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RELATIVE SYMMETRIC MONOIDAL CLOSED CATEGORIES I:
AUTOENRICHMENT AND CHANGE OF BASE

Dedicated to G. M. Kelly on the occasion of the fiftieth anniversary
of the La Jolla Conference on Categorical Algebra, 1965

RORY B. B. LUCYSHYN-WRIGHT

Abstract. Symmetric monoidal closed categories may be related to one another not
only by the functors between them but also by enrichment of one in another, and it was
known to G. M. Kelly in the 1960s that there is a very close connection between these
phenomena. In this first part of a two-part series on this subject, we show that the
assignment to each symmetric monoidal closed category V its associated V -enriched
category V extends to a 2-functor valued in an op-2-fibred 2-category of symmetric
monoidal closed categories enriched over various bases. For a fixed V , we show that
this induces a 2-functorial passage from symmetric monoidal closed categories over V
(i.e., equipped with a morphism to V ) to symmetric monoidal closed V -categories over
V . As a consequence, we find that the enriched adjunction determined a symmetric
monoidal closed adjunction can be obtained by applying a 2-functor and, consequently,
is an adjunction in the 2-category of symmetric monoidal closed V -categories.

1. Introduction

In Grothendieck’s approach to algebraic geometry, one studies spaces over a given base
space S, and particularly schemes (or algebraic spaces, or stacks) over a base scheme S,
thus working within the slice category Sch/S, and then change of base along a morphism
becomes important. This relative point of view, coupled with Grothendieck’s practice of
studying a space by means of the category of sheaves thereupon, also led to a relative
point of view on categories, from which sprouted the notions of fibred category [7] and
indexed category, and the study of toposes over a base.

Another distinct notion of relative category is the concept of enriched category, which
arose with the observation that in many categories C the set C (C,D) of all morphisms
between objects C and D of C is merely the ‘underlying set’ of some more substantially
structured mathematical object, such as an abelian group, simplicial set, or cochain com-
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plex, and so is but a pale shadow of an object C (C,D) of another category V . The notion
of V -enriched category developed through the work of several authors in the first half of
the 1960s, and a comprehensive basis for the study of V -categories was expounded by
Eilenberg and Kelly in the proceedings of the 1965 Conference on Categorical Algebra at
La Jolla [5]. The latter work made it clear that the theory of V -categories gains consid-
erable depth when V is itself V -enriched, so that V is a closed category. We denote the
resulting V -category by V and call it the autoenrichment of V .

For example, given a scheme S, the following are closed categories and so are enriched
in themselves; see, e.g., [13, 3.5.2] for (ii) and (iii).

(i) The category of sheaves Shv(S) for, say, the small Zariski site of S.

(ii) The category OS-Mod of (sheaves of) OS-modules.

(iii) The derived category D(OS-Mod).

While the hom operation on OS-modules witnesses that OS-Mod is closed, the related
tensor product ofOS-modules makes this category symmetric monoidal closed. As a topos,
Shv(S) is also symmetric monoidal closed, but with the cartesian product of sheaves ×
playing the role of monoidal product. Now letting X be a scheme over S, via g : X → S,
and taking

(i) M = Shv(X), V = Shv(S),

(ii) M = OX-Mod, V = OS-Mod, or

(iii) M = D(OX-Mod), V = D(OS-Mod)

we obtain in each case a morphism of symmetric monoidal closed categories

G : M −→ V ,

i.e., a symmetric monoidal (closed) functor, namely the direct image functor g∗, which
participates with the corresponding inverse image functor F = g∗ in a symmetric monoidal
(closed) adjunction F a G : M → V (11.4). As was observed by Eilenberg and Kelly in
a general setting [5, I 6.6], M therefore acquires the structure of a V -enriched category,
and G becomes a V -enriched functor; moreover the adjunction becomes V -enriched [9,
5.1]. In fact, all the symmetric monoidal closed structure involved becomes entirely V -
functorial and V -natural, so that M is a symmetric monoidal closed V -category and
F a G a symmetric monoidal closed V -adjunction (11.2).

In Part I of the present work, we study several aspects of the rather subtle 2-functo-
riality of the autoenrichment assignment V 7→ V , as well as the 2-functoriality of related
processes by which a symmetric monoidal closed category may acquire enrichment in an-
other. The present paper shall provide the basis for a 2-functorial study in Part II of
the relations between the following three notions of relative symmetric monoidal closed
category, and variations thereupon:



140 RORY B. B. LUCYSHYN-WRIGHT

1. Symmetric monoidal closed categories M equipped with a morphism M → V .

2. Symmetric monoidal closed V -categories M .

3. The fully V -enriched analogue of 1.

In Part II we shall establish several equivalences of 2-categories that provide elaborations
and variations on a seemingly unpublished result of G. M. Kelly in this regard [17], and
we shall accord particular attention to those cases in which the morphism M → V is
equipped with a left adjoint. The categories of algebras of suitable commutative monads
on V constitute a broad class of examples of such categories M [12], [14, 5.5.4, 5.5.7].

In order to understand the sense in which autoenrichment is 2-functorial, let us return
to the above example of a scheme X over a base scheme S. The direct image functor
G : M → V determines a change-of-base 2-functor

G∗ : M -CAT −→ V -CAT

from the 2-category of M -categories to the 2-category of V -categories ([5, I 10.5]). By
applying G∗ to the autoenrichment M we find that M is V -enriched; for example, when
M = OX-Mod, the V -valued hom-objects for G∗M are the OS-modules

(G∗M )(M,N) = g∗(HomOX
(M,N)) (M,N ∈ OX-Mod).

Further, G determines a V -functor1

G̀ : G∗M −→ V .

The same is true for an arbitrary symmetric monoidal closed functor G (as was observed
by Eilenberg and Kelly), and the assignment G 7→ G̀ can be seen as functorial as soon as
we construe G̀ not as a mere V -functor but as a 1-cell over G in an op-2-fibred 2-category
of categories enriched over various bases, as follows. Eilenberg and Kelly showed that the
assignment G 7→ G∗ gives rise to a 2-functor

(−)-CAT : SMCCAT −→ 2CAT, V 7→ V -CAT

from the 2-category SMCCAT of symmetric monoidal closed categories to the 2-cate-
gory 2CAT of 2-categories. Through a variation on Grothendieck’s construction of the
fibred category determined by a pseudofunctor, work of Baković and of Buckley [2] on
2-fibrations entails that the latter 2-functor determines an op-2-fibration∫

(−)-CAT −→ SMCCAT , (V ,C ) 7→ V

where
∫

(−)-CAT is a 2-category whose objects are pairs (V ,C ) consisting of a symmetric
monoidal closed category V and a V -category C ; see 2.3.

1In [5] the notation ÒG is used, but we shall see a reason for the present notation G̀ in 11.2 and 11.3.
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As we shall see, the autoenrichment then extends to a 2-functor

SMCCAT −→
∫

(−)-CAT , V 7→ (V ,V )

valued in the 2-category
∫

(−)-CAT of categories enriched over various bases.
But the autoenrichment V of a symmetric monoidal closed category V is not merely

an enriched category but in fact a symmetric monoidal closed V -category. Therefore, we
show that the autoenrichment in fact yields a 2-functor

SMCCAT −→
∫

(−)-SMCCAT , V 7→ V

valued in a 2-category
∫

(−)-SMCCAT of symmetric monoidal closed V -categories for
various bases V . In order to define the latter 2-category, we must first study change of
base for symmetric monoidal closed V -categories. Using general theory of pseudomonoids,
we show that there is a 2-functor

(−)-SMCCAT : SMCCAT −→ 2CAT , V 7→ V -SMCCAT

sending V to the 2-category V -SMCCAT of symmetric monoidal closed V -categories. By
applying the Baković-Buckley-Grothendieck construction to this 2-functor we therefore
obtain an op-2-fibration∫

(−)-SMCCAT −→ SMCCAT , (V ,M ) 7→ V

where
∫

(−)-SMCCAT is a 2-category whose objects (V ,M ) consist of a symmetric
monoidal closed category V and a symmetric monoidal closed V -category M .

Since the description of 2-cells and pasting in
∫

(−)-SMCCAT is quite complicated,
the 2-functoriality of the autoenrichment is therefore a correspondingly subtle matter.
Several useful lemmas, such as the V -enriched monoidality of G̀, are enfolded within the
resulting 2-functorial autoenrichment.

For a fixed symmetric monoidal closed category V , we show that the autoenrichment
induces a 2-functorial passage from symmetric monoidal closed categories M over V (i.e.,
equipped with a morphism M → V ) to symmetric monoidal closed V -categories over the
autoenrichment V . Explicitly, we obtain a 2-functor

EnrV : SMCCAT �V −→ V -SMCCAT � V

between the lax slices2 over V in SMCCAT and V -SMCCAT respectively, sending each
object G : M → V of the former 2-category to the object G̀ : G∗(M )→ V of the latter.
For example, given a scheme X over S, the category M = OX-Mod of OX-modules
is a symmetric monoidal closed category over V = OS-Mod and, via this 2-functor, is
moreover a symmetric monoidal closed V -category over V .

2We use the term lax slice here for what some authors quite rightly call the colax slice 2-category
(10.1).
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Given a symmetric monoidal closed adjunction F a G : M → V , Kelly showed
that the associated V -functor G̀ has a left V -adjoint [9, 5.1]. Herein we show that an
associated symmetric monoidal closed V -adjunction

F́ a G̀ : G∗(M ) −→ V

can be obtained simply by applying the composite 2-functor

SMCCAT �V
EnrV // V -SMCCAT � V // V -SMCCAT

to the adjunction (F, η) a (G, 1G) : (M , G)→ (V , 1V ) in SMCCAT �V . For example, for
a scheme X over S, the adjoint pair g∗ a g∗ : OX-Mod → OS-Mod carries the structure
of a symmetric monoidal closed V -adjunction for V = OS-Mod.

2. Split 2-fibrations

In [8], Hermida defined a notion of 2-fibration and used it to study fibred categories as the
objects of a 2-category Fib fibred over the 2-category Cat of small categories. Building
also on work of Baković, Buckley [2] established for 2-fibrations a suitable analogue of
Grothendieck’s correspondence between fibrations and certain pseudofunctors [7], finding
that it was necessary to slightly modify Hermida’s definition. Along with the resulting
notion of 2-fibration, one has also the dual notions of op-2-fibration, co-2-fibration, and
coop-2-fibration [2, 2.2.14]. In §9.1, we will apply the Baković-Buckley-Grothendieck
construction (2.3) in order to define an op-2-fibred 2-category of symmetric monoidal
closed V -categories enriched over various bases V . A 2-functor P : F → K is said to
be an op-2-fibration if the 2-functor P op : F op → K op is a 2-fibration. We shall now
explicitly state the definition of this notion in terms of the notions of cocartesian 1-cell
and cartesian 2-cell.

2.1. Definition. Let P : F → K be a 2-functor.

1. Given a 1-cell f : A→ B in F , an extension problem for f (relative to P ) is a triple
(f, α, β) in which α : g ⇒ h : A→ C is a 2-cell in F and β : k ⇒ ` : PB → PC is
a 2-cell in K such that the equation of 2-cells β ◦ Pf = Pα holds3. A solution to
(f, α, β) is a 2-cell β′ : k′ ⇒ `′ : B → C in F such that β′ ◦ f = α and Pβ′ = β.

