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FIBERED MULTIDERIVATORS AND
(CO)HOMOLOGICAL DESCENT

FRITZ HÖRMANN

Abstract. The theory of derivators enhances and simplifies the theory of triangu-
lated categories. In this article a notion of fibered (multi)derivator is developed, which
similarly enhances fibrations of (monoidal) triangulated categories. We present a theory
of cohomological as well as homological descent in this language. The main motivation
is a descent theory for Grothendieck’s six operations.

1. Introduction

This article proposes a general theory of homological and cohomological descent1. Our
main motivation came from the problem of extending Grothendieck six-functor-formalisms
to stacks in a purely formal way. In the present article we deal with six-functor-formalisms
only in an appendix. However, for the sake of this introduction, we start by reviewing
them to motivate the need for notions of (co)homological descent to understand “glueing”
properties of the six functors. Our theory of (co)homological descent is build on the
notion of derivator of Grothendieck. For this purpose it is essential to have a theory
of fibered derivators because although in the classical, 1-categorical world a fibered
category is the same as a pseudo-functor with values in category, for derivators such a
statement is not true — pseudo-functors with values in usual derivators in a naive sense
do not carry enough information. As a special case of cohomological descent we recover
the theory of Grothendieck and Deligne developed in [SGA72, Exposé Vbis]. The present
theory, however, is more general in that it is not restricted to diagrams of simplicial shape
and is completely self-dual, leading to a theory of homological descent as well.

Grothendieck’s six functors and descent. Let S be a category, for instance, a
suitable category of schemes, topological spaces, analytic manifolds, etc. A six-functor-
formalism on S consists of a collection of (derived) categories DS, one for each “base
space” S in S with the following six types of operations:
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1a homotopic version of decent and codescent.
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f∗ f∗ for each f in Mor(S)

f! f ! for each f in Mor(S)

⊗ HOM in each fiber DS

The fiber DS is, in general, a derived category of “sheaves” over S, for example coherent
sheaves, l-adic sheaves, abelian sheaves, D-modules, motives, etc. and f∗, resp. f∗ are
the derived pull-back resp. push-forward functors. In each row the functor on the left
hand side is the left adjoint of the functors on the right hand side. The functor f!

and its right adjoint f ! are called “push-forward with proper support”, and “exceptional
pull-back”, respectively. The six functors come along with a bunch of compatibility
isomorphisms between them (cf. A.2.19) and it is not easy to precisely define which
commutative diagrams they have to fulfill in order to define a six-functor-formalism.
However, another approach, explained in an appendix to this article, gives a quite simple
precise definition:

Definition A.2.16. Let S be a category with fiber products. A (symmetric) six-
functor-formalism on S is a bifibration2 of (symmetric) 2-multicategories with 1-categorical
fibers

p ∶ D → Scor

where Scor is the symmetric 2-multicategory of correspondences in S (cf. Definition A.2.15).

From such a bifibration we obtain the operations f∗, f∗ (resp. f !, f!) as pull-back and
push-forward along the correspondences

X
f

��
Y ; X

and

X
f

  
X ; Y,

respectively. We get E ⊗F for objects E ,F above X as the target of a coCartesian 2-ary
multimorphism from the pair E ,F over the correspondence

X

X X ; X.

Given such a six-functor-formalism and a simplicial resolution π ∶ U● → S of a space S ∈ S
(for example arising from a Čech cover w.r.t. a suitable Grothendieck topology)

⋯ ////
//// U2

////// U1
//// U0,

21-bifibration and 2-bifibration
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and given an object E in DS, one can construct complexes in the category DS:

⋯ // π2,!π!
2E // π1,!π!

1E // π0,!π!
0E // 0

⋯ π2,∗π∗2Eoo π1,∗π∗1Eoo π0,∗π∗0Eoo 0oo

The first question of homological (resp. cohomological) descent asks whether the hy-
per(co)homology of these complexes recovers the homology (resp. cohomology) of E . With-
out a suitable enhancement of the situation, this question, however, does not make sense
because a double complex, once considered as a complex in the derived category, loses
the information of the homology of its total complex. There are several remedies for this
problem. Classically, if at least the π∗i are derived functors and E is acyclic w.r.t. them,
one can derive the whole construction to get a coherent double complex. This does not
work, however, for the functors f!, f ! which are often only constructed on the derived
category. One possibility is to consider enhancements of the triangulated categories in
question as dg-categories or ∞-categories. In this article, we have worked out a different
approach based on Grothendieck’s idea of derivators which is, perhaps, conceptually even
simpler. It is sufficiently powerful to glue the six functors and define them for morphisms
between stacks, or even higher stacks.

The second question of homological (resp. cohomological) descent asks whether the
whole category DS of objects on S ∈ S is equivalent to a category of suitable collections
of objects on the Ui (cf. the notion of (co)Cartesian objects, explained below). This
is closely related to the question whether the collection {DS} and the six functors can
be extended to S-stacks. If a diagram U● like above presents such a stack X then a
candidate for the (new) category DX would be this “suitable collection” of objects on the
Ui. (Co)homological descent in this form then ensures that this extension is well-defined,
i.e. does not depend on the presentation of the stack. Using just the collection of derived
categories and trying usual descent of 1-categories runs into the same problems discussed
for the first question.

The questions of (co)homological descent do only concern the pairs of adjoint functors
f∗, f∗, resp. f!, f ! separately, which can be encoded (classically) as usual bifibered 1-
categories

D∗ → Sop D! → S. (1)

This is the situation that we want to enhance using the language of derivators in this
article. Therefore we will not speak about six-functor-formalisms anymore (except for
appendix A.2). We will discuss those in detail in subsequent articles [Hör16, Hör17a,
Hör17b]. However, we will already include the monoidal aspect in the definitions — al-
though irrelevant for (co)descent questions — speaking thus about fibered multi derivators.

From the point of view of ∞-categories, the two questions of (say) cohomological
descent are related as follows. In this world a bifibration D → Sop can be given equivalently
as a functor F ∶ Sop → ∞− CAT such that the functors in the image are right adjoints.
Given S ∈ S, a resolution π ∶ U● → S, and an object E ∈ F (S), the first question of
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cohomological descent asks whether the natural map

E ≅ lim
∆
πi,∗π

∗
i E ,

is an isomorphism (or maybe whether it becomes an isomorphism after applying a further
push-forward to a suitable base), where lim is the (homotopy) limit of the diagram ∆ →
F (S) given by ∆i ↦ πi,∗π∗i E .

The second question of cohomological descent asks whether the functor F itself satisfies
a similar property. If we, neglecting non-invertible morphisms, consider it as a functor
F ∶ Sop →∞− GRP to ∞-groupoids the question becomes whether

F (S) ≅ lim
∆
F (Ui),

where lim is the (homotopy) limit of the diagram F ○ U● ∶ ∆ → ∞ − GRP . From this
point of view it is already clear that the second property is stronger and implies the first.
Both questions cannot be formulated within the realm of classical derivators. Although
those nicely encode the occurring homotopy limit functors, there is no way to obtain
the argument diagrams starting from, say, any kind of pseudo-functor S(op) → DER to
the 2-category of derivators. However, the language of fibered derivators proposed in this
article constitutes a nice solution, albeit the similarity between the two questions becomes
slightly obscured.

Fibered multiderivators. The notion of triangulated category developed by Grothen-
dieck and Verdier in the 1960’s, as successful as it has been, is not sufficient for many
purposes, for both practical reasons (certain natural constructions cannot be performed)
as well as for theoretical reasons (the axioms are rather involved and lack conceptual
clarity). Grothendieck much later [Gro91], and Franke and Heller independently, with
the notion of derivator, proposed a marvelously simple remedy to both deficiencies.
The basic observation is that all problems mentioned above are based on the following
fact: Consider a category C and a class of morphisms W (quasi-isomorphisms, weak
equivalences, etc.) which one would like to become isomorphisms. Then homotopy limits
and colimits w.r.t. (C,W) cannot be reconstructed once passed to the homotopy category
C[W−1] (for example a derived category, or the homotopy category of a model category).
Examples of homotopy (co)limits are the cone and, more generally, the total complex of a
complex of complexes. Whereas the former is required to exist in a triangulated category
in a brute-force way, but not functorially, the notion of total complex is completely lost
in the derived category. Furthermore, very basic and intuitive properties of homotopy
limits and colimits, and more general Kan extensions, not only determine the additional
structure (triangles, shift functors) on a triangulated category but also imply all of its
rather involved axioms. This idea has been successfully worked out by Cisinski, Franke,
Groth, Grothendieck, Heller, Maltsiniotis, and others. We refer to the introductory article
[Gro13] for an overview.

The purpose of this article is to propose a notion of fibered (multi)derivator which
enhances the notion of a fibration of (monoidal) triangulated categories in the same way as
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the notion of usual derivator enhances the notion of triangulated category. We emphasize
that this new context is very well suited to reformulate (and reprove the theorems of)
the classical theory of cohomological descent and to establish a completely dual theory of
homological descent which should be satisfied by the f!, f !-functors.

(Co)homological descent with fibered derivators. Pursuing the idea of deriva-
tors, there is a neat conceptual solution to the problem of (co)homological descent: Anal-
ogously to a derivator D which associates a (derived) category D(I) with each diagram
shape I, we should consider a (derived) category D(I,F ) for each diagram F ∶ I → S (resp.
F ∶ I → Sop). Let a simplicial resolution π ∶ U● → S as before be given, considered as a
morphism p ∶ (∆op, U●)→ (⋅, S) of diagrams in S, resp. i ∶ (∆, (U●)op)→ (⋅, S) of diagrams
in Sop. Assume that the corresponding pull-back i∗ has a right adjoint i∗, (respectively
that p∗ does have a left adjoint p!). Note that this is a straightforward generalization
of the question of existence of homotopy (co)limits in usual derivators! Then the first
question becomes:

Q1: Is the corresponding unit id→ i∗i∗ (resp. counit p!p∗ → id) an isomorphism?

However, we do not take the association (I,F ) ↦ D(I,F ) as the fundamental da-
tum, and rather define a fibered (multi)derivator to be a morphism of pre-derivators
p ∶ D → S (or even pre-multiderivators) satisfying some basic axioms generalizing those
of a derivator. If S is the pre-derivator associated with a category S, the D(I,F ) are
reconstructed as the fibers D(I)F of the (op)fibration of usual categories D(I) → S(I).
This allows for more general situations, where S is a general derivator, not necessarily
associated with an ordinary category. For six-functor-formalism, it will be even neces-
sary to consider S which are pre-2-multiderivators, a notion which will be introduced and
investigated in a forthcoming article [Hör17a]. There we will define (and give examples
of) a derivator version of a (symmetric) Grothendieck six-functor formalism, that is, a
(symmetric) fibered multiderivator

p ∶ D→ Scor,

where Scor is the symmetric pre-2-multiderivator of correspondences in S. For the purpose
of this article, it suffices to consider two fibered derivators

D∗ → Sop D! → S

which are enhancements of the bifibrations (13) encoding the f∗, f∗ functors, or the f!,
f !-functors, respectively.

We actually define two notions: left fibered derivators and right fibered deriva-
tors. The left case is an enhancement of the concept of an opfibration of categories
to derivators and, at the same time, is a generalization of the notion of left derivator,
encoding the theory of homotopy left Kan extensions (in particular homotopy colimits).
The right case is similarly an enhancement of the concept of a fibration of categories. A
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classical opfibration with cocomplete fibers, in which the push-forward functors commute
with colimits, gives rise to a left fibered derivator and dually.

For an (op)fibration D → S we will always denote by f● a push-forward functor along
a morphism f in S and by f ● a pull-back functor along the same morphism. Hence, when
both exist, f● is always left adjoint to f ● by the definition of (op)fibration. In the first
example in (13), i.e. for D! → S, we have f ● = f ! and f● = f!. In the second example, i.e.
for D∗ → Sop, we have f ● = (f op)∗ and f● = (f op)∗, which might seem confusing at first
sight. However, the notation was supposed to resemble the usual notations for pull-back
and push-forward functors and, at the same time, should not cause confusion with the
left or right Kan extension functors, which we denote by α!, resp. by α∗, for a functor
α ∶ I → J of diagrams. The choice of notation is thus a reasonable compromise.

Coming back to the two main examples associated with a six-functor-formalism, more
generally, we may consider Cartesian (resp. coCartesian) objects in the fiber over a di-
agram (∆op, U●) (resp. (∆, (U●)op)), and denote the corresponding subcategories by
D!(∆op)cart

U●
(resp. D∗(∆)cocart

Uop
●

). These categories are “coherent enhancements” of the fol-

lowing data: collections {En}n∈N where En lies in the fiber over Un, and for each morphism
ε ∶ ∆n →∆m iso morphisms U(ε)∗En → Em (resp. Em → U(ε)!En).

The second question of (co)homological descent becomes:

Q2: Do the categories of (co)Cartesian objects depend only on U● up to taking (finite)
hypercovers w.r.t. a fixed Grothendieck topology on S? In particular, if an object
S in S(⋅) is presented by a Čech cover (or hypercover) U●, do we have

D!(∆op)cart
U● ≅ D!(⋅)S, resp. D∗(∆)cocart

Uop
●

≅ D∗(⋅)S?

The categories of coCartesian objects can also be seen as a generalization of the equiv-
ariant derived categories of Bernstein and Lunts (cf. 3.4.3).

We call a fibered derivator (co)local w.r.t. a given Grothendieck pre-topology on the
base (cf. section 2.5) if a few simple axioms are satisfied, and prove that they imply that
(co)homological descent as described in Q1 and Q2 for all finite hypercovers is satisfied.

These axioms are: For each covering {fi ∶ Ui → S} in the given Grothendieck pre-
topology, the corresponding pull-backs f∗i (resp. f !

i)

1. are jointly conservative,

2. satisfy base-change,

3. and commute with homotopy limits (resp. homotopy colimits) as well.

In a six-functor formalism most of these properties follow from isomorphisms of the form
f ! ≅ f∗[n], see Remark 2.5.7. The stronger form of Q2 is only proven under the stronger
technical hypothesis that the fibers are stable, hence triangulated, and well-generated
(resp. compactly generated).
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Ayoub has considered in [Ayo07a, Ayo07b] a notion of algebraic derivator, which is
either a pseudo-functor

Dia(S)1−op → CAT (2)

in which all functors in the image have left adjoints, or a pseudo-functor

Diaop(S)1−op → CAT (3)

in which all functors in the image have right adjoints. While these definitions would work
the same way when the category S is replaced by a pre-derivator S, they are not the
precise analogues of the notions of fibration (resp. opfibration) in category theory, for the
following reasons: While a right fibered derivator in our sense gives rise to a datum (2)
via

(α, f)↦ f ●α∗

(cf. also 2.6.3) the functors in the image only have left adjoints, if the opfibrations D(I)→
S(I) are bifibrations as well (hence when one of the axioms of a left fibered derivator holds
as well). Similarly a left fibered derivator in our sense gives rise to a datum (3) via

(α, f)↦ f●α
∗.

It only has right adjoints, if the fibrations D(I) → S(I) are bifibrations as well (hence
when one of the axioms of a right fibered derivator holds as well).

To specify a left and right fibered derivator one would need to specify both pseudo-
functors (2) and (3) to state the axioms neatly, but then it becomes unclear how to specify
that one pseudo-functor determines the other (which they do, in this case). It is possible,
though, to consolidate both viewpoints. This will be explained in a subsequent article
[Hör16], where it is shown that a left (resp. right) fibered derivator — or even multideriva-
tor — is basically the same as an opfibration (resp. a fibration) of 2-(multi)categories with
1-categorical fibers

D → Diacor(S)
where Diacor(S) is a very natural 2-(multi)category of correspondences of diagrams in S.
Therefore, e.g. a left fibered multiderivator can also be specified by a pseudo-functor

Diacor(S)→ CAT

(without the explicit requirement that adjoints of the images exist — they exist already in
the 2-category Diacor(S)). Also most of the other axioms of a fibered multiderivator follow
automatically. This consolidates the viewpoints because we have natural embeddings

Dia(S)2−op ↪ Diacor(S) Diaop(S)1−op ↪ Diacor(S).

Another point of view is the following: Much like the value D(∆1) of ∆1 under a
derivator D provides a “coherent enhancement” of the category D(⋅)∆1 of morphisms in
D(⋅), the underlying homotopy category (e.g. a derived category), a left fibered derivator
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over the category ∆1 should be seen as a coherent enhancement of a left continuous
morphism of derivators. Similarly a right fibered derivator over the category ∆1 should
be seen as a coherent enhancement of a right continuous morphism of derivators. In
particular, a left and right fibered derivator over ∆1 is an enhancement of an adjunction

D1

L
)) D2

R

ii

between derivators, and, in particular, gives rise to coherent versions of the unit E → RLE
and counit LRE → E as objects in D1(∆1) and D2(∆1). Note that it is not possible
to get these in a functorial way from an adjunction between (even strong) derivators.
The collection of left (resp. right) fibered derivators on small categories should therefore
be seen as some kind of “derivator of derivators”. However, we did not attempt to
investigate any axioms regarding (homotopy) Kan extensions along functors between the
bases.

Overview. In section 2 we give the general definition of a left (resp. right) fibered multi-
derivator p ∶ D→ S. The axioms are basically a straight-forward generalization of those of
a left (resp. right) derivator. To give a priori some conceptual evidence that these axioms
are indeed reasonable, we prove that the notion of fibered multiderivator — like the notion
of fibration of categories — is transitive (2.4), and that it gives rise to a pseudo-functor
from ‘diagrams in S’ to categories as mentioned in the previous discussion, for which a
neat base-change formula holds (2.6).

In section 3, a theory of (co)homological descent for fibered derivators is developed
(the monoidal, i.e. multi-, aspect does not play any role here). We propose a definition
of localizer (resp. of system of relative localizers) in the category of diagrams in S
which is a generalization of Grothendieck’s notion of fundamental localizer in categories.
The latter gives a nice combinatorial description of weak equivalences of categories in
terms of the condition of Quillen’s theorem A. In our more general setting the notion of
fundamental localizer depends on the choice of a Grothendieck (pre-)topology on S. In
section 3.3 we show purely abstractly that a finite hypercover, considered as a morphism of
simplicial diagrams, lies in any localizer or system of relative localizers. The formulation
in terms of localizers thus has the additional advantage that the notions and theorems
of (co)homological descent do not involve in any way the explicit choice of the simplex
category ∆.

Note that this more general notion of localizer has a similar relation to weak equiv-
alences of simplicial pre-sheaves like the classical notion of localizer has to weak equiva-
lences of simplicial sets (or topological spaces), although we will not yet give any precise
statement in this direction.

In sections 3.4 and 3.5 these new notions of localizer are tied to the theory of fibered
derivators. We introduce two notions of (co)homological descent for a fibered derivator
p ∶ D→ S. We call a morphism of S-diagrams D1 = (I,F )→D2 = (J,G) over some S ∈ S(⋅)
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a weak D-equivalence relative to the base S if the corresponding map

π1!π
∗
1 → π2!π

∗
2

is a natural isomorphism, where the πi are the respective structural morphisms. (Dually
there is a cohomological notion as well). This notion of weak D-equivalences (related
to Q1 above) is a straight-forward generalization of Cisinski’s notion of D-equivalence
[Cis03] for usual derivators. A morphism of S-diagrams (I,F )→ (J,G) is called a strong
D-equivalence (a notion related to Q2 above) if it induces an equivalence

D(J)cart
G → D(I)cart

F .

In our relative context, both notions of D-equivalence come in a cohomological as well as
in a homological flavour (for S = {⋅}, i.e. for usual derivators there is no difference between
the homological and cohomological version).

Whenever the fibered derivator is (co)local w.r.t. to the Grothendieck pre-topology —
as explained above — then the Main Theorem 3.5.4 (resp. 3.5.5) of this article states that
weak D-equivalences form a system of relative localizers under very general conditions
(the easier case) and that strong D-equivalences form an absolute localizer, for fibered
derivators with stable, well-generated (resp. compactly generated) fibers.

The proof uses results from the theory of triangulated categories due to Neeman and
Krause (centering around Brown representability type theorems). The link of these results
to our theory of fibered (multi)derivators is explained in section 4.

In section 5 we introduce the notion of bifibration of multi-model-categories. Roughly,
those are families of closed monoidal model categories in which all pairs of pull-back and
push-forward functors form Quillen adjunctions. The language of bifibrations of multicat-
egories, however, has the tremendous advantage that no axioms for the compatibilities be-
tween the functors involved have to be specified explicitly (cf. also the introduction to the
six functors above). This is the most favorable standard context in which a fibered multi-
derivator (whose base is representable, i.e. associated with a usual multicategory) can be
constructed. We will present more general methods of constructing fibered multiderivators
in a forthcoming article, in particular those encoding a full six-functor-formalism.

The author thanks Kevin Carlson, Ian Coley, Ioannis Lagkas and John Zhang for
helpful comments on a preliminary version of this article, and the anonymous referee for
valuable comments which led to simplifications compared to earlier versions of this article.

Notation

We denote by CAT the 2-“category”3 of categories, by (S)MCAT the 2-“category” of
(symmetric) multicategories, and by Cat the 2-category of small categories. We consider a
partially ordered set (poset) X as a small category by interpreting the relation x ≤ y to be

3where “category” has classes replaced by 2-classes (or, if the reader prefers, is constructed w.r.t. a
larger universe).
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equivalent to the existence of a unique morphism x→ y. We denote the positive integers
(resp. non-negative integers) by N (resp. N0). The ordered sets {0, . . . , n} ⊂ N0 considered
as a small category are denoted by ∆n. We denote by Mor(D) (resp. Iso(D)) the class of
morphisms (resp. isomorphisms) in a category D. The final category (which consists of
only one object and its identity) is denoted by ⋅ or ∆0. The same notation is also used
for the final multicategory, i.e. that with one object and precisely one n-ary morphism
for any n ∈ N0. Our conventions about multicategories and fibered (multi)categories are
summarized in appendix A.

2. Fibered derivators

2.1. Categories of diagrams.

2.1.1. Definition. A diagram category is a full sub-2-category Dia ⊂ Cat, satisfying
the following axioms:

(Dia1) The empty category ∅, the final category ⋅ (or ∆0), and ∆1 are objects of Dia.

(Dia2) Dia is stable under taking finite coproducts and fibered products.

(Dia3) All comma categories I ×/J K for functors I → J and K → J in Dia are in Dia.

A diagram category Dia is called self-dual, if it satisfies in addition:

(Dia4) If I ∈ Dia then Iop ∈ Dia.

A diagram category Dia is called infinite, if it satisfies in addition:

(Dia5) Dia is stable under taking arbitrary coproducts.

In the following we mean by a diagram a small category.

2.1.2. Example. We have the following diagram categories:

Cat the category of all diagrams. It is self-dual.

Inv the category of inverse diagrams C, i.e. small categories C such that there exists
a functor C → N0 with the property that the preimage of an identity consists of
identities4. An example is the injective simplex category ∆○:

⋯ ⋅
oo oooooo ⋅oooo

oo ⋅oooo

Dir the category of directed diagrams D, i.e. small categories such that Dop is inverse.
An example is the opposite of the injective simplex category (∆○)op:

⋯ ////
//// ⋅ // //// ⋅ //// ⋅

4In many sources N0 is replaced by any ordinal.
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Catf, Dirf, and Invf are defined as before but consisting of finite diagrams. Those are
self-dual and Dirf = Invf.

Catlf, Dirlf, and Invlf are defined as before but consisting of locally finite diagrams,
i.e. those which have the property that a morphism γ factors as γ = α ○ β only in a
finite number of ways.

Pos, Posf, Dirpos, and Invpos: the categories of posets, finite posets, directed
posets, and inverse posets.

2.2. Pre-(multi)derivators.

2.2.1. Definition. A pre-derivator of domain Dia is a contravariant (strict) 2-functor

D ∶ Dia1−op → CAT .

A pre-multiderivator of domain Dia is a contravariant (strict) 2-functor

D ∶ Dia1−op →MCAT

into the 2-“category” of multicategories. A morphism of pre-(multi)derivators is a pseudo-
natural transformation of 2-functors.

For a morphism α ∶ I → J in Dia the corresponding functor

D(α) ∶ D(J)→ D(I)

will be denoted by α∗.
We call a pre-multiderivator symmetric (resp. braided), if its images are symmetric

(resp. braided), and the morphisms α∗ are compatible with the actions of the symmetric
(resp. braid) groups.

2.2.2. The pre-(multi)derivator represented by a (multi)category: Let S be a
(multi-) category. We associate with it the pre-(multi)derivator

S ∶ I ↦ Hom(I,S).

The pull-back α∗ is defined as composition with α. A 2-morphism κ ∶ α → β induces a
natural 2-morphism S(κ) ∶ α∗ → β∗.

2.2.3. The pre-derivator associated with a simplicial class (in particular, the one asso-
ciated with an ∞-category): Let S be a simplicial class, i.e. a functor

S ∶ ∆→ CLASS

into the “category” of classes. We associate with it the pre-derivator

S ∶ I ↦ Ho(Hom(N(I),S)),
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where N(I) is the nerve of I and Ho is the left adjoint of N . In detail this means the
objects of the category S(I) are morphisms α ∶ N(I)→ S, the class of morphisms in S(I)
is freely generated by morphisms µ ∶ N(I × ∆1) → S considered to be a morphism from
its restriction to N(I × {0}) to its restriction to N(I × {1}) modulo the relations given
by morphisms ν ∶ N(I × ∆2) → S, i.e. if ν1, ν2 and ν3 are the restrictions of ν to the 3
faces of ∆2 then we have µ3 = µ2 ○ µ1. The pull-back α∗ is defined as composition with
the morphism N(α) ∶ N(I) → N(J). A 2-morphism κ ∶ α → β can be given as a functor
I ×∆1 → J which yields (applying N and composing) a natural transformation which we
call S(κ).
2.2.4. The following will not be needed in this article. More generally, consider the
full subcategory m∆ ⊂MCAT of all finite connected multicategories M that are freely
generated by a finite set of multimorphisms f1, . . . , fn such that each object of M occurs
at most once as a source and at most once as the target of one of the fi. Similarly consider
the full subcategory T ⊂ SMCAT which is obtained from m∆ adding images under the
operations of the symmetric groups. This category is usually called the symmetric tree
category. With a functor

S ∶m∆→ CLASS resp. S ∶ T → CLASS

we associate the pre-multiderivator (resp. symmetric pre-multiderivator):

S ∶ I ↦ Ho(Hom(N(I),S)),

where N ∶ MCAT → CLASSm∆ (resp. N ∶ SMCAT → CLASST ) is the nerve, I is
considered to be a multicategory without any n-ary morphisms for n ≥ 2, and Ho is the
left adjoint of N . Objects in SET T are called dendroidal sets in [MW07].

2.3. Fibered (multi)derivators.

2.3.1. Let p ∶ D → S be a strict morphism of pre-derivators with domain Dia, and let
α ∶ I → J be a functor in Dia. Consider an object S ∈ S(J). The functor α∗ induces a
morphism between fibers (denoted the same way)

α∗ ∶ D(J)S → D(I)α∗S.

We are interested in the case that the latter has a left adjoint αS! , resp. a right adjoint αS∗ .
These will be called relative left/right homotopy Kan extension functors with base
S. For better readability we often omit the base from the notation. Though the base is
not determined by the argument of α!, it will often be understood from the context, cf.
also 2.3.28.

2.3.2. We are interested in the case in which all morphisms

p(I) ∶ D(I)→ S(I)
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are fibrations, resp. opfibrations (A.1) or, more generally, (op)fibrations of multicategories
(A.2).

Then we will choose an associated pseudo-functor, i.e. for each f ∶ S → T in S(I) a
pair of adjoints functors

f● ∶ D(I)S → D(I)T ,
resp.

f ● ∶ D(I)T → D(I)S,
characterized by functorial isomorphisms:

Homf(E ,F) ≅ HomidS(E , f ●F) ≅ HomidT (f●E ,F).

More generally, in the multicategorical setting, for a multimorphism f ∈ Hom(S1, . . . , Sn;T )
for some n ≥ 1, we get an adjunction of n variables

f● ∶ D(I)S1 ×⋯ ×D(I)Sn → D(I)T ,

and

f ●,i ∶ D(I)op
S1
× î⋯×D(I)op

Sn
×D(I)T → D(I)Si .

