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COMPOSITORIES AND GLEAVES

CECILIA FLORI AND TOBIAS FRITZ

Abstract. Sheaves are objects of a local nature: a global section is determined by
how it looks locally. Hence, a sheaf cannot describe mathematical structures which
contain global or nonlocal geometric information. To fill this gap, we introduce the theory
of “gleaves”, which are presheaves equipped with an additional “gluing operation” of
compatible pairs of local sections. This generalizes the conditional product structures of
Dawid and Studený, which correspond to gleaves on distributive lattices. Our examples
include the gleaf of metric spaces and the gleaf of joint probability distributions. A result
of Johnstone shows that a category of gleaves can have a subobject classifier despite not
being cartesian closed.

Gleaves over the simplex category ∆, which we call compositories, can be interpreted
as a new kind of higher category in which the composition of an m-morphism and an
n-morphism along a common k-morphism face results in an (m + n − k)-morphism.
The distinctive feature of this composition operation is that the original morphisms
can be recovered from the composite morphism as initial and final faces. Examples of
compositories include nerves of categories and compositories of higher spans.
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1. Introduction

Sheaves and stacks. Sheaves on topological spaces have the defining property that
compatible families of local sections can always be glued together in a unique way. If the
given local sections are defined over an open covering of the space, then this yields a global
section. It follows that sheaves are entirely local entities: a sheaf on a topological space
is completely determined by its stalks and how those assemble into the associated étale
bundle [32]. This makes sheaves the right framework for mathematical structures which
are of a local nature, in the sense that the only global information contained in a sheaf is
of topological character. Similar statements apply to sheaves on sites.

A more sophisticated variant of the notion of sheaf, which enjoys similar locality
properties, is the notion of stack or 2-sheaf. Many mathematical structures like vector
bundles or principal bundles can be described in terms of a stack. Again, the crucial
property here is locality : a vector bundle or principal bundle is an entirely local object,
meaning that it is also determined by what it looks like on an open cover.

A sheaf of metrics? For many other mathematical structures, however, this kind of
locality property fails. For example, consider the set of all metrics d : X ×X → R≥0 on
a set X. Any such metric can be restricted to any subset U ⊆ X, and hence we obtain
a presheaf 2X → Sets which assigns to each subset U ⊆ X the set of all metrics on U .
However, this presheaf is not a sheaf: in general, there are many ways to extend a pair of
metrics

dU : U × U → R≥0, dV : V × V → R≥0, (1.1)

which are compatible in the sense that dU |U∩V = dV |U∩V , to a metric on U ∪ V . For
example, we may define

d(u, v) := inf
x∈U∩V

(dU(u, x) + dV (x, v)) (1.2)

for u ∈ U \ V and v ∈ V \ U , while retaining the given distances inside U and V . As we
will see, this is indeed a (pseudo-)metric on U ∪ V . While this is a canonical extension of
the given metrics on U and V to one on U ∪ V , it is by no means unique and many other
extensions are possible in general.

On the other hand, for given compatible metrics dU , dV , dW on three pairwise inter-
secting sets U, V,W ⊆ X, there may not exist any metric on the union U ∪ V ∪W which
extends all three of them. The reason is that the given distances may fail to satisfy the
triangle inequality for a triangle spanning the three pairwise intersections, i.e. there may
exist points

x ∈ U ∩ V, y ∈ U ∩W, z ∈ V ∩W s.t. dV (x, z) > dU(x, y) + dW (y, z).

(See Figure 1.)
These considerations show that the presheaf of metrics has a global structure which

prevents it from being a sheaf. This should be seen in contrast to the case in which X is a
smooth manifold and one assigns to each open U ⊆ X the set of Riemannian metrics on
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Figure 1: Three subsets U, V,W ⊆ X with pairwise intersection.

U . In this case, we do indeed get a sheaf, since a Riemannian metric—by virtue of being a
tensor field—is determined by local data. For general metrics, this is not the case: simply
knowing how a metric looks locally is not sufficient to determine it globally.

One of the questions that we would like to tackle in this paper is: what is the presheaf
of metrics, if not a sheaf? Equation (1.2) suggests that it does have more structure than
being “just” a presheaf. Such a canonical gluing of pairs of local sections occurs not only
in the context of metric spaces, but in many other situations as well, and hence this is one
of the things that we would like to formalise. Since it is supposed to capture the idea of a
sheaf-like structure describing geometry in a global way such that certain gluings are still
possible, we will call such a gadget a gleaf.

We suspect that many other geometrical structures actually form a gleaf. We work
this out for the case of topological spaces in Section 5.

Joint probability distributions. A very similar situation arises in probability theory [4].
In this case, the base set X stands for a collection of random variables. To keep things
simple, we assume each variable to take values in the same finite set of outcomes O. To
a subset of variables U ⊆ X, we assign the set of all joint probability distributions PU
of these variables. This assignment turns into a presheaf 2X → Sets if one takes the
restriction maps to be given by the formation of marginal distributions.

As in the previous example of metrics, compatible triples of local sections on pairwise
intersecting subsets U, V,W ⊆ X are often not extendible to a local section on U ∪ V ∪W .
The smallest example occurs for three variables, X = {A,B,C}, with given subsets the
two-variable ones,

U = {A,B}, V = {B,C}, W = {A,C},

and binary outcomes O = {0, 1}. Now let PU stand for perfect correlation between
uniformly random A and B, and likewise PV between B and C. Since perfect correlation
is a transitive relation on random variables, assuming the existence of a joint distribution
PX implies that also PW corresponds to perfect correlation between A and C. Hence, if
PW stands e.g. for perfect anticorrelation between A and C, then no joint distribution can
exist, although the given two-variable distributions are compatible in the sense that they
marginalise to the same single-variable distributions. For more detail on such marginal
problems and further results, see [4, 15] and references therein, in particular [44].
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Nevertheless, again pairs of local sections can always be glued together in a canonical
way, using a formula vaguely reminiscent of (1.2). If PU and PV are given distributions on
U = {A,B} and V = {B,C} which have compatible marginal on B,∑

a∈O

PU(a, b) =
∑
c∈O

PV (b, c) ∀b ∈ O, (1.3)

then a canonical joint distribution for {A,B,C} is given by

P (a, b, c) :=
PU(a, b)PV (b, c)

PU∩V (b)
, (1.4)

where the denominator term stands for either side of (1.3). Here, it is understood that
the left-hand side is declared to be 0 whenever the denominator vanishes; in this case, also
both terms in the numerator vanish. That this joint distribution recovers both PU and
PV as marginals is easy to see: for example, summing over a turns PU(a, b) into PU∩V (b),
which cancels with the denominator, so that PV (b, c) remains. Formula (1.4) is natural
from the probability point of view: it is precisely that joint distribution which makes A
and C conditionally independent given B.

There is an immediate generalization to pairs of sets containing any number of variables.
For example, if U ∩ V = ∅, then the distribution in the denominator of (1.4) is the “joint”
distribution of no variables, i.e. equal to the constant 1, and the overall joint distribution
simply becomes the product distribution of PU and PV .

As we will see, the formal categorical properties of (1.4) are entirely analogous to those
of (1.2): the presheaf of joint probability distributions of random variables is also a gleaf.
This reproduces the conditional product structures of Dawid and Studený [11] and provides
a categorical formulation for them.

A related example of a gleaf is the one formed by relations of finite arity, or equivalently
of tables in a relational database (Section 5, also [11]).

Gluing as composition. There is another point of view on the probability distributions
example which hints at a higher categorical structure. We now omit the subscripts on the
distributions and simply write P (a, b) for a joint distribution of variables A,B ∈ X.

In the spirit of categorical probability theory, we would like to consider a joint distribu-
tion P (a, b) as a morphism between the associated marginal distributions P (a) and P (b).
In other words, the objects of our category are single-variable distributions P (a), P (b), . . .,
while the morphisms are two-variable distributions such that the marginal of the first
variable reproduces the source object and the marginal of the second variable reproduces
the target object. Composition of morphisms is defined essentially by (1.4); the only
difference is that one needs to take the two-variable marginal of A and C by summing
over the possible values of B,

P (a, c) =
∑
b

P (a, b)P (b, c)

P (b)
. (1.5)
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Diagrammatically, we thus have

P (a)
P (a,b)

//

P (a,c)

99M
P

S V Y \ _ b e h k n
q

P (b)
P (b,c)

// P (c)

(1.6)

This relates nicely to the usual categories of conditional probability distributions studied
in categorical probability theory [2, 12, 35]. In the finite case, the morphisms of these
categories are typically conditional probability distributions P (b|a), that is stochastic
matrices, whose composition is given by matrix multiplication,

P (c|a) =
∑
b

P (c|b)P (b|a).

And indeed, this is precisely what one obtains upon dividing both sides of (1.5) by P (a)
and rewriting everything in terms of conditional probabilities.

So far, we have taken single-variable distributions to be objects in our category, while
two-variable distributions are morphisms. Now the obvious question is, what about three-
variable or n-variable distributions? In fact, it seems like the composition of a composable
pair of morphisms produce more than just another morphism: if we follow the spirit
of (1.4), it seems natural to omit the summation in (1.5) and consider the three-variable
distribution

P (a, b, c) =
P (a, b)P (b, c)

P (b)
. (1.7)

as the “composition” of P (a, b) and P (b, c). Recovering the usual composition (1.5) is
simple by just taking a marginal.

Compositories. It may now be clear that we will construct a higher category of probability
distributions in which the n-morphisms are n-variable joint distributions. Alas, since we
want the composition of two 1-morphisms to be a 2-morphism

P (b)
P (b,c)

""EEEEEEEE

P (a)
P (a,c)

//

P (a,b) <<yyyyyyyy

P (c)

P (a,b,c)

� �
�

� �
�

��
� �
�

� �
�

this “higher category” cannot be a higher category in any of the usual senses of the
word [28]. In fact, we will see that the composition of an m-morphism with an n-morphism
along a common k-morphism gives an (m+ n− k)-morphism. In order to emphasise this
conceptual departure from (higher) categories, we will call such gadgets compositories.
A compository will be a simplicial set equipped with a certain compositional structure
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satisfying a couple of axioms; as shown in Theorem 4.17, they can also be regarded as
gleaves over the simplex category ∆. We give a precise definition in Section 2.

Natural examples of compositories also arise in category theory: the nerve of a category
is a compository in a unique way (Section 3), and higher spans in a category with pullbacks
assemble into a compository (Section 3).

Disclaimer. In the course of our investigations, we have completely changed our basic
definitions several times over. While we now seem to have reasonable axioms giving
rise to a nice abstract theory, it is not completely clear whether the structures that we
study are indeed fundamental, and whether our definitions are appropriate in terms of the
precise formulations of the technical details. In fact, we have some indications suggesting
that at least the latter is not yet the case; for example, the somewhat strange-looking
Definition 4.9. In this sense, the present paper should be regarded as an exposition of
some preliminary definitions which may be subject to change.

Summary and structure of this paper. We begin in Section 2 with a brief recap of
simplicial sets and fix the corresponding notation. Section 2 introduces compositories
as simplicial sets equipped with a composition operation which turns an m-simplex and
an n-simplex into an (m + n − k)-simplex, provided that the two given simplices have
a common k-simplex face. This composition is required to satisfy certain axioms from
which we derive a number of consequences, including associativity of composition. We
then give various examples of compositories. This starts with nerves of categories in
Section 3; despite being a neat example, we also nerves of generic 2-categories cannot be
equipped with a compository structure. Other examples are compositories of higher spans
in Section 3, the compository of metric spaces in Section 3 and the compository of joint
probability distributions in Section 3.

We then depart from the study of compositories and introduce the notion of a gleaf
on a lattice in Section 4, based on the observation that certain presheaves, despite not
being sheaves, still have canonical gluings of compatible pairs of local sections. In order to
generalise this from gleaves on a lattice to gleaves on a category, Section 4 is dedicated
to the development of the notion of system of bicoverings which relates to gleaves on a
category as the notion of Grothendieck topology relates to sheaves on a category. Section 4
discusses gleaves on a category with bicoverings. Not only do sheaves on a site turn out
to be gleaves, but also compositories are the same as gleaves on the simplex category ∆.
Section 4 defines morphisms of gleaves and explains a result of Johnstone showing that
the category of gleaves over a certain base has a subobject classifier despite not being
cartesian closed. Concrete examples of gleaves are the gleaf of metric spaces (Section 5),
the gleaf of joint probability distributions (Section 5), a gleaf used in relational database
theory (Section 5), and the gleaf of topological spaces (Section 5). In the first three cases,
the gluing operation is related to well-known concepts: shortest paths in metric spaces,
conditional independence of random variables, and the join operation from relational
database theory.

We conclude with a list of further directions in Section 6.
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2. Compositories

Background on simplicial sets. Before introducing compositories, we recall some
background on simplicial sets and fix some notation; see also [14,36]. Simplicial sets are
among the basic geometric shapes for higher categories [24,29].

The simplex category1 ∆ has as objects the non-empty finite ordinals

[n] = {0, . . . , n} (n ∈ N),

equipped with the standard ordering, and as hom-sets ∆([n], [m]) all the order-preserving
functions [n]→ [m]. Composition is ordinary composition of functions. Then, a simplicial
set is a presheaf ∆op → Sets.

For k ∈ [n], an important class of morphisms in ∆ is given by the face maps

∂k : [n− 1]→ [n]

v 7→

{
v if v < k

v + 1 if v ≥ k,

(2.1)

and the degeneracy maps

ηk : [n+ 1]→ [n]

v 7→

{
v if v ≤ k

v − 1 if v > k.

(2.2)

In both cases, we suppress the dependence on n in our notation, since it is determined by
the object that ∂k, respectively ηk, is applied to.

It is well-known that the face and degeneracy maps generate ∆ and present it via the
relations

∂k∂j = ∂j∂k−1 if j < k,

ηkηj = ηjηk+1 if j ≤ k,

ηk∂j =


∂jηk−1 if j < k,

id[n] if j ∈ {k, k + 1},
∂j−1ηk if j > k + 1.