2. A 1-cell f in F is cocartesian (with respect to P ) if every extension problem for f
has a unique solution.

3. Given a 2-cell φ : f ⇒ g : A → B in F , a lifting problem for φ (relative to P ) is a
triple (φ, γ, κ) where γ : h⇒ g is a 2-cell in F , κ : Ph⇒ Pf is a 2-cell in K , and
Pφ · κ = Pγ. A solution to (φ, γ, κ) is a 2-cell κ′ : h⇒ f in F such that φ · κ′ = γ
and Pκ′ = κ.

3We interpret such an equation of 2-cells as asserting also that the domain (resp. codomain) 1-cells
are equal, i.e. that k ◦ Pf = Pg and ` ◦ Pf = Ph.
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4. A 2-cell φ : f ⇒ g : A → B in F is cartesian if every lifting problem for φ has
a unique solution, i.e. if φ is a cartesian arrow for the ordinary functor PAB :
F (A,B)→ K (PA, PB).

5. P is an op-2-fibration if (i) for every 1-cell k : K → L in K and every object A
over K in F (i.e., with PA = K), there exists a cocartesian 1-cell A → B over k
in F , (ii) for every 2-cell κ : k ⇒ ` : K → L in K and every 1-cell g : A→ B over
` in F , there exists a cartesian 2-cell f ⇒ g : A → B over κ in F , and (iii) the
cartesian 2-cells are closed under whiskering with arbitrary 1-cells.

6. P is a cloven op-2-fibration if P is an op-2-fibration equipped with a specified choice
of cocartesian 1-cells and cartesian 2-cells. Given data as in 5(i) and 5(ii) above, we
write the associated cocartesian 1-cell as ψ(k,A) : A → k∗(A) and the associated
cartesian 2-cell as ϕ(κ, g) : κ∗(g) ⇒ g. We say that a 1-cell f : A → B in F is a
designated cocartesian 1-cell if f = ψ(Pf,A), and we say that a 2-cell φ : f ⇒ g in
F is a designated cartesian 2-cell if φ = ϕ(Pφ, g).

7. P is a split op-2-fibration if P is a cloven op-2-fibration such that the designated
cocartesian 1-cells are closed under composition, the designated cartesian 2-cells are
closed under vertical composition and under whiskering with arbitrary 1-cells, and
the designated cocartesian (resp. cartesian) 1-cell (resp. 2-cell) associated to an
identity 1-cell (resp. 2-cell) is again an identity 1-cell (resp. 2-cell).

2.2. If f : A → B is a cocartesian 1-cell with respect to P : F → K , then f is a
cocartesian arrow with respect to the underlying ordinary functor of P . Indeed, given
1-cells g : A→ C in F and k : PB → PC in K with k◦Pf = Pg, the extension problem
(f, 1g, 1k) for f has a unique solution, and one readily finds that this solution must in fact
be the identity 2-cell for a unique 1-cell k′ : B → C with k′ ◦ f = g and Pk′ = k. We
write such an extension problem as simply (f, g, k).

2.3. (The Baković-Buckley-Grothendieck construction). By Buckley’s work [2], there is
a correspondence between

(1) 2-functors Φ : K → 2CAT, and

(2) split op-2-fibrations P : F → K

where 2CAT denotes the 2-category of 2-categories. In fact, [2, 2.2.11] establishes an
equivalence of 3-categories relating 2CAT-valued 2-functors on K coop to 2-fibrations
F → K , from which a similar equivalence between (1) and (2) then follows, through an
adaptation that we shall now discuss. Here we shall require only the passage from (1) to
(2), which is a variation on Grothendieck’s construction of the fibration associated with
a CAT-valued pseudofunctor [7]. Whereas Buckley [2, 2.2.1] constructs the 2-fibration
associated to a 2-functor K coop → 2CAT, if instead given a 2-functor Φ : K → 2CAT
one can apply Buckley’s construction to the composite

(K op)coop = K co Φco

−−→ 2CATco (−)op

−−−→ 2CAT (2.3.i)
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in order to obtain a 2-fibration Q : G → K op and thus an op-2-fibration P :
∫

Φ→ K by
taking

∫
Φ = G op and P = Qop. The fibre 2-category P−1(K) over each object K ∈ K is

then isomorphic to ΦK.
Explicitly, the objects of

∫
Φ are pairs A = (A↓, A↑) consisting of an object A↓ ∈ K

and an object A↑ ∈ Φ(A↓). The 1-cells A → B in
∫

Φ are pairs f = (f ↓, f ↑) consisting
of a 1-cell f ↓ : A↓ → B↓ in K and a 1-cell f ↑ : f ↓∗(A

↑) → B↑ in Φ(B↓), where we write
f ↓∗ = Φ(f ↓) : Φ(A↓)→ Φ(B↓). The composite of 1-cells

A
f−→ B

g−→ C

in
∫

Φ is the pair consisting of the composite g↓f ↓ : A↓ → C↓ in K together with the
composite

(g↓f ↓)∗(A
↑) = g↓∗f

↓
∗(A

↑)
g
↓
∗(f
↑)−−−→ g↓∗(B

↑)
g↑−→ C↑

in Φ(C↓).
A 2-cell f ⇒ g : A→ B in

∫
Φ is a pair α = (α↓, α↑) consisting of a 2-cell α↓ : f ↓ ⇒ g↓

in K together with a 2-cell

f ↓∗(A
↑)

α
↓
∗A
↑
��

f↑

''
g↓∗(A

↑)
g↑

// B↑

α↑
u}

(2.3.ii)

in Φ(B↓), where we write α↓∗ = Φ(α↓) : f ↓∗ ⇒ g↓∗. Vertical composition of 2-cells in
∫

Φ
is given by taking the vertical composite of the associated 2-cells in K and pasting the
2-cells (2.3.ii) in the relevant fibre 2-category. Whiskering in

∫
Φ is given as follows. Given

A
f // B

g

))

h

55 C
u // Dα��

in
∫

Φ, the associated 2-cell αf : gf ⇒ hf in
∫

Φ consists of the 2-cell α↓f ↓ : g↓f ↓ ⇒ h↓f ↓

in K together with the composite 2-cell

g↓∗f
↓
∗(A

↑)

(α↓f↓)∗A↑ = α
↓
∗f
↓
∗ (A↑)

��

g
↓
∗(f
↑) // g↓∗(B

↑)

α
↓
∗B
↑
��

g↑

''
h↓∗f

↓
∗(A

↑)
h
↓
∗(f
↑)
// h↓∗(B

↑)
h↑

// C↑

α↑
u}

in Φ(C↓), in which the indicated identity 2-cell is obtained by the naturality of α↓∗. The
associated 2-cell uα : ug ⇒ uh in

∫
Φ consists of the 2-cell u↓α↓ : u↓g↓ ⇒ u↓h↓ in K
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together with the composite 2-cell

u↓∗g
↓
∗(B

↑)

(u↓α↓)∗B↑ = u
↓
∗α
↓
∗B
↑
��

u
↓
∗(g
↑)

((
u↓∗h

↓
∗(B

↑)
u
↓
∗(h
↑)

// u↓∗(C
↑) u↑ // D↑

u∗(α↑)
s{

in Φ(D↓).
In

∫
Φ, the designated cocartesian 1-cell ψ(k,A) : A → k∗(A) associated to a 1-cell

k : K → L in K and an object A = (K,A↑) of
∫

Φ is defined as (k, 1k∗(A↑)) : (K,A↑) →
(L, k∗(A

↑)). The designated cartesian 2-cell ϕ(κ, g) : κ∗(g) ⇒ g associated to a 2-cell
κ : k ⇒ ` of K and a 1-cell g : A→ B over ` in

∫
Φ is defined as (κ, 1) : (k, g↑ ◦ κ∗A↑)⇒

(`, g↑) = g.

3. Monoidal and enriched categories

We shall employ the theory of monoidal categories, closed categories, and categories en-
riched in a monoidal category V , as expounded in [5, 11]. Unless otherwise indicated,
we shall denote by V a given closed symmetric monoidal category. Since we will avail
ourselves of enrichment with respect to each of multiple given categories, we shall include
an explicit indication of V when employing notions such as V -category, V -functor, and
so on, omitting the prefix V only when concerned with the corresponding notions for
non-enriched or ordinary categories. Whereas the arrows f : A → A′ of the underlying
ordinary category A0 of a V -category A are, concretely, arrows I → A (A,A′) in V , we
nevertheless distinguish notationally between f and the latter arrow in V , which we write
as [f ] and call the name of f . We denote by V -CAT the 2-category of all V -categories.

3.1. Given a closed symmetric monoidal category V , we denote by V the canonically
associated V -category whose underlying ordinary category is isomorphic to V (and shall
be identified with V whenever convenient); in particular, the internal homs in V will
therefore be denoted by V (V1, V2). The canonical ‘evaluation’ morphisms V1⊗V (V1, V2)→
V2 are denoted by EvV1V2 , or simply Ev.

3.2. In general, the ordinary categories considered in this paper are not assumed locally
small. Hence whereas we would ideally like to be able to consider all ordinary categories
as SET-enriched for a single fixed category SET of classes (in an informal sense), we
will instead fix a cartesian closed category SET of sets or classes and tacitly assume that
certain given ordinary categories are SET-enriched. Hence although ideally we would
denote by CAT the category of all categories, and by MCAT, SMCAT, and SMCCAT
the 2-categories of all monoidal, symmetric monoidal, and symmetric monoidal closed
categories, we will instead employ these names to denote the full sub-2-categories thereof
whose objects are SET-enriched categories. We will denote by 2CAT the 2-category of all
2-categories. The reader who objects may instead take SET to be the usual category of sets
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and fix a Grothendieck universe U with respect to which SET is U-small, then take CAT,
MCAT, SMCAT to consist of just the locally small U-small categories, taking V -CAT for
V ∈ MCAT to consist of all U-small V -categories. One can then fix a larger universe U′

containing U and take 2CAT to instead be the 2-category of U′-small 2-categories, noting
that the 2-categories CAT and V -CAT will then be objects of 2CAT.

4. Pseudomonoids and monoidal V -categories

Recall that a monoidal category is a category M equipped with functors
⊗ : M ×M →M , IM : 1 → M and natural isomorphisms a, `, r such that certain
diagrams commute. Fixing a symmetric monoidal category V and instead considering a
given V -category M with V -functors ⊗ : M ⊗M → M , IM : I → M and V -natural
isomorphisms a, `, r such that the formally analogous diagrams commute, one obtains
the notion of monoidal V -category, and similarly, the notion of symmetric monoidal V -
category, equipped with a V -natural symmetry s. Here we have employed the tensor
product A ⊗B of V -categories A ,B, and the unit V -category I, which are part of a
symmetric monoidal structure on the category V -CAT of V -categories.

In fact, V -CAT is a symmetric monoidal 2-category [11, §1.4], that is, a symmetric
monoidal CAT-category4 where CAT denotes the cartesian monoidal category of all cat-
egories5. Monoidal 2-categories and the more general monoidal bicategories have been
studied by several authors, e.g. [6, 4, 15, 16]. The notion of monoidal V -category can be
defined entirely in terms of the structure of V -CAT as a monoidal 2-category, so that a
monoidal V -category is equally a pseudomonoid in the monoidal 2-category V -CAT. By
definition, a pseudomonoid in an arbitrary monoidal 2-category K consists of an object
M of K with 1-cells • : M ⊗M →M , i : I→M and invertible 2-cells a, `, r subject to
certain equations of 2-cells; a definition is given in [15], generalizing slightly the definition
given in [4] for K instead a Gray monoid. The associativity and left-unit 2-cells a, `
assume the following forms when we omit the associativity 1-cells in K and write λ for
the relevant left-unit 1-cell in K ,

M ⊗M ⊗M

•⊗1
��

1⊗• //M ⊗M

•
��

I⊗M

i⊗1
��

λ

��
M ⊗M

a

•
//M M ⊗M •

//M

a 2: ` 9A

and the right-unit 2-cell r takes an analogous form. When K is a symmetric monoidal 2-
category and so carries a symmetry σA B : A ⊗B → B⊗A (A ,B ∈ K ), a pseudomonoid
M in K is said to be symmetric if it is equipped with a 2-cell s from M ⊗M

•−→M to
M ⊗M

σMM−−−→M ⊗M
•−→M satisfying certain equations [15].