2.3.3. For a diagram of categories

I

α
��

K
β
// J

the slice category K ×/J I is the category of triples (k, i, µ), where k ∈ K, i ∈ I and
µ ∶ β(k)→ α(i) is a morphism in J . It sits in a corresponding 2-commutative square:

K ×/J I
B //

A
��

⇗µ

I

α

��
K

β
// J

which is universal w.r.t. such squares. This construction is associative, but of course not
commutative unless J is a groupoid. The projection K ×/J I → K is a fibration and the
projection K ×/J I → I is an opfibration (see A.1). There is an adjunction

I ×/J J
//
I.oo
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2.3.4. Consider an arbitrary 2-commutative square

L
B //

A
��
⇗µ

I

α
��

K
β
// J,

(4)

let S ∈ S(J) be an object, and E a preimage in D(J) w.r.t. p. The 2-morphism (natural
transformation) µ induces a functorial morphism (the value of µ under the strict 2-functor
S)

S(µ) ∶ A∗β∗S → B∗α∗S

and therefore a functorial morphism

D(µ) ∶ A∗β∗E → B∗α∗E

over S(µ), or — if we are in the (op)fibered situation — equivalently

A∗β∗E → (S(µ))●B∗α∗E

respectively
(S(µ))●A∗β∗E → B∗α∗E

in the fiber above A∗β∗S, resp. B∗α∗S,
Let now F be an object over α∗S. If relative right homotopy Kan extensions ex-

ist, we may form the following composition which will be called the right base-change
morphism:

β∗α∗F → A∗A
∗β∗α∗F → A∗(S(µ))●B∗α∗α∗F → A∗(S(µ))●B∗F . (5)

(We again omit the base S from the notation for better readability — it is always deter-
mined by the argument.)

Let now F be an object over β∗S. If relative left homotopy Kan extensions exist, we
may form the composition, the left base-change morphism:

B!(S(µ))●A∗F → B!(S(µ))●A∗β∗β!F → B!B
∗α∗β!F → α∗β!F . (6)

We will later say that the square (4) is homotopy exact if (5) is an isomorphism
for all right fibered derivators (see Definition 2.3.6 below) and (6) is an isomorphism for
all left fibered derivators. It is obvious a priori that for a left and right fibered derivator
(5) is an isomorphism if and only if (6) is, one being the adjoint of the other (see [Gro13,
§1.2] for analogous reasoning in the case of usual derivators).
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2.3.5. Definition. We consider the following axioms5 on a pre-(multi)derivator D:

(Der1) For I, J in Dia, the natural functor D(I∐J)→ D(I) ×D(J) is an equivalence of
(multi)categories. Moreover D(∅) is not empty.

(Der2) For I in Dia the ‘underlying diagram’ functor

dia ∶ D(I)→ Hom(I,D(⋅))

is conservative.

In addition, we consider the following axioms for a strict morphism of pre-(multi)der-
ivators

p ∶ D→ S ∶

(FDer0 left) For each I in Dia the morphism p specializes to an opfibered (multi)category
and any functor α ∶ I → J in Dia induces a diagram

D(J) α∗ //

��

D(I)

��
S(J) α∗ // S(I)

of opfibered (multi)categories, i.e. the top horizontal functor maps coCartesian mor-
phisms to coCartesian morphisms.

(FDer3 left) For each functor α ∶ I → J in Dia and S ∈ S(J) the functor α∗ between fibers

D(J)S → D(I)α∗S

has a left-adjoint αS! .

(FDer4 left) For each functor α ∶ I → J in Dia, and for any object j ∈ J , and the 2-cell

I ×/J j
ι //

αj

��
⇙µ

I

α

��
{j} � � j // J

we get that the induced natural transformation of functors αj !(S(µ))●ι∗ → j∗α! is an
isomorphism6.

5The numbering is compatible with that of [Gro13] in the case of non-fibered derivators.
6This is meant to hold w.r.t. all bases S ∈ S(J).
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(FDer5 left) For any Grothendieck opfibration α ∶ I → J in Dia, and for any morphism ξ ∈
Hom(S1, . . . , Sn;T ) in S(⋅) for some n ≥ 1, the natural transformations of functors

α!(α∗ξ)●(α∗−,⋯, α∗−, − , α∗−,⋯, α∗−) ≅ ξ●(−,⋯,−, α!− ,−,⋯,−)

are isomorphisms.

and their dual variants:

(FDer0 right) For each I in Dia the morphism p specializes to a fibered (multi)category
and any Grothendieck opfibration α ∶ I → J in Dia induces a diagram

D(J) α∗ //

��

D(I)

��
S(J) α∗ // S(I)

of fibered (multi)categories, i.e. the top horizontal functor maps Cartesian mor-
phisms w.r.t. the i-th slot to Cartesian morphisms w.r.t. the i-th slot.

(FDer3 right) For each functor α ∶ I → J in Dia and S ∈ S(J) the functor α∗ between
fibers

D(J)S → D(I)α∗S
has a right-adjoint αS∗ .

(FDer4 right) For each morphism α ∶ I → J in Dia, and for any object j ∈ J , and the
2-cell

j ×/J I
αj //

ι

��
⇙µ

{j}� _

��
I

α // J

we get that the induced natural transformation of functors j∗α∗ → αj∗(S(µ))●ι∗ is
an isomorphism7.

(FDer5 right) For any functor α ∶ I → J in Dia, and for any morphism ξ ∈ Hom(S1, . . . , Sn;T )
in S(⋅) for some n ≥ 1, the natural transformations of functors

α∗(α∗ξ)●,i(α∗−,⋯, α∗− ; −) ≅ ξ●,i(−,⋯,− ; α∗−)

are isomorphisms for all 1 ≤ i ≤ n.

7This is meant to hold w.r.t. all bases S ∈ S(J).
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2.3.6. Definition. A strict morphism of pre-(multi)derivators p ∶ D → S with domain
Dia is called a left fibered (multi)derivator with domain Dia, if axioms (Der1–2)
hold for D and S and (FDer0–5 left) hold for p. Similarly it is called a right fibered
(multi)derivator with domain Dia, if instead the corresponding dual axioms (FDer0–5
right) hold. It is called just fibered if it is both left and right fibered.

2.3.7. Remark.

1. In the case of pre-derivators (not pre-multiderivators) the axioms (FDer0 left, FDer3–
5 left) are dual to the axioms (FDer0 right, FDer3–5 right) in the sense that any of
those axioms in the left variant holds for p ∶ D → S if and only if the corresponding
axiom in the right variant holds for pop ∶ Dop → Sop. This is not true for the multi-
derivator case; besides Dop would be a (pre-)opmultiderivator. However, we do not
develop this notion explicitly.

2. The squares in axioms (FDer4 left/right) are in fact homotopy exact and it follows
from the axioms (FDer4 left/right) that many more are (see 2.3.23).

3. There is some redundancy in the axioms, cf. 2.3.9 and 2.3.27. For instance, if S is
strong (cf. Definition 2.3.17 below), (FDer5 left) resp. (FDer5 right) are only needed
in the multicase.

4. The condition that α be an opfibration in axioms (FDer0 right) and (FDer5 left) is
only needed if f is an n-ary morphism for n ≥ 2 hence, in particular, only for fibered
multi derivators. For n = 1 the condition on α is not needed and, in fact, the general
version (for α arbitrary) follows from the weaker version (for α an opfibration) and
the other axioms.

5. The axioms (FDer0) and (FDer3–5) are similar to the axioms of a six-functor-
formalism (cf. the introduction or the appendix A.2). It is actually possible to
make this analogy precise and define a fibered multiderivator as a bifibration of
2-multicategories D → Diacor(S) where Diacor(S) is a certain category of multi-
correspondences of diagrams in S, similar to our definition of a usual six-functor-
formalism (cf. Definition A.2.16). This also clarifies the existence and comparison
of the internal and external monoidal structure, resp. duality, in a closed monoidal
derivator (i.e. fibered multiderivator over {⋅}) or more generally for any fibered
multiderivator. We will explain this in detail in a subsequent article [Hör16].

2.3.8. Question. It seems natural to allow also (symmetric) multicategories, in particu-
lar operads, as domain for a fibered (symmetric) multiderivator. However, the author did
not succeed in writing down a neat generalization of (FDer3–4) which would encompass
(FDer5).



FIBERED MULTIDERIVATORS AND (CO)HOMOLOGICAL DESCENT 1275

2.3.9. Lemma. For a strict morphism of pre-derivators D → S such that both satisfy
(Der1) and (Der2) and such that it induces a bifibration of multicategories D(I) → S(I)
for all I ∈ Dia we have the following implications:

(FDer0 left) for n-ary morphisms, n ≥ 1 ⇔ (FDer5 right) (7)

(FDer0 right) ⇔ (FDer5 left) (8)

Proof. We will only show the implication (7), the other being similar. Choosing push-
forward functors f●, the remaining part of (FDer0 left) says that the natural 2-morphism

D(J)S1 ×⋯ ×D(J)Sn
f● //

α∗

��
⇙

D(J)T
α∗

��
D(I)α∗S1 ×⋯ ×D(I)α∗Sn

(α∗f)● // D(I)α∗T

is an isomorphism. Taking the adjoint of this diagram (of f● and (α∗f)● w.r.t. the i-th
slot) we get the diagram

D(I)op
α∗S1

× î⋯×D(I)op
α∗Sn

× D(I)α∗T
α∗

��

⇙

(α∗f)●,i // D(I)α∗Si
α∗

��
D(J)op

S1
× î⋯×D(J)op

Sn

(α∗)op

OO

× D(J)T
f●,i // D(J)Si

That its 2-morphism is an isomorphism is the content of (FDer5 left). Hence (FDer0 left)
and (FDer5 right) are equivalent in this situation.

For (8) note that for both (FDer0 right) and (FDer5 left), the functor α in question
is restricted to the class of Grothendieck opfibrations.

2.3.10. The pre-derivator associated with an ∞-category S is actually a left and right
derivator (in the usual sense, i.e. fibered over {⋅}) if S is complete and co-complete
[GPS14]. This includes the case of pre-derivators associated with categories, which is,
of course, classical — axiom (FDer4) expressing nothing else than Kan’s formulas.

2.3.11. Let S ∈ S(⋅) be an object and p ∶ D → S be a (left, resp. right) fibered multi-
derivator. The association

I ↦ D(I)π∗S,
where π ∶ I → ⋅ is the projection, defines a (left, resp. right) derivator in the usual sense
which we call its fiber DS over S. The axioms (FDer7–8) stated below involve only these
fibers.

2.3.12. Definition. More generally, if S ∈ S(J) we may consider the association

I ↦ D(I × J)pr∗2S
,

where pr2 ∶ I × J → J is the second projection. This defines again a (left, resp. right)
derivator in the usual sense which we call its fiber DS over S.
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2.3.13. Lemma. [left] Let D → S be a left fibered multiderivator and let I ∈ Dia be a
diagram and f ∈ HomS(I)(S1, . . . , Sn;T ) for some n ≥ 1 be a morphism. Then the collection
of functors for each J ∈ Dia

f● ∶ D(J × I)pr∗2S1 ×⋯ ×D(J × I)pr∗2Sn
→ D(J × I)pr∗2T

E1, . . . ,En ↦ (pr∗2f)●(E1, . . . ,En)

defines a morphism of left derivators DS1 × ⋅ ⋅ ⋅ ×DSn → DT . Furthermore, for a collection
Ek ∈ D(I), k /= i the morphism of derivators:

D(J × I)pr∗2Si
→ D(J × I)pr∗2T

Ei ↦ (pr∗2f)●(pr∗2E1, . . . ,Ei, . . . ,pr∗2En)

is left continuous (i.e. commutes with left Kan extensions).

Proof. The only point which might not be clear is the left continuity of the bottom
morphism of pre-derivators. Consider the following 2-commutative square, where I, J, J ′ ∈
Dia, α ∶ J → J ′ is a functor, and j′ ∈ J ′

I × (j′ ×/J ′ J)
(id,ι) //

(id,p)
��

⇗

I × J
(id,α)
��

I × j′ // I × J ′

It is homotopy exact by 2.3.23, 4. Therefore we have (using FDer3–5 left):

(id, j′)∗(id, α)!(pr∗2f)●(pr∗2E1, . . . ,Ei, . . . ,pr∗2En)
≅ (id, p)!(id, ι)∗(pr∗2f)●(pr∗2E1, . . . ,Ei, . . . ,pr∗2En)
≅ (id, p)!(pr∗2f)●((id, ι)∗pr∗2E1, . . . , (id, ι)∗Ei, . . . , (id, ι)∗pr∗2En)
≅ (id, p)!(pr∗2f)●((id, p)∗E1, . . . , (id, ι)∗Ei, . . . , (id, p)∗En)
≅ f●(E1, . . . , (id, p)!(id, ι)∗Ei, . . . ,En)
≅ f●(E1, . . . , (id, j′)∗(id, α)!Ei, . . . ,En)
≅ (id, j′)∗(pr∗2f)●(pr∗2E1, . . . , (id, α)!Ei, . . . ,pr∗2En)

(Note that (id, p) is trivially an opfibration). A tedious check shows that the composition
of these isomorphisms is (id, j′)∗ applied to the exchange morphism

(id, α)!(pr∗2f)●(pr∗1E1, . . . ,Ei, . . . ,pr∗2En)→ (pr∗2f)●(pr∗2E1, . . . , (id, α)!Ei, . . . ,pr∗2En)

Since the above holds for any j′ ∈ J ′ the exchange morphism is therefore an isomorphism
by (Der2).
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In the right fibered situation the analogously defined morphisms f ●,i are not expected
to be made into a morphism of fibers this way. For a discussion of how this is solved,
we refer the reader to the article [Hör16] in preparation, where a fibered multiderivator is
redefined as a certain type of six-functor-formalism. This will let appear the discussion
and results of this section in a much more clear fashion. However, we have:

2.3.14. Lemma. [right] Let D → S be a right fibered multiderivator and let I ∈ Dia be a
diagram and f ∈ HomS(I)(S1, . . . , Sn;T ), for some n ≥ 1, be a morphism. For each J ∈ Dia
and for each collection Ek ∈ D(I), k /= i, the association

D(J × I)pr∗2T
→ D(J × I)pr∗2Si

F ↦ (pr∗2f)●,i(pr∗2E1, . . . ,pr∗2En;F)

defines a morphism of right derivators which is right continuous (i.e. commutes with right
Kan extensions). This is the right adjoint in the pre-derivator sense to the morphism of
pre-derivators in the previous lemma, as soon as D→ S is left and right fibered.

Proof. Consider the following 2-commutative square where I, J, J ′ ∈ Dia, α ∶ J → J ′ is a
functor, and j′ ∈ J ′

I × (J ×/J ′ j′)
(id,ι) //

(id,p)
��

⇙

I × J
(id,α)
��

I × j′ // I × J ′

It is homotopy exact by 2.3.23, 4.
Therefore we have (using FDer3–5 right):

(id, j′)∗(id, α)∗(pr∗2f)●,i(pr∗2E1, î. . .,pr∗2En;F)
≅ (id, p)∗(id, ι)∗(pr∗2f)●,i(pr∗2E1, î. . .,pr∗2En,F)
≅ (id, p)∗(pr∗2f)●,i((id, ι)∗pr∗2E1, î. . ., (id, ι)∗pr∗2En; (id, ι)∗F)
≅ (id, p)∗(pr∗2f)●,i((id, p)∗E1, î. . ., (id, p)∗En; (id, ι)∗F)
≅ f ●,i(E1, î. . .,En; (id, p)∗(id, ι)∗F)
≅ f ●,i(E1, î. . .,En; (id, j′)∗(id, α)∗F)
≅ (id, j′)∗(pr∗2f)●,i(pr∗2E1, î. . .,pr∗2En; (id, α)∗F)

Note that (id, ι) is an opfibration, but (id, j′) is not. Hence the last step has to be justified
further. Consider the 2-commutative diagram:

I × (J ×/J ′ j′)
(id,ι′) //

(id,p)
��

⇙

I × J ′

I × j′ // I × J ′
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It is again homotopy exact by 2.3.23, 4. Therefore we have

≅ f ●,i(E1, î. . .,En; (id, j′)∗(id, α)∗F)
≅ f ●,i(E1, î. . .,En; (id, p)∗(id, ι′)∗(id, α)∗F)
≅ (id, p)∗(pr∗2f)●,i((id, p)∗E1, î. . ., (id, p)∗En; (id, ι′)∗(id, α)∗F)
≅ (id, p)∗(pr∗2f)●,i((id, ι′)∗pr∗2E1, î. . ., (id, ι′)∗pr∗2En; (id, ι′)∗(id, α)∗F)
≅ (id, p)∗(id, ι′)∗(pr∗2f)●,i(pr∗2E1, î. . .,pr∗2En; (id, ι′)∗(id, α)∗F)
≅ (id, j′)∗(pr∗2f)●,i(pr∗2E1, î. . .,pr∗2En; (id, α)∗F)

Note that (id, ι′) is an opfibration as well. In other words: the reason why f ●,i also
commutes with (id, j′)∗ in this particular case is that the other argument are constant in
the J direction.

A tedious check shows the composition of the isomorphisms of the previous computa-
tions yield (id, j′)∗ applied to the exchange morphism

(id, α)∗(pr∗2f)●,i(pr∗2E1, î. . .,pr∗2En;F)→ (pr∗2f)●,i(E1, î. . .,En; (id, α)∗F).

Since the above holds for any j′ ∈ J ′ it is therefore an isomorphism by (Der2).

2.3.15. Let p ∶ D → S be a (left, resp. right) fibered multi derivator and S ∶ {⋅} →
S(⋅) a functor of multicategories. This is equivalent to the choice of an object S ∈ S(⋅)
and a collection of morphisms αn ∈ HomS(⋅)(S, . . . , S

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
n times

;S) for all n ≥ 2, compatible with

composition. Then the fiber
I ↦ D(I)p∗S

defines even a (left, resp. right) multiderivator (i.e. a fibered multiderivator over {⋅}). The
same holds analogously for a functor of multicategories S ∶ {⋅}→ S(I).

Axiom (FDer5 left) and Lemma A.2.6 imply the following:

2.3.16. Proposition. A left fibered multiderivator D → {⋅} is the same as a monoidal
left derivator in the sense of Groth [Gro12]. It is also, in addition, right fibered if and
only if it is a right derivator and closed monoidal in the sense of [loc. cit.].

2.3.17. Definition. We call a pre-derivator D strong, if the following axiom holds:

(Der6) For any diagram K in Dia the ‘partial underlying diagram’ functor

dia ∶ D(K ×∆1)→ Hom(∆1,D(K))

is full and essentially surjective.

2.3.18. Definition. Let p ∶ D → S be a fibered (left and right) derivator. We say that
p ∶ D→ S has pointed fibers if the following axiom holds:

(FDer7) For any S ∈ S(⋅), the category D(⋅)S has a zero object.
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2.3.19. Definition. Let p ∶ D → S be a fibered (left and right) derivator. We say that
p ∶ D→ S has stable fibers if its fibers are strong and the following axiom holds:

(FDer8) For any S ∈ S(⋅), in the category D(◻)p∗S an object is homotopy Cartesian if
and only if it is homotopy coCartesian.

This condition can be weakened (cf. [GS12, Corollary 8.13]).

2.3.20. If the fibers of a fibered derivator are stable then they are triangulated categories
in a natural way (this follows from [Gro13]). Actually the proof shows that it suffices that
the fibers are derivators of domain Posf (finite posets).

Since, by Lemma 2.3.13 and Lemma 2.3.14 push-forward, resp. pull-back w.r.t. any
slot commute with homotopy colimits, resp. homotopy limits, they induce triangulated
functors between the fibers.

2.3.21. [left] The following is a consequence of (FDer0 left): For a functor α ∶ I → J and
a morphism in f ∶ S → T ∈ S(J), we get a natural isomorphism

S(α∗f)●α∗ → α∗S(f)●.

W.r.t. this natural isomorphism we have the following:

2.3.22. Lemma. [left] Given a “pasting” diagram

N

⇙ν

G //

A
��

L

⇙µ

B //

a
��

I

α
��

M
γ // K

β // J

we get for the pasted natural transformation ν ⊙ µ ∶= (β ∗ ν) ○ (µ ∗G) that the following
diagram is commutative:

A!S(β ∗ ν)●G∗S(µ)●B∗ //

∼
��

γ∗a!S(µ)●B∗ // γ∗β∗α!

A!S(β ∗ ν)●S(G ∗ µ)●G∗B∗

∼
��

A!S(ν ⊙ µ)●G∗B∗

55

Here the morphisms going to the right are (induced by) the various base-change mor-
phisms. In particular, the pasted square is homotopy exact if the individual two squares
are.

Proof. This is an analogue of [Gro13, Lemma 1.17] and proven similarly.
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2.3.23. Proposition.

1. Any square of the form

I ×/J K
B //

A
��

⇙µ

I

α

��
K

β // J

(where I ×/J K is the slice category) is homotopy exact (in particular the ones from
axiom (FDer4 left) and (FDer4 right) are).

2. A Cartesian square

I ×J K B //

A
��

I

α
��

K
β // J

(where I ×J K is the fiber product) is homotopy exact, if α is an opfibration or if β
is a fibration.

3. If α ∶ I → J is a morphism of opfibrations (resp. fibrations) over a diagram E, then

Ie
� � wI //

αe
��

I

α

��
Je
� � wJ // J

resp.

Ie
αe //

� _

wI
��

Je� _
wJ
��

I
α // J

is homotopy exact for all objects e ∈ E, where wI , wJ are the inclusions of the
respective fibers.

4. If a square

L
B //

A
��
⇙µ

I

α
��

K
β
// J

is homotopy exact then so is the square

L ×X B×idX //

A×idX
��

⇙µ×X

I ×X
α×idX
��

K ×X
β×idX

// J ×X

for any diagram X.
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Proof. This proof is completely analogous to the non-fibered case. We sketch the argu-
ments here (for the left-case only, the other case follows by logical duality):

3. We only show the case of opfibrations, the other is analogous. Let j be an object
in Je and consider the cube:

Ie ×/Je j

⇙µ

ιe //

w

yy

pe

��

Ie

αe

��

wI

��
I ×/J j

⇙µ

ι //

p

��

I

α

��

⋅ j // Je

wJ��
⋅ j // J

(9)

where w is given by the inclusions ιI,e resp. ιJ,e. By standard arguments on homotopy exact
squares it suffices to show that the left square is homotopy exact on constant diagrams,
i.e. that

pe,!w
∗ ≅ p!

holds true for all usual derivators. By [Gro13, Proposition 1.23] it suffices to show that
w has a left adjoint.

Denote πI ∶ I → E and πJ ∶ J → E the given opfibrations. Consider the two functors

Ie ×/J,e j
w // I ×/J jc

oo

where c is given by mapping (i, µ ∶ α(i)→ j) to (i′, µ′ ∶ α(i′)→ j) where we chose, for any
i, a coCartesian morphism ξi,µ ∶ i → i′ over πI(µ) ∶ πI(i) → e. Since α maps coCartesian
morphisms to coCartesian morphisms by assumption, α(ξi,µ) ∶ α(i)→ α(i′) is coCartesian,
and therefore there is a unique factorization

α(i) α(ξi) // α(i′) µ′ // j

of µ. A morphism α ∶ (i1, µ1 ∶ α(i1) → j) → (i2, µ2 ∶ α(i2) → j), by definition of co-
Cartesian, gives rise to a unique morphism α′ ∶ i′1 → i′2 over πI(i1) → πI(i2) such that
α′ξi1,µ1 = ξi2,µ2α

′ holds, and we set c(α) ∶= α′. We have c ○ w = id, and a morphism
idI×

/J j → w ○ c given by (i, µ)↦ ξi,µ. This makes w right adjoint to c.
2. By axiom (Der2) it suffices to show that for any object k of K, the induced

morphism
k∗A!B

∗ → k∗β∗α!

is an isomorphism. Consider the following pasting diagram

I ×J k
π

��

j // I ×J K ×/K k

⇙µ

ι //

p

��

I ×J K B //

A
��

I

α

��
⋅ ⋅ k // K

β // J
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Lemma 2.3.22 shows that the following composition

π!S(β ∗ µ ∗ j)●j∗ι∗B∗ → π!j
∗S(β ∗ µ)●ι∗B∗ → p!S(β ∗ µ)●ι∗B∗ → k∗A!B

∗ → k∗β∗α!

is the base-change associated with the pasting of the 3 squares in the diagram. All
morphisms in this sequence are isomorphisms except possibly for the rightmost one. The
second from the left is an isomorphism because j is a right adjoint [Gro13, Proposition
1.23]. The base-change morphism of the pasting is an isomorphism because of 3.

1. By axiom (Der2) it suffices to show that for any object k of K the induced morphism

k∗A!S(µ)●B∗ → k∗β∗α!

is an isomorphism. Consider the following pasting diagram

I ×/J k
ι //

p

��

I ×/J K

⇙µ

B //

A
��

I

α

��
⋅

k
// K

β
// J

Lemma 2.3.22 shows that the following diagram is commutative

p!S(µι)●ι∗B∗

∼can

��

∼ // k∗β∗α!

p!ι∗S(µ)●B∗ ∼ // k∗A!S(µ)●B∗

OO

where the bottom horizontal morphism is an isomorphism by 2., and the top horizontal
morphism is an isomorphism by (FDer4 left). Therefore the right vertical morphism is
also an isomorphism.

4. (cf. also [Gro13, Theorem 1.30]). For any x ∈X consider the cube

L
B //

⇙µ

(id,x)

{{
A

��

I

α

��

(id,x)

||
L ×X

⇙µ×X

B×idX
//

A×idX

��

I ×X

α×idX

��

K
β //

(id,x)

{{

J

(id,x)||
K ×X

β×idX
// J ×X

(10)

The left and right hand side squares are homotopy exact because of 3., whereas the
rear one is homotopy exact by assumption. Therefore the pasting

L //

A
��

I ×X
α×idX
��

K // J ×X
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is homotopy exact. Therefore we have an isomorphism

(id, x)∗A!S(µ)●B∗ → (id, x)∗β∗(α × idX)!

where the morphism is induced by the base change of the given 2-commutative square.
We may then conclude by axiom (Der2).

2.3.24. [left] If S is strong the pull-backs and push-forwards along a morphism in S(⋅),
or more generally along a morphism in S(I), can be expressed using only the relative
Kan-extension functors:

Let p ∶ D → S be a left fibered derivator such that S is strong. Consider the 2-
commutative square

I

⇙µ

I

ι0
��

I ι1
// I ×∆1

and consider a morphism f ∶ S → T in S(I). By the strongness of S, the morphism f may
be lifted to an object F ∈ S(I ×∆1), and this means that the morphism

S(µ) ∶ ι∗0F → ι∗1F

is isomorphic to f . Since the square is homotopy exact by Proposition 2.3.23 1., we get
that the natural transformation

f● → ι∗1ι0,!

is an isomorphism.

2.3.25. [left] Let α ∶ I → J a functor in Dia and let f ∶ S → T be a morphism in S(J).
Axiom (FDer0) of a left fibered derivator implies that we have a canonical isomorphism

(α∗(f))●α∗ ≅ α∗f●

which is determined by the choice of the push-forward functors. We get an associated
exchange morphism

α!(α∗(f))● → f●α!. (11)

2.3.26. Proposition. If p ∶ D → S is a left fibered derivator, and S is strong, then the
natural transformation (11) is an isomorphism. The corresponding dual statement holds
for a right fibered derivator.

Proof. Consider the following 2-commutative squares (the third and fourth are even
commutative on the nose):

I

⇙µI

I

pI
��

I ιI
// I ×∆1

J

⇙µJ

J

pJ
��

J ιJ
// J ×∆1

I
α //

ιI
��

J

ιJ
��

I ×∆1 α
// J ×∆1

I
pI //

α

��

I ×∆1

α

��
J pJ

// J ×∆1

(12)
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They are all homotopy exact. Consider the diagram

α!(α∗(f))●

��

// f●α!

��
α!ι∗IpI,!

// ι∗Jα!pI,! // ι∗JpJ,!α!

where the vertical morphisms come from (2.3.24) — these are the base change morphism
for the first and second square in (12) — and the lower horizontal morphisms are respec-
tively the base change for the third diagram in (12), and the natural morphism associated
with the commutativity of the fourth diagram in (12). Repeatedly applying Lemma 2.3.22
shows that this diagram is commutative. Therefore the upper horizontal morphism is an
isomorphism because all the others in the diagram are.

2.3.27. The last proposition states that push-forward commutes with homotopy colimits
(left case) and pull-back commutes with homotopy limits (right case). This is also the
content of (FDer5 left/right) for fibered derivators (not multiderivators), and hence this
axiom is implied by the other axioms of left fibered derivators if S is strong. Even in the
multi-case, by Lemma 2.3.9, axiom (FDer5 left/right) also follow from both (FDer0 left)
and (FDer0 right).