(2.3)

For convenience of notation, we also introduce the family of morphisms sk := ∂n · · · ∂k+1,
or explicitly

sk : [k]→ [n]

v 7→ v.
(2.4)

1This category is sometimes also called the topologist’s simplex category in order to distinguish it from
the augmented simplex category of Remark 2.9, which is also known as the algebraist’s simplex category.
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For presheaves on ∆, restricting along sk corresponds to taking the initial k-face (“source”)
of an n-simplex in a simplicial set ∆op → Sets. Similarly, we work with the family of
morphisms tk = ∂0 · · · ∂0, with n− k factors, or explicitly

tk : [k]→ [n]

v 7→ v + n− k.
(2.5)

On the presheaf level, tk takes the terminal k-face (“target”) of every n-simplex. Again,
the n-dependence of sk and tk is left implicit.

If C : ∆op → Sets is a simplicial set, f : [m] → [n] and A ∈ C(n), then we write Af
as shorthand for C(f)(A) in analogy with the standard notation for the right action of a
group on a set.

Definition and first properties of compositories. In the following, we use the
terms “morphism” and “simplex” interchangeably.

2.1. Definition. Let C : ∆op → Sets be a simplicial set. A pair of simplices (A,B) ∈
C(m) × C(n) is k-composable for k ∈ N if the terminal k-face of A coincides with the
initial k-face of B,

Atk = Bsk. (2.6)

For m = n = 1 and k = 0, this recovers the usual notion of composability in a category.
The following axioms for compositories constitute a minimal set of formal requirements.

We will use them afterwards to derive consequences with a more intuitive meaning.

2.2. Definition. A compository is a simplicial set C : ∆op → Sets equipped with a
composition

A ◦k B ∈ C(m+ n− k)

for every k-composable pair (A,B) ∈ C(m)×C(n) and every k ∈ N, such that the following
axioms hold:

(a) Identity axiom: Composing a morphism A with a source or target face of itself
recovers the morphism:

Ask ◦k A = A,

A ◦k Atk = A.
(2.7)

Moreover, for every k-composable pair (A,B) ∈ C(m)× C(n):

(b) Back-and-forth axiom:

(i) For i ≤ n − k, composing the source (m + i)-face of the composition A ◦k B
with B recovers the composition,

(A ◦k B)sm+i ◦k+i B = A ◦k B. (2.8)
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(a) (A ◦1 B)η1 = Aη1 ◦1 B from (2.10)
with m = 1 and n = 1.
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(b) (A ◦1 B)∂1 = A∂1 ◦1 B from (2.13) with m = 3
and n = 2.

Figure 2: Illustration of Axioms (c) and (d).

(ii) For j ≤ m − k, composing A with the target (n + j)-face of the composition
A ◦k B recovers the composition,

A ◦k+j (A ◦k B)tn+j = A ◦k B. (2.9)

(c) Compatibility with degeneracy maps:

(i) For i ≤ m− k,
(A ◦k B)ηi = Aηi ◦k B, (2.10)

(ii) For i ≥ m,
(A ◦k B)ηi = A ◦k Bηi−m+k, (2.11)

(iii) For m− k ≤ i ≤ m,

(A ◦k B)ηi = Aηi ◦k+1 Bηi−m+k. (2.12)

(d) Compatibility with face maps:

(i) For i < m− k,
(A ◦k B)∂i = A∂i ◦k B, (2.13)

(ii) For i > m,
(A ◦k B)∂i = A ◦k B∂i−m+k. (2.14)

Hereby, the k-composability assumption on A and B guarantees that all expression
in (2.8)–(2.14) make sense.
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2.3. Remark. In axiom (c), both the first and the third case apply to i = m− k, so that
we can conclude

Bη0 ◦k+1 Aηm−k = Aηm−k ◦k B. (2.15)

Similarly, both the second and third case apply to i = m, and hence

Aηm ◦k+1 Bηk = A ◦k Bηk. (2.16)

On the other hand, Axiom (d) about the compatibility of composition with face maps says
nothing at all about the range m− k ≤ i ≤ n, i.e. when the face map acts on the common
face. This is because the putative condition

(A ◦k B)∂i
?
= A∂i ◦k−1 B∂i−m+k (2.17)

does not hold in many of our examples; in fact, it will only hold in the example of nerves
of categories (Section 3).

2.4. Remark. Degenerate simplices in a compository can be thought of as (higher)
identity morphisms. Equations (2.10) and (2.11) state that composing any morphism with
a higher identity results in a higher identity.

In more detail, let us consider the degenerate simplex Fηk associated to the terminal k-
face F := Atk. Since Fηksk = F , we can form the composition A◦kFηk, and properties (2.7)
and (2.11) guarantee that

A ◦k Fηk = (A ◦k F )ηm = Aηm. (2.18)

Together with ηm∂m = id = ηm∂m+1, this implies that

(A ◦k Fηk)∂m = Aηm∂m = A,

and likewise
(A ◦k Fηk)∂m+1 = Aηm∂m+1 = A.

In other words, since the simplex (2.18) is degenerate over A, it has A as two of its faces.
Intuitively, (2.18) means that Fηk can be thought of as an identity over F .

A similar statement can be made for an initial face E := Ask,

Eη0 ◦k A = Aη0. (2.19)

In summary, composing with a (higher) identity of a face results in a (higher) identity.

We continue with the derivation of some consequences of the axioms, such as associa-
tivity of composition. In the following three lemmas, A ∈ C(m) and B ∈ C(n) are still
assumed to be k-composable.

2.5. Lemma. If i ≥ m and j ≥ n, then

(A ◦k B)si = A ◦k Bsi−m+k, (A ◦k B)tj = Atj−n+k ◦k B. (2.20)

Proof. Repeated application of (2.13) and (2.14).
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2.6. Lemma. [Source and target equations] The original morphisms A and B can be
recovered from the composition A ◦k B as source and target faces:

(A ◦k B)sm = A,

(A ◦k B)tn = B.
(2.21)

Proof. We prove the first equation only; the proof of the first equation is analogous.
Using (2.20) gives

(A ◦k B)sm = A ◦k Bsk = A ◦k Atk = A,

where the second step is by composability and the third by (2.7).

In this sense, composition in a compository does not lose any information: the original
morphisms can be recovered from their composite. We regard this as one of the main
features of compositories not shared by other structures such as categories.

2.7. Lemma. [two-step rule] A composition A ◦k B can be computed in two steps: for any
k ≤ i ≤ m and k ≤ j ≤ n,

A ◦k B = A ◦i (Ati ◦k B)

= (A ◦k Bsj) ◦j B.
(2.22)

Proof. To see the first equation, we apply (2.9) with j = i− k and (2.20),

A ◦k B = A ◦i (A ◦k B)tn+i−k = A ◦i (Ati ◦k B).

The proof of the other equation is analogous.

While associativity is an axiom for many other mathematical structures containing a
binary operation, for compositories it is actually a derived property:

2.8. Proposition. [Associativity] For a triple (A,B,C) ∈ C(l)× C(m)× C(n) which is
(j, k)-composable in the sense that

Atj = Bsj, Btk = Csk,

it holds that
A ◦j (B ◦k C) = (A ◦j B) ◦k C. (2.23)

Proof. For this to make sense, we have to verify the j-composability of (A,B ◦k C) and
the k-composability of (A ◦j B,C). Concerning the first, we have

(B ◦k C)sj = (B ◦k C)smsj
(2.21)
= Bsj = Atj.

The second works similarly.
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We now prove (2.23) by making use of (2.22) and (2.21),

A ◦j (B ◦k C)
(2.22)
= (A ◦j (B ◦k C)sm) ◦m (B ◦k C)

(2.21)
= (A ◦j B) ◦m (B ◦k C)

(2.21)
= (A ◦j B) ◦m ((A ◦j B)tm ◦k C)

(2.22)
= (A ◦j B) ◦k C.

2.9. Remark. One can also work with augmented simplicial sets, i.e. presheaves C :
∆op

+ → Sets over the augmented simplex category ∆+. Making the analogous definitions
for composition, and possibly imposing that C(−1) be a singleton, one should obtain
a definition of what might be coined an augmented compository. In an augmented
compository, all pairs of morphisms (A,B) ∈ C(m)×C(n) are (−1)-composable, and their
composition is an (m + n + 1)-simplex A ◦−1 B. Some of our upcoming examples can
naturally be considered as augmented compositories. In this paper, though, we try to
keep the number of newly introduced concepts somewhat limited, and hence we will not
consider augmented compositories.

3. Examples of compositories

Before studying in detail the examples mentioned in the introduction, we consider two
examples of a category-theoretical nature: nerves of categories and higher spans in
categories. These are two different ways of associating a compository to a category.

Nerves of categories. We recall the definition of the nerve of a category and then
show how it naturally carries the structure of a compository.

3.1. Definition. [38] Given a small category C, the nerve of C is the simplicial set NC

in which an n-simplex is a sequence of n composable morphisms in C,

a0

f1
// . . .

fn
// an .

The action of the face map NC(∂k) is given by, for k 6= 0, n,

NC(∂k)(a0

f1
// . . .

fn
// an) := (a0

f1
// . . .

fk−1
// ak−1

//
fk+1◦fk

// ak+1

fk+1
// . . .

fn
// an) ,

while for k = 0,

NC(∂k)(a0

f1
// . . .

fn
// an) := (a1

f2
// . . .

fn
// an) ,
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and for k = n,

NC(∂k)(a0

f1
// . . .

fn
// an) := (a0

f1
// . . .

fn−1
// an−1) .

The action of degeneracy maps is defined as

NC(ηk)(a0

f1
// . . .

fn
// an) := (a0

f1
// . . .

fk
// ak

id
ak

fk+1
// . . .

fn
// an) .

Upon identifying a sequence of n composable morphisms with a functor [n]→ C, one
can also say that the presheaf NC : ∆op → Sets is the composition of functors

∆op � � // Catsop
Cats(−,C)

// Sets , (3.1)

where the first arrow is the functor which regards every finite ordinal [n] as a category.
Turning NC into a compository is almost trivial: we take the composition operation to

be given by concatenation of paths. More concretely, a k-composable pair (A,B) is a pair
of simplices of the form

A = (a0

f1
// . . .

fm−k
// am−k

fm−k+1
// . . .

fm
// am)

B = (am−k
fm−k+1

// . . .
fm

// am
fm+1

// . . .
fm+n−k

// am+n−k) ,

and we can simply put

A ◦k B := (a0

f1
// . . .

fm−k
// am−k

fm−k+1
// . . .

fm
// am

fm+1
// . . .

fm+n−k
// am+n−k) .

It is useful to understand this definition of ◦k more abstractly. Consider

[k]
sk

//

tk
��

[n]

tn
��

[m]
sm

// [m+ n− k]

(3.2)

as a pushout diagram in Cats; applying its universal property to A : [m] → C and
B : [n]→ C is possible precisely when (A,B) is k-composable, and the resulting functor
[m+ n− k]→ C is the composition A ◦k B.

3.2. Proposition. With these definitions, NC is a compository.
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Proof. The identity axiom (2.7) is immediate.
The back-and-forth equation (2.8) follows from the uniqueness part of the universal

property in the diagram of pushouts

[k]
sk
//

tk
��

[k + i]
sk+i

//

tk+i

��

[n]

tn
�� B

��

[m]
sm
//

A
11

[m+ i]
sm+i

//

(A◦kB)sm+i

--

[m+ n− k]

A◦kB
JJJ

$$JJJJJ

C

and similarly for the other back-and-forth equation (2.9).
For composition with degeneracy maps in the form (2.10), we note that both squares

in

[k]

tk

��

sk
// [n]

tn

��
B

��

[m+ 1]
sm+1

//

ηi

��

[m+ 1 + n− k]

ηi

�� (A◦kB)ηi
=

Aηi◦kB

��

[m]

A
11

sm
// [m+ n− k]

A◦kB

**
C

are pushouts as well; that equation (2.12) holds follows from an analogous diagram.
Concerning (2.11), we observe that the front and the back square of the commutative cube
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[k + 1]
sk+1

//

ηi

&&NNNNNNNNNNNNNN

tk+1

��

[n+ 1]
ηi−m+k

))SSSSSSSSSSSSSSSSSSSSSS

tn+1

��

[k]
sk

//

tk

��

[n]

tn

��

[m+ 1]

ηi

&&NNNNNNNNNNNNNN

sm+1
// [m+ n+ 1− k]

ηi

))SSSSSSSSSSSSSSSSS

[m]
sm

// [m+ n− k]

are pushouts, which also implies the desired conclusion by the universal property. The
compatibility between composition and face maps can be proven in a very similar way.

Notably, also property (2.17) holds for NC. Indeed even as a simplicial set, NC is very
special: for every k-composable pair (A,B) ∈ NC(m)×NC(n), there is exactly one simplex
which has A as its initial m-face and B as its terminal n-face, namely the composition
A ◦k B. In other words, there is a unique structure of compository on the simplicial set
NC. This is really just a restatement of the universal property of the pushout (3.2), which
we have used repeatedly in the proof. It is also known as the Segal condition, see [38]
where it is attributed to Grothendieck.

We find it curious that the composition of the original category is not encoded in the
composition of the resulting compository, but rather in its face maps.

Given that the structure of the nerve of a category is accurately captured by that of a
compository, we now ask: are the nerves of higher categories [40] also compositories? The
nerves of strict ω-categories have already been characterised as complicial sets [42] and
recently as sets with complicial identities [39]. In the latter characterisation, the wedge
operation also increases the dimension of simplices. However, the following argument—
based on an idea by Richard Steiner2—shows that compositories cannot model the nerves
of higher categories.

3.3. Theorem. [Steiner] There is a strict 2-category whose nerve cannot be equipped with
a compository structure.

2personal communication.
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Proof. Let C be the strict 2-category freely generated by the diagram

b

g

��

h1

&&MMMMMMMMMMMMMM

a

f1

88qqqqqqqqqqqqqq

f2 &&MMMMMMMMMMMMMM α
�������

�������

�
 ���
��� d

c
h2

88qqqqqqqqqqqqqq

β
�������

�������

AI
��� ���

Its nerve NC contains a 2-cell S containing α and a 2-cell T containing β. These are
1-composable since ∂0S = ∂2T = (b

g→ c). However, there is no 3-cell R with ∂3R = S and
∂0R = T : such an R would have to contain an additional 1-cell from A to D, together with
2-cells to this additional 1-cell from h1f1 and from h2f2, respectively. Checking all three
possibilities for this additional 1-cell shows that none of them has the required property.