4Whereas the term symmetric monoidal 2-category is interpreted in a more general sense in [6, 15] as
denoting a symmetric monoidal bicategory whose underlying bicategory is a 2-category, we employ this
term here in the strict 2-categorical sense, i.e. the more narrow CAT-enriched sense given above.

5The reader who has defined V -CAT to consist of only the U-small V -categories for a universe U (3.2)
can take CAT to be the category of U-small categories, as V -CAT is indeed locally U-small in this case.
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4.1. Example. Given a symmetric monoidal closed category V , it follows from [5, III 6.9,
III 7.4] that V itself is a symmetric monoidal V -category. The tensor product V -functor
⊗ : V ⊗ V → V is given on homs by the morphisms

(V ⊗ V )((V,W ), (V ′,W ′)) = V (V, V ′)⊗ V (W,W ′)→ V (V ⊗W,V ′ ⊗W ′)

(with V,W, V ′,W ′ ∈ V ) obtained as transposes of the composites

V ⊗W ⊗ V (V, V ′)⊗ V (W,W ′)
1⊗s⊗1−−−−→ V ⊗ V (V, V ′)⊗W ⊗ V (W,W ′)

Ev⊗Ev−−−→ V ′ ⊗W ′,

where s is the symmetry carried by V .

4.2. The notion of monoidal functor also generalizes in an evident way to that of monoidal
V -functor 6 between monoidal V -categories M ,N , consisting of a V -functor S : M →
N and morphisms eS : IN → SIM and mS

MM ′ : SM ⊗ SM ′ → S(M ⊗M ′) V -natural in
M,M ′ ∈M , subject to the usual equations. This notion is an instance of the notion of
(lax) monoidal 1-cell between pseudomonoids M ,N in a monoidal 2-category K ([15],
based on a more general notion from [6]), consisting of a 1-cell S : M → N in K and
2-cells

M ⊗M

•
��

S⊗S //N ⊗N

•
��

I
i

��

i

��
M

S
//N M

S
//N

mS
s{ eS

qy

satisfying three equations, which just express in terms of pasting diagrams the familiar
componentwise equations for a monoidal functor. One has in particular the notion of
strong (resp. strict) monoidal 1-cell, where the 2-cells eS,mS are required to be isomor-
phisms (resp. identities). In the case that M and N carry the structure of symmetric
pseudomonoids, one may ask that the monoidal 1-cell S also have the property of being
symmetric, which amounts to just one equation of 2-cells, namely

(S ◦ sM ) ·mS = (mS ◦ σMM ) · (sN ◦ (S ⊗ S))

where σ, sM , sN are the symmetries carried by K ,M ,N , respectively, ◦ is whiskering,
and · is vertical composition. In particular, this specializes to the notion of symmetric
monoidal V -functor. Further, one has the notion of monoidal 2-cell between monoidal
1-cells in K ; in V -CAT, the monoidal 2-cells are monoidal V -natural transformations.
In particular, one obtains in the case V = CAT the notions of monoidal 2-functor and
monoidal 2-natural transformation.

Given a monoidal 2-category K , one thus obtains an associated 2-category
PsMon(K ) of pseudomonoids in K ([15, §2]), and for a symmetric monoidal 2-category
K , a 2-category SymPsMon(K ) of symmetric pseudomonoids, with symmetric monoidal
1-cells ([15, §4]). For K = V -CAT, PsMon(K ) = V -MCAT and SymPsMon(K ) =
V -SMCAT are the 2-categories of monoidal and symmetric monoidal V -categories, re-
spectively.

6When applying adjectives like “monoidal” in the V -enriched context, we will occasionally include an
explicit prefix “V -”, as in V -monoidal, for emphasis or ease of expression.
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4.3. Proposition ([15, §1,2,4]). Every monoidal 2-functor G : K → L lifts to a 2-
functor PsMon(G) : PsMon(K )→ PsMon(L ). If G is a symmetric monoidal 2-functor,
then G lifts to a 2-functor SymPsMon(G) : SymPsMon(K )→ SymPsMon(L ).

4.4. Remark. Explicitly, the 2-functor PsMon(G) of 4.3 sends each pseudomonoid (M ,
•, i, a, `, r) in K to a pseudomonoid (GM , •′, i′, a′, `′, r′) in L , where the 1-cells •′, i′ and
2-cells a′, `′, r′ are obtained from •, i, a, `, r by applying G and then composing or whisker-
ing with the following evident canonical 1-cells, determined by the monoidal structure of
G (and named uniformly for convenience),

M(G,M ) : (GM )⊗2 → G(M⊗2) E(G,M ) : I→ GI

L(G,M ) : I⊗GM → G(I⊗M ) R(G,M ) : GM ⊗ I→ G(M ⊗ I)

A(G,M ) : (GM )⊗3 → G(M⊗3)

so that
•′ = G(•) ◦M(G,M ) i′ = G(i) ◦ E(G,M )

a′ = G(a) ◦ A(G,M ) `′ = G(`) ◦ L(G,M ) r′ = G(r) ◦ R(G,M ) .

Similarly, if M carries a symmetry s then

s′ = G(s) ◦M(G,M )

is the associated symmetry on GM . The definition of PsMon(G) on 1-cells also follows
this pattern: Given S : M → N in PsMon(K ), the 1-cell G(S) : GM → GN carries
monoidal structure 2-cells

eG(S) = G(eS) ◦ E(G,M ) mG(S) = G(mS) ◦M(G,M ) .

4.5. We shall denote by M2CAT = PsMon(2CAT) and SM2CAT = SymPsMon(2CAT)
the 2-categories of monoidal 2-categories and symmetric monoidal 2-categories, respec-
tively.

4.6. Theorem.

1. There are 2-functors
PsMon : M2CAT −→ 2CAT

SymPsMon : SM2CAT −→ 2CAT

sending each monoidal (resp. symmetric monoidal) 2-category K to the 2-category
of pseudomonoids (resp. symmetric pseudomonoids) in K .

2. Given a monoidal 2-natural transformation φ : G ⇒ H : K → L and a pseu-
domonoid M in K , the 1-cell φM : GM → HM is a strict monoidal 1-cell.
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Proof. For each of the 2-functors to be defined, the needed assignment on 1-cells is
provided by 4.3. We next prove 2, which will furnish the assignment on 2-cells.

It is straightforward to verify 2 directly7, but we can instead give a more conceptual
argument, as follows. The notion of pseudomonoid in K is an instance of the more
general notion of monoidal homomorphism of monoidal bicategories (in the terminology
of [16, 3.2.2], called weak monoidal homomorphism in [15]). Indeed, taking 1 to denote
the terminal 2-category, the monoidal homomorphisms 1 → K constitute a 2-category
WMon(1,K ) (in the notation of [15]), and PsMon(K ) is precisely the full sub-2-category
consisting of those objects whose underlying homomorphism of bicategories is a 2-functor
[15, §2]. One has a similar description of SymPsMon(K ) as a full sub-2-category of the
2-category of symmetric (equivalently, sylleptic) monoidal homomorphisms 1 → K [15,
§4].

Schommer-Pries has shown that symmetric monoidal bicategories constitute a tricate-
gory [16] and in particular that one can whisker the 2-cells therein (called monoidal trans-
formations) with the 1-cells [16, §3.3], namely monoidal homomorphisms. This whiskering
does not depend on the symmetries carried by the 1-cells and so is available in exactly
the same form in the non-symmetric case. Hence, since the given pseudomonoid M is a
monoidal homomorphism M : 1→ K and φ : G⇒ H : K → L is a monoidal transfor-
mation, we can form the whiskered monoidal transformation φM : GM ⇒ HM , which is
therefore a 1-cell of WMon(1,L ) and so is a 1-cell of PsMon(L ) whose underlying 1-cell
in L is φM : GM → HM . The monoidal structure that φM thus acquires is given by the
two pasting diagrams in [16, 3.3.2] (with G = H, F = M , χG = mG, χG = mH , θ = φ),
but since φ : G ⇒ H is a monoidal 2-natural transformation of monoidal 2-functors, the
2-cells occupying the resulting pasting diagrams are identity 2-cells. Hence φM is strict
monoidal as needed, and similarly φM is strict symmetric monoidal in the symmetric case.

Hence 2 is proved. Writing G• = PsMon(G), the strict monoidal 1-cells φM of 2
constitute a 2-natural transformation φ• : G• ⇒ H•. Indeed, the naturality of φ• is
readily verified using the 2-naturality of φ, and since the 2-functor PsMon(L ) → L is
locally faithful, the further 2-naturality of φ• follows from that of φ.

This completes the definition of the data for the needed 2-functors. Using the descrip-
tion of G• = PsMon(G) given in 4.4, the equations

G•F• = (GF )• (1K )• = 1PsMon(K )

for 1-cells J
F−→ K

G−→ L in M2CAT follow readily from the fact that

T(GF,M ) = G(T(F,M )) ◦ T(G,FM ) T(1K ,M ) = 1

for each symbol T ∈ {M,E, L,R,A} (4.4). The functoriality of SymPsMon on 1-cells
also follows similarly. Further, PsMon preserves vertical composition of 2-cells, since

7Indeed, one first uses the fact that φ is monoidal and natural to show that φM commutes strictly
with the product and unit 1-cells carried by GM and HM , and then one uses the 2-naturality of φ to
verify the needed four equations of 2-cells making φM strict symmetric monoidal.
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for each 2-cell φ in M2CAT as in 2 above, the components of φ• are strict monoidal 1-
cells and so are uniquely determined by their underlying 1-cells in L . Moreover, PsMon
preserves whiskering for the same reason, since given φ as in 2 above, together with 1-cells
F : J → K and T : L → H , the 2-natural transformations (φF )•, φ•F•, (Tφ)•, T•φ•
also consist of strict monoidal 1-cells.

4.7. Remark. Elements of the above proof suggest that it might be possible to instead
obtain the needed 2-functor SymPsMon as a ‘subfunctor’ of a restriction of a ‘hom’ tri-
homomorphism T (1,−) on the tricategory T of symmetric monoidal bicategories.

5. Enriched normalizations and comparisons

Let V be a symmetric monoidal closed category.

5.1. Definition.

1. Given a monoidal V -category M , we let

UM := M (I,−) : M → V

denote the covariant hom V -functor for the unit object I of M .

2. Given a monoidal V -functor S : M → N , we denote by θS : UM → UN S the
following composite V -natural transformation:

θS :=
�
UM = M (I,−)

S−→ N (SI, S−)
N (eS ,S−)−−−−−−→ N (I, S−) = UN S

�
.

3. Given a monoidal V -functor G : M → V , we define the comparison morphism
κG : UM → G as the composite V -natural transformation

κG :=
�
UM θG−→ UVG

∼−→ G
�

whose second factor is obtained from the canonical isomorphism UV ∼= 1V by
whiskering with G.