2.3.28. [left] Let α ∶ I → J be a functor in Dia. Proposition 2.3.26 (or FDer5 left) allows
us to extend the functor α! to a functor

α! ∶ D(I) ×S(I) S(J)→ D(J)

which is still left adjoint to α∗, more precisely: to (α∗, p(J)). Here the fiber product
is formed w.r.t. p(I) and α∗ respectively. We sketch its construction: α!(E , S) is given
by αS! E , where αS! is the functor from axiom (FDer3 left) with base S. Let a pair of a
morphism f ∶ S → T in S(J) and F ∶ E → F in D(I) over α∗(f) be given. We define
α!(F, f) as follows: F corresponds to a morphism

(α∗f)●E → F .

Applying αT! we get a morphism

αT! (α∗f)●E → αT! F

and composition with the inverse of the morphism (11) yields

f●α
S
! E → αT! F

or, equivalently, a morphism which we define to be α!(F, f)

αS! E → αT! F

over f .
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For the adjunction, we have to give a functorial isomorphism

Homα∗f(E , α∗F) ≅ Homf(α!(E , S),F),

where E ∈ D(I)α∗S and F ∈ D(J)T . We define it to be the following composition of
isomorphisms:

Homα∗f(E , α∗F)
≅ Homidα∗T ((α∗f)●E , α∗F)
≅ HomidT (α!(α∗f)●E ,F)
≅ HomidT (f●α!E ,F)
≅ Homf(α!E ,F).

A dual statement holds for a right fibered derivator and the functor α∗.

From Proposition 2.3.26 we also get a vertical version of Lemma 2.3.22:

2.3.29. Lemma. [left] Given a “pasting” diagram

N

⇙ν

B //

Γ
��

M

γ

��
L

⇙µ

b //

a
��

I

α
��

K
β // J

we get for the pasted natural transformation µ ⊙ ν ∶= (µ ∗ Γ) ○ (α ∗ ν) that the following
diagram is commutative:

a!S(µ)●Γ!S(α ∗ ν)●B∗ //

∼
��

a!S(µ)●b∗γ!
// β∗α!γ!

a!Γ!S(µ ∗ Γ)●S(α ∗ ν)●B∗

∼
��

a!Γ!S(µ⊙ ν)●B∗

66

Here the morphisms going to the right are (induced by) the various base-change mor-
phisms and the upper horizontal morphism is the isomorphism from Proposition 2.3.26.
In particular, the pasted square is homotopy exact if the two individual squares are.

2.4. Transitivity.

2.4.1. Proposition. Let
E p1 // D p2 // S

be two left (resp. right) fibered multiderivators. Then also the composition p3 = p2 ○ p1 ∶
E→ S is a left (resp. right) fibered multiderivator.
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Proof. We will show the statement for left fibered multiderivators. The other statement
is shown similarly.

Axiom (FDer0): For any I ∈ Dia, we have a sequence

E(I)→ D(I)→ S(I)

of fibered multicategories. It is well-known that then also the composition E(I)→ S(I) is
a fibered multicategory (see A.2). The other statement of (FDer0) is immediate as well.
Let α ∶ I → J be a functor as in axioms (FDer3 left) and (FDer4 left). We denote the
relative homotopy Kan-extension functors w.r.t. the two fibered derivators by α1

! , and α2
! ,

respectively. As always, the base will be understood from the context or explicitly given
as extra argument as in (2.3.28).

Axiom (FDer3 left): Let S ∈ S(J) be given. We define a functor

α3
! ∶ E(I)α∗S → E(J)S

in the fiber (under p2) of E ∈ D(I)α∗S as the composition

E(I)α∗S
(ν●,α2

! p1) // E(I)α∗S ×D(I)α∗S D(J)S
α1

! // E(J)S

where ν is the unit
ν ∶ E → α∗α2

! E
and α1

! with two arguments is the extension given in (2.3.28).
Let F1 ∈ E(I)α∗S and F2 ∈ E(J)S be given with images E1 and E2, respectively under

p1. The adjunction is given by the following composition of isomorphisms:

HomS(α3
!F1,F2)

= HomS(α1
! (ν●F1, α2

! E1),F2) Definition
= {f ∈ HomS(α2

! E1,E2); ξ ∈ Homf(α1
! (ν●F1, α2

! E1),F2)} Definition
≅ {f ∈ HomS(α2

! E1,E2); ξ ∈ Homα∗f(ν●F1, α∗F2)} Adjunction (2.3.28)

≅ {f̃ ∈ Homα∗S(E1, α∗E2); ξ ∈ Homf̃(F1, α∗F2)} Note below

= Homα∗S(F1, α∗F2)} Definition

Note that the composition

f̃ ∶ E1
ν // α∗α2

! E1
α∗f // α∗E2

is determined by f via the adjunction of (FDer3 left) for base S and p2 ∶ D→ S.
Axiom (FDer4 left): Let E be in E(I)α∗S and let F be its image under p1. We have

to show that the natural morphism

α3
j!S(µ)3

●ι
∗E → j∗α3

!
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is an isomorphism. Inserting the definition of the push-forwards, resp. of the Kan exten-
sions for p3, we get

α1
j!(νj)1

●cart1
●ι
∗E → j∗α1

! ν
1
●E .

Here νj ∶ S(µ)2
●ι
∗F → α∗jα

2
j!S(µ)2

●ι
∗F is the unit and ν ∶ F → α∗α2

!F is the unit. ‘cart1’ is
the Cartesian morphism ι∗F → S(µ)2

●ι
∗F . Consider the base-change isomorphism (FDer4

for p2)
bc ∶ α2

j!S(µ)2
●ι
∗F → j∗α2

!F ,
and the morphism

D(µ) ∶ ι∗α∗α2
!F → α∗j j

∗α2
!F .

Claim: We have the equality

(α∗jbc) ○ νj ○ cart = D(µ) ○ ι∗(ν).

Proof of the claim: Consider the diagram (which affects only the fibered derivator p2 ∶
D→ S, hence we omit superscripts):

α∗jαj!S(µ)●ι∗F α∗jαj!S(µ)●ι∗ν
//

α∗jbc

,,
α∗jαj!S(µ)●ι∗α∗α!F // α∗jαj!α

∗
j j

∗α!F // α∗j j
∗α!F

S(µ)●ι∗F S(µ)●ι∗ν
//

νj

OO

S(µ)●ι∗α∗α!F induced //

OO

α∗j j
∗α!F

OO

ι∗F
ι∗ν

//

cart

OO

ι∗α∗α!F
D(µ)

55

cart

OO

Clearly all squares and triangles in this diagram are commutative. The two given mor-
phisms are the compositions of the extremal paths hence they are equal.

We have a natural isomorphism induced by bc:

α1
j!(⋯, α2

j!S(µ)2
●ι
∗F) ≅ α1

j!((α∗jbc)●(⋯), j∗α2
!F)

(this is true for any isomorphism).
We therefore have

α1
j!
(νj)1

●cart1
●ι
∗E

≅ α1
j!
(α∗jbc)1

●(νj)1
●cart1

●ι
∗E

≅ α1
j!
D(µ)1

●(ι∗ν)1
●ι
∗E

≅ α1
j!
D(µ)1

●ι
∗ν1

●E
Thus we are left to show that

α1
j!D(µ)1

●ι
∗ν1

●E → j∗α1
! ν

1
●E

is an isomorphism. A tedious check shows that this is the base change morphism associ-
ated with p1. It is an isomorphism by (FDer4 left) for p1.
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2.5. (Co)Local morphisms.

2.5.1. Let Dia be a diagram category and let S be a strong right derivator with domain
Dia. Strongness implies that for each diagram

U

��
S // T

in S(⋅) there exists a homotopy pull-back “U ×T S” which is well-defined up to (non-
unique!) isomorphism. The existence and (weak) uniqueness of these pull-backs is the
only property of S needed in this section. It is hence not necessary to assume that it is
a right derivator on the whole of Dia. For instance, it is certainly enough to have this
for the restriction of the pre-derivators SI to Posf. A Grothendieck pre-topology on S is
basically a Grothendieck pre-topology in the usual sense on S(⋅) except that pull-backs
are replaced by homotopy pull-backs. We state the precise definition:

2.5.2. Definition. A Grothendieck pre-topology on S is the datum consisting of,
for any S ∈ S(⋅), a collection of families {Ui → S}i∈I of morphisms in S(⋅) called covers,
such that

1. Every family consisting of one isomorphism is a cover,

2. If {Ui → S}i∈I is a cover and T → S is any morphism then the family {“Ui ×S T”→
T}i∈I is a cover for any choice of particular members of the family {“Ui ×S T”}.

3. If {Ui → S}i∈I is a cover and for each i, the family {Ui,j → Ui}j∈Ji is a cover then
the family of compositions {Ui,j → Ui → S}i∈I,j∈Ji is a cover.

2.5.3. Definition. [left] Let p ∶ D → S be a left fibered derivator satisfying also (FDer0
right). Assume that pull-backs exist in S. We call a morphism f ∶ U → S in S(⋅) D-local
if

(Dloc1 left) The morphism f satisfies base change: for any diagram Q ∈ D(◻) with
underlying diagram

A
F̃ //

G̃
��

B

g̃
��

C
f̃

// D

such that p(Q) in S(◻) is a pull-back-diagram, i.e. is (homotopy) Cartesian, with
p(f̃) = f the following holds true: If F̃ and f̃ are Cartesian, and g̃ is coCartesian
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then also G̃ is coCartesian.8

(Dloc2 left) The morphism of derivators (cf. Lemma 2.3.14)

f ● ∶ DS → DU

commutes with homotopy colimits.

A morphism f ∶ U → S in S(⋅) is called universally D-local if any homotopy pull-back
of f is D-local.

2.5.4. Definition. [left] Assume that S is equipped with a Grothendieck pre-topology (cf.
2.5.2). A left fibered derivator p ∶ D → S as in Definition 2.5.3 is called local w.r.t. the
pre-topology on S, if the following conditions hold:

1. Every morphism Ui → S which is part of a cover is D-local.

2. For a cover {fi ∶ Ui → S} the family

(fi)● ∶ D(S)→ D(Ui)

is jointly conservative.

2.5.5. Definition. [right] Let p ∶ D → Sop be a right fibered derivator satisfying also
(FDer0 left). Assume that pull-backs exist in S. We call a morphism f ∶ U → S in S(⋅)
D-colocal if

(Dloc1 right) The morphism f satisfies base change: for any diagram Q ∈ D(◻) with
underlying diagram:

A B
F̃oo

C

G̃

OO

D

g̃

OO

f̃

oo

such that p(Q)op in S(◻) is a pull-back-diagram, i.e. is (homotopy) Cartesian, with
p(f̃) = f op the following holds true: If F̃ and f̃ are coCartesian, and g̃ is Cartesian
then also G̃ is Cartesian.

8In other words, if

“U ×S V ”
F //

G

��

V

g

��
U

f
// S

is the underlying diagram of p(Q) then the exchange morphism

G●F
● → f●g●

is an isomorphism.
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(Dloc2 right) The morphism of derivators (cf. Lemma 2.3.13)

(f op)● ∶ DS → DU

commutes with homotopy limits.

A morphism f ∶ U → S in S(⋅) is called universally D-colocal if any homotopy pull-back
of f is D-colocal.

2.5.6. Definition. [right] Assume that S is equipped with a Grothendieck pre-topology
(cf. 2.5.2). A right fibered derivator p ∶ D → Sop as in Definition 2.5.5 is called colocal
w.r.t. the pre-topology on S, if

1. Every morphism f ∶ Ui → S which is part of a cover is D-colocal.

2. For a cover {fi ∶ Ui → S} the family

(f op
i )● ∶ D(⋅)S → D(⋅)Ui

is jointly conservative.

2.5.7. Remark. The reader should keep in mind the two basic examples given in the
introduction extracted from a six-functor-formalism:

D∗ → Sop D! → S. (13)

In many six-functor-formalisms occurring in nature there will be a Grothendieck pre-
topology on S such that D! is local w.r.t. it and such that D∗ is colocal w.r.t. it. Except
for the conservativity axioms this follows, for instance, from isomorphisms of the form9

f ! ≅ f∗[n]

for any f ∶ U → S being part of a cover, compatible with base-change in a suitable way.
Proof: (Dloc1 left/right) follows from base-change for the pair f !, f∗ (or f∗, f!), which
is part of the six-functor-formalism, replacing f ! by f∗[n] (resp. f∗ by f ![−n]). (Dloc2
left/right) follows directly from f ! ≅ f∗[n] and the fact that f ! has a left-adjoint (resp. f∗

has a right-adjoint). The conservativity axioms Definition 2.5.4, 2. and Definition 2.5.6,
2. do not follow automatically, but become equivalent to each other.

2.6. The associated pseudo-functor. Let p ∶ D→ S be a morphism of pre-derivators
with domain Dia.

2.6.1. [left] Let Dia(S) be the 2-category of diagrams over S, where the objects are pairs
(I,F ) such that I ∈ Dia and F ∈ S(I), the morphisms (I,F ) → (J,G) are pairs (α, f)
such that α ∶ I → J, f ∶ F → α∗G and the 2-morphisms (α, f) → (β, g) are the natural
transformations µ ∶ α⇒ β satisfying S(µ)(G) ○ f = g.

We call a morphism (α, f) of fixed shape if α = id, and of diagram type if f consists
of identities. Every morphism is obviously a composition of one of diagram type by one
of fixed shape.

9assuming the stable case — otherwise ignore the shift [n].
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2.6.2. [right] There is a dual notion of a 2-category Diaop(S). Explicitly, the objects
are pairs (I,F ) such that I ∈ Dia and F ∈ S(I), the morphisms (I,F ) → (J,G) are pairs
(α, f) such that α ∶ I → J, f ∶ α∗G → F and the 2-morphisms (α, f) → (β, g) are the
natural transformations µ ∶ α⇒ β satisfying f ○ S(µ)(G) = g .

The association (I,F )↦ (Iop, F op) induces an isomorphism Diaop(S)→ Dia(Sop)2−op.

We are interested in associating to a fibered derivator a pseudo-functor like for classical
fibered categories.

2.6.3. [left] We associate to a morphism of pre-derivators p ∶ D→ S which satisfies (FDer0
right) a (contravariant) 2-pseudo-functor

D ∶ Dia(S)1−op → CAT

mapping a pair (I,F ) to D(I)F , and a morphism (α, f) ∶ (I,F ) → (J,G) to f ● ○ α∗ ∶
D(J)G → D(I)F . A natural transformation µ ∶ α⇒ β is mapped to the natural transfor-
mation pasted from the following two 2-commutative triangles:

D(I)G○α
f●

%%
D(J)G

α∗
99

β∗

%%

⇓µ ⇓ D(I)F

D(I)G○β

S(µ)(G)●

OO

g●
99

Proof of the pseudo-functor property. For a composition (β, g) ○ (α, f) = (β ○
α,α∗(g) ○ f) we have: f ● ○ α∗ ○ g● ○ β∗ ≅ f ● ○ (α∗g)● ○ α∗ ○ β∗. This follows from the
isomorphism α∗ ○ g● ≅ (α∗g)● ○ α∗ (FDer0). One checks that this indeed yields a pseudo-
functor.

2.6.4. [right] We associate to a morphism of pre-derivators p ∶ D → S which satisfies
(FDer0 left) a (contravariant) 2-pseudo-functor

D ∶ Diaop(S)1−op → CAT

mapping a pair (I,F ) to D(I)F (I), and a morphism (α, f) ∶ (I,F ) → (J,G) to f● ○ α∗
from D(J)G → D(I)F . This defines a functor by the same reason as in 2.6.3.

2.6.5. [left] We assume that S is a strong right derivator. There is a notion of “comma
object” in Dia(S) which we describe here for the case that S is the pre-derivator associated
with a category S and leave it to the reader to formulate the derivator version. In that
case the corresponding object will be determined up to (non-unique!) isomorphism only.

Given diagrams D1 = (I1, F1),D2 = (I2, F2),D3 = (I3, F3) in Dia(S) and morphisms
β1 ∶ D1 → D3, β2 ∶ D2 → D3, we form the comma diagram D1 ×/D3

D2 as follows: the
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underlying diagram I1 ×/I3 I2 has objects being triples (i1, i2, µ) such that i1 ∈ I1, i2 ∈ I2,
and µ ∶ α1(i1)→ α2(i2) in I3. A morphism is a pair βj ∶ ij → i′j for j = 1,2 such that

α1(i1)
α1(β1)//

µ

��

α1(i′1)
µ′

��
α2(i2)

α2(β2)// α2(i′2)

commutes in I3. The corresponding functor F̃ ∈ S(I1 ×/I3 I2) maps a triple (i1, i2, µ) to

F1(i1) ×F3(α2(i2)) F2(i2).
We define Pj to be (ιj, pj) for j = 1,2, where ιj maps a triple (i1, i2, µ) to ij, and pj is

the corresponding projection of the fiber product. We then get a 2-commutative diagram

D1 ×/D3
D2

P1 //

P2

��
⇙µ

D1

β1

��
D2 β2

// D3

If we are given I2, I3 only and two maps I1 → I3 and I2 → I3 we also form D1 ×/I3 I2

by the same underlying category, with functor F1 ○ ι1.

2.6.6. [right] We assume that S is a strong left derivator. There is a dual notion of
“comma object” in Diaop(S) which we describe here again for the case that S is the
pre-derivator associated with a category S and leave it to the reader to formulate the
derivator version. In that case the corresponding object will be determined up to (non-
unique!) isomorphism only.

Given three diagrams Do
1 = (I1, F1),Do

2 = (I2, F2) in Diaop(S) mapping to Do
3 = (I3, F3),

we form the comma diagram Do
1 ×/Do3 D

o
2 as follows: the underlying diagram is I1 ×/D3

I2

which has object being triples (i1, i2, µ) such that i1 ∈ I1, i2 ∈ I2 and µ ∶ α1(i1)→ α2(i2) in
I3. A morphism is a pair βj ∶ ij → i′j for j = 1,2 such that

α1(i1)
α1(β1)//

µ

��

α1(i′1)
µ′

��
α2(i2)

α2(β2)// α2(i′2)

commutes in I3. The corresponding functor F̃ maps a triple (i1, i2, µ) to

F1(i1) ⊔F3(α1(i1)) F2(i2).
We then get a 2-commutative diagram

Do
2 ×/Do3 D

o
1

//

��
⇙µ

Do
1

��
Do

2
// Do

3
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2.6.7. Definition. If S is equipped with a Grothendieck pre-topology (cf. 2.5.2) then we
call (α, f) ∶ (I,F ) → (J,G) D-local if fi ∶ F (i) → G ○ α(i) is D-local (cf. 2.5.3) for all
i ∈ I. Likewise for the notions of universally D-local, D-colocal, and universally D-colocal.

2.6.8. Proposition. [left] Let D → S be a left fibered derivator satisfying also (FDer0
right) and such that S is a strong right derivator. Then the associated pseudo-functor
satisfies the following properties:

1. For a morphism of diagrams (α, f) ∶D1 →D2 the corresponding pull-back

(α, f)∗ ∶ D(D2)→ D(D1)

has a left-adjoint (α, f)!.

2. For a diagram like in 2.6.5

D1 ×/D3
D2

P1 //

⇙α
P2

��

D1

β1

��
D2 β2

// D3

the corresponding exchange morphism

P2!P
∗
1 → β∗2β1!

is an isomorphism in D(D2) provided that β2 is D-local.

Proof. 1. By (FDer0 left) and (FDer3 left) we can form (α, f)! ∶= α! ○ f● which is clearly
left adjoint to (α, f)∗.

2. We first reduce to the case where I2 is the trivial category. Indeed consider the
diagram

D1 ×/D3
({i2}, F2(i2)) can. //

��
⇙

D1 ×/D3
D2 ×/D2

({i2}, F2(i2)) //

��
⇙

D1 ×/D3
D2

P1 //

⇙P2

��

D1

β1

��
({i2}, F2(i2)) ({i2}, F2(i2)) // D2 β2

// D3

The exchange morphism of the middle square and outmost rectangle are isomorphisms
by the reduced case. The morphism can. of the left hand square is of diagram type and
its underlying diagram functor has an adjoint. The exchange morphism is therefore an
isomorphism by [Gro13, 1.23]. Using Lemma 2.6.9 therefore, applying this for all i2 ∈ I2,
also the exchange morphism of the right square has to be an isomorphism (this uses axiom
Der2).

Now we may assume D2 = ({i2}, F2(i2)). Consider the following diagram, in which we
denote β1 = (α1, f1), β2 = (α2, f2).
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(I1 ×/I3 {i2}, F̃ ) p1 //

p2

��
⇙ 1

(I1 ×/I3 {i2}, F1 ○ ι1)
ι1 //

ι∗1f1

��
⇙ 4

(I1, F1)
f1

��
(I1 ×/I3 {i2}, F̃ ′) p′1 //

p′2
��

⇙ 2

(I1 ×/I3 {i2}, F3 ○ α1 ○ ι1)
ι1 //

F3(µ)
��

⇙

5

(I1, F3 ○ α1)

α1

��

(I1 ×/I3 {i2}, F2(i2))
ι∗2f2 //

ι2
��

⇙ 3

(I1 ×/I3 {i2}, F3(α2(i2)))
ι2
��

({i2}, F2(i2))
f2 // ({i2}, F3(α2(i2)))

α2 // (I3, F3)

where F̃ is the functor defined in 2.6.5 mapping a triple (i1, i2, µ ∶ α1(i1)→ α2(i2)) to

F1(i1) ×F3(α2(i2)) F2(i2)

and F̃ ′ is the functor mapping a triple (i1, i2, µ ∶ α1(i1)→ α2(i2)) to

F3(α1(i1)) ×F3(α2(i2)) F2(i2).

We have to show that the exchange morphism for the outer square is an isomorphism.
Using Lemma 2.6.9 below it suffices to show this for the squares 1–5. That the exchange
morphism for the squares 1 and 2, where the morphisms are of fixed shape, is an iso-
morphism can be checked point-wise by (Der2). Then it boils down to the base change
condition (Dloc1 left). Note that the squares are pull-back squares in S by construction
of F̃ ′ resp F̃ . The exchange morphism for 4 is an isomorphism by (FDer0 left). The
exchange morphism for 3 is an isomorphism because of (Dloc2 left). The exchange mor-
phism for 5 is an isomorphism because of (FDer4 left).

Dualizing, there is a right-variant of the theorem, which uses Diaop(S) instead. We
leave its formulation to the reader.

The language of this section allows to restate Lemma 2.3.22 and Lemma 2.3.29 in a
more convenient way:

2.6.9. Lemma. [left]

1. Given a “pasting” diagram in Dia(S)

D1

⇙ν

Γ //

A
��

D3

⇙µ

B //

a

��

D5

α

��
D2

γ // D4
β // D6

the pasted natural transformation ν ⊙ µ ∶= βν ○ µΓ satisfies

ν! ⊙ µ! = (ν ⊙ µ)!.
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2. Given a “pasting” diagram in Dia(S)

D1

⇙ν

B //

Γ
��

D2

γ

��
D3

⇙µ

b //

a

��

D4

α

��
D5

β // D6

the pasted natural transformation ν ⊙ µ ∶= αν ○ µΓ satisfies

µ! ⊙ ν! = (µ⊙ ν)!.

3. (Co)homological descent

3.1. Categories of S-diagrams.

3.1.1. Definition. Let S be a strong right derivator with Grothendieck pre-topology.
A category of S-diagrams in Cat(S) is a full sub-2-category DIA ⊂ Cat(S), satis-

fying the following axioms:

(SDia1) The empty diagram (∅,−), the diagrams (⋅, S) for any S ∈ S(⋅), and (∆1, f) for
any f ∈ S(∆1) are objects of DIA.

(SDia2) DIA is stable under taking finite coproducts and such fibered products, where one
of the morphisms is of pure diagram type.

(SDia3) For each morphism α ∶ D1 → D2 with Di = (Ii, Fi) in DIA and for each object
i ∈ I2 and morphism U → F2(i) being part of a cover in the chosen pre-topology, the
slice diagram D1 ×/D2

(i,U) is in DIA, and if α is of pure diagram type then also
(i, F2(i)) ×/D2

D1 is in DIA.

A category of S-diagrams DIA is called infinite, if it satisfies in addition:

(SDia5) DIA is stable under taking arbitrary coproducts.

There is an obvious dual notion of a category of S-diagrams in Catop(S). If S is
the trivial derivator both definitions boil down to the previous definition of a diagram
category 2.1.1.
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3.2. Fundamental (co)localizers.

3.2.1. Definition. A class of morphisms W in a category is called weakly saturated,
if it satisfies the following properties:

(WS1) Identities are in W.

(WS2) W has the 2-out-of-3 property.

(WS3) If p ∶ Y → X and s ∶ X → Y are morphisms such that p ○ s = idX and s ○ p ∈ W
then p ∈W (and hence s ∈W by (WS2)).

3.2.2. Definition. Let S be a strong right derivator with Grothendieck pre-topology
(2.5.2). Let DIA ⊂ Cat(S) be a category of S-diagrams (cf. 3.1.1).

Consider a family of subclasses WS of 1-morphisms in DIA/S 10 parametrized by all
objects S ∈ S(⋅). Such a family {WS}S is called a system of relative localizers if the
following properties are satisfied:

(L0) For any morphism S1 → S2 the induced functor DIA/S1 → DIA/S2 maps WS1 to
WS2.

(L1) Each WS is weakly saturated.

(L2 left) If D = (I,F ) ∈ DIA, and I has a final object e, then the projection D → (e,F (e))
is in WF (e).

(L3 left) For any commutative diagram in DIA over (⋅, S)

D1

%%

w // D2

yy
D3 = (E,F )

and for any chosen covers {Ue,i → F (e)} for all e ∈ E, the following implication
holds true:

∀e ∈ E ∀i w ×/D3
(e,Ue,i) ∈WUe,i ⇒ w ∈WS.

(L4 left) For any morphism w ∶ D1 → D2 = (E,F ) of pure diagram type over (⋅, S) the
following implication holds true:

∀e ∈ E (e,F (e)) ×/D2
D1 → (e,F (e)) ∈WF (e) ⇒ w ∈WS.

There is an obvious dual notion of a system of colocalizers in DIA ⊂ Catop(S) =
Cat(Sop)2−op where Sop is supposed to be a strong right derivator with Grothendieck
pre-topology.

10where DIA/S denotes the comma (slice) category DIA ×/DIA (⋅, S).
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3.2.3. Definition. Let S be a strong right derivator. Assume we are given a Grothendieck
pre-topology on S (cf. 2.5.2). Let DIA ⊂ Cat(S) be a category of S-diagrams (cf. 3.1.1).

A subclass W of 1-morphisms in DIA is called an absolute localizer (or just local-
izer) if the following properties are satisfied:

(L1) W is weakly saturated.

(L2 left) If D = (I,F ) ∈ DIA, and I has a final object e, then the projection D → (e,F (e))
is in W.

(L3 left) For any commutative diagram in DIA

D1

%%

α // D2

yy
D3 = (E,F )

and chosen covering {Ui,e → F3(e)} for all e ∈ E, the following implication holds
true:

∀e ∈ E ∀i w ×/D3
(e,Ui) ∈W ⇒ w ∈W.

(L4 left) For any morphism w ∶ D1 → D2 = (E,F ) of pure diagram type, the following
implication holds true:

∀e ∈ E (e,F (e)) ×/D2
D1 → (e,F (e)) ∈W ⇒ w ∈W .

There is an obvious dual notion of absolute colocalizer inDIA ⊂ Catop(S) = Cat(Sop)2−op

where Sop is supposed to be a strong right derivator with Grothendieck pre-topology.
Recall the isomorphism of 2-categories

Cat(S) → Catop(Sop)2−op

(I,F ) ↦ (Iop, F op).
By abuse of notation, we denote the image of DIA under this identification by DIAop.

3.2.4. Remark.

1. If W is a localizer in DIA, then Wop is a colocalizer in DIAop and vice versa. The
same holds true for systems of relative localizers.

2. If S is the trivial derivator, then a system of relative localizers or a localizer are the
same notion, and (L1–L3 left) are precisely the definition of fundamental localizer
of Grothendieck.