3.4. Remark. But curiously enough, there is a new approach to semistrict higher cat-
egories [25] in which an n-cell and an m-cell compose along a common k-cell to an
(m + n − k − 1)-cell3, which almost matches the cell dimensions of composition in a
compository. However, we are not aware of a connection.

Higher spans. Spans and higher spans come up in the study of topological quantum
field theories, and various categorical structures have been proposed for talking about
them [18,19]. Here, we explain how higher spans in many categories can be regarded as
forming a compository.

In the following, let C be any category with pullbacks in which all isomorphisms are
identities (gaunt category [7]). The treatment of an arbitrary category C will be discussed
at the end of this subsection. The reason we consider gaunt categories is because this
property guarantees the strict uniqueness of all limits and Kan extensions of functors with
codomain C.

We now move to considering spans in C, which are diagrams of the form

b

��>>>>>>>>

����������

a c

Usually, spans are regarded as morphisms in a bicategory of spans [9]. A pair of composable
spans takes the form

b

����������

��>>>>>>>>
d

����������

��>>>>>>>>

a c e

3This has been pointed out to us by an anonymous referee.
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and their composition in the bicategory of spans is usually defined to be the span arising
from the diagram

b×c d

���������

��???????

b

����������

��????????
d

����������

��????????

a c e

(3.3)

upon composing the two outer legs in C and forgetting the two arrows arriving at c.
Given the previous considerations, it seems natural to try to do without this “forgetting”

operation and retain the whole diagram (3.3) as a 2-simplex in a compository. And indeed,
in this way we obtain a compository SC of higher spans in C. We now embark on the
details of this.

3.5. Definition. For n ∈ N, the walking n-span Spn is the poset with objects (v, w) ∈ N
with v ≤ w ≤ n and

(v, w) ≤ (v′, w′) ⇐⇒ v ≤ v′ and w′ ≤ w. (3.4)

We think of an object (v, w) ∈ Spn as an interval in the poset [n], and these intervals are
ordered by reverse containment; in other words, Spn is the interval domain [37] associated
to the poset [n]. In category-theoretic terms, this means that Spn is the twisted arrow
category [31] associated to [n] = {0, . . . , n}: an object (v, w) ∈ Spn can be identified with

the arrow v
≤−→ w in [n], while an arrow (v, w)

≤−→ (v′, w′) corresponds to a diagram

v
≤
//

≤
��

w
OO

≤

v′
≤
// w′

(3.5)

For example, the walking 2-span Sp2 is the category generated by the directed graph

(0, 2)

�����������

��?????????

(0, 1)

�����������

��?????????
(1, 2)

�����������

��?????????

(0, 0) (1, 1) (2, 2)

(3.6)
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such that the square commutes.
Since taking the twisted arrow category is a functor −tw : Cats → Cats, composing

with the inclusion ∆ ↪→ Cats gives a functor

∆ �
� // Cats

−tw

// Cats

which takes [n] to Spn. Then in analogy with (3.1), the composition of functors

∆op � � // Cats
−tw

// Cats
Cats(−,C)

// Sets (3.7)

defines a simplicial set SC : ∆op → Sets. More concretely, we can equivalently define its
n-simplices as n-spans in C:

3.6. Definition. An n-span in C is a functor Spn → C.

It is straightforward to show that the resulting face maps SC(∂k) are given by composi-
tion with the functors

Spn−1 −→ Spn, (v, w) 7→ (∂k(v), ∂k(w)) =


(v, w) if w < k

(v, w + 1) if v < k ≤ w

(v + 1, w + 1) if k ≤ v

.

By definition, this is the inclusion functor which misses the two “lines” of objects

(0, k), . . . , (k, k) and (k, k), . . . , (k, n).

Similarly, the degeneracies SC(ηk) arise from the functors

Spn+1 −→ Spn, (v, w) 7→ (ηk(v), ηk(w)) =


(v, w) if w ≤ k

(v, w − 1) if v ≤ k < w

(v − 1, w − 1) if k < v

.

We now turn to composition of these higher spans. A pair (A,B) with A : Spm → C
and B : Spn → C is k-composable if the terminal k-face of A coincides with the initial
k-face of B. Equivalently, the functors A and B assemble into a functor

[A,B]Spk : Spm
∐

Spk
Spn −→ C.

where Spk is included in Spm and Spn via tk = ∂0 · · · ∂0 and sk = ∂n · · · ∂k+1, respectively.
We think of Spm

∐
Spk

Spn as the “walking k-composable pair” consisting of an m-
span and an n-span sharing a common k-span. Upon regarding Spm as the initial m-
face of Spm+n−k and Spn as the corresponding terminal n-face, we obtain a functor
cm,k,n : Spm

∐
Spk

Spn −→ Spm+n−k.
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3.7. Definition. The composition A ◦k B : Spm+n−k → C is the right Kan extension of
[A,B]Spk along cm,k,n.

Due to the assumption that C is gaunt, this Kan extension is necessarily unique.
By the pointwise construction of Kan extensions [31, Thm. X.3.1] and the particular
form of the categories involved, it can be computed in terms of pullbacks. Explicitly,
A ◦k B : Spm+n−k → C is the higher span with objects

(A ◦k B)(v, w) =


A(v, w) if w ≤ m

A(v,m)×B(0,k) B(0, w −m+ k) if v < m− k and m < w

B(v −m+ k, w −m+ k) if m− k ≤ v

and the obvious morphisms. The first and third cases are not disjoint; the compatibility
assumption Atk = Bsk guarantees that the left-hand side is nevertheless well-defined. It
also guarantees that B(0, k) = A(m− k,m), hence there is no asymmetry between A and
B in the second case.

For example for k = 0, the composition of a 2-span A with a 1-span B is given by the
3-span

A(0, 2)×B(0,0) B(0, 1)

���
�

�
�

�
�

��?
?

?
?

?
?

A(0, 2)

��������������

��????????????
A(1, 2)×B(0,0) B(0, 1)

���
�

�
�

�
�

��?
?

?
?

?
?

A(0, 1)

��������������

��????????????
A(1, 2)

��������������

��????????????
B(0, 1)

��������������

��????????????

A(0, 0) A(1, 1) A(2, 2) = B(0, 0) B(1, 1)

3.8. Theorem. With these definitions, SC becomes a compository.

Proof. The identity axiom is trivially satisfied. Moreover, [31, Cor. X.3.4] shows that
(A ◦k B)cm,k,n = [A,B]Spk , so that (A ◦k B)sm = A and (A ◦k B)tn = B.

For the back-and-forth axiom we need to show that (A ◦k B)sm+i ◦k+iB = A ◦k B; that
this is also equal to A ◦k+j (A ◦k B)tn+j can be shown in a similar way.
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A B C

A ◦j B
B ◦k C

A ◦j B ◦k C

Figure 3: Schematic illustration of three composable higher spans and their compositions.

Consider the diagram

Spm
∐

Spk
Spn

� ~

JI

��

[A,B]Spk

��

� u

I

((QQQQQQQQQQQQ

Spm+i

∐
Spk+i

Spn
� t

J

''OOOOOOOOOOO
F :=RanI [A,B]

mmm

vvmmmmmmmmm

C Spm+n−k
G:=RanJF

oo

I := stw
m

∐
stwk

id

J := cm+i,k+i,n

The definition of G implies that it is also the right Kan extension of [A,B]Spk along JI,
i.e. G = A ◦k B. By [31, Cor. X.3.4], F = GJ , so that F = [(A ◦k B)sm+i, B]Spk . By
definition of composition by Kan extension, G = (A ◦k B)sm+i ◦k+i B.

To prove compatibility with both face maps and degeneracy maps, we will work with
a general monotone map ξ : [m′ + n′ − k′] → [m + n − k] which satisfies the following
conditions:

(a) v′ ≤ m′ =⇒ ξ(v′) ≤ m

(b) v′ ≥ m′ − k′ =⇒ ξ(v′) ≥ m− k

(c) m− k ≤ v ≤ m =⇒ ∃v′ with m′ − k′ ≤ v′ ≤ m′ such that ξ(v′) = v

These imply in particular

ξ(m′ − k′) = m− k, ξ(m′) = m. (3.8)
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Upon specialising ξ to the appropriate face and degeneracy maps, all five axioms (2.10)–
(2.14) become special cases of the following argument.

We consider the square

Spm′
∐

Spk′
Spn′

cm′,k′,n′
//

ξ|
��

Spm′+n′−k′

ξ

��

Spm
∐

Spk
Spn

cm,k,n
// Spm+n−k

(3.9)

where ξ| is the restriction of ξ. It needs to be shown that the right Kan extension of
[A,B]Spkξ| along cm′,k′,n′ can be computed as

Rancm′,k′,n′ ([A,B]Spkξ|) = (Rancm,k,n
[A,B]Spk)ξ

In modern terminology, this means that we need to show that (3.9) is an exact square [17,34].
Using the combinatorial characterisation of exact squares [17,34] and the fact that all four
categories in (3.9) are posets, this boils to proving that for any (v, w) ∈ Spm

∐
Spk

Spn and

(v′, w′) ∈ Spm′+n′−k′ with ξ(v′, w′)→ (v, w), the poset(x′, y′) ∈ Spm′
∐
Spk′

Spn′

∣∣∣∣∣ (v′, w′)→ (x′, y′), ξ|(x′, y′)→ (v, w)


is non-empty and connected. Spelling out these conditions gives that the assumptions

v ≤ w

v′ ≤ w′

m− k ≤ v ∨ w ≤ m

ξ(v′) ≤ v, w ≤ ξ(w′)

should imply that

I :=

(x′, y′) ∈ [m′ + n′ − k′]×2

∣∣∣∣∣
m′ − k′ ≤ x′ ∨ y′ ≤ m′

v′ ≤ x′, y′ ≤ w′

w ≤ ξ(y′), ξ(x′) ≤ v


is non-empty and connected with respect to the ordering induced from Spm′

∐
Spk′

Spn′ . If

v′ ≥ m′ − k′ or w′ ≤ m′, then (v′, w′) ∈ I is a least element. In particular, I is non-empty
and connected. Hence for the remainder of this proof, we can assume v′ < m′ − k′ and
w′ > m′, and distinguish three cases:
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Case v < m− k and w ≤ m: We claim that (v′,m′) is a least element of I. Indeed
(v′,m′) ∈ I since m′ < w′ and w ≤ m = ξ(m′) and
ξ(v′) ≤ v as assumed above. For any (x′, y′) ∈ I, we
have v′ ≤ x′ and y′ ≤ m′ since the case m′ − k′ ≤ x′ is
impossible due to ξ(x′) ≤ v < m− k = ξ(m′ − k′), and
hence (v′,m′) → (x′, y′), as claimed. So since I has a
least element, it is non-empty and connected.

Case v ≥ m− k and w > m: This is analogous to the previous case, where the least
element now is (m′ − k′, w′) ∈ I.

Case v ≥ m− k and w ≤ m: Due to the same reasoning as in the previous two cases,
we have (v′,m′) ∈ I and (m′ − k′, w′) ∈ I, which implies
that I is non-empty. For any other (x′, y′) ∈ I, we have
(v′,m′)→ (x′, y′) if y′ ≤ m′, while (m′−k′, w′)→ (x′, y′)
if m′−k′ ≤ x′. On the other hand, we have (m′−k′,m′) ∈
I with (v′,m′) → (m′ − k′,m′) and (m′ − k′, w′) →
(m′ − k′,m′). This shows connectedness.

3.9. Example. In general, SC is not a weak Kan complex (quasi-category [24]). For
example for the category C = [2]× [2], which is a poset with Hasse diagram

>

��>>>>>>>>

����������

α

��>>>>>>>>
β

���������

⊥

this can be seen as follows. The three 2-spans

α

��??????

��������

A = ⊥

��??????

��������
⊥

��??????

��������

⊥ ⊥ ⊥

β

��??????

��������

B = β

��??????

��������
⊥

��??????

��������

⊥ ⊥ ⊥
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β

��??????

��������

C = ⊥

��??????

��������
⊥

��??????

��������

⊥ ⊥ ⊥

satisfy
A∂0 = B∂0, B∂2 = C∂1, C∂0 = A∂2

and hence assemble into an inner horn Λ3
2 → SC as illustrated by

3

2

OO

C

B A

0

EE�������������������������

88qqqqqqqqqqqqqq // 1

YY3333333333333333333333333

ffMMMMMMMMMMMMMM

Any potential 3-span filler D of this inner horn needs to satisfy D∂0 = A, which implies
D(1, 2) = A(0, 2) = α, and D∂1 = B, which implies D(0, 3) = B(0, 2) = β. Since β 6→ α,
such a D does not exist, and hence SC is not a quasi-category.

Since this argument did not actually make use of C, there is not even any 3-span
having A as its 0th face and B as its 1st face.

The nerve NC is a subcompository of SC as follows. For every n ∈ N, there are two
monotone maps

p,P : Spn −→ [n], p(v, w) := v, P(v, w) := n− w.

Precomposition with either p or P turns a functor [n]→ C into a functor Spn → C. We
regard this as a map NC(n)→ SC(n). Since both functors have left inverses, this exhibits
NC(n) as a subset of SC(n) in two ways. Our goal is to show that this inclusion respects
the compository structure:

3.10. Proposition. With these definitions, NC is a subcompository of SC in two ways.

Proof. We will give the proof only for p; an analogous proof applies to P. All that needs
to be shown is compatibility with face/degeneracy maps and composition. The first follows
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from the commutativity of

Spn
ξtw

//

p

��

Spn′

p

��

[n]
ξ
// [n′]

for any ξ ∈ ∆([n], [n′]); this square is an instance of naturality of p, regarded as the
restriction of a natural transformation −tw → idCats.