5.2. Proposition. Let M be a monoidal V -category.

1. The V -functor UM = M (I,−) : M → V is V -monoidal, when equipped with
[1I ] : I →M (I, I) (the name of the identity arrow on I) and the composites

M (I,M)⊗M (I,M ′)
⊗−→M (I ⊗ I,M ⊗M ′)

M (`−1
I ,1)

−−−−−→M (I,M ⊗M ′) (5.2.i)

(M,M ′ ∈M ), noting that `I = rI : I ⊗ I → I in M .

2. UM is moreover symmetric V -monoidal as soon as M is V -symmetric-monoidal.
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Proof. It is shown in [1, 2.1] that M (−,−) : M op ⊗ M → V is a monoidal V -
functor. In particular, M op ⊗M is a monoidal V -category, since moreover V -MCAT =
PsMon(V -CAT) is a symmetric monoidal category, indeed a symmetric monoidal 2-
category, as is clear from remarks in the same paper [1, §1, §4] (which in fact goes on
to consider pseudomonoids in V -MCAT, which the authors call duoidal V -categories).
Moreover, if M is symmetric V -monoidal then M (−,−) is a symmetric monoidal V -
functor by [1, 2.3]. The V -functor UM = M (I,−) can be obtained as a composite

M
λ−1

−−→ I⊗M
[I]⊗1M−−−−→M op ⊗M

M (−,−)−−−−−→ V (5.2.ii)

wherein I is the unit V -category, λ is the left unit isomorphism carried by the monoidal
2-category V -CAT, and [I] : I → M op is the unique V -functor that sends the single
object of I to I. But λ : I ⊗M → M is a strict monoidal V -functor (and indeed
serves as the left unit isomorphism carried by the monoidal 2-category V -MCAT), and
λ is symmetric as soon as M is symmetric; the same conclusions therefore apply to λ−1.
To equip [I] : I → M op with the structure of a monoidal V -functor amounts to just
endowing the object I with the structure of a monoid in the monoidal category M op

0 , and
indeed (I, `−1

I , 1I) is a monoid in M op (by the coherence theorem for monoidal categories).
When M is symmetric, the resulting monoidal V -functor [I] is symmetric since the given
monoid in M op is then commutative. Hence the sequence (5.2.ii) consists of monoidal
(resp. symmetric monoidal) V -functors, and the indicated monoidal structure on M (I,−)
is thus obtained.

5.3. Proposition. UV ∼= 1V as monoidal V -functors.

Proof. Writing U := UV , we have an isomorphism of V -functors ξ : 1V
∼−→ U whose

components ξV : V
∼−→ V (I, V ) are obtained as the transposes of the canonical isomor-

phisms ` : I ⊗ V → V . It suffices to show that ξ is monoidal. The unit law for ξ holds
since ξI · e1V = ξI · 1I = ξI = [1I ] = eU : I → UI. Also, for each pair of objects V,W ∈ V ,
the multiplication law

mU
VW · (ξV ⊗ ξW ) = ξV⊗W ·m

1V

VW : V ⊗W → U(V ⊗W ) = V (I, V ⊗W ) (5.3.i)

for ξ is verified by taking the transposes I ⊗ V ⊗W → V ⊗W of the morphisms on both
sides of this equation. Indeed, using the definition of mU one finds that the transpose
of the left-hand side is the clockwise composite around the periphery of the following
diagram

I ⊗ V ⊗W

`

--

`−1⊗V⊗W // I ⊗ I ⊗ V ⊗W
1⊗s⊗1
��

I⊗I⊗ξV ⊗ξW // I ⊗ I ⊗ V (I, V )⊗ V (I,W )

1⊗s⊗1
�� I⊗I⊗t

tt

I ⊗ V ⊗ I ⊗W
`⊗`
��

I⊗ξV ⊗I⊗ξW // I ⊗ V (I, V )⊗ I ⊗ V (I,W )

Ev⊗Ev
ss

V ⊗W I ⊗ I ⊗ V (I ⊗ I, V ⊗W )
Ev

oo
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wherein the rightmost cell commutes by the definition of the morphism t := ⊗(I,I)(V,W )

(4.1), the upper square commutes by the naturality of s, the triangular cell within the
interior commutes by the definition of ξ, and the leftmost cell commutes by the coherence
theorem for symmetric monoidal categories ([5, III 1.1]). But the right-hand side of the
needed equation (5.3.i) is simply ξV⊗W · 1V⊗W = ξV⊗W , whose transpose is indeed the
morphism ` on the left side of the diagram.

5.4. Proposition.

1. Given a monoidal V -functor G : M → V , the comparison morphism
κG : UM → G is the unique monoidal V -natural transformation UM → G.

2. Given a monoidal V -functor S : M → N , the transformation θS defined in 5.1 is
the unique monoidal V -natural transformation UM → UN S, and θS = κU

N S.

Proof. Firstly, in the situation of 2, we prove that θS is monoidal. The unit law for θS

is the commutativity of the periphery of the following diagram

I

eU
M

= [1I ]
��

[1SI ]
((

[eS ]

,,

eU
N

= [1I ] //N (I, I) = UN I

N (I,eS) = UN (eS)

��
UM I = M (I, I)

θSI

66S
//N (SI, SI)

N (eS ,1)
//N (I, SI) = UN SI

which clearly commutes. The multiplication law for θS amounts to the commutativity
of the periphery of the following diagram for each pair of objects L,M ∈ M , since the
top side is mUM

LM , the right side is θSL⊗M , the left side is θSL ⊗ θSM , and the bottom side is

mUN S
LM = (UN mS

LM) ·mUN

SL,SM .

M (I,L)⊗M (I,M)

S⊗S

��

⊗ // M (I⊗I,L⊗M)

S

��

M (`−1,1) // M (I,L⊗M)

S

��
N (S(I⊗I),S(L⊗M))

N (S`−1,1)//

N (mS ,1)

��

N (SI,S(L⊗M))

N (eS ,1)

��

N (SI,SL)⊗N (SI,SM)

N (eS ,1)⊗N (eS ,1)

��

⊗ // N (SI⊗SI,SL⊗SM)

N (eS⊗eS ,1)

��

N (1,mS)// N (SI⊗SI,S(L⊗M))

N ((eS⊗eS)·`−1
I ,1)

��
N (I,SL)⊗N (I,SM) ⊗

// N (I⊗I,SL⊗SM)
N (`−1,mS)

// N (I,S(L⊗M)) N (I,S(L⊗M))

The large cell at the top-left corner commutes by the V -naturality of mS, the square at
the bottom-left commutes by the V -functoriality of ⊗, the square immediately to the
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right of this clearly commutes, and the square at the top-right corner commutes by the
V -functoriality of S. The remaining cell at the bottom-right commutes since it follows
from the fact that S is a monoidal functor that S`−1

I · eS = mS
II · (eS ⊗ eS) · `−1

I .
Having thus shown that θS is monoidal, it now follows (in view of 5.3) that κG is

monoidal in the situation of 1. For the needed uniqueness of κG (and hence also of θS),
observe that given any φ : UM → G in V -MCAT, we have for each M ∈M a diagram

M (I,M)

1

((

M (I,−)IM

��

GIM // V (GI,GM)

V (φI ,1)

��
V (eG,1)

vv

V (M (I, I),M (I,M))

V ([1I ],1)

��

V (1,φM ) // V (M (I, I), GM)

V ([1I ],1)

��
V (I,M (I,M))

o
��

V (1,φM ) // V (I,GM)

o

��
M (I,M)

φM
// GM

in V . The upper rectangle commutes by the V -naturality of φ, the rightmost cell com-
mutes by the monoidality of φ, and the other cells clearly commute. But the clockwise
composite around the periphery is κGM , so φM = κGM .

5.5. Definition.

1. We say that a monoidal V -functor G : M → N is V -normal if θG : UM → UN G
is an isomorphism.

2. A V -normalization for a given monoidal V -category M is a monoidal V -functor
G : M → V that is V -normal, equivalently, whose comparison κG : UM → G is an
isomorphism.

3. We call UM : M → V the canonical V -normalization for M .

5.6. Remark. In the case that M is a symmetric monoidal V -category, any V -normal-
ization G : M → V is necessarily symmetric, since G ∼= UM as monoidal V -functors and
UM is symmetric (5.2).

5.7. Remark. In the case of V = SET, we recover from 5.5 1 the notion of normal
monoidal functor employed in [10, §2]. The notion of V -normalization for V = SET
coincides (up to a bijection) with the notion of normalization of a monoidal category
given in [5], which there is defined as an ordinary functor G : M → SET equipped with
a specified isomorphism M (I,−) ∼= G (which, upon transporting the monoidal structure
on the latter functor to G, coincides with θG).
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5.8. Proposition. If G,H : M → N are isomorphic monoidal V -functors and G is
V -normal, then H is V -normal.

Proof. This follows from the uniqueness of θH : UM ⇒ UN H (5.4).

6. Change of base for symmetric monoidal V -categories

6.1. Recall that there is a 2-functor (−)-CAT : MCAT → 2CAT ([5, 3]) from the 2-
category of monoidal categories to the 2-category of 2-categories, sending each monoidal
functor G : V → W to the change-of-base 2-functor G∗ : V -CAT → W -CAT. For a
V -category A , the W -category G∗A has objects those of A and homs given by

(G∗A )(A,A′) = GA (A,A′) (A,A′ ∈ A ) .

Given a V -functor P : A → B, the W -functor G∗(P ) : G∗A → G∗B is given on
objects as P and on homs as G(PAA′) : GA (A,A′) → GB(PA, PA′). Given a 2-cell
ψ : P ⇒ Q : A → B in V -CAT, the components of G∗ψ : G∗(P ) ⇒ G∗(Q) are the
arrows (G∗ψ)A : PA→ QA in G∗B with names

IW
eG−→ GIV

G[ψA]−−−→ GB(PA,QA) (A ∈ A ) .

Given a monoidal transformation φ : G ⇒ H, where G,H : V → W are monoidal func-
tors, we obtain an associated 2-natural transformation φ∗ : G∗ ⇒ H∗ whose components
are identity-on-objects W -functors

φ∗A : G∗A → H∗A , A ∈ V -CAT

whose structure morphisms are simply the components

(φ∗A )AA′ = φA (A,A′) : GA (A,A′)→ HA (A,A′) (A,A′ ∈ A )

of φ.

6.2. Example. Given a monoidal category V , the canonical normalization UV = V (I,−) :
V → SET determines a change-of-base 2-functor (−)0 = UV

∗ : V -CAT → CAT sending
each V -category A to its underlying ordinary category A0.

Cruttwell [3] has proved that the change-of-base 2-functor associated to a braided
monoidal functor is a monoidal 2-functor8; further, we have the following.

6.3. Proposition.

1. Given a symmetric monoidal functor G : V → W , the change-of-base 2-functor
G∗ : V -CAT→ W -CAT carries the structure of a symmetric monoidal 2-functor.

2. The 2-functor (−)-CAT : MCAT→ 2CAT lifts to a 2-functor

(−)-CAT : SMCAT→ SM2CAT, V 7→ V -CAT

valued in the 2-category SM2CAT of symmetric monoidal 2-categories.

8Indeed, the proof of [3, 5.7.1] shows (as stated in the introduction to Ch. 5 there) that the change-
of-base 2-functor N∗ is (not only a weak monoidal homomorphism but in fact) a monoidal 2-functor.