3.2.5. Proposition. [Grothendieck] If S = {⋅} is the trivial derivator, then Cat(⋅) =
Catop(⋅) as 2-categories. If DIA is self-dual, i.e. if DIAop = DIA under this identifica-
tion, then the notions of localizer, localizer without (L4 left), colocalizer, and colocalizer
without (L4 right) are all equivalent.

Proof. [Cis04, Proposition 1.2.6]
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3.2.6. Remark. The class of localizers is obviously closed under intersection, hence there
is a smallest localizer Wmin

DIA. Furthermore the smallest localizer in DIA and the smallest
colocalizer in DIAop correspond. If S is the trivial derivator and DIA = Cat, Cisinski
[Cis04, Théorème 2.2.11] has shown that Wmin

Cat is precisely the class W∞ of functors
α ∶ I → J such that N(α) is a weak equivalence in the classical sense (of simplicial sets,
resp. topological spaces). For a localizer in the sense of Definition 3.2.3 this implies the
following:

3.2.7. Theorem. If DIA = Cat(S) and W is an absolute localizer in DIA and α ∈W∞,
i.e. α ∶ I → J is a functor such that N(α) is a weak equivalence of topological spaces,
the morphism (α, id) ∶ (I, p∗IS) → (J, p∗JS) is in W for all S ∈ S(⋅). The same holds
analogously for a system of relative localizers.

Proof. The class of functors α ∶ I → J in Cat such that (α, id) ∶ (I, p∗IS)→ (J, p∗JS) is in
W obviously form a fundamental localizer in the classical sense.

3.2.8. We will for (notational) simplicity assume that the following properties hold:

1. S has all relative finite coproducts (i.e. for each opfibration with finite discrete
fibers p ∶ O → I the functor p∗ has a left adjoint p! and Kan’s formula holds true for
it).

2. For all finite families (Si)i∈I of objects in S(⋅) the collection {Si → ∐j∈I Sj}i∈I is a
cover.

Let ∅ be the initial object of S (which exists by 1.). Then the map

∅→ (⋅,∅),

where ∅ on the left denotes the empty diagram, is in W (resp. in W∅, and hence in all
WS) by (L3 left) applied to the empty cover.

From this and (L3 left) again it follows that for a finite collection (Si)i∈I of objects of
S(⋅) the map

(I, (Si)i∈I)→ (⋅,∐
i∈I
Si)

is in W (resp. in W∐i∈I Si). More generally, if we have an opfibration with finite discrete
fibers p ∶ O → I and a diagram F ∈ S(O) (over S ∈ S(⋅)), then the morphism

(O,F )→ (I, p!F )

is in W (resp. in WS).
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3.2.9. Example. [Mayer-Vietoris] For the simplest non-trivial example of a non-constant
map in W consider a cover {U1 → S,U2 → S} in S(⋅) consisting of two monomorphisms11.
Then the projection

p ∶
⎛
⎜⎜⎜
⎝

“U1 ×S U2” //

��

U1

U2

⎞
⎟⎟⎟
⎠
→ S

is in W (resp. in WS) as is easily derived from the axioms (L1–L4). See 3.5.13 for how
the Mayer-Vietoris long exact sequence is related to this.

3.2.10. Let α,β ∶D1 →D2 be two morphisms in DIA. Recall that it is the same to give
a 2-morphism α⇒ β or a morphism D1 ×∆1 →D2 such that for i = 1,2 the compositions

D1
ei // D1 ×∆1

// D2 are α and β respectively. We call α and β homotopic if they
are equivalent for the smallest equivalence relation containing by the following relation:
α ∼ β, if there exists a 2-morphism α⇒ β. In other words α and β are homotopic if there
is a finite set of 1-morphisms γ0, γ1, . . . , γn ∶ D1 → D2 such that γ0 = α and γn = β and a
zig-zag of 2-morphisms:

γ0 ⇐ γ1 ⇒ γ2 ⇐ ⋯⇒ γn.

3.2.11. Proposition. Let DIA be a category of S-diagrams (cf. 3.1.1) and let W be
localizer in DIA (resp. let {WS}S be a system of relative localizers). Then W (resp.
{WS}S) satisfies the following properties:

1. The localizer W (resp. each WS) is closed under coproducts.

2. Let s̃ = (s, id) ∶ D2 = (I2, s∗F ) → D1 = (I1, F ) be a morphism in DIA (resp. over
(⋅, S)) of pure diagram type such that s has a left adjoint p ∶ I1 → I2. Then the
obvious morphisms p̃ ∶D1 →D2 and s̃ are in W (resp. in WS).

3. Given a commutative diagram in DIA (resp. one over S)

D1

!!

w // D2

}}
D3

where the underlying functors of the morphisms to D3 are opfibrations and the un-
derlying functor of w is a morphism of opfibrations, and coverings {Ue,i → F3(e)}
for all e ∈ I3, then (in the relative case)

∀e ∈ I3 ∀i w ×D3 (e,Ue,i) ∈WUe,i ⇒ w ∈WS

or (in the absolute case)

∀e ∈ I3 ∀i w ×D3 (e,Ue,i) ∈W ⇒ w ∈W
11For an arbitrary S this means that the projections “Ui ×S Ui”→ Ui are isomorphisms.
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4. If f ∶ D1 → D2 is in W (resp. in WS) then also f × E ∶ D1 × E → D2 × E is in W
(resp. in WS) for any E ∈ Cat such that the morphism f ×E is a morphism in DIA.

5. Any morphism which is homotopic (in the sense of 3.2.10) to a morphism in W
(resp. in WS) is in W (resp. in WS).

Proof. 1. This property follows immediately from (L3 left) applied to a diagram

∐i∈ID1,i
//

&&

∐i∈ID2,i

xx
(I, p∗IS)

where I is considered to be a discrete category. (In the absolute case let S be the final
object of S(⋅).)

2. We first show that p̃ ∈ W. Using (L3 left), it suffices to show that p̃i ∶ D1 ×/I2
i → D2 ×/I2 i is in W (resp. in WS) for all i ∈ I2, however by the adjunction we have
I1 ×/I2 i = I1 ×/I1 s(i) and therefore I1 ×/I2 i has a final object. In the diagram

D1 ×/I2 i
p̃i //

��

D2 ×/I2 i

��
(⋅, s(i)∗F ) (⋅, s(i)∗F )

the vertical morphisms are thus inW (resp.WS) and so is the upper horizontal morphism.
That s̃ is in W (resp. in WS) will follow from 5. because this implies that s̃ ○ p̃ and p̃ ○ s̃
are in W (resp. in WS) therefore by (L1) also s̃ is in W (resp. in WS). For note that the
unit and the counit extend to 2-morphisms of diagrams.

3. Using (L3 left), we have to show that D1 ×/D3
(e,Ue,i) → D2 ×/D3

(e,Ue,i) is in W
(resp. in WUe,i). Since the underlying functors of D1 →D3 and D2 →D3 are opfibrations,
we have a diagram over (e,Ue,i):

D1 ×D3 (e,Ue,i) //

ιe

��

D2 ×D3 (e,Ue,i)
ιe

��
D1 ×/D3

(e,Ue,i) //

se

OO

D2 ×/D3
(e,Ue,i)

se

OO

where the underlying functor of ιe is of diagram type and is right adjoint to se. Therefore
se is in W (resp. in WUe,i) by 2. and hence the same holds for ιe because seιe = id (using
L1). Note: we are not using the not yet proven part of 2. Since the top arrow is in W
(resp. in WUe,i) the same holds for the bottom arrow.

4. This is a special case of 2.
5. A natural transformation µ ∶ f ⇒ g for f, g ∶ D1 → D2 can be seen as a morphism

of diagrams µ ∶ ∆1 ×D1 → D2 such that µ ○ e0 = f and µ ○ e1 = g. Since the projection
p ∶ ∆1 ×D1 → D1 is in W by 3. also the morphisms e0,1 ∶ D1 → ∆1 ×D1 are in W. Since
µ ○ e0 = f and µ ○ e1 = g, the morphism f is in W if and only if g ∈W.
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3.2.12. Proposition. Axiom (L4 left) is, in the presence of (L1–L3 left), equivalent to
the following, apparently weaker axiom:

(L4’ left) Let w ∶ D1 → D2 be a morphism (resp. a morphism over S) of pure diagram
type such that the underlying functor is a fibration. Then (in the relative case)

∀e ∈ I2 (e,F2(e)) ×D2 D1 → (e,F2(e)) ∈WF2(e) ⇒ w ∈WS

or (in the absolute case)

∀e ∈ I2 (e,F2(e)) ×D2 D1 → (e,F2(e)) ∈W ⇒ w ∈W .

Proof. (L4’ left) implies (L4 left): Consider the following 2-commutative diagram

(E,F ) ×/(E,F ) (I, p∗F ) //

��
⇗

(I, p∗F ) =D1

��
(E,F ) (E,F ) =D2

The underlying diagram functor of the top horizontal map (which is not purely of diagram
type) is an opfibration and hence by Proposition 3.2.11, 3. it is inW (resp.WS), provided
that the morphisms of the fibers (E ×/E e,pr∗1F ) → (⋅, F (e)) are in W (resp. in WF (e)).
However E×/Ee has the final object ide whose value under pr∗1F is F (e). The morphisms of
the fibers are therefore inW (resp. inWF (e)) by (L2 left). The underlying diagram functor
of the left vertical map is a fibration and pr∗1F is constant along the fibers. Therefore the
fact that all (e,F (e)) ×/D2

D1 → (e,F (e)) are in W (resp. in WF (e)) implies that the left
vertical map is in W (resp. in WS) by (L4’ left). Thus also the right vertical map is in W
(resp. in WS). (This uses Proposition 3.2.11, 5. and the fact that the two compositions
in the diagram are homotopic).

(L4 left) implies (L4’ left): If D1 → D2 = (E,F ) is a morphism whose underly-
ing functor is a fibration as in Axiom (L4’ left), the morphism of constant diagrams
(e,F (e)) ×D2 D1 → (e,F (e)) ×/D2

D1 is in W (resp. WF (e)) (their underlying functors
being part of an adjunction), therefore (L4 left) applies.

3.3. Simplicial objects in a localizer.

3.3.1. In this section, we fix a strong right derivator S equipped with a Grothendieck
pre-topology and satisfying the assumptions of 3.2.8 and a category of S-diagrams DIA
(cf. 3.1.1). Assume that for all S● ∈ S(∆op) the diagrams (∆op, S●) and also all trun-
cations ((∆≤n)op, S●) are in DIA. Later we will assume that also ((∆○)op, S●) for all
S● ∈ S((∆○)op), and all truncations ((∆○,≤n)op, S●) are in DIA, where ∆○ denotes the
injective simplex diagram. The reasoning in this section uses little of the explicit defini-
tion of ∆op. For comparison with classical texts on cohomological descent we stick to the
particular diagram ∆op.
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Consider the category S(∆op). Since S has all (relative) finite coproducts, S(⋅) is
actually tensored over SET F , hence S(∆op) will be tensored over SET F∆op

. We sketch
this construction. A finite simplicial set, i.e. a functor ξ ∶ ∆op → SET F , can be seen
as a functor with values in finite discrete categories. The corresponding Grothendieck
construction yields an opfibration πξ ∶ ∫ ξ →∆op. We define for X● ∈ S(∆op):

ξ ⊗X● ∶= (πξ)!(πξ)∗X●.

Recall that the notion ‘S has relative finite coproducts’ means that all functors (πξ)! arising
this way exist and can be computed fiber-wise.

3.3.2. Consider the full subcategory ∆≤n of ∆ consisting of ∆0, . . . ,∆n. Since S is
assumed to be a right derivator, the restriction functor

ι∗ ∶ S(∆op)→ S((∆≤n)op)

has a right adjoint ι∗, which is usually called the coskeleton and denoted coskn.
Let some simplicial object Y● ∈ S(∆op) and a morphism α ∶ X≤n → ι∗Y● be given.

Consider the full subcategory (∆op × ∆1)0−≤n of all objects ∆i × {1} for all i ∈ N0, and
∆i × {0} for i ≤ n. The restriction

ι∗ ∶ S(∆op ×∆1)→ S((∆op ×∆1)0−≤n)

has again an adjoint ι∗. Since S is assumed to be strong we can consider α as an object
over (∆ ×∆1)0−≤n. The first row of ι∗α is called the relative coskeleton coskn(X≤n∣Y●)
of X≤n. For n = −1 we understand cosk−1(−∣Y●) = Y●.

These constructions work the same way with ∆ replaced by ∆○. The functor ‘coskele-
ton’ and ‘relative coskeleton’ is in both cases even the same functor, i.e. these functors
commute with the restriction of a simplicial to a semi-simplicial object12. This would not
at all be true for the corresponding left adjoint, the functor ‘skeleton’.

In the following, ∆n denotes the diagram, {∆n} denotes the object of ∆, as usual
also considered as the corresponding subdiagram with one object, whereas ∆n,● denotes
the represented simplicial set N(∆m) ∶ ∆m ↦ Hom∆({∆m},{∆n}) and ∆○

n,● the semi-
simplicial set ∆m ↦ Hom∆○({∆m},{∆n}).

We call a diagram I in a diagram category Dia contractible, if I → ⋅ lies in every
fundamental localizer on Dia.

12To see this, e.g., for the case of the ‘coskeleton’, observe that there is an adjunction:

{∆m} ×/(∆○)op (∆○

≤n)op // {∆m} ×/∆op ∆op
≤n.oo
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3.3.3. Lemma.

1. Let Ibe a category admitting a final object i. Let N(I) be the nerve of I. Then the
category

∫
(∆○)op

N(I)

is contractible.

2. Let I be a category admitting a final object i. Let N(I) be the nerve of I. Then the
category

∫
∆op

N(I)

is contractible.

3. Let I be a directed category admitting a final object i. Let N ○(I) be the semi-
simplicial nerve of I, defined by letting N ○(I)m be the set of functors ∆m → I such
that no non-identity morphism is mapped to an identity. Then the category

∫
(∆○)op

N ○(I)

is contractible.

Proof. 1. is shown in [Cis04, Proposition 2.2.3]. 2. is the same but considering N(I) as a
functor from ∆op to SET . The same proof works when (∆○)op is replaced by ∆op. 3. is also
just a small modification of [loc. cit.]. Define a functor ξ ∶ ∫(∆○)op N ○(I) → ∫(∆○)op N ○(I)
as follows: an object (n,x), where x ∈ N ○(I)n is mapped to (n,x) if x(n) = i and to
(n + 1, x′) with

x′(k) =
⎧⎪⎪⎨⎪⎪⎩

x(k) k ≤ n
i k = n + 1.

otherwise. There are natural transformations

id∫(∆○)
op N○(I) ⇒ ξ i⇒ ξ

where i denotes here the constant functor with value (0, i), showing that ∫(∆○)op N ○(I) is
contractible.

3.3.4. Corollary. The diagrams ∆, ∆○, ∫∆op ∆n,●, ∫(∆○)op ∆○
n,●, ∫∆op ∆n,● × ∆m,● and

{∆n} ×/∆op (∆○)op = ∫(∆○)op ∆n,● are contractible.

Proof. The simplicial set ∆n,● is just the nerve N(∆n). Likewise the semi-simplicial set
∆○
n,● is the semi-simplicial nerve N ○ of ∆n.
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Note that the diagram ∫(∆○)op ∆○
n,● is even finite.

3.3.5. Lemma. Let W be a localizer (resp. let {WS}S be a system of relative localizers)
in DIA.

Let ((∆op)2, F●,●) ∈ DIA be a bisimplicial diagram (resp. a bisimplicial diagram over
S) and let δ ∶ ∆op → (∆op)2 be the diagonal. Then the morphism

(∆op, δ∗F●,●)→ ((∆op)2, F●,●)
is in W (resp. WS).

Proof. We focus on the absolute case. For the relative case the proof is identical. Since
the morphism in the statement is of pure diagram type, we may check the condition of
(L4 left): we have to show that the category

({∆m} × {∆n}) ×/(∆op)2 ∆op

is contractible, say, on the diagram category of diagrams I such that (I,Fm,n) ∈ DIA.
This is the category ∫∆op ∆n,● ×∆m,● which is contractible by Corollary 3.3.4. Note that
this is the only feature of ∆op used in the proof of this Lemma.

3.3.6. Remark. The previous lemma should be seen in the following context: the
Grothendieck construction gives a way of embedding the category of simplicial sets into
the category of small categories. This construction maps weak equivalences to weak equiv-
alences and induces an equivalence between the corresponding homotopy categories. A
bisimplicial set can be seen as a simplicial object in the category of simplicial sets. Its
homotopy colimit is given by the diagonal simplicial set. On the other hand the homotopy
colimit in the category of small categories is just given by the Grothendieck construction.
From this perspective, the lemma is clear if S is the derivator associated with the category
of sets (equipped with the discrete topology).

3.3.7. Lemma. Let W be a localizer (resp. let {WS}S be a system of relative localizers)
in DIA.

Consider a simplicial diagram (∆op, F●) ∈ DIA (resp. a simplicial diagram over S).
The morphism

(∆op, F● ⊗∆n,●)→ (∆op, F●)
is in W (resp. WS).

Proof. We focus on the absolute case. For the relative case the proof is identical. The
diagram (∆op, F● ⊗ ∆n,●) is equivalent to (∫∆op ∆n,●, π∗F●) by definition (see 3.3.1) and
the conventions 3.2.8. We apply the criterion of (L4 left) to the resulting map

(∫
∆op

∆n,●, π
∗F●)→ (∆op, F●)

and have to show that
{∆m} ×/∆op ∫

∆op
∆n,●

is contractible. This category is again isomorphic to ∫∆op ∆n,●×∆m,● which is contractible
by Corollary 3.3.4.
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3.3.8. Corollary. Let W be a localizer (resp. let {WS}S be a system of relative localiz-
ers) in DIA.

Let f, g ∶ (∆op, F●) → (∆op,G●) be two homotopic morphisms of simplicial objects
(resp. morphisms over S). Then f ∈W (resp. in WS) if and only if g ∈W (resp. in WS).

Proof. The statement follows by the standard argument because the projection (∆op, F●⊗
∆1,●)→ (∆op, F●) is in W (resp. in WS) by Lemma 3.3.7.

3.3.9. Proposition. [Čech resolutions are in W ] Let W be a localizer (resp. let {WS}S
be a system of relative localizers) in DIA.

Let U → S be a local epimorphism in S(⋅). Then the morphism

p ∶ (∆op, cosk0(U ∣S))→ (⋅, S)
is in W (resp. WS).

Proof. To simplify the exposition we focus on the case in which S is associated with a
category S. The reader may check however that everything goes through in the general
case because the only constructions involved can be expressed as right Kan extensions.
The assumption means that there is a cover U = {Ui → S} in the given pre-topology, such
that for all indices i, the induced map

pi ∶ U ×S Ui → Ui

has a section si. By axiom (L3 left) it suffices to show that for all i the map

p̃i ∶ (∆op, cosk0(U ×S Ui ∣Ui))→ (⋅, Ui)
is in W (resp. in WUi). Explicitly the simplicial object cosk0(U ×S Ui ∣Ui) is given by

⋯ // //
//// U ×S U ×S U ×S Ui

////// U ×S U ×S Ui //// U ×S Ui
Since ∆op is contractible (in particular the morphism (∆op, p∗T )→ (⋅, T ) is inW, resp.

in WT , for any T ∈ S(⋅)), it suffices to show that the map

p̃i ∶ (∆op, cosk0(U ×S Ui ∣Ui))→ (∆op, p∗Ui)
is in W (resp. in WUi). There is a section

s̃i ∶ (∆op, p∗Ui)→ (∆op, cosk0(U ×S Ui ∣Ui))
induced by si such that p̃i ○ s̃i = id. By (L1) it then suffices to check that s̃i ○ p̃i ∈W (resp.
in WUi). We will construct a homotopy between id and s̃i ○ p̃i

(∆op, cosk0(U ×S Ui ∣Ui)⊗∆1,●)→ (∆op, cosk0(U ×S Ui ∣Ui))
in the sense of simplicial objects. This will suffice by Corollary 3.3.8. Since id and si ○ pi
become equal after projection to Ui we get a morphism

(id, si ○ pi) ∶ Hom(∆0,∆1) ×U ×S Ui → U ×S Ui
over Ui. Therefore by definition of cosk0 it extends to a morphism

(∆op, cosk0(U ×S Ui ∣Ui)⊗∆1,●)→ (∆op, cosk0(U ×S Ui ∣Ui)).
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3.3.10. Definition. A morphism X● → Y● of simplicial objects is called a hypercover
if the following two equivalent conditions hold:

1. In any diagram of simplicial objects

∂∆n,● ⊗U //

��

X●

��
∆n,● ⊗U // Y●

there is a cover U = {Ui → U} such that for all i there is a lift (indicated by a dotted
arrow) in the diagram

∂∆n,● ⊗Ui //

��

∂∆n,● ⊗U // X●

��
∆n,● ⊗Ui

44

// ∆n,● ⊗U // Y●

2. For any n ≥ 0 the morphism

Xn → coskn−1(ι∗≤n−1X● ∣Y●)n

admits local sections in the pre-topology on S (i.e. it is a local epimorphism).

3.3.11. Remark.

1. In particular the notion of hypercover depends only on the Grothendieck topology
generated by the pre-topology because a morphism is a local epimorphism precisely
if the sieve generated by it is a covering sieve.

2. The equivalent condition 1. of the definition of hypercover shows that, if S is the
derivator associated with the category SET equipped with the discrete topology,
then a hypercover is precisely a trivial Kan fibration.

3.3.12. Definition. If in condition 2. of Definition 3.3.10 the morphism is even an iso-
morphism for all sufficiently large n, then α is called a finite (or bounded) hypercover.
Equivalently we have X● ≅ coskn(ι∗≤nX● ∣Y●) for some n.

3.3.13. Lemma. Let W be a localizer (resp. {WS}S be a system of relative localizers) in
DIA.

For a finite hypercover X● → Y● (resp. one over (⋅, S)) such that X● ≅ coski(X● ∣Y●)
and ι∗≤i−1X● ≅ ι∗≤i−1Y● the morphism (∆op,X●)→ (∆op, Y●) is in W (resp. in WS).
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Proof. Again, to simplify the exposition we focus on the case in which S is associated with
a category S. We may assume i ≥ 1 because otherwise we are in the situation of Lemma
3.3.9. The assumptions imply that the map Xi → Yi is a local epimorphism. Indeed, this
is the map Xi → Yi = coski−1(ι∗≤i−1X● ∣Y●)i in this case. Therefore the morphism Xj → Yj
is actually a local epimorphism for all j.

Consider the following commutative diagram in DIA:

(∆op ×∆op, (X● ×Y● X● ∣X●)) //

��

(∆op ×∆op, (X● ∣Y●))

��
(∆op,X●) // (∆op, Y●)

where
(X● ∣Y●)m,n ∶= cosk0(Xn ∣Yn)m =Xn ×Yn ⋯×Yn Xn

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m+1 factors

.

(X● ×Y● X● ∣X●)m,n ∶= cosk0(Xn ×Yn Xn ∣Xn)m =Xn ×Yn ⋯×Yn Xn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m+2 factors

.

The vertical morphisms are in W by Proposition 3.2.11, 3. because its columns are in W
by Lemma 3.3.9. Again by Proposition 3.2.11, 3. it then suffices to show that the rows

p ∶ (∆op, (X● × Y● ∣X●)m,●) // (∆op, (X● ∣Y●)m,●)
of the top horizontal morphism are in W . These are again hypercovers of the form
considered in this Lemma, in particular i-coskeletal relative to Y●, where the i-truncation
is given by

Xi ×Yi ⋯×Yi Xi
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m+2

��

//
⋮ // Xi−1 = Yi−1⋯ ⋯ //// X0 = Y0

Xi ×Yi ⋯×Yi Xi
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m+1

//
⋮ // Yi−1⋯ ⋯ // // Y0

where the left-most vertical arrow is induced by the map ∆m+1 →∆m+2, i↦ i. There is a
section s, with si induced by the map

∆m+2 →∆m+1, i↦
⎧⎪⎪⎨⎪⎪⎩

i i <m + 2,

m + 1 i =m + 2.

We will construct a homotopy µ ∶ id⇒ s ○ p of truncated simplicial objects:

Hom(∆i,∆1) ×Xi ×Yi ⋯×Yi Xi
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m+2
µi

��

//
⋮ // Hom(∆i−1,∆1) × Yi−1⋯

µi−1

��

⋯ //// Hom(∆0,∆1) × Y0

µ0

��
Xi ×Yi ⋯×Yi Xi
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m+2

//
⋮ // Yi−1⋯ ⋯ // // Y0
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The morphism µi at the constant morphism 0 ∶ ∆i → ∆1 is given by the identity, at
the constant morphism 1 ∶ ∆i → ∆1 given by si ○ pi, and at the other morphisms ∆i →
∆1 arbitrarily. The existence of this homotopy allows by Lemma 3.3.8 and by (L1) to
conclude.

3.3.14. Theorem. Let W be a localizer (resp. {WS}S be a system of relative localizers)
in DIA.

Any finite hypercover (resp. one over S) considered as a morphism of diagrams in
DIA

(∆op,X●)→ (∆op, Y●) (14)

is in W (resp. in WS).
Let ι ∶ (∆○)op →∆op be the inclusion. If the morphism (14) exists in DIA then also

((∆○)op, ι∗X●)→ ((∆○)op, ι∗Y●)
is in W (resp. in WS).

Proof. Any finite hypercover is a finite succession of hypercovers of the form considered
in Lemma 3.3.13. The additional statement is a consequence of the following Lemma.

3.3.15. Lemma. Let W be a localizer (resp. let {WS}S be a system of relative localizers)
in DIA.

Let ι ∶ (∆○)op →∆op be the inclusion and let (∆op,X●) be a simplicial diagram in DIA
(resp. a simplicial diagram over (⋅, S)). Then the morphism

((∆○)op, ι∗X●)→ (∆op,X●)
(if in DIA) is in W (resp. in WS).

Proof. We focus on the absolute case. For the relative case the proof is identical. Since
the morphism in the statement is of pure diagram type, we may check the condition of
(L4 left): we have to show that the category

{∆m} ×/∆op (∆○)op

is contractible, say, on the diagram category of diagrams I such that (I,Xm) ∈ DIA. This
is true by Corollary 3.3.4.

3.4. Cartesian and coCartesian objects.

3.4.1. Definition. Let D → S be a fibered derivator of domain Dia. Let I,E ∈ Dia be
diagrams and let α ∶ I → E be a functor in Dia. We say that an object

X ∈ D(I)
is E-(co)Cartesian, if for any morphism µ ∶ i→ j in I mapping to an identity in E, the
corresponding morphism D(µ) ∶ i∗X → j∗X is (co)Cartesian.

If E is the trivial category, we omit it from the notation, and talk about (co)Cartesian
objects.

These notions define full subcategories D(I)E−cart (resp. D(I)E−cocart) of D(I), and
D(I)E−cart

S (resp. D(I)E−cocart
S ) of D(I)S for any S ∈ S(I).
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3.4.2. Lemma. The functor α∗ w.r.t. a morphism α ∶D1 →D2 in Dia(S) maps Cartesian
objects to Cartesian objects. The functor α∗ for a morphism α ∶ D1 → D2 in Diaop(S)
maps coCartesian objects to coCartesian objects.

3.4.3. Remark. The categories of coCartesian objects are a generalization of the equiv-
ariant derived categories of Bernstein and Lunts [BL94]. For this let D → Sop be the
stable fibered derivator of sheaves of abelian groups on (nice) topological spaces, where S
is the pre-derivator associated with the category of (nice) topological spaces. Let G be a
topological group acting on a space X. Then we may form the following simplicial space
which is an object of S(∆op):

[G/X]● ∶ ⋯ ////
//// G ×G ×X ////// G ×X //// X,

cf. [BL94, B1]. Then the category
D(∆)cocart

[G/X]●

is equivalent to the (unbounded) equivariant derived category, cf. [BL94, Proposition B4].
Note that all pull-back functors are exact in this context.