Compatibility with composition is similar to the second half of the proof of Theorem 3.8.
In concrete terms, we need to show that the square

Spm
∐

Spk
Spn

cm,k,n
//

p
∐
p

��

Spm+n−k

p

��

[m]
∐

[k][n] [m+ n− k]

is exact. This means that for every (v, w) ∈ Spm+n−k and z ∈ [m+ n− k] with v ≤ z, the
poset {

(x, y) ∈ Spm qSpk Spn

∣∣∣∣ (v, w)→ (x, y), (pq p)(x, y)→ z

}
is non-empty and connected. As in the proof of Theorem 3.8, a case distinction together
with the consideration of the least elements shows that this is indeed true.

So far, we have defined the compository of higher spans SC only when the original
category C is gaunt. Unfortunately, any attempt at a general definition soon runs into
coherence issues: uniqueness of the Kan extensions used in the compositions is lost, and
the question is whether they can be chosen coherently in such a way that the compository
axioms hold with equality.

One way to achieve this may be to choose pullbacks in C such that a×b b = a for any
diagram of the form

b

a // b

(3.10)

as well as similarly a×a b = b, and a×b (b×c d) = a×c d for any diagram of the form

d

��
a // b // c

(3.11)
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and similarly upon “extending” the vertical leg instead of the horizontal one. In particular,
this implies that for any diagram of the form

a

��>>>>>>>
c

���������

��>>>>>>>
e

���������

b d

(3.12)

the pullbacks strictly associate in the sense that a ×b (c ×d e) = (a ×b c) ×c (c ×d e) =
(a×b c)×d e.

Alternatively, one may be inclined to say that the equational axioms for compositories
should only be postulated in a certain weak form, such that composition satisfies these
equations only “up to” higher isomorphisms satisfying their own laws up to isomorphisms
etc. While this certainly bears some truth, it also seems conceivable that this is but an
artefact of the translation from categories to compositories, and that there is no reason
from within the theory of compositories itself to weaken strict equations.

Metric spaces. We now return to the metric spaces example considered in the introduc-
tion and show how the collection of all finite metric spaces forms a compository, although
with a slightly non-standard notion of “metric”.

Since we are not interested in distinguishing different but isomorphic metric spaces, we
take the underlying set of any (n+ 1)-element metric space to be the abstract n-simplex
[n] = {0, . . . , n}.

For us, a metric on [n] is a function

d : [n]× [n] −→ R≥0

such that d(x, x) = 0 for all x ∈ [n], the triangle inequality

d(x, z) ≤ d(x, y) + d(y, z)

holds, and also symmetry d(x, y) = d(y, x). So in contrast to the standard definition,
our metrics are not required to be non-degenerate: they are pseudometrics. Moreover,
everything that follows also works without the symmetry assumption, and the so inclined
reader [27] may safely take our notion of “metric space” to mean “category enriched over
the additive monoid R≥0”.

3.11. Definition.M1 is the simplicial set with n-simplices given by the metrics on [n],

M1(n) := { d : [n]× [n] −→ R≥0 metric on [n] } . (3.13)

For every f ∈ ∆([n], [m]) and A ∈M1(m), we put

(Af)(x, y) := A(f(x), f(y)). (3.14)

We think of an m-simplex A ∈M1(m) as a metric space with (m+1) points. Unfolding
the definition then shows that the face maps correspond to all possible restrictions of the
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x zy

A B

Figure 4: Defining the distance between x and z in terms of a shortest path through points
in the intersection.

metric to an m-element subset, while the degeneracy maps correspond to all possible ways
of duplicating a point.

A pair (A,B) ∈M1(m)×M1(n) is k-composable if the restrictions of A and B to the
corresponding k-element subsets coincide. In this case, we put:

3.12. Definition. For all x, z ∈ [m+ n− k],

(A◦kB)(x, z) :=


A(x, z) if x ≤ m and z ≤ m

min
y : m−k≤y≤m

(A(x, y) +B(y −m+ k, z −m+ k)) if x ≤ m and z ≥ m− k

B(x, z) if x ≥ m− k and z ≥ m− k

Although these three cases overlap, the resulting values for the left-hand side coincide
thanks to the assumption of composability and the triangle inequality.

This definition implements the idea that A◦kB represents a canonical way of joining A
and B into a larger metric space in the sense that the given metrics A and B are retained,
while the “missing” distances are lengths of shortest paths as illustrated in Figure 3.

3.13. Proposition. With these definitions, M1 is a compository.

The proof is straightforward but tedious. We will present a reasonably clean argument
in Section 5, once we have introduced notions which allow for a more direct proof.

3.14. Remark. Similarly as in Example 3.9, M1 is not a quasi-category: the three
2-simplices A,B,C ∈M1(2) displayed in Figure 5 form an inner horn in M1 which does
not have a filler.

We will get back to the example of metric spaces in Section 5, using the presheaf point
of view discussed in the introduction.

Joint probability distributions. We now consider the situation of joint probability
distributions mentioned in the introduction. As we did there, we fix a finite set O of
outcomes for all our random variables. We will show that the collection of joint distributions
of random variables with outcomes in O form a compository denoted PO.
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Figure 5: Three metrics A,B,C ∈M1(2) with distances as indicated which assemble to
an inner horn. Due to failure of the triangle inequality for the outer edges, this inner horn
does not have a filler.

3.15. Definition. An n-simplex in PO is a probability distribution P on On+1 = O×. . .×
O which assigns a weight P (a0, . . . , an) to any (n+1)-tuple of outcomes (a0, . . . , an) ∈ On+1.

Hence an n-simplex is a joint probability distribution for n+ 1 random variables. In
particular, a 0-simplex is a probability distribution of a single variable.

The face maps are given by taking marginal distributions,

(P ∂k)(a0, . . . , an−1) :=
∑
ak

P (a0, . . . , an), (3.15)

while the degeneracies produce a “copy” of one of the variables which is perfectly correlated
with the original one,

(P ηk)(a0, . . . , an+1) := δak,ak+1
P (a0, . . . ,���ak+1, . . . , an). (3.16)

These two equations can be subsumed into a single equation analogous to (3.14): for any
f ∈ ∆([m], [n]),

(Pf)(a0, . . . , am) :=
∑

b0,...,bn s.t. ai=bf(i)

P (b0, . . . , bn).

A simple calculation shows that this is functorial in f .
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Thus, a pair (P,Q) consisting of an m-simplex P and an n-simplex Q is k-composable
if and only if∑
a0,...,am−k−1

P (a0, . . . , am) =
∑

am+1,...,am+n−k

Q(am−k, . . . , am+n−k) ∀am−k, . . . , am. (3.17)

If this composability holds, we abbreviate both sides of this equation by R(am−k, . . . , am)
and define

(P ◦k Q)(a0, . . . , am+n−k) :=
P (a0, . . . , am)Q(am−k, . . . , am+n−k)

R(am−k, . . . , am)
. (3.18)

In this formula, the denominator may vanish for certain tuples (am−k, . . . , am) ∈ Ok;
however, the composability condition (3.17) guarantees that this implies that also both
terms in the numerator vanish. In this case, also the left-hand side of (3.18) is regarded
to be 0.

We need to check that (3.18) is indeed a probability distribution. While it is clearly
non-negative, normalisation can be seen as follows:∑

a0,...,am+n−k

P (a0, . . . , am)Q(am−k, . . . , am+n−k)

R(am−k, . . . , am)

=
∑

a0,...,am

P (a0, . . . , am)
∑

am+1,...,am+n−k
Q(am−k, . . . , am+n−k)

R(am−k, . . . , am)

=
∑

a0,...,am

P (a0, . . . , am)R(am−k, . . . , am)

R(am−k, . . . , am)

=
∑

a0,...,am

P (a0, . . . , am) = 1.

Hence (3.18) is an (m+ n− k)-simplex in PO.

3.16. Proposition. With these definitions, PO is a compository.

For similar reasons as for the proof of Proposition 3.13, also the proof of this proposition
will be deferred to Section 5.

4. Gleaves

As explained in the introduction, there are various natural examples of presheaves that
are not sheaves, but still seem to possess more interesting structure than merely being
presheaves: there exists a “gluing operation” which describes a canonical way of joining
pairs of compatible local sections. We axiomatise the resulting notion of gleaf in this
section and show how compositories can be seen as particular kinds of gleaves. Both the
metric space example and the joint probability distributions example given in the previous
section have several variants all of which can be described as gleaves.
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Gleaves on a lattice. When introducing sheaves, one usually starts by defining sheaves
on topological spaces before moving on to the general definition of sheaves on sites. In a
similar manner, we start with the definition of gleaves on the lattice of opens of a topological
space, or, more generally, on any distributive lattice. Since any distributive lattice can be
represented as a lattice of sets [21], we may consider, without loss of generality, a lattice
of subsets L ⊆ 2X of some set X. With this in mind, we denote the lattice ordering by ⊆
and the lattice operations by ∩ and ∪.

4.1. Definition. Given a distributive lattice L, a gleaf on L is a presheaf Γ : Lop → Sets
together with a gluing operation

gU,V : Γ(U)×Γ(U∩V ) Γ(V ) // Γ(U ∪ V ) (4.1)

for every unordered pair U, V ∈ L, such that the following conditions hold:

(a) if U ⊆ V , then gU,V (α, α|V ) = α for all α ∈ Γ(U).

(b) For U ′, U, V ∈ L with U ′ ⊆ U and U ′ ∪ V = U ∪ V ,

Γ(U ′)×Γ(U ′∩V ) Γ(V )
gU′,V

//

gU′,V

��

Γ(U ∪ V )

Γ(U ∪ V ) // Γ(U)×Γ(U∩V ) Γ(V )

gU,V

OO

(4.2)

(c) For U ′, U, V ∈ L with U ′ ⊆ U and U ′ ∩ V = U ∩ V ,

Γ(U)×Γ(U∩V ) Γ(V )

��

gU,V
// Γ(U ∪ V )

��

Γ(U ′)×Γ(U∩V ) Γ(V )
gU′,V

// Γ(U ′ ∪ V )

(4.3)

commutes.

The axioms here are parallel to those of Definition 2.2. They axioms have a multitude
of consequences which, however, will not be analysed in this section but rather when
considering the definition of gleaves on a category. This includes, for example, associativity
of the gluing operation.
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4.2. Remark. These axioms are essentially equivalent to those of Dawid and Studený for
conditional products [11]. To wit, their projection corresponds to restriction in the presheaf;
their ⊗ is our gluing, guaranteed by T1 to of type (4.1); their T2 is automatic in our
setup, due to the use of unordered pairs U, V ; their T3 is our (a); their T4 is our (c); their
T5 is our (b). The definition of [11] is slightly more general in that the gluing operation
may be defined only on a proper subset of all compatible pairs of local sections; this is
what their T6 is concerned with.

In the case of a sheaf, the canonical choice for L is the lattice of opens O(X) of a
topological space X. However, we do not see why this should necessarily likewise apply to
gleaves, and in fact believe that other choices are sometimes more natural:

4.3. Example. Let L be the lattice of compact subspaces of a Hausdorff space X, and
for U ∈ L let Γ(U) be the set of all non-degenerate metrics U × U → R≥0 ∪ {∞} which
induce the given subspace topology. Γ is a presheaf with the obvious restriction maps. For
dU ∈ Γ(U) and dV ∈ Γ(V ), we construct dU∪V = gU,V (dU , dV ) by

dU∪V (x, z) :=


dU(x, z) if x ∈ U, z ∈ U,
infy∈U∩V [dU(x, y) + dV (y, z)] if x ∈ U, z ∈ V,
infy∈U∩V [dV (x, y) + dU(y, z)] if x ∈ V, z ∈ U,
dV (x, z) if x ∈ V, z ∈ V.

(4.4)

Here, compactness guarantees that these infima are attained at some y if U ∩ V 6= ∅.
Hence dU∪V is a metric as well, i.e. it is non-degenerate. It can also be shown that dU∪V
induces the given subspace topology on U ∪ V , which implies that dU∪V ∈ Γ(U ∪ V ).

Without any compactness requirement, the infimum in (4.4) is not necessarily attained
at any point in the intersection. Take for example the set

X = {u, v} ∪ N

with two distinct subsets

U = {u} ∪ N, V = {v} ∪ N

equipped with metrics dU and dV satisfying

dU(u, n) =
1

n
, dV (v, n) =

1

n
∀ n ∈ N,

and otherwise arbitrary distances. Applying definition (4.4) to u and v results in

dU∪V (u, v) = inf
n∈N

(dU(u, n) + dV (n, v)) = inf
n∈N

(
1
n

+ 1
n

)
= 0.

Thus, the two distinct points u and v have zero distance.
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Systems of bicoverings. We would like to give a more general definition of gleaves
which comprises both gleaves on lattices and compositories as special cases. To this end,
we introduce the notion of a system of bicoverings which are to gleaves what Grothendieck
topologies are to sheaves.

4.4. Definition. A system of bicoverings on a category C is a collection of cospans in C,
called bicoverings, which we draw with one vertical and one horizontal leg

b

��
a // c

satisfying the following axioms:

(a) The two legs of a bicovering are monomorphisms.

(b) Bicoverings can be completed to pullback squares.

(c) Maximal bicoverings: for every a ∈ C,

a

a a

is a bicovering.

(d) Stability under composition: given a diagram

a×c b //

��

b

��
a′ // a // c

in which both cospans are bicoverings, then so is the composed cospan.

(e) Stability under pullbacks: given a diagram

f ∗(b)

!!BBBBBBBB

��

b

��

f ∗(a)

!!DDDDDDDD
// c′

f
CCCC

!!CCCC

a // c
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where both squares are pullbacks and the lower right cospan is a bicovering, then so
is the upper left cospan.

Here, we do not distinguish the two legs of a cospan, i.e. swapping the vertical and
horizontal legs results in the same cospan. We do not assume that C has all pullbacks;
correspondingly, axiom (e) only applies when the pullbacks exist.

4.5. Example. Let (C, J) be a site, where C is a category with pullbacks. Then we define
a cospan with monomorphic legs to be a bicovering if the sieve generated by it is a covering
sieve. Axiom (a) is satisfied by assumption. Axiom (c) holds since principal sieves are
covering sieves. Axiom (d) follows from the transitivity axiom of Grothendieck topologies.
Axiom (e) follows from the stability axiom of Grothendieck topologies.