RELATIVE SYMMETRIC MONOIDAL CLOSED CATEGORIES I 155

Proof. 1. By the preceding comment, G∗ is a monoidal 2-functor. Explicitly, for each
pair A ,B of V -categories, there is an identity-on-objects W -functor

G∗A ⊗G∗B → G∗(A ⊗B)

given on homs as just the components

mG : GA (A,A′)⊗GB(B,B′)→ G(A (A,A′)⊗B(B,B′))

(A,A′ ∈ A , B,B′ ∈ B) of the structure morphismmG carried byG. This 2-natural family
of W -functors, together with the identity-on-objects W -functor IW → G∗IV determined
by eG : IW → GIV , constitute the needed structure on G∗. The symmetry of G∗ follows
immediately from that of G.

2. We know that (−)-CAT : SMCAT → 2CAT is 2-functorial, and we immediately
verify that the assignment of monoidal structures on 1-cells given by 1 respects compo-
sition, so that we obtain a functor (−)-CAT : SMCAT → SM2CAT. This is moreover a
2-functor, since given a 2-cell ψ : G ⇒ H : V → W in SMCAT, it follows immediately
from the monoidality of ψ that ψ∗ : G∗ ⇒ H∗ is monoidal.

6.4. Theorem.

1. There is a 2-functor

(−)-SMCAT : SMCAT→ 2CAT, V 7→ V -SMCAT

sending each symmetric monoidal category V to the 2-category V -SMCAT of
symmetric monoidal V -categories.

2. Given a 2-cell φ : G ⇒ H : V → W in SMCAT and a symmetric monoidal
V -category M , the identity-on-objects W -functor φ∗M : G∗M → H∗M is strict
symmetric W -monoidal.

Proof. This follows from 6.3 and 4.6, since the needed 2-functor is obtained as the
composite

SMCAT
(−)-CAT−−−−−→ SM2CAT

SymPsMon−−−−−−→ 2CAT .

6.5. Remark. By 6.4, each 1-cell G : V → W in SMCAT determines a 2-functor

G∗ : V -SMCAT→ W -SMCAT

which we again write as G∗ by abuse of notation. Recall that there is a unique 2-cell
θG : UV ⇒ UW G : V → SET (5.4) in SMCAT, where UV : V → SET and UW : W →
SET are the canonical normalizations. By 6.4, each symmetric monoidal V -category M
therefore determines an identity-on-objects strict symmetric monoidal functor

θG∗ M : M0 = UV
∗ M → UW

∗ G∗M = (G∗M )0 (6.5.i)
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which serves as a canonical comparison of the underlying ordinary symmetric monoidal
categories. We shall later make use of the observation that, given a 1-cell S : M → N
in V -SMCAT, the monoidal structure morphisms carried by the symmetric monoidal W -
functor G∗(S) : G∗M → G∗N are obtained from those of S by applying θG∗ N : N0 →
(G∗N )0. Indeed, this follows from the fact that θG∗ : UV

∗ ⇒ UW
∗ G∗ : V -SMCAT →

SMCAT is natural and consists of strict monoidal functors. Also, given a 2-cell φ : S ⇒
T : M → N in V -SMCAT, the components of G∗(φ) : G∗(S) ⇒ G∗(T ) are obtained
from those of φ by applying that same comparison functor θG∗ N .

7. Symmetric monoidal closed V -categories and change of base

7.1. Definition. Let V be symmetric monoidal closed category. A symmetric monoidal
closed V -category is a symmetric monoidal V -category M such that for each object M ∈
M , the V -functor M ⊗ (−) : M →M has a right V -adjoint, denoted by M (M,−). We
denote by V -SMCCAT the full sub-2-category of V -SMCAT with objects all symmetric
monoidal closed V -categories.

7.2. Example. Given a symmetric monoidal closed category V , we obtain a symmetric
monoidal closed V -category V by 4.1, since the adjunctions V ⊗(−) a V (V,−) associated
to the objects V of V are V -adjunctions.

7.3. Theorem. Let G : V → W be a 1-cell in SMCCAT.

1. Given a symmetric monoidal closed V -category M , the associated symmetric mon-
oidal W -category G∗M is W -symmetric-monoidal-closed.

2. The change-of-base 2-functor G∗ : V -SMCAT→ W -SMCAT lifts to a 2-functor

G∗ : V -SMCCAT→ W -SMCCAT ,

which we denote also by G∗, by abuse of notation.

3. There is a 2-functor

(−)-SMCCAT : SMCCAT→ 2CAT, V 7→ V -SMCCAT .

Proof. It suffices to prove 1, from which 2 and 3 follow. Denote by ⊗ and � the tensor
products carried by M andG∗M , respectively. For eachM ∈M , we have a V -adjunction
M ⊗ (−) aM (M,−), and, applying the 2-functor G∗ : V -CAT→ W -CAT, we obtain a
W -adjunction. Hence, it suffices to show that G∗(M ⊗ (−)) = M � (−) : G∗M → G∗M ,
as W -functors. The tensor product � is given on object just as ⊗, so on objects, the
needed equation is immediate. But on homs, � is given by the composites

GM (M,M ′)⊗GM (N,N ′)
mG // G(M (M,M ′)⊗M (N,N ′))

G(⊗) // GM (M⊗N,M ′⊗N ′)
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for all M,M ′, N,N ′ ∈ M . Therefore, the morphism (M � (−))N,N ′ : GM (N,N ′) →
GM (M ⊗N,M ⊗N ′) associated with each pair N,N ′ ∈M is, by definition, obtained as
the counter-clockwise composite around the periphery of the following diagram

GM (N,N ′)

`−1

��

G`−1

))

G((M⊗(−))NN′ ) // GM (M ⊗N,M ⊗N ′)

G(I ⊗M (N,N ′))
G([1]⊗1)// G(M (M,M)⊗M (N,N ′))

G(⊗(M,N)(M,N′))

OO

I ⊗GM (N,N ′)
eG⊗1

// GI ⊗GM (N,N ′)

mG

OO

G[1]⊗1
// GM (M,M)⊗GM (N,N ′)

mG

OO

which commutes, using the definition of M ⊗ (−), the naturality of mG, and the fact that
G is a monoidal functor.

7.4. Proposition. Let M be a monoidal V -category. Then the diagram of symmetric
monoidal functors

M0

UM0 ##

UM
0 // V

UV||
SET

commutes (strictly), where UM is the canonical V -normalization of M , and UM0, UV

are the canonical normalizations of M0 and V , respectively. Equivalently, the unique
monoidal transformation θU

M
: UM0 → UV UM

0 (5.4) is an identity morphism.

Proof. Denote the unit objects of V and M by I and J , respectively. Then for each
object M ∈M ,

UV UMM = V (I,M (J,M)) = M0(J,M) = UM0M ,

so the diagram commutes on objects. It suffices to show that θU
M

M : UM0M → UV UMM
is the identity map. Since by definition eU

M

M = [1J ] : I → UMJ = M (J, J), we find that
θU

M

M is, by definition, the composite

M0(J,M)
UM
JM−−→ V (M (J, J),M (J,M))

V ([1J ],1)−−−−−→ V (I,M (J,M)) = M0(J,M) .

Since UM = M (J,−), this composite sends each morphism f : J → M in M0 to the
composite

I
[1J ]−−→M (J, J)

M (J,f)−−−−→M (J,M) ,

which, viewed as morphism J →M in M0, is exactly f .



158 RORY B. B. LUCYSHYN-WRIGHT

The following theorem shows that any symmetric monoidal closed V -category M can
be recovered (up to isomorphism) from its underlying symmetric monoidal closed category
M0 together with the monoidal functor UM

0 = M (I,−) : M0 → V , which we shall also
write as simply UM , by abuse of notation. We denote by M the M0-enriched category
M0.

7.5. Theorem. Let M be a symmetric monoidal closed V -category. Then there is an
isomorphism of symmetric monoidal closed V -categories

UM
∗ M ∼= M ,

and this isomorphism is identity-on-objects and strict symmetric V -monoidal.

In order to prove this theorem, we will make use of the following notion, closely related
to the notion of V -profunctor monad.

7.6. Definition. Let A be a V -category. A V -category superposed upon A consists of
a V -functor B(−,−) : A op ⊗A → V and families of morphisms

◦ABC : B(A,B)⊗B(B,C)→ B(A,C) jA : I → B(A,A)

extraordinarily V -natural in A,B,C ∈ A , resp. A ∈ A , such that

B = (ObA , (B(A,B))A,B∈ObA , ◦, j)

is a V -category. We then denote by

A (A,B)⊗B(B,C)
•A(BC)−−−−→ B(A,C) B(A,B)⊗A (B,C)

•(AB)C−−−−→ B(A,C)

the transposes of B(−, C)AB and B(A,−)BC , respectively.

7.7. Proposition. Let B be a V -category superposed upon A . Then there is an identity-
on-objects V -functor S : A → B given by the following composite morphisms

A (A,B)
`−1

−−→ I ⊗A (A,B)
jA⊗1−−−→ B(A,A)⊗A (A,B)

•(AA)B−−−−→ B(A,B)

(A,B ∈ A ), which by the extraordinary V -naturality of j are equal to

A (A,B)
r−1

−−→ A (A,B)⊗ I 1⊗jB−−−→ A (A,B)⊗B(B,B)
•A(BB)−−−−→ B(A,B) .

Proof. For each object B ∈ A , the morphism jB : I → B(B,B) can be construed
as an ‘element’ of the V -presheaf B(−, B) : A op → V and so, by the Yoneda lemma,
determines a V -natural transformation S(−)B : A (−, B) ⇒ B(−, B). We claim that
the resulting morphisms SAB : A (A,B) → B(A,B) constitute an identity-on-objects
V -functor S : A → B. By its definition, SAA commutes with the identity morphisms
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I → A (A,A) and jA : I → B(A,A). Given objects A,B,C ∈ A , it suffices to show that
the following diagram commutes.

A (A,B)⊗A (B,C)

cABC
��

1⊗SBC// A (A,B)⊗B(B,C)

•A(BC)

��

SAB⊗1//B(A,B)⊗B(B,C)

◦ABC
��

A (A,C)
SAC

//B(A,C) B(A,C)

Since the composition morphism cABC can be described equally as the transpose of
A (−, C)AB, and •A(BC) is by definition the transpose of B(−, C)AB, the leftmost square
commutes by the V -naturality of S(−)C . Further, it is straightforward to verify that the
V -naturality of ◦(−)BC entails that the rightmost square commutes.

