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HOPF POLYADS, HOPF CATEGORIES AND HOPF GROUP
MONOIDS VIEWED AS HOPF MONADS

GABRIELLA BÖHM

Abstract. We associate, in a functorial way, a monoidal bicategory Span|V to any
monoidal bicategory V. Two examples of this construction are of particular interest:
Hopf polyads of [Bruguières 2015] can be seen as Hopf monads in Span|Cat while Hopf
group monoids in the spirit of [Zunino 2004, Turaev 2000] in a braided monoidal category
V , and Hopf categories of [Batista-Caenepeel-Vercruysse 2016] over V both turn out to
be Hopf monads in Span|V . Hopf group monoids and Hopf categories are Hopf monads
on a distinguished type of monoidales fitting the framework of [Böhm-Lack 2016]. These
examples are related by a monoidal pseudofunctor V → Cat.

1. Introduction

A Hopf monad [Chikhladze-Lack-Street 2010] in a monoidal bicategory is an opmonoidal
monad on a monoidale (also called a pseudo monoid) such that certain fusion 2-cells
are invertible (cf. Section 2.1). In the monoidal 2-category Cat of categories, functors
and natural transformations, the Hopf monads of [Bruguières-Lack-Virelizier 2011] on
monoidal categories are re-obtained. Opmonoidal monads (in any bicategory) have the
characteristic feature that their Eilenberg-Moore object — provided that it exists — is a
monoidale too such that the forgetful morphism is a strict morphism of monoidales. If
the base monoidale is also closed, then the Hopf property is equivalent to the lifting of
the closed structure to the Eilenberg-Moore object, see [Chikhladze-Lack-Street 2010].

A monoidale is said to be a map monoidale if its multiplication and unit 1-cells possess
right adjoints. We say that it is an opmap monoidale if it is a map monoidale in the
vertically opposite bicategory (that is, in the original bicategory the multiplication and
the unit are right adjoints themselves). Thus passing to the vertically opposite bicategory,
opmonoidal monads on opmap monoidales can be seen as monoidal comonads on map
monoidales, the central objects of the study in [Böhm-Lack 2016].

An (op)map monoidale is said to be naturally Frobenius [López Franco-Street-Wood
2011, López Franco 2009] if two canonical 2-cells (explicitly recalled in [Böhm-Lack 2016,
Paragraph 2.4]), relating the multiplication and its adjoint, are invertible. The endohom
category of a naturally Frobenius (op)map monoidale in any monoidal bicategory admits
a duoidal structure [Street 2012] (what was called a 2-monoidal structure in [Aguiar-
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Mahajan 2010]). The Hopf monads on a naturally Frobenius opmap monoidale can be
regarded as Hopf monoids in this duoidal endohom category. In this setting, many equiv-
alent characterizations — including the existence of an antipode — of Hopf monads were
obtained in [Böhm-Lack 2016].

Hopf monads in monoidal bicategories unify various structures like groupoids, Hopf
algebras, weak Hopf algebras [Böhm-Nill-Szlachányi 1999], Hopf algebroids [Schauen-
burg 2000], Hopf monads of [Bruguières-Virelizier 2007] and — more generally — of
[Bruguières-Lack-Virelizier 2011]. Some of these, namely groupoids, Hopf algebras, weak
Hopf algebras [Böhm-Nill-Szlachányi 1999], Hopf algebroids over commutative algebras
as in [Ravenel 1986] and the Hopf monads of [Bruguières-Virelizier 2007] live on naturally
Frobenius opmap monoidales, see [Böhm-Lack 2016].

The aim of this note is to show that some structures that recently appeared in the
literature fit this framework as well: we show that Hopf group monoids (thus in particular
Hopf group algebras in [Turaev 2000, Zunino 2004, Caenepeel-De Lombaerde 2006]), Hopf
categories in [Batista-Caenepeel-Vercruysse 2016] and Hopf polyads in [Bruguières 2015]
can be seen as Hopf monads in suitable monoidal bicategories. Hopf group monoids
and Hopf categories are even Hopf monads on naturally Frobenius opmap monoidales;
explaining e.g. the existence and the properties of their antipodes.

Note that all of Hopf polyads, Hopf group monoids, and Hopf categories can be seen as
lax functors from a suitable category (provided by an arbitrary category, a group, and an
indiscrete category, respectively) to a monoidal bicategory V (equal to Cat and a braided
monoidal category regarded as a monoidal bicategory with a single object, respectively);
so they are objects of a bicategory of lax functors, lax natural transformations and modi-
fications. However, this bicategory does not admit a suitable monoidal structure allowing
for a study of Hopf monads.

So in order to achieve our goal, we embed it into a larger bicategory Span|V . The
bicategory Span|V is constructed for any bicategory V . Whenever V is a monoidal bicat-
egory, also Span|V is proven to be so. This correspondence is functorial in the sense that
any lax functor (respectively, monoidal lax functor) F : V → W induces a lax functor
(respectively, monoidal lax functor) Span|F : Span|V → Span|W . This construction is
applied to two examples:

— A monad in Span|Cat is precisely a polyad of [Bruguières 2015]. Furthermore, any
set of monoidal categories can be regarded as a monoidale in Span|Cat. The op-
monoidal structures of a monad on such a monoidale correspond bijectively to op-
monoidal structures of the polyad in the sense of [Bruguières 2015]. Finally, such
an opmonoidal monad is a Hopf monad if and only if the corresponding opmonoidal
polyad is a Hopf polyad (in the sense of [Bruguières 2015]) over a groupoid.

— Any braided monoidal category V can be regarded as a monoidal bicategory with
a single object. Hence there is an associated monoidal bicategory Span|V in which
any object carries the structure of a naturally Frobenius opmap monoidale.

On the one hand, we identify categories enriched in V with certain monads; cate-
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gories enriched in the category of comonoids in V with certain opmonoidal monads;
and Hopf categories over V with certain Hopf monads on these naturally Frobenius
opmap monoidales in Span|V .

On the other hand, we also identify monoids in V graded by ordinary monoids with
monads; semi-Hopf group monoids in V with opmonoidal monads; and Hopf group
monoids in V with Hopf monads on a trivial naturally Frobenius opmap monoidale
in Span|V .

The above examples are related by a monoidal pseudofunctor V → Cat. It induces a
monoidal pseudofunctor Span|V → Span|Cat which takes both Hopf group monoids and
Hopf categories to Hopf polyads.

Acknowledgement. I would like to thank Joost Vercruysse for highly inspiring discus-
sions on the topic and the organizers of the conference “StefFest” in May 2016 in Turin,
where this exchange of ideas began. Special thanks go to the anonymous referee for a
careful reading of the manuscript and for helpfully constructive comments. Financial
support by the Hungarian Scientific Research Fund OTKA (grant K108384) is gratefully
acknowledged.

2. The general construction

Throughout this section V will denote a bicategory [Borceux 1994, Vol. 1 Section 7.7]
whose horizontal composition will be denoted by ◦ and whose vertical composition will be
denoted by ∗. Although the horizontal composition is required to be neither strictly asso-
ciative nor strictly unital, we will omit explicitly denoting the associativity and unitality
iso 2-cells.

2.1. Hopf monads in monoidal bicategories. We briefly recall some definitions for
later reference. For more details we refer e.g. to [Chikhladze-Lack-Street 2010].

A monad on a category A consists of an endofunctor f : A→ A together with natural
transformations µ (the multiplication) from the two-fold iterate f ◦ f to f and η (the
unit) from the identity functor 1 to f . They are subject to the associativity and unitality
axioms.

From the 2-category Cat of categories, functors and natural transformations, this no-
tion can be generalized to any bicategory, see [Street 1972]. Then a monad consists of a
1-cell f : A → A and 2-cells µ : f ◦ f → f and η : 1 → f such that µ is associative with
unit η.

For monoidal categories A and A′ (with respective monoidal products ⊗ and ⊗′;
monoidal units K and K ′), we can ask about the relation of a functor f : A → A′

and the monoidal structures; there are some dual possibilities of their compatibility. An
opmonoidal (by some authors called comonoidal) structure on f consists of natural trans-
formations f2 : f(−⊗−)→ f(−)⊗′ f(−) and f0 : f(K)→ K ′ which satisfy the evident
coassociativity and counitality conditions (see these conditions spelled out explicitly in a
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more general case below). The functor f is said to be strict monoidal if f2 and f0 are
identity morphisms.

A natural transformation between opmonoidal functors f and f ′ is said to be op-
monoidal if compatible with the opmonoidal structures of f and f ′ (for the precise form
of this compatibility see the more general case below).

It is straightforward to see that monoidal categories, opmonoidal functors and op-
monoidal natural transformations constitute a 2-category OpMon. The monads therein
are termed opmonoidal monads. Recall from [Moerdijk 2002] and [McCrudden 2002] that
for any monoidal category A and any monad f on the category A, there is a bijective
correspondence between

— opmonoidal structures of the functor f making it an opmonoidal monad;

— monoidal structures of the category Af of Eilenberg–Moore f -algebras such that
the forgetful functor Af → A is strict monoidal (that is, the liftings of the monoidal
structure of A to Af ).