4.6. Example. In the simplex category ∆, we take a bicovering to be a cospan of the
form

[n]

tn
��

[m]
sm

// [j]

(4.5)

where n+m ≥ j, corresponding to joint surjectivity of the two arrows.

4.7. Example. Let C be an adhesive category [26]. Define a cospan with monomorphic
legs to be a bicovering if its pullback square is also a pushout. Then Axioms (c) and (d) are
by general properties of pullbacks and pushouts, while Axiom (e) holds since pullbacks of
monomorphisms are monomorphisms, and pushouts along monomorphisms in an adhesive
category are van Kampen squares.

Our first observation is a partial converse to Axiom (d):

4.8. Lemma. In a diagram

a×c b //

��

b

��
a′ // a

f
// c

where the right and the composed cospan are bicoverings, then so is the left cospan.
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Proof. The left square of the diagram

a×c b

��

""EEEEEEE

b

��

a′ //

?????

?????
a

f
EEE

""EEEE

a′ // c

is a pullback since f is a monomorphism. The claim now follows from stability under
pullback.

4.9. Definition. A morphism of bicoverings is a diagram of the form

b′

qb

��>>>>>>>>

��

b

��

a′ //

qa ��????????
c′

qc
???

��???

a // c

which can be completed to a diagram of the form

b′

qb

��========

��

a×c b

��

99

��

// b

��

a′ //

qa ##FFFFFFFFFF c′

qc
???

��???

a // c

(4.6)

The map qc completely determines the maps qa and qb, since the legs of a bicovering
are monomorphisms. The existence of the two additional arrows in (4.6) is equivalent to
the requirement that the induced map a′ ×c′ b′ → a×c b has a right inverse.
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Gleaves on a category with bicoverings. Let C be a category equipped with
a system of bicoverings and D a category with pullbacks. For any D-valued presheaf
Γ : Cop → D and any pullback square

a×c b //

��

b

��
a // c

the restriction maps determine a natural arrow

Γ(c) −→ Γ(a)×Γ(a×cb) Γ(b).

The basic idea behind gleaves is the existence of a “gluing operation” which constructs a
“glued” local section in Γ(c) from a compatible pair of local sections in Γ(a)×Γ(a×cb) Γ(b).

Unlike in Section 4, we now omit the subscript of a gluing operation indexing its
components.

4.10. Definition. A gleaf on C with values in D is a pair (Γ, g) consisting of a functor
Γ : Cop → D together with a gluing operation

g : Γ(a)×Γ(a×cb) Γ(b) // Γ(c)

for every bicovering

b

��
a // c

(4.7)

satisfying the following conditions:

(a) Identity axiom: if the bicovering is of the form

b

��
a a

or

b

a // b

then g = π1 : Γ(a) ×Γ(a) Γ(b) −→ Γ(a) or g = π2 : Γ(a) ×Γ(b) Γ(b) −→ Γ(b),
respectively.

(b) Back-and-forth axiom: given a diagram

a×c b //

��

b

��
a′ // a // c
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where both cospans are bicoverings, then the diagram

Γ(a′)×Γ(a′×cb) Γ(b)
g

//

g

��

Γ(c)

Γ(c) // Γ(a)×Γ(a×cb) Γ(b)

g

OO

commutes.

(c) Partial naturality axiom: For any morphism of bicoverings

b′

��========

��

a×c b

��

99

��

// b

��

a′ //

##FFFFFFFFFF c′

��????????

a // c

(4.8)

the induced diagram

Γ(a)×Γ(a×cb) Γ(b)
g

//

��

Γ(c)

��

Γ(a′)×Γ(a′×c′b
′) Γ(b′)

g
// Γ(c′)

commutes.

The following development is completely parallel to that of Section 2 on compositories.
Our first observation is that restricting the gluing of two local sections recovers these
original sections:
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4.11. Lemma. For any bicovering (4.7), the induced diagram

Γ(a)

Γ(a)×Γ(a×cb) Γ(b) g //

π1
77pppppppppppp

π2 ''NNNNNNNNNNNN
Γ(c)

||zzzzzzzz

bbDDDDDDDD

Γ(b)

(4.9)

commutes.

Proof. Since the map a→ c is a monomorphism, both squares in

a×c b

��

""EEEEEEE

b

��

a

@@@@@

@@@@@
a

##HHHHHHH

a // c

are pullback squares, and hence the back cospan is a bicovering as well. Since the
induced map between the resulting pullbacks is ida×cb, we are dealing with a morphism of
bicoverings. Hence the partial naturality axiom applies and we obtain

Γ(a)×Γ(a×cb) Γ(b)
g

//

��

Γ(c)

��

Γ(a)×Γ(a×cb) Γ(a×c b)
g

// Γ(a)

By the identity axiom, the lower horizontal arrow g coincides with π1. Therefore also
the lower composition coincides with the projection π1. Comparing this with the upper
composition results in the upper triangle of diagram (4.9). Commutativity of the lower
triangle is proven in an analogous way.
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4.12. Lemma. [two-step rule] Given a diagram

b′

��

a×c b //

��

b

��
a′ // a // c

where all three cospans are bicoverings, then the induced diagram

Γ(a′)×Γ(a′×cb) Γ(b) //

g

��

Γ(a′)×Γ(a′×cb) Γ(a×c b)×Γ(a′×cb) Γ(b)

g×idid

��

Γ(c) Γ(a)×Γ(a×cb) Γ(b)goo

Γ(a)×Γ(a×cb′) Γ(b′)

g

OO

// Γ(a)×Γ(a×cb′) Γ(a×c b)×Γ(a×cb′) Γ(b′)

id×idg

OO

(4.10)
commutes.

Intuitively, the upper half of this diagram states that a local section over a′ can be
glued with a local section over b by first gluing the former with the restriction of the
latter to a ×c b and then gluing the result with the original section over b. A similar
interpretation applies to the lower half of the diagram.

Proof. Since the two parts of the diagram (4.10) are equivalent under exchanging the
two legs of all bicoverings, it is sufficient to prove commutativity of the upper half only.
In the diagram

a×c b

��

""EEEEEEE

b

��

a′

?????

?????
// a

""EEEEEEEE

a′ // c
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both squares are pullbacks since the map a→ c is a monomorphism. Since the induced map
between the resulting pullbacks is ida′×cb, we are dealing with a morphism of bicoverings.
Applying partial naturality gives

Γ(a′)×Γ(a′×cb) Γ(b)
g

//

��

Γ(c)

��

Γ(a′)×Γ(a′×cb) Γ(a×c b)
g

// Γ(a)

In the diagram

Γ(a′)×Γ(a′×cb) Γ(b)
g

//

��

g
OOOOOOO

''OOOOOOOOO

Γ(c)

Γ(c)

''OOOOOOOOOOOOOOOOO

Γ(a′)×Γ(a′×cb) Γ(a×c b)×Γ(a×cb) Γ(b)
g×idid

// Γ(a)×Γ(a×cb) Γ(b)

g

OO

the upper triangle commutes because of the back-and-forth axiom, while the lower triangle
commutes as a consequence of the partial naturality diagram above and (4.9).

4.13. Proposition. [Associativity] Given a diagram

b′

��

a×c b

��

// b

��
a′ // a // c
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where all three cospans are bicoverings, then the induced diagram

Γ(a′)×Γ(a′×cb) Γ(a×c b)×Γ(a×cb′) Γ(b′)

id×idg

��

g×idid
// Γ(a)×Γ(a×cb′) Γ(b′)

g

��

Γ(a′)×Γ(a′×cb) Γ(b)
g

// Γ(c)

(4.11)

commutes.

Proof. We prove this by showing commutativity of the diagram

Γ(a′)×Γ(a′×cb) Γ(a×c b)×Γ(a×cb′) Γ(b′)
∼=

ssgggggggggggggggggggg

g×idid
//

3©

Γ(a)×Γ(a×cb′) Γ(b′)

g

��

sshhhhhhhhhhhhhhhhhhhh

Γ(a′)×Γ(a′×cb) Γ(a×c b)
×Γ(a×cb)Γ(a×c b)×Γ(a×cb′) Γ(b′)

g×idg ++WWWWWWWWWWWWWWWWWWWWW

g×idid
// Γ(a)×Γ(a×cb) Γ(a×c b)×Γ(a×cb′) Γ(b′)

id×idg

��

1© 2©

Γ(a)×Γ(a×cb) Γ(b)
g

// Γ(c)

in which the upper right composition is the one of (4.11), while the lower left one can
be thought of as a “diagonal” in (4.11): we are about to show that it coincides with this
diagram’s upper right composition, and thanks to its invariance under swapping a and b,
it is then also equal to the diagram’s lower left composition.

Subdiagram 1© commutes trivially, while 2© is an instance of the two-step rule
Lemma 4.12. Since all arrows of subdiagram 3© act trivially on the last component
Γ(b′), this part reduces to

Γ(a′)×Γ(a′×cb) Γ(a×c b)
g

//

∼=
��

Γ(a)

��

Γ(a′)×Γ(a′×cb) Γ(a×c b)×Γ(a×cb) Γ(a×c b)
g×idid

// Γ(a)×Γ(a×cb) Γ(a×c b)

This diagram can be shown to commute by postcomposing with the projections π1 and π2.
This is trivial for π1, for which both ways of composing the arrows yield g. In the case of
π2, commutativity holds since according to Lemma 4.11, saying that restricting the glued
section in Γ(a) back to Γ(a×c b) recovers the original section given there.
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This ends our present development of the general theory of gleaves on categories with
bicoverings. We now move on to discuss some general classes of examples.

4.14. Example. Let L be a distributive lattice. We regard L as a category with bicoverings
given by those cospans

V

⊆

��

U
⊆
// W

which satisfy U ∪ V = W . It is easy to show that the axioms for a system of bicoverings
hold; the stability under pullbacks is exactly distributivity. On this base category, the
definition of gleaf 4.10 reduces to the one of a gleaf on a distributive lattice 4.1.

4.15. Example. [Base change for gleaves] Let C and C′ be categories equipped with
systems of bicoverings and D a category with pullbacks. Given a gleaf (Γ, g), where
Γ : Cop → D, and a functor Ξ : C′ → C which preserves bicoverings and pullbacks, then
the composite Γ Ξ carries an induced structure of gleaf with a gluing operation whose
components are components of g.

4.16. Theorem. Given a site (C, J), a D-valued sheaf Γ : Cop → D on (C, J) is a gleaf in
a unique way with respect to the bicoverings given by cospans

b � _

��
a �
� // c

which generate a covering sieve (Example 4.5).

Proof. From the sheaf condition, we know that

Γ(c) −→ Γ(a)×Γ(a×cb) Γ(b)

is an isomorphism. Since the gluing operation is required to be a right inverse of this
map, it is automatically unique and given by the inverse isomorphism. The axioms of
gleaves can be easily seen to hold by postcomposing each required diagram with π1g

−1,
respectively π2g

−1, and using the fact that π1g
−1 and π2g

−1 are jointly monic.

4.17. Theorem. Gleaves ∆op → Sets on the simplex category ∆ with bicoverings of the
form

[n]

tn
��

[m]
sm

// [j]

(n+m ≥ j) (4.12)
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are compositories and vice versa.

The proof of this theorem requires the following lemma.

4.18. Lemma.

(a) For n+m ≥ j and n′ +m′ ≥ j′, the diagram

[n′]
q|[n′]

  AAAAAAA

tn′

��

[n]

tn

��

[m′]
sm′

//

q|[m′] !!CCCCCCCC
[j′]

q
AAA

  AAA

[m]
sm

// [j]

(4.13)

is a morphism of bicoverings iff q|[m′]∩[n′] : im(sm′) ∩ im(tn′) −→ im(sm) ∩ im(tn) is
surjective.

(b) Any morphism of bicoverings is a composition of those of the form

[n]

IIIIIIIIIIII

IIIIIIIIIIII

tn
��

[m]
sm

//

ηi ##GGGGGGGGG
[j]

ηi
IIIII

$$III

[n]

tn
��

[m− 1]
sm−1

// [j − 1]

[n]
ηi+n−j

##FFFFFFFFF

tn
��

[m]
sm
//

BBBBBBBB

BBBBBBBB
[j]

ηi
FFFF

##FFF

[n− 1]

tn−1

��

[m]
sm

// [j − 1]

[n]
ηi+n−j

$$JJJJJJJJJJ

tn
��

[m]
sm

//

ηi ##GGGGGGGGG
[j]

ηi
JJJJJ

$$JJJ

[n− 1]

tn−1

��

[m− 1]
sm−1

// [j − 1]

(4.14)
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which correspond to the degeneracy conditions (2.10)–(2.12), and those of the form

[n]

EEEEEEEEE

EEEEEEEEE

tn
��

[m− 1]
sm−1

//

∂i $$IIIIIIIIII
[j − 1]

∂i

EEE

""EEEE

[n]

tn
��

[m]
sm

// [j]

[n− 1]
∂i+n−j

""EEEEEEEEE

tn−1

��

[m]
sm
//

FFFFFFFFF

FFFFFFFFF
[j − 1]

∂i

EEE

""EEEE

[n]

tn
��

[m]
sm

// [j]

(4.15)

which correspond to the face map conditions (2.13) and (2.14).

Proof. We start with (a). The two additional arrows [m′]← [m+ n− j]→ [n′] required
for being a morphism of bicoverings exist iff q|[m′]∩[n′] has a right inverse. In ∆, this is
equivalent to surjectivity.

For (b), we first claim that any morphism of bicoverings can be split into a composition of
a morphism with surjective components followed by a morphism with injective components
as in the diagram

[n′]

�� ��?????????

tn′

��

[n̂]

tn̂

��

� o

��?????????

[m′]
sm′

//

�� ��?????????
[j′]

q1

????

�� ��????

[n]

tn

��

[m̂]
sm̂

//
� o

��?????????
[̂j]
� o

q2

????

��????