7.8. Lemma. Let B be a V -category superposed upon a symmetric monoidal V -category
A , and suppose that we are given morphisms

B(A,A′)⊗B(B,B′)
�(A,B)(A′,B′)−−−−−−−→ B(A⊗B,A′ ⊗B′)

V -natural in (A,B), (A′, B′) ∈ A ⊗A that yield a V -functor � : B ⊗B → B given on
objects as the tensor product ⊗ carried by A . Then the diagram of V -functors

A ⊗A
⊗ ��

S⊗S //B ⊗B
���

A
S

//B

(7.8.i)

commutes, where S is as defined in 7.7

Proof. The diagram clearly commutes on objects, and the two composite V -functors
are given on homs by the composites on the periphery of the following diagram

A (A,A′)⊗A (B,B′)

t(A,B)(A′,B′)

��

// B(A,A)⊗A (A,A′)⊗B(B,B)⊗A (B,B′)
•⊗• //

1⊗s⊗1��

B(A,A′)⊗B(B,B′)

�(A,B)(A′,B′)

��

B(A,A)⊗B(B,B)⊗A (A,A′)⊗A (B,B′)

�(A,B)(A,B)⊗t(A,B)(A′,B′)��
A (A⊗B,A′⊗B′)

(jA⊗B⊗1)◦`−1
// B(A⊗B,A⊗B)⊗A (A⊗B,A′⊗B′) •

// B(A⊗B,A′⊗B′)

where we have written t for the structure morphisms of the tensor product V -functor
carried by A , and the unlabelled arrow is ((jA ⊗ 1) · `−1) ⊗ ((jB ⊗ 1) · `−1). But the
leftmost cell commutes since the V -functor � preserves identity arrows, and the rightmost
cell commutes by the V -naturality of the given morphisms �.
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Proof of 7.5. Writing U = UM , we shall equip U∗M with the structure of a V -category
superposed upon M (7.6), as follows. We have a V -functor M (−,−) : M op ⊗M →M
(by [11, §1.10]), and so we obtain a composite V -functor

M op ⊗M
M (−,−)−−−−−→M

U−→ V , (7.8.ii)

with respect to which the composition and unit morphisms

UM (L,M)⊗ UM (M,N)
mU−−→ U(M (L,M)⊗M (M,N))

U(cLMN )−−−−−→ UM (L,N)

I
eU−→ UI

U [1M ]−−−→ UM (M,M) (7.8.iii)

for U∗M are extraordinarily V -natural9 in L,M,N ∈M , resp. M ∈M .
By 7.7 we obtain an identity-on-objects V -functor S : M → U∗M , and we claim that

the structure morphisms SMN for S are equal to the canonical isomorphisms

M (M,N)
M (r,N)−−−−→M (M ⊗ I,N)

∼−→M (I,M (M,N)) = UM (M,N) . (7.8.iv)

Indeed, in the proof of 7.7 we defined S(−)N : M (−, N) ⇒ UM (−, N) as the V -natural
transformation induced by the unit I → UM (N,N) (7.8.iii), but one readily finds that
the canonical V -natural isomorphism M (−, N) ⇒ UM (−, N) of (7.8.iv) corresponds
via the Yoneda lemma to this same unit element. Therefore S is an isomorphism of V -
categories, so it suffices to show that S is a strict symmetric monoidal V -functor. The
tensor product V -functor � carried by U∗M is given on homs by the composites

UM (M,M ′)⊗UM (N,N ′)
mU // U(M (M,M ′)⊗M (N,N ′))

U(⊗(M,N)(M′,N′)) // UM (M⊗N,M ′⊗N ′)

which are V -natural in (M,N), (M ′, N ′) ∈M ⊗M with respect to the V -functor (7.8.ii),
so by 7.8 the diagram (7.8.i) commutes with A := M and B := U∗M . Hence it suffices to
show that S strictly preserves the canonical isomorphisms a, `, r, s. By 7.4, the underlying
ordinary symmetric monoidal categories (U∗M )0 and (M )0 are identical, so since S is
given on homs by the canonical isomorphisms (7.8.iv) it is immediate that S0 : M0 →
(M )0 is the canonical isomorphism M0

∼= (M0)0 (3.1), which is strict symmetric monoidal.

7.9. Remark. In the situation of 7.5, we deduce by 7.4 that the strict monoidal com-
parison functor θU

M

∗ : (M )0 → (UM
∗ M )0 (6.5.i) is an identity functor. Further, as noted

within the above proof of 7.5, the isomorphism of ordinary symmetric monoidal categories
that underlies the isomorphism UM

∗ M ∼= M of 7.5 is exactly the familiar canonical iso-
morphism (M )0

∼= M0 (3.1).

9The composition morphisms cLMN : M (L,M)⊗M (M,N)→M (L,N) are extraordinarily V -natural

in L,M,N ∈M since they are defined as mates of the composites L ⊗M (L,M) ⊗M (M,N)
EvLM⊗1−−−−−→

M ⊗M (M,N)
EvMN−−−−→ N . A similar remark applies to the morphisms [1M ] : I →M (M,M).
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8. Enrichment of a symmetric monoidal closed functor

8.1. Definition (Eilenberg-Kelly [5]). Given a symmetric monoidal functor G : V →
W between closed symmetric monoidal categories, we obtain an associated W -functor
G̀ : G∗V → W , given on objects just as G, with each morphism

G̀V1V2 : (G∗V )(V1, V2) = GV (V1, V2)→ W (GV1, GV2) (V1, V2 ∈ V ) (8.1.i)

obtained as the transpose of the composite

GV1 ⊗GV (V1, V2)
mG−−→ G(V1 ⊗ V (V1, V2))

G(Ev)−−−→ GV2 .

Indeed, by [5], G determines a closed functor V → W , whose defining data include the
structure morphisms (8.1.i), and the associated W -functor G̀ is obtained via [5, I 6.6].

The following lemma is fundamental to several of the theorems in the sequel.

8.2. Lemma (Fundamental Lemma). Let G : M → N be a 1-cell in V -SMCCAT. Ne-
glecting to distinguish notationally between 1-cells in V -SMCCAT and their ‘underlying’
1-cells in SMCCAT (6.2,7.3), we have a commutative diagram of V -functors

UM
∗ M

o
��

θG∗ M // UN
∗ G∗M

UN
∗ (G̀) // UN

∗ N

o
��

M
G

//N

(8.2.i)

where UM : M → V and UN : N → V are the canonical V -normalizations of M and
N , respectively, and the vertical arrows are the canonical isomorphisms (7.5).

Proof. Since UN
∗ (G̀) and G are given in the same way on objects, and the other V -

functors in the diagram are identity-on-objects, the diagram commutes on objects. Using
the description of the canonical isomorphism N ∼= UN

∗ N given at (7.8.iv), we observe
that the clockwise composite is given on homs as the clockwise composite around the
periphery of the following diagram, where L,M ∈M ; for typographical reasons, we have
denoted the V -valued hom bifunctors for M ,N by 〈−,−〉 and the internal hom bifunctors
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by [−,−]. Also, we have denoted the unit objects of M , N by I, J , respectively.

〈I,[L,M ]〉

L⊗(−)

��

G // 〈GI,G[L,M ]〉

GL⊗(−)

��

〈eG,1〉 // 〈J,G[L,M ]〉

GL⊗(−)

��

〈1,G̀LM 〉 // 〈J,[GL,GM ]〉

o

��

〈L⊗I,L⊗[L,M ]〉

〈r−1,Ev〉

%%

G

��

〈GL⊗GI,GL⊗G[L,M ]〉

〈1,mG〉

��

〈1⊗eG,1〉 // 〈GL⊗J,GL⊗G[L,M ]〉

〈1,mG〉

��
〈G(L⊗I),G(L⊗[L,M ])〉

〈mG,1〉 //

〈Gr−1,1〉

))

〈GL⊗GI,G(L⊗[L,M ])〉
〈1⊗eG,1〉 // 〈GL⊗J,G(L⊗[L,M ])〉

〈1,GEv〉 // 〈GL⊗J,GM〉

〈r−1,1〉

��

〈GL,G(L⊗[L,M ])〉

〈r,1〉

55

〈L,M〉
G

// 〈GL,GM〉

〈r,1〉

55

〈GL,GM〉

On the other hand, the counter-clockwise composite V -functor in (8.2.i) is given on homs
by the counter-clockwise composite around the periphery of this diagram, so it suffices
to show that the diagram commutes. The top-left cell commutes by the V -naturality of
mG, and the top-right cell commutes by the definition of G̀LM (8.1). The triangular cell
on the interior of the diagram commutes by the monoidality of G, and the remaining cells
in the diagram clearly also commute.

8.3. Definition. Given a 1-cell G : V → W in SMCCAT, let us denote by

KG : V → (G∗V )0

the canonical comparison functor θG∗ V of (6.5.i), where here we have identified (V )0 with
V by convention. Recall that KG is an identity-on-objects strict symmetric monoidal
functor. Note also that KG is an isomorphism as soon as G is normal.

8.4. Corollary. Given a 1-cell G : V → W in SMCCAT, the diagram

V KG
//

G   

(G∗V )0

G̀0{{
W

(8.4.i)

in CAT commutes.

Proof. Since by definition KG = θG∗ V (8.3), we obtain an instance of the commutative
diagram (8.2.i) in which the base of enrichment is SET. But since we have identified V
with UV

∗ V = (V )0 along the canonical isomorphism UV
∗ V

∼−→ V , and similarly for W , the
left and right sides of the rectangle (8.2.i) are identity morphisms in this case.
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8.5. Proposition. Let G : V → W be a 1-cell in SMCCAT. Then G̀ : G∗V → W
is a 1-cell in W -SMCCAT, i.e. a symmetric monoidal W -functor between symmetric
monoidal closed W -categories.

Proof. By 7.3, G∗V is a symmetric monoidal closed W -category. The W -functor G̀ is
given on objects just as G, and we claim that the monoidal structure morphisms

mG
UV : GU ⊗GV → G(U ⊗ V ) (U, V ∈ V )

and eG : IW → GIV carried by G constitute a symmetric W -monoidal structure on G̀.
To prove this, we first show that mG

UV is W -natural in U, V ∈ G∗V , i.e., that mG is a
2-cell

G∗V ⊗G∗V

G̀⊗G̀
��

mG∗ // G∗(V ⊗ V )
G∗(⊗) // G∗V

G̀
��

/7
mG

W ⊗W ⊗
// W

(8.5.i)

in W -CAT, where mG∗ is the monoidal structure carried by G∗ and hence the composite
of the upper row is the tensor product W -functor carried by G∗V . In detail, we must
show that for every pair of objects (U, V ), (U ′, V ′) in G∗V ⊗G∗V , i.e., all U, V, U ′, V ′ ∈ V ,
the following diagram in W commutes

(G∗V⊗G∗V )((U,V ),(U ′,V ′))

mG∗

��

G̀⊗G̀ // (W⊗W )((GU,GV ),(GU ′,GV ′))

⊗
��

(G∗(V⊗V ))((U,V ),(U ′,V ′))

G∗(⊗)

��

W (GU⊗GV,GU ′⊗GV ′)

W (1,mG)

��
(G∗V )(U⊗V,U ′⊗V ′)

G̀

// W (G(U⊗V ),G(U ′⊗V ′)))
W (mG,1)

// W (GU⊗GV,G(U ′⊗V ′))

(8.5.ii)

where all but the last arrow in each composite is labelled with the name of the W -functor
whose ‘action-on-homs’ is thereby denoted.

Using the definitions of the W -functors involved in (8.5.i), we find that the transposes
of the composite morphisms in (8.5.ii) are given as the two composites on the periphery
of the following diagram. For typographical reasons, we have denoted the internal homs
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in V and W by [−,−].

GU⊗GV⊗G[U,U′]⊗G[V,V ′]

mG⊗1⊗1

��

1⊗s⊗1

,,

1⊗1⊗G̀UU′⊗G̀V V ′ //GU⊗GV⊗[GU,GU′]⊗[GV,GV ′]

1⊗s⊗1

��
G(U⊗V )⊗G[U,U′]⊗G[V,V ′]

1⊗mG

��

GU⊗G[U,U′]⊗GV⊗G[V,V ′]
1⊗G̀⊗1⊗G̀//

mG⊗mG

��

GU⊗[GU,GU′]⊗GV⊗[GV,GV ′]

Ev⊗Ev

��
G(U⊗[U,U′])⊗G(V⊗[V,V ′])

GEv⊗GEv //

mG

��

GU′⊗GV ′

mG

��

G(U⊗V )⊗G([U,U′]⊗[V,V ′])

G(U⊗V )⊗G(⊗(U,V )(U′,V ′))
��

mG // G(U⊗V⊗[U,U′]⊗[V,V ′])

G(U⊗V⊗(⊗(U,V )(U′,V ′)))
��

G(1⊗s⊗1) // G(U⊗[U,U′]⊗V⊗[V,V ′])

G(Ev⊗Ev)

**
G(U⊗V )⊗G[U⊗V,U′⊗V ′]

mG
// G(U⊗V⊗[U⊗V,U′⊗V ′])

GEv
// G(U′⊗V ′)

The cell at the bottom-left commutes by the naturality of mG, and the cell immediately
to the right of this commutes by the definition of ⊗(U,V )(U ′,V ′). The lowest of the cells on
the right-hand-side commutes by the naturality of mG, and the cell immediately above
this commutes by the definition of G̀. The cell at the top-right clearly commutes, and
the large cell at the top-left is readily shown to commute, by using the fact that G is a
symmetric monoidal functor. Hence the diagram commutes, so (8.5.ii) commutes.