To any opmonoidal monad (f, f2, f0, µ, η) on a monoidal category A, one associates a
natural transformation, the so-called fusion morphism,

f(f(−)⊗−)
f2 // f(f(−))⊗ f(−)

µ⊗1 // f(−)⊗ f(−).

The opmonoidal monad f is said to be a Hopf monad precisely if the fusion morphism
is invertible, see [Bruguières-Lack-Virelizier 2011]. Whenever the monoidal category A is
closed, the invertibility of the fusion morphism is equivalent to the lifting of the closed
structure of A to the Eilenberg–Moore category Af , see again [Bruguières-Lack-Virelizier
2011].

The above notions can be generalized from the Cartesian monoidal 2-category Cat
to any monoidal bicategory V (with monoidal product ⊗ and monoidal unit K). Then
monoidal category is generalized to what is known as monoidale (alternatively called
pseudo monoid). Such a gadget consists of an object A of V together with 1-cells m from
the monoidal square A⊗A to A and u from the monoidal unit K to A; as well as invertible
2-cells m ◦ (m ⊗ 1) → m ◦ (1 ⊗m), m ◦ (u ⊗ 1) → 1 and m ◦ (1 ⊗ u) → 1 which satisfy
Mac Lane’s coherence axioms.

For monoidales A and A′, an opmonoidal 1-cell consists of a 1-cell f : A→ A′ together
with 2-cells f2 : f ◦m→ m′◦(f⊗f) and f0 : f ◦u→ u′ satisfying the usual coassociativity
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and counitality conditions

f ◦m ◦ (m⊗ 1)
f2◦1 //

∼=

��

m′ ◦ (f ⊗ f) ◦ (m⊗ 1)
∼= m′ ◦ (f ◦m⊗ f)

1◦(f2⊗1) //
m′ ◦ (m′ ⊗ 1) ◦ (f ⊗ f ⊗ f)
∼= m′ ◦ (m′ ◦ (f ⊗ f)⊗ f)

∼=
��

f ◦m ◦ (1⊗m)
f2◦1

//
m′ ◦ (f ⊗ f) ◦ (1⊗m)
∼= m′ ◦ (f ⊗ f ◦m)

1◦(1⊗f2)
//
m′ ◦ (1⊗m′) ◦ (f ⊗ f ⊗ f)
∼= m′ ◦ (f ⊗m′ ◦ (f ⊗ f))

f ◦m ◦ (u⊗ 1)
f2◦1 //

∼=
��

m′ ◦ (f ⊗ f) ◦ (u⊗ 1)
∼= m′ ◦ (f ◦ u⊗ f)

1◦(f0⊗1) //
m′ ◦ (u′ ⊗ 1) ◦ f
∼= m′ ◦ (u′ ⊗ f)

∼=
��

f f

f ◦m ◦ (1⊗ u)
f2◦1

//

∼=

OO

m′ ◦ (f ⊗ f) ◦ (1⊗ u)
∼= m′ ◦ (f ⊗ f ◦ u)

1◦(1⊗f0)
//
m′ ◦ (1⊗ u′) ◦ f
∼= m′ ◦ (f ⊗ u′).

∼=
OO

A strict monoidal 1-cell is an opmonoidal 1-cell f with f2 and f0 the identity 2-cells.
A 2-cell ϕ : f → f ′ between opmonoidal 1-cells is opmonoidal if the diagrams

f ◦m f2 //

ϕ◦1
��

m′ ◦ (f ⊗ f)

1◦(ϕ⊗ϕ)

��
f ′ ◦m

f ′2

//m′ ◦ (f ′ ⊗ f ′)

f ◦ u f0 //

ϕ◦1
��

u′

f ′ ◦ u
f ′0

// u′

commute.
Once again, monoidales, opmonoidal 1-cells and opmonoidal 2-cells constitute a bi-

category OpMon(V); the monads therein are termed opmonoidal monads. Assume that
in V the Eilenberg-Moore object Af exists for any monad f on some object A. Then
for any monad f on A, and for any monoidale with object part A, there is a bijective
correspondence between

— 2-cells f ◦m→ m ◦ (f ⊗ f) and f ◦ u→ u yielding an opmonoidal monad f ;

— 1-cells Af ⊗Af → Af and K → Af yielding a monoidale Af such that the forgetful
1-cell Af → A is strict monoidal.

The fusion 2-cell associated to an opmonoidal monad (f, f2, f0, µ, η) takes now the
form

f ◦m ◦ (f ⊗ 1)
f2◦1 //m ◦ (f ⊗ f) ◦ (f ⊗ 1) ∼= m ◦ (f ◦ f ⊗ f)

1◦(µ⊗1) //m ◦ (f ⊗ f).
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Its invertibility defines f to be a Hopf monad. As shown in [Chikhladze-Lack-Street
2010], in the case when the base monoidale is closed, the invertibility of the fusion 2-cell
is again equivalent to the lifting of the closed structure to the Eilenberg-Moore object of
f . For some equivalent characterizations of Hopf monads (among opmonoidal monads)
in favorable situations, we refer to [Böhm-Lack 2016].

2.2. The bicategory Span|V associated to a bicategory V. The 0-cells of Span|V
are pairs consisting of a set X and a map x from X to the set V0 of 0-cells in V .

The 1-cells from X x // V0 to Y y // V0 consist of a span Y Aloo r // X — inducing

a span V0 Ay.loo x.r // V0 — and a map a from A to the set V1 of 1-cells in V , such
that with the source and target maps s and t of V the following compatibility diagram
commutes (that is to say, a is a map of spans over the set V0).

Y

y

��

Aloo r //

a
��

X

x
��

V0 V1
t

oo
s
// V0

(2.1)

The 2-cells from ( Y Aoo // X, a) to ( Y A′oo // X, a′) consist of a map of spans
f : A→ A′ and a set ϕ = {ϕc : a(c)⇒ a′f(c)|c ∈ A} of 2-cells in V .

If we regard the maps a and a′ as functors from the discrete categories A and A′,
respectively, to the vertical category of V , then ϕ is a natural transformation from a
to the composite of the functors f : A → A′ and a′. By this motivation we use the
diagrammatic notation

A a //

f ��
⇓ϕ

V1.

A′
a′

==

The vertical composite of the 2-cells (f, ϕ) : ( Y Aoo // X, a)⇒ ( Y A′oo // X, a′)

and (f ′, ϕ′) : ( Y A′oo // X, a′)⇒ ( Y A′′oo // X, a′′) is the pair

A

~~   
f
��

Y A′oo

f ′

��

// X

A′′

`` >>

A
a //

f

��

⇓ϕ

⇓ϕ′

V1

A′

a′

>>

f ′
// A′′.

a′′

OO

In other words, it is the pair (f ′.f, {ϕ′f(c) ∗ ϕc|c ∈ A}).
The identity 2-cell of ( Y Aoo // X, a) consists of the identity map 1 : A → A and

the set {1a(c)|c ∈ A} of identity 2-cells.
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The horizontal composite of the 1-cells ( Y Aloo r // X, a) and ( Z Bloo r // Y,
b) is the pair consisting of the pullback span

Z ← B ◦ A := {(d, c) ∈ B × A|r(d) = l(c)} → X, l(d)←[ (d, c) 7→ r(c)

and the map
B ◦ A→ V1, (d, c) 7→ b(d) ◦ a(c).

The 1-cells b(d) and a(c) are composable indeed thanks to (2.1).

The horizontal composite of 2-cells (f, ϕ) : ( Y Aoo // X, a) ⇒ ( Y A′oo // X, a′)

and (g, γ) : ( Z Boo // Y, b)⇒ ( Z B′oo // Y, b′) consists of the map

g ◦ f : B ◦ A→ B′ ◦ A′, (d, c) 7→ (g(d), f(c))

and the following set of 2-cells in V .

{γd ◦ ϕc : b(d) ◦ a(c)⇒ b′g(d) ◦ a′f(c)|(d, c) ∈ B ◦ A}

The identity 1-cell of (X, x) consists of the trivial span X X X and the map
1x(−) : X → V1. The associativity and unitality natural transformations are pairs of
the analogous natural transformations in Span and V .

Using that both Span and V are bicategories, it is straightforward to see that so is
Span|V above.