[m]
sm

// [j]

(4.16)

To see this, we decompose q into two parts using its image factorisation,

[j′] = dom(q)
q1
// // im(q) �

� q2 // cod(q) = [j]

We then define [m̂] to be the pullback q−1
2 ([m]), and similarly [n̂] := q−1

2 ([n]). In particular,
the pair (sm̂, tn̂) bicovers [̂j]. The maps [m′] � [m̂] and [n′] � [n̂] are then defined by the

969



Theory and Applications of Categories, Vol. 31, No. 33, 2016, pp. 970–988.

universal property of pullbacks. We show surjectivity of [m′] � [m̂]; a similar proof applies
to [n′] � [n̂]. For any element v ∈ [m̂], there exists a v′ ∈ [j′] such that q1(v

′) = sm̂(v).
Then either v′ ∈ im(sm′), in which case we are done, or v′ ∈ im(tn′). In the latter case we
obtain that q1(v′) = sm̂(v) ∈ im(tn̂), and thus sm̂(v) ∈ im(sm̂) ∩ im(tn̂). By the assumed
surjectivity of q|[n′]∩[m′], there exists v′′ ∈ im(sm′) ∩ im(tn′) such that q(v′′) = q2(sm̂(v)).
Since q2 is injective, q1(v′′) = sm̂(v). Because v′′ ∈ im(sm′), this gives a preimage in [m′]
of the original v ∈ [m̂], as desired.

We have shown in passing that q1|[m′]∩[n′] : im(sm′) ∩ im(tn′) −→ im(sm̂) ∩ im(tn̂) is
surjective. Moreover, q2|[m̂]∩[n̂] : im(sm̂)∩ im(tn̂) −→ im(sm)∩ im(tn) is bijective thanks to
the given assumption on q.

We now decompose the lower right part of (4.16) into morphisms of the form (4.15).
This we do by induction on j − ĵ. In the base case j = ĵ, we necessarily have q2 = id[j], so
that there is nothing to be done. For the induction step, we pick any i ∈ [j] \ im(q2), so
that q2 can be factored as ∂iq̂2. Since im(sm) ∩ im(tn) ⊆ im(q2), we either have i 6∈ im(tn),
which means that i < j − n, or i 6∈ im(sm), which means that i > m. In the second case
we obtain

[n̂] � q

##FFFFFFFFF

tn̂

��

[n− 1]

tn−1

��

∂i+n−j

""EEEEEEEEE

[m̂]
sm̂

//
� p

  AAAAAAAA
[̂j] � q

q̂2

EEEE

""EEE

[n]

tn

��

[m]
sm

//

BBBBBBBB

BBBBBBBB
[j − 1]

∂i

EEE

""EEEE

[m]
sm

// [j]

so that the claim follows from the induction assumption applied to q̂2. The first case is
analogous.

We now decompose the first part of (4.16) into morphisms of the form (4.14) by
induction on j′ − ĵ. The base case j′ = ĵ is trivial. For the induction step, we pick an
i ∈ [j′] such that q1(i) = q1(i+ 1). We then have three different cases:

(a) i < j′ − n′.

(b) j′ − n′ ≤ i < m′.

(c) m′ ≤ i.
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We illustrate the proof for the first case, obtaining the diagram

[n′]

FFFFFFFFF

FFFFFFFFF

tn′

��

[n′]

tn′

��

"" ""FFFFFFFFF

[m′]
sm′

//

ηi ##HHHHHHHHH
[j′]

ηi
FFFF

##FFF

[n̂]

tn̂

��

[m′ − 1]
sm′−1

//

## ##GGGGGGGGG
[j′ − 1]

q̂1

EEE

"" ""EEEE

[m̂]
sm̂

// [̂j]

The claim follows from the induction assumption applied to q̂1. The two other cases can
be treated in an analogous way.

Proof Proof of Theorem 4.17. We need to show that the compository axioms are
equivalent to the gleaf axioms with respect to bicoverings of the form (4.12). The identity
axiom for compositories corresponds exactly to the identity axiom for gleaves and similarly
for the back-and-forth axiom. Compatibility of composition with degeneracy maps is
equivalent to naturality for morphisms of bicoverings of the form (4.14), while compatibility
with face maps corresponds to (4.15).

On the other hand, Lemma 4.18 implies that these compatibility conditions are sufficient
to guarantee naturality with respect to all morphisms of bicoverings.

4.19. Remark. One can also try to consider gleaves not just on ∆, but also on other
categories of geometric shapes, such as on the globe category or the cube category, and
see whether they might have a meaningful interpretation as higher categories. This does
not work for the globe category, which does not have any non-trivial pullbacks. So far, we
have not investigated the case of the cube category any further.

Categories of gleaves. We would like to turn the collection of D-valued gleaves on a
category C with bicoverings into a category itself.
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4.20. Definition. A morphism of gleaves (Γ, g)→ (Γ′, g′) is a natural transformation
f : Γ→ Γ′ such that

Γ(a)×Γ(a×cb) Γ(b)
g

//

fa×fa×cb
fb

��

Γ(c)

fc

��

Γ′(a)×Γ′(a×cb) Γ′(b)
g′

// Γ′(c)

commutes.

With this definition, the collection of gleaves (Γ : Cop → D, g) forms a category Gl(C,D).
We now reproduce an argument communicated to us by Peter Johnstone which shows

that a category of gleaves Gl(C, Sets) is not necessarily a topos.

4.21. Theorem. [Johnstone] There exists C for which Gl(C, Sets) is not cartesian closed,
but does have a subobject classifier.

Proof. Consider C to be the category formed by the poset with Hasse diagram

1

u

??��������
v

__????????

0

__???????

??�������

which is the four-element Boolean algebra. As for any distributive lattice, we take as
non-maximal bicoverings the three cospans

v

��

u // 1

0

��
u u

v

0 // v

For a gleaf (Γ, g) on C, the only non-trivial component of the gluing operation is g :
Γ(u)×Γ(0) Γ(v) −→ Γ(1). Hence such a gleaf is the same as a presheaf on C together with
a function g : Γ(u)×Γ(0) Γ(v) −→ Γ(1) which is a right inverse of Γ(1) −→ Γ(u)×Γ(0) Γ(v).
This function can be incorporated into the data of a presheaf upon adjoining an additional
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object w to C obtaining a new category C′ presented by

1

r

��
w

i

GG

ri = idw.

u

??��������
v

__????????

0

__@@@@@@@@

??~~~~~~~~

	

(4.17)

Then a gleaf on C is the same as a presheaf on C′ which satisfies the sheaf-like condition
that the map Γ(w) −→ Γ(u)×Γ(0) Γ(v) is an isomorphism. The gluing operation is given
by g = Γ(r). Note that the terminal object of C′ is w.

In conclusion, the category of gleaves Gl(C, Sets) is equivalent to the category Gl of
sheaves on C′, where {u→ w, v → w} is the unique non-trivial covering family. Since the
pullback of this family along r is not a covering family, C′ is not a site.

A direct verification shows that all contravariant hom-functors are sheaves on C′. Our
goal is to show that the hom-functor h1 = Gl(−, 1) is not an exponentiable object in Gl.
Since the contravariant Yoneda embedding is cocontinuous, the diagram of hom-functors

h0
//

��

hv

��

hu // hw

is a pushout. Now if the hom-functor h1 was an exponentiable object, then the functor
−× h1 would be a left adjoint and hence preserve colimits. In particular, this would imply
that also

h0 × h1
//

��

hv × h1

��

hu × h1
// hw × h1

(4.18)

would have to be a pushout; however, a direct objectwise consideration shows that
h0 × h1

∼= h0, hu × h1
∼= hu and hv × h1

∼= hv, where each of these isomorphism is given
by the corresponding product projection. On the other hand, hw × h1

∼= h1 also by the
product projection, because hw is terminal in Gl. Since h1 6∼= hw, uniqueness of pushouts
up to isomorphism shows that (4.18) is not a pushout. In conclusion, Gl does not have
exponentials.
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We now proceed to showing that Gl does have a subobject classifier which can be
constructed just as in a Grothendieck topos, namely the presheaf

Ω(x) := {S | S is a closed sieve on x}

for all x ∈ C′. A direct check shows that the sheaf condition Ω(w)
∼=−→ Ω(u) ×Ω(0) Ω(v)

holds. The proof of [32, Prop. III.7.3] applies verbatim and shows that Ω is indeed a
subobject classifier.

Alternatively, one can prove that Ω is a subobject classifier using the reasoning of
[23, p. 551].

Some examples of non-cartesian-closed categories with a subobject classifier have been
known previously [13]. Johnstone’s earlier example [22, Remark 8.3] is very similar to
the example used in the above proof: his binary operation b has the flavour of a gluing
operation from which its arguments can be recovered by application of the unary operations
l and r, which are similar to restriction maps.

5. Examples of gleaves

We would now like to describe various concrete examples of gleaves, including a gleaf of
metric spaces, similar in flavour to the compository of metrics (Section 3), and a gleaf
of joint probability distributions, corresponding to the compository of joint distributions
(Section 3). We expect that many other geometrical structures of a “global” nature can
be reformulated in this way.

Metric spaces, take II. Since a metric lives on a set, we now take the base category to
be C := Sets. For any cospan with injective legs

B� _

��

A �
� // C

(5.1)

we consider A and B to be subsets of C, thus omitting explicit mention of the inclusion
maps. We take it to be a bicovering if the two legs are jointly surjective, i.e. A ∪B = C,
or equivalently use the definition from Example 4.7.

The functor

M : Setsop → Sets

A 7→ {d : A× A→ R≥0 ∪ {∞} | d is a metric }

(
A

f
// B

)
7→


M(B) // M(A)

dB
� // dA

dA(x, y) := dB(f(x), f(y))
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assigns to every set the collection of all ways of turning that set into a “metric space”. Just
as in Section 3, what we mean by this is a set equipped with a distance function taking
values in R≥0 ∪ {∞}, satisfying the triangle inequality, assigning zero distance from any
point to itself, and, depending on the reader’s preference, the optional symmetry axiom.

The component of the gluing operation g on a bicovering (5.1) is defined as follows:

g :M(A)×M(A×CB)M(B) // M(C)

(dA, dB) � // g(dA, dB)

where g(dA, dB) is the metric on C given by

g(dA, dB)(x, z) =


dA(x, z) if x ∈ A, z ∈ A,
infy∈A∩B[dA(x, y) + dB(y, z)] if x ∈ A, z ∈ B,
infy∈A∩B[dB(x, y) + dA(y, z)] if x ∈ B, z ∈ A,
dB(x, z) if x ∈ B, z ∈ B.

(5.2)

The infima are understood to be ∞ in case that A∩B = ∅. Since these four cases overlap,
it needs to be checked that the compatibility assumption

dA(w,w′) = dB(w,w′) ∀w,w′ ∈ A ∩B

guarantees that this is well-defined. For example, if we take x ∈ A and z ∈ A ∩B, then
the result of applying the first case should coincide with the application of the second:

inf
y∈A∩B

[dA(x, y) + dB(y, z)] = inf
y∈A∩B

[dA(x, y) + dA(y, z)] = dA(x, z).

Similar reasoning applies to all other overlap cases. It is clear that g(dA, dB)|A = dA and
g(dA, dB)|B = dB.

We now verify the triangle inequalities

g(dA, dB)(x, z) ≤ g(dA, dB)(x, y) + g(dA, dB)(y, z)

in the case in which x, z ∈ A and y ∈ B. All other cases are similar or simpler than this.
We know that

dA(x, z) ≤ inf
w,w′∈A∩B

[dA(x,w) + dA(w,w′) + dA(w′, z)]

= inf
w,w′∈A∩B

[dA(x,w) + dB(w,w′) + dA(w′, z)]

≤ inf
w,w′∈A∩B

[dA(x,w) + dB(w, y) + dB(y, w′) + dA(w′, z)]

= inf
w∈A∩B

[dA(x,w) + dB(w, y)] + inf
w′∈A∩B

[dB(y, w′) + dA(w′, z)],

from which the assertion follows by the definition (5.2).
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5.1. Proposition. With these definitions, (M, g) becomes a gleaf.

Upon base change (Example 4.15) along the inclusion functor ∆→ Sets, one recovers
the compository of metric spaces from Section 3.

Proof. The identity axiom holds trivially: if A = C or B = C, then the first or last case
of (5.2) always applies.

In the back-and-forth axiom, we also have A′ ⊆ A with A′ ∪B = C, start with metrics
dA′ and dB, and need to show that

g(dA′ , dB) = g(g(dA′ , dB)|A, dB).

We exemplify the proof of this by evaluating on x ∈ A′ and y ∈ B. In this case, the
right-hand side becomes

g(g(dA′ , dB)|A, dB)(x, y) = inf
w∈A∩B

[g(dA′ , dB)(x,w) + dB(w, y)]

= inf
w∈A∩B

[
inf

w′∈A′∩B
[dA′(x,w

′) + dB(w′, w)] + dB(w, y)

]
= inf

w′∈A′∩B

[
dA′(x,w

′) + inf
w∈A∩B

[dB(w′, w) + dB(w, y)]

]
= inf

w′∈A′∩B
[dA′(x,w

′) + dB(w′, y)] = g(dA′ , dB).

The other half of the back-and-forth axiom with B′ ⊆ B is entirely analogous.
In the partial naturality axiom, we have another bicovering C ′ = A′ ∪B′ and a map

q : C ′ → C such that q(A′) ⊆ A, q(B′) ⊆ B and q|A′∩B′ : A′ ∩ B′ → A ∩ B is surjective.
In our right-action notation, we then want to show that

g(dA, dB)q = g(dA q|A′ , dB q|B′).

Again we sketch part of the proof of this by evaluating on x ∈ A′ and y ∈ B′. The
right-hand side becomes

g(dA q|A′ , dB q|B′)(x, y) = inf
w′∈A′∩B′

[dA(q(x), q(w′)) + dB(q(w′), q(y))],

while the left-hand side looks like

(g(dA, dB)q)(x, y) = inf
w∈A∩B

[dA(q(x), w) + dB(w, q(y))].

The claim follows from surjectivity of q on the intersection.
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In combination with Example 4.15 and the fact that the inclusion functor Ξ : ∆→ Sets
preserves bicoverings and pullbacks, we have thus also proven Proposition 3.13.