Having thus shown that mG is W -natural, it now suffices to show that G̀ : G∗V →
W , when equipped with mG and eG, satisfies the equations for a symmetric monoidal
W -functor. By 8.3, we have an identity-on-objects strict symmetric monoidal functor
KG : V → (G∗V )0, so if a, `, r, s denote the symmetric monoidal structure morphisms of
V , then those of G∗V are obtained as KGa,KG`,KGr,KGs. Hence, using 8.4, we readily
compute that the diagrammatic equations that must hold in order that G̀ be a symmetric
monoidal W -functor are exactly the same as those for G.

Knowing now that G̀ is a monoidal V -functor, we obtain a strengthened form of the
Fundamental Lemma, as follows.

8.6. Lemma (Monoidal Fundamental Lemma). Let G : M → N be a 1-cell in
V -SMCCAT. Then the diagram (8.2.i) in V -SMCCAT commutes.

Proof. It suffices to show that the monoidal structures carried by the two composite V -
functors in (8.2.i) are equal. Per the convention of 3.1, we identify N0 with the underlying
ordinary category of N = N0. Then the monoidal structure carried by the N0-functor

G̀ : G∗M → N is, by definition, exactly the same as that carried by G (8.5). By
6.5, the monoidal structure morphisms carried by the V -functor UN

∗ (G̀) can be obtained
from those of G̀ (i.e., those of G) by applying the canonical identity-on-objects functor
θU

N

∗ : N0 = (N )0 → (UN
∗ N )0. However, in view of 7.9, in fact (UN

∗ N )0 = N0, and
the latter functor is the identity functor on N0. Hence the monoidal structure carried
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by UN
∗ (G̀) is exactly the same as that of G. The other W -functors in (8.2.i) are strict

monoidal, and by 7.9, the ordinary functors underlying the vertical arrows in (8.2.i) are
the identity functors on M0 and N0, so the result follows.

8.7. Corollary. Given a 1-cell G : V → W in SMCCAT, the diagram (8.4.i) in
SMCCAT commutes.

9. The 2-functoriality of the autoenrichment

9.1. Applying the Baković-Buckley-Grothendieck construction (§2.3) to the 2-functor

(−)-SMCCAT : SMCCAT→ 2CAT , V 7→ V -SMCCAT

of 7.3, we obtain a 2-functor (indeed, a split op-2-fibration) that we shall denote by

P :
∫

(−)-SMCCAT→ SMCCAT .

The objects of
∫

(−)-SMCCAT are pairs (V ,M ) consisting of a symmetric monoidal
closed category V and a symmetric monoidal closed V -category M , and the fibre of P
over V is isomorphic to the 2-category V -SMCCAT.

In the present section, we shall show that there is a 2-functor

(−) : SMCCAT→
∫

(−)-SMCCAT

sending each object V of SMCCAT to the pair (V ,V ).

9.2. Proposition. Let G : U → V , H : V → W be symmetric monoidal functors
between closed symmetric monoidal categories. Then the symmetric monoidal W -functor

ù̀HG : (HG)∗U → W (9.2.i)

is equal to the composite H∗G∗U
H∗(G̀)−−−→ H∗V

H̀−→ W .

Proof. That the underlying W -functors of these two monoidal W -functors are equal
follows from [5, I 6.6], so it remains only to show that their monoidal structures coincide.

By definition, the monoidal structure carried by G̀ (resp. H̀, ù̀HG) is exactly the same
as that of G (resp. H, HG). Also, by 6.5, the monoidal structure morphisms carried
by H∗(G̀) are obtained from those of G̀ (i.e., those of G) by applying the canonical
comparison functor KH : V → (H∗V )0. Hence the monoidal structure carried by the
composite H̀ ◦H∗(G̀) consists of the composites

IW
eH−→ HIV

H̀KHeG−−−−−→ HGIU

HGU ⊗HGU ′ m
H

−−→ H(GU ⊗GU ′) H̀KHmG−−−−−→ HG(U ⊗ U ′) .
But by 8.4, H̀KHeG = HeG and H̀KHmG = HmG, so the latter composites are equally
the monoidal structure morphisms carried by HG, which are the same as those carried

by ù̀HG.
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9.3. Lemma. Given a 2-cell α : G ⇒ H : W → V in SMCCAT, the components of α
constitute a 2-cell

G∗W

G̀ ""

α∗W // H∗W

H̀||
V

/7
ὰ

(9.3.i)

in V -SMCCAT.

Proof. Firstly, to show that the components of α constitute a V -natural transformation
ὰ, we must show that for each pair of objects W,X ∈ W , the diagram

GW (W,X)

G̀WX

��

αW (W,X)// HW (W,X)
H̀WX// V (HW,HX)

V (αW ,1)

��
V (GW,GX)

V (1,αX)
// V (GW,HX)

commutes. By the definition of G̀ and H̀, the transposes of the two composites in this
diagram are obtained as the two composites around the periphery of the following diagram

GW ⊗GW (W,X) mG //

α⊗α
��

G(W ⊗W (W,X))

α

��

GEv // GX

α

��
HW ⊗HW (W,X)

mH
// H(W ⊗W (W,X))

HEv
// HX

which commutes since α is a monoidal natural transformation. It remains only to show
that the resulting V -natural transformation ὰ is monoidal, but by definition the monoidal
structures carried by G̀ and H̀ are the same as those carried by G and H, and α∗W is strict
symmetric monoidal and identity-on-objects, so the diagrammatic equations expressing
the monoidality of ὰ are exactly the same as those for α itself.

9.4. Theorem. There is a 2-functor

(−) : SMCCAT→
∫

(−)-SMCCAT

sending each object V of SMCCAT to the pair (V ,V ), and sending each 1-cell G : W → V
in SMCCAT to (G, G̀) : (W ,W ) → (V ,V ), where G̀ : G∗(W ) → V is the symmetric
monoidal V -functor defined in §8.

Proof. By 9.2, the given assignment on 1-cells preserves composition, and it is immediate
that it preserves identity 1-cells and so is functorial. Given a 2-cell α : G⇒ H : W → V
in K := SMCCAT, the associated 2-cell ὰ given in 9.3 yields an associated 2-cell (α, ὰ) :
(W ,W )→ (V ,V ) in F :=

∫
(−)-SMCCAT. The components of ὰ are the same as those

of α, and the V -functor α∗W appearing in (9.3.i) is identity-on-objects, so with reference
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to the definition of vertical composition in F , it is immediate that the given assignment
on 2-cells preserves vertical composition, and it clearly preserves identity 2-cells. Hence
it suffices to show that it preserves whiskering. Firstly, let

W F // V
G

**

H

44 Uα�� (9.4.i)

in K . On the one hand, we can take the composite 2-cell αF in K and then apply (−)

to obtain the 2-cell (αF, ø̀αF ) : (GF, ø̀GF ) ⇒ (HF,ù̀HF ) : (W ,W ) → (U ,U ) in F . On
the other hand, we can apply (−) and then take the composite 2-cell

(W ,W )
(F,F̀ ) // (V ,V )

(G,G̀)
,,

(H,H̀)

22 (U ,U )(α,ὰ)�� (9.4.ii)

in F , which by definition consists of the 2-cell αF : GF ⇒ HF in K together with the
composite 2-cell

G∗F∗(W )

(αF )∗W = α∗F∗W
��

G∗(F̀ ) // G∗(V )

α∗V
��

G̀

''
H∗F∗(W )

H∗(F̀ )

// H∗(V )
H̀

// U

ὰ
u}

in U -SMCCAT. But the components of ὰ are exactly those of α itself, so since G∗(F̀ )
is given as F on objects, the components of the latter composite 2-cell are the same as

those of αF , which are equally those of ø̀αF . Hence the composite 2-cell (9.4.ii) is equal

to (αF, ø̀αF ), as needed.
Next, let

W
F

**

G

44 V
H // Uα��

in K . On the one hand, we can take the composite 2-cell Hα in K , and then apply (−)

to obtain a 2-cell (Hα, ø̀Hα) : (HF,ù̀HF ) ⇒ (HG,ù̀HG) : (W ,W ) → (U ,U ) in F . On
the other hand, we can take the composite 2-cell

(W ,W )

(F,F̀ )
,,

(G,G̀)

22 (V ,V )
(H,H̀)// (U ,U )(α,ὰ)�� (9.4.iii)

in F , which consists of the composite 2-cell Hα in K together with the composite 2-cell
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H∗F∗(W )

(Hα)∗W =H∗α∗W
��

H∗(F̀ )

((
H∗G∗(W )

H∗(G̀)

// H∗(V ) H̀ // U

H∗(ὰ)
s{

(9.4.iv)

in U -SMCCAT. The component of this 2-cell at each object W of H∗F∗(W ) (equivalently,
of W ) is obtained by applying H̀ to the component of H∗(ὰ) at W , which in turn is
obtained by applying KH : V → (H∗V )0 (8.3) to that of α (by 6.5). Hence, using 8.4,
the resulting component of the 2-cell (9.4.iv) at W is

H̀KHαW = HαW = ø̀HαW .

Hence the 2-cell (9.4.iii) is equal to (Hα, ø̀Hα), as needed.

10. The 2-functoriality of the induced enrichment over a fixed base

Whereas the previous section shows that the autoenrichment V 7→ V extends to a
2-functor (−) : SMCCAT →

∫
(−)-SMCCAT valued in the 2-category of symmetric

monoidal closed categories enriched over various bases, we show in the present section
that for a fixed base V , there is an induced 2-functor

EnrV : SMCCAT �V → V -SMCCAT � V

between the lax slice 2-categories (10.1) over V . Whereas it is immediate that the au-
toenrichment 2-functor induces a 2-functor SMCCAT �V → (

∫
(−)-SMCCAT)�V valued

in a lax slice of
∫

(−)-SMCCAT, the challenge that remains is to (2-functorially) map the
latter lax slice into the lax slice over V in the fibre V -SMCCAT. This we accomplish by
means of a general lemma on split op-2-fibrations (10.2).

10.1. Definition. The lax slice 2-category K � K over an object K of a 2-category
K has objects all 1-cells g : L → K with codomain K, written as pairs (L, g). A 1-cell
(s, σ) : (L, g)→ (M,h) in K �K consists of a 1-cell s : L→M and a 2-cell σ : g ⇒ hs. A
2-cell α : (s, σ)⇒ (t, τ) : (L, g)→ (M,h) is simply a 2-cell α : s⇒ t such that α ◦ σ = τ ,
where α ◦ σ denotes the pasted 2-cell hα · σ.