We are not aware of any construction yielding Span|V as a comma bicategory. How-
ever, regarding it as a tricategory (with only identity 3-cells), it embeds into a comma
tricategory obtained by a lax version of the 3-comma category construction in [Gray 1974,
Section I.2.7]: Consider the tricategory SpanSpan whose 0-cells are sets X, Y, . . ., whose
hom-bicategory SpanSpan(X, Y ) is the bicategory of spans in the category Span(X, Y ),
and in which the 1-composition is the pullback of spans with the evident coherence 2-and
3-cells. Regarding Span as a tricategory with only identity 3-cells, and interpreting a map
of spans in the first diagram of

A

~~   
f

��

L R

A′

`` >>

A

~~   
L Aoo //

f
��

R

A′

`` >>

as a span in the second diagram, we obtain a functor of tricategories Span→ SpanSpan. On
the other hand, any bicategory V determines an evident (1- and 2-) lax functor of tricate-
gories from the trivial tricategory 1 (with a single 0-cell and only identity higher cells) to
SpanSpan. The comma tricategory arising from the lax functors Span // SpanSpan 1Voo

contains Span|V as a sub-tricategory.
Note for later application that a 1-cell ( Y Aoo // X, a) possesses a right adjoint in

Span|V if and only if Y Aoo // X has a right adjoint in Span and for all c ∈ A, a(c) has
a right adjoint in V . Equivalently, if and only if it is isomorphic to a 1-cell of the form
( Y Xoo X, h) such that for all p ∈ X, h(p) has a right adjoint in V .
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2.3. Monads in Span|V. Let us fix an arbitrary 0-cell (D0, D0 f // V0 ) in Span|V and

describe a monad on it. The underlying 1-cell consists of a span D0 D1too s // D0 and
a map F associating a 1-cell F (h) : fs(h) → ft(h) in V to each element h of D1. The
multiplication and unit 2-cells consist of respective maps of spans

D1 ◦D1

}} !!
·

��

D0 D0

D1

aa ==
and

D0

e

��

D0 D0

D1

aa ==

and respective sets of 2-cells {µh,k : F (h) ◦ F (k) → F (h.k)|(h, k) ∈ D1 ◦ D1} and {ηx :
1f(x) → F (ex)|x ∈ D0} in V . The associativity and unitality conditions precisely say that
there is a category

D0 e // D1
soo

t
oo D1 ◦D1·oo (2.2)

with object set D0, morphism set D1, source and target maps s and t, composition ·
and identity morphisms {ex|x ∈ D0} and — regarding this category as a bicategory
with only identity 2-cells — a lax functor D → V with object map f , hom functor F
(from the discrete hom category D1), and comparison natural transformations µ and η.
Summarizing, for any bicategory V , the following notions coincide.

— A pair consisting of a category D and a lax functor D → V .

— A monad in Span|V .

2.4. Bicategories of monads in Span|V. Consider a category (2.2) and lax functors
((f, F ), µ, η) and ((f ′, F ′), µ′, η′) from D to V . Regard them as monads in Span|V as in
Section 2.3.

A 1-cell of the form ( D0 D0 D0 , D0
h // V1 ) from D0 f // V0 to D0 f ′ // V0

and the 2-cell (D0 ◦D1 ∼= D1 ∼= D1 ◦D0, ht(−) ◦ F (−) ϕ // F ′(−) ◦ hs(−) ) constitute a

monad morphism (in the sense of [Street 1972]) in Span|V if and only if (h, ϕ) is a lax
natural transformation.

A 2-cell of the form (D0 = D0, h γ // h′ ) is a monad transformation (in the sense of
[Street 1972]) in Span|V if and only if γ is a modification (h, ϕ)→ (h′, ϕ′).

These observations amount to the isomorphism of the following bicategories, for any
category D and any bicategory V .

— The bicategory [D,V ] of lax functors D → V , lax natural transformations and
modifications.
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— The following locally full sub-bicategory in the bicategory of monads in Span|V . The
0-cells are those monads which live on 0-cells D0 → V0 (for the given object set D0

of D), whose 1-cells are of the form (D0 D1too s // D0, F ) (in terms of the given
data s, t), and whose multiplication and unit 2-cells have the respective forms (·, µ)
and (e, η) (with the given maps · and e). The 1-cells are those monad morphisms
((H, h), (f, ϕ)) whose underlying span H is the trivial span D0 = D0 = D0 and
whose map f is the canonical isomorphism D0 ◦ D1 ∼= D1 ∼= D1 ◦ D0. The 2-cells
are all possible monad transformations (g, γ) (g in them is necessarily the identity
map D0 → D0).

2.5. The monoidal bicategory Span|V for a monoidal bicategory V. In this
section V is taken to be a monoidal bicategory — that is, a single object tricategory
[Gordon-Power-Street 1995] — with monoidal operation ⊗ and monoidal unit K. Then
we can equip Span|V with a monoidal structure as follows.

The monoidal product of 0-cells X x // V0 and Z z // V0 consists of the Cartesian
product set X × Z and the map

X × Z → V0, (k, l) 7→ x(k)⊗ z(l).

The monoidal product lax functor on the local hom categories takes a pair of 2-cells (f, ϕ) :

( Y Aoo // X, a) ⇒ ( Y A′oo // X, a′) and (g, γ) : ( W Boo // Z, b) ⇒ ( W B′oo // Z, b′) to
the 2-cell consisting of the Cartesian product map f × g : A×B → A′ ×B′ between the
Cartesian product spans and the following set of 2-cells.

{ϕc ⊗ γd : a(c)⊗ b(d)→ a′f(c)⊗ b′g(d)|(c, d) ∈ A×B}

The natural transformations establishing the compatibility of these functors ⊗ with the
identity 1-cells and the horizontal composition are inherited from V . The monoidal unit
is the singleton set with the map K. The lax natural transformations measuring the non-
associativity and non-unitality of ⊗, as well as their invertible coherence modifications
are induced by those in V .

It requires some patience to check that this is a monoidal bicategory indeed. No
conceptual difficulties arise, however, one has to use repeatedly that Span is a monoidal
bicategory via the Cartesian product of sets together with the assumed monoidal bicate-
gory structure of V .

Note that the sub-bicategory of Span|V occurring in Section 2.4 is not a monoidal
sub-bicategory. Hence it is not suitable for our study of Hopf monads.

2.6. The bicategory Span|OpMon(V) for a monoidal bicategory V. The 2-full
(i.e. both horizontally and vertically full) sub-bicategory in OpMon(Span) whose objects
are the opmap monoidales, is in fact isomorphic to Span via the forgetful functor.

Consider next a monoidale in Span|V whose multiplication and unit 1-cells have under-

lying spans which possess left adjoints in Span. It consists of a 0-cell X C // V0 together
with multiplication and unit 1-cells which must be of the form

( X X
∆ // X ×X, X m // V1 ) and ( X X

! // 1, X u // V1 ) (2.3)
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— where ∆ is the diagonal map p 7→ (p, p) and ! denotes the unique map to the singleton
set 1 — and associativity and unit 2-cells provided by the identity map of X, and maps
sending p ∈ X to 2-cells in V , αp : mp◦(mp⊗1Cp)→ mp◦(1Cp⊗mp), λp : mp◦(up⊗1Cp)→
1Cp and %p : mp ◦ (1Cp ⊗ up)→ 1Cp , respectively. The axioms for these data to constitute
a monoidale in Span|V say precisely that (Cp,mp, up, αp, λp, %p) is a monoidale in V for all
p ∈ X.

If each member (Cp,mp, up, αp, λp, %p) in a monoidale as in (2.3) is a naturally Frobe-
nius opmap monoidale in V , then so is the induced monoidale in Span|V . The left ad-
joints of its multiplication and unit are given in terms of the left adjoints (mp)∗ a mp and
(up)∗ a up as

( X ×X X∆oo X ,X 3 p 7→ (mp)∗) and ( 1 X!oo X ,X 3 p 7→ (up)∗).

The 2-cells of [Böhm-Lack 2016, Paragraph 2.4] are invertible for the induced opmap
monoidale since they are so for each member (Cp,mp, up, αp, λp, %p).

In a symmetric manner, a set {(Cp, dp, ep, αp, λp, %p)|p ∈ X} of comonoidales in V
induces a comonoidale in Span|V . The underlying 0-cell is (X,X 3 p 7→ Cp); the comul-
tiplication and counit 1-cells are

( X ×X X
∆oo X ,X 3 p 7→ dp) and ( 1 X

!oo X ,X 3 p 7→ ep),

respectively; while the coassociativity and the counit isomorphisms are given by the sets
{αp | p ∈ X}, {λp | p ∈ X} and {%p | p ∈ X} of the analogous 2-cells for Cp.

An opmonoidal 1-cell between monoidales (X,C) and (Y,H) of the form in (2.3)
consists of a span Y Aloo r // X and a map a sending each element h of A to a 1-
cell a(h) : Cr(h) → Hl(h) in V ; together with an opmonoidal structure which consists of
opmonoidal structures on each 1-cell a(h) for h ∈ A. A 2-cell (f, ϕ) between opmonoidal

1-cells ( Y Aoo // X, a) and ( Y A′oo // X, a′) as above is opmonoidal precisely if each
component ϕh : a(h)→ a′f(h) is opmonoidal, for h ∈ A.

Putting in other words, from the considerations of the previous paragraph isomorphism
of the following bicategories follows.

— Span|OpMon(V).

— The 2-full sub-bicategory of OpMon(Span|V) whose objects are of the kind in (2.3).

2.7. Bicategories of monads in Span|OpMon(V). Combining the isomorphisms of
Section 2.4 and Section 2.6, we obtain isomorphism of the following bicategories, for any
category D and any monoidal bicategory V .

— [D,OpMon(V)].

— The following locally full sub-bicategory in the bicategory of monads (in the sense of
[Street 1972]) in Span|OpMon(V). The 0-cells are those monads which live on 0-cells
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D0 → OpMon(V)0 (for the given object set D0 of D), whose 1-cells are of the form

( D0 D1too s // D0 ,d : D1 → OpMon(V)1) (in terms of the given data s, t), and
whose multiplication and unit 2-cells have the respective forms (·, µ) and (e, η) (with
the given maps · and e). The 1-cells are those monad morphisms ((H,h), (f, ϕ))
whose underlying span H is the trivial span D0 = D0 = D0 (hence h is a map
D0 → OpMon(V)1) and whose map f is the canonical isomorphism D0 ◦D1 ∼= D1 ∼=
D1 ◦ D0. The 2-cells are all possible monad transformations (g, γ) (g in them is
necessarily the identity map D0 → D0).