3.4.4. Definition. Let D→ S be a fibered derivator of domain Dia. We say that D→ S
admits left Cartesian projectors if for all functors α ∶ I → E in Dia and S ∈ S(I),
the fully-faithful inclusion

D(I)E−cart
S → D(I)S

has a left adjoint ◻E! . More generally, we have four notions with the following notations:

◻E! left adjoint left Cartesian projector
∎E! right adjoint right Cartesian projector
∎E∗ left adjoint left coCartesian projector
◻E∗ right adjoint right coCartesian projector

We will, in general, only use left Cartesian and right coCartesian projectors, the oth-
ers being somewhat unnatural. In 4.3.3 we will show (using Brown representability) that
for an infinite fibered derivator whose fibers are stable and well-generated (cf. Defini-
tions 4.1.1, 4.1.7) right coCartesian projectors and left Cartesian projectors exists. Note
that for a usual (non fibered) derivator, the notions ‘Cartesian’ and ‘coCartesian’ are
equivalent. If for a fibered derivator with stable fibers both left and right Cartesian
projectors exist, then there is actually a recollement [Kra10, Proposition 4.13.1]:

D(I)E−cart
S

incl. // D(I)S
◻!oo

∎∗oo

// D(I)S/D(I)E−cart
S

oo

oo
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3.4.5. Example. The projectors are difficult to describe explicitly, except in very special
situations. Here a rather trivial example where this is possible. Let D be a stable derivator
and consider I = ∆1, the projection p ∶ ∆1 → ⋅ and the inclusions e0, e1 ∶ ⋅ → ∆1. Then a
left and a right Cartesian projector exist and the recollement above is explicitly given by:

D(∆1)cart ≅ D(⋅) p∗ // D(∆1)
e∗1oo

e∗0oo
C // D(⋅)

[−1]○e0,∗oo

e1!oo

Note that the functor C (Cone) may be described as either [1] ○ e!
0 or e?

1 (cf. [Gro13, §3])
and that the essential image of p∗ is precisely the kernel of C, which also coincides with
the full subcategory of Cartesian=coCartesian objects.

3.5. Weak and strong D-equivalences.

3.5.1. Definition. [left] Let Dia be a diagram category and let S be a strong right deriva-
tor with domain Dia equipped with a Grothendieck pre-topology. Let D→ S be a left fibered
derivator satisfying (FDer0 right) and let S ∈ S(⋅). A morphism f ∶D1 →D2 in Dia(S)/S
is called a weak D-equivalence relative to S if the natural transformation

p1!p
∗
1 → p2!p

∗
2

is an isomorphism of functors, where the pi ∶ Di → (⋅, S) are the structural morphisms.
A morphism f ∈ Dia(S) is called a strong D-equivalence if the functor f∗ induces an
equivalence of categories

f∗ ∶ D(D2)cart → D(D1)cart.

Note that weak is a relative notion whereas strong is absolute.

3.5.2. Definition. [right] Let Dia be a diagram category. Let D → S be a right fibered
derivator satisfying (FDer0 left), where Sop is a strong right derivator with domain Diaop

equipped with a Grothendieck pre-topology. Let S ∈ S(⋅). A morphism f ∶ D1 → D2 in
Diaop(S)/S is called a weak D-equivalence relative to S, if the natural transformation

p2∗p
∗
2 → p1∗p

∗
1

is an isomorphism of functors, where the pi ∶Di → (⋅, S) are the structural morphisms. A
morphism f ∈ Diaop(S) is called a strong D-equivalence if the functor f∗ induces an
equivalence of categories

f∗ ∶ D(D2)cocart → D(D1)cocart.

For a (left and right) derivator, i.e. for S = ⋅, there is no difference between Dia(S) and
Diaop(S) and then also the two different definitions of weak, resp. strong D-equivalence
coincide (for the case of weak D-equivalences, note that the two conditions become adjoint
to each other). These notions of D-equivalence (right version) should be compared to the
classical notions of cohomological descent, see [SGA72, Exposé Vbis, Définition 2.2.2.,
2.2.4., 2.2.6.].
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3.5.3. Lemma. [left] Let f ∶ D1 → D2 be a morphism in Dia(S)/S. Then the following
implication holds:

f strong D-equivalence ⇒ f weak D-equivalence relative to S.

Proof. If f is a strong D-equivalence then f∗ is fully-faithful on Cartesian objects. The
condition of f being a weak D-equivalence relative to S is in turn equivalent to f∗ being
fully-faithful on objects of the form p∗2E for E in D(⋅)S (which are, in particular, Cartesian).

Of course there is an analogous right version of this lemma. The goal of this section
is to prove the following two theorems:

3.5.4. Main Theorem. [right] Let Dia be a diagram category and let S be a strong right
derivator with domain Diaop equipped with a Grothendieck pre-topology.

1. Let D → Sop be a fibered derivator with domain Dia which is colocal in the sense of
Definition 2.5.6 for the Grothendieck pre-topology on S. The collection of classes
{WD,S}S, where WD,S for S ∈ S(⋅) is the class of weak D-equivalences relative to S
in Diaop(Sop)/S, forms a system of relative colocalizers.

2. Let D → Sop be an infinite fibered derivator with domain Dia which is colocal in
the sense of Definition 2.5.6 for the Grothendieck pre-topology on S, with stable,
compactly generated fibers. The class WD of strong D-equivalences in Diaop(Sop)
forms an absolute colocalizer.

3.5.5. Main Theorem. [left] Let Dia be a diagram category and let S be a strong right
derivator with domain Dia equipped with a Grothendieck pre-topology.

1. Let D → S be a fibered derivator with domain Dia, which is local in the sense of
Definition 2.5.4 for the Grothendieck pre-topology on S. The collection of classes
{WD,S}S, where WD,S for S ∈ S(⋅) is the class of weak D-equivalences relative to S
in Dia(S)/S forms a system of relative localizers.

2. Let D → S be an infinite fibered derivator with domain Dia, which is local in the
sense of Definition 2.5.4 for the Grothendieck pre-topology on S, with stable, well-
generated fibers. The class WD strong D-equivalences in Dia(S) forms an absolute
localizer.

The weak D-equivalences for the case of usual derivators (i.e. for S = {⋅}) were called
just ‘D-equivalences’ by Cisinski [Cis08] and it is rather straight-forward to see from the
definition of derivator that they from a fundamental localizer in the classical sense (=
absolute localizer for S = {⋅}, = system of relative localizers for S = {⋅}).

We will only prove the left-variant of the theorem. The other follows by logical duality.
In the right version compactly generated fibers are needed because of the corresponding
assumption in Lemma 3.5.10. Before proving the theorem we need a couple of lemmas.
We assume for the rest of this section that Dia is a diagram category and that S is a
strong right derivator with domain Dia equipped with a Grothendieck pre-topology.
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3.5.6. Definition. Two morphisms (in Dia(S) or in Diaop(S))

D1

p // D2
s

oo

such that zig-zags of 2-morphisms

p ○ s⇒ ⋯⇐ ⋯⇒ idD1 s ○ p⇒ ⋯⇐ ⋯⇒ idD2

exist are called a homotopy equivalence (or p is called as such if an s with this property
exists).

3.5.7. Lemma. [left] Let D be a left fibered derivator satisfying (FDer0 right) and let
D1,D2 ∈ Dia(S). Given any homotopy equivalence (p, s), then the functors p∗ and s∗

induce an equivalence

D(D2)cart
p∗ // D(D1)cart

s∗
oo

Proof. The 2-morphisms µ ∶ (α, f) ⇒ (β, g) in Definition 3.5.6 induce morphisms be-
tween the pull-back functors

(α, f)∗E → (β, g)∗E
which are isomorphisms on Cartesian objects.

3.5.8. Example. [cf. also Proposition 3.2.11, 2.] Let I1, I2 be diagrams in Dia. If

I1

p // I2
s

oo

is an adjunction where p is left adjoint to s, and if F ∈ S(I1) then we get an equivalence

D(D2)cart
p∗ // D(D1)cart

s∗
oo

where D1 = (I1, F ) and D2 = (I2, s∗F ).
3.5.9. Lemma. [left] Let Dia be an infinite diagram category and let D→ S be an infinite
fibered derivator with domain Dia with stable, well-generated fibers. Consider a morphism
D = (I,F ) → (⋅, S) in Dia(S). Let U → S be a universally D-local morphism. Write
DU ∶= D ×(⋅,S) (⋅, U). Then the following diagram is 2-commutative (i.e. the exchange
natural transformation is an isomorphism):

D(D)
pr∗1
��

◻! // D(D)cart

pr∗1
��

D(DU)
◻! //

⇗∼

D(DU)cart

Note that left Cartesian projectors exist for D and DU by Theorem 4.3.4.
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Proof. The functor pr∗1 has a right adjoint pr1∗ by (Dloc2 left) and by the Brown rep-
resentability theorem. (Dloc1 left) says that pr∗1 preserves coCartesian morphisms, hence
pr1∗ preserves Cartesian morphisms. Therefore the right adjoint of the given diagram is
the following commutative diagram:

D(D) D(D)cartoo

D(DU)

pr1∗

OO

D(DU)cart

pr1∗

OO

oo

Consequently the exchange morphism of the diagram in the statement is also a natural
isomorphism.

3.5.10. Lemma. [right] Let Dia be an infinite diagram category and let D → Sop be an
infinite fibered derivator with domain Dia with stable, compactly generated fibers. Consider
a morphism D = (I,F ) → (⋅, S) in Diaop(Sop). Let U → S be a universally D-colocal
morphism. Write DU ∶=D ×(⋅,S) (⋅, U). Then the following diagram is 2-commutative (i.e.
the exchange natural transformation is an isomorphism):

D(D)
pr∗1
��

◻∗ // D(D)cocart

pr∗1
��

D(DU)
◻∗ //

⇙∼

D(DU)cocart

Note that right coCartesian projectors exist for D and DU by Theorem 4.3.3.

Proof. The functor pr∗1 has a left adjoint pr1! by (Dloc2 right) and by the Brown rep-
resentability theorem for the dual. (Dloc1 right) says that pr∗1 preserves Cartesian mor-
phisms, hence pr1! preserves coCartesian morphisms. Therefore the right adjoint of the
given diagram is the following commutative diagram:

D(D) D(D)cocartoo

D(DU)

pr1!

OO

D(DU)cocart

pr1!

OO

oo

Consequently the exchange morphism of the diagram in the statement is also a natural
isomorphism.

3.5.11. Lemma. [left] Let D → S be a fibered derivator with domain Dia admitting left
Cartesian projectors (cf. 3.4.4). For any opfibration

I

π
��
E
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in Dia, for any diagram in F ∈ S(I), and for each element e ∈ E, the following diagram
is 2-commutative (i.e. the exchange natural transformation is an isomorphism):

D(I)F
ι∗

��

◻E! // D(I)E−cart
F

ι∗

��
D(Ie)Fe

◻! //

⇗∼

D(Ie)cart
Fe

where ι ∶ Ie → I is the inclusion of the fiber.

3.5.12. Lemma. [right] Let D → Sop be a fibered derivator with domain Dia admitting
right coCartesian projectors (cf. 3.4.4). For a fibration

I

π
��
E

in Dia, for any diagram in F ∈ Sop(I), and for each element e ∈ E, the following diagram
is 2-commutative (i.e. the exchange natural transformation is an isomorphism):

D(I)F
ι∗

��

◻E
∗ // D(I)E−cocart

F

ι∗

��
D(Ie)Fe

◻∗ //

⇙∼

D(Ie)cocart
Fe

where ι ∶ Ie → I is the inclusion of the fiber.

Proof. We restrict to the right-variant, the other being dual. We will show that the
functor ι! maps coCartesian objects to E-coCartesian ones. Then the left adjoint of the
given diagram is the diagram

D(I)F D(I)E−cocart
F

oo

D(Ie)Fe

ι!

OO

D(Ie)cocart
Fe

ι!

OO

oo

which is commutative. Consequently also the diagram of the statement is 2-commutative
via the natural exchange morphism.

Let f in E be an object and let ν ∶ i1 → i2 be a morphism in I mapping to idf . Let αk
be the inclusions of ⋅ into I with image ik. The morphism ν yields a natural transformation

ν ∶ α1 ⇒ α2.



FIBERED MULTIDERIVATORS AND (CO)HOMOLOGICAL DESCENT 1315

Consider the diagram

e ×/E f
ck //

p′

��

Ie ×/I ik
Ak //

π
oo

pk

��

⇙µk

Ie

ι

��
⋅ ⋅ αk // I

where ck is given on a morphism β ∶ e→ f in E by the choice of a Cartesian arrow i′k → ik.
It is right adjoint to π by the definition of Cartesian arrow.

There is a functor (composition with ν):

ν̃ ∶ Ie ×/I i1 → Ie ×/I i2

such that A2ν̃ = A1 and p2ν̃ = p1. We have therefore a natural (point-wise) coCartesian
morphism Sop(µ1)●ν̃∗ → ν̃∗Sop(µ2)● of functors D(Ie ×/I i2)A∗2Fe → D(Ie ×/I i1).

We have also a natural transformation ρ ∶ ν̃c1 → c2 defined for a morphism β ∶ e → f
in E as the unique arrow ρ(β) over ide making the following diagram commutative:

i′1
c1(β) //

ρ(β)
��

i1

ν

��
i′2

c2(β) // i2

The resulting morphism D(ρ) ∶ c∗1 ν̃∗ → c∗2 is point-wise coCartesian on coCartesian objects.
We get a commutative diagram of natural transformations

Sop(µ1)●A∗
1

//

∼
��

Sop(µ1)●A∗
1ι
∗ι!

D(µ1)′ //

∼
��

p∗1α
∗
1ι!

∼
��

Sop(µ1)●ν̃∗A∗
2

��

// Sop(µ1)●ν̃∗A∗
2ι
∗ι!

��

ν̃∗p∗2α
∗
1ι!

ν̃∗p∗2(D(ν))
��

ν̃∗Sop(µ2)●A∗
2

// ν̃∗Sop(µ2)●A∗
2ι
∗ι!

ν̃∗(D(µ2)′) // ν̃∗p∗2α
∗
2ι!

where the first two top vertical morphisms are the natural isomorphisms induced by
A2ν̃ = A1, the third top vertical morphism is the natural isomorphism induced by p2ν̃ = p1,
and the first two lower vertical morphisms are point-wise coCartesian. Here we use the
notation D(µ1)′ for the morphism Sop(µ1)●X → Y induced by a morphism D(µ1) ∶X → Y .

Now we apply p1! to the outer square:

p1!Sop(µ1)●A∗
1

//

��

p1!p∗1α
∗
1ι!

��
p1!ν̃∗Sop(µ2)●A∗

2
// p1!ν̃∗p∗2α

∗
2ι!
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The left vertical map is still coCartesian (homotopy colimits preserve coCartesian mor-
phisms).

There is a canonical isomorphism p′!c
∗
i → pi! [Gro13, Prop. 1.23] and the natural

transformation D(ρ) ∶ c∗1 ν̃∗ → c∗2 is an isomorphism on coCartesian objects over constant
diagrams. Consider the commutative diagram:

p′!c
∗
1 ν̃

∗ ∼ // p2!ν̃!c1!c∗1 ν̃
∗ // p2!

p′!c
∗
1 ν̃

∗ ∼ // p2!c2!c∗1 ν̃
∗

D(ρ)ad
OO

D(ρ)
��

p2!c2!c∗2
∼ // p2!

where the rightmost horizontal morphisms are the respective counits. Since D(ρ) is an
isomorphism on coCartesian objects over constant diagrams, so is the morphism p′!c

∗
1 ν̃

∗ →
p2!. Now we have the commutative diagram

p′!c
∗
1 ν̃

∗ //

∼
��

p2!

p1!ν̃∗
∼ // p2!ν̃!ν̃∗

OO

which shows that also the natural map p1!ν̃∗ → p2! is an isomorphism on coCartesian
objects over constant diagrams.

We get a commutative diagram

p1!Sop(µ1)●A∗
1

//

��

p1!p∗1α
∗
1ι!

��

// α∗1ι!

D(ν)

��

p1!ν̃∗Sop(µ2)●A∗
2

��

// p1!ν̃∗p∗2α
∗
2ι!

��
p2!Sop(µ2)●A∗

2
// p2!p∗2α

∗
2ι!

// α∗2ι!

where the composition of the left vertical morphisms is coCartesian on coCartesian objects
because the functor Sop(µ2)●A∗

2 maps coCartesian objects to coCartesian objects over
constant diagrams. The composition of the horizontal morphisms in the top and bottom
rows are isomorphisms by (FDer4 left). Hence the rightmost vertical map is coCartesian
as well.

Proof of Main Theorem 3.5.5, 1. This is the case of weak D-equivalences.
(L0) and (L1) are clear.
For (L2 left), let D1 = (I,F ) and D2 = ({e}, F (e)). The projection p and the inclusion

i of the final object induce morphisms:

D1

p // D2
i

oo
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We have p ○ i = id and there is a 2-morphism β ∶ id ⇒ i ○ p. Therefore the statement is
clear for weak D-equivalences over any base S.

(L3 left): Let

D1
w //

p1

##

p′1 %%

D2

p′2yy

p2

{{

D3 = (E,F )
p

��
(⋅, S)

be a morphism as in (L3 left) over a base S ∈ S(⋅). We have to show that

p1! p
∗
1 → p2! p

∗
2

is an isomorphism and it suffices to show that the morphism

p′1! (p1)∗ → p′2! (p2)∗

is an isomorphism. This may be checked point-wise by (Der2) and after pull-back to an
open cover by condition 2. of ‘local’ for a fibered derivator (see Definition 2.5.4), so fix
e ∈ E and consider the 2-commutative diagrams

Di ×/D3
(e,Uj)

p′i,e,j
��

ιi,e,j // Di

p′i
��

(e,Uj)
εe,j // D3

and let pi,e ∶Di ×/D3
(e,Ui)→Di be the projection. Applying the functor ε∗e,j, we get

ε∗e,jp
′
1!(p1)∗ → ε∗e,jp

′
2!(p2)∗

which is, using Proposition 2.6.8 (note that ιe,j is D-local by assumption), the same as

(p′1,e,j)!(ιi,e,j)∗(p1)∗ → (p′2,e,j)!(ιi,e,j)∗(p2)∗.

Now pi ○ ιi,e,j = πj ○ p′i,e,j, where π ∶ (⋅, Uj) → (⋅, S) is the structural morphism. Therefore
we get:

(p′1,e,j)!(p′1,e,j)∗π∗j → (p′2,e,j)!(p′2,e,j)∗π∗j .
By Lemma 2.6.9 this is induced by the canonical natural transformation which is an
isomorphism by assumption.

(L4 left): By Lemma 3.2.12 we may prove axiom (L4’ left) instead. Consider a mor-
phism p ∶D1 → (E,F ) =D2 in Dia(S) of pure diagram type, where the underlying functor
of p is a fibration. It suffices to show that the counit

p! p
∗ → id
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is an isomorphism. This is the same as showing that the unit

id→ p∗ p
∗

is an isomorphism. Note that p∗ exists because this is a morphism of diagram type and
D→ S is assumed to be a right fibered derivator as well (this is the only place, where this
assumption is used for the case of weak D-equivalences). Now, since p is a fibration, p∗
can be computed fiber-wise. So we have to show that

id→ pe,∗ p
∗
e

is an isomorphism or, equivalently, that

pe,! p
∗
e → id

is an isomorphism. This holds true because by assumption the map of fibers Ie → e is in
WF (e).

We proceed to state some consequences of the fact that weak D-equivalences form a
fundamental localizer.

3.5.13. Example. [Mayer-Vietoris] Let S be a strong right derivator (e.g. represented
by a category with limits) with a Grothendieck pre-topology. We saw in Example 3.2.9
that for a cover {U1 → S,U2 → S} consisting of 2 mono morphisms, the projection

p ∶
⎛
⎜⎜⎜
⎝

“U1 ×S U2” //

��

U1

U2

⎞
⎟⎟⎟
⎠
→ S

belongs to any fundamental localizer. Let D! → S be a fibered derivator (for example
coming from a six-functor-formalism, as in the introduction) which is local w.r.t. the pre-
topology on S. Theorem 3.5.5 implies that p is a weak D-equivalence in Dia(S)/S, i.e. for
E ∈ D(⋅)S we have

p! p
∗E ≅ E ,

i.e. the homotopy colimit of

i1,2,! i!1,2E //

��

i1,! i!1E

i2,! i!2E

is isomorphic to E , where we now wrote i1,! for i1,●, etc. If D has stable fibers, this
translates to the usual distinguished triangle

i1,2,! i
!
1,2E → i1,! i

!
1E ⊕ i2,! i!2E → E → i1,2,! i

!
1,2E[1]
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in the language of triangulated categories.
Dually, if D∗ → Sop is a fibered derivator (for example coming from a six-functor-

formalism, as in the introduction) which is colocal w.r.t. the pre-topology on S, Theo-
rem 3.5.4 implies that pop is a weak D∗-equivalence in Diaop(Sop)/S, i.e. for E ∈ D(⋅)S we
have

E ≅ p∗p∗E .
This means that the homotopy limit of

i1,∗ i∗1E

��
i2,∗ i∗2E // i1,2,∗ i∗1,2E

is isomorphic to E , where we now wrote i1,∗ for (iop
1 )●, etc. If D∗ → Sop has stable fibers,

this translates to the usual distinguished triangle

E → i1,∗ i
∗
1E ⊕ i2,∗ i∗2E → i1,2,∗ i

∗
1,2E → E[1]

in the language of triangulated categories.

3.5.14. Example. [(Co)homological descent] Let S be a strong right derivator with a
Grothendieck pre-topology and let X● ∈ S(∆op) be a simplicial diagram over S ∈ S(⋅) with
underlying diagram

⋯ // //
//// X2

////// X1
// // X0

such that (id, p) ∶ (∆op,X●) → (∆op, π∗S) is a finite hypercover. Here π ∶ ∆op → ⋅ de-
notes the projection. If D! → S is a fibered derivator (for example coming from a six-
functor-formalism, as in the introduction) which is local w.r.t. the pre-topology on S,
Theorem 3.5.5 implies that (π, p) is a weak D!-equivalence in Dia(S)/S, i.e. for E ∈ D!(⋅)S
we have

E ≅ π! p● p
● π∗E .

This means that the homotopy colimit of p● p● π∗E is equal to E . If the fibers of D! → S are
in fact derived categories, this yields a spectral sequence of homological descent because
the homotopy colimit over a simplicial complex is the total complex of the associated
double complex (a well-known fact). This double complex looks like

⋯ // p2,! p!
2E // p1,! p!

1E // p0,! p!
0E

where we now wrote p0,! for p0,●, etc. The point is that we get a coherent double complex.
Knowing the individual morphisms pi,! p!

iE → pi−1,! p!
i−1E as morphisms in the derived

category D!(⋅)S would not be sufficient!
Dually (applying everything to a fibered derivator D∗ → Sop, and working in Diaop(Sop)),

one obtains the more classical spectral sequence of cohomological descent.
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Proof of Main Theorem 3.5.5, 2. This is the case of strong D-equivalences.
(L1) is clear.
For (L2 left), let D1 = (I,F ) and D2 = (e,F (e)). The projection p and the inclusion i

of the final object induce morphisms:

D1

p // D2
i

oo

We have p○ i = id and there is a 2-morphism β ∶ id⇒ i○p. Therefore the statement follows
from Lemma 3.5.7. (Actually (i ○ p)∗ is left adjoint to the inclusion D(D1)cart → D(D1).)

(L3 left): It suffices to prove the following two statements:

1. Consider a morphism of diagrams w = (α, f) ∶ D1 = (I1, F1) → D2 = (I2, F2) such
that we have a commutative diagram

I1
α //

p1 ��

I2

p2��
E

and such that w ×/E e is a strong D-equivalence for all objects e in E. Then w is a
strong D-equivalence.

2. Consider a morphism of diagrams w ∶ D1 = (I1, F1) → D2 = (I2, F2) over (⋅, S) and
let {Ui → S} be a covering. If w ×(⋅,S) (⋅, Ui) is a strong D-equivalence for all i then
w is a strong D-equivalence.

We proceed by showing statement 1. Consider the following diagram over E

D1

��

w // D2

��
D1 ×/E E

w′ // D2 ×/E E

where the vertical morphisms are of pure diagram type. We have an adjunction

Ii
κi // Ii ×/E Eιi

oo

where κi maps an object i to (i, idp(i)). We have a natural transformation κi○ιi⇒ idIi×/EE
and moreover ιi ○ κi = idE holds. Actually this defines an adjunction with κi left-adjoint
to ιi. Furthermore, we get lifts to diagrams

Di

κ̃i // (Ii ×/E E, ιi ○ F ) =D1 ×/E E,
ι̃i

oo

and a 2-morphism κ̃i ○ ι̃i⇒ idD1×/EE, and we have ι̃i ○ κ̃i = idD1 .
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Hence, by Lemma 3.5.7, the pull-backs along ι̃1 and ι̃2 induce equivalences on Cartesian
objects, so we are reduced to showing that the pull-back along w′ induces an equivalence
on Cartesian objects. The underlying diagrams Ik ×/E E are opfibratons over E and the
functor underlying w′ is a map of opfibrations (the push-forward along a map µ ∶ e → f
in E being given by mapping (i, ν ∶ p(i)→ e) to (i, ν ○µ)). Hence w.l.o.g. we may assume
that Ii → E are opfibrations and the morphism I1 → I2 underlying f is a morphism of
opfibrations.

We keep the notation w ∶ D1 → D2, however, and the assumption translates to the
statement that the pull-back

D(D2,e)cart
w∗e // D(D1,e)cart

for the fibers is an equivalence with inverse ◻!we,!.
Consider the two functors:

D(D2)E−cart incl. // D(D2) w∗ // D(D1).

We first show that the counit
◻E! w!w

∗E → E
is an isomorphism for every E-Cartesian E .

This can be checked after pulling back to the fibers. Let ιk ∶ Ik,e → Ik be the inclusion
of the fiber over some e ∈ E.

We have the isomorphisms

ι∗2 ◻E! w!w
∗E ≅ ◻!we,!ι

∗
1w

∗E ≅ ◻!we,!w
e,∗ι∗2E ≅ ι∗2E ,

where we used the isomorphism ι∗2◻E! ≅ ◻!ι∗2 (Lemma 3.5.11) and the isomorphism ι∗2w! ≅
we,!ι∗1 (exists for morphisms of pure diagram type because we have a morphism of opfi-
brations, see Proposition 2.3.23, 3. and for morphisms of fixed shape by axiom (FDer0
left)). The morphism ◻!we,!we,∗E → E is an isomorphism for Cartesian E by assumption.

We now show that the unit
E → w∗ ◻E! w!E

is an isomorphism for every E-Cartesian E . This can be checked again on the fibers:

ι∗1w
∗ ◻E! w!E ≅ w∗

e ι
∗
2 ◻E! w!E ≅ w∗

e ◻! we,!ι
∗
1E ≅ ι∗1E .

Therefore we have already proven that the functors

D(D2)E−cart
w∗ // D(D1)E−cart

◻E! w!

oo

form an equivalence.
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We conclude by showing that ◻E! w! maps Cartesian objects to Cartesian objects: Let
ν ∶ e→ f be a morphisms of E. It induces a morphism (choice of push-forward for Ik → E)

ν̃k ∶Dk,e →Dk,f

(not of diagram type!) and a 2-morphism: ιk,e → ιk,f ○ ν̃k.

Claim: It suffices to show that for all ν ∶ e→ f the induced morphism

ι∗2,e ◻E! w!E → ν̃∗2 ι
∗
2,f ◻E! w!E

is an isomorphism for every Cartesian E .

Proof of the claim: Every morphism µ ∶ i→ i′′ in I with p(µ) = ν, say, is the composition
of a coCartesian µ′ and some morphism µ′′ with p(µ′′) = idf . Since E is E-Cartesian, the
morphism E(µ′′) is Cartesian. Hence to show that E(µ) is Cartesian it suffices to see that
E(µ′) is Cartesian. A reformulation is, however, that the morphism of the claim be an
isomorphism.

Using the same argument as in the first part of the proof, we have to show that

◻!we,!ι
∗
1,eE → ν̃∗2 ◻! wf,!ι

∗
1,fE

is an isomorphism for every Cartesian E . Since both sides are Cartesian objects, this can
be checked after applying w∗

e which is an equivalence on Cartesian objects:

w∗
e ◻! we,!ι

∗
1,eE → w∗

e ν̃
∗
2 ◻! wf,!ι

∗
1,fE .

We have w∗
e ν̃

∗
2 = ν̃∗1w

∗
f because the map of diagrams underlying w is a morphism of

opfibrations. Hence, after applying w∗
e , we get

we∗ ◻! we,!ι
∗
1,eE → ν̃∗1wf∗ ◻! wf,!ι

∗
1,fE .

Since we∗ ◻! we,! and wf∗ ◻! wf,! are equivalences on Cartesian objects, we get

ι∗1,eE → ν̃∗1 ι
∗
1,fE .

A slightly tedious check shows that this is again the morphism induced by the 2-morphism
ι1,e → ι1,f ○ ν̃1. It is an isomorphism because E is Cartesian.