Probability distributions, take II. A similar development is possible for joint
probability distributions: the example of Section 3 can be turned into a gleaf on C = FinSets
with values in D = Sets in pretty much the same way as the metric space example. As
in Sets, we take the bicoverings on FinSets to be those cospans which have injective and
jointly surjective legs.

As before, we fix a finite set of outcomes O, and now consider the functor

P : FinSetsop → Sets

A 7→ {PA probability measure on OA}

(
A

f
// B

)
7→



P(B) // P(A)

PB
� // PA

PA(α) :=
∑

β∈OB s.t. βf=α

PB(β)


The gluing operation on a bicovering (5.1) is given by

g : P(A)×P(A×CB) P(B)→ P(C)

(PA, PB) 7→ g(PA, PB)

g(PA, PB)(γ) =
PA(γ|A)PB(γ|B)

PA∩B(γ|A∩B)
,

where PA∩B stands for PA|A∩B = PB|A∩B. Concerning the case of vanishing denominator
and the proof showing that this is a normalised distribution, statements analogous to
those made in the compository version after (3.18) can be made.

The resulting g(PA, PB) is the unique probability distribution which makes the variables
in A conditionally independent of those in B given the values of those in A∩B. In particular,
we have g(PA, PB)|A = PA and g(PA, PB)|B = PB by construction.

5.2. Proposition. With these definitions, (P , g) is a gleaf.

A variant of this result—with FinSets replaced by the lattice of finite subsets of a fixed
set—is due to Dawid and Studený [11, Proposition 3.1]. Upon base change (Example 4.15)
along the inclusion functor ∆→ FinSets, one recovers the compository of joint probability
distributions from Section 3.
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Proof. The identity axiom means that when B ⊆ A, then g(PA, PB) = PA for any
compatible pair (PA, PB). This is indeed the case since

g(PA, PB)(α) =
PA(α)PB(α|B)

PA∩B(α|A∩B)
=
PA(α)PB(α|B)

PB(α|B)
= PA(α).

For the back-and-forth axiom, we need to show that whenever A′ ⊆ A such that
A′ ∪B = A ∪B = C, then

g(PA′ , PB) = g(g(PA′ , PB)|A, PB).

Evaluating the right-hand side on some γ ∈ OC results in

g
(
g(PA′ , PB)|A, PB

)
(γ) = g(PA′ , PB)|A(γ|A) · PB(γ|B)

PA∩B(γ|A∩B)

=
∑

γ′∈OC s.t. γ′|A=γ|A

PA′(γ
′|A′)PB(γ′|B)

PA′∩B(γ′|A′∩B)
· PB(γ|B)

PA∩B(γ|A∩B)

=
PA′(γ|A′)PB(γ|B)

PA′∩B(γ|A′∩B)PA∩B(γ|A∩B)
·

∑
γ′∈OC s.t. γ′|A=γ|A

PB(γ′|B)

=
PA′(γ|A′)PB(γ|B)

PA′∩B(γ|A′∩B)
= g(PA′ , PB)(γ)

The fourth equality uses

PA∩B(γ|A∩B) =
∑

β∈OB s.t β|A∩B=γ|A∩B

PB(β) =
∑

γ′∈OC s.t γ′|A=γ|A

PB(γ′|B),

which follows from the bijective correspondence between β and γ′ (sheaf condition).
In the naturality axiom, we have another bicovering C ′ = A′∪B′ and a map q : C ′ → C

such that q(A′) ⊆ A, q(B′) ⊆ B and q|A′∩B′ : A′ ∩B′ → A∩B is surjective. We then want
to show that

g(PA, PB)q = g(PA q|A′ , PB q|B′).
Evaluating the right-hand side on any γ ∈ OC′ results in

g(PA q|A′ , PB q|B′)(γ) =
(PAq|A′)(γ|A′) · (PBq|B′)(γ|B′)

(PAq|A′)|A′∩B′(γ|A′∩B′)

=

∑
α∈OA s.t. α q|A′=γ|A′

PA(α)
∑

β∈OB s.t. β q|B′=γ|B′
PB(β)∑

τ∈OA∩B s.t. τ q|A′∩B′=γ|A′∩B′
PA∩B(τ)

=
∑

γ′∈OC s.t. γ′q=γ

PA(γ′|A)PB(γ′|B)

PA∩B(γ′|A∩B)
= (g(PA, PB)q)(γ)
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The third equality uses surjectivity of q on the intersection, which implies that there is at
most one τ satisfying the condition τq|A′∩B′ = γ|A′∩B′ , as well as the sheaf condition to
unify the two sums.

By applying a change of base as defined in Example 4.15 along the inclusion functor
∆ ↪→ FinSets, we obtain a proof of Proposition 3.16.

Relational databases. The probability distributions example of the previous subsection
is formulated in terms of real-valued probabilities. However, all that we have used
is that probabilities are elements of a semifield (K,+, ·) which additionally satisfies
x + y = 0 ⇒ x = 0. Consequently, the probability distributions example makes sense
over any such K. A particularly interesting instance of this is the Boolean semifield
({0, 1},∨,∧): if we interpret a value of 0 as “impossible” and a value of 1 as “possible”,
a distribution with values in the Boolean semifield can be thought of as a “possibility
distribution”. Since such a distribution is determined by the subset of those outcomes to
which it assigns 1, it can equivalently be regarded as a (non-empty) relation whose arity is
given by the number of variables involved.

This is essentially what is studied in the theory of relational databases [1]. In order not
to be repetitive, we will not discuss the gleaf of possibility distributions in any more detail,
but rather explain the intimately related gleaf of relations in the language of database
theory, following the exposition of [3].

We fix a set A, thought of as a universe of attributes. In contrast to before, where we
assumed all variables to take values in the same set of outcomes, we now allow each a ∈ A
to take values in a different and possibly infinite set Da. Consider the lattice 2A of finite
subsets of A ordered by inclusion. For a finite set of attributes A ∈ 2A, an A-relation TA
is a subset of

∏
a∈ADa. We think of such a TA as a table in a database whose columns are

the attributes a ∈ A. The assignment

R : (2A)op → Sets

A 7→ { A-relations TA }

is a presheaf where the restriction maps are given by the operation of projecting subsets
along

∏
a∈ADa →

∏
a∈A′ Da for A′ ⊆ A. The gluing operation then takes the form

g : R(A)×R(A∩B) R(B) −→ R(A ∪B)

(TA, TB) 7−→ TA∪B :=

{
r ∈

∏
a∈A∪B

Da

∣∣∣∣ r|A ∈ TA, r|B ∈ TB
}
,

which is the natural join from the theory of relational databases [1].

5.3. Proposition. The pair (R, g) is a gleaf.

A variant of this result—with 2A replaced by the lattice of finite subsets of A—is due
to Dawid and Studený [11, Proposition 4.1].

979



Theory and Applications of Categories, Vol. 31, No. 33, 2016, pp. 980–988.

Proof. Condition 4.1(a) is immediate. For condition 4.1(b), we need to show that the
diagram

R(A′)×R(A′∩B) R(B)
g

//

g

��

R(A ∪B)

R(A ∪B) // R(A)×R(A∩B) R(B)

g

OO

(5.3)

commutes for A′ ⊆ A and A′ ∪B = A ∪B. To this end, we first claim that

g(TA′ , TB)|B = TB.

In fact, a given r ∈
∏

a∈BDa lies in g(TA′ , TB)|B iff there exists r′ ∈
∏

a∈A′∪BDa such
that r′|B = r, r′|A′ ∈ TA′ and r′|B ∈ TB. This is equivalent to requiring r ∈ TB and
r|A′∩B ∈ TA′|A′∩B. By the compatibility condition TA′|A′∩B = TB|A′∩B, the second condition
means that r|A′∩B ∈ TB|A′∩B, which is automatic thanks to r ∈ TB.

Second, we show that

g(TA′ , TB)|A =

{
r ∈

∏
a∈A

Da

∣∣∣∣ r|A′ ∈ TA′ , r|A∩B ∈ TB|A∩B
}
.

Indeed, a given r ∈
∏

a∈ADa lies in g(TA′ , TB)|A iff there exists r′ ∈
∏

a∈A′∪BDa such
that r′|A = r, r′|A′ ∈ TA′ and r′|B ∈ TB. By A′ ⊆ A, this is equivalent to requiring that
r|A′ ∈ TA′ and r|A∩B ∈ TB|A∩B, as claimed.

With these observations, we obtain

g(g(TA′ , TB)|A, g(TA′ , TB)|B) = g

({
r ∈

∏
a∈A

Da

∣∣∣∣ r|A′ ∈ TA′ , r|A∩B ∈ TB|A∩B
}
, TB

)

=

{
r ∈

∏
a∈A∪B

Da

∣∣∣∣ r|A′ ∈ TA′ , r|A∩B ∈ TB|A∩B, r|B ∈ TB
}

=

{
r ∈

∏
a∈A∪B

Da

∣∣∣∣ r|A′ ∈ TA′ , r|B ∈ TB
}

= g(TA′ , TB),

as desired. A similar proof applies for B′ ⊆ B and A ∪B = A ∪B′.
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We now consider condition 4.1(c) for A′ ⊆ A and A ∩B = A′ ∩B. We need to show
that the diagram

R(A)×R(A∩B) R(B)

��

g
// R(A ∪B)

��

R(A′)×R(A∩B) R(B)
g

// R(A′ ∪B)

commutes. For a given r ∈
∏

a∈A′∪BDa, we have r ∈ g(TA, TB)|A′∪B iff there exists an
r′ ∈

∏
a∈A∪BDa such that r′|A′∪B = r, r′|A ∈ TA and r′|B ∈ TB. Upon choosing r̂ = r′|A,

this implies the existence of an r̂ ∈ TA such that r̂|A′ = r|A′ and r|B ∈ TB. Conversely,
if this condition is satisfied, then A ∩ B = A′ ∩ B guarantees that r ∈

∏
a∈A′∪BDa can

be extended to an r′ ∈
∏

a∈A∪BDa having the necessary properties. The existence of r̂ is
equivalent to r|B ∈ TB and r|A′ ∈ TA|A′ .

Topological spaces. We expect that many geometrical structures, besides metric
spaces, form gleaves of type Setsop → Sets. One of these is the structure of carrying a
topology, and this will be our last example of a gleaf.

Similar to our other examples, we define the presheaf as

T : Setsop → Sets

A 7→ T (A) :=
{
τ ⊆ 2A

∣∣ τ is a topology on A
}

(
A

f
// B

)
7→

 T (B) // T (A)

τB
� // {f−1(U) | U ∈ τB}

.
This presheaf is not a sheaf since there are triples of pairwise compatible local sections

which cannot be consistently joined. In fact, consider three sets U, V,W , each with exactly
two elements as in Figure 1, and such that U and V have the indiscrete topology while
W has the discrete topology. Clearly, the subspace topologies on pairwise intersections
are the same, but it is not possible to find a topology on U ∪ V ∪W which restricts to
the given topologies on the individual sets: any open containing one point of W has to
contain U ∩ V as well, and hence also the other point of W . Nevertheless, we will show in
the following that T can be turned into a gleaf.

Given the system of bicoverings for Sets defined in Section 5, the gluing operation is:

g : T (A)×T (A×CB) T (B) → T (C)

(τA, τB) 7→ g(τA, τB) :=
{
U ⊆ C

∣∣ U ∩ A ∈ τA, U ∩B ∈ τB} .
As defined, g(τA, τB) clearly is a topology on Z.
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5.4. Proposition. With these definitions, (T , g) is a gleaf.

Proof. The identity axiom 4.10(a) holds trivially. Before proceeding with the proof of the
other two axioms, we show that the glued topology indeed restricts to the two given ones,

g(τA, τB)|A = τA, g(τA, τB)|B = τB. (5.4)

It is enough to prove the first equation. The inclusion g(τA, τB)|A ⊆ τA is trivial, so we
only need to show the other direction, which crucially relies on the assumed compatibility
of the topologies, τA|A∩B = τB|A∩B. For any V ∈ τA, we have V ∩ B ∈ τA|A∩B = τB|A∩B,
so that there exists W ∈ τB with W ∩ A = V ∩ B. Then putting U = V ∪W gives
U ∩A = (V ∩A) ∪ (W ∩A) = V ∪ (V ∩B) = V , and similarly U ∩B = W , which shows
that U ∈ g(τA, τB).

For the back-and-forth axiom 4.10(b), we need to show that for any A′ ⊆ A with
A′ ∪B = A ∪B = C, the diagram

T (A′)×T (A′×CB) T (B)
g

//

g

��

T (C)

T (C) // T (A)×T (A×CB) T (B)

g

OO
(5.5)

commutes. In a manner similar to the proof of (5.4), it can be shown that

g(τA′ , τB)|A =
{
U ′ ⊆ A

∣∣ U ′ ∩ A′ ∈ τA′ , ∃V ∈ τB s.t. U ′ ∩B = V ∩ A
}
.

This lets us evaluate the “long” composition in (5.5) to

g
(
g(τA′ ,τB)|A, g(τA′ , τB)|B

)
= g
(
{U ′ ⊆ A

∣∣ U ′ ∩ A′ ∈ τA′ , ∃V ∈ τB s.t. U ′ ∩B = V ∩ A}, τB
)

= {U ⊆ C | U ∩ A ∩ A′ ∈ τA′ , ∃ V ∈ τB s.t. U ∩ A ∩B = V ∩ A, U ∩B ∈ τB}

= {U ⊆ C | U ∩ A′ ∈ τA′ , U ∩B ∈ τB}.

For the last equality, we use that the inclusion “⊆” is trivial, while for the inverse inclusion
“⊇” we simply pick V := U ∩B. Therefore g(g(τA′ , τB)|A, g(τA′ , τB)|B) = g(τA′ , τB), which
is commutativity of the above diagram.