— The following locally full sub-bicategory in the bicategory of monads (in the sense
of [Street 1972]) in OpMon(Span|V). The 0-cells are those monads which live on
monoidales with object part D0 → V0 (for the given object set D0 of D) and
with multiplication and unit of the form in (2.3), whose 1-cells are of the form

( D0 D1too s // D0 , d : D1 → V1) (in terms of the given data s, t), and whose
multiplication and unit 2-cells have the respective forms (·, µ) and (e, η) (with the
given maps · and e). (There are no restrictions on the opmonoidal structure of the

1-cell ( D0 D1too s // D0 , d) in Span|V .) The 1-cells are those monad morphisms
((H, h), (f, ϕ)) whose underlying span H is the trivial span D0 = D0 = D0 and
whose map f is the canonical isomorphism D0 ◦D1 ∼= D1 ∼= D1 ◦D0. (There are no
restrictions on the opmonoidal structure of the 1-cell (D0 = D0 = D0, h : D0 → V1)
in Span|V .) The 2-cells are all possible monad transformations (g, γ) (g in them is
necessarily the identity map D0 → D0).

2.8. Functoriality. Any lax functor F : V → W between arbitrary bicategories V
and W induces a lax functor Span|F : Span|V → Span|W as follows. It sends a 0-cell

X x // V0 to the 0-cell

X x // V0 F 0
//W0,

and it sends a 2-cell (f, ϕ) : ( Y Aoo // X, a)⇒ ( Y A′oo // X, a′) to

(f, {F (ϕc)|c ∈ A}) : ( Y Aoo // X, F (a(−)))⇒ ( Y A′oo // X, F (a′(−))).

The natural transformations establishing its compatibility with the horizontal composition
and the identity 1-cells come from those for F . Hence if F is a pseudofunctor then so is
Span|F .

If V and W are monoidal bicategories and F is a monoidal lax functor (cf. [Gordon-
Power-Street 1995, Definition 3.1]) then a monoidal structure is induced on Span|F in a
natural way. All the needed axioms hold for Span|F thanks to the fact that they hold for
F .

Since any lax functor preserves monads, so does Span|F for any lax functor F . Since
any monoidal lax functor preserves monoidales, so does Span|F for any monoidal lax func-
tor F . Any monoidal lax functor whose unit- and product-compatibilities are pseudonat-
ural transformations preserves opmonoidal 1- and 2-cells. Hence so does Span|F whenever
the unit- and product-compatibilities of F are invertible.
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2.9. Convolution monoidal hom categories and their opmonoidal monads.
If M is a monoidale and C is a comonoidale in any monoidal bicategoryM then the hom
category M(C,M) admits a monoidal structure of the convolution type: the monoidal
product of 2-cells γ : b ⇒ b′ and ϕ : a ⇒ a′ between 1-cells C → M is obtained taking
the horizontal composite of the comultiplication of the comonoidale C (which is a 1-cell
from C to C ⊗C) with the monoidal product of γ and ϕ in V (which goes from C ⊗C to
M ⊗M) and with the multiplication of the monoidale M (which is a 1-cell from M ⊗M
to M). The monoidal unit is the horizontal composite of the counit C → K with the unit
K →M .

Via horizontal composition any monad a : M → M in any bicategory M induces a
monad M(C, a) in Cat on the hom category M(C,M), for any 0-cell C of M. If C is
a comonoidale, M is a monoidale, and a is an opmonoidal monad in M, then M(C, a)
is canonically an opmonoidal monad in Cat on the above convolution-monoidal category
M(C,M). Moreover, if a is a left or right Hopf monad inM in the sense of [Chikhladze-
Lack-Street 2010], then M(C, a) is a left or right Hopf monad in Cat in the sense of
[Bruguières-Lack-Virelizier 2011].

These considerations apply, in particular, to an induced monoidale (Y,M) := {Mp|p ∈
Y } and an induced comonoidale (X,C) := {Cq|q ∈ X} in Span|V (cf. Section 2.6) for any
monoidal bicategory V . In the category Span|V((X,C), (Y,M)) the monoidal product any
two morphisms — that is, of 2-cells (g, γ) : (B, b)⇒ (B′, b′) and (f, ϕ) : (A, a)⇒ (A′, a′)
between 1-cells (X,C)→ (Y,M) — is the morphism consisting of the map of spans

B • A: = {(c, h) ∈ B × A|l(c) = l(h) and r(c) = r(h)}
(c,h)7→l(h)

ss

(c,h)7→r(h)

++(c,h)7→(g(c),f(h))

��

Y X

B′ • A′

kk 33

(2.4)

and the set

{1 ◦ (γc ⊗ ϕh) ◦ 1 : ml(c) ◦ (b(c)⊗ a(h)) ◦ dr(h) → ml(c) ◦ (b′g(c)⊗ a′f(h)) ◦ dr(h)}

of 2-cells in V labelled by the elements (c, h) ∈ B •A. The monoidal unit J consists of the
complete span Y Y ×Xoo // X (whose maps are the first and the second projection,
respectively), and the map sending (i, j) ∈ Y ×X to the 1-cell ui ◦ ej : Cj →Mi in V .

Now if (A, a) is an opmonoidal monad on (Y,M), then Span|V((X,C), (A, a)) is an
opmonoidal monad in Cat on the above monoidal category Span|V((X,C), (Y,M)); which
belongs to the realm of the theory of opmonoidal monads in [Bruguières-Lack-Virelizier
2011].
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3. Hopf polyads as Hopf monads

In this section we apply the general construction of the previous section to the 2-category
Cat of categories, functors and natural transformations; with the monoidal structure pro-
vided by the Cartesian product.

3.1. Monads in Span|Cat versus polyads. From Section 2.3 we conclude on the co-
incidence of the following notions.

— A polyad in [Bruguières 2015]; that is, a pair consisting of a category and – regarding
this category as a bicategory with only identity 2-cells – a lax functor from it to Cat
(see [Bruguières 2015, Remark 2.1]).

— A monad in Span|Cat.

By the application of Section 2.4, the following bicategories are isomorphic, for any
given category (2.2).

— The bicategory of polyads over the category (2.2) in [Bruguières 2015, Section 3].
That is, the bicategory of lax functors from (2.2) to Cat, lax natural transformations
and modifications.

— The following locally full sub-bicategory in the bicategory of monads in Span|Cat.
The 0-cells are those monads which live on 0-cells D0 → Cat0 (for the given object

set D0), whose 1-cells are of the form ( D0 D1too s // D0 , d : D1 → Cat1) (in terms
of the given data s, t), and whose multiplication and unit 2-cells have the respective
forms (·, µ) and (e, η) (with the given maps · and e). The 1-cells are those monad
morphisms ((H, h), (f, ϕ)) whose underlying span H is the trivial span D0 = D0 =
D0 and whose map f is the canonical isomorphism D0 ◦D1 ∼= D1 ∼= D1 ◦D0. The
2-cells are all possible monad transformations (g, γ) (g in them is necessarily the
identity map D0 → D0).

3.2. The induced monad in Cat. Since a polyad is eventually a monad (D1, d) in
Span|Cat on some 0-cell (D0, C), it induces a monad Span|Cat((Y,H), (D1, d)) in Cat on
the category Span|Cat((Y,H), (D0, C)) for any 0-cell (Y,H) of Span|Cat, see Section 2.9.
An object of the Eilenberg-Moore category of this induced monad is a pair consisting
of a 1-cell (Q, q) : (Y,H) → (D0, C), and a 2-cell (r, %) : (D1, d) ◦ (Q, q) ⇒ (Q, q) in
Span|Cat which satisfy the associativity and unitality conditions. The morphisms are
2-cells (Q, q) ⇒ (Q′, q′) in Span|Cat which are compatible with the actions (r, %) and
(r′, %′).

Let us consider the particular case when the above Y is the singleton set 1 and H
takes its single element to the terminal category 1; and the corresponding Eilenberg-
Moore category of the monad Span|Cat((1,1), (D1, d)). For any monad (D1, d) on any
0-cell (D0, C) in Span|Cat, the following categories are isomorphic (the notation of 2.2) is
used).
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— The category of modules of the polyad (D1, d) in [Bruguières 2015, Section 2.2].
Recall that an object consists of objects {qx} in Cx for all x ∈ D0, together with

morphisms { d(f)qs(f)
%f // qt(f) } in Ct(f) for all f ∈ D1, such that the following

diagrams commute for all x ∈ D0 and all (f, g) ∈ D1 ◦D1.