We will now show statement 2. Consider a diagram

D1
w //

p1 ""

D2

p2||
(⋅, S)
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For any i (index of the cover in statement 2.) we have the following commutative
diagram of objects in Dia(S):

D1 ×S Ui
wi //

pr
(i)
1
��

D2 ×S Ui
pr
(i)
1

��
D1

w // D2

The morphisms pr
(i)
1 are of fixed shape. We first show that the unit is an isomorphism

E → w∗ ◻! w! E

for any Cartesian E . Note that by the stability axiom of a Grothendieck pre-topology
also the collections (D1×S Ui)j →D1,j are covers for any j ∈ I1, where I1 is the underlying
diagram of D1. Since D is local w.r.t. the Grothendieck pre-topology (and by axiom Der2),

the family (pr
(i)
1 )∗ is jointly conservative. Therefore it suffices to show that the unit is an

isomorphism after applying (pr
(i)
1 )∗. We get

(pr
(i)
1 )∗E → (pr

(i)
1 )∗w∗ ◻! w! E

which is the same as
(pr

(i)
1 )∗E → w∗

i (pr
(i)
1 )∗ ◻! w! E .

Since (pr
(i)
1 )∗ commutes with ◻! (Lemma 3.5.9) and with w! (Proposition 2.6.8, 2.), we

get
(pr

(i)
1 )∗E → w∗

i ◻! wi,! (pr
(i)
1 )∗E .

This morphism is an isomorphism by assumption. In the same way one shows that the
counit is an isomorphism.

(L4 left): By Lemma 3.2.12 we may prove axiom (L4’ left) instead. We have shown
during the proof for (L4’ left) for the case of weak D-equivalences that

p! p
∗ → id

is an isomorphism, hence on Cartesian objects the same holds for the natural transfor-
mation

◻! p! p
∗ → id.

We have to show that also the counit

id→ p∗ ◻! p! (15)

is an isomorphism on Cartesian objects. First note that p∗ also is a right adjoint of
p∗ when restricted to the full subcategories of Cartesian objects because p∗ preserves
Cartesian objects. Indeed, p∗ can be computed fiber-wise because p is a fibration. The
fibers being contractible in the sense of any localizer on Dia implies that the functors



1324 FRITZ HÖRMANN

p∗e , pe,∗ induce an equivalence D(De)cart ≅ D(⋅)F (e). Note: This uses that (L1–L3 left) hold
for the class of strong D-equivalences on the fiber DF (e), a fact which has been proven
already. Therefore we pass to the right adjoints of the functors in (15) and have to show
that the counit

p∗ p∗ → id

is an isomorphism on Cartesian objects. Again this can be checked fiber-wise, i.e. we have
to show that the counit

p∗e pe,∗ → id

is an isomorphism on Cartesian objects. But the pair of functors is an equivalence as we
have seen, and the claim follows.

We proceed to state some consequences of the fact that strong D-equivalences form a
fundamental localizer.

3.5.15. Corollary. [left] Let S be a strong right derivator. If D→ S is an infinite fibered
derivator which is local w.r.t. the pre-topology on S (cf. 2.5.2) with stable, well-generated
fibers then for any finite hypercover f ∶ X● → Y● considered as 1-morphism in Dia(S) the
functor f∗ induces an equivalence

D(Y●)cart → D(X●)cart.

3.5.16. Corollary. [right] Let S be a strong right derivator. If D → Sop is an infinite
fibered derivator which is colocal w.r.t. the pre-topology on S (cf. 2.5.2) with stable, com-
pactly generated fibers then for any finite hypercover f ∶X● → Y● considered as 1-morphism
in Diaop(Sop) the functor f∗ induces an equivalence

D(Y●)cocart → D(X●)cocart.

3.5.17. Corollary. If D is an infinite derivator (not fibered) with domain Cat which is
stable and well-generated, then for each homotopy type I, we get a category D(I)cart well-
defined up to equivalence of categories. Moreover each morphism I → J of homotopy types
gives rise to a corresponding functor α∗ ∶ D(J)cart → D(I)cart. It is, however, not possible
to arrange those as a pseudo-functor HOT → CAT , but it is possible to arrange them as a
pseudo-functor HOT (2) → CAT where HOT (2) is the homotopy 2-category (2-truncation)
of any model for the homotopy theory of spaces (cf. also A.2).

4. Representability

In this section we exploit the consequences that Brown representability type results have
for fibered derivators. In particular these results are useful to see that under certain
circumstances a left fibered (multi)derivator is already a right fibered (multi)derivator,
provided that its fibers are nice (i.e. stable and well-generated derivators). Furthermore
they provide us with (co)Cartesian projectors that are needed for the strong form of
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(co)homological descent. In contrast to the rest of the article the results are stated in a
rather unsymmetric form. This is due to the fact that in applications the stable derivators
will rather be well-generated, or compactly generated, whereas their duals will rather not
satisfy this condition. All the auxiliary results are taken from [Kra10] and [Nee01].

4.1. Well-generated triangulated categories and Brown representability
theorems.

4.1.1. Definition. [cf. [Kra10, 5.1, 6.3]] Let D be a category with zero object and small
coproducts. We call D perfectly generated if there is a set of objects T in D such that
the following conditions hold:

1. An object X ∈ D is zero if and only if Hom(T,X) = 0 for all T ∈ T .

2. If {Xo → Yo}o∈O is any set of maps, and Hom(T,Xo) → Hom(T,Yo) is surjective
for all i and T ∈ T , then Hom(T,∐oXo) → Hom(T,∐o Yo) is also surjective for all
T ∈ T .

The category D is called well-generated if there is a set of objects T in D such that in
addition to 1., 2. there is a regular cardinal α such that the following condition holds:

3. All objects T ∈ T are α-small, cf. [Kra10, 6.3].

The category D is called compactly generated if there is a set of objects T in D
such that in addition to 1., 2. the following two equivalent conditions hold:

4. All T ∈ T are ℵ0-small.

4’. All T ∈ T are compact, i.e. for each morphism γ ∶ T →∐o∈OXo there is a finite subset
O′ ⊆ O such that γ factors through ∐o∈O′Xo.

Recall (cf. [Kra10, 4.4]) that a functor from a triangulated category D to an abelian
category is called cohomological if it sends distinguished triangles to exact sequences.

We recall the following theorem:

4.1.2. Theorem. [right Brown representability] Let D be a perfectly generated triangu-
lated category with small coproducts. Then a functor F ∶ Dop → AB is cohomological and
sends coproducts to products if and only if it is representable. An exact functor D → E
between triangulated categories commutes with coproducts if and only if it has a right
adjoint.

Proof. See [Kra10, Theorem 5.1.1].



1326 FRITZ HÖRMANN

It can be shown that for a compactly generated triangulated category D with small
coproducts, Dop is perfectly generated and has small coproducts [Kra10, 5.1.2.(2), 5.3].
Therefore the dual version of the previous theorem holds in this case:

4.1.3. Theorem. [left Brown representability] Let D be a compactly generated triangu-
lated category with small coproducts. Then a functor F ∶ D → AB is homological and sends
products to products if and only if F is representable. An exact functor D → E between
triangulated categories commutes with products if and only if it has a left adjoint.

4.1.4. Theorem. Let D be a well-generated triangulated category with small coproducts.
Consider a functor F ∶ D → AB which is cohomological and commutes with coproducts.
Then there exists a right adjoint to the inclusion of the full subcategory of objects X such
that F (X[n]) = 0 for all n ∈ Z (i.e. this subcategory is coreflective).

Proof. See [Kra10, Theorem 7.1.1].

Recall from 2.1.1 that we say that a diagram category Dia is infinite if it is closed
under infinite coproducts as well.

4.1.5. Definition. A pre-derivator D whose domain Dia is infinite is called infinite if
the restriction-to-Io functors induce an equivalence

D(∐
o∈O

Io) ≅∏
o∈O

D(Io)

for all sets O.

4.1.6. Lemma. Let Dia be an infinite diagram category. Let D → S be an infinite left
fibered derivator with domain Dia. If D(⋅)S for all S ∈ S(⋅) is perfectly generated (resp.
well-generated, resp. compactly generated), then the same holds for D(I)S′ for all I ∈ Dia
and for all S′ ∈ S(I). Furthermore the categories D(I)S′ all have small coproducts.

Proof. A set of generators as requested is given by the set TI ∶= {i!T}i∈I,T ∈T . Indeed,
an object X ∈ D(I) is zero if i∗X is zero for all i ∈ X by (Der2). Therefore X is
zero if Hom(i!T,X) = Hom(T, i∗X) = 0 for all i ∈ I and for every T ∈ T . We have to
show that Hom(i!T,∐oXo) → Hom(i!T,∐o Yo) is an surjective for a family {Xo → Yo}o∈O
of morphisms as in Definition 4.1.1, 2. We have Hom(i!T,∐oXo) = Hom(T, i∗∐oXo) =
Hom(T,∐o i

∗Xo), where we used that i∗ commutes with coproducts. This follows because
the Cartesian diagram

O
id×i //

��

O × I

��
⋅

i
// I

is homotopy exact. Note that, since D is infinite, coproducts exist and are equal to the
corresponding homotopy coproducts. The map Hom(T,∐o i

∗Xo) → Hom(T,∐o i
∗Yo) is

surjective by assumption.
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For the assumption on well-generatedness, we have to show that a morphism

i!T →∐
o∈O

Yo

in D(I)S′ factors through ∐o∈O′ Yo for some subset O′ ⊂ O of cardinality less than α. By
the same reasoning as above, we get a morphism

T →∐
o∈O

i∗Yo

Hence, there is some subset O′ ⊂ O, as required, such that this morphism factors through
it. The same then holds for the original morphism. Since there is no need to enlarge O′,
the same statement holds for finite subsets.

The categories D(I)S′ have small coproducts because D→ S is infinite and left fibered.

4.1.7. Definition. Let D → S be an infinite left fibered derivator with domain Dia. We
will say that D→ S has perfectly-generated (resp. well-generated, resp. compactly-
generated) fibers, if all categories D(⋅)S are perfectly-generated (resp. well-generated,
resp. compactly-generated) for all S ∈ S(⋅). It follows from the previous Lemma that, in
this case, for all I ∈ Dia and for all S′ ∈ S(I) the category D(I)S′ is also perfectly-generated
(resp. well-generated, resp. compactly-generated).

4.2. Left and Right.

4.2.1. Theorem. [left] Let Dia be an infinite diagram category (cf. 2.1.1). Let D and E
be infinite left derivators with domain Dia such that for all I ∈ Dia the pre-derivators DI

and EI are stable (left and right) derivators with domain Posf. Assume that D is perfectly
generated. Then a morphism of derivators F ∶ D→ E commutes with all homotopy colimits
w.r.t. Dia if and only if it has a right adjoint.

Proof. Let I be in Dia. Since DI and EI are stable, D(I) is canonically triangulated,
and we may use Theorem 4.1.2 of right Brown representability. It follows that the functor
F (I) ∶ D(I) → E(I) has a right adjoint G(I), because it is triangulated, commutes
with small coproducts and D(I) is perfectly generated. To construct a morphism of
derivators out of this collection, for any α ∶ I → J , we have to give an isomorphism:
G(J)α∗ → α∗G(I). We may take the adjoint of the isomorphism α!F (J) → F (I)α!

expressing that F commutes with all homotopy colimits (see [Gro13, Lemma 2.1] for
details).

Analogously, using Theorem 4.1.3 of left Brown representability, we obtain:

4.2.2. Theorem. [right] Let Dia be an infinite diagram category (cf. 2.1.1). Let D and
E be infinite right derivators with domain Dia such that for all I ∈ Dia, the pre-derivators
DI and EI are stable (left and right) derivators with domain Posf. Assume that D(⋅)
is compactly generated. Then a morphism of derivators F ∶ D → E commutes with all
homotopy limits w.r.t. Dia if and only if it has a left adjoint.
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4.2.3. Theorem. [left] Let Dia be an infinite diagram category (cf. 2.1.1). Let D→ S be
an infinite left fibered (multi)derivator with domain Dia whose fibers DS for every I ∈ Dia
and all S ∈ S(I) are stable (left and right) derivators with domain Posf. Assume that D
has perfectly generated fibers. Then D is a right fibered (multi)derivator as well.

Proof. Let I ∈ Dia and let f ∈ HomS(I)(S1, . . . , Sn;T ) be a multimorphism. By Lemma

2.3.13, fixing E1, î. . .,En, the association

D(I × J)p∗Si → D(I)p∗T
Ei ↦ (p∗f)●(p∗E1, . . . , Ei, . . . , p∗En)

defines a morphism of derivators
DSi → DT

which is left continuous. Hence by Theorem 4.2.1 it has a right adjoint. This shows the
first part of (FDer0 right), i.e. the functor D(I)→ S(I) is an opfibration as well, for every
I ∈ Dia. Then axiom (FDer5 left) implies the remaining assertion of (FDer0 right) while
(FDer0 left) implies (FDer5 right), see Lemma 2.3.9.

Similarly a morphism α ∶ I → J in Dia induces a morphism of derivators

α∗ ∶ DS → Dα∗S.

It commutes with homotopy colimits by Proposition 2.3.23, 2. Therefore α∗ has a right
adjoint α∗ by the previous theorem, i.e. (FDer3 right) holds. (FDer4 right) is then a
consequence of Lemma 2.3.23, 1.

Analogously, using Theorem 4.1.3 of left Brown representability, we obtain:

4.2.4. Theorem. [right] Let Dia be an infinite diagram category (cf. 2.1.1). Let D → S
be an infinite right fibered (multi)derivator with domain Dia, satisfying (FDer0 left) for
0-ary morphisms, whose fibers DS for every I ∈ Dia and for all S ∈ S(I) are stable (left
and right) derivators with domain Posf. Assume that D has compactly generated fibers
with small coproducts. Then D is a left fibered (multi)derivator as well.

4.3. (Co)Cartesian projectors. In this section the (co)Cartesian projectors that are
needed for the strong form of (co)homological descent will be constructed. The following
Proposition subsumes some of the results of [Kra10].

4.3.1. Proposition. Let

D
F )) E
G

jj

be an adjunction between well-generated triangulated categories with small coproducts in
which F and G are exact functors, and with F right adjoint (resp. left adjoint). Then
there is exists a left adjoint (resp. right adjoint) to the inclusion

ker(F )↪ D.
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4.3.2. Remark. Instead of assuming the existence of a left (resp. right) adjoint to F ,
for the existence of the right adjoint to the inclusion ker(F ) ↪ D it suffices also that
F commutes with coproducts (then G automatically exists by Brown representability).
Similarly, if D is, in addition, compactly generated, it suffices for the existence of the left
adjoint to the inclusion ker(F ) ↪ D that F commutes with products (then G automati-
cally exists by Brown representability for the dual).

Proof. Let F be the right adjoint and let E0 be the generating set of E (w.l.o.g. stable
under the shift functors). We have

X ∈ ker(F )
⇔ Hom(Y,F (X)) = 0 ∀Y ∈ E0

⇔ Hom(G(Y ),X) = 0 ∀Y ∈ E0

⇔ X ∈ G(E0)⊥

⇔ X ∈ ⟨G(E0)⟩⊥

where ⟨G(E0)⟩ is the smallest localizing subcategory [Kra10, 5.1.] containing G(E0). This
category is well-generated by [Kra10, Theorem 7.2.1.]. By [Kra10, Proposition 5.2.1.]
there exists therefore a right adjoint to the inclusion ⟨G(E0)⟩↪ D. By [Kra10, Proposition
4.9.1.] this is equivalent to the existence of a left adjoint to the inclusion ker(F ) =
⟨G(E0)⟩⊥ ↪ D.

If F is the left adjoint then it commutes with coproducts and therefore by [Kra10, The-
orem 7.4.1] the triangulated subcategory ker(F ) is well-generated and hence by [Kra10,
Proposition 5.2.1.] the inclusion ker(F )↪ D has a right adjoint.

4.3.3. Theorem. [left] Let D→ S be an infinite left fibered derivator w.r.t. Dia satisfying
also (FDer0 right) whose fibers are stable derivators w.r.t. Posf. Assume that D → S has
well-generated fibers. Then for all I ∈ Dia, for all F ∈ S(I), and for all functors I → E in
Dia the fully-faithful inclusion

D(I)E−cocart
F ↪ D(I)F (16)

has a right adjoint ◻E∗ .
If F is such that F (µ) satisfies (Dloc2 left) for every µ mapping to an identity in E,

then the fully-faithful inclusion

D(I)E−cart
F → D(I)F

has a right adjoint ∎E∗ .

Proof. Consider the set O of morphisms µ ∶ i → j which map to an identity in E, and
for each morphism µ ∈ O the composition Dµ:

D(I)F
µ∗ // D(→)µ∗F

F (µ)● // D(→)j∗F Cone // D(⋅)j∗F
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We define a functor D as the following composition

D(I)F
pr∗1 // D(I ×O)pr∗1F

∏µ∈ODµ // D(O)ι∗F

where ι ∶ O → I is the functor “target”.
The functor D commutes with coproducts as all functors that it is composed of do,

and it is exact. Therefore by Proposition 4.3.1 and the Remark the inclusion (16) has a
right adjoint. In the Cartesian case define Dµ as

D(I)F
µ∗ // D(→)µ∗F

F (µ)● // D(→)i∗F Cone // D(⋅)i∗F

Here F (µ)● commutes with coproducts if F (µ) satisfies (Dloc2 left) and the same con-
clusion holds.

Note that in the following right version of the Theorem, we need to assume that D→ S
is a left and right fibered derivator. (This holds automatically by Theorem 4.2.4 for a
right fibered derivator whose fibers are derivators with domain Posf, compactly generated,
and stable).

4.3.4. Theorem. [right] Let D→ S be an infinite fibered derivator w.r.t. Dia with stable
fibers. Assume that D→ S has well-generated fibers. Then for all I ∈ Dia, for all F ∈ S(I),
and for all functors I → E in Dia the fully-faithful inclusion

D(I)E−cart
F ↪ D(I)F (17)

has a left adjoint ◻E! .
If D(⋅)S is compactly generated for every S ∈ S(⋅), and if F is such that F (µ) satisfies

(Dloc2 left) for every µ mapping to an identity in E, then the fully-faithful inclusion

D(I)E−cocart
F → D(I)F

has a left adjoint ∎E! .

Proof. Consider the set O of morphisms µ ∶ i → j which map to an identity in E, and
for each morphism µ ∈ O the composition Dµ:

D(I)F
µ∗ // D(→)µ∗F

F (µ)● // D(→)i∗F Cone // D(⋅)i∗F

We define a functor D as the following composition

D(I)F
pr∗1 // D(I ×O)pr∗1F

∏µ∈ODµ // D(O)ι∗F

where ι ∶ O → I is the functor “source”.
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By assumption D has a left adjoint as all functors that it is composed of do, and it
is exact. Therefore, by Proposition 4.3.1, the inclusion (17) has a left adjoint. In the
coCartesian case define Dµ as

D(I)F
µ∗ // D(→)µ∗F

F (µ)● // D(→)j∗F Cone // D(⋅)j∗F

Here F (µ)● commutes with products if F (µ) satisfies (Dloc2 right) and therefore (by
Brown representability for the dual) has a left adjoint as well, and the same conclusion
holds.

5. Constructions

5.1. The fibered multiderivator associated with a fibered multicategory.

5.1.1. The most basic situation in which a (non-trivial) fibered multiderivator can be
constructed arises from a bifibration of (locally small) multicategories

p ∶ D → S

equipped with a class of weak equivalences WS ⊂ Mor(DS) for each object S of S. In the
examples we have in mind, the objects of S are spaces (or schemes), the objects of D are
chain complexes of sheaves (coherent, etale Abelian, etc.) on them, and the morphisms
in WS are the quasi-isomorphisms. In these examples the multicategory-structure arises
from the tensor product and it is even, in most cases, the more natural structure because
no particular tensor-product is chosen a priori.

5.1.2. Definition. In the situation above, let S be the pre-multiderivator associated with
the multicategory S. We define a pre-multiderivator D as follows (cf. A.3.1 for localiza-
tions of multicategories):

D(I) = Hom(I,D)[W−1
I ]

where WI is the class of natural transformations which are element-wise in the union

⋃SWS. The functor p obviously induces a morphism of pre-multiderivators

p̃ ∶ D→ S

Observe that morphisms in WI , by definition, necessarily map to identities in Hom(I,S).

In this section we prove that the above morphism of pre-(multi)derivators is a left
(resp. right) fibered (multi)derivator on inverse (resp. directed) diagrams, provided that
the fibers are model categories whose structure is compatible with the structure of bifi-
bration. We use the definition of a model category from [Hov99]. We denote the cofibrant
replacement functor by Q and the fibrant replacement functor by R.
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5.1.3. Definition. A bifibration of (multi-)model-categories is a bifibration of
(multi)categories p ∶ D → S together with the collection of a closed model structure on
the fiber

(DS,CofS,FibS,WS)
for any object S in S such that the following two properties hold:

1. For any n ≥ 1 and for every multimorphism

S1

⋮ f // T

Sn

the push-forward f● and the various pull-backs f ●,j define a Quillen adjunction in
n-variables

∏i(DSi ,CofSi ,FibSi ,WSi)
f● // (DT ,CofT ,FibT ,WT )

(DT ,CofT ,FibT ,WT ) ×∏i/=j(DSi ,CofSi ,FibSi ,WSi)
f●,j // (DSj ,CofSj ,FibSj ,WSj)

2. For any 0-ary morphism f in S, let f●() be the corresponding unit object (i.e. the ob-
ject representing the 0-ary morphism functor Homf(;−)) and consider the cofibrant
replacement Qf●()→ f●(). Then the natural morphism

F●(E1, . . . ,Ei−1,Qf●(),Ei, . . . ,En)→ F●(E1, . . . ,Ei−1, f●(),Ei, . . . ,En) ≅ (F○if)●(E1, . . . ,En)
is a weak equivalence if all Ei are cofibrant. Here F is any morphism which is
composable with f .

5.1.4. Remark. If S = {⋅} is the final multicategory, the above notion coincides with the
notion of monoidal model-category in the sense of [Hov99, Definition 4.2.6]. In this case
it is enough to claim property 1. for n = 1,2.

5.1.5. Theorem. Under the conditions of Definition 5.1.3 the morphism of pre-derivators

p̃ ∶ D→ S

(defined in 5.1.2) is a left fibered multiderivator (satisfying also FDer0 right) with domain
Dir and a right fibered multiderivator (satisfying also FDer0 left) with domain Inv. Fur-
thermore, for all S ∈ S(⋅) its fiber DS (cf. 2.3.11) is just the pre-derivator associated with
the pair (DS,WS).

There are techniques by Cisinski [Cis03] which allow to extend a derivator to more
general diagram categories. We will explain in a forthcoming article [Hör17c] how these
can be applied to fibered (multi)derivators.

The proof of the theorem will occupy the rest of this section. First we have:
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5.1.6. Proposition. Let D → S be a bifibration of multicategories with complete fibers.
For any diagram category I, the functors

pI ∶ Hom(I,D)→ Hom(I,S) = S(I)

are bifibrations of multicategories.
Morphisms in Hom(I,D) are Cartesian, if and only if they are point-wise Cartesian.

The 1-ary morphisms in Hom(I,D) are coCartesian, if and only if they are point-wise
coCartesian.

Proof (Sketch). We choose push-forward functors f● and pull-back functors f i,● for
D → S as usual. Let f ∈ Hom(S1, . . . , Sn;T ) be a morphism in Hom(I,S). We define a
functor

f● ∶ Hom(I,D)S1 ×⋯ ×Hom(I,D)Sn → Hom(I,D)T
by

E1, . . . ,En ↦ {i↦ (fi)●(E1(i), . . . ,En(i))}.
Note that a morphism α ∶ i→ i′ in I induces a well-defined morphism

(fi)●(E1(i), . . . ,En(i))→ (fi′)●(E1(i′), . . . ,En(i′))

lying over T (α). The functor f● comes equipped with a morphism in

Hom(E1, . . . ,En; f●(E1, . . . ,En))

which is checked to be Cartesian in the strong form of Definition A.2.5.
For 1-ary morphisms we can perform the same construction to produce coCartesian

morphisms. For n ≥ 2 the construction is more complicated. Let f ∈ Hom(S1, . . . , Sn;T )
be a morphism with n ≥ 2. To ease notation, we construct a pull-back functor w.r.t. the
first slot. The other constructions are completely symmetric.

For any i1 ∈ I consider the category (a variant of the twisted arrow category)

Xi1(I) ∶= { (i2, . . . , in, j,{αk}k=1..n) ∣ αk ∶ ik → j}

which is covariant in j and contravariant in i2, . . . , in. For any β ∶ i1 → i′1 we have an
induced functor β̃ ∶ Xi′1

(I) → Xi1(I). Any object α ∈ Xi1(I) defines by pre-composition
with Sk(αk) for all 1 ≤ k ≤ n a morphism fα ∈ Hom(S1(i1), . . . , Sn(in);T (j)).

We define a functor

f 1,● ∶ (Hom(I,D)S2)op ×⋯ × (Hom(I,D)Sn)op ×Hom(I,D)T → Hom(I,D)S1

assigning to E2, . . . ,En;F the following functor Xi1(I)→ DS1(i1):

α ↦ (fα)1,●(E2(i2), . . . ,En(in);F(j))
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and then taking limXi1(I) which exists because the fibers are required to be complete. For
the functoriality note that for β ∶ i1 → i′1 we have a natural morphism

lim
Xi1(I)

⋯→ lim
Xi′

1
(I)
⋯

induced by β̃.
We define a morphism

Ξ ∈ Homf(f 1,●(E2, . . . ,En;F),E2, . . . ,En;F)

and we will show that it is coCartesian w.r.t. the first slot in a weak sense. At some object
i ∈ I, the morphism Ξ is given by composing the projections from

lim
Xi=i1(I)

f 1,●
α (E2(i2), . . . ,En(in);F(j))

to f 1,●
i (E2(i), . . . ,En(i);F(i)) (note that fi = fα for α = {idi}k) and then composing with

the coCartesian morphism (in D) in

Hom(f 1,●
i (E2(i), . . . ,En(i);F(i)),E2(i), . . . ,En(i);F(i)).

One checks that the so defined Ξ is functorial in i. It remains to be shown that the
composition with Ξ induces an isomorphism

HomidS1
(E1; f 1,●(E2, . . . ,En;F))→ Homf(E1, . . . ,En;F). (18)

We will give a map in the other direction which is inverse to composition with Ξ. Let

a ∈ Homf(E1, . . . ,En;F)

be a morphism. To give a morphism on the left hand side of (18), for any i1 and α ∈Xi1(I)
we have to give a morphism (functorial in i1)

E1(i1)→ f 1,●
α (E2(i2); . . . ,En(in);F(j))

or, which is the same, a morphism

Homfα(E1(i1),E2(i2), . . . ,En(in);F(j)).

But we have such a morphism, namely the pre-composition of aj with the n-tuple {Ek(αk)}k.
(Because we know already that Hom(I,D) → Hom(I,S) is an opfibration of multicate-
gories, it suffices to establish that Ξ is coCartesian in this weak form.)
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5.1.7. Remark. The construction in the proof of the above Proposition will become
much clearer, when we define a fibered multiderivator itself as a six-functor-formalism,
similar to the definition mentioned in the introduction. For example, for S = {⋅} we will
get an external and internal monoidal product, resp. right adjoints which a clear relation.
We have in that case

⊠ ∶ Hom(I,D) ×Hom(J,D)→ Hom(I × J,D)

by applying ⊗ point-wise and

HOMl/r ∶ Hom(I,D) ×Hom(J,D)→ Hom(Iop × J,D)

by applying Homl/r point-wise. The formula for the internal hom obtained in the proof
of the proposition boils down to the formula

Homl/r(E ,F)(i1) = ∫
i
HOMl/r(E(i),F(i))Hom(i1,i)

where ∫i is the categorical end. We refer to a subsequent article [Hör16] for an explanation
of this in the language of six-functor-formalisms.

We will need later the following

5.1.8. Lemma. Let f ∈ Hom(S1, . . . , Sn;T ) be a morphism in Hom(I,S) for some n ≥ 2.
Consider the pull-back functor f j,● constructed in the proof of Proposition 5.1.6. Let
p ∶ I × J → I be the projection and fix objects E1, ĵ. . .,En,F in D lying over S1, ĵ. . ., Sn, T .
Then the natural morphism

p∗f j,●(E1, ĵ. . .,En;F)→ (p∗f)j,●(p∗E1, ĵ. . ., p∗En;p∗F)

is an isomorphism, or, in other words, the functor p∗ ∶ Hom(I,D)→ Hom(I × J,S) maps
Cartesian morphisms to Cartesian morphisms.

Proof. Again, we assume j = 1 to ease the notation. The statement concerning the other
pull-backs is completely symmetric. We have by definition

(f 1,●(E2, . . . ,En;F))(i′) = lim
α∈Xi1(I)

f 1,●
α (E2(i1), . . . ,En(in);F(i′))

and
((p∗f)1,●(E2, . . . ,En;F))(i′, j′)

= lim
α∈Xi1,j1(I×J)

(p∗f)1,●
α ((p∗E2)(i1, j1), . . . , (p∗En)(in, jn); (p∗F)(i′, j′))

The natural map in question is induced by the functor p̃ ∶ Xi1,j1(I × J) → Xi1(I) which
forgets all data involving the J direction. Now there is also a functor s̃ ∶ Xi1(I) →
Xi1,j1(I × J) which is constant on the J-component with value {idj1}k=1..n. We have
p̃ ○ s̃ = id and a zig-zag of natural transformations s̃ ○ p̃⇐ ⋯⇒ id involving only data in
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the J-direction. However, all the natural transformations are mapped to identities by the
functor

α ↦ lim
α∈Xi1,j1(I×J)

(p∗f)1,●
α ((p∗E2)(i1, j1), . . . , (p∗En)(in, jn); (p∗F)(i′, j′))

because everything is constant along the J-direction. This shows that the natural mor-
phism in the statement is an isomorphism.

If I is directed (resp. inverse) we want to show that also pI is a bifibration of multi-
model-categories in the sense of Definition 5.1.3.

Afterwards we will apply the following variant and generalization to multicategories
of the results in [SGA73, Exposé XVII, §2.4].

5.1.9. Proposition. Let p ∶ D → S be a bifibration of (multi-)model-categories in the
sense of 5.1.3. Let W be the union of the WS over all objects S ∈ S. Then the fibers
of p̃ ∶ D[W−1] → S (as ordinary categories) are the homotopy categories DS[W−1

S ] and
p̃ is again a bifibration of multicategories such that the push-forward F● along any F ∈
HomS(S1, . . . , Sn;T ) (for n ≥ 1) is the left derived functor of the corresponding push-
forward w.r.t. p. Similarly the pull-back w.r.t. some slot ist the right derived functor of
the corresponding pull-back w.r.t. p.

5.1.10. The above proposition and its proof have several well-known consequences which
we mention, despite being all elementary, because the proof below gives a uniform treat-
ment of all the cases.

1. The homotopy category of a model category is locally small and can be described
as the category of cofibrant/fibrant objects modulo homotopy of morphisms. Apply
the proof of the proposition to the (trivial) bifibration of ordinary categories D → {⋅}.

2. Quillen adjunctions lead to an adjunction of the derived functors on the homotopy
categories. Apply the proposition to a bifibration of ordinary categories D →∆1.

3. The homotopy category of a closed monoidal model category is a closed monoidal
category. Apply the proposition to a bifibration of multicategories D → {⋅}.

4. Quillen adjunctions in n variables lead to an adjunction in n variables on the homo-
topy categories. Apply the proposition to a bifibration of multicategories D → ∆1,n,
where the multicategory ∆1,n consists of n+ 1 objects and one n-ary morphism con-
necting them.

Before proving Proposition 5.1.9, we define homotopy relations on HomF (E1, . . . ,En;F)
where F ∈ Hom(X1, . . . ,Xn;Y ) is a multimorphism in S.
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5.1.11. Definition.

1. Two morphisms f and g in HomF (E1, . . . ,En;F) are called right homotopic if
there is a path object of F

F // F ′
pr1 //
pr2

// F

and a morphism Hom(E1, . . . ,En;F ′) over the same multimorphism F such that the
compositions with pr1 and pr2 are f and g, respectively.

2. For n ≥ 1, two morphisms f and g in HomF (E1, . . . ,En;F) are called i-left homo-
topic if there is a cylinder object E ′i of Ei

Ei
ι1 //
ι2
// E ′i // Ei

and a morphism Hom(E1, . . . ,E ′i , . . . ,En;F) over F such that the compositions with
ι1 and ι2 are f and g, respectively.

5.1.12. Lemma.

1. The condition ‘right homotopic’ is preserved under pre-composition, while the con-
dition ‘i-left homotopic’ is preserved under post-composition.

2. Let n ≥ 1. If f, g ∈ Hom(E1, . . . ,En;F) are i-left homotopic and all Ei are cofibrant
then f and g are right homotopic. If f, g ∈ Hom(E1, . . . ,En;F) are right homotopic,
F is fibrant, and all Ej for j /= i are cofibrant then f and g are i-left homotopic.

3. Let n ≥ 1. In Hom(E1, . . . ,En;F) right homotopy is an equivalence relation if all Ei
are cofibrant. In Hom(E1, . . . ,En;F) i-left homotopy is an equivalence relation if F
is fibrant, and all Ej, j /= i are cofibrant

In particular on the categoryDCof,Fib of fibrant/cofibrant objects, i-left homotopy=right
homotopy is an equivalence relation, which is compatible with composition.

Proof. 1. is obvious.
2. If all Ei are cofibrant then also F●(E1, . . . ,En) is cofibrant and f and g correspond

uniquely to morphisms f ′, g′ ∶ F●(E1, . . . ,En) → F . Since f and g are i-left homotopic,
there is a cylinder object

Ei // // E ′i // Ei
realizing the i-left homotopy. Since Ei is cofibrant so is E ′i . Hence also

F●(E1, . . . ,En) // // F●(E1, . . . ,E ′i , . . . ,En) // F●(E1, . . . ,En)

is a cylinder object because all Ej are cofibrant, and hence also f ′ and g′ are left homotopic.
These are therefore also right homotopic and hence so are f and g. Dually we obtain the
second statement.

3. follows from [Hov99, Proposition 1.2.5, (iii)].



1338 FRITZ HÖRMANN

5.1.13. Lemma. Two i-left homotopic morphisms become equal in DCof[(WCof)−1].
Proof. This follows from the fact that a cylinder object

Ei
ι1 //
ι2
// E ′i

p // Ei

automatically lies in DCof if Ei does, and the two maps ι1 and ι2 become equal because p
becomes invertible.

We have to distinguish the easier case, in which all objects F●() for 0-ary mor-

phisms F are cofibrant. Otherwise we define a category ̃DCof[(WCof)−1] in which we
set HomF (;F) ∶= HomDS[W−1

S ](QF●();F) for all F , where F is a 0-ary morphism with do-

main S. Composition is given as follows: For a morphism f ∈ HomG(E1, . . . ,En;F) with
cofibrant Ei and F and ξ ∶ QF●() → Ei, we define the composition ξ ○ f as the following
composition

E1

⋮̂i cocart // (F ○G)●(E2, î. . .,En) ∼ // G●(E1, . . . , F●(), . . . ,En) oo

En

G●(E1, . . . ,QF●(), . . . ,En)oo // G●(E1, . . . ,En) // F .
One checks that the so-defined composition is associative and independent of the choice

of the push-forwards.

5.1.14. Lemma. If the object F●() is cofibrant for every 0-ary morphism F then the
natural functor

DCof[(WCof)−1]→ D[W−1]
is an equivalence of categories.

Otherwise it is, if we replace DCof[(WCof)−1] by ̃DCof[(WCof)−1].
Proof. The inclusion DCof → D induces a functor Ξ ∶ DCof[(WCof)−1] → D[W−1]. If the
objects F●() are not cofibrant then Ξ may be modified to a functor

̃DCof[(WCof)−1]→ D[W−1]

as follows: a 0-ary morphism QF●()→ F is mapped to the composition

○ cocart // F●() QF●()oo // F

in D[W−1].



FIBERED MULTIDERIVATORS AND (CO)HOMOLOGICAL DESCENT 1339

We now specify a functor Φ in the other direction. Φ maps an object X to a cofibrant
replacement QX. For n ≥ 1, a morphism f ∈ Hom(E1, . . . ,En;F) over F is mapped to
the following morphism. Composing with the morphisms QEi → Ei, we get a morphism
f ′ ∈ Hom(QE1, . . . ,QEn;F) or equivalently a morphism Xi → F ●,i(QE1, î. . .,QEn;F). Now
choose a lift (dotted arrow in the diagram)

F ●,i(QE1, î. . .,QEn;QF)

��

QEi //

66

F ●,i(QE1, î. . .,QEn;F)

which exists because the vertical map is again a trivial fibration (because all the QEi
are cofibrant). The resulting map in Hom(QE1, . . . ,QEn;PF) is actually well-defined in
DCof[(WCof)−1]. Note that, two different lifts are indeed left homotopic because QEi
is cofibrant [Hov99, Proposition 1.2.5. (iv)], and therefore also the two morphisms in
Hom(QE1, . . . ,QEn;QF) become equal in DCof[(WCof)−1] by Lemma 5.1.13. From this it
follows that Φ is indeed a functor on n-ary morphisms for n ≥ 1.

For n = 0, a morphism f ∈ Hom(;F) over F corresponds to a morphism F●() →
F . If F●() is cofibrant, this morphism lifts (again uniquely up to right homotopy) to a
morphism F●() → QF , i.e. to a morphism in HomF (;QF). If F●() is not cofibrant then
the composition lifts to a morphism: QF●()→ QF which is defined to be the image of Φ.
Furthermore Φ is inverse to Ξ up to isomorphism.

5.1.15. Lemma. Right homotopic morphisms become equal in DCof,Fib[(WCof,Fib)−1].
Proof. The assertion follows from the fact that there exists a path object

F F ′
pr2

oo
pr1oo Fioo

where F ′ is cofibrant and fibrant which realizes the right homotopy [Hov99, Proposition
1.2.6.]. This uses that all sources are cofibrant and the domain is fibrant. The two
morphisms pr1 and pr2 become equal because i becomes invertible.

5.1.16. Lemma. The functor DFib,Cof[(WFib,Cof)−1]→ DCof[(WCof)−1] and the functor
̃DFib,Cof[(WFib,Cof)−1]→ ̃DCof[(WCof)−1], respectively, are equivalences of multicategories.

Proof. The proof is analogous to that of Lemma 5.1.14 but with some minor changes
which require, in particular, the chosen order of restriction to cofibrant and fibrant objects.
We specify again a functor Φ in the other direction. On objects, Φ maps E to a fibrant
replacement RE . Note that RE is still cofibrant. A morphism f ∈ Hom(E1, . . . ,En;F) over
F corresponds to a morphism F●(E1, . . . ,En)→ F . Now choose a lift (dotted arrow in the
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diagram)

F●(E1, . . . ,En)

��

// F // RF

F●(RE1,E2, . . . ,En)

��
⋮

��
F●(RE1,RE2, . . . ,REn)

>>

It exists because the vertical maps are again trivial cofibrations (because all the Ei and REi
are cofibrant). The lift is well-defined in DCof,Fib[(WCof,Fib)−1], because two lifts in the
triangle above become right homotopic (because RF is fibrant by [Hov99, Proposition
1.2.5. (iv)]). Therefore also the corresponding morphisms in Hom(RE1, . . . ,REn;RF)
become equal in DCof,Fib[(WCof,Fib)−1] by the previous lemma. It follows that Φ is indeed
a functor which is inverse to the inclusion up to isomorphism.

5.1.17. Lemma. If the objects F●() for all 0-ary morphisms in S are cofibrant then the
natural functor

DFib,Cof[(WFib,Cof)−1]→ DFib,Cof/ ∼
is an isomorphism of categories. Otherwise it is, if we modify the 0-ary morphisms as
before.

Proof. The natural functor DFib,Cof → DFib,Cof/ ∼ takes weak equivalences to isomor-
phisms [Hov99, Proposition 1.2.8] and has the universal property of DFib,Cof[(WFib,Cof)−1]
by the same argument as in [Hov99, Proposition 1.2.9].

Proof of Proposition 5.1.9. The previous lemmas showed that D[W−1] is equivalent
to DFib,Cof/ ∼ if all objects of the form F●() are cofibrant, or if we replace the second

multicategory by ̃DFib,Cof/ ∼, where we set Hom
F, ̃DFib,Cof/∼(;F) ∶= HomDS[W−1

S ](F●(),F) for

all 0-ary morphism F in S with domain S and for every F ∈ DS.
It remains to show that the functor

p / ∼ ∶ DFib,Cof/ ∼ → S

is bifibered if all F●() are cofibrant or otherwise bifibered for n ≥ 1 (i.e. (co)Cartesian

n-ary morphisms exist for n ≥ 1). (The modification ̃DFib,Cof/ ∼ has been constructed in
such a way that it has 0-ary coCartesian morphisms.)

We show that p / ∼ is opfibered, the other case being similar. Let F be a multimorphism
in S with codomain S. The set HomF (E1, . . . ,En;F) modulo right homotopy is in bijection
with the set HomDY (F●(E1, . . . ,En),F) modulo right homotopy. Since F is fibrant, the



FIBERED MULTIDERIVATORS AND (CO)HOMOLOGICAL DESCENT 1341

latter set is the same as HomDS(R(F●(E1, . . . ,En)),F) modulo right homotopy. Hence
morphisms in HomF (E1, . . . ,En;F) uniquely decompose as the composition

E1

⋮ cocart // F●(E1, . . . ,En) // R(F●(E1, . . . ,En))

En

followed by a morphism in HomDS(R(F●(E1, . . . ,En)),F) modulo right homotopy. More
generally, by the same argument, a morphism in some HomGF (F1, . . . ,E1, . . . ,En, . . . ,Fm;G),
where G is another multimorphism in S, modulo right homotopy factorizes uniquely into
the above composition followed by a morphism in

HomG(F1, . . . ,R(F●(E1, . . . ,En)), . . . ,Fm;G)

modulo right homotopy.
It remains to see that the push-forward in D[W−1] corresponds to the left derived

functor of F●. For any objects E1, . . . ,En the composition

RQE1

⋮ cocart // F●(RQE1, . . . ,RQEn) // R(F●(RQE1, . . . ,RQEn))

RQEn

is a coCartesian morphism lying over F , with domains isomorphic to the Ei.
However, the object R(F●(RQE1, . . . ,RQEn)) is isomorphic to the value of the left

derived functor of F● at E1, . . . ,En.

5.1.18. We now focus on the left case. If I is a inverse diagram, we proceed to construct
a model structure on the fibers of the bifibration of multicategories (cf. 5.1.6):

Hom(I,D)→ Hom(I,S) = S(I).

This model structure is an analogue of the classical Reedy model structure and it has the
property that pull-backs w.r.t. diagrams and the corresponding relative left Kan extension
functors form a Quillen adjunction.

Let I ∈ Dir and let F ∶ I → S be a functor. We will define a model-category structure

(DF ,CofF ,FibF ,WF )
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where DF is the fiber of Hom(I,D) over F and whereWF is the class of morphisms which
are element-wise in the corresponding WF (i).

For any G ∈ DF , and for any i ∈ I, we define a latching object

LiG ∶= colimIi{F (α)●G(j)}α∶j→i,

Here Ii is the full subcategory of I ×/I i consisting of all objects except idi. We have a
canonical morphism

LiG→ G(i)
in DF (i). We define FibF to be the class of morphisms which are element-wise in the
corresponding FibF (i). We define CofF to be the class of morphisms G→H such that for
any i ∈ I the induced morphism δ in the diagram

LiG

��

// LiH

��
G(i) // push-out

δ // H(i)

belongs to CofF (i). We call a morphism G→H in CofF temporarily an acyclic cofibra-
tion if δ is, in addition, a weak equivalence. The proof that this yields a model-category
structure is completely analogous to the classical case [Hov99, §5.1] (if S is trivial). We
need a couple of lemmas:

5.1.19. Lemma. The class of cofibrations (resp. acyclic cofibrations) in DF consists
precisely of the morphisms which have the left lifting property w.r.t. trivial fibrations (resp.
fibrations). These are stable under retracts.

Proof. This is shown as in the classical case: we first prove that acyclic cofibrations have
the lifting property w.r.t. fibrations. Consider a diagram

G1
//

α

��

H1

β
��

G2
// H2

where α is an acyclic cofibration and β is a fibration. We proceed by induction on n and
assume that for all i ∈ I with ν(i) < n a map G2(i) → H1(i) has been constructed such
that it is a lift in the above diagram, evaluated at i. For each i of degree n consider
the following diagram (where the morphism LiG2 → LiH1 → H1(i) is formed using the
already constructed lifts):

G1(i)∐LiG1
LiG2

//

α′(i)
��

H1(i)
β(i)
��

G1(i) // H2(i)
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Here α′(i) is a trivial CofF (i)-cofibration by definition, and β(i) is a FibF (i)-fibration by
definition. Hence a lift exists. In the same way the statement for cofibrations and for
trivial fibrations is shown. Closure under retracts is left as an exercise for the reader. The
assertion that the class of acyclic cofibrations (resp. cofibrations) is precisely the class
of morphisms that have the left lifting property w.r.t. fibrations (resp. trivial fibrations)
follows from the retract argument as for model categories.

5.1.20. Lemma. There exists a functorial factorization of morphisms in DF into a fibra-
tion followed by an acyclic cofibration and into a trivial fibration followed by a cofibration.

Proof. We show this again by induction on n. We do the first case, the other being
similar. Let G→K a morphism in DF . We have the following diagram:

LiG //

��

LiH //

��

LiK

��
G(i) // G(i)∐LiGLiH

// H(i) // K(i)

Here the top row is constructed using the already defined factorizations. The object H(i)
and the dotted maps are constructed as the factorization in the model category DF (i) into
a trivial CofF (i)-cofibration followed by FibF (i)-fibration.

5.1.21. Lemma. The classes of cofibrations, acyclic cofibrations, fibrations and weak
equivalences are stable under composition.

Proof. This follows from the characterization by a lifting property (resp. by definition
for the case of the weak equivalences).

5.1.22. Lemma. Acyclic cofibrations are precisely the trivial cofibrations.

Proof. We begin by showing that an acyclic cofibration is a weak equivalence. It suffices
to show that in the diagram

LiG

��

// LiH

��
G(i) // H(i)

the top horizontal morphism is a trivial cofibration. Then the lower horizontal morphism
is a composition of two trivial cofibrations and hence is a weak equivalence. The top
morphism is indeed a trivial cofibration because the morphism of Ii-diagrams (cf. 5.1.18)

{F (α)●G(j)}α∶j→i → {F (α)●G(j)}α∶j→i

is a trivial cofibration in the classical sense (i.e. over the constant diagram over Ii with
value F (i)) because of Lemmas 5.1.23 and 5.1.24.
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In the other direction, let f be a trivial cofibration and factor it as f = p ○ g, where g
is an acyclic cofibration and p is a fibration. It follows that p is a weak-equivalence. Now
construct a lift in the diagram

F
g //

f
��

H

p

��
G G

This shows that f is a retract of g, and hence is an acyclic cofibration as well.

5.1.23. Lemma. For each (1-ary) morphism of diagrams f ∈ HomS(X1;Y ) there is an
associated push-forward and an associated pull-back, defined by taking the point-wise push-
forward f●, and point-wise pull-back f ● (cf. 5.1.6), respectively. The push-forward f●
respects the classes of cofibrations and acyclic cofibrations. The pull-back f ● respects the
classes of fibrations and trivial fibrations.

Proof. It suffices (by the lifting property) to show that f ● respects fibrations and trivial
fibrations. This is clear because they are defined point-wise.

A posteriori this will say that the pair of functors f ●, f● form a Quillen adjunction
between the corresponding model categories (cf. 5.1.28).

5.1.24. Lemma. Let i ∈ I be an object, let ι ∶ Ii → I be the corresponding latching category
with its natural functor to I, and let Fi ∶= ι∗F ∶ Ii → S be the restriction of F to Ii. The
pull-back ι∗ ∶ DF → DFi respects cofibrations and acyclic cofibrations.

Proof. It is easy to see that the pull-back induces an isomorphism of the corresponding
latching objects as in the classical case.

5.1.25. Corollary. The structure constructed in 5.1.18 defines a model category.

Proof. This follows from the previous Lemmas.

5.1.26. Proposition. For any morphism of inverse diagrams α ∶ I → J , and for any
functor F ∶ J → S, the functor

α∗ ∶ DF → Dα∗F
has a left adjoint αF! . The pair α∗, αF! define a Quillen adjunction.

Proof. That the two functors define a Quillen adjunction is clear once we have shown
that α! exists because α∗ preserves fibrations and weak equivalences. Let G be an object
of DF . We define

(α!G)(j) ∶= colimI×
/J jS(µ)●ι∗jG.

For each morphism µ ∶ j → j′ we get a functor

µ̃ ∶ I ×/J j → I ×/J j
′

and hence an induced morphism

F (µ)●S(µ)●ι∗jG→ µ̃∗S(µ′)●ι∗j′ .
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Since F (µ)● commutes with colimits we get a morphism

F (µ)●colimI×
/J jS(µ)●ι∗jG→ colimI×

/J j
′S(µ′)●ι∗j′

which we define to be (α!G)(µ). We now proceed to show that the functor we have
constructed is indeed adjoint to α∗. A morphism µ ∶ G → α∗H is given by a collection of
maps a(i) ∶ G(i)→H(α(i)) for all objects i ∈ I, subject to the condition that the diagram

F (α(λ))●G(i) F (α(λ))●a(i)//

G(λ)
��

F (α(λ))●H(α(i))
H(α(λ))
��

G(i′) a(i′) // H(α(i′))

commutes for each morphism λ ∶ i→ i′ in I. For each j ∈ J and morphism µ ∶ α(i)→ j we
get a morphism

H(µ) ○ (F (µ)●a(i)) ∶ F (µ)●G(i)→H(j)
and therefore for fixed j a morphism

colimI×
/J jS(µ)●ι∗jG→H(j).

One checks that this yields a morphism α!G→ H. On the other hand, let b ∶ α!G→ H be
a morphism given by

b(j) ∶ colimI×
/J jS(µ)●ι∗jG→H(j)

or equivalently for all µ ∶ α(i)→ j by morphisms

F (µ)●G(i)→H(j).

In particular, if µ is the identity of α(i), we get morphisms

G(i)→H(α(i))

which constitute a morphism of diagrams G → α∗H. One checks that these associations
are inverse to each other.

5.1.27. Lemma. Let α ∶ I → J be a morphism of inverse diagrams and let j be an object
of J . The functor ι∗j ∶ DI → DI×/J j respects cofibrations and trivial cofibrations.

Proof. This follows easily from the fact that ιj induces a canonical identification

Ii = (I ×/J j)µ

for any µ = (i, α(i) → j). For this implies that we have a canonical isomorphism LiG ≅
Lµι∗jG.
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5.1.28. Lemma. The bifibration of multicategories, defined in 5.1.6

Hom(I,D)→ Hom(I,S) = S(I)

equipped with the model-category structures constructed in 5.1.18 is a bifibration of multi-
model-categories in the sense of 5.1.3.

Proof. First for each multi-morphism of diagrams f ∈ HomS(X1, . . . ,Xn;Y ) we have
to see that the push-forward and the various pull-backs form a Quillen adjunction in n
variables. The case n = 1 has been treated above. We only work out the case n = 2, the
proof for higher n being similar. It suffices to check the following: for any cofibration
E1 → E ′1 and for any fibration F → F ′ the dotted induced morphism in the following
diagram

f ●,2(E ′1;F) // pull-back //

��

f ●,2(E ′1;F ′)

��
f ●,2(E1;F) // f ●,2(E1;F ′)

is a fibration. Since fibrations are defined point-wise and fibered products are computed
point-wise, we have only to see that the assertion holds point-wise. Now F → F ′ is a
point-wise fibration and E1 → E ′1 is a Reedy cofibration, so by the reasoning in the proof
of Lemma 5.1.22 it is in particular a point-wise cofibration. Hence the assertion holds
because of the assumption that D → S is a bifibration of multi-model-categories (5.1.3).
The requested property for the 0-ary push-forward is easier and is left to the reader.

5.1.29. Proposition. The functor D(I)→ S(I) defined in 5.1.2 is a bifibration of mul-
ticategories whose fiber over S ∈ S(I) is equivalent to DS[W−1

S ]. The pull-back and push-
forward functors are given by the left derived functors of f●, and by the right derived
functors of f ●,j, respectively.

Proof. We have seen in 5.1.28 that the fibers of Hom(I,D) → S(I) are a bifibration of
multi-model-categories in the sense of 5.1.3. Therefore by Proposition 5.1.9 we get that
D(I)→ S(I) are bifibered multicategories with the requested properties.

Proof of Theorem 5.1.5. (Der1) and (Der2) for D and S are obvious.
(FDer0 left) and the first part of (FDer0 right) follow from Theorem 5.1.29.
(FDer3 left) follows from 5.1.26.
(FDer4 left): By construction of α! the natural base-change

colim S(µ)●ι∗jG→ j∗α!G (19)

is an isomorphism for the non-derived functors. For the derived functors the same follows
because all functors in the equation respect cofibrations and trivial cofibrations and all
functors which have to be derived in (19) are left Quillen functors and hence can be
derived by composing them with cofibrant replacement.

(FDer3 right) and (FDer4 right) are shown precisely the same way.
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(FDer5 left): Fixing a morphism f ∈ Hom(S1, . . . , Sn;T ) in S and objects E2, . . . ,En
over S2, . . . , Sn we have by Theorem 5.1.29 a push-forward functor

D(I × J)p∗S1 → D(I × J)p∗T
E1 ↦ (p∗f)●(E1, p

∗E2, . . . , p
∗En)

(we denote it with the same letter as the underived version) which, by (FDer0 left), defines
a morphism of pre-derivators

DS1 → DT .

We first show that it preserves colimits, i.e. that for p ∶ J → ⋅ we have that for all
E1 ∈ Dp∗S1(I × J) the natural morphism

f●(p∗E1,E2,⋯,En)→ p∗(p∗f)●(E1, p
∗E2,⋯, p∗En)

(where we wrote p also for the projection p ∶ I × J → I) is an isomorphism. This is the
same as showing that

p∗f 1,●(E1, . . . ,En)→ (p∗f)1,●(p∗E1, . . . , p
∗En)

is an isomorphism. This follows from Lemma 5.1.8 because it suffices to check this for
the underived functors. Now let α ∶ I → J be an opfibration. To show that

f●(α∗E1,E2, . . . ,En)→ α∗(α∗f)●(E1, α
∗E2, . . . , α

∗En)

is an isomorphism we may show this point-wise. Indeed, after applying j∗ we get

(j∗f)●(j∗α∗E1, j
∗E2, . . . , j

∗En)→ j∗α∗(α∗f)●(E1, α
∗E2, . . . , α

∗En)

(j∗f)●(p∗ι∗jE1, j
∗E2, . . . , j

∗En)→ p∗ι
∗
j (α∗f)●(E1, α

∗E2, . . . , α
∗En)

where ιj ∶ Ij → I is the inclusion of the fiber. Note that the commutative diagram

Ij
ιj //

p

��

I

α

��
j // J

is homotopy exact by Lemma 2.3.23, 2. because α is an opfibration. Finally we get the
morphism

(j∗f)●(p∗ι∗jE1, j
∗E2, . . . , j

∗En)→ p∗(j∗f)●(ι∗jE1, p
∗j∗E2, . . . , p

∗j∗En)

which is an isomorphism by the above reasoning.
Since we have bifibrations, by Lemma 2.3.9 the full content of (FDer0 right) follows

from (FDer5 left) while (FDer5 right) follows from (FDer0 left).
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A. Fibrations of categories

A.1. Grothendieck (op)fibrations.

A.1.1. [right] Let p ∶ D → S be a functor, and let f ∶ S → T be a morphism in S. A
morphism ξ ∶ E ′ → E over f is called Cartesian if the composition with ξ induces an
isomorphism

Homg(F ,E ′) ≅ Homf○g(F ,E)
for any morphism g ∶ R → S in S and for every F ∈ DR.

The functor p is called a fibration if for any f ∶ S → T and for every object E in DT
(i.e. such that p(E) = T ) there exists a Cartesian morphism E ′ → E .

A.1.2. [left] Let p ∶ D → S be a functor, and let f ∶ S → T be a morphism in S. A
morphism ξ ∶ E → E ′ over f is called coCartesian if the composition with ξ induces an
isomorphism

Homg(E ′,F) ≅ Homg○f(E ,F)
for any morphism g ∶ T → U in S and for every F ∈ DU .