10.2. Lemma. Let P : F → K be a split op-2-fibration, and let A be an object of F .
Then there is an associated 2-functor

F � A→ FPA � A

from the lax slice F � A over A in F to the lax slice FPA � A over A in the fibre FPA

of P over PA.
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Proof. Given an object (B, f) of F � A, so that f : B → A is a 1-cell in F , we
have a cocartesian 1-cell ψ(Pf,B) : B → (Pf)∗(B) over Pf and an extension problem
(ψ(Pf,B), f, 1PA), which therefore has a unique solution f ′, i.e. a 1-cell f ′ : (Pf)∗(B)→
A in the fibre over PA such that f ′ ◦ ψ(Pf,B) = f . The 2-functor to be defined shall
send the object (B, f) to the object ((Pf)∗(B), f ′) of FPA � A.

Given a 1-cell (s, β) : (B, f) → (C, g) in F � A, so that s : B → C is a 1-cell and
β : f ⇒ gs a 2-cell, we claim that there are unique β0 and sβ as in the left half of the
diagram

B

s

��

ψ(Pf,B)// (Pf)∗(B)

sβ

��

f ′

��
C
ψ(Pg,C)

// (Pg)∗(C)
g′

// A

β0

v~
β′
y�

such that

1. β0 is a designated cartesian 2-cell over Pβ, and

2. sβ lies in FPA.

Indeed, letting q := ψ(Pg,C) ◦ s and taking β0 := ϕ(Pβ, q) : (Pβ)∗(q) ⇒ q, we have
an extension problem (ψ(Pf,B), (Pβ)∗(q), 1PA), which has a unique solution sβ, so the
claim is proved. Further, there is a unique 2-cell β′ as in the diagram such that

3. β′ lies in FPA, and

4. the pasted 2-cell equals β.

Indeed, we have a lifting problem (g′ ◦ β0, β, 1Pf ), but since β0 is cartesian, the whiskered
2-cell g′◦β0 is cartesian, so this lifting problem has a unique solution τ : f ⇒ g′◦(Pβ)∗(q).
But then we have an extension problem (ψ(Pf,B), τ, 11PA) with a unique solution β′ :
u ⇒ v : (Pf)∗(B) → A. Hence u and v are necessarily solutions to the lifting problems
(ψ(Pf,B), f, 1PA) and (ψ(Pf,B), g′ ◦ (Pβ)∗(q), 1PA), respectively, but these also have
solutions f ′ and g′ ◦ sβ, so in fact u = f ′ and v = g′ ◦ sβ. One readily finds that β′

is equivalently characterized by 3 and 4. We define the needed 2-functor on 1-cells by
sending (s, β) to (sβ, β

′) : ((Pf)∗(B), f ′)→ ((Pg)∗(C), g′).
Given a 2-cell α : (s, β)⇒ (t, γ) : (B, f)→ (C, g) in F �A, so that α : s⇒ t and the

2-cell obtained by pasting α and β equals γ, we claim that there is a unique 2-cell αγβ in
FPA such that the following pasted 2-cells are equal

B

t

��

ψ(Pf,B)// (Pf)∗(B)

tγ
��

sβ

��
C
ψ(Pg,C)

// (Pg)∗(C)

γ0

v~

αγβks

B

t

��
s

��

ψ(Pf,B)// (Pf)∗(B)

sβ

��
C
ψ(Pg,C)

// (Pg)∗(C)

β0

v~
αks
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Indeed, letting ρ denote the rightmost of these composite 2-cells, we have a lifting problem
(γ0, ρ, 1Pf ) with a unique solution α′ : sβ ◦ψ(Pf,B)⇒ tγ ◦ψ(Pf,B), and we then obtain
an extension problem (ψ(Pf,B), α′, 11PA) with a unique solution αγβ, which is equally
the unique 2-cell in FPA making the given pasted 2-cells equal. We define the needed
2-functor on 2-cells by sending α : (s, β)⇒ (t, γ) to αγβ : (sβ, β

′)⇒ (tγ, γ
′). One readily

verifies that the latter is indeed a 2-cell in FPA � A by using the defining properties of
αγβ, β′, and γ′ to show that the 2-cell obtained by pasting αγβ with β′ equals γ′.

Using the fact that the designated cartesian 2-cells are closed under pasting, one now
readily shows that the given assignment preserves composition of 1-cells, identity 1-cells,
vertical composition of 2-cells, identity 2-cells, and whiskering, and hence is 2-functorial.

10.3. In the case that F is the split op-2-fibration
∫

Φ associated to a 2-functor Φ :
K → 2CAT, the preceding proposition (10.2) yields a composite 2-functor

F � A −→ FA↓ � A
∼−→ Φ(A↓) � A↑

associated to each object A = (A↓, A↑) of
∫

Φ. We can describe this 2-functor explicitly
in terms of Φ, as follows. It sends each object (B, f) of its domain to (f ↓∗(B

↑), f ↑), each
1-cell (s, β) : (B, f)→ (C, g) to (g↓∗(s

↑) ◦ β↓∗B↑, β↑) : (f ↓∗(B
↑), f ↑)→ (g↓∗(C

↑), g↑), and each
2-cell α : (s, β)→ (t, γ) to g↓∗(α

↑) ◦ β↓∗B↑ : (g↓∗(s
↑) ◦ β↓∗B↑, β↑)⇒ (g↓∗(t

↑) ◦ γ↓∗B↑, γ↑).

10.4. Theorem. Given a symmetric monoidal closed category V , there is a 2-functor

EnrV : SMCCAT �V → V -SMCCAT � V

given on objects by sending G : M → V to G̀ : G∗M → V .

Proof. The 2-functor (−) : SMCCAT→
∫

(−)-SMCCAT of 9.4 induces a 2-functor

SMCCAT �V →
�∫

(−)-SMCCAT
�

� (V ,V )

between the lax slices. Hence by 10.3 we obtain a composite 2-functor

SMCCAT �V −→
�∫

(−)-SMCCAT
�

� (V ,V ) −→ V -SMCCAT � V .

10.5. Remark. Explicitly, the 2-functor EnrV of 10.4 is given on 1-cells as follows. Given
a 1-cell (S, β) : (M , G)→ (N , H) in the lax slice 2-category SMCCAT �V , i.e.

M

G !!

S //N

H}}
V

08
β
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in SMCCAT, the associated 1-cell (G∗M , G̀) → (H∗N , H̀) in V -SMCCAT � V is given
by the following diagram in V -SMCCAT.

G∗M

G̀ ++

β∗M // H∗S∗M
`÷HS
��

H∗(S̀) // H∗N

H̀ssV

β̀

7?

Given a 2-cell α : (S, β) ⇒ (T, γ) : (M , G) → (N , H) in SMCCAT �V , the associated
2-cell in V -SMCCAT � V is H∗(ὰ) ◦ β∗M .

11. Enrichment of a symmetric monoidal closed adjunction

11.1. Lemma. Let f ε
η
g : B → A be an adjunction in a 2-category K . Then (f, η) ε

η

(g, 1g) : (B, g)→ (A, 1A) is an adjunction in the lax slice 2-category K � A.

Proof. The verification is straightforward.

11.2. Theorem. Let F ε
η
G : M → V be an adjunction in SMCCAT. Then there is an

associated adjunction
F́ ε

η
G̀ : G∗M → V

in V -SMCCAT whose underlying adjunction in SMCCAT may be identified with the given
adjunction, via an isomorphism M ∼= (G∗M )0.

Proof. By 11.1, we have an adjunction (F, η) ε
η

(G, 1G) : (M , G) → (V , 1V ) in
SMCCAT �V . The composite 2-functor

SMCCAT �V
EnrV−−−→ V -SMCCAT � V

Dom−−→ V -SMCCAT (11.2.i)

(where Dom is the ‘domain’ 2-functor) sends this adjunction to an adjunction in
V -SMCCAT that we now describe explicitly.

Using the description of EnrV given in 10.5, we find that whereas the right adjoint is
G̀ (8.1), the left adjoint F́ is the composite

V
η∗V−−→ G∗F∗V

G∗(F̀ )−−−→ G∗M .

The unit is obtained by sending η : 1(V ,1) ⇒ (G, 1)(F, η) = (GF, η) along (11.2.i) to yield
the 2-cell

V

η∗V
��

1

##
G∗F∗V `÷GF // V

ὴ
y�
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in V -SMCCAT (9.3), whose components are equally those of η. The counit έ is obtained
by sending ε : (F, η)(G, 1) = (FG, ηG)⇒ 1(M ,G) along (11.2.i) to yield the 2-cell

G∗F∗G∗M

G∗ε∗M
��

G∗(
`÷FG)

��
G∗M

η∗G∗M 66

1
// G∗M 1

// G∗M
G∗(ὲ)
w�

(11.2.ii)

which we denote by έ. We already know that ὴ and έ have the expected domain and
codomain, even though this may not be immediately evident from the diagrams.

By [10, Proposition 2.1], the right adjoint 1-cell G in SMCCAT is normal, so the
comparison 1-cell KG : M → (G∗M )0 in SMCCAT is an isomorphism (8.3). Since KG

commutes with G and G̀0 : (G∗M )0 → V in SMCCAT (8.7), the monoidal functors G
and G̀0 in SMCCAT are identified as soon as we identify M with (G∗M )0 along KG.

Once we do so, we have an adjunction F́0 έ0

ὴ0
G̀0 = G : M → V in SMCCAT that we may

compare with F ε
η
G. Such an adjunction is uniquely determined by the right adjoint G

together with the family (F́ V, ὴV ) = (FV, ηV ) indexed by the objects V ∈ V ; indeed, for
adjunctions in CAT this is well-known, and for adjunctions in SMCCAT it follows from
Kelly’s work on doctrinal adjunction ([10, 1.4]). Hence the two adjunctions in question
are identical.

11.3. Remark. In the situation of 11.2, the given adjunction is sent by (−)-SMCCAT :
SMCCAT→ 2CAT to a 2-adjunction

F∗ ε∗

η∗
G∗ : M -SMCCAT→ V -SMCCAT .

Notice that F́ : V → G∗M is the transpose of F̀ : F∗V → M under this 2-adjunction,
and with reference to (11.2.ii), έ is the transpose of the 2-cell ὲ.

11.4. Example. Letting g : X → S be a morphism of schemes, and letting (M ,V ) be
any one of the pairs of categories (i), (ii), or (iii) listed in §1, the associated adjunction
g∗ a g∗ : M → V is symmetric monoidal closed, as we now verify.

For (ii) and (iii), this is all but made explicit in [13], so we piece together the needed
facts here. In cases (ii) and (iii), g∗ is a symmetric monoidal functor by, e.g., [13, 3.4.4].
By [10, 1.1, 1.2], the mate of the monoidal structure on g∗ is an op-monoidal structure
on g∗, consisting of morphisms

g∗(OS)→ OX g∗(V ⊗W )→ g∗(V )⊗ g∗(W ) (V,W ∈ V ).

But as noted in [13, 3.5.4, 3.2.4, 3.1.9], the rightmost is an isomorphism. It is well-known
that the leftmost is also an isomorphism; indeed, in case (ii) it is simply the canonical
isomorphism g∗(OS) = OX ⊗g−1(OS) g

−1(OS)
∼−→ OX , and in case (iii) it is obtained from

the latter isomorphism via [13, 3.2.5(a)] and so is an isomorphism in D(OX-Mod) since
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OS is q-flat as a complex10 (by [13, 2.5.2], as OS is a flat OS-module). Hence [10, 1.4]
applies.

Regarding (i), it is well-known that if g∗ a g∗ : M → V is an adjunction between
categories with finite products, and g∗ preserves finite products, then this adjunction is
symmetric monoidal; indeed, the mate of the cartesian monoidal structure on g∗ consists
of isomorphisms, so again [10, 1.4] applies.
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