(d(f) ◦ d(g))qs(g)
d(f)%g //

(µf,g)qs(g)
��

d(f)qs(f)

%f

��
d(f.g)qs(g) %f.g

// qt(f)

qx

(ηx)qx
��

d(ex)qx %ex
// qx

A morphism (q, %)→ (q′, %′) consists of morphisms { qx χx // q′x } in Cx for all x ∈ D0

such that the following diagram commutes for all g ∈ D1.

d(g)qs(g)
d(g)χs(g) //

%g

��

d(g)q′s(g)

%′g
��

qt(g) χt(g)

// q′t(g)

— The full subcategory of the Eilenberg-Moore category of the monad Span|Cat((1,1),
(D1, d)) on Span|Cat((1,1), (D0, C)) whose objects are precisely those Eilenberg–

Moore algebras ((Q, q), (r, %)) whose underlying span Q is D0 D0
! // 1 .

For any monad (D1, d) on any 0-cell (D0, C) in Span|Cat, also the following categories
are isomorphic (where the notation of (2.2) is used).

— The category of representations of the polyad (D1, d) in [Bruguières 2015, Section
2.3]. Recall that an object consists of objects {Wk} of Ct(k) for all k ∈ D1 together

with morphisms { d(g)Wk
%g,k //Wg.k } for (g, k) ∈ D1 ◦D1, rendering commutative

the following diagrams for all f, g, k ∈ D1 ◦D1 ◦D1.

(d(f) ◦ d(g))Wk

d(f)%g,k //

(µf,g)Wk
��

d(f)Wg.k

%f,g.k

��
d(f.g)Wk %f.g,k

//Wf.g.k

Wk

(ηt(k))Wk

��
d(et(k))Wk %et(k),k

//Wk

A morphism (W, %)→ (W ′, %′) consists of morphisms {Wk ϕk //W ′
k } such that the

following diagram commutes for all (g, k) ∈ D1 ◦D1.

d(g)Wk
d(g)ϕk //

%g,k

��

d(g)W ′
k

%′g,k
��

Wg.k ϕg.k

//W ′
g.k
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— The following non-full subcategory of the Eilenberg-Moore category of the monad
Span|Cat((1,1), (D1, d)) on Span|Cat((1,1), (D0, C)). The objects are precisely those

Eilenberg–Moore algebras ((Q, q), (r, %)) whose underlying spanQ is D0 D1too ! // 1
and whose map r : D1 ◦D1 → D1 is the composition in the category D1. The mor-
phisms are those morphisms of Eilenberg–Moore algebras (f, ϕ) in which f : D1 →
D1 is the identity map.

3.3. Opmonoidal monads in Span|Cat versus opmonoidal polyads. Combining
the descriptions in Sections 2.3 and 2.6, we obtain coincidence of the following notions.

— Opmonoidal polyad in [Bruguières 2015, Paragraph 2.5]. That is, a pair consisting
of a category and – regarding this category as a bicategory with only identity 2-cells
– a lax functor from it to OpMon.

— Monad in Span|OpMon.

— Opmonoidal monad in Span|Cat living on a monoidale of the form in (2.3).

From the isomorphism in Section 2.7, for any given category (2.2) we have isomorphism
of the following bicategories.

— The bicategory of opmonoidal polyads over the category (2.2) in [Bruguières 2015,
Section 3] (see the top of its page 18). That is, the bicategory of lax functors from
(2.2) to OpMon, lax natural transformations and modifications.

— The following locally full sub-bicategory in the bicategory of monads (in the sense
of [Street 1972]) in Span|OpMon. The 0-cells are those monads which live on 0-
cells D0 → OpMon0 (for the given object set D0), whose 1-cells are of the form

( D0 D1too s // D0 ,d : D1 → OpMon1) (in terms of the given data s, t), and whose
multiplication and unit 2-cells have the respective forms (·, µ) and (e, η) (with the
given maps · and e). The 1-cells are those monad morphisms ((H,h), (f, ϕ)) whose
underlying span H is the trivial span D0 = D0 = D0 and whose map f is the
canonical isomorphism D0 ◦D1 ∼= D1 ∼= D1 ◦D0. The 2-cells are all possible monad
transformations (g, γ) (g in them is necessarily the identity map D0 → D0).

— The following locally full sub-bicategory in the bicategory of monads in the bicate-
gory OpMon(Span|Cat). The 0-cells are those monads which live on monoidales with

object part D0
C // Cat0 (for the given object set D0) and with multiplication and

unit of the form

( D0 = D0 ∆ // D0 ×D0 , D0 ⊗ // Cat1 ) and ( D0 = D0 ! // 1 , D0 K // Cat1 ),

whose 1-cells are of the form ( D0 D1too s // D0 , d : D1 → Cat1) (in terms of
the given data s, t), and whose multiplication and unit 2-cells have the respective
forms (·, µ) and (e, η) (with the given maps · and e). The 1-cells are those monad
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morphisms ((H, h), (f, ϕ)) whose underlying span H is the trivial span D0 = D0 =
D0 and whose map f is the canonical isomorphism D0 ◦D1 ∼= D1 ∼= D1 ◦D0. The
2-cells are all possible monad transformations (g, γ) (g in them is necessarily the
identity map D0 → D0).

3.4. Hopf monads in Span|Cat versus Hopf polyads. Our next task is to com-
pute the fusion 2-cells as in [Chikhladze-Lack-Street 2010] for the opmonoidal monads in
Span|Cat of Section 3.3. The left fusion 2-cell consists of the map of spans

( D0 {(p, q) ∈ D1 ×D1|s(p) = t(q)}oo // D0 ×D0, t(p)←[ (p, q) 7→ (s(q), s(p)))→

( D0 {(p, q) ∈ D1 ×D1|t(p) = t(q)}oo // D0 ×D0, t(p)←[ (p, q) 7→ (s(p), s(q)))

sending (p, q) to (p.q, p); and the set of natural transformations

d(p)(d(q)(−) ⊗
s(p)

(−))
d2p
// (d(p) ◦ d(q))(−)⊗

t(p)
d(p)(−)

µp,q ⊗
t(p)

1

// d(p.q)(−)⊗
t(p)
d(p)(−)

(3.5)
between functors Cs(q) × Cs(p) → Ct(p), labelled by (p, q) ∈ D1 ◦ D1 (a label x ∈ D0 on
⊗ refers to the category Cx in which it serves as the monoidal product). This coincides
with the left fusion operator of [Bruguières 2015, Definition 2.15].

Clearly, this left fusion 2-cell above is invertible in Span|Cat if and only if the underlying
category (2.2) is a groupoid and each natural transformation in the set (3.5) is invertible.
So we obtained the coincidence of the following notions.

— Left Hopf polyad in the sense of [Bruguières 2015, Definition 2.17] whose underlying
category is a groupoid. That is, an opmonoidal polyad whose underlying category
is a groupoid and for which each of the natural transformations (3.5) is invertible.

— A Hopf monad in Span|Cat living on a monoidale of the form in (2.3).

The case of the right fusion 2-cell is symmetric.

3.5. The induced Hopf monad in Cat. Since the monoidal product in Cat is Cartesian,
any 0-cell (that is, any category) is a comonoidale in a unique way. Hence the construction
in Section 2.6 yields an induced comonoidale (Y,C) in Span|Cat for any set of categories
{Cy|y ∈ Y }.

On the other hand, as described in Section 2.6, any set of monoidal categories {(Mx,⊗x,
Kx)|x ∈ X} induces a monoidale (X,M) in Span|Cat. So there is a monoidal category
Span|Cat((Y,C), (X,M)) as in Section 2.9.

Let (D1, d) be an opmonoidal polyad on (D0,M); that is, an opmonoidal monad
in Span|Cat. It induces an opmonoidal monad in Cat on the category Span|Cat((Y,C),
(D0,M)), see again Section 2.9. One can define its Hopf modules as in [Bruguières-
Virelizier 2007] and [Bruguières-Lack-Virelizier 2011, Section 6.5]. Criteria for the equiv-
alence between the category of these Hopf modules and Span|Cat((Y,C), (D0,M)) were



HOPF POLYADS, CATEGORIES, AND GROUP MONOIDS AS HOPF MONADS 1245

obtained in [Bruguières-Lack-Virelizier 2011, Theorem 6.11]; known as the fundamental
theorem of Hopf modules.

The inclusion of the category of representations of a polyad into the Eilenberg-Moore
category of the induced monad in Section 3.2 lifts to an inclusion of the category of
Hopf representations in [Bruguières 2015, Section 6.2] into the above category of Hopf
modules in the sense of [Bruguières-Lack-Virelizier 2011], for (Y,C) = (1,1). Hence if the
fundamental theorem of Hopf modules in [Bruguières-Lack-Virelizier 2011] holds, then
the equivalence therein induces an equivalence between this subcategory in [Bruguières
2015, Section 6.2] and a suitable subcategory of Span|Cat((1,1), (D0,M)). This gives an
alternative proof of [Bruguières 2015, Theorem 6.3].

On the other hand, the category of Hopf modules in [Bruguières 2015, Section 6.1]
does not seem to be a subcategory of the above category of Hopf modules in the sense of
[Bruguières-Lack-Virelizier 2011], for (Y,C) = (1,1); and [Bruguières 2015, Theorem 6.1]
seems to be of different nature.

4. Hopf group monoids and Hopf categories as Hopf monads on naturally
Frobenius opmap monoidales

For an arbitrary object X in any bicategory M, a monad on X is exactly the same
thing as a monoid in the monoidal endohom category M(X,X) — though one of these
equivalent descriptions may turn out to be more convenient in one or another situation.

If X is an opmap monoidale (that is, a monoidale or pseudo-monoid whose multi-
plication and unit 1-cells possess left adjoints) in a monoidal bicategory M, then the
endohom categoryM(X,X) possesses the richer structure of a so-called duoidal category;
see [Street 2012].

A duoidal (or 2-monoidal in the terminology of [Aguiar-Mahajan 2010]) category is
a category with two monoidal structures (◦, I) and (•, J) which are compatible in the
sense that the functors ◦ and I, as well as their associativity and unitality natural iso-
morphisms are opmonoidal for the •-product. Equivalently, the functors • and J , as well
as their associativity and unitality natural isomorphisms are monoidal for the ◦-product.
In technical terms it means the existence of four natural transformations (the binary and
nullary parts of two (op)monoidal functors) subject to a number of conditions spelled out
e.g. in [Aguiar-Mahajan 2010].

For an opmap monoidale X in a monoidal bicategory M, the first monoidal product
◦ on M(X,X) comes from the horizontal composition ◦ in M. Since X possesses both
structures of a monoidale and a comonoidale (the latter one with the comultiplication
and the counit provided by the adjoints of the multiplication and the unit), M(X,X)
has a second monoidal product • of the convolution type, see Section 2.9. Thanks to
the (adjunction) relation between the monoidale and the comonoidale X, these monoidal
structures ◦ and • render M(X,X) with the structure of duoidal category.

This observation turns out to be very useful: the coincidence of a monad on X and a
monoid in (M(X,X), ◦) is supplemented with the coincidence of an opmonoidal endo 1-
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cell on X and a comonoid in (M(X,X), •); see [Böhm-Lack 2016, Section 3.3]. Combining
these correspondences, an opmonoidal monad on an opmap monoidale X in a monoidal
bicategoryM turns out to be exactly the same thing as a bimonoid in the duoidal endohom
category M(X,X) (in the sense of [Aguiar-Mahajan 2010, Definition 6.25]), see again
[Street 2012] or a review in [Böhm-Lack 2016, Section 3.3].

Although these are mathematically equivalent points of view, one of them may turn out
to be more convenient in one or another situation. Recall for example, that no sensible
notion of antipode for Hopf monads on arbitrary monoidales of monoidal bicategories
is known. It is one of the key observations in [Böhm-Lack 2016], however, that for a
Hopf monad living on a naturally Frobenius opmap monoidale, it can be given a natural
meaning. In this situation, the antipode axioms are formulated most easily in the duoidal
endohom category, see [Böhm-Lack 2016, Theorem 7.2].

Since in this section we shall study Hopf-like structures — Hopf group monoids and
Hopf categories — defined in terms of antipode morphisms, we are to apply this language.

A braided monoidal small category (V,⊗, K, c) can be regarded as a monoidal bicat-
egory with a single object, in this section we will work with that.

4.1. The bicategory OpMon(V ) for a braided monoidal category V . An object
of OpMon(V ) — that is, a monoidale in V — consists of two objects M and U of V (the
multiplication and the unit) and three coherence isomorphisms α : M ⊗M → M ⊗M ,
λ : M ⊗ U → K and % : M ⊗ U → K subject to the appropriate pentagon and triangle
conditions.

Here we are not interested in arbitrary monoidales in V . The one which plays a relevant
role is the trivial one which has both the multiplication and the unit equal to the monoidal
unit K and all coherence isomorphisms built up from the coherence isomorphisms of V .

A 1-cell of OpMon(V ) — that is, an opmonoidal 1-cell in V — is an object A of V
equipped with morphisms a2 : A ⊗M → M ′ ⊗ A ⊗ A and a0 : A ⊗ U → U ′ subject to
appropriate coassociativity and counitality conditions.

The endo 1-cells of the trivial monoidale are then the same as the comonoids (A, a2, a0)
in V .

A 2-cell of OpMon(V ) — that is, an opmonoidal 2-cell in V — is a morphism A→ A′ in
V which is appropriately compatible with the opmonoidal structures (a2, a0) and (a′2, a′0).

Between endo 1-cells of the trivial monoidale, the 2-cells are then the same as the
comonoid morphisms (A, a2, a0)→ (A′, a′2, a′0).

So for any braided monoidal category V , we obtain isomorphism of the following
monoidal categories.

— The endohom category of the trivial monoidale in OpMon(V ).

— The category Cmd(V ) of comonoids in V .

4.2. Sets as naturally Frobenius opmap monoidales in Span|V . Since there is
only one 0-cell of the bicategory V , the 0-cells of Span|V are simply sets. Moreover, the
only 0-cell of the bicategory V is the monoidal unit, hence it is a trivial monoidale, so in
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particular a naturally Frobenius opmap monoidale. Thus for any set X the construction in
Section 2.6 yields a naturally Frobenius opmap monoidale in Span|V with multiplication
and unit 1-cells consisting of the respective spans

X X
∆ // X ×X and X X

! // 1

and in both cases the constant map sending each element of X to the monoidal unit K of
V ; and trivial (i.e. built up from coherence isomorphisms of V ) associativity and unitality
coherence 2-cells.

4.3. The bicategory Span|OpMon(V ). The isomorphism of Section 2.7 takes an object
of OpMon(Span|V ) of the form in Section 4.2 to the object of Span|OpMon(V ) which
consists of the set X and the constant map sending each element of X to the trivial
monoidale in V (see Section 4.1). For brevity we will denote simply by X also this object
of Span|OpMon(V ). We are interested in the 2-full sub-bicategory of Span|OpMon(V )
defined by these objects.

For any setsX and Y, an object of Span|OpMon(V )(X, Y ) consists of a span Y Aoo // X
and a map from A to the object set of the endohom category of the trivial monoidale in
OpMon(V ). That is, in view of the isomorphism of Section 4.1, a map a from A to the
set of comonoids in V .

A morphism in Span|OpMon(V )(X, Y ) consists of a map of spans f : A → A′ and
morphisms a(p)→ a′f(p) in the endohom category of the trivial monoidale in OpMon(V ),
for all p ∈ A. That is, in view of Section 4.1, a set of comonoid morphisms {a(p) →
a′f(p) | p ∈ A} in V .

This leads to an isomorphism between the following categories, for any sets X, Y and
any braided monoidal category V .

— OpMon(Span|V )(X, Y ).

— Span|OpMon(V )(X, Y ).

— Span|Cmd(V )(X, Y ).

4.4. The duoidal endohom categories. The structure of an opmap monoidale that
we constructed in Section 4.2 on any set X, induces a duoidal structure on the endohom
category Span|V (X,X) which we describe next. It is obtained by a straightforward ap-
plication of the general construction in [Street 2012], see also [Böhm-Lack 2016, Section
3.3].

The objects of Span|V (X,X) are pairs consisting of an X-span A and a map a from
the set A to the set of objects in V . The morphisms (A, a)→ (A′, a′) are pairs consisting
of a map of X-spans f : A → A′ and a set {ϕh : a(h) → a′f(h)|h ∈ A} of morphisms in
V .

The first monoidal product ◦ on Span|V (X,X) comes from the horizontal composition
in Span|V ; thus in fact from the monoidal product in V : the product of any two morphisms
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(g, γ) : (B, b)→ (B′, b′) and (f, ϕ) : (A, a)→ (A′, a′) is

(g ◦ f : B ◦ A→ B′ ◦ A′, {γd ⊗ ϕh : b(d)⊗ f(h)→ b′g(d)⊗ a′f(h)|(d, h) ∈ B ◦ A}).

The monoidal unit I is the identity 1-cell of X: it consists of the trivial X-span and the
map sending each element of X to the monoidal unit K of V .

For any (possibly different) opmap monoidales X and Y of the kind discussed in
Section 4.2, the hom category Span|V (X, Y ) admits a monoidal product • which is of the
convolution type, see Section 2.9. Now the product of 2-cells (g, γ) : (B, b)⇒ (B′, b′) and
(f, ϕ) : (A, a)⇒ (A′, a′) between 1-cells X → Y is the pair consisting of the map of spans
in (2.4) and the set {γd⊗ϕh : b(d)⊗ a(h)→ b′g(d)⊗ a′f(h)|(d, h) ∈ B •A} of morphisms
in V . The monoidal unit J consists of the complete span Y Y ×Xoo // X and the map
sending each element of Y ×X to the monoidal unit K of V .

The above monoidal structures combine into a duoidal structure on Span|V (X,X).
The four structure morphisms take the following forms. The first one is a morphism
((A, a) • (B, b)) ◦ ((H, h) • (D, d))→ ((A, a) ◦ (H, h)) • ((B, b) ◦ (D, d)) which is natural in
each object (A, a), (B, b), (H, h), (D, d). It consists of the map of spans

{(p, q, v, w) ∈ A×B ×H ×D|l(p) = l(q), r(p) = r(q) = l(v) = l(w), r(v) = r(w)}

(p,q,v,w) 7→l(p)

ss

(p,q,v,w)7→r(v)

++

��

(p,q,v,w) 7→(p,v,q,w)

��

X X

{(p, v, q, w) ∈ A×H ×B ×D|l(p) = l(q), r(p) = l(v), r(q) = l(w), r(v) = r(w)}
(p,v,q,w)7→l(p)

kk

(p,v,q,w)7→r(v)

33

and the set

{1⊗ c⊗ 1 : a(p)⊗ b(q)⊗ h(v)⊗ d(w)→ a(p)⊗ h(v)⊗ b(q)⊗ d(w)}

of morphisms in V , labelled by the elements (p, q, v, w) ∈ (A •B) ◦ (H •D).
Next we need a morphism J ◦ J → J ; it consists of the map of spans

X ×X ×X
(p,q,v)7→p

vv

(p,q,v)7→v

((
(p,q,v)7→(p,v)

��

X X

X ×X
(p,q) 7→p

hh

(p,q) 7→q

66

and the map sending each element of X×X×X to the identity morphism of the monoidal
unit K of V .

