F : Vectαk[G]− kθ[G] −→ Vectk⊕
g∈G

Mg 7−→ M1.

Indeed, if we equip Vectk with the module structure of Example 4.5, then F can be

3This is not the same as the category Hom2-Grp(G,Aut(C)) in [FZ12] after Definition 2.6.
4A 2-vector space is a semisimple Vectk-module category with finitely many simple objects, see [KV94]
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made a module functor as follows: given a kθ[G]-module object M in Vectαk with action

M ⊗ kθ[G]
s−→∼= M,

we choose the isomorphism

Mg−1 = F (kg ⊗M) −→ kg · F (M) = M1

to be the map

Mg−1 ⊗ kg ↪−−→ F (M ⊗ kθ[G])
F (s)−−→ F (M).

5.4. Induced 2-representations. Let H ⊂ G be finite groups, and let α be a nor-
malised 3-cocycle on G. Let % be a projective 2-representation of H on W ∈ ob(C) with
cocycle α|H .

5.5. Definition. The induced 2-representation of W , if it exists, is characterised by the
universal property of a left-adjoint. More precisely, an object indGHW , together with a
projective 2-representation indGH% with cocycle α and a 1-morphism

j : % −→ indGH%

in 2Rep
α|H
Vectk

(H) is called induced by %, if for any projective G-2-representation π on
V ∈ ob(C) with cocycle α and any 1-morphism of projective H-2-representations (for
α|H)

F : % −→ π

there exists a 1-morphism of projective G-2-representations (for α)

F̄ : indGH% −→ π

and a 2-isomorphism Φ fitting in the commuting diagram of H-maps

̺ ind
G
H

̺

π

j

F F̄Φ

such that (F̄ ,Φ) is determined uniquely up to unique 2-isomorphism. Here “unique”
means that given two such pairs (F̄1,Φ1) and (F̄2,Φ2), there is a unique 2-isomorphism

η : F̄1

∼=
=⇒ F̄2
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satisfying
(ηj) ◦ Φ1 = Φ2.

If it exists, the induced projective 2-representation of W is determined uniquely up to
a 1-equivalence in 2RepαVectk

(G), which is unique up to canonical 2-isomorphism.

In the following, we abbreviate α|H with α.

5.6. Proposition. LetM be a k-linear left Vectαk[H]-module category. Then the induced
projective 2-representation of M exists, and is given by the tensor product of Vectαk[H]-
module categories

indGHM = Vectαk[G] �Vectαk [H]M

defined in [ENO10, Definition 3.3].

Proof. Using the universal property of − �Vectαk [H] −, one equips Vectαk[G] �Vectαk [H]M
with the structure of a left Vectαk[G]-module category. Using the universal property of
−�Vectαk [H] − again, we deduce the universal property for indGHM.

5.7. Proposition. Let A be an algebra object in Vectαk[H], and let M = Vectαk[H]−A
be the category of right A-module objects in Vectαk[H]. Then we have

indGHM = Vectαk[G]−A,

and the map j is the canonical inclusion

j : Vectαk[H]−A −→ Vectαk[G]−A

i.e. j(M)|H = M and j(M)|g = 0 for g /∈ H.

Proof. Let M =
⊕

g∈GMg be a right A-module object in Vectαk[G]. Then M is the
direct sum of A-module objects

M =
⊕
G/H

M |rH

where

(M |rH)s =

{
Ms s ∈ rH
0 otherwise

Fix a system R of left coset representatives, and assume we are given a Vectαk[G]-module
category N together with a Vectαk[H]-module functor

F : Vectαk[H]−A −→ N .
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We define the Vectαk[G]-module functor

F̄ : Vectαk[G]−A −→ N

M 7−→
⊕
r∈R

kr · F (kr−1 ·M |rH)

Then Φ is the inclusion of the summand F (M) in F̄ (j(M)). This Φ is an isomorphism,
because the other summands of F̄ j(M) are (canonically) zero.

Let (F̄2,Φ2) be a second pair fitting into the diagram on page 565, for instance, from
a different choice of coset representatives. Then the isomorphism η : F̄ =⇒ F̄2 is the
inverse of the composition

F̄2(M) ∼=
⊕
r∈R

F̄2(M |rH) ∼=
⊕
r∈R

kr · F̄2(kr−1 ⊗M |rH)
Φ2∼= F̄ (M)

5.8. Corollary. As right Vectαk[H]-modules

Vectαk[G] ∼=
⊕
r∈R
G/H

Vectαk[H]

5.9. Comparison of classifications. In [GK08, Proposition 7.3], the finite dimen-
sional 2-representations are classified. In [Ost03b, Example 2.1], the indecomposable
module categories over Vectαk[G] are classified. In [GK08], a comparison with Ostrik’s
work was attempted, but the dictionary established in the previous section appears to be
more suitable, as it translates directly between these two results. Indeed, for trivial α,
the following corollary specialises to [GK08, Proposition 7.3].

5.10. Corollary. Let % be a projective 2-representation of a group G with 3-cocycle α
on a semisimple k-linear abelian category V with finitely many simple objects. Then

V ∼=
m⊕
i=1

indGHi%θi

where the Hi are subgroups of G, θi is a 2-cochain on Hi such that dθi = α|Hi, and %θi
is the projective 2-representation corresponding to the pair (Hi, θi) described in Examples
4.5 and 5.3.
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Proof. Ostrik’s result [Ost03b, Example 2.1] yields a decomposition

V '
m⊕
i=1

Vectαk[G]− kθi [Hi]

'
m⊕
i=1

indGHi(Vectαk[Hi]− kθi [Hi])

'
m⊕
i=1

indGHi%θi

Here, the second equivalence is Proposition 5.7, the third is Example 5.3, and %θi is as in
Example 4.5.
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Lawrence Breen, Université de Paris 13: breen@math.univ-paris13.fr
Ronald Brown, University of North Wales: ronnie.profbrown(at)btinternet.com
Valeria de Paiva: Nuance Communications Inc: valeria.depaiva@gmail.com
Ezra Getzler, Northwestern University: getzler(at)northwestern(dot)edu
Kathryn Hess, Ecole Polytechnique Fédérale de Lausanne: kathryn.hess@epfl.ch
Martin Hyland, University of Cambridge: M.Hyland@dpmms.cam.ac.uk
Anders Kock, University of Aarhus: kock@imf.au.dk
Stephen Lack, Macquarie University: steve.lack@mq.edu.au
F. William Lawvere, State University of New York at Buffalo: wlawvere@buffalo.edu
Tom Leinster, University of Edinburgh: Tom.Leinster@ed.ac.uk
Ieke Moerdijk, Utrecht University: i.moerdijk@uu.nl
Susan Niefield, Union College: niefiels@union.edu
Robert Paré, Dalhousie University: pare@mathstat.dal.ca
Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
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