The functor p is called an opfibration if for any f ∶ S → T and for every object E in
DS there exists a coCartesian morphism E → E ′.
A.1.3. The functor p is an opfibration if and only if pop ∶ Dop → Sop is a fibration. We say
that p is a bifibration if is a fibration and an opfibration at the same time. If p ∶ D → S
is a fibration we may choose an associated pseudo-functor, i.e. to each S ∈ S we associate
the category DS, and to each f ∶ S → T we associate a push-forward functor

f● ∶ DS → DT

characterized by the fact that for each E in DS there is a coCartesian morphism E → f●E .
The same holds similarly for an opfibration with the pull-back f ● instead of the push-
forward. If the functor p is a bifibration, f● is left adjoint to f ●. Situations where this is
the opposite can be modeled by considering bifibrations D → Sop.

A.2. Fibered multicategories and the six functors.

A.2.1. We give a definition of a (op)fibered multicategory. This is a straightforward
generalization of the notion of (op)fibered category given in Section A.1. It is very useful
to encode the formalism of the six functors. Details about (op)fibered multicategories can
be found, for instance, in [Her00, Her04].

The reader should keep in mind that a multicategory abstracts the properties of mul-
tilinear maps, and indeed every monoidal category gives rise to a multicategory setting

Hom(A1, . . . ,An;B) ∶= Hom((A1 ⊗ (A2 ⊗ (⋯))),B). (20)
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A.2.2. Definition. A multicategory D consists of

a class of objects Ob(D);

for every n ∈ Z≥0, and objects X1, . . . ,Xn, Y a class

Hom(X1, . . . ,Xn;Y );

a composition law, i.e. for objects X1, . . . ,Xn, Y1, . . . , Ym, Z and for each integer 1 ≤ i ≤
m a map:

Hom(X1, . . . ,Xn;Yi)×Hom(Y1, . . . , Ym;Z)→ Hom(Y1, . . . , Yi−1,X1, . . . ,Xn, Yi+1, . . . , Ym;Z);

for each object X ∈ Ob(D) an identity idX ∈ Hom(X;X);

satisfying associativity and identity laws. The composition w.r.t. independent slots is com-
mutative, i.e. for 1 ≤ i < j ≤ m if f ∈ Hom(X1, . . . ,Xn;Yi) and f ′ ∈ Hom(X ′

1, . . . ,X
′
k;Yj)

and g ∈ Hom(Y1, . . . , Ym;Z) we have

(g ○i f) ○j+n−1 f
′ = (g ○j f ′) ○i f. (21)

A symmetric (braided) multicategory is given by an action of the symmetric (braid)
groups, i.e. isomorphisms

α ∶ Hom(X1, . . . ,Xn;Y )→ Hom(Xα(1), . . . ,Xα(n);Y )

for α ∈ Sn (resp. α ∈ Bn) forming an action which is compatible with composition in the
obvious way (substitution of strings in the braid group).

In some references the composition is defined in a seemingly more general way; in the
presence of identities these descriptions are, however, equivalent. We denote a multimor-
phism in f ∈ Hom(X1, . . . ,Xn;Y ) also by

X1

⋮ f // Y

Xn

for n ≥ 1, or by

○
f // Y

for n = 0.
We will also need the definition of a strict 2-multicategory which is a multicategory

enriched in (usual) categories:
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A.2.3. Definition. A (strict) 2-multicategory D consists of

� a class of objects Ob(D);

� for every n ∈ Z≥0, and objects X1, . . . ,Xn, Y a category

Hom(X1, . . . ,Xn;Y );

� a composition, i.e. for objects X1, . . . ,Xn, Y1, . . . , Ym, Z and for each integer 1 ≤ i ≤
m a functor:

Hom(X1, . . . ,Xn;Yi)×Hom(Y1, . . . , Ym;Z)→ Hom(Y1, . . . , Yi−1,X1, . . . ,Xn, Yi+1, . . . , Ym;Z);

� for each object X ∈ Ob(D) an identity object idX in the category Hom(X;X);

satisfying strict associativity and identity laws. The composition w.r.t. independent slots is
commutative, i.e. for 1 ≤ i < j ≤m if f ∈ Hom(X1, . . . ,Xn;Yi) and f ′ ∈ Hom(X ′

1, . . . ,X
′
k;Yj)

and g ∈ Hom(Y1, . . . , Ym;Z) we have

(g ○i f) ○j+n−1 f
′ = (g ○j f ′) ○i f. (22)

A symmetric (braided) 2-multicategory is given by an action of the symmetric (braid)
groups, i.e. isomorphisms of categories

α ∶ Hom(X1, . . . ,Xn;Y )→ Hom(Xα(1), . . . ,Xα(n);Y )

for α ∈ Sn (resp. α ∈ Bn) forming an action which is strictly compatible with composition
in the obvious way (substitution of strings in the braid group).

The 1-composition of 2-morphisms is (as for usual 2-categories) determined by the
following whiskering operations: Let f, g ∈ Hom(X1, . . . ,Xn;Yi) be 1-morphisms and
let h ∈ Hom(Y1, . . . , Ym;Z) be a 1-morphism and let µ ∶ f ⇒ g be a 2-morphism in
Mor(Hom(X1, . . . ,Xn;Yi)). Then we define

h ∗ µ ∶= idh ⋅ µ

where the right hand side is the image of the morphism idh × µ under the composition
functor. Similarly we define µ ∗ h for µ ∶ f ⇒ g with f, g ∈ Hom(Y1, . . . , Ym;Z) and
h ∈ Hom(X1, . . . ,Xn;Yi).
A.2.4. We leave it to the reader to state the obvious definition of a functor between
multicategories. Similarly there is a definition of a opmulticategory, in which we have
classes

Hom(X;Y1, . . . , Yn)
and similar data. For a multicategory D we get a natural opmulticategory Dop by reversing
the arrows.
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The trivial category {⋅} is considered as a multicategory setting all Hom(⋅, . . . , ⋅ ; ⋅) to
the 1-element set. It is the final object in the “category” of multicategories.

To clarify the precise relation between multicategories and monoidal categories we
have to define Cartesian and coCartesian morphisms. It turns out that we can actually
give a definition which is a common generalization of coCartesian morphisms in opfibered
categories and the morphisms expressing the existence of a tensor product:

A.2.5. Definition. Consider a functor of multicategories p ∶ D → S. We call a mor-
phism

ξ ∈ Hom(X1, . . . ,Xn;Y )
in D coCartesian w.r.t. p, if for all Y1, . . . , Ym, Z with Yi = Y , and for all

f ∈ Hom(p(Y1), . . . , p(Ym);p(Z))

the map

Homf(Y1, . . . , Ym;Z) → Homf○p(ξ)(Y1, . . . , Yi−1,X1, . . . ,Xn, Yi+1, . . . , Ym;Z)
α ↦ α ○ ξ

is bijective. We call a morphism

ξ ∈ Hom(X1, . . . ,Xn;Y )

in D Cartesian w.r.t. p at the i-th slot, if for all Z1, . . . , Zm, and for all
f ∈ Hom(p(Z1), . . . , p(Zm);p(Xi)) the map

Homf(Z1, . . . , Zm;Xi)→ Homp(ξ)○f(X1, . . . ,Xi−1, Z1, . . . , Zm,Xi+1, . . . ,Xn;Y ).

α ↦ ξ ○ α
is bijective.

The functor p ∶ D → S is called an opfibered multicategory if for every g ∈
Hom(S1, . . . , Sn;T ) in S, and for every collection of objects Xi with p(Xi) = Si there
is some object Y over T and some coCartesian morphism ξ ∈ Hom(X1, . . . ,Xn;Y ) such
that p(ξ) = g.

The functor p ∶ D → S is called a fibered multicategory if for every 1 ≤ j ≤ n,
for each g ∈ Hom(S1, . . . , Sn;T ) in S, for every collection of objects Xi for i /= j with
p(Xi) = Si, and for every Y over T , there is some object Xj and some Cartesian morphism
w.r.t. the j-th slot ξ ∈ Hom(X1, . . . ,Xn;Y ) such that p(ξ) = g.

The functor p ∶ D → S is called a bifibered multicategory if it is both fibered and
opfibered.

A morphism of (op)fibered multicategories is a commutative diagram of functors

D1
F //

��

D2

��
S1

G // S2
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such that F maps (co)Cartesian morphisms to (co)Cartesian morphisms.

It turns out that the composition of Cartesian morphisms is Cartesian (and similarly
for coCartesian morphisms if they are composed w.r.t. the right slot)13.

A.2.6. Lemma.

1. An opfibered multicategory p ∶ D → {⋅} is a monoidal category defining X ⊗ Y to be
the target of a coCartesian arrow from the pair X,Y over the unique morphism in
Hom(⋅, ⋅; ⋅) of the final multicategory {⋅}.

Conversely any monoidal category gives rise to an opfibered multicategory p ∶ D → {⋅}
via (20). A multicategory D is a closed category if and only if it is fibered over
{⋅}. In particular, the fibers of an (op)fibered multicategory p ∶ D → S are always
closed/monoidal in the following sense: given any functor of multicategories14 x ∶
{⋅}→ S, the category Dx of objects over x is closed/monoidal.

2. Given (op)fibered multicategories p ∶ C → D and q ∶ D → E also the composition q ○ p
is an (op)fibered multicategory. In particular, if we have an opfibered multicategory
p ∶ C → S and if S → {⋅} is opfibered (i.e. S is monoidal) then also C → {⋅} is opfibered
(i.e. C is monoidal). The same holds dually. A morphism α is (co)Cartesian for
q ○ p if and only if α is (co)Cartesian for p and p(α) is (co)Cartesian for q.

Similarly, the unit 1 is just the target of a coCartesian morphism in Hom(; 1) which
exists by definition (the existence is also required for the empty set of objects).

The second part of the lemma encapsulates the distinction between internal and ex-
ternal tensor product in a four (or six) functor context, see A.2.17.

A.2.7. Let D,S be (usual) multicategories. More generally any opfibered multicategory
D → S gives rise to a pseudo-functor of 2-multicategories

S →MCAT 2−op

where MCAT is the 2-multi“category” of categories, whose objects are categories and
the morphism categories are defined to be:

HomMCAT (C1, . . . ,Cn;D) ∶= Fun(C1 × ⋅ ⋅ ⋅ × Cn,D)

Here by a pseudo-functor Ψ ∶ S → T , where T is a 2-multicategory, we understand
the obvious generalization of the usual concept of a pseudo-functor. This means that for

13As with fibered categories there are weaker notions of Cartesian which still uniquely determine a
Cartesian morphism (up to isomorphism) from given objects over a given multimorphism, however, do
not imply stability under composition. Similarly for coCartesian morphisms.

14This specifies also morphisms in Hom(X, . . . ,X
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

;X), for all n, compatible with composition.
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each f ∈ HomS(S1, . . . , Sn;T ) we are given a functor Ψ(f) ∈ Hom(Ψ(S1), . . . ,Ψ(Sn);T )
and for each composition g ⋅ f a natural isomorphism

Ψf,g ∶ Ψ(g)Ψ(f)⇒ Ψ(g ⋅ f) (23)

satisfying the usual relation for composable morphisms f, g and h:

(Ψ(h) ∗Ψf,g)Ψgf,h = (Ψg,h ∗Ψ(f))Ψf,hg.

This definition generalizes readily to the case in which also S is a 2-multicategory, the
only modification being that, on morphisms, we are given functors

HomS(S1, . . . , Sn;T )→ HomT (Ψ(S1), . . . ,Ψ(Sn); Ψ(T ))

and the 2-morphisms (23) have to be functorial in f and g.

A.2.8. Translated back to the language of fibrations we arrive at the following definition:
see A.2.9.

First note that the definition of coCartesian morphism (cf. A.2.5) may be stated in
the following way: A morphism

ξ ∈ Hom(X1, . . . ,Xn;Y )

in D coCartesian w.r.t. p, if for all Y1, . . . , Ym, Z with Yi = Y the diagram of sets

Hom(Y1, . . . , Ym;Z)
○ξ //

��

Hom(Y1, . . . , Yi−1,X1, . . . ,Xn, Yi+1, . . . , Ym;Z)

��
Hom(p(Y1), . . . , p(Ym);p(Z))

○p(ξ) // Hom(p(Y1), . . . , p(Yi−1), p(X1), . . . , p(Xn), p(Yi+1), . . . , p(Ym);p(Z))

is Cartesian.

A.2.9. Definition. Let p ∶ D → S be a strict functor of 2-multicategories. A 1-morphism

ξ ∈ Homf(E1, . . . ,En;F)

in D over f ∈ Hom(S1, . . . , Sn;T ) is called coCartesian w.r.t. p, if for all F1, . . . ,Fm,G
with Fi = F the diagram of categories

Hom(F1, . . . ,Fm;G) ○ξ //

��

Hom(F1, . . . ,Fi−1,E1, . . . ,En,Fi+1, . . . ,Fm;G)

��
Hom(T1, . . . , Tm;U) ○p(ξ) // Hom(T1, . . . , Ti−1, S1, . . . , Sn, Ti+1, . . . , Tm;U)

is Cartesian (where we set Tk ∶= p(Fk) and U ∶= p(G)).



1354 FRITZ HÖRMANN

The strict functor p is called a 2-opfibered 1-opfibered multicategory (with 1-
categorical fibers) if for all f ∈ Hom(S1, . . . , Sn;T ) and objects E1, . . . ,En with p(Ei) = Si
there is a coCartesian 1-morphism with domains E1, . . . ,En. Furthermore the functors

Hom(E1, . . . ,En;F)→ Hom(p(E1), . . . , p(En);p(F))

have to be opfibrations (with discrete fibers) and composition has to be a morphism of
opfibrations.

The functor p ∶ D → S is called a 2-fibered 1-opfibered multicategory (with 1-
categorical fibers) if for every 1 ≤ j ≤ n and for each g ∈ Hom(S1, . . . , Sn;T ) in S, and
for each collection of objects Ei for i /= j with p(Ei) = Si, and for each F over T , there is
some object Ej and some Cartesian 1-morphism w.r.t. the j-th slot ξ ∈ Hom(E1, . . . ,En;F)
with p(ξ) = g. Furthermore the functors

Hom(E1, . . . ,En;F)→ Hom(p(E1), . . . , p(En);p(F))

have to be opfibrations (with discrete fibers) and composition has to be a morphism of
opfibrations.

There are several other, partly more general, definitions of an (op)fibration with 2-
categorical fibers which we will not need in this section. We will discuss them in a
subsequent article [Hör16].

Note that for (op)fibrations with 1-categorical fibers the composition is automatically
a morphism of opfibrations.

A.2.10. An opfibration p ∶ D → S of 2-multicategories with 1-categorical fibers is in
particular (forgetting 2-morphisms) a usual opfibration. The additional datum, which
makes it into a 2-opfibration is the following: For each 2-morphism µ ∶ f ⇒ g in S a map
of sets (the 2-push-forward):

p∗(µ) ∶ Homf(X1, . . . ,Xn;Y )→ Homg(X1, . . . ,Xn;Y )

such that

p∗(idf)(β) = β

p∗(µ) ○ p∗(ν) = p∗(µ ○ ν)

(composition of 2-coCartesian morphisms are 2-coCartesian) and

p∗(p(α) ∗ µ)(α ○ ξ) = α ○ (p∗(µ)(ξ))
p∗(µ ∗ p(α))(ξ ○ α) = (p∗(µ)(ξ)) ○ α

(1-composition maps coCartesian morphisms to coCartesian morphisms).
The 2-morphisms between α and β in D lying over f , resp. g in S can be reconstructed

from the datum p∗ as

Hom(α,β) = {µ ∈ Hom(f, g) ∣ p∗(µ)(α) = β}.
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A.2.11. With a pseudo-functor

Ψ ∶ S →MCAT 2−op

where S is any strict 2-multicategory, we associate the opfibration

DΨ → S.

The objects of DΨ are pairs
(S,X ∈ Ψ(S))

in which S is an object of S. The 1-morphisms

(S1,X1)

⋮ (f,α) // (T,Y )

(Sn,Xn)

are pairs of (multi)morphisms

f ∈ Hom(S1, . . . , Sn;T ) α ∶ Ψ(f)(X1, . . . ,Xn)→ Y.

The 2-morphisms
(f,α)⇒ (f ′, α′)

are given by 2-morphisms µ ∶ f ⇒ f ′ such that α ○ (Ψ(µ)(X)) = α′.
The fiber15 of DΨ → S over S is actually a 1-category, namely precisely the category

Ψ(S).
We have the following generalization of Lemma A.2.6, 2.:

A.2.12. Lemma. Given (op)fibered 2-multicategories p ∶ C → D and q ∶ D → E then
the composition q ○ p is an (op)fibered 2-multicategory as well. A 1-morphism α is
(co)Cartesian for q ○ p if and only if α is (co)Cartesian for p and p(α) is (co)Cartesian
for q.

A.2.13. Example. Let S be a usual category. Then S may be turned into a symmetric
multicategory by setting

Hom(X1, . . . ,Xn;Y ) ∶= Hom(X1;Y ) ×⋯ ×Hom(Xn;Y ).

If S has coproducts, then S (with this multicategory structure) is opfibered over {⋅}. Let
p ∶ D → S be an opfibered (usual) category. Any object X induces a canonical functor of

15i.e. the 2-category of those objects, morphisms, and 2-morphisms which Ψ maps to S, idS , and ididS
,

respectively
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multicategories x ∶ {⋅} → S with image X, hence the fibers of an opfibered multicategory
p ∶ D → S are monoidal and the datum p is equivalent to giving a monoidal structure
on the fibers such that the push-forwards f● are monoidal functors and such that the
compatibility morphisms between them are morphisms of monoidal functors. This is
called a covariant monoidal pseudo-functor in [LH09, (3.6.7)].

A.2.14. Example. Let S be a usual category. Then Sop may be turned into a symmetric
multicategory (or equivalently S into a symmetric opmulticategory) by setting

Hom(X1, . . . ,Xn;Y ) ∶= Hom(Y ;X1) ×⋯ ×Hom(Y ;Xn).

If S has products then Sop (with this multicategory structure) is opfibered over {⋅}. Let
p ∶ D → Sop be an opfibered (usual) category. Then an opfibered multicategory structure
on p, w.r.t. this multicategory structure on Sop, is equivalent to a monoidal structure on
the fibers such that pull-backs f∗ (along morphisms in S) are monoidal functors and such
that the compatibility morphisms between them are morphisms of monoidal functors.
This is called a contravariant monoidal pseudo-functor in [LH09, (3.6.7)].

A.2.15. Definition. The point is that the notion of (op)fibered multicategory is not
restricted to the situation of Examples A.2.13 and A.2.14. Let S be a category with
fiber products and define Scor, denoted the symmetric 2-multicategory of correspon-
dences in S to be the symmetric 2-multicategory having the same objects as S, and where
the category of morphisms Hom(S1, . . . , Sn;T ) is the category of objects

A
g1

tt

gn

~~

f

��
S1 ⋯ Sn ; T

and where the 2-morphisms (A,f, g1, . . . , gn)⇒ (A′, f ′, g′1, . . . , g
′
n) are isomorphisms A →

A′ compatible with f, f ′ and g1, g′1, . . . , gn, g
′
n.

Composition is given by:

A ×Yi B
pr1

vv

pr2

((
A

tt ~~
++

B

ss
��   

**X1 ⋯ Xn ; Y1 ⋯ Yi ⋯ Ym ; Z

where strictly associative fiber products have been chosen in S.
This 2-multicategory is representable (i.e. opfibered over {⋅}), closed (i.e. fibered over

{⋅}) and self-dual, with tensor product and internal hom both given by × and having as
unit the final object of S.
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A.2.16. Definition. Let S be a category with fiber products. A (symmetric) six-
functor-formalism on S is a 1-bifibered and 2-bifibered (symmetric) 2-multicategory
with 1-categorical fibers

p ∶ D → Scor.

A.2.17. We have a morphism of opfibered (over {⋅}) symmetric multicategories Sop →
Scor where Sop is equipped with the symmetric multicategory structure as in A.2.14. How-
ever there is no reasonable morphism of opfibered multicategories S → Scor. (There is no
compatibility involving only ‘⊗’ and ‘!’.) From a six-functor-formalism we get operations
g∗, g∗ as the pull-back and the push-forward along the correspondence

X
g

��
Y ; X

We get f ! and f! as the pull-back and the push-forward along the correspondence

X
f

��
X ; Y

We get the monoidal product A ⊗ B for objects A,B above X as the target of any
Cartesian morphism ⊗ over the correspondence

ξX =
⎛
⎜⎜⎜
⎝

X

X X ; X

⎞
⎟⎟⎟
⎠

Alternatively, we have
A⊗B = ∆∗(A ⊠B)

where ∆∗ is the push-forward along the correspondence

⎛
⎜⎜⎜
⎝

X
∆

{{

f

X ×X ; X

⎞
⎟⎟⎟
⎠

induced by the canonical ξX ∈ Hom(X,X;X), and where ⊠ is the absolute monoidal
product which exists because by Lemma A.2.12 the composition D → {⋅} is opfibered as
well, i.e. D is monoidal.

A.2.18. It is easy to derive from the definition of bifibered multicategory over Scor that
the absolute monoidal product A⊠B can be reconstructed from the fiber-wise product as
pr∗1A⊗pr∗2B on X ×Y , whereas the absolute HOM(A,B) is given by HOM(pr∗1A,pr!

2B)
on X × Y . In particular DA ∶= HOM(A,1) is given by HOM(A,π!1) for π ∶X → ⋅ being
the final morphism.
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A.2.19. Lemma. Given a symmetric six-functor-formalism on S

p ∶ D → Scor

for the six operations as extracted in A.2.17 there exist naturally the following compatibility
isomorphisms:

left adjoints right adjoints

(∗,∗) (fg)∗ ∼Ð→ g∗f∗ f∗g∗
∼Ð→ (fg)∗

(!, !) (fg)!
∼Ð→ f!g! g!f ! ∼Ð→ (fg)!

(!,∗) g∗f!
∼Ð→ F!G∗ G∗F ! ∼Ð→ f !g∗

(⊗,∗) f∗(− ⊗ −) ∼Ð→ f∗ − ⊗f∗− f∗HOM(f∗−,−) ∼Ð→ HOM(−, f∗−)
(⊗, !) f!(− ⊗ f∗−)

∼Ð→ (f!−)⊗ − HOM(f!−,−)
∼Ð→ f∗HOM(−, f !−)

f !HOM(−,−) ∼Ð→ HOM(f∗−, f !−)
(⊗,⊗) (− ⊗ −)⊗ − ∼Ð→ − ⊗ (− ⊗ −) HOM(−,HOM(−,−)) ∼Ð→ HOM(− ⊗ −,−)

Here f, g,F,G are morphisms in S which, in the (!,∗)-row, are related by the Cartesian
diagram

⋅ G //

F

��

⋅
f

��⋅ g
// ⋅

A.2.20. Remark. In the right column the corresponding adjoint natural transformations
are listed. In each case the left hand side natural isomorphism determines the right
hand side one and conversely. (In the (⊗, !)-case there are 2 versions of the commutation
between the right adjoints; in this case any of the three isomorphisms determines the other
two.) The (!,∗)-isomorphism (between left adjoints) is called base change, the (⊗, !)-
isomorphism is called the projection formula, and the (∗,⊗)-isomorphism is usually
part of the definition of a monoidal functor. The (⊗,⊗)-isomorphism is the associativity
of the tensor product and part of the definition of a monoidal category. The (∗,∗)-
isomorphism, and the (!, !)-isomorphism express that the corresponding functors arrange
as a pseudo-functor with values in categories.

Proof. The existence of all isomorphisms is a consequences of the fact that the composi-
tion of coCartesian morphisms is coCartesian. For example, the projection formula (⊗, !)
is derived from the following composition in Scor:

⎛
⎜⎜⎜
⎝

Y

Y Y ; Y

⎞
⎟⎟⎟
⎠
○1

⎛
⎜⎜⎜
⎝

X
f

��
X ; Y

⎞
⎟⎟⎟
⎠
≅
⎛
⎜⎜⎜
⎝

X

f��

f

��
X Y ; Y

⎞
⎟⎟⎟
⎠
,

where ○1 means that we compose w.r.t. the first slot.
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The “monoidality of f∗” (∗,⊗) is derived from the following composition in Scor:

⎛
⎜⎜⎜
⎝

X

f��
Y ; X

⎞
⎟⎟⎟
⎠
○
⎛
⎜⎜⎜
⎝

Y

Y Y ; Y

⎞
⎟⎟⎟
⎠
≅
⎛
⎜⎜⎜
⎝

X
f

ww
f��

Y Y ; X

⎞
⎟⎟⎟
⎠
.

Base change (!,∗) is derived from:

⎛
⎜⎜⎜
⎝

X
g

��
A ; X

⎞
⎟⎟⎟
⎠
○
⎛
⎜⎜⎜
⎝

Y
f

��
Y ; A

⎞
⎟⎟⎟
⎠
≅
⎛
⎜⎜⎜
⎝

Y ×AX
F

{{

G

##
Y ; X

⎞
⎟⎟⎟
⎠
.

All compatibilities between these isomorphisms can be derived as well. Each of these
compatibilities corresponds to an associativity relation in the 2-multicategory Scor. One
can also axiomatize the properties of the morphism f! → f∗ that often accompanies a
six-functor-formalism. Can one give a finite list of compatibility diagrams from which all
the others would follow?

A.2.21. The goal and motivation for this research is, as said in the introduction, to define
(and to construct in reasonable contexts) a derivator version of a six-functor-formalism,
i.e. a fibered multiderivator

D→ Scor

where Scor is the pre-2-multiderivator associated with the 2-category Scor. We will give
the definition of a pre-2-multiderivator and of a fibered derivator over such in subsequent
articles [Hör16, Hör17a].

A.3. Localization of multicategories.

A.3.1. Proposition. Let D be a (symmetric, braided) multicategory and let W be a
subclass of 1-ary morphisms. Then there exists a (symmetric, braided) multicategory
D[W−1], which is not necessarily locally small, together with a functor ι ∶ D → D[W−1] of
(symmetric, braided) multicategories with the property that ι(w) is an isomorphism for
all w ∈W and which is universal w.r.t. this property.

Proof (sketch). This construction is completely analogous to the construction for usual
categories. Morphisms Hom(X1, . . . ,Xn;Y ) are formal compositions of i-ary morphisms
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in D and formal inverses of morphisms in W , for example:

X1

X2 f1
// ⋅ ⋅w1oo

X3

X4 f3
// ⋅ Y

w3oo

X5 f2
// ⋅ ⋅w2oo

X6

More precisely: Morphisms are defined to be the class of lists of ni-ary morphisms fi ∈
Hom(Xi,1, . . . ,Xi,ni ;Yi), morphisms wi ∶ Y ′

i → Yi in W and integers ki as follows

(f1,w1), k1, (f2,w2), k2, . . . , kn−1, (fn,wn)

such that Y ′
i = Xi+1,ki , modulo relations coming from composing at independent slots,

commutative squares, and forcing the (id,wi) to become the left and right inverse of
(wi, id).
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A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B.
Saint-Donat.

Mathematisches Institut, Albert-Ludwigs-Universität Freiburg
Eckerstraße 1, 79104 Freiburg, Germany

Email: fritz.hoermann@math.uni-freiburg.de

This article may be accessed at http://www.tac.mta.ca/tac/



THEORY AND APPLICATIONS OF CATEGORIES (ISSN 1201-561X) will disseminate articles that
significantly advance the study of categorical algebra or methods, or that make significant new contribu-
tions to mathematical science using categorical methods. The scope of the journal includes: all areas of
pure category theory, including higher dimensional categories; applications of category theory to algebra,
geometry and topology and other areas of mathematics; applications of category theory to computer
science, physics and other mathematical sciences; contributions to scientific knowledge that make use of
categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.
Full text of the journal is freely available from the journal’s server at http://www.tac.mta.ca/tac/. It
is archived electronically and in printed paper format.

Subscription information Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. For in-
stitutional subscription, send enquiries to the Managing Editor, Robert Rosebrugh, rrosebrugh@mta.ca.

Information for authors The typesetting language of the journal is TEX, and LATEX2e is
required. Articles in PDF format may be submitted by e-mail directly to a Transmitting Editor. Please
obtain detailed information on submission format and style files at http://www.tac.mta.ca/tac/.

Managing editor. Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca

TEXnical editor. Michael Barr, McGill University: barr@math.mcgill.ca

Assistant TEX editor. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin seal@fastmail.fm

Transmitting editors.
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