Then we need a morphism I → I • I = I; it is the identity morphism.
Finally we need a morphism I → J . It is given by the diagonal map ∆ : X → X ×X

from the trivial to the complete span and the map sending each element of X to the
identity morphism of the monoidal unit K of V .
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4.5. The Zunino category. There is a particular duoidal category Span|V (1, 1) of
the above form in Section 4.4 for the singleton set 1. Here both monoidal products ◦
and • turn out to be equal, and sending any pair of 2-cells (g, γ) : (B, b) ⇒ (B′, b′) and
(f, ϕ) : (A, a)⇒ (A′, a′) between 1-cells 1→ 1 to

(g × f : B × A→ B′ × A′, {γd ⊗ ϕh : b(d)⊗ f(h)→ b′g(d)⊗ a′f(h)|(d, h) ∈ B × A}).

This amounts to saying that the duoidal category Span|V (1, 1) coincides with the braided
monoidal Zunino category; for its explicit description (in the case when V is the symmetric
monoidal category of modules over a commutative ring) see [Caenepeel-De Lombaerde
2006, Section 2.2].

4.6. Hopf group monoids. For an ordinary monoid G (that is, a monoid in the Carte-
sian monoidal category of sets), a G-algebra was defined in [Caenepeel-De Lombaerde
2006, Definition 1.6] as a monoidal functor from G — regarded as a discrete category
with object set G and monoidal structure coming from the multiplication · and unit e of
G — to the monoidal category of vector spaces (over a given field). Following this idea,
we define a G-monoid in any monoidal category V as a monoidal functor from G to V .
This is the same as a lax functor from the 1-object category G (regarded as a bicategory
with only identity 2-cells) to V (regarded as a bicategory with a single 0-cell). Hence from
Section 2.3, and from the correspondence between monads on some object and monoids
in its composition-monoidal endohom category, we obtain the coincidence of the following
notions for any monoidal category V .

— A pair consisting of an ordinary monoid G and a G-monoid in V .

— A monad in Span|V on the singleton set 1.

— A monoid in the Zunino category Span|V (1, 1).

Combining the isomorphism of Section 4.3, and the correspondence of opmonoidal
1-cells on some opmap monoidale and comonoids in its convolution-monoidal endohom
category, the following categories are isomorphic for any braided monoidal category V .

— The endohom category of the singleton set 1 in Span|Cmd(V ).

— The endohom category of the singleton set 1 — regarded as an opmap monoidale
in Section 4.2 — in OpMon(Span|V ).

— The category of comonoids in the Zunino category Span|V (1, 1).

For any monoid G, a semi Hopf G-algebra was defined in [Caenepeel-De Lombaerde
2006, Definition 1.7] as a G-monoid (in the above sense) in the monoidal category of
coalgebras (over a given field). Following this idea, we define a semi Hopf G-monoid
in any braided monoidal category V as a G-monoid in Cmd(V ). Hence combining the
isomorphism above, and the correspondence between opmonoidal monads on some opmap
monoidale and bimonoids in its duoidal endohom category, we obtain the coincidence of
the following notions for any monoid monoidal category V .
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— A pair consisting of a monoid G and a semi Hopf G-monoid in V .

— A monad in Span|Cmd(V ) on the singleton set 1.

— An opmonoidal monad in Span|V on the monoidale 1.

— A bimonoid in the Zunino category Span|V (1, 1).

For a group G, a semi Hopf G-algebra — that is, a monoidal functor from the
discrete category on the object set G to the monoidal category of coalgebras, sending
p ∈ G to a coalgebra (g(p), δp, εp); with binary part of the monoidal structure denoted by

{ g(p)⊗ g(q) µp,q // g(p.q) }p,q∈G and nullary part denoted by K η // g(e) — was termed

a Hopf G-algebra in [Caenepeel-De Lombaerde 2006, Definition 1.8] if equipped with linear

maps (the so-called antipode) { g(p) σp // g(p−1) }p∈G rendering commutative the follow-
ing diagram for all p ∈ G.

g(p)
δp //

δp

��

εp **

g(p)⊗ g(p)
σp⊗1 // g(p−1)⊗ g(p)

µp−1,p

��

K
η

++
g(p)⊗ g(p)

1⊗σp
// g(p)⊗ g(p−1) µp,p−1

// g(e).

By this motivation we define a Hopf G-monoid in any braided monoidal category V as a
monoidal functor ((g, δ, ε), µ, η) from the discrete category on the object set G to Cmd(V )

together with morphisms { g(p) σp // g(p−1) }p∈G in V rendering commutative the same
diagram.

Note that this diagram encodes precisely the antipode axioms of [Böhm-Lack 2016,
Theorem 7.2] for the bimonoid g in the duoidal Zunino category Span|V (1, 1); which
are in turn the same as the usual antipode axioms for the bimonoid g in the braided
monoidal Zunino category Span|V (1, 1). Thus since the singleton set is regarded as a
naturally Frobenius opmap monoidale in Span|V (in the way described in Section 4.2),
from [Böhm-Lack 2016, Theorem 7.2] we deduce the coincidence of the following notions
for any braided monoidal category V .

— A pair consisting of a group G and a Hopf G-monoid in V .

— A Hopf monoid in the Zunino category Span|V (1, 1).

— A Hopf monad in Span|V on the monoidale 1.

4.7. Monads in Span|V versus categories enriched in V . We turn to the in-
terpretation of V -enriched categories in [Batista-Caenepeel-Vercruysse 2016, Section 2]
as monads in Span|V , matrices of comonoids in V as in [Batista-Caenepeel-Vercruysse
2016, Section 3] as opmonoidal 1-cells in Span|V , categories enriched in the category of
comonoids in V as in [Batista-Caenepeel-Vercruysse 2016, Proposition 3.1] as opmonoidal
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monads in Span|V , and finally the Hopf categories of [Batista-Caenepeel-Vercruysse 2016,
Definition 3.3] as Hopf monads in Span|V .

Recall that a category enriched in V can be described as a pair consisting of a set X
(it plays the role of the set of objects) and a lax functor from the indiscrete category on
the object set X, regarded as a bicategory with only identity 2-cells, to V , regarded as a
bicategory with a single object. An identity-on-objects V -enriched functor is precisely a
lax natural transformation whose 1-cell part is trivial.

On the other hand, between monads on the same object in any bicategory, a monad
morphism (in the sense of [Street 1972]) with trivial 1-cell part is precisely the same thing
as a morphism between the corresponding monoids in the composition-monoidal endohom
category.

Using these observations and the fact that the complete span X X ×Xoo // X is
terminal in Span(X,X), from Section 2.4 we obtain isomorphism of the following cate-
gories, for any braided monoidal category V and any set X.

— The category whose objects are the V -enriched categories with object set X, and
whose morphisms are the identity-on-object V -enriched functors. (This category is
used in [Batista-Caenepeel-Vercruysse 2016], see its page 1176.)

— The category whose objects are those monads on X in Span|V which live on such
1-cells of Span|V whose underlying X-span is the complete span X X ×Xoo // X ;
and whose morphisms are those monad morphisms in Span|V (in the sense of [Street
1972]) whose 1-cell part is the identity 1-cell X → X in Span|V .

— The full subcategory of the category of monoids in (Span|V (X,X), ◦, I) whose ob-
jects live on such 1-cells of Span|V in which the underlying X-span is the complete
span X X ×Xoo // X .

4.8. Opmonoidal 1- and 2-cells in Span|V versus matrices of comonoids, and
of comonoid morphisms in V . Again, we are not interested in arbitrary opmonoidal
1- and 2-cells only in those between opmap monoidales X and Y of the kind discussed in
Section 4.2.

Let us use again the fact that the complete span Y Y ×Xoo // X is terminal in
Span(X, Y ). Then from the isomorphism of Section 4.3 on the one hand, and from the
correspondence between opmonoidal 1-cells on some opmap monoidale and comonoids in
its convolution-monoidal endohom category on the other hand, we obtain the following
isomorphism of full subcategories, for any braided monoidal category V and any sets X, Y .

— The category whose objects are matrices of comonoids in V with columns labelled
by the elements of X and rows labelled by the elements of Y ; and whose morphisms
are X by Y matrices of comonoid morphisms in V .

— The full subcategory of opmonoidal 1-cells X → Y in Span|V and opmonoidal 2-
cells between them, for whose objects the underlying span is the complete span
Y Y ×Xoo // X .
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— The full subcategory of comonoids in (Span|V (X, Y ), •, J) for whose objects the
underlying span is the complete span Y Y ×Xoo // X .