In the partial naturality axiom 4.10(c), we have another bicovering C ′ = A′ ∪B′ and
a map q : C ′ → C such that q(A′) ⊆ A, q(B′) ⊆ B and q|A′∩B′ : A′ ∩ B′ → A ∩ B is
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surjective. We need to show that the diagram

T (A)×T (A×CB) T (B)
g

//

��

T (C)

��

T (A′)×T (A′×C′B
′) T (B′)

g
// T (C ′)

commutes. The two compositions in this square evaluate to

g(τA, τB)q = {U ⊆ C | U ∩ A ∈ τA, U ∩B ∈ τB}q

= {q−1(U) | U ⊆ C, U ∩ A ∈ τA, U ∩B ∈ τB}
(5.6)

and

g(τA q|A′ ,τB q|B′) = {U ′ ⊆ C ′ | U ′ ∩ A′ ∈ τAq|A′ , U ′ ∩B′ ∈ τBq|B′}

= {U ′ ⊆ C ′ | ∃V ∈ τA s.t. q−1(V ) ∩ A′ = U ′ ∩ A′,

∃W ∈ τB s.t. q−1(W ) ∩B′ = U ′ ∩B′ },

(5.7)

respectively. For a given U ′ in (5.7) with associated V and W we obtain, using the
surjectivity assumption q−1(A ∩B) = A′ ∩B′,

q−1(W ∩A) = q−1(W ∩A∩B) = (U ′ ∩B′)∩ (A′ ∩B′) = U ′ ∩A′ ∩B′ = . . . = q−1(V ∩B),

where the dots indicate steps analogous to the first half. Again by surjectivity of q
on the intersection, we can “cancel” q−1, which results in W ∩ A = V ∩ B. Therefore
V ∪W ∈ g(τA, τB), since (V ∪W )∩A = V ∪(W ∩A) = V ∈ τA and similarly (V ∪W )∩B =
(V ∩B) ∪W = W ∈ τB. Moreover,

q−1(V ) ∩B′ ⊆ q−1(V ∩B) = q−1(W ∩ A) = U ′ ∩ A′ ∩B′,

and similarly q−1(W )∩A′ ⊆ U ′ ∩A′ ∩B′. Together with (5.7), this is relevant for proving
the third equality in

q−1(V ∪W ) = q−1(V ) ∪ q−1(W )

= (q−1(V ) ∩ A′) ∪ (q−1(V ) ∩B′) ∪ (q−1(W ) ∩ A′) ∪ (q−1(W ) ∩B′)

= (U ′ ∩ A′) ∪ (U ′ ∩B′) = U ′.

This shows that U ′ is indeed an element of in g(τA, τB)q.
For the reverse inclusion of (5.6) in (5.7), we start with any q−1(U) ∈ g(τA, τB)q, so that

we know that V = U∩A ∈ τA and W = U∩B ∈ τB. Then q−1(V )∩A′ = q−1(U∩A)∩A′ =
q−1(U) ∩ q−1(A) ∩A′ = q−1(U) ∩A′, and similarly q−1(W ) ∩B′ = q−1(U) ∩B′. Therefore
q−1(U) ∈ g(τA q|A′ , τB q|B′).
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6. Further directions

Here we would like to present some possible ideas for future research.

Compositories.

Nerves of categories and compatibility with face maps. As we saw in Section 3,
the nerve of a (small) category is a compository which satisfies compatibility of composition
with all face maps, including (2.17), which typically does not hold in other compositories.
The question is now if the converse is true: is a compository satisfying (2.17) isomorphic
to the nerve of a category?

Fundamental compositories and homotopy type theory. Recall the definition of
the fundamental ∞-groupoid Π(X), in its Kan complex version:

6.1. Definition. [e.g. [20]] Let X be a topological space. The fundamental ∞-groupoid
Π(X) is the simplicial set with n-simplices

Π(X)(n) := Top(∆n, X),

where ∆n is the geometric realisation of the n-simplex.

Here, the face and degeneracy maps are induced from considering the assignment
[n] 7→ ∆n as a functor ∆op → Topsop.

It is an interesting question whether Π(X) carries the structure of a compository. The
most natural way of turning Π(X) : ∆op → Sets into a compository would be for the
(co-)presheaf ∆op → Topsop to carry the structure of a gleaf, i.e. if there existed a family
of continuous maps

∆m+n−k −→ ∆m q∆k
∆n

satisfying a list of axioms dual to those for compositories.
On a related note, we might consider types in homotopy type theory [41] rather than

topological spaces. These types are usually regarded to be globular ∞-groupoids [10,30]
in the sense of Batanin and Leinster [8,28]. Now a natural question is, is there a variant of
homotopy type theory in which the types naturally carry the structure of a compository?

First of all, this would require the higher identity terms over a type to form a simplicial
set rather than a globular set. Obtaining a simplicial set of higher identity terms will
require a departure from the usual “binary” identity types idA(a, b) taking two arguments
only, allowing for the introduction of arbitrary n-ary identity types idA(a1, . . . , an); such
identity types can also be defined as inductive types generated by reflexivity terms. This
leads to the question, what will be the resulting algebraic structure on the collection of all
such (higher) identity terms?

Dagger compositories and symmetric compositories. In many of our examples
of compositories C, there is a canonical way of assigning to a simplex S ∈ C(m) other
simplices of the same dimension which are obtained by permuting the vertices of S. For
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example in a compository of higher spans (Section 3), this applies to the “mirror image”
S† of any higher span S obtained by precomposing S : Spm → C with the “reflection”

Spm → Spm, (v, w) 7→ (m− w,m− v).

In this way, we expect that a compository of higher spans is actually a dagger compository,
just as an ordinary category of spans is a dagger category [33].

In our examples of metric spaces (Section 3) and joint probability distributions (Sec-
tion 3), there is even more symmetry: the vertices of any simplex can be permuted
arbitrarily, and hence the symmetric group Sm acts on the set of m-simplices C(m). This
should correspond to a notion of symmetric compository, which we expect to be a gleaf of
type FinSetsop

6=∅ → Sets, where FinSets 6=∅ stands for the category of non-empty finite sets.

Hyperstructures. The hyperstructures of Baas [6] are mathematical abstractions of
collections of systems which may form bonds, e.g. chemical bonds between atoms, and
also bonds between bonds etc. We imagine that compositories may provide an alternative
to hyperstructures and/or a related approach to systems that have the potential to form
bonds: upon taking the systems to be the 0-simplices in a compository, and an n-system
bond to be an (n − 1)-simplex between its n constituent systems as vertices, we might
obtain a composition operation on those bonds which could turn them into a compository.

A self-referential theory of compositories? The fundamental nature of category
theory gets reflected in the self-referential character of category theory, such as the fact
that categories themselves form a category. Can one develop a theory of compositories
in a similarly self-referential manner? For example, is it possible to define a sensible
“compository of compositories”? Doing this would require one to temporarily forget about
category theory completely and to try and adapt a different mindset which moves the
focus from functions having a given domain and codomain to relations of arbitrary finite
arity in which the distinction between domain and codomain is blurred.

Gleaves.

Gleaves and monoidal structures. The definition of gleaf 4.10 closely resembles that
of lax monoidal functors. Can this analogy be made more precise? If monoidal structures
on categories generalise binary products, then what generalises pullbacks?

Gluing more than two local sections. The gluing operation, which is part of the
structure of a gleaf, glues pairs of local sections only; and, as we have frequently noted
in the examples, three or more local sections can in general not be consistently extended
at all. However, when the different sets or objects, on which the given local sections live,
intersect in a certain particularly nice way, then a canonical extension is indeed possible
and can be constructed from repeated application of the gluing operation in a unique way.
The associativity result of Proposition 4.13 is a particular example of this. See the work
of Vorob’ev [44] for some ideas of how all this works in the case of the joint probability
distributions gleaf (P , g) of Section 5.
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We plan to investigate all this in more detail in a follow-up to this article; this should
contain in particular a generalisation of Vorob’ev’s theorem and a theorem stating how
any local section of a gleaf gives rise to a semi-graphoid [16], also generalising from the
well-studied structure of the joint probability distributions example.

Gleaves and fibred categories. In many of our examples of Sets-valued gleaves, e.g. in
the metric space example (Section 5), the values of the presheaf have actually more
structure than merely being sets; we suspect that they really should be considered as
posets or even categories. For example, we may say that two metrics d1, d2 on a set X
satisfy d1 ≤ d2 if and only if d1(x, y) ≤ d2(x, y) for all x, y ∈ X. Then, the gluing operation
in the metric space example has a universal property: it arises as the smallest metric,
relative to this ordering, which restricts to the given ones on the subsets. Do the gluing
operations of all our examples of gleaves have universal properties? If so, does this imply
that the notion of gleaf should not be considered fundamental in any sense?

More generally, one can consider the category Mets of metric spaces (without the
non-degeneracy axiom) and distance-nonincreasing functions as a fibred category over
Sets [43]. How does this relate to the gleaf of metric spaces? Under which conditions does
a fibred category give rise to a gleaf?

Enriched categories as gleaves4. On a related note, upon regarding metric spaces
(without the symmetry and non-degeneracy axioms) as enriched categories [27], the
putative universal property of the gluing operation is likely to correspond to a certain
(co-)limit in the symmetric monoidal base category ([0,∞),≥,+). Can this be generalised
to enrichment over an arbitrary suitably (co-)complete symmetric monoidal small base
category V? More precisely, let ΓV : Setsop → Sets be the presheaf which assigns to every
set X the set of all V-categories having X as their underlying set of objects. Can this
presheaf be turned into a gleaf in a natural way?

Gleaves as models of a sketch. The proof of Theorem 4.21 exhibits a gleaf over the
base category considered there as a model of a sketch (4.17). Can this construction be
generalised for gleaves over any small category with bicoverings? Alternatively, we could
also ask whether the category of gleaves over a small base is accessible [5].
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[26] Stephen Lack and Pawe l Sobociński, Adhesive categories, Foundations of software science and
computation structures, 2004, pp. 273–288.

[27] F. William Lawvere, Metric spaces, generalized logic, and closed categories, Reprints in Theory and
Applications of Categories 1 (2002), 1–37.

987

../../../../../arxiv.org/abs/1112.0040
../../../../../arxiv.org/abs/1409.0837
../../../../../https@ncatlab.org/nlab/show/Globular#singularities
../../../../../https@nforum.ncatlab.org/discussion/6829/globular/@Focus=56460#Comment_56460


Theory and Applications of Categories, Vol. 31, No. 33, 2016, pp. 988–988.

[28] Tom Leinster, A survey of definitions of n-category, Theory Appl. Categ. 10 (2002), no. 1, 1–70.

[29] , Higher operads, higher categories, London Mathematical Society Lecture Note Series, vol. 298,
Cambridge University Press, 2004.

[30] Peter LeFanu Lumsdaine, Weak ω-categories from intensional type theory, Logical Methods in
Computer Science 6 (2010), no. 3:24, 1–19.

[31] Saunders Mac Lane, Categories for the working mathematician, Second edition, Graduate Texts in
Mathematics, vol. 5, Springer-Verlag, New York, 1998.

[32] Saunders Mac Lane and Ieke Moerdijk, Sheaves in geometry and logic, Universitext, Springer-Verlag,
New York, 1994. A first introduction to topos theory, Corrected reprint of the 1992 edition.

[33] nLab, dagger-category. ncatlab.org/nlab/show/dagger-category, retrieved on 88/08/2013.

[34] , exact square. ncatlab.org/nlab/show/exact+square#characterization 15, retrieved on
15/08/2013.

[35] Prakash Panangaden, The category of Markov kernels, PROBMIV’98: First International Workshop
on Probabilistic Methods in Verification (Indianapolis, IN), 1999, pp. 17 pp. (electronic).

[36] Emily Riehl, A leisurely introduction to simplicial sets. math.jhu.edu/∼eriehl/ssets.pdf, retrieved on
20/10/2016.

[37] Dana Scott, Outline of a mathematical theory of computation, Technical Monograph PRG-2, 1970.

[38] Graeme Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. 34
(1968), 105–112.

[39] Richard Steiner, The algebra of the nerves of omega-categories, Theory Appl. Categ. 28 (2013), no. 23,
733–779.

[40] Ross Street, The algebra of oriented simplexes, J. Pure Appl. Alg. 49 (1987), 283–335.

[41] The Univalent Foundations Program, Homotopy Type Theory, Institute for Advanced Study, 2013.

[42] Dominic Verity, Complicial sets characterising the simplicial nerves of strict ω-categories, Mem.
Amer. Math. Soc. 193 (2008), no. 905, xvi+184 pp.

[43] Angelo Vistoli, Notes on Grothendieck topologies, fibered categories and descent theory, 2004.
arXiv:math.AG/0412512.

[44] N. N. Vorob’ev, Consistent families of measures and their extensions, Theory of Probability and its
Applications 7 (1962), no. 2, 147-163.

Perimeter Institute for Theoretical Physics
Waterloo, Ontario, Canada
Email: cflori@waikato.ac.nz

fritz@mis.mpg.de

This article may be accessed at http://www.tac.mta.ca/tac/

988

../../../../../ncatlab.org/nlab/show/dagger-category
../../../../../ncatlab.org/nlab/show/exact+square#characterization_15
../../../../../www.math.jhu.edu/~eriehl/ssets.pdf
../../../../../arxiv.org/abs/math.AG/0412512


THEORY AND APPLICATIONS OF CATEGORIES (ISSN 1201-561X) will disseminate articles that
significantly advance the study of categorical algebra or methods, or that make significant new contributions
to mathematical science using categorical methods. The scope of the journal includes: all areas of pure
category theory, including higher dimensional categories; applications of category theory to algebra,
geometry and topology and other areas of mathematics; applications of category theory to computer
science, physics and other mathematical sciences; contributions to scientific knowledge that make use of
categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted for
publication.
Full text of the journal is freely available from the journal’s server at http://www.tac.mta.ca/tac/. It
is archived electronically and in printed paper format.

Subscription information Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. For
institutional subscription, send enquiries to the Managing Editor, Robert Rosebrugh, rrosebrugh@mta.ca.

Information for authors The typesetting language of the journal is TEX, and LATEX2e is
required. Articles in PDF format may be submitted by e-mail directly to a Transmitting Editor. Please
obtain detailed information on submission format and style files at http://www.tac.mta.ca/tac/.

Managing editor. Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca

TEXnical editor. Michael Barr, McGill University: barr@math.mcgill.ca

Assistant TEX editor. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin seal@fastmail.fm

Transmitting editors.
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