4.9. Opmonoidal monads in Span|V versus categories enriched in Cmd(V ).
From the isomorphisms of Section 4.7 and Section 4.3 on the one hand, and the corre-
spondence between opmonoidal monads on an opmap monoidale and the bimonoids in
its duoidal endohom category on the other hand, isomorphism of the following categories
follows, for any set X and any braided monoidal category V .

— The category whose objects are the Cmd(V )-enriched categories with object set X;
and whose morphisms are the identity-on-object Cmd(V )-enriched functors. (This
category is used in [Batista-Caenepeel-Vercruysse 2016], see its page 1177.)

— The category in which the objects are those opmonoidal monads in Span|V on the
opmap monoidale X of Section 4.2 in whose 1-cell part X → X the underlying
span is the complete span X X ×Xoo // X ; and whose morphisms are those
opmonoidal monad morphisms whose 1-cell part is the identity 1-cell X → X in
OpMon(Span|V ).

— The full subcategory of the category of bimonoids (in the sense of [Aguiar-Mahajan
2010, Definition 6.25]) in the duoidal category Span|V (X,X), defined by those ob-
jects which live on 1-cells X → X in Span|V with underlying span the complete
span X X ×Xoo // X .

4.10. The induced opmonoidal monad in Cat. Regard a V -enriched category with
object set X as a monad in Span|V on the 0-cell X as in Section 4.7. Via horizontal
composition it induces a monad in Cat on the category Span|V (Y,X) for any set Y , see
Section 2.9.

If we start with a category enriched in the category of comonoids in V — that is, as
a monad in Span|V it admits an opmonoidal structure with respect to the monoidale of
Section 4.2, see Section 4.9 — then so does the induced monad in Cat with respect to the
convolution monoidal structure of Span|V (Y,X), see again Section 2.9. This implies the
monoidality (via the product •) of the Eilenberg-Moore category of the induced monad.

Consider a Cmd(V )-enriched category with object set X and hom objects (a(x, y),
δx,y, εx,y) for (x, y) ∈ X × X. Denote the composition compatibility morphisms by
µx,y,z : a(x, y) ⊗ a(y, z) → a(x, z) and denote the unit compatibility morphisms by
ηx : K → a(x, x), for all x, y, z ∈ X. For these data, the following monoidal categories
are isomorphic.

— The category of modules in [Batista-Caenepeel-Vercruysse 2016, Definition 4.1]. Re-
call that its objects are sets {v(p, q)}p,q∈X of objects in V together with morphisms

{ a(x, y)⊗ v(y, z) ψx,y,z // v(x, z) }x,y,z∈X in V making commutative for all x, y, z,
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u ∈ X the following associativity and unitality diagrams.

a(x, y)⊗ a(y, z)⊗ v(z, u)
µx,y,z⊗1 //

1⊗ψy,z,u

��

a(x, z)⊗ v(z, u)

ψx,z,u

��
a(x, y)⊗ v(y, u)

ψx,y,u

// v(x, u)

v(x, y)
ηx⊗1 // a(x, x)⊗ v(x, y)

ψx,x,y

��
v(x, y)

The morphisms (v, ψ) → (v′, ψ′) are sets { v(x, y) ϕx,y // v′(x, y) }x,y∈X of mor-
phisms in V for which the following diagram commutes for all x, y, z ∈ X.

a(x, y)⊗ v(y, z)
1⊗ϕy,z//

ψx,y,z

��

a(x, y)⊗ v′(y, z)
ψ′x,y,z
��

v(x, z) ϕx,z
// v′(x, z)

By [Batista-Caenepeel-Vercruysse 2016, Proposition 4.2] this is a monoidal category
with the product (v ⊗ v′)(x, y) := v(x, y)⊗ v′(x, y) for all x, y ∈ X and

a(x, y)⊗(v⊗v′)(y, z)
δx,y⊗1

// a(x, y)⊗a(x, y)⊗v(y, z)⊗v′(y, z)
1⊗c⊗1

// (v⊗v′)(x, z)

a(x, y)⊗v(y, z)⊗a(x, y)⊗v′(y, z)
ψx,y,z⊗ψ′x,y,z

// (v⊗v′)(x, z)

for x, y, z ∈ X.

— The monoidal full subcategory of the Eilenberg–Moore category of the opmonoidal
monad Span|V (X, a) on Span|V (X,X), whose objects live on the complete X-span.

4.11. Hopf monads in Span|V versus Hopf categories. Consider again a Cmd(V )-
enriched category with object set X and hom objects (a(x, y), δx,y, εx,y) for (x, y) ∈ X×X.
Denote the composition compatibility morphisms by µ and denote the unit compatibility
morphisms by η as in the previous section. As we saw in Section 4.9, it can be regarded
equivalently as a bimonoid in the duoidal category Span|V (X,X). In the current situation
the antipode in the sense of [Böhm-Lack 2016, Theorem 7.2] turns out to be a set of

morphisms in V , { a(v, w) σv,w // a(w, v) }v,w∈X , subject to the axioms in [Böhm-Lack

2016, Theorem 7.2]. The first antipode axiom in [Böhm-Lack 2016, Theorem 7.2] takes
now the form in Figure 1. In that figure, for natural numbers n ≥ m, we denote by pm
the mth projection from the n-fold Cartesian product of X to X, sending (q1, . . . , qn) to
qm.

The second antipode axiom is handled symmetrically. Comparing these diagrams with
[Batista-Caenepeel-Vercruysse 2016, Definition 3.3] we conclude by [Böhm-Lack 2016,
Theorem 7.2] that for any braided monoidal category V , the following notions coincide.
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(X
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))
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Figure 1: The first antipode axiom
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— A Hopf V -category in [Batista-Caenepeel-Vercruysse 2016, Definition 3.3]. Explic-
itly, this means a Cmd(V )-enriched category with some object set X and hom ob-
jects (a(p, q), δp,q, εp,q) for (p, q) ∈ X × X, composition compatibility morphisms
µp,q,r : a(p, r)⊗a(q, r)→ a(p, q) and unit compatibility morphisms ηp : K → a(p, p),

for all p, q, r ∈ X; equipped with a further set { a(p, q) σp,q // a(q, p) }p,q∈X of mor-
phisms in V rendering commutative the following diagrams for all p, q ∈ X.

a(p, q)
δp,q //

εp,q

��

a(p, q)⊗ a(p, q)

1⊗σp,q
��

a(p, q)⊗ a(q, p)

µp,q,p

��
K ηp

// a(p, p)

a(p, q)
δp,q //

εp,q

��

a(p, q)⊗ a(p, q)

σp,q⊗1

��
a(q, p)⊗ a(p, q)

µq,p,q

��
K ηq

// a(q, q)

— A Hopf monad in Span|V on the naturally Frobenius opmap monoidale X of Sec-
tion 4.2, in whose 1-cell part X → X the underlying span is the complete span
X X ×Xoo // X .

4.12. The functorial relation of Hopf group monoids and Hopf categories
to Hopf polyads. Regarding a braided monoidal category as a monoidal bicategory with
a single 0-cell, there is a monoidal pseudofunctor V → Cat as follows.

The single 0-cell of the bicategory V is sent to the category V . A 2-cell in the bicat-
egory V — that is, a morphism f : p → q in the category V — is sent to the natural
transformation f ⊗ (−) : p⊗ (−)→ q⊗ (−) between endofunctors on V . This is clearly a
pseudofunctor. It is monoidal as well via the following ingredients. The unit-compatibility
pseudo natural transformation is provided by the 1-cell of Cat (i.e. functor) from the ter-
minal category to V sending the only object to the monoidal unit K; and the isomorphism
K ⊗K ∼= K in V . The product-compatibility pseudonatural transformation has the ob-
ject part provided by the monoidal product ⊗ : V ×V → V and the morphism part given
by the braiding c of V as 1 ⊗ c ⊗ 1 : p ⊗ (−) ⊗ q ⊗ (−) → p ⊗ q ⊗ (−) ⊗ (−) for any
object (p, q) of V × V . The associativity and unitality modifications are induced by the
associativity and unitality natural isomorphisms of V .

This monoidal pseudofunctor V → Cat induces a monoidal pseudofunctor from Span|V
to Span|Cat whose unit- and product-compatibilities are pseudonatural transformations
as well. Since such monoidal pseudofunctors preserve monoidales (but not necessarily
opmap monoidales!), monads and opmonoidal morphisms, as well as the invertibility of
2-cells, we conclude that they preserve Hopf monads. In particular, the above monoidal
pseudofunctor Span|V → Span|Cat takes both Hopf group monoids and Hopf categories
to Hopf polyads. Hopf polyads in the range of this monoidal pseudofunctor Span|V →
Span|Cat were termed representable in [Bruguières 2015, Section 7.2].
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Robert Paré, Dalhousie University: pare@mathstat.dal.ca
Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
Giuseppe Rosolini, Università di Genova: rosolini@disi.unige.it
Alex Simpson, University of Ljubljana: Alex.Simpson@fmf.uni-lj.si
James Stasheff, University of North Carolina: jds@math.upenn.edu
Ross Street, Macquarie University: ross.street@mq.edu.au
Walter Tholen, York University: tholen@mathstat.yorku.